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Abstract 

 This thesis develops methods to determine optimum detection thresholds for the 

Progressive Multi-Channel Correlation (PMCC) algorithm used by the International Data 

Centre (IDC) to perform infrasound station-level nuclear-event detection.  Receiver 

Operating Characteristic (ROC) curve analysis is used with real ground truth data to 

determine the trade-off between the probability of detection (𝑃𝐷) and the false alarm rate 

(FAR) at various consistency detection thresholds.  Further, statistical detection theory via 

maximum a posteriori and Bayes cost approaches is used to determine station-level 

optimum "family" size thresholds of grouped detection "pixels" with similar signal 

attributes (i.e. trace velocity, azimuth, time of arrival, and frequency content) before the 

detection should be considered for network-level processing.  Optimum family sizes are 

determined based upon the consistency threshold and filter configuration used to filter 

sensor data prior to running the detection algorithm.  Finally, this research generates 

synthetic signals for particular array configurations, adjusts the signal-to-noise ratio 

(SNR) to determine the SNR failure levels for the PMCC detection algorithm, and 

compares this performance to the performance of fielded infrasound stations with similar 

configurations.  For the fielded stations studied, PMCC was able to detect signals with 

post-filtered SNRs as low as 2 dB, which represented approximately 2 dB better (lower) 

performance than as indicated by the synthetic test results. 
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DETECTION OPTIMIZATION OF THE PROGRESSIVE MULTI-CHANNEL 
CORRELATION ALGORITHM USED IN INFRASOUND NUCLEAR TREATY 

MONITORING 

 I.  Introduction 

The Air Force Technical Applications Center (AFTAC) has long used networks 

of nuclear event detection sensors to detect nuclear tests carried out anywhere on the 

globe.  In its mission to achieve information superiority, AFTAC has historically 

combined data garnered from seismic and infrasound networks to improve location 

estimates for nuclear events.  For instance, underground explosions produce seismic 

waves that can couple into the atmosphere in the form of infrasound.  Likewise, 

atmospheric explosions produce infrasonic waves that can couple into the ground and 

travel as seismic waves [1].  AFTAC primarily relies on the seismic network for event 

detection, and, if infrasound station(s) near the detecting seismic stations also record 

arrivals, the combination of data between the two networks may refine location estimates.  

The Progressive Multi-Channel Correlation (PMCC) algorithm is a promising detection 

scheme for use on the infrasound network and is the subject of this research’s evaluation. 

PMCC is a correlation detector currently used by the international monitoring 

community to canvass recorded infrasound data for potential nuclear event detections.  

Specifically, the International Monitoring System (IMS) has tasked its data-processing 

arm, the International Data Centre (IDC), to use PMCC as part of its effort to ensure 

compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT).  As a correlation 

detector, PMCC assumes event-produced infrasound propagates through the atmosphere 

as a plane wave.  Plane wave propagation implies that the wave front will reach each 



 

2 

sensor array’s horizontally displaced sensors at predictable times given knowledge of the 

wave’s angle of arrival and velocity.  Of course, prior knowledge of both the angle of 

arrival, or azimuth, and propagating velocity is unknown.  However, the time delay in 

plane wave arrival at one element relative to another can be calculated via cross-

correlation of the two infrasound sensor elements’ measured atmospheric pressure 

variations.  The propagating signal’s velocity and azimuth can be estimated from the 

computed arrival delays at all elements relative to arrival at a designated reference 

element.  Generally, cross correlations are initially computed for the three possible sensor 

pairs of the three closest array elements.   

In the ideal case, plane wave arrival means the three time delays for these pairs 

will sum to zero.  In practice, how close the sum must be to zero in order to indicate 

plane wave arrival is set by the consistency, or PMCC’s primary detection threshold.  If 

additional elements can satisfy the consistency threshold when included with the initial 

sub-array of three, then the likelihood of detection is considered higher.  On its own, 

consistency threshold satisfaction does not qualify as a detection.  Rather, consistency 

satisfaction produces elementary detections in time-frequency space, and, if possible, 

elementary detections with similar signal attributes (i.e. angle of arrival, velocity, time of 

arrival, and frequency content) are grouped into a family.  Large families generally 

signify higher likelihood of signal-of-interest (SOI) presence than do smaller families. 

1.1 Problem Statement 

The IDC does not use family size as a detection threshold.  In fact, the 

organization only goes so far as to say that the largest and most stable families are 
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preserved for source localization [2].  Relatively little is known not only about the 

performance capability of PMCC, but also about how the choice of detection thresholds 

and PMCC-parameter settings affect this performance.  In this regard, the consistency-

dependent trade-off between the probability of detection (𝑃𝐷) and the false alarm rate 

(FAR) is evaluated.  This research additionally explores the feasibility of employing 

family size as the second of two detection thresholds – the first being the consistency.  It 

is the job of this second threshold to eliminate false alarms and preserve true detections 

for further processing.  Finally, globally-located infrasound stations experience a variety 

of wind noise conditions.  Strong wind bursts introduce high-amplitude noise that can 

potentially render a station blind to SOIs.  The limitations of PMCC detection capability 

are therefore investigated from a signal-to-noise ratio (SNR) perspective. 

1.2 Research Contributions 

This research develops a method to evaluate PMCC detection performance over a 

range of possible consistency thresholds.  The initial step is to build a ground truth (GT) 

set of SOIs garnered from five infrasound stations – three along the Korean Demilitarized 

Zone (BRD, CHN, KSG), one located in Japan (I30), and one located in Russia (I45).  

Further, optimum family size detection thresholds are proposed for use by any agency 

using PMCC to monitor infrasound for nuclear events.  Finally, methods to determine 

station-specific SNR failure levels are also described in detail.  The following list 

summarizes this research’s insights into PMCC detector performance:  
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• Receiver Operating Characteristic (ROC) curve analysis explores the consistency-

dependent trade-off between 𝑃𝐷 and FAR.  Based upon this analysis, a recommended 

range of acceptable consistency thresholds is proffered. 

• Both maximum a posteriori (MAP) and Bayes risk minimization approaches are used 

to determine optimum family size thresholds.  These optimum thresholds depend on 

parameter settings such as the consistency threshold and the filter configuration used 

to filter data prior to running the PMCC detection algorithm.  The proposed 

thresholds assist an analyst in making a decision as to whether or not a SOI is present 

based upon the size of the family in question.  

• Synthetic signals are generated to determine signal-to-noise ratio (SNR) levels at 

which PMCC is blind to potential SOIs on various synthetic array configurations.  

These SNR detector limitations are then compared to the limitations of detection 

capability on fielded infrasound stations with geometries similar to those of the 

synthetically tested arrays.  Detection “blindness” is defined as the SNR level at 

which 𝑃𝐷 ≤ 10%. 

1.3 Thesis Overview 

Chapter II begins by discussing the background and current status of the CTBT.  

The nuclear test verification regime is introduced with particular emphasis placed upon 

the infrasound network and the PMCC detection scheme used to process the network’s 

recorded data.  Following this introduction is a comprehensive review of WinPMCC, the 

program that implements the PMCC algorithm [3].  Previous work characterizing the 

atmospheric propagation of infrasound, measures implemented to combat deteriorating 
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detection capability in the face of wind noise, and the effects of sensor array geometry on 

the ability to accurately estimate the azimuth and velocity of a propagating infrasound 

signal are also covered.  Finally, infrasound signal detection methods other than PMCC 

are briefly described.  Research objectives are included within the context of addressing 

some of the detection capability and performance challenges presented in Chapter II’s 

literature review. 

Chapter III reiterates these objectives and explains, in detail, the methodology 

tailored to achieve them.  Chapter IV formally presents the results and analysis thereof.  

Chapter V summarizes the research contributions within the framework of recommending 

how monitoring agencies such as AFTAC or the IDC can streamline the use of PMCC in 

an operational setting and evaluate infrasound station performance.  The document then 

concludes with recommendations for future work. 
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II.  Literature Review 

2.1 Background 

2.1.1 Comprehensive Nuclear-Test-Ban Treaty (CTBT) 

Over 2,000 nuclear tests were carried out between 1945 and 1996.  46 of those 51 

years coincide with the Cold War, a period dominated by the Nuclear Arms Race and a 

series of conflicts with threatening nuclear undertones.  Counted among these conflicts 

are the Berlin Blockade (1948-1949), the Korean War (1950-1953), the Suez Crisis 

(1956), the Cuban Missile Crisis (1962), the Vietnam War (1959-1975), the Yom Kippur 

War (1973), and the Soviet War in Afghanistan (1979-1989).  Many attempts were made 

to organize a comprehensive nuclear test ban during the Cold War, but none came to 

fruition.  Not until 1994, when memories of the not-so-distant past really catalyzed 

efforts to avoid future nuclear tensions, did negotiations successfully result in a treaty that 

would come into being two years later.  The Comprehensive Nuclear-Test-Ban Treaty 

(CTBT) was first signed in Geneva in 1996.  Presently, 183 countries have signed the 

treaty, and 157 countries have also ratified it [4]. 

In order for the CTBT to become law, all 44 countries holding nuclear technology 

must sign and ratify the treaty.  8 of these countries have yet to sign and/or ratify, 

including China, Egypt, India, Iran, Israel, North Korea, Pakistan, and the United States 

[4].  Without speculating as to the varied reasons why these countries have not taken their 

individual steps to help make the CTBT law, one possible reason why the United States 

has not ratified may have something to do with the fact that the measures put in place to 

verify whether a nuclear test occurs are not yet fully operational.  Specifically, 337 global 
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facilities exist to monitor potential nuclear explosions.  15% of these monitoring facilities 

are not yet up and running [4]. 

2.1.2 International Monitoring System (IMS) 

The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty 

Organization (CTBTO), headquartered in Vienna, tasked the International Monitoring 

System (IMS) with maintaining these facilities and their associated monitoring 

technologies.  As the CTBT bans nuclear explosions by anyone, anywhere - on the 

Earth’s surface, in the atmosphere, underwater, and underground - the IMS likewise uses 

4 different sensor networks to ensure the detection of explosions by anyone, anywhere.  

Seismic, hydroacoustic, infrasound, and radionuclide stations comprise the IMS.   

The seismic sensor network, consisting of 50 primary and 120 auxiliary stations, 

monitors shockwaves traveling through the Earth’s crust and is therefore most conducive 

to detecting explosions underground.  The 11 hydroacoustic stations monitor sound 

waves traveling through Earth’s oceans, and the 60-station infrasound network monitors 

sound waves traveling through the atmosphere.  Finally, the IMS’s radionuclide 

component samples the atmosphere for radioactive particles with 80 globally-located 

stations [4].  Since shockwaves traveling underground and sound waves traveling through 

water and air are caused by a variety of events, the radionuclide component offers the 

only clear indication as to whether an explosion is nuclear in nature.   

This research, however, will focus on the infrasound-monitoring component.  The 

60 infrasound stations are shown in Figure 1.  Before delving into the infrasound 

network’s operational details, what exactly is infrasound?  What kinds of events produce 
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infrasound?  To what does the term “infrasound station” refer, and what sensors are used 

to detect infrasound? 

2.2 Infrasound 

As its Latin prefix implies, infrasound describes a classification of sound waves 

with frequencies below the audible level of human hearing.  Since the audible range 

refers to sound waves in the atmosphere with frequencies between 20 Hz and 20 kHz, 

infrasound signals exhibit frequencies less than 20 Hz.  Infrasound typically travels at the 

speed of sound, or 343 m/s at 20℃.  Many sources produce infrasound, including severe 

weather, bolides, ocean swell microbaroms, mountain associated waves, volcanic 

eruptions, auroras, earthquakes, rockets, and explosions [5] [6].  Examination of 

infrasound dating back to the World War II era illuminated the promise of garnering 

information not only about signal origin but also about the state of the atmosphere as a 

whole.  Thereafter, infrasound detection and analysis was mainly developed to monitor 

nuclear explosions.  When the CTBT was signed in 1996, infrasound research became 

more imperatively relevant.  Shortly after the turn of the millennium, the IMS began 

construction on what would become the infrasound network shown in Figure 1 [2]. 

Each of the 60 stations on the map marks the location of an array of 

microbarometer sensors.  These sensors measure atmospheric pressure and are most 

sensitive in the frequency range extending from hundredths of Hertz to a few tens of 

Hertz [7].  The frequency response, as illustrated in Figure 2, pertains specifically to the 

“MB2000” microbarometer, which is displayed in Figure 3.  Individual microbarometers 

serve as sensor array elements.  
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Infrasound arrays do not adhere to any worldwide standard of an “optimal” sensor 

configuration, partly because optimum sensor deployment is the subject of ongoing 

experimentation.  However, the majority of the IMS infrasound monitoring stations have 

7 or 8 array elements – microbarometers – with overall array apertures between 1.0 and 

3.0 km [2].  Example configurations are shown in Figure 4.  The reason sensors are 

arranged in such a way will be explored with the introduction of the detection method 

used to analyze the data recorded by these arrays.  This research evaluates the 

capabilities, limitations, and implementation of this particular detection method. 

 

 

 

Figure 1: The 60-station International Monitoring System (IMS) Infrasound Network as of 2010.  
Figure copied from [2]. 
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Figure 2: MB2000 Frequency Response.   Figure copied from [7]. 

 

Figure 3: MB2000 Microbarometer Sensor.   Figure copied from [7]. 
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Figure 4: Example 4-element centered triangle array (top), 8-element pentagon array with triangular 
sub-array (bottom left), and 9-element pentagon array with centered triangle sub-array (bottom 
right).  Figure copied from [2]. 

 

The CTBTO requires that the infrasound network be mission capable at least 98% 

of the time.  The requirement imposed on the infrasound network ensures it serves its role 

as an effective component of the IMS.  “Mission capable” implies that at least 70% of the 

array elements at each station are correctly calibrated and transmitting their recorded data 

via satellite or virtual private network (VPN) to the International Data Centre (IDC), also 

located in Vienna [2].  The true litmus test for an effectively operating infrasound 

network is the ability to detect and locate any atmospheric nuclear explosion with a yield 

of at least 1 kiloton (kT) [8].  The academic community considers an explosive yield to 
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be detectable when there is a 90% probability of detection at two or more stations [9].  

Detection ability hinges on the successful use of the Progressive Multi-Channel 

Correlation (PMCC) algorithm, which is the detection scheme employed by the IDC to 

process the IMS’s station-level infrasound data that the IDC receives in real time. 

2.3 The Progressive Multi-Channel Correlation (PMCC) Algorithm 

PMCC begins by assuming that infrasound-producing events are far enough away 

from surrounding sensor arrays that the arrays can treat the propagating infrasound 

signals as plane waves.  Infrasonic planar waves are represented using 

 𝑝(𝑟, 𝑡) = 𝑒𝑖�𝜔𝑡−𝑘�⃗ 𝑟� , (1) 
 

where 𝑟 is the three dimensional position vector, 𝑘�⃗ = 2𝜋𝑓
𝑐

 is the wave vector with 

frequency 𝑓 and phase velocity 𝑐, 𝜔 = 2𝜋𝑓 is the angular frequency, and 𝑡 is time [10].  

Tabling the plane wave assumption for a moment, note that an infrasound signal in the 

time domain 𝑠(𝑡) can be represented in the frequency domain by its Fourier transform     

 𝑆(𝑓) = 𝐴(𝑓)𝑒𝑖𝜑(𝑓) , (2) 
 

where 𝐴(𝑓) represents the spectral amplitude, and 𝜑(𝑓) represents the spectral phase.  

Now, for a planar infrasound signal traversing a sensor array, the only difference between 

the data recorded by any two sensor elements is a phase delay depending upon the 

relative positions of the sensors Θ(𝑟2 − 𝑟1) and the signal’s incident azimuth and trace 

velocity [11].  Of course, this ideal case assumes propagation free from attenuation and 

background noise, and the following relations hold [12]: 

 



 

13 

 𝐴2(𝑓) = 𝐴1(𝑓) (3) 
 

and 

 𝜑2(𝑓) = 𝜑1(𝑓) − Θ(𝑟2 − 𝑟1) . (4) 
 

Relaxing the two “ideal case” assumptions from which Eqns. 3 and 4 are born, Figure 5 

illustrates what the three sensors of a triangular array might record as an infrasound 

signal passes.  As opposed to the signal characteristics in Eqns. 3 and 4, background 

noise over time is characterized by rapid variations of both 𝐴(𝑓) and 𝜑(𝑓). 

 

 

 

Figure 5: Infrasound Arrival at a Small Triangular Array on Palmyra Island.  The signal arrives at 
Sensor A at point 4343 and subsequently arrives at Sensors B and C respectively.  The “time” units 
on the x-axis refer to the sampling rate (10 pts/s) [13].   

(𝟏 𝟏𝟎⁄  seconds) 

(𝟏 𝟏𝟎⁄  seconds) 

(𝟏 𝟏𝟎⁄  seconds) 
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Correlation is the basis for PMCC, and the cross correlation function determines 

the aforementioned signal arrival time delay between pairs of sensor elements 𝑠𝑖(𝑡) and 

𝑠𝑗(𝑡).  Cross correlations are performed within an analyzing time window of length 𝑊, 

where the channel data of sensor 𝑠𝑖(𝑡) is shifted over the channel data of sensor 𝑠𝑗(𝑡).  

The time shift at which the cross correlation is a maximum, 

 Δ𝑡𝑖𝑗 = 1
2𝜋𝑓

�𝜑𝑗(𝑓) − 𝜑𝑖(𝑓)� , (5) 
 

indicates the time difference of a signal’s arrival between the two sensors.  Equation 5 

assumes the calculated delay is the same for all frequencies, i.e. dispersion is not a factor.  

This correlation operation is repeated for the two other sensor pairs in a three-sensor sub-

array. 

A plane wave produces a consistent set of time delays 

 Δ𝑡𝑖𝑗 + Δ𝑡𝑗𝑘 + Δ𝑡𝑘𝑖 = 0 ,  (6) 
 

satisfying what is known as the closure relation.  In the presence of background noise, 

the cross correlation operation may be less accurate due to random phase combinations, 

and the delays may not sum exactly to zero.  The consistency of the set of time delays for 

𝑛 sensors of sub-array 𝑅𝑛 is defined as the mean quadratic residual of the closure 

relation, expressed as follows: 

 
𝑐𝑛 = � 6

𝑛(𝑛−1)(𝑛−2) 𝑟𝑖𝑗𝑘
2  .  (7) 

 

𝑟𝑖𝑗𝑘 =  Δ𝑡𝑖𝑗 + Δ𝑡𝑗𝑘 + Δ𝑡𝑘𝑖 and 𝑖, 𝑗, 𝑘 ∈ 𝑅𝑛.  If the calculated consistency is below an 

established threshold, a detection is declared on 𝑅𝑛 [12]. 
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Once a detection is declared, the time delays producing that detection are known 

and are subsequently inverted to obtain estimates for the propagating infrasound signal’s 

velocity and azimuth [13].  Inversion is possible because a plane wave propagating from 

a fixed location at a specific velocity allows one to predict exactly when the signal will 

arrive at each sensor element as long as the array’s relative position to the signal source is 

known.  Conversely, knowledge of the time differences of arrival from sensor to sensor 

permits the trace velocity and azimuth to be estimated. 

The element of PMCC yet to be discussed is the “P,” or the algorithm’s 

progressivity.  Before broaching the subject, note that PMCC begins by determining the 

consistency on a set of delays for the smallest triangular sub-array.  To reiterate, a 

detection is declared if the consistency is below an established threshold.  The signal’s 

trace velocity and azimuth, as determined by inverting the closure relation’s time delays, 

is then used to “direct” the search for other sensors which may be added to the initial sub-

array.  Specifically, the value of the expected time delay for a pair of sensors, in which 

one of the sensors is outside the original consistency-evaluated sub-network, can be 

estimated.  The computed time delay for this sensor pair corresponds to the correlation 

local maximum that is closest to the given estimate.  As long as the detection criterion 

continues to be valid, i.e. the consistency threshold is met, the aperture of the network 

increases with each added sensor.  As a result, velocity and azimuth estimates become 

more and more refined [11].   

In addition to increasing signal attribute estimation precision, the progressive use 

of distant sensors helps reduce the number of false detections by removing correlated 

noise that may have been present on the original sub-network [2].  A potential pitfall, 
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however, stems from the ambiguity involved in the search for a correlation local 

maximum when adding distant sensors.  Not only may two or more local maxima be 

close to the estimated expected time delay, but there may also be a local maximum 

closest to the estimate that has nothing to do with a coherent signal.  For instance, noise 

on the far sensor of the sensor pair would conceivably produce numerous local maxima 

during a cross correlation operation.  Since there is no minimum correlation value that 

must be met to qualify for consideration as a local maximum, this “seek and ye shall 

find” approach may unjustifiably add sensors to the original sub-array simply because 

there happens to be a local maximum in the area of the estimate.  PMCC can therefore 

produce a high number of elementary detections that are false alarms.  This high false 

alarm rate is tempered somewhat during the IDC’s post-PMCC processing stage, the 

details of which will be discussed in Section 2.5. 

The detection method just described, represented visually as the flow chart in 

Figure 6, is implemented at the station level and is therefore referred to as station-level 

processing.  Station-level processing is the focus of the research described in Chapters 

III-V.  Network-level processing, on the other hand, attempts to associate a signal-of-

interest (SOI) detected on one array with an SOI on a neighboring array by comparing 

signal attributes garnered at the station level.  These signal attributes, such as back 

azimuth, trace velocity, frequency content, and time of arrival, are used to determine 

whether SOIs recorded on multiple arrays were caused by the same event.  If so, the IDC 

triangulates the position of this initial infrasound-producing event with each station’s 

estimated back azimuth.  These events are then added to standard event lists (SELs) and 

reported as part of an international bulletin [2]. 
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Figure 6: PMCC Flow Chart describing the steps necessary to produce an elementary detection.  𝜺 in 
the first “decision-making diamond” refers to the consistency threshold. 
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 2.4 The Larger Picture and Implications 

The introduction of nuclear treaty monitoring with infrasound via the PMCC 

algorithm has thus far disregarded the elephant in the room, namely satellite technology.  

Once satellite technology was established, atmospheric monitoring research efforts – 

especially US research efforts – went almost exclusively into furthering this technology.  

As a corollary, infrasound was largely neglected for 30 years.  The reasoning was 

ostensibly simple.  Why should the effort be made to process infrasound when satellites 

can “see” events in the atmosphere?  The answer is twofold.  First, the IMS does not 

operate satellites and needed another monitoring method.  Second, the inclusion of 

infrasound in the IMS network permits expanded data fusion, or the synergistic 

combination of data from the seismic, hydroacoustic, infrasound, and/or radionuclide 

networks.  In fact, seismic and infrasound stations are often collocated so infrasound can 

more easily be used as a discriminant for potential SOIs recorded by both infrasound and 

seismic arrays [14].  Data fusion therefore promises enhanced detection and localization 

capability and perhaps could even reveal events that may go undetected if only one 

method, including satellite technology, is used. 

2.5 WinPMCC 

The IDC’s chosen algorithm with which to process the data it receives from the 

IMS infrasound network was introduced in the previous sections.  WinPMCC is the 

implementation of this algorithm in programmatic form.  Figures 7-9 and Figure 12 

display the user options available when running the WinPMCC program, and these 
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options will be addressed as they relate to the operational use of the PMCC detection 

scheme. 

A perusal of Figure 7 reveals some familiar terms, perhaps the most apparent 

being the “Threshold Consistency” under “Detection Parameters.”  Recall that this 

parameter serves as the threshold for detection, and the choice of its value presents an 

inherent trade-off between the probability of detection (𝑃𝐷) and the probability of false 

alarm (𝑃𝐹𝐴), or the false alarm rate (FAR).  The low probability of missing a true 

detection by setting a “high” consistency threshold will unfortunately be accompanied by  

 

 

Figure 7: WinPMCC Parameter Settings Tab 
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a high FAR rate.  Likewise, a “low” consistency threshold will reduce the FAR but at the 

expense of a higher probability of missing a true detection.  An objective of this research 

effort is therefore to investigate the consistency-dependent trade-off between 𝑃𝐷 and 

𝐹𝐴𝑅, the details of which will be presented in Chapters III and IV. 

Immediately adjacent to the “Threshold Consistency” in Figure 7 is “Threshold 

Nb of Sensors.”  This setting controls the minimum number of sensors that must 

participate in a detection.  It ranges between three and the total number of sensors 

comprising the particular array [10].  A related parameter is “QLambda,” which defines 

the maximum acceptable distance for integration of a far sensor into a sub-array, in 

accordance with the progressive aspect of PMCC.  𝑄 is a scalar multiplying the 

wavelength, 𝜆, of a potential signal-of-interest (SOI).  If the distance between sensors is 

not too large as compared to the wavelength, 𝑄 is generally set at a value, like 50, that 

will incorporate all sensors into the calculation [10].  Figure 8 shows an example sensor 

array and the corresponding network settings.  The setting entitled “Sub Networks” 

indicates on which groups of sensors the closure relation will be initiated.  These groups 

are generally smaller triangular sub-arrays to allow for the progressive use of distant 

sensors if the consistency threshold is met on any of the initial sub-arrays. 

Returning to Figure 7, the “Filter Parameters” section presents the user with 

options for what filter configurations to use to filter the raw sensor waveform data.  It 

also presents options for what analyzing time window length to use with each chosen 

filter.  WinPMCC really begins station-level processing by filtering the data within the 

previously introduced sliding time window.  Filtering increases the signal-to-noise ratio 
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Figure 8: WinPMCC Sensor Network Settings 

 

 

 (SNR) for SOIs whose frequency content lies within a specific filter’s passband 

bandwidth.  PMCC calculations then ensue post-filtering. 

Multiple filters may be employed within a single time window, the idea being that 

additional filters may reveal signals with different frequency content that happen to 

simultaneously arrive at an array.  “Nb of Bands” refers to the number of filters used, and 

overall filter configuration details are further specified in the “Window and Filter 

Parameters” dialog box in Figure 9.  The top plot of Figure 9 vertically delineates the 

filters by bandwidths over which each filter’s normalized magnitude response is unity.  

For example, “filter 20” has a normalized magnitude response that is unity between  

4.55 Hz and 5.0 Hz, as can be visually confirmed in Figure 10’s filter response plot.  
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Window lengths can also be individually adjusted for specific filters, with longer window 

lengths generally applied to bandwidths containing lower frequencies.  The filter 

configuration recommended by Le Pichon and Cansi in the CTBTO’s Technical PMCC 

Documentation calls for 10 filters per decade spanning the following 3 bands: 

• 0.5 Hz - 5.0 Hz: This band is generally most appropriate for monitoring natural or 

man-made signals that propagate over distances of several hundred kilometers. 

• 0.05 Hz - 0.5 Hz: This band is generally most appropriate for monitoring remote large 

events, such as explosions or meteorite entries.  Microbaroms are also often 

associated with this frequency range. 

• 0.005 Hz - 0.05 Hz: Detections in this band often point to atmospheric disturbances 

producing mountain associated waves and auroral infrasound [15]. 

To account for varying wavelengths, Le Pichon and Cansi further recommend using 30-

second window lengths for the highest of the above frequency bands, 90-second window 

lengths for the middle frequency band, and 200-second window lengths for the lowest 

frequency band [10]. 

 As mentioned, PMCC calculations are consistently performed within these sliding 

time windows and bandwidths.  After canvassing the entire data segment for infrasound 

arrivals, a list of elementary detections satisfying the consistency threshold remains, as in 

Figure 11.  These elementary detections are known as pixels within the WinPMCC 

program, and, as is quite apparent, an almost constant stream of pixels is created in time-

frequency space.  The seemingly innumerable detection list exists in no small part due to  
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Figure 9: WinPMCC Window Length and Filter Configuration Settings 
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the ambiguity involved in the progressive search for distant sensors to add to initial sub-

arrays, a PMCC pitfall more comprehensively addressed in Section 2.3. 

WinPMCC’s solution to this pitfall is to build pixel families, or group pixels that 

are similar in time-frequency-velocity-azimuth space and can therefore be associated with 

the same infrasound arrival [16].  In addition to eliminating pixels that cannot be 

associated with neighboring pixels, PMCC families help distinguish multiple arrivals that 

may exist in the same time window but in different frequency bands.  Two pixels, 𝑃1 and 

𝑃2, are grouped into a family if the weighted Euclidian distance between them is less than 

 𝑑(𝑃1, 𝑃2) = �
(𝑡2−𝑡1)2

𝜎𝑡
2 + (𝑓2−𝑓1)2

𝜎𝑓
2 + (𝑉2−𝑉1)2

𝜎𝑉
2𝑉2𝑉1

+ (𝜃2−𝜃1)2

𝜎𝜃
2  , (8) 

 

where 𝑡1 and 𝑡2 are the times of arrival, 𝑓1 and 𝑓2 are the filters’ center frequencies, 𝑉1 

and 𝑉2 are the estimated trace velocities, and 𝜃1 and 𝜃2 are the estimated back-azimuths 

for 𝑃1 and 𝑃2 [10].  Whereas the azimuth indicates the angle of arrival from an infrasound 

source to a sensor array, the back-azimuth points from the array to the source.   

 

Figure 10: Example of WinPMCC’s Normalized Filter Magnitude Response 
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Therefore, the true back-azimuth is 180° different from the true azimuth.  Returning to 

Eqn. 8, the 𝜎’s are weighting factors to allow for the comparison of quantities with 

different units.  The velocity weight 𝜎𝑉 is the only dimensionless parameter.  This weight 

is expressed in a percentage [12].  The weighting factors can be tuned independently; 

default factors used throughout this research effort are shown in Figure 12.   

 Note also the parameters entitled “ThresholdFamMax” and “ThresholdFamMin.”  

“ThresholdFamMax” caps the maximum family size to a certain number of pixels to 

obviate possible memory issues for infinitely growing families, as may be the case for 

 

Figure 11: WinPMCC example of elementary detections (pixels) produced between 1300-1500 hrs on 
25 August 2011 on the KSG Array, located in the Korean Demilitarized Zone (DMZ) 
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Figure 12: WinPMCC Families Settings used throughout this research effort.  Relative to Eqn. 8,  
𝝈𝜽 = sigma_a, 𝝈𝑽 = sigma_v, 𝝈𝒇 = sigma_f, and 𝝈𝒕 = sigma_t .  

 

 

microbarom detections, which can last between hours and days.  Conversely, 

“ThresholdFamMin” specifies the minimum number of pixels that are necessary to 

constitute a family [10].  The post-family detection list is presented in Figure 13.  Only 

the largest and most stable families are preserved for source localization in network-level 

processing [2].  As “large” is an ambiguous and relative adjective, another primary 

objective of this research is therefore to determine the optimum family size and quantify 

exactly what “large” should mean.  Again, this research effort will be formally presented 

in Chapters III and IV. 

 After the building of families, the final element of station-level processing 
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Figure 13: Result of WinPMCC’s example family-building procedure for the data recorded by the 
KSG Array on 25 August 2011 between 1300-1500 hrs 

 

 

involves detection categorization, or the classification of PMCC families into either 

“phase” or “noise” categories.  Phases are infrasound detections that can be associated 

with detections from other IMS stations, including other infrasound stations as well as the 

seismic and hydroacoustic sensor network stations.  The noise category is reserved for 

coherent noise detections, or infrasound events which are of no concern to the IMS’s goal 

of CTBT compliance.  Coherent noise may originate from a variety of sources, including  
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some infrasound-producing events already mentioned, such as large amplitude ocean 

waves (microbaroms), mountain associated waves, avalanches, and tornadoes.  Overall, 

about 90% of infrasound detections are identified as noise with the current IDC algorithm 

[2].  Figure 14 demonstrates what a detection list might look like pre versus post-

detection categorization, in which noise detections are removed. 

 Detections categorized as noise are labeled “N.”  The IDC categorizes detections 

other than noise with speeds greater than 2900 m/s as seismic in nature.  All other 

detections are interpreted as infrasound arrivals and are named “I.”  Network-level 

processing combines all non-noise, station-level infrasound detections with detections 

from the seismic and hydroacoustic networks and attempts to localize events from these 

associations.  Candidate events validated on two arrays are automatically reported in the 

SEL international bulletins [2].  This research does not investigate the network-level 

association process, but rather is concerned with evaluating and optimizing station-level 

processing.  

 Recall that the IMS strives to achieve a 90% probability of detection at two or 

more infrasound stations for explosions whose yields are at least 1 kT.  Research by 

Green and Bowers cites external factors other than source yield that influence detection 

capability, including wind noise at the scale of a local array as well as seasonally shifting 

atmospheric wind directions.  Approximately 80% of detected infrasound signals travel 

through the stratosphere [9].  Figure 15 compares the general shift in stratospheric wind 

directions from the Northern Hemisphere’s summer to the Northern Hemisphere’s winter. 
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Figure 14: Example detection list before categorization (top) and after categorization and noise phase 
removal (bottom).  Figure copied from [2]. 
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2.6 Seasonal Winds and Atmospheric Propagation Considerations 

When infrasound propagates in the same direction as stratospheric wind, i.e. 

downwind, the likelihood increases that infrasonic signals will refract into the 

troposphere (atmospheric level nearest Earth’s surface), thereby increasing the likelihood 

of detection.  On the contrary, when infrasound propagates upwind relative to the 

stratospheric waveguide, infrasonic signals are more likely to refract into the upper levels 

of the atmosphere, thereby decreasing the likelihood of detection [9].  Since stratospheric 

winds seasonally vary, the IMS infrasound network’s detection capability varies 

seasonally as well.   

Inclusion of stratospheric winds in detection capability models tends to lower the 

minimum yield that can still satisfy 90% probability of detection at two stations.  The 

change in this 90% probability detection threshold with time is expounded upon in 

 Figure 16.  The caveat of Figure 16 is that its results are based upon the state of the 

infrasound network in October 2008, at which point only 39 of 60 total stations were  

 

Figure 15: The dominant stratospheric wind direction is from east to west during the Northern 
Hemisphere’s summer and from west to east during the Northern Hemisphere’s winter.  Infrasound 
from a given event is usually observed downwind.   Figure copied from [9]. 
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operational.  For the completed 60-station infrasound network, models predict that 95% 

geographical coverage at the 90% two-station detection probability level is achieved at 

yields of ~0.6 kT during periods of high stratospheric winds and ~0.9 kT during periods 

 

Figure 16: Stratospheric wind variability throughout the year and the related change in the 90% 
probability of detection at two stations for explosions with yields according to the color legend.  
These results are based upon the infrasound network in October 2008, when 39 of 60 stations were 
operational [9]. 
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of low stratospheric winds [9].  In other words, detection capability models that account 

for seasonally-dependent stratospheric wind indicate that the infrasound network is more 

sensitive than what previous windless models had implied.  For reference, the research 

expounded upon in Chapters III and IV involves infrasound-producing events that 

occurred in the Northern Hemisphere during the month of August.   

 Detection capability models can be further improved with a better understanding 

of the role wind direction plays in the relationship between explosive yield and recorded 

signal amplitudes.  Researchers at the Los Alamos National Laboratory (LANL) did just 

that, establishing an empirical relationship between source yield and sensor-recorded 

pressure amplitude.  The relationship, 

 𝑃𝑤𝑐𝑎 = 5.95 × 104(𝑆𝑅)−1.4072 , (9) 
 

accounts for amplitude variability generated by stratospheric winds with climatological 

horizontal wind model HWM07.  𝑃𝑤𝑐𝑎 is the wind-corrected pressure amplitude, 

calculated from the peak-to-peak pressure of a stratospheric infrasound arrival, 𝑃𝑟𝑎𝑤, 

using 

 𝑃𝑤𝑐𝑎 = 𝑃𝑟𝑎𝑤 × 10(−0.018)𝑉𝑠 , (10) 
 

where 𝑉𝑠 (m/s) is the component of the stratospheric wind velocity in the direction of 

propagation at an altitude of 50 km.  𝑆𝑅 from Eqn. 9 refers to the scaled range between 

the infrasound-producing source and the station recording the infrasound signal’s arrival, 

defined as 

 𝑆𝑅 = 𝑅
√2×𝑌

 . (11) 
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𝑅 is the source-to-station range in kilometers, and 𝑌 is the explosive yield in kilotons [9].  

The news surrounding advances in the understanding of atmospheric winds’ impact on 

network performance is not exclusively optimistic, however. 

 Unfortunately, the increase in network sensitivity comes at the expense of 

diminished source localization ability.  Since strong stratospheric winds reduce the 

likelihood of detection on arrays located upwind, often only arrays located downwind can 

participate in back-azimuth triangulation.  Not only does the azimuthal separation of 

likely detecting stations decrease, but the distance to detecting stations will also likely 

increase [9].  Upwind stations that are potentially closer to the source than downwind 

stations may never record an infrasound arrival due to the increased probability that the 

signal refracts into upper atmospheric layers.  These less than desirable stratospheric 

wind effects are more completely characterized in Figure 17. 

2.7 Wind Noise and Deteriorating Detection Capability 

 In addition to atmospheric wind direction variability, the other primary external 

factor acknowledged by Green and Bowers as influencing detection performance is wind 

noise at the scale of a local array.  Strong wind bursts introduce high-amplitude 

incoherent noise, potentially rendering an array blind to infrasound SOIs [2].  Therefore, 

a third research objective is to determine detector limitations by investigating signal-to-

noise ratios (SNRs) at which PMCC fails to register true detections.  Wind noise has long 

been known to hinder detection capability, which is why wind-reducing measures are 

built into the infrasound network wherever possible. 
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For instance, infrasound stations are often located in forests to minimize arrays’ 

exposure to wind-generated background noise.  Since forests do not ubiquitously inhabit 

the globe, other wind-reducing methods have been developed to diminish the “blinding 

effect” of wind-generated noise.  Infrasound sensors are microbarometers sensitive to 

acoustic atmospheric pressure variations.  Various pipe array designs, such as those 

shown in Figure 18, reduce wind noise by spatially averaging the micropressure field 

surrounding array elements.  In addition to pipe arrays, designs for screened enclosures 

have also been introduced to further attenuate wind-generated noise.  Design Version 5B, 

whose schematic can be seen in Figure 19, accomplishes this noise reduction while 

remaining virtually transparent to infrasonic signals in the monitoring passbands [2]. 

 

 

Figure 17: The percentage of Earth’s surface across which (left) the azimuthal separation of the two 
most likely detecting stations is, at most, the angle indicated on the x-axis, and (right) the distance to 
the second most likely detecting station is, at most, the distance indicated on the x-axis.   Figure 
copied from [9].  Azimuthal coverage decreases with increasing stratospheric wind, and the distance 
between the two most likely detecting stations increases with increasing stratospheric wind.  These 
results are based upon the infrasound network with 59 operational stations out of a possible 60.  
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2.8 Sensor Geometry and PMCC Performance 

 Much consideration has been devoted to enhancing array detection opportunities, 

but optimizing the array configuration itself remains to be addressed.  The importance of 

different array apertures and geometries becomes apparent when noting the variation in 

correlation coefficients over a range of possible azimuths. 

 

Figure 18: Examples of wind-noise-reducing systems employed throughout the 
IMS infrasound network at individual sensor elements.  These pipe array 
designs reduce wind noise by spatially averaging the micropressure field 
surrounding a microbarometer sensor.  The top rosette arrangements are most 
common.  The bottom left design is less common, and the pipe array on the 
bottom right is designed to operate under snow cover at the Nuemayer Base in 
Antarctica.   Figure copied from [2]. 
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Figure 19: Version 5B of the turbulence-reducing enclosure.  Figure copied from [2].  

 

Empirical observations on the reliability of infrasound detection reveal that certain array 

configurations exhibit azimuthally-dependent detection characteristics [2].  In this regard, 

Figure 20 compares three common sensor geometries. 

 Attempts to optimize array aperture, or sensor separation distances, must contend 

with the competing desire for accuracy between closure relations and source localization.  

Larger aperture arrays are more susceptible to cross correlation ambiguity than smaller 

aperture arrays, thereby leading to less reliable closure relations.  The degree of signal 

correlation decreases as sensor separation increases due to the higher likelihood of path-

altering effects [17].  For example, sensors separated by larger distances are more likely 

to be situated at different elevations than sensors located closer together.  Therefore, the 

plane wave assumption may no longer apply, and the closure relation, which is based 

upon the horizontal distances between sensors, is less likely to be satisfied.   
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Figure 20: Predicted azimuthal variation of the array-averaged correlation coefficient for (top) 
triangle arrays, (middle) centered triangle arrays, and (bottom) pentagon arrays with triangular sub-
arrays.  The variation is based upon signal frequency and aperture size.  Figure copied from [2]. 
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In addition, larger aperture arrays imply larger time delays, exposing a 

propagating infrasound signal to more varying ambient wind conditions at each sensor 

element.  Besides creating different noise environments, wind can alter signal 

propagation direction, further leaving the plane wave assumption for large aperture arrays 

on more tenuous ground.  However, the progressive addition of distant sensor elements to 

consistency-evaluated sub-arrays leads to more reliable signal attribute estimation, 

specifically with regard to velocity and azimuth estimates.  The benefits of increasing the 

array aperture were discussed when the progressive aspect of PMCC was introduced in 

Section 2.3, the most important benefit being improved source localization potential. 

2.9 Signal Parameter Estimation: Azimuth and Trace Velocity 

Estimation techniques, on the other hand, have not yet been covered here beyond 

the cursory claim that the time delays producing a detection can be inverted to obtain the 

propagating infrasound signal’s velocity and back-azimuth.  Szuberla and Olson propose 

incorporating the delay information into a matrix model and solving for estimates of trace 

velocity and back-azimuth with a least-squares approach [18].  The approach begins by 

noting the locations of the 𝑁 sensor elements of an array in an (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ (1, 𝑁) fashion, 

where distances are arranged relative to an origin-defining sensor.  The set of cross-

correlation computed time lags, 𝜏𝑖, indicates the plane wave’s arrival at each sensor 

relative to a reference time.  Finally, the unknown signal parameters velocity 𝑉 and 

azimuth Θ are arranged in a two-element vector, and the matrix equation is presented as 

follows [19]: 

 𝜏 = 𝑋𝑓 , (12) 
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where 

 
𝜏 = �

𝜏1
⋮

𝜏𝑁

� , (13) 

 

 

 
𝑋 = �

𝑥1 𝑦1
⋮ ⋮

𝑥𝑁 𝑦𝑁

� , (14) 

 

and 

 
𝑓 = �

1
𝑉

sin Θ
1
𝑉

cos Θ
� . (15) 

 

 Above are 𝑁 equations and two unknowns.  If the computed time delays are not 

precisely accurate, Eqn. 12 is inconsistent.  The least-squares method accounts for these 

time delay errors and solves Eqn. 12 in an approximate sense with 

 𝑓 = (𝑋𝑇𝑋)−1𝑋𝑇𝜏 . (16) 
 

The terms in Eqn. 16 can be rearranged as 

 𝑉� = �𝑓1
2 + 𝑓2

2�
−1 2⁄

 (17) 
 

and 

 Θ� = tan−1�𝑓1 𝑓2⁄ � , (18) 
 

yielding least-squares parameter estimation equations for 𝑉 and Θ [19]. 
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2.10 Other Infrasound Signal Detection Methods 

Not only had parameter estimation techniques not been previously covered, but 

there has also been no mention of any detection scheme other than PMCC.  A whole host 

of alternative detection methods can theoretically process infrasound data, but the IMS 

prefers PMCC to these methods.  One of the alternative methods involves using the 

sensor arrival time delays to align and overlap all of the sensor channel data into a single 

beam.  Beam power is then plotted as a function of a two-dimensional wave number 

vector 𝜽 = (𝜃1, 𝜃2), which is nonlinearly related to the velocity 𝑉 and azimuth Θ (𝑓 is 

signal frequency, and Θ is measured clockwise in radians) as follows [13]: 

 
𝑉 =

𝑓
‖𝜽‖  (19) 

 

and 

 Θ = tan−1 �𝜃1
𝜃2

� . (20) 

 

A maximum likelihood estimator operates on the plotted beam power, a graphical 

representation of which can be found in Figure 21 [20].  Based upon its use of time 

delays, this maximum likelihood approach, like PMCC, assumes the plane wave model 

holds.  In fact, all of the detection methods discussed here will make this same 

assumption. 

A second detection alternative also relies on beam-forming, but the detection 

statistic for this method is instead a function of the beam power divided by a noise power 

estimate.  Division by the noise power estimate converts the beam into an F-statistic and, 

as a result, creates what is known as an F-detector [21].  The peak of the F-statistic in  
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Figure 22’s example plots correspond to this method’s best estimate for a signal arrival.  

Other conventional methods, such as Capon’s Method and Multiple-Signal Characteristic 

(MUSIC) algorithms, share the same flaw as the beam-forming methods in that they 

generally assume only one SOI is present at any one time.  The IMS may have chosen 

PMCC for its ability to discriminate simultaneously arriving signals whose frequency 

 

 

Figure 22: Plotted as a function of 𝜽𝟏, 𝜽𝟐 ∈ [−𝟎. 𝟓, 𝟎. 𝟓], the F-statistic is displayed as (left) a three 
dimensional surface plot and (right) a contour plot.  The F-statistic peaks at 𝚯 = 𝟐𝟐𝟗° and 𝑽 =
𝟎. 𝟐𝟒 𝒌𝒎/𝒔.  Wave number Eqns. 19 and 20 apply just as in Figure 21.  Figure copied from [13].    

 

 

Figure 21: Plotted as a function of 𝜽𝟏, 𝜽𝟐 ∈ [−𝟎. 𝟓, 𝟎. 𝟓], the beam power is displayed as (left) a three 
dimensional surface plot and (right) a contour plot.  The maximum likelihood detector determines 
that the beam power peaks at 𝚯 = 𝟐𝟐𝟓° and 𝑽 = 𝟎. 𝟐𝟔 𝒌𝒎/𝒔, according to wave number Eqns. 19 
and 20.   Figure copied from [13].    
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content lies in separate filter passbands.  Despite this detection advantage, advances in 

the application of Fisher’s F-statistic have led to at least one detection scheme that claims 

an advantage over PMCC. 

2.11 InfraMonitor 

Before delving into what this advantage is, it may be useful to clarify how the F-

statistic may be used as a detection threshold.  The variance of a data segment can be split 

into two separate variances, where both follow 𝜒2 distributions.  One of these 

distributions is proportional to the total power in the sensor data, including SOI power 

and noise power, while the other is proportional to only the SOI power [22].  The F-

statistic is based upon the ratio of these variances, where deviation of the ratio from unity 

indicates a SOI may be present [23].  The degree of deviation from unity allows 

statistically significant confidence levels to be assigned to detection declarations. 

Arrowsmith et al. further improved the use of the F-statistic as the basis for a 

detection method by modifying its calculation to adapt to ambient noise conditions [24].  

This improvement, incorporated into a program called InfraMonitor, precludes the 

requirement of applying post-detection categorizations.  Recall that WinPMCC removes 

noise detections from continuous/repetitive sources in its post-processing phase 

categorization procedure.  InfraMonitor, since it iteratively adapts to real ambient noise, 

should not flag infrasound produced by a continuous/repetitive source, such as 

microbarom ocean swells, as detections at all.  An example of InfraMonitor at work can 

be found in Figure 23.  The program recognizes that the correlated noise produced by a  
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local wind farm is just part of the ambient background and therefore ignores it as a source 

for detections. 

2.12 Summary of Research Objectives 

Ultimately, from the viewpoint of the research presented in later chapters, 

detection lists produced by InfraMonitor will be contrasted with those produced by 

WinPMCC.  The collective results will help form the basis for a ground truth (GT) 

 

Figure 23: Example illustrating the difference between a (top) conventional F-detector and the 
(bottom) adaptive F-detector developed by Arrowsmith et al.  The conventional F-detector flags 
nearly a constant detection (window marked in grey) for the correlated noise produced by a local 
wind farm.  The adaptive F-detector recognizes infrasound produced by the wind farm as part of the 
ambient background, adjusts its detection threshold accordingly, and flags only other infrasound 
signal arrivals as detections (marked by grey vertical lines).   Figure copied from [24]. 
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detection set.  Analysis of WinPMCC’s performance, as applied to the GT set, will assist 

in achieving the research objectives outlined throughout this chapter.  Repeated here, the 

primary objectives are to determine the consistency-dependent trade-off between 𝑃𝐷 and 

FAR, an optimum family size threshold(s), and the detection limitations of PMCC in 

increasingly noisy environments. 
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III.  Methodology 

3.1 Chapter Overview 

The previous chapter examined the development of the Progressive Multi-

Channel Correlation (PMCC) algorithm and the details of its iterative detection scheme.  

Despite the availability of several other infrasound detection methods, some of which 

were introduced in Section 2.6, the International Data Centre (IDC) adopted PMCC and 

currently uses its algorithm to monitor infrasound-producing events.  The International 

Monitoring System (IMS) keeps track of these events through IDC-submitted 

international bulletins called Standard Event Lists (SELs).  These SELs assist the IMS in 

its mission to ensure compliance with the Comprehensive Nuclear-Test-Ban Treaty 

(CTBT).  The Air Force Technical Applications Center’s (AFTAC) mission is to use 

nuclear detection networks to detect nuclear tests carried out anywhere on the globe.  

Therefore, AFTAC needs to be cognizant of the performance capabilities and limitations 

of different detection and geolocation estimation algorithms used in the international 

community. 

This research intends to further assist AFTAC, the IMS, and the IDC by offering a 

method by which these organizations can evaluate and ultimately improve infrasound 

station performance.  The methodology presented shortly will explicate how PMCC 

consistency thresholds should be tuned and how family sizes can be optimized from a 

detection and estimation basis.  Station geometry is also examined by determining how 

well PMCC performs in the face of deteriorating signal-to-noise ratio (SNR) conditions. 

Before expounding upon these methods, a review of Figure 24 helps delineate 

where in the PMCC process the detection-discriminating “layers” fall.  For instance, the  
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Figure 24: PMCC Flow Chart describing station-level processing.  Figure copied from [10]. 

 

primary gatekeeper in differentiating coherent infrasound arrivals from incoherent noise 

is the consistency threshold.  Each successive detection-discriminating layer’s job is to 

remove false alarm detections from the previous layer’s list while preserving the true 

detections for subsequent data processing.  In this regard, the layer following the list of 

consistency-satisfied elementary detections is labeled “Post-processing” in Figure 24.  

During the post-processing phase, elementary detections (pixels) with similar time-
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frequency-velocity-azimuth signal attributes are grouped into families according to  

Eqn. 8.  Not shown in Figure 24 are the final two detection-discriminating layers of 

PMCC, namely phase categorization, which identifies potential signals-of-interest (SOIs) 

from coherent noise, and network-level processing, which associates these SOI detections 

to detections produced by the same event on other infrasound/seismic/hydroacoustic 

stations.  As mentioned, the consistency and family-building layers are the focus areas of 

this research. 

3.2 Ground Truth Set of Detections 

A prerequisite of this analysis is the establishment of a ground truth (GT) set of 

true detections.  Three independent programs assist in building the set.  Specifically, 

detections determined by WinPMCC are compared and contrasted with detections 

determined by Dr. Arrowsmith’s InfraMonitor [24], the F-detector introduced in  

Section 2.11.  A third program, SeaTools, proves useful in resolving whether detections 

flagged by either one or the other of these two detectors (but not both) are, in fact, true 

detections.  SeaTools, not previously introduced, is a waveform analysis program initially 

developed by the Air Force Technical Applications Center (AFTAC) to review seismic 

data [25].  These three programs are used in concert to ensure the GT set is not biased 

towards any one program.  Dr. Arrowsmith of Los Alamos National Laboratory (LANL) 

provided the time window of data analyzed, which consisted of detections during the 

month of August 2011 recorded by the 5 stations introduced in Section 1.2. 
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When used to canvass segments of sensor data, the WinPMCC program is run at a 

high (lenient) consistency threshold so as to not miss potential detections, even at the 

expense of a high false alarm rate (FAR), defined later in Eqn. 23.  The burden in having 

to sift through a high number of false alarms to locate detections to add to the GT set is 

necessary to make sure the set includes infrasound SOIs that may have arrived under 

“less-than-desirable” conditions.  One such condition could be high-amplitude incoherent 

noise at the scale of a local array.  The fact that noise is present does not change the fact 

that a legitimate signal has arrived, but a lower consistency threshold may prevent 

WinPMCC from ever registering the signal’s arrival as a detection.  In other words, 

balancing the trade-off between the probability of detection (𝑃𝐷) and the FAR is of little 

concern when the goal is to exhaustively include all true detections in the GT set.   

Table 1 specifies the settings used to run WinPMCC during this GT set-building process, 

including family settings and the chosen 10 second “high” consistency threshold (0.1 

seconds is generally WinPMCC’s default threshold). 

At this point, it might be useful to clarify that a “detection” refers to a family, not 

merely a pixel.  Likewise, InfraMonitor processes the same time segments of data as 

WinPMCC, and the two resulting lists are reviewed for common detections.  Detections 

confirmed by both WinPMCC and InfraMonitor are then added to the GT set.  An 

example of two detections confirmed in this manner is shown in Figure 25. 

For those instances in which there is disagreement between WinPMCC and 

InfraMonitor as to whether a time window of data contains a detection(s), SeaTools’s 

frequency-wavenumber (FK) analysis is called upon to resolve the dispute.  The “FK 

Trend,” as it is known in the AFTAC-developed program, not only keeps track of how 
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Table 1: WinPMCC settings used while building the GT set, including Filter Parameter settings, 
Detection Parameter settings, and Families settings.  Example settings dialog boxes appear in  
Figure 7, Figure 9, and Figure 12.  90 second window lengths are used for the 10 filter passbands 
between 0.05 Hz and 0.5 Hz, and 30 second window lengths are used for the remaining 10 filter 
passbands between 0.5 Hz and 5.0 Hz.  “Window Overlap” indicates the time shift for the sliding 
window lengths.  “Ripple” refers to peak-to-peak passband ripple.  “Threshold Nb of Sensors” refers 
to the minimum number of sensors that must participate in a detection.  “QLambda” was explained 
in Section 2.5.  “ThresholdFamMin” refers to the minimum number of pixels that must be grouped 
together before a family is created.  “ThresholdFamMax” refers to the maximum family size.  
WinPMCC eliminates pixels whose estimated trace velocities are less than “VStoreMin” or greater 
than “VStoreMax.” 

 

 

 

 

 

 

 

 

 

 

the F-statistic varies within the time window analyzed, but also plots how the trace 

velocity and azimuth estimates vary as well [25].  When the computed F-statistic peaks 

concurrent with repeated velocity and azimuth estimates, as in Figure 26, a detection is 

confirmed.  Table 2 specifies the settings used to run an FK Trend. 

 Random time windows of data from Figure 27’s five stations are selected at 

different times of day and amount to a total of 45 hours.  The final GT set, built from SOI 

arrivals within these time windows, contains 125 detections in the month of August 2011.  

To clarify, a “SOI” refers to a coherent infrasound arrival not produced by a continuous  

Filter Parameters 
Nb of Bands 20 
Freq Min 0.05 Hz 
Freq Max 5.0 Hz 
Window Overlap 50% 
Order 2 
Ripple 0.01 dB 

Detection Parameters 
Threshold Consistency 10.0 sec 
Threshold Nb of Sensors 3 
QLambda 50 

Families Settings 
ThresholdFamMin 5 pixels 
ThresholdFamMax 300 pixels 
VStoreMin 0.25 km/s 
VStoreMax 0.45 km/s 
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Table 2: FK Settings.  “Low Frequency” and “High Frequency” represent the range of expected SOI 
frequency content.  Since slowness is the inverse of velocity, “Slowness Maximum” serves the same 
function as “VStoreMin” in Table 1.  “Slowness Grid” specifies the number of points at which 
slowness is calculated.  “Larger Window” is the overall window over which the FK Trend is 
computed.  “Increment” indicates the time shift of the analyzing “Smaller Window” within the 
“Larger Window” and serves the same function as “Window Overlap” in Table 1.   

 

 

 

 

 

Low Frequency 0 Hz 
High Frequency 10.0 Hz 
Slowness Maximum 5.0 s/km 
Slowness Grid 81 
Larger Window 120.0 sec 
Smaller Window 10.0 sec 
Increment 2.0 sec 

 

Figure 25: Two detections (in red) on the I45 Array on 25 August 2011 at 12:53 and 14:02.  
Confirmed by WinPMCC (top) and InfraMonitor (bottom) 
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or repetitive source.  Recall that infrasound produced by such sources are labeled as “N” 

– for noise – and removed from subsequent analysis during WinPMCC’s phase 

categorization process.  Due to the arrays’ proximity to the ocean, common repetitive 

sources are often ocean swell microbaroms. 

3.3 Consistency Threshold and the Receiver Operating Characteristic 

 With a completed GT set, detector performance is now judged based upon how 

varying the consistency threshold affects the trade-off between 𝑃𝐷 and FAR.  Receiver 

 

 

Figure 26: FK Trend, where an F-stat peak coupled with consistent azimuth and velocity readings 
confirms a detection on the CHN Array.  This occurs at 𝒕 ≈ 𝟏𝟎: 𝟓𝟖: 𝟏𝟓 for results presented here. 
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operating characteristic (ROC) curves generally depict this trade-off and are therefore 

commonly used to compare detector performance.  Figure 28 illustrates three example 

ROC curves plotted on conventional axes.  No actual data have been used to construct 

these curves.  Rather, they are included for explanatory purposes in the case of a reader’s 

unfamiliarity with ROC analysis.  As the caption to Figure 28 explains, “steeper” ROC 

curves, or curves with greater area underneath them, imply increasing detector 

performance.  Hypothetically, these conventional curves are created by plotting the 

fraction of true positive detections correctly classified (𝑃𝐷) versus the fraction of true 

negative detections falsely classified (𝑃𝐹𝐴) at various binary decision-making thresholds.  

For a given threshold, 𝑃D is calculated using [26] 

 

and 𝑃FA is calculated using 

 𝑃FA = negatives incorrectly classi�ied
total number of negatives

 . (22) 

 

In Eqn. 21, “positives correctly classified” refers to the number of true detections 

correctly identified (subset of a GT set) at a given threshold, and “total number of 

positives” refers to the size of the GT set.  As mentioned, the size of the GT set for this 

research is 125.  In Eqn. 22, “negatives incorrectly classified” refers to the number of 

instances in which detections are falsely declared (false alarms), and “total number of 

negatives” refers to the total number of instances in which detections should not be 

declared. 

 𝑃D = positives correctly classi�ied
total number of positives

 , (21) 
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Figure 27: The GT set is constructed from SOI arrivals on the three arrays located along the Korean 
Demilitarized Zone (BRD, CHN, KSG), one array located in Japan (I30), and one array located in 
Russia (I45).  The top chart shows the geographic locations of the stations, and the bottom five reveal 
the stations’ array configurations. 
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Equation 22 conventionally applies to discrete binary tests, like a drug screening 

or pregnancy test.  However, WinPMCC detector performance has been referred to in 

relation to a false alarm rate.  For instance, note that the x-axis for the plot in Figure 28 is 

labeled as the probability of false alarm.  This probability relies on the ability to assign a 

finite value to the denominator in Eqn. 22, the total number of negative detections.  

Considering that WinPMCC analyzes a time window of data within which the absence of 

detections cannot be quantified, WinPMCC’s false alarm rate (FAR), computed as 

 FAR = Total FAs
Total Hours Analyzed

× 24 �ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

� , (23) 

 

Figure 28: Example conventional ROC curves.  As the legend indicates, steeper ROC curves imply 
better detection performance.  The linear ROC curve is labeled “worthless,” because it is akin to 
random guessing.  Any concave down curve, such as the blue curve, is “useful” because it represents 
a detector that outperforms random guessing.  Any ROC curve that is concave up performs worse 
than random guessing.     
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is more appropriate.  As Eqn. 23 suggests, this author chooses to quantify the rate on a 

per day basis, but any length of time may theoretically be used.  Total FAs
Total Hours Analyzed

, for 

instance, quantifies the FAR on a per hour basis.  The graphical depiction of a detector’s 

𝑃𝐷 as plotted against its FAR is known as a pseudo-ROC curve, an example of which is 

shown in Figure 29.  As is the case for a conventional ROC curve, a “steeper” pseudo-

ROC curve signifies a better-performing detector. 

 Moving beyond this introduction to ROC analysis and into how it pertains to this 

research, it must be reiterated that WinPMCC detections classified as “true positive” 

 

Figure 29: Example Pseudo-ROC curves.  As in Figure 28, the steeper pseudo-ROC curve implies 
better detection performance.  However, unlike Figure 28, a pseudo-ROC curve that is concave up is 
not necessarily a “bad” detector.  Rather, it is plagued by a FAR that initially increases more quickly 
than the probability of detection. 
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detections or false alarms do not refer to the elementary pixels solely satisfying the 

consistency criterion.  Rather, WinPMCC families produced as a result of the use of a 

given consistency threshold that correctly identify a detection included in the GT set are 

counted among true positive detections, while those that cannot be associated with GT set 

detections are categorized as false alarms.  The following consistency thresholds (sec) are 

used to construct the pseudo-ROC curve: 1.0 × 10−7, 1.0 × 10−6, 0.01, 0.1, 0.5, 1.0, 

and 10.  WinPMCC’s default threshold, 0.1 sec, is the test group’s median.  Note that the 

most lenient threshold, 10 sec, corresponds to the threshold used to establish the GT set.  

In discussing the building of the GT set, it was mentioned that the use of such a lenient 

threshold implied an increased burden in having to sift through a high number of false 

alarms.  The false discovery rate (FDR) 

 FDR = number of false alarms
(number of false alarms+number of true positive detections)  (24) 

 

provides some insight into the burden on an analyst whose job is to review the list of 

WinPMCC detections [26].  Therefore, the FDR is determined for each of the thresholds 

used to construct the pseudo-ROC curve.  With the exception of the varying consistency 

threshold, the WinPMCC settings used throughout this pseudo-ROC-building process are 

the same settings listed in Table 1. 

3.4 Optimum Family Size 

 Table 1 and Figure 12 reveal that one of the parameters that can be adjusted prior 

to running the WinPMCC program is the minimum number of pixels that must be 

grouped together before a family is created.  Recall from Section 2.5 that only the largest 



 

57 

and most stable families are preserved for source localization in network-level processing 

[2].  However, no clarification is proffered as to what constitutes a “large” or “stable” 

family.  Therefore, this author proposes a method to determine the optimum family size 

and quantify exactly what “large” should mean. 

 The optimum family size is determined with a maximum a posteriori (MAP) 

approach in which the goal is to minimize the total number of false alarm and missed 

detection categorization decisions.  Specifically, the solution to this approach indicates 

how many pixels must comprise a family before it is more likely than not that the family 

represents a true infrasound SOI arrival.   

The first step in this approach requires organizing the GT set according to the 

number of pixels comprising each detection.  The frequency with which a particular 

family size appears as a detection is then recorded.  This process is repeated until every 

one of the 125 detections in the GT set are accounted for, and a probability histogram is 

created to visualize the distribution of family sizes.  The histogram is then curve-fit with 

the probability density function (pdf) that best characterizes its distribution, as in  

Figure 30.  This pdf is known henceforth as the conditional distribution of family sizes 

given the detection is a true event family, or 𝑝(𝑧|𝑇), where 𝑧 is the number of pixels in 

the family.  The conditional distribution of family sizes given that the detection is a non-

event family, 𝑝(𝑧|𝑅), is determined in much the same way as was 𝑝(𝑧|𝑇).  Over all time 

periods from which the GT set was built, families that are neither in the GT set nor 

removed as coherent noise from a repetitive source are considered to be members of 𝐻𝑅, 

the rejection (or null) hypothesis.  These noise detections are organized in the probability 

histogram in Figure 31, and overlaid onto this histogram is the exponential pdf best 
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characterizing its family size distribution. 

Note that this categorization marks a departure from the categorization used 

during the creation of the pseudo-ROC curve.  Families not in the GT set had been 

considered false alarms.  Those same families (post-repetitive source removal) are now 

considered SOI rejections.  Why the difference?  Well, it depends on the perspective of 

the decision-making entity.  On one hand, the WinPMCC program producing a family is 

its way of declaring a detection.  That declaration is either a true detection or a false 

alarm, and the pseudo-ROC curve is built based upon the accuracy of these declarations  

    

 

Figure 30: Probability Histogram of GT set family sizes.  Overlaid on the histogram is the lognormal 
pdf, 𝒑(𝒛|𝑻), that best fits the data. 
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at various consistency thresholds.  On the other hand, from the perspective of an analyst 

reviewing the list of families produced by WinPMCC, a decision has not yet been made 

as to whether a SOI is present or not.  This optimality discussion exists to assist the 

analyst in making a decision based upon the size of the family in question. 

The decision criteria are arranged in a likelihood ratio test (LRT) 

 
𝑝(𝑧|𝑇)
𝑝(𝑧|𝑅)

𝐻𝑇
≷

𝐻𝑅

𝑃(𝑅)
𝑃(𝑇)

= 𝛾 , (25) 

 

which serves an integral part in determining the MAP family size threshold.  The LRT 

 
Figure 31: Probability Histogram of non-event family sizes.  Overlaid onto the histogram is the 
exponential pdf, 𝒑(𝒛|𝑹), that best fits the data.  
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forms an inequality between the ratio of the true detection and rejection conditional 

probability density functions and the ratio of the a priori probabilities of the presence 

𝑃(𝑇) or absence 𝑃(𝑅) of a SOI, notated conventionally as 𝛾.  𝑃(𝑇) is the fraction of the 

total number of families that are true detections, and 𝑃(𝑅) is the fraction of the total 

number of families that are rejections.  𝑃(𝑇) + 𝑃(𝑅) = 1.  𝐻𝑇 and 𝐻𝑅 are the two 

possible hypotheses [27].  Based upon the number of pixels composing the family in 

question, choosing 𝐻𝑇 implies that the presence of a SOI is more likely, and choosing 𝐻𝑅 

implies SOI absence is more likely. 

Returning to the optimality discussion, the terms of Eqn. 25 are now rearranged to 

position the true event and non-event likelihood functions on either side of the inequality, 

as follows: 

 
𝑷(𝑻) ∙ 𝒑(𝒛|𝑻)

𝑯𝑻
≷

𝑯𝑹

𝑷(𝑹) ∙ 𝒑(𝒛|𝑹) . (26) 

 

The true event likelihood function, 𝑃(𝑇) ∙ 𝑝(𝑧|𝑇), is simply the true detection conditional 

probability density function scaled by the a priori probability that any single family is a 

member of the GT set.  Likewise, the non-event likelihood function, 𝑃(𝑅) ∙ 𝑝(𝑧|𝑅), is the 

rejection conditional probability density function scaled by the a priori probability that 

any randomly chosen family is a SOI rejection.  The graphical intersection of these 

likelihood functions marks the MAP threshold family size 𝑧𝑡_𝑀𝐴𝑃.  This intersection is 

shown later in Figure 50 in Section 4.3.1.  Families with more pixels than 𝑧𝑡_𝑀𝐴𝑃 are 

more likely to be true detections, and families with fewer pixels than 𝑧𝑡_𝑀𝐴𝑃 are more 

likely to be rejections.  SOI presence and absence categorization decisions based upon 



 

61 

this threshold minimize the probability of error 𝑃𝑒𝑟𝑟𝑜𝑟, defined as 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑃𝐹𝐴 + 𝑃𝑀𝐷, 

where 𝑃𝐹𝐴 refers – as it did before – to the probability of false alarm, and 𝑃𝑀𝐷 refers to 

the probability of missed detection. 

3.5 SNR Stress Tests and Detector Failure 

Another basis of comparison for which to assess the performance of different 

stations and their various geometries is to “stress test” array configurations under 

deteriorating SNR conditions.  A “failure SNR level,” defined as the SNR at which 

𝑃𝑀𝐷 ≥ 90% (𝑃𝐷 ≤ 10%), are determined using both synthetic and real data.  Recall from 

Section 2.5 that PMCC calculations on a time window of data do not commence until 

after that waveform data are filtered according to the filter configuration established in 

WinPMCC’s “Window and Filter Parameter” settings.  Therefore, failure SNRs are 

synonymous with post-filtered SNRs. 

3.5.1 WinPMCC Filter Duplication 

The only way to ascertain the post-filtered SNR is to duplicate WinPMCC’s data 

filtering operation.  Since WinPMCC often employs multiple filters, as Figure 9’s 10-

filters-per-decade configuration demonstrates, the question arises as to which filter to 

duplicate.  The answer is the one that maximizes the post-filtered SNR, for such a filter 

gives WinPMCC the best chance of detecting a SOI, should a SOI be present. 

For the synthetic data SNR stress tests, the synthetic SOI is the Pierce Blast 

shown in Figure 32.  The filter most appropriate to duplicate for the purposes of 

determining the post-filtered SNR depends upon the Pierce Blast’s power spectral density 

(PSD), which is plotted in Figure 33.  The PSD reveals that the Pierce Blast’s signal  
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Figure 32: Pierce Blast – the synthetic SOI used for the synthetic SNR stress tests.  The vertical red 
line denotes the last point at which the amplitude is above 0.001 Pa.  SOI power is computed between 
0 sec and this vertical red line. 

 

Figure 33: Pierce Blast Power Spectral Density 
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power peaks at 3 Hz.  The appropriate filter to duplicate is therefore “filter 16,” whose 

lower and upper cutoff frequencies are 2.75 Hz and 3.20 Hz respectively.  These cutoff 

frequencies mark the range for which the filter’s magnitude response is unity (or 0 on a 

dB scale), as shown in Figure 34. 

Having reviewed the procedure for selecting which filter to duplicate, all that 

remains is how to duplicate the filtering operation itself.  To ensure the filter is recreated 

exactly, the duplicate filter must have the same transfer function, i.e. the same filter 

coefficients.  The cutoffs and coefficients for each of WinPMCC’s 20 filters are listed in 

the filter initialization file, the location of which is specified in the “File Settings” tab, as 

exemplified in Figure 35.  The initialization file appears in Figure 36.  The 

“ForwardCoeffs” within the file refer to the coefficients in the numerator of the transfer 

function, and the “ReverseCoeffs” refer to those in the denominator.  Note that 𝑎(1), the 

denominator’s first filter coefficient, in 

 

Figure 34: WinPMCC-produced magnitude response for “filter 16,” whose lower and upper cutoff 
frequencies are 2.75 Hz and 3.20 Hz respectively.  These cutoff frequencies mark the range over 
which the filter’s passband is unity (or 0 on a dB scale). 
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 𝐻(𝑧) = 𝑏(1)+𝑏(2)𝑧−1+...+𝑏(2𝑛+1)𝑧−𝑛

1+𝑎(2)𝑧−1+...+𝑎(2𝑛+1)𝑧−𝑛   (27) 
 

is always 1.00.  As a result, the initialization file lists the “ReverseCoeffs” beginning 

with 𝑎(2).  𝐻(𝑧) is the filter's transfer function, and 𝑏 and 𝑎 are the “Forward” and 

“Reverse” coefficient row vectors specifying the transfer function’s zeroes and poles, 

respectively, in descending powers of 𝑧.  Equation 27 is based upon a MATLAB 

convention, where 𝑛 is the filter’s order dictated by the “WinPMCC and Filter 

Parameter” settings in Figure 9.  Moreover, knowledge of the fact that WinPMCC’s 

source code is MATLAB permitted a trial and error process which revealed that 

WinPMCC’s filter configuration consists of chebyshev filters using MATLAB’s cheby1 

and filtfilt commands.  Successful filter duplication is confirmed in Figure 37’s 

comparison of the WinPMCC and MATLAB-replicated filter magnitude and phase 

responses. 

 

Figure 35: WinPMCC “Files Settings.”  “Filter File” refers to the filter initialization file. 
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3.5.2 Synthetic Data SNR Stress Test 

Having confirmed the ability to duplicate WinPMCC’s filtering operation, the 

synthetic data SNR stress test further requires the creation of a synthetic waveform.  The 

synthetic SOI used in this analysis is the Pierce Blast in Figure 32, and additive white 

Gaussian noise (AWGN) is modeled with MATLAB’s randn function.  The SOI power 

and noise power are computed in the time domain using the numerical approximation for 

average signal power 

 𝑃𝐴𝑣
𝑇 ≈ 𝜎2 + 𝜇2 , (28) 

 

where 𝜎2 refers to the variance of the signal, and 𝜇2 refers to the squared mean of the 

signal [28].  The word “signal” is used here interchangeably to refer both to the SOI and 

the noise signal.  𝑃𝐴𝑣
𝑇 , as stated, is the average signal power in the time domain.  Since 

𝑉𝑎𝑟(𝑋(𝑡)) =  𝐸[𝑋(𝑡)2] − 𝐸[𝑋(𝑡)]2, Eqn. 28’s simplified equivalent is 

 𝑃𝐴𝑣
𝑇 ≈ 𝐸[𝑋(𝑡)2] , (29) 

 

where 𝐸[∙] is the expected value operator. 

 To ascertain the time-averaged SOI power 𝑃𝑆𝑂𝐼, the time range over which  

Eqn. 29 is applied is delineated between 0 sec and the vertical red line in Figure 32.  This 

line denotes the last instance in which the SOI’s amplitude exceeds 0.001 Pa.   

Equation 29 is also applied to realizations of randn noise vectors to determine the time-

averaged noise power 𝑃𝑛𝑜𝑖𝑠𝑒.  Since randn generates pseudorandom numbers from the 

standard normal distribution, i.e. zero-mean with unity variance, the terms in Eqn. 28 

reveal that 𝑃𝑛𝑜𝑖𝑠𝑒 approximately equals one.  SNR manipulation now begins with the 

 



 

66 

 

multiplication of a noise vector’s amplitude at each time sample by a scale factor (𝑆𝐹) 

 
𝑆𝐹 = � 𝑃𝑆𝑂𝐼

(𝑃𝑛𝑜𝑖𝑠𝑒)(𝑆𝑁𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
 , (30) 

 

 

Figure 36: Filter initialization file for filter configuration specified in Table 1.  The cutoff frequencies 
listed under “Fmin” and “Fmax” are normalized to the sampling frequency, which is 40 samples/sec.  
For example, the 16th “Fmin” frequency is 0.06875, and the 16th “Fmax” frequency is 0.08 (see 
highlights).  These values correspond to the lower and upper cutoff frequencies for “filter 16.”  
Unnormalized, 0.06875 refers to 2.75 Hz {(𝟎. 𝟎𝟔𝟖𝟕𝟓) × (𝟒𝟎)} and 0.08 refers to 3.20 Hz {(𝟎. 𝟎𝟖) ×
(𝟒𝟎)}.  Also highlighted, the “ForwardCoeffs” refer to the coefficients in the numerator of the 
transfer function of the filter, and the “ReverseCoeffs” refer to those in the denominator.  
ReverseCoeffs are listed beginning with the 2nd pole. 
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Figure 37: Proof of successful filter duplication.  The magnitude and phase responses for “filter 16” 
produced by WinPMCC (left) and duplicated in MATLAB (right). 

 

where 𝑆𝑁𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired pre-filtered SNR expressed on a linear scale.  As this 

author prefers to initially express desired SNRs in decibel (dB) units, conversion from 

𝑆𝑁𝑅 𝑑𝐵𝑑𝑒𝑠𝑖𝑟𝑒𝑑 to the 𝑆𝑁𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑 appearing in Eqn. 30 is achieved with 

 𝑆𝑁𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 10𝑆𝑁𝑅 𝑑𝐵𝑑𝑒𝑠𝑖𝑟𝑒𝑑 10⁄  . (31) 
 

Figure 38 shows 5 different noise vector realizations, each multiplied by the 𝑆𝐹 

necessary to achieve the stated 𝑆𝑁𝑅 𝑑𝐵𝑑𝑒𝑠𝑖𝑟𝑒𝑑.  The SOI is zero-padded so as to match 

the length of the noise vector to which it is added.  The result of the addition 

 𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑆𝑂𝐼 + (𝑆𝐹)(𝑁𝑜𝑖𝑠𝑒) (32) 
 

creates a synthetic waveform at a desired pre-filtered SNR.  An example synthetic 

waveform is illustrated in Figure 39, where the pre-filtered SNR, as expressed on a 

logarithmic scale, is 0 dB. 
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 The synthetic waveform’s post-filtered SNR is determined by separately filtering 

the SOI and noise with the MATLAB-duplicated filter prior to the addition in Eqn. 32.  

The post-filtered SOI power 𝑃𝑆𝑂𝐼,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟 and noise signal power 𝑃𝑛𝑜𝑖𝑠𝑒,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟 are 

also separately computed with Eqn. 29, and the post-filtered SNR, on a dB scale, is 

 𝑆𝑁𝑅 𝑑𝐵𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟 = 10 × log10 � 𝑃𝑆𝑂𝐼,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟

𝑃𝑛𝑜𝑖𝑠𝑒,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟
� . (33) 

 

Before the randn AWGN signal is added, the post-filtered SOI is overlaid onto the pre-

filtered SOI in Figure 41, demonstrating little change after applying “filter 16.”   

Figure 42 presents this same pre-filtered versus post-filtered comparison for the noise 

signal.  The post-filtered waveform, the one upon which the PMCC algorithm operates, is 

shown in Figure 40. 

 Of course, PMCC calculations occur on an array of sensor data and not merely a 

single sensor’s data.  The synthetic array in this analysis is the pentagon array with 

centered triangle sub-array appearing in Figure 43.  The location of the Pierce Blast 

within each sensor element’s data time window is shifted to reflect a plane wave arriving 

from a certain azimuth relative to the array and traveling at a certain velocity.  For a 40° 

azimuth and 300 m/s trace velocity, the Pierce Blast arrives on each of the array’s nine 

elements as shown in Figure 44, in which WinPMCC’s successful detection is also 

shown.  Noise is added in SNR decibel level decrements until WinPMCC fails to detect 

the SOI at least 90% of the time.  To determine if the deterioration of detection ability 

accelerates for configurations with fewer sensor elements, the synthetic SNR stress test is 

repeated on five synthetic arrays whose configurations are manipulated so as to resemble 
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those from which the GT set was built.  These five synthetic arrays and their actual array 

counterparts are portrayed in Figure 45. 

3.5.3 Real Data SNR Stress Test 

The real data SNR stress test proceeds in a similar manner as the synthetic stress 

test.  Only now, a detection from the GT set is the SOI, and instead of modeling noise, a 

time window within which there are no produced families is the noise.  Of course, the 

 

 

Figure 38: Example randn noise signals which, when added to the Pierce Blast SOI, will produce 
synthetic waveforms with pre-filtered SNRs of -10 dB, -5 dB, 0 dB, 5 dB, and 10 dB respectively. 
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Figure 39: Example pre-filtered synthetic waveform at an SNR of 0 dB 

 

 

 

Figure 40: Post-filtered version of the waveform in Figure 39.  The post-filtered SNR = 𝟏𝟐 dB . 



 

71 

 

 

 

Figure 41: Synthetic SOI (Pierce Blast) pre-filtering (blue) and post-filtering (red) 

 

Figure 42: Synthetic noise pre-filtering (blue) and post-filtering (red) with “filter 16.”  When added 
to the Pierce Blast SOI, the pre-filtered SNR = 𝟎 dB, and the post-filtered SNR = 𝟏𝟐 dB.  
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Figure 43: Synthetic 9-element pentagon array with centered triangle sub-array 

 

 

time window containing the detection has its own noise, but it is impossible to separate 

this noise from the SOI.  It is therefore also impossible to manipulate the amplitude of 

that noise without altering the SOI.  An infrasound SOI arrival on the BRD station is 

depicted in Figure 46.  In order to manipulate the SNR, a detectionless window of data, 

composed entirely of noise, is overlaid onto the time window containing the detection for 

each of BRD’s five sensor elements. 

 To illustrate this process, note first that the time window containing the detection 

in Figure 46 is 𝑡 = [03: 14: 15 03: 14: 30].  A 15 second detectionless window from 

elsewhere in the sensor data, say 𝑡 = [03: 12: 00 03: 12: 15], is then added to the  
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15 second detection window.  The amplitude of the added noise can now be increased 

until WinPMCC misses the detection.  Since the noise profile of each element may differ, 

as is clear from the sensor data in Figure 47, so does the element-specific SNR prior to 

manipulation.  Figure 47 consists of an 8-minute (480 sec) excerpt from the BRD array, 

where the detection from Figure 46 is located at the 6-minute mark (𝑡 = 360 sec).  The 

SOI is much more visually apparent in Figure 48, the post-filtered version of the 

waveforms. 

 

 

Figure 44: Example WinPMCC detection of Pierce Blast on the synthetic array in Figure 43 at a 
post-filtered SNR of 12 dB.  The 9-element sensor data, as shown, have been filtered by a bandpass 
butterworth filter with -3 dB cutoffs of 2.0 Hz and 4.0 Hz.  However, the filter configuration specified 
by Table 1 performed the filtering during the WinPMCC detection process. 
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Figure 45: The real BRD, CHN, KSG, I30, and I45 arrays (left) are pictured opposite their synthetic 
counterparts (right).  SNR stress tests are conducted on these synthetic arrays to determine if the 
deterioration of detection ability accelerates for configurations with fewer sensor elements than the 
9-element array in Figure 43. 
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Figure 46: WinPMCC detection of a real infrasound SOI on the BRD array on 25 August 2011 at 
03:14:15.  The sensor data, as shown, have been filtered by a bandpass butterworth filter with -3 dB 
cutoffs of 2.0 Hz and 4.0 Hz.  However, the filter configuration specified by Table 1 performed the 
filtering during the WinPMCC detection process. 

 

Just as the ability to view and manipulate the post-filtered waveform required the 

use of a MATLAB-replicated filter in the synthetic stress test, so too is it required for the 

real data stress test.  The choice of which filter from the WinPMCC configuration in 

Figure 9 to duplicate, however, no longer requires a PSD computation.  Instead, the 

WinPMCC “families file,” whose location is specified in Figure 35, provides information 

about the frequency content for each pixel comprising a family.  The distribution of SOI 

power in the frequency domain is thus revealed, and the decision as to which filter to 

duplicate depends on which filter’s passband captures the majority of SOI power.  In 

other words, which filter accounts for the greatest number of produced pixels?   
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Figure 47: Eight-minute excerpt of pre-filtered data recorded by the BRD array.  The detection from 
Figure 46 is located at the six-minute mark (𝒕 = 𝟑𝟔𝟎 𝒔𝒆𝒄). 

 

Coincidentally, the answer to this question is “filter 16,” the same filter used for the 

synthetic SNR stress tests. 

To establish the same post-filtered SNR on each array element, the multiplicative 

scale factor by which to multiply the pre-filtered overlaid noise varies due to the unique 

noise profiles at each sensor.  Since it is impossible to separately compute the SOI power 

and noise power in the 15-second detection window, an SNR proxy is used.  This proxy, 

the short-term-power-average (𝑆𝑇𝐴) over long-term-power-average (𝐿𝑇𝐴), 𝑆𝑇𝐴 𝐿𝑇𝐴⁄ , 

compares the post-filtered signal power in the 15-second detection window with the post-

filtered signal power in the detectionless portion of the larger window.  Just as in the 

synthetic stress test, “signal” is used here interchangeably to refer both to the SOI and the 
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noise.  The 𝑆𝑇𝐴 approximates the SOI power and is calculated with Eqn. 29.  The 𝐿𝑇𝐴, 

computed with the same equation, approximates the noise power.  The post-filtered SNR, 

expressed in dB, is calculated with Eqn. 33, where 𝑆𝑇𝐴 replaces 𝑃𝑆𝑂𝐼,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟, and 𝐿𝑇𝐴 

replaces 𝑃𝑛𝑜𝑖𝑠𝑒,𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟 as follows: 

 𝑆𝑁𝑅 𝑑𝐵𝑝𝑜𝑠𝑡−𝑓𝑖𝑙𝑡𝑒𝑟 = 10 × log10 �𝑆𝑇𝐴
𝐿𝑇𝐴

� .  (34) 
 

To achieve a station-wide post-filtered SNR for which to test WinPMCC’s 

detection ability, the appropriate multiplicative scale factors by which to multiply the 

overlaid noise vary, as mentioned, for each sensor element.  For the BRD SOI arrival 

depicted in Figure 46 through Figure 48, the five multiplicative factors are determined 

 

Figure 48: BRD sensor data of Figure 47 post-filtering with “filter 16”  
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through an iterative trial-and-error process until the desired post-filtered SNR is achieved 

for each of BRD’s five sensor elements.  Noise is added in SNR decibel level decrements 

until WinPMCC fails to detect the SOI at least 90% of the time. 

3.6 Summary of Evaluation Approaches 

Synthetic and real data SNR stress tests can be performed by monitoring agencies, 

such as the IDC, to evaluate arrays’ PMCC detector limitations in the face of increasing 

ambient noise.  Use of synthetic arrays permits any number of geometries to be evaluated 

using synthetic data in the manner outlined by this chapter.  The results of the synthetic 

SNR stress tests for these geometries can be compared against the results obtained on real 

arrays with similar geometries.  Array performance can further be judged with ROC 

curve analysis by viewing the consistency-dependent trade-off between 𝑃𝐷 and FAR.  

Finally, optimum family size thresholds can be determined on an array-by-array basis, 

thereby assisting an analyst with the decision for whether an individual detection should 

be considered for further processing. 
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IV.  Analysis and Results 

4.1 Chapter Overview 

The previous chapter developed methods to determine optimum detection 

thresholds for the Progressive Multi-Channel Correlation (PMCC) algorithm used by the 

International Data Centre (IDC) to perform infrasound station-level event detection. 

Statistical detection theory via a maximum a posteriori (MAP) approach points to 

optimum family size thresholds of grouped detection pixels before detections should be 

considered for network-level processing.  An additional approach is developed utilizing 

Bayes cost criteria.  Optimum family sizes for these approaches are determined based 

upon the consistency threshold and filter configuration employed by the WinPMCC 

program.  The consistency threshold is further explored insofar as it presents a trade-off 

between the probability of detection (𝑃𝐷) and the false alarm rate (FAR).  Additionally, 

synthetic signals at various signal-to-noise ratios (SNRs) are generated to determine SNR 

failure levels for the PMCC algorithm on certain synthetic array configurations.  Detector 

limitations for these synthetic signals/arrays are compared to the SNR detector limitations 

of fielded infrasound stations with similar configurations. 

4.2 Consistency Threshold and the Receiver Operating Characteristic 

As potential detections initially require consistency threshold (𝑐𝑛) satisfaction, 

this chapter first explores the consistency-dependent trade-off between 𝑃𝐷 and FAR with 

Figure 49’s Receiver Operating Characteristic (ROC) curve.  Recall that 𝑐𝑛 is defined by 

Eqn. 7 and further elaborated upon in the context of its purpose within the PMCC 

algorithm in Figure 6.  These results suggest that threshold consistencies below 
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1.0 × 10−6 sec cause WinPMCC to miss an unacceptable number of true detections 

(greater than 20%), while thresholds above 1.0 sec increase the FAR without an 

appreciable increase in 𝑃𝐷.  In building the ground truth (GT) set, described in 

Section 3.2, the high FAR expected to result from using a 10-second threshold was 

ignored in favor of exhaustively including all potential SOI arrivals.   

 

Figure 49: Pseudo-ROC curve presenting the trade-off between the probability of detection 𝑷𝑫 and 
the false alarm rate (𝑭𝑨𝑹) for all five GT stations in Figure 27 at the following consistency thresholds 
(sec): 𝟏. 𝟎 × 𝟏𝟎−𝟕, 𝟏. 𝟎 × 𝟏𝟎−𝟔, 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟎. 𝟓, 𝟏. 𝟎, and 𝟏𝟎. 
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The use of such a threshold may elicit concern due to the increased possibility of 

the inclusion of false alarms in the GT set.  However, recall that only detections 

confirmed by at least two of the three detection schemes (WinPMCC, InfraMonitor, and 

FK Trend) were added to the GT set.  Also, as Figure 49 reveals, all true detections that 

satisfied the 10-second consistency threshold also satisfied the 1-second threshold.  Note 

further that WinPMCC missed at least two GT set detections regardless of the employed 

threshold.  Of course, the possibility still exists that false alarms were included in the GT 

set, partially because the detections are not categorized in terms of what types of events 

caused them.  Event association, during which detections recorded by multiple sensor 

stations are associated to the same infrasound-producing event, is a function of network-

level processing.  This analysis, however, is limited to station-level processing. 

Returning to the station-level ROC analysis in Figure 49, since the difference in 

the aforementioned trade-off is negligible for threshold consistencies between 1.0 × 10−6 

sec and 0.01 sec, the use of thresholds within the following range is recommended: 

0.01 ≤ 𝑐𝑛 ≤ 1.0.  The false discovery rate (FDR) provides further insight into the burden 

on an analyst responsible for reviewing the list of detection families resulting from the 

use of such thresholds (pre-phase categorization and pre-repetitive source detection 

removal).  Equation 24 quantifies the FDR for each of the thresholds analyzed, and the 

results are presented in Table 3.  For the recommended threshold consistency range, an 

average of 81% of WinPMCC-declared detections are false alarms. 
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Table 3: FDR for each of the threshold consistencies 𝒄𝒏 used to construct the pseudo-ROC curve in 
Figure 49. 

Threshold Consistency (sec) FDR 
1.0 × 10−7 N/A 
1.0 × 10−6 0.78 

0.01 0.78 
0.1 0.80 
0.5 0.82 
1.0 0.83 
10 0.87 

 

4.3 Optimum Family Size 

To assist an analyst in his/her review of WinPMCC-declared detections, MAP and 

Bayes optimum thresholds are offered as decision guidelines for whether to include 

detections for further processing based upon the number of pixels comprising the families 

in question. 

4.3.1 Maximum a Posteriori (MAP) Detection 

Recall from Section 3.4 that the likelihood ratio test (LRT) in Eqn. 25 – shown 

here again –  

 
𝑝(𝑧|𝑇)
𝑝(𝑧|𝑅)

𝐻𝑇
≷

𝐻𝑅

𝑃(𝑅)
𝑃(𝑇)

= 𝛾 , (35) 

 

relies, in part, on the conditional distributions of true event families 𝑝(𝑧|𝑇) and non-

event families 𝑝(𝑧|𝑅).  These conditional distributions are revisited here with the 

intention of more formally describing the lognormal and exponential distributions 

determined to have best fit the true event and non-event probability histograms 

respectively.  Overlaid onto the true event probability histogram in Figure 30 is the  
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lognormal distribution 

 𝑝(𝑧|𝑇) = 𝑓(𝑧|𝜇, 𝜎) = 1
𝑧𝜎√2𝜋

𝑒
−(ln 𝑧−𝜇)2

2𝜎2  , (36) 

 

where 𝜇 = 2.94 and 𝜎 = 0.60.  This lognormal distribution describes the random 

variable 𝑍 (number of pixels per family), whose logarithm is normally distributed given 

that a true event has occurred.  It was chosen to model the probability histogram because 

it captures the histogram’s positively skewed data.  The lognormal mean 𝜇 is calculated 

using 

 𝜇 = 𝑙𝑛 � 𝑚2

√𝑣𝑎𝑟+𝑚2� , (37) 
 

where 𝑚 is the arithmetic mean, or first moment, of the GT data, and 𝑣𝑎𝑟 is the variance.  

For this GT data, 𝑚 = 22.61 and 𝑣𝑎𝑟 = 221.92.  Likewise, the lognormal standard 

deviation 𝜎 is calculated using [29] 

 
𝜎 = �𝑙𝑛 �𝑣𝑎𝑟

𝑚2 + 1� . (38) 

 

   Opposite the true event family size distribution stands the non-event family 

distribution.  Overlaid onto its probability histogram in Figure 31 is the exponential 

distribution 

 𝑝(𝑧|𝑅) = 𝑓(𝑧|𝜇) = 1
𝜇

𝑒−𝑧
𝜇 , (39) 

 

where 𝜇 = 4.81, or the average number of pixels comprising a non-event family.  As 

may intuitively be expected, the exponential distribution captures the higher likelihood of 

smaller family sizes in the case of SOI absence.  At least two pixels must be grouped 
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together before constituting a family.  This minimum differs from the minimum number 

of pixels that were required to constitute a family while canvassing sensor data for 

detections to include in the GT set.  Table 1 reveals that this minimum was set at 5 pixels.  

To soundly compare the true event and non-event family size distributions in the LRT, 

the minimum number of pixels required to constitute a family was therefore lowered to 2 

for all time periods over which the GT set was constructed.  No additional true detections 

existed at this adjusted family size minimum.  Therefore, the true event and non-event 

distributions can now be compared. 

Prior to determining the MAP family size threshold 𝑧𝑡_𝑀𝐴𝑃, the remaining 

unknown terms in the LRT are the a priori probabilities of any WinPMCC-produced 

family corresponding to SOI presence 𝑃(𝑇) or SOI absence 𝑃(𝑅).  Using the WinPMCC 

parameters and IDC-recommended 10-filter-per-decade configuration described in  

Table 1 as well as the default 0.1 sec consistency threshold, 𝑃(𝑇) = 0.37 and  

𝑃(𝑅) = 0.63.  The 63% a priori probability that any randomly chosen family belongs to 

the null hypothesis deviates from the 80% probability for the FDR in Table 3’s 

consistency discussion for the following two reasons: 

• MAP analysis occurs after phase-categorization has removed coherent noise 

detections caused by continuous/repetitive sources.    

• The minimum number of grouped pixels required to constitute a family was lowered 

to 2 for the MAP analysis as opposed to 5 for the GT set. 

This comparison can be made because false alarm categorizations within the ROC curve 

context are equivalent to this analysis’s SOI rejection categorizations, as explained in  
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Section 3.4’s discussion of the different perspectives of the detection-declaring entities –

WinPMCC and analyst. 

 Ultimately, the a priori probabilities scale the true event and non-event 

distributions accordingly, and the intersection of the resulting likelihood functions is 

depicted in Figure 50.  The MAP threshold for this examined data is 12 pixels per family.  

Families of 12 or more pixels are more likely to indicate SOI presence (𝐻𝑇) than SOI 

 

  

Figure 50: The maximum a posteriori threshold 𝒛𝒕_𝑴𝑨𝑷 based upon the ratio of true event 𝑷(𝑻) ∙ 𝒑(𝒛|𝑻) and 
non-event 𝑷(𝑹) ∙ 𝒑(𝒛|𝑹) likelihood functions in Eqn. 26.   𝑷(𝑻) = 𝟎. 𝟑𝟕 and  𝑷(𝑹) = 𝟎. 𝟔𝟑.  Families of 12 or 
more pixels are more likely to indicate SOI presence than SOI absence.    
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absence (𝐻𝑅), and the use of this threshold minimizes the number of 𝐻𝑇 and 𝐻𝑅 

categorization errors.   

4.3.2 Bayes Decision Criteria and Risk Minimization 

If instead of minimizing the probability of categorization error, the goal is to 

minimize the cost-based risk associated with those categorization decisions, Bayes 

decision theory supplants the MAP approach.  At the prerogative of a monitoring agency, 

such as the IDC, costs can be assigned to each of the following four potential events: 

detection, rejection, false alarm, and missed detection.  Although the value for these costs 

is somewhat arbitrary, typically 𝐶𝐹𝐴 > 𝐶𝑅 and 𝐶MD > 𝐶𝑇𝐷.  The subscripts in these 

inequalities refer to the cost of a false alarm, rejection, missed detection, and true 

detection respectively.  For illustrative purposes, example costs may be assigned to a 

radar system whose purpose is to detect whether or not a missile has been launched as 

follows [30]: 

• 𝐶𝑅 = 0: no missile present, and correctly declare one not to be 

• 𝐶𝑇𝐷 = 10: missile present, declare a missile to be present, and take action 

• 𝐶𝐹𝐴 = 20: no missile present, but declare one to be 

• 𝐶𝑀𝐷 = 100: missile present, but declare one not to be 

The IDC can assign costs in a similar fashion, replacing “missile” in the above example 

with “SOI.”  The highest cost value should likewise be assigned to missing a detection. 

 Risk is modeled as a function of these costs and choices, and the minimization of 

that risk alters Eqn. 25’s LRT as follows: 
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𝑝(𝑧|𝑇)
𝑝(𝑧|𝑅)

𝐻𝑇
≷

𝐻𝑅

𝑃(𝑅)
𝑃(𝑇)

∙ 𝐶𝐹𝐴−𝐶𝑅
𝐶𝑀𝐷−𝐶𝑇𝐷

 . (40) 

 

The terms of Eqn. 40 are now rearranged so as to position the Bayes-scaled likelihood 

functions on either side of the inequality in the following manner [31]: 

 
(𝑪𝑴𝑫 − 𝑪𝑻𝑫) ∙ 𝑷(𝑻) ∙ 𝒑(𝒛|𝑻)

𝑯𝑻
≷

𝑯𝑹

(𝑪𝑭𝑨 − 𝑪𝑹) ∙ 𝑷(𝑹) ∙ 𝒑(𝒛|𝑹) . (41) 

 

The true event and non-event family size likelihood functions are scaled by the 

previously assigned costs.  As was the case for the MAP threshold, the optimum Bayes 

threshold 𝑧𝑡_𝐵 is marked by the graphical intersection of the functions on either side of 

Eqn. 41’s inequality.   

Given the higher cost assigned to missing a detection, the true event likelihood 

function 𝑃(𝑇) ∙ 𝑝(𝑧|𝑇) is scaled-up to a greater degree than the non-event likelihood 

function 𝑃(𝑅) ∙ 𝑝(𝑧|𝑅).  Using the example costs assigned for the above radar system, 

the graphical intersection of these Bayes-scaled likelihood functions is shown in  

Figure 51.  The rejection region refers to the area under the rejection likelihood function 

to the left of the threshold.  The true detection region refers to the area under the true 

detection likelihood function to the right of the threshold.  The false alarm region refers 

to the area under the rejection likelihood function to the right of the threshold.  The 

missed detection region refers to the area under the true detection likelihood function to 

the left of the threshold.  The resulting Bayes threshold 𝑧𝑡_𝐵 = 8 implies basing 𝐻𝑇 and  
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𝐻𝑅 categorization decisions on a fewer number of pixels per family than as suggested by 

the MAP threshold 𝑧𝑡_𝑀𝐴𝑃, which equals 12.  

If instead the desire is to miss no more than 10% of detections, for instance, costs 

can be assigned to allow no more than 10% of the area under the true event conditional 

pdf 𝑝(𝑧|𝑇) to fall to the left of the Bayes threshold.  The costs assigned to the 

hypothetical radar system coincidentally meet this stipulation.  When the Bayes-scaled 

 

Figure 51: The optimum Bayes threshold 𝒛𝒕_𝑩 based upon the intersection of the true event 𝑷(𝑻) ∙
𝒑(𝒛|𝑻) and non-event 𝑷(𝑹) ∙ 𝒑(𝒛|𝑹) likelihood functions in Eqn. 41 scaled by the example costs cited 
for the hypothetical radar system, which are 𝑪𝑹 = 𝟎, 𝑪𝑻𝑫 = 𝟏𝟎, 𝑪𝑭𝑨 = 𝟐𝟎, and 𝑪𝑴𝑫 = 𝟏𝟎𝟎. 
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likelihood functions intersect at 8 pixels, 7.65% of the area under 𝑝(𝑧|𝑇) falls to the left 

of the threshold, while intersection at 9 pixels violates the 10% stipulation.  Specifically, 

at 𝑧𝑡_𝐵 = 9 pixels, 10.87% of the area under 𝑝(𝑧|𝑇) falls to the left of the threshold. 

4.3.3 Optimum Family Size Threshold Comparison 

The trade-offs between threshold-based decisions and their true detection, missed 

detection, false alarm, and rejection outcomes are presented for both the MAP and Bayes 

approaches in the ROC analysis in Figure 52.  ROC curves are constructed based both 

upon the raw probability histogram data in Figure 30 and Figure 31 and the lognormal 

and exponential conditional probability density functions that best fit the histograms’ 

data.  Additionally, the probability of false alarm 𝑃𝐹𝐴 is converted to a FAR as a means to 

offer insight into how many false alarms per day can be expected at various family size 

decision thresholds. 

Note that the ROC curves of Figure 52 cannot be compared on an “apples-to-

apples” basis with the pseudo-ROC curve of Figure 49 for the underlined reasoning in 

Section 3.4.  In addition to Section 3.4’s delineation of detection-declaring entities 

(WinPMCC program versus analyst), the pseudo-ROC curve is constructed by varying 

the consistency threshold, whereas the optimum ROC curves are constructed by varying 

the family size threshold.  Moreover, the optimum family size ROCs analyze only those 

families that remain post-repetitive source removal, whereas the consistency pseudo-

ROC analyzes all families pre-repetitive source removal.  This distinction explains why 

the optimum ROCs exhibit a lower FAR than the pseudo-ROC.  The reason for the 

distinction is due to the fact that the pseudo-ROC is meant to analyze the “detection 

layer” in station-level processing – expounded upon in Section 3.1 and in Figure 24 –  
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prior to family “post-processing,” of which repetitive source removal is a part.  The 

optimum ROCs, on the other hand, are meant to analyze the “detection layer” containing 

family “post-processing.”  Of course, a pseudo-ROC curve can also be constructed for 

the families that remain post-repetitive source removal.  The How To guides in the 

 

Figure 52: ROC curves based upon the raw probability histogram data (red) in both Figure 30 and 
Figure 31 and the lognormal and exponential conditional probability density functions (blue) that 
best fit the histograms’ data.  The probability of detection 𝑷𝑫 is plotted against both the probability 
of false alarm 𝑷𝑭𝑨 and an expected false alarm rate (𝑭𝑨𝑹).  Note that the ROC curve based upon the 
conditional PDFs is constructed by comparing the areas under these PDFs on either side of a varying 
family size threshold.  The ROC curve based upon the raw probability histogram data reaches a 
maximum 𝑷𝑫 of 0.936 to reflect the fact that WinPMCC misses at least 8 of the 125 GT set detections 
when the 𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 𝐜𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐜𝐲 = 𝟎. 𝟏 seconds.      
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Appendix summarize the procedural steps, as outlined in this research, necessary to 

construct station-specific (pseudo) ROC curves and determine optimum family size 

decision thresholds. 

 For the optimum MAP threshold (12 pixels per family), the following decision 

outcomes apply: 𝑃𝐷 = 0.77, 𝑃𝑀𝐷 = 0.23, 𝑃𝐹𝐴 = 0.13, and 𝑃𝑅 = 0.87.  𝑃𝑀𝐷 = 1 − 𝑃𝐷 

and therefore refers to the probability of missed detection.  𝑃𝑅 = 1 − 𝑃𝐹𝐴 and therefore 

refers to the probability of rejection.  Relative to the costs mentioned earlier, the optimum 

Bayes threshold is zt_B = 8 pixels per family.  Decisions based upon such a threshold 

imply the following decision outcomes: 𝑃𝐷 = 0.92, 𝑃𝑀𝐷 = 0.08, 𝑃𝐹𝐴 = 0.29, and 

𝑃𝑅 = 0.71.  The Bayes approach seeks to minimize the expected value of the decision 

outcome costs.  Since the highest cost was assigned to a missed detection, the least likely 

outcome for Bayes threshold-based decisions is indeed a missed detection. 

4.4 SNR Stress Tests and Detector Failure 

WinPMCC is tested in decreasing SNR conditions to determine the absolute limit 

of its detection capability.  This limit, as determined for synthetic data and synthetic 

arrays as well as for real data and existing arrays, is defined as the post-filtered SNR at 

which WinPMCC fails to detect a SOI at least 90% of the time or, equivalently, when 

𝑃𝐷 ≤ 10%.  𝑃𝐷 is based upon the use of 20 different noise realizations at each tested 

SNR.  The failure level therefore refers to the SNR at which WinPMCC misses the SOI 

for at least 18 of the 20 different noise realizations.  Recall from Sections 2.5 and 3.5 that 

PMCC calculations on a time window of data do not commence until after that waveform 

data is filtered according to the filter configuration established in WinPMCC’s “Window 
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and Filter Parameter” settings.  The filtering operation of “Filter 16,” as discussed in 

Sections 3.5.1 and 3.5.3, is the most appropriate to duplicate in order to determine the 

post-filtered SNR for both the synthetic and real data stress tests.  The motivation behind 

such work stems from the blinding effect of high-amplitude incoherent noise that wind 

bursts introduce for the infrasound stations located in particularly windy global 

environments. 

4.4.1 Synthetic Data SNR Stress Test 

The synthetic SNR stress tests rely on WinPMCC’s ability to detect the Pierce 

Blast in Figure 32 amidst additive white Gaussian noise (AWGN), modeled with 

MATLAB’s randn function, on the 9-element synthetic array in Figure 43.  For this 

configuration, WinPMCC fails to detect the SOI at least 90% of the time when the post-

filtered SNR drops below 3 dB.  To ascertain whether deterioration in detection 

capability accelerates for configurations with fewer elements, sensors are removed from 

potentially participating in the PMCC detection algorithm.  Synthetic configurations that 

resemble the configurations of the 5 stations whose recorded detections were used to 

build the GT set are created from sub-arrays of the 9-element synthetic array.  These five 

real arrays and their synthetic look-alikes are pictured in Figure 45, and the SNR stress 

test results for the look-alikes are presented in Table 4. 

As Figure 20 revealed, stations with fewer sensor elements struggle to as 

accurately estimate the angle of arrival for SOIs traveling as plane waves.  The 

progressive inclusion of more sensors in the PMCC detection algorithm was also 

introduced in Section 2.3 in the context of improving SOI azimuth and velocity estimates.  

These SNR stress test results, however, suggest only a marginal advantage for arrays with 
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more elements in terms of the ability to detect SOIs in environments with high-amplitude 

incoherent noise.  

 4.4.2 Real Data SNR Stress Test 

In much the same way as the synthetic test, the real data SNR stress test proceeds with 

determining WinPMCC’s ability to detect the SOI in Figure 46 amidst sensor-recorded 

noise on the 5-element BRD array.  A one-minute excerpt of the original data recorded by 

sensor BRD00 – the top element in Figure 47 – is pictured in Figure 53.  The last 15 

seconds of this excerpt is the time window in which the detection lies.  The data are 

shown pre and post-filtered.  The array-averaged post-filtered SNR, as approximated by 

the 𝑆𝑇𝐴/𝐿𝑇𝐴 SNR proxy in Eqn. 34, is 20 dB. 

In the manner outlined by Section 3.5.3, 60 seconds of pre-filtered noise from a 

detectionless window of BRD00 data is overlaid onto the original pre-filtered data in 

Figure 53.  This process is repeated for the other four sensors in the array, and the 

amplitude of that overlaid noise is increased until WinPMCC fails to detect the SOI.  

Instead of overlaying different randn noise realizations as in the synthetic stress test, 

different detectionless windows of data are overlaid onto the SOI and amplified until  

 
Table 4: Synthetic SNR Stress Test Results.  WinPMCC fails for post-filtered SNRs lower than what 
is indicated at a 90% rate.  “Filter 16” with the response shown in Figure 34 is used to determine 
post-filtered SNRs. 

 

Sensor Array Number of Array 
Elements 

Pre-Filtered 
Failure SNR (dB) 

Post-Filtered 
Failure SNR (dB) 

Full Synthetic 9 -9 3 
Synthetic BRD 5 -8 4 
Synthetic CHN 4 -8 4 
Synthetic KSG 4 -8 4 
Synthetic I30 6 -9 3 
Synthetic I45 3 -8 4 
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WinPMCC misses the detection for at least 90% of attempts.  The post-filtered SNR at 

which this 90% missed detection rate occurs is 2 dB.  Figure 54 illustrates example pre 

and post-filtered sensor data at this BRD failure SNR. 

4.5 Summary and Impact of Results 

The pseudo-ROC and optimum threshold procedures outlined in Chapters III and 

IV can be applied to individual stations at the discretion of the IDC.  GT sets built from 

detections on particular stations may be less prone to the inclusion of non-event families 

due to the IDC’s access to event-confirmed detections at the output of network-level 

 

Figure 53: Pre-filtered (top) raw sensor data recorded by sensor element BRD00 on the BRD array.  
The SOI is located between 45 – 60 seconds, as is apparent on the post-filtered (bottom) waveform.  
“Filter 16” (shown in Figure 34) from WinPMCC’s 20-filter configuration illustrated in Figure 9 
maximizes the post-filtered SNR, which the 𝑺𝑻𝑨 𝑳𝑻𝑨⁄  approximation indicates is 20 dB.   
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processing.  These research efforts attempted to compensate for the unavailability of 

network-level processing by requiring that GT set detections be confirmed by at least two 

of the three detection methods employed.  With a completed GT set, the IDC (or other 

interested monitoring agency, such as the Air Force Technical Applications Center 

(AFTAC)) can repeat the procedures as described in this document to determine the 

consistency dependent trade-off between 𝑃𝐷 and FAR as well as optimum decision 

thresholds based upon the true event 𝑝(𝑧|𝑇) and non-event 𝑝(𝑧|𝑅) conditional 

 

Figure 54: Pre-filtered (top) sensor data consisting of 60 seconds of noise from a detectionless window 
of data overlaid on top of the raw data in Figure 53.  Although only sensor element BRD00 is shown, 
this same process of overlaying noise from detectionless windows of data is repeated on BRD’s other 
4 sensor elements.  The amplitude of the overlaid noise is increased until WinPMCC fails to detect 
the SOI, located between 45 – 60 seconds.  “Filter 16” (shown in Figure 34) from WinPMCC’s 20-
filter configuration illustrated in Figure 9 maximizes the post-filtered SNR, which the 𝑺𝑻𝑨 𝑳𝑻𝑨⁄  
approximation indicates is 2 dB.  For post-filtered (bottom) waveforms with SNRs below this 2 dB 
failure level, WinPMCC fails to detect the SOI at greater than a 90% rate.  
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probability density functions. 

 The IDC can then judge array performance by comparing these station-specific 

curves and thresholds.  Steeper pseudo-ROC curves imply better performance, as does 

less overlap between the (scaled) true event and non-event conditional probability density 

functions.  With less overlap, the decision threshold, whether it is based upon MAP or 

Bayes criteria, is less susceptible to false alarm and missed detection categorization 

errors. 

Monitoring agencies can further assess individual array geometries and station 

performance by evaluating WinPMCC’s ability to detect SOIs in progressively noisier 

environments.  Noisy environments can either be simulated synthetically or with real data 

in the manner outlined by Chapters III and IV.  The results for such methods may not 

coincide exactly, as they did not – 2 dB difference in post-filtered failure SNR level – for 

the fielded BRD array and its synthetic look-alike.  The reasons for synthetic and real 

data result mismatches are varied.  First, the 𝑆𝑇𝐴/𝐿𝑇𝐴 approximation for SNR is just 

that, an approximation.  Moreover, noise for the synthetic SNR stress tests is modeled 

with MATLAB’s randn function, and models are imperfect representations of reality.  

For instance, randn noise vector realizations are meant to simulate AWGN when, in fact, 

the noise profiles of specific arrays may actually exhibit colored noise.  Further, the 

synthetic arrays in Figure 45 have smaller apertures than their real counterparts.  In 

addition, there are amplitude and frequency content differences between the synthetic 

Pierce Blast SOI and the real data SOI waveforms.  Finally, synthetic SOI propagation is 

modeled as a perfect plane wave, whereas real SOIs may deviate from plane wave  
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propagation due to the path-altering effects underscored in Section 2.8.  Nevertheless, 

both the synthetic and real data SNR stress test methods provide valuable insight into 

WinPMCC’s detector limitations in noisy environments. 
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V.  Conclusions and Recommendations 

This chapter begins by restating the quantitative results for the consistency 

threshold (𝑐𝑛) Receiver Operating Characteristic (ROC) analysis, the proposed maximum 

a posteriori (MAP) and Bayes optimum family size thresholds, and the signal-to-noise 

ratio (SNR) stress tests.  These results are then discussed within the context of how they 

contribute to the missions of the International Data Centre (IDC), which currently 

employs the Progressive Multi-Channel Correlation (PMCC) algorithm in an operational 

setting, and the Air Force Technical Applications Center (AFTAC), which is exploring 

integrating PMCC into its detection repertoire.  Finally, recommendations for how future 

work can build upon this research’s performance evaluation procedures are suggested. 

5.1 Results Summary 

• Pseudo-ROC curve analysis explored the consistency-dependent trade-off between 

the probability of detection (𝑃𝐷) and the false alarm rate (FAR) for WinPMCC-

produced families consisting of at least 5 elementary detections (pixels).  Pixel 

creation is described in detail in Figure 6.  The results suggested that consistency 

thresholds above 1.0 second increase FAR without any appreciable increase in 𝑃𝐷, 

thus unnecessarily increasing the burden on an analyst reviewing the list of 

WinPMCC-produced detections.  The false discovery rate (FDR), or the metric 

quantifying the percentage of program-produced detections that are false alarms, 

peaked at 87% for a 10 second consistency threshold.  On the other hand, thresholds 

between 1.0 × 10−6 and 0.01 seconds exhibited no apparent difference in the 

aforementioned trade-off, whereas thresholds increasingly below 1.0 × 10−6 seconds 
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caused WinPMCC’s 𝑃𝐷 to rapidly decline.  Specifically, the use of a 1.0 × 10−6 

second threshold implied a 20% missed detection rate, and a 1.0 × 10−7 second 

threshold produced no detections at all.  Given these results, thresholds within the 

following range are recommended for elementary pixel detection: 0.01 ≤ 𝑐n ≤ 1.0. 

• For an analyst responsible for making decisions on which pixel families to preserve 

for network-level processing, MAP and Bayes optimum decision thresholds based 

upon the sizes of the detection families in question are proposed.  For a 0.1 second 

consistency threshold and the WinPMCC settings expressed in Table 1, the MAP 

decision threshold is 12 pixels.  Any family comprised of at least 12 pixels is more 

likely to indicate signal-of-interest (SOI) presence than absence (and vice versa for 

families comprised of fewer than 12 pixels).  Thus, the MAP threshold minimizes the 

probability of error, defined as 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑃𝐹𝐴 + 𝑃𝑀𝐷.  𝑃𝐹𝐴 refers to the probability of 

false alarm, and 𝑃𝑀𝐷 refers to the probability of missed detection.  In Bayes 

optimization, unitless costs are assigned to all possible decision outcomes – true 

detection, rejection, false alarm, and missed detection.  The Bayes optimum threshold 

minimizes decision risk, defined as the expected value of the assigned costs.  For true 

detection, rejection, false alarm, and missed detection costs of 10, 0, 20, and 100 

respectively, the Bayes optimum threshold is 8 pixels.  When families comprised of 8 

or more pixels are categorized as true event families and those with fewer than 8 

pixels as non-event families, 𝑃𝑀𝐷 < 8% and 𝑃𝐹𝐴 = 29%, which equates to about 30 

false alarms per day.  Referencing Figure 49 for an apples-to-apples error comparison 

with the consistency-dependent pseudo-ROC analysis, use of the same default 
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consistency (0.1 sec) and a minimum family size of 5 pixels, 𝑃𝑀𝐷 = 5% with an 

associated FAR of about 240 false alarms per day.   

• The SNR stress tests provided insight into the conditions under which high-amplitude 

incoherent noise renders sensor arrays blind to potential SOIs.  Array “blindness” is 

defined as the post-filtered SNR at which WinPMCC’s 𝑃𝑀𝐷 ≥ 90%.  For the 9-

element synthetic array and the synthetic BRD (5 elements), CHN (4 elements), KSG 

(4 elements), I30 (6 elements), and I45 (3 elements) array look-alikes, the missed 

detection rate exceeded 90% when the post-filtered SNR dropped below 3, 4, 4, 4, 3, 

and 4 dB respectively.  To compare the synthetic stress test results with those for real 

data recorded by the operational BRD array, the missed detection rate was determined 

to exceed 90% when the post-filtered SNR dropped below 2 dB.  These results 

suggest that arrays with more elements have only a marginal advantage in terms of 

PMCC’s ability to detect SOIs in high-amplitude noise environments.  Note that these 

stress tests did not measure PMCC’s ability to accurately estimate a SOI’s 

propagating velocity or azimuth.  Previous work has demonstrated that signal 

parameter estimation generally improves for arrays with more elements, but the level 

of this improvement has not yet been quantified in deteriorating SNR conditions. 

5.2 Research Contributions 

Monitoring agencies that maintain infrasound stations, such as AFTAC or the 

IDC, can use the performance evaluation procedures established in this document to 

assist in the performance improvement of individual stations. The IDC, for instance, can 

build reliable, station-specific ground truth (GT) sets by assembling the event-confirmed 
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detections at the output of network-level processing.  These research efforts attempted to 

compensate for the unavailability of network-level processing by requiring that GT set 

detections be confirmed by at least two of the three detection methods (WinPMCC, 

InfraMonitor, FK Trend) employed, an obstacle the IDC need not overcome.  The IDC 

can then construct station-specific pseudo-ROC curves by following the procedures 

outlined in Chapter III, summarized in the How To guide in the Appendix.  The 

performance of different array geometries can be judged by comparing their individual 

pseudo-ROC curves.  Steeper curves, wherein the trade-off between 𝑃𝐷 and FAR is more 

favorable, imply better performance.  The assumption here is that, in order to solely 

compare the “steepness” of station-specific pseudo-ROC curves, the FARs for each must 

be equivalent.  For example, identical curves can still signify performance disparity if 

each curve is plotted against respective FARs that are unique to a certain geometry, 

location, and/or season.  In practice, therefore, pseudo-ROC steepness will have to be 

considered jointly with relative FARs when judging array geometry performance.  For a 

specific consistency threshold, the expected burden on an analyst responsible for 

reviewing the list of WinPMCC-produced detections can further be quantified with the 

false discovery rate (FDR). 

Recall that analysts review families of detections, not merely the consistency-

satisfied elementary detection pixels.  The IDC does not currently use any family-

characterizing statistic as a detection threshold, but this research’s results suggest that 

family size is a viable candidate.  The purpose of such a threshold is twofold.  First, the 

onerous, time-consuming process of reviewing detections becomes streamlined when a 

detection threshold provides guidance as to the likelihood (MAP approach) or risk (Bayes 
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cost criteria) of declaring whether families indicate SOI presence or SOI absence.  For 

reference, the optimum threshold analysis culminated in the ROC curve comparison in 

Figure 52, revealing the true detection, rejection, false alarm, and missed detection rates 

for each approach.  Second – and perhaps more insightful than the previously described 

consistency-based station evaluation method – individual station performance can 

alternately be evaluated by comparing the station-specific overlap of the MAP or Bayes-

scaled density functions “fit” to the true event and non-event probability histogram 

families.  Less overlap reduces the minimum achievable categorization error sum of 𝑃𝐹𝐴 

and 𝑃𝑀𝐷, 𝑃error, in the case of the MAP approach.  Likewise, in the case of the Bayes 

approach, less overlap reduces the minimum achievable risk when the highest costs are 

assigned to missed detection and false alarm decision outcomes, as they often are in 

practice.  The How To guide in the Appendix also summarizes the procedural steps 

necessary to determine station-specific optimum thresholds.  The International 

Monitoring System (IMS) can ultimately improve the efficacy of its infrasound network 

by updating the array geometries of its infrasound network’s stations to reflect the best 

performing of the tested geometries. 

The final method discussed by which array geometries can be evaluated was via 

SNR stress tests.  The results, however, did not suggest a clear advantage for any single 

array configuration in deteriorating SNR conditions.  They did, however, provide 

previously unknown insight into PMCC’s SNR detection capability limitations. 

 



 

103 

5.3 Recommendations for Future Work 

As there are a multitude of WinPMCC parameter settings, these evaluation 

methods can be repeated under different initial program settings to determine setting-

dependent performance disparity.  For instance, multiple pseudo-ROC curves can be 

drawn where each one reflects a different filter configuration, thereby providing a method 

to compare detector performance with different filtering schemes. 

The GT set detections, upon which the majority of this research relies, can 

perhaps be divided into low, medium, and high F-statistic or SNR subsets.  From there, 

the MAP and Bayes optimum family size detection thresholds can be determined for each 

of these subsets, thereby revealing the degree to which they may or may not deviate.  

Moreover, optimum decision thresholds based upon family-characterizing statistics other 

than size can be independently determined.  For example, true event and non-event 

probability histograms can be created by sorting GT set and noise set detections 

according to their F-statistics rather than their family sizes.  The reliability of analysts’ 

decisions as to whether families should be preserved for network-level processing can 

only benefit from access to multiple decision thresholds based upon various family 

attributes.  

From a detector limitation perspective, the real data SNR stress tests can be 

performed on the remaining untested fielded arrays (only the BRD array was stress 

tested).  Further, a more direct comparison between the synthetic and real data SNR stress 

tests can ensue if synthetic arrays are designed so that their apertures are more in line 

with the apertures of the fielded arrays studied.  Such efforts also hint at the possibility of 

testing not only PMCC performance for various array geometries, but also for various 
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array apertures.  Quantifying PMCC’s ability to accurately estimate the azimuth and 

velocity of a propagating infrasound signal on these array structures in deteriorating SNR 

conditions could be another avenue in which to investigate.  Finally, the definition of 

array “blindness” could be adjusted to lower 𝑃𝑀𝐷 levels to reveal whether any single 

configuration has a clear detection advantage at these other levels. 
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Appendix 

How to Create a Consistency-Dependent Station-Specific Pseudo-ROC Curve 

1) Decide which consistency thresholds (𝑐𝑛) to test.  Those chosen for the analysis 

presented in this document are specified in Figure 49. 

2) Build a ground truth (GT) set of event arrivals on the infrasound station for which the 

pseudo-ROC curve will be constructed.  To achieve a representative sample of 

arrivals, it is desirable that the GT set consist of at least 100 confirmed detections.  If 

access to the International Data Centre’s (IDC) Standard Event Lists (SELs) is 

available, make note of events in the proximity of the station to be tested.  If access to 

either SELs or a specific monitoring agency’s list of events (such as AFTAC’s) is 

unavailable, follow the process of building the GT set as outlined in Section 3.2.  

Regardless of how the GT set is constructed, do the following: 

a. Fix WinPMCC settings that will not be varied throughout the ROC-building 

process, such as the filter parameters, detection parameters (other than 𝑐𝑛), and 

families settings in Table 1.  These settings will be used throughout the creation 

of one pseudo-ROC curve. 

b. Keeping in mind that this pseudo-ROC will be evaluating the consistency-

dependent trade-off between the probability of detection (𝑃𝐷) and the false alarm 

rate (FAR), run the WinPMCC program at the highest (most lenient) 𝑐𝑛 that will 

be tested. 

c. Arrival WinPMCC detections on the station that can be associated with either the 

SEL events or AFTAC-confirmed events can be added to the GT set.   
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3) Note detection characteristics for each of the GT event detections recorded by the 

station.  WinPMCC outputs a number of characteristics, such as family size, F-stat, 

and the number of sensor elements within the array participating in the detection.  Be 

sure to note the time of arrival and the window length of the produced family (ex. 15 

second detection).  These values may prove useful in identifying GT set detections 

throughout the process of plotting ROC curve points.  It is recommended that the 

detection-characterizing data be organized in a matrix within Excel.  Excel is 

suggested because, if needed, MATLAB can import and analyze an Excel 

spreadsheet.  

4) Decide on a standard amount of time for which to run WinPMCC before and after a 

known GT set detection.  For example, if a GT set detection occurs at noon on a 

particular day, decide to run WinPMCC from 15 min prior to the arrival through  

15 min after, i.e. from 11:45-12:15.  This stipulation is offered to ensure WinPMCC 

canvasses time windows of data within which there should be no detections, thus 

allowing a FAR to be determined based upon instances in which WinPMCC flags a 

time window of data as a detection, but should not. 

5) Run WinPMCC over all time windows established in the previous step at each of the 

𝑐𝑛’s established in Step 1.  For each 𝑐𝑛, note the number of false alarms* as well as 

the number of successfully detected GT set detections and the number of 

unsuccessfully detected, or “missed,” detections.  Missed detections refer to instances 

in which WinPMCC failed to detect a GT infrasound arrival.  Now if, for example, 

seven 𝑐𝑛 were analyzed, there will be seven pseudo-ROC points composing the curve.  
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Each point consists of an overall 𝑃𝐷 and a total false alarm number based upon the 

use of an individual 𝑐𝑛. 

6) Decide what rate by which to quantify the “total false alarm number.”  Recall from 

Eqn. 23 that the analysis presented in this document chose to quantify the FAR on a 

per day basis. 

7) Graph the points on a 𝑃𝐷 versus FAR plot, thereby creating a pseudo-ROC curve, as in 

Figure 49. 

The following approaches can be taken from here: 

• Repeat this step-by-step procedure for another station(s) and compare the resulting 

station-specific pseudo-ROC curves to judge the performance disparity of station 

array configurations/geometries.  

• Alter one of the previously fixed settings in Step 2a above, such as filter 

configuration, and create another pseudo-ROC curve for the same station, varying 

𝑐𝑛’s in the same manner.  WinPMCC’s relative performance based upon how 

individual settings are tuned can now be judged by overlaying and comparing the 

original and newly created pseudo-ROC curves.     

*Note in Step 5 that families produced by repetitive noise sources, such as ocean swell 

microbaroms, are removed from the WinPMCC detection list in time-frequency space in 

the manner described in Section 2.5 and presented visually in Figure 14.  The analysis 

presented within this document chose to count false alarms prior to this detection list 

“cleaning.”  However, since coherent noise detections produced by repetitive sources 
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would be eliminated anyway, it makes sense to only count false alarms that remain after 

detection “cleaning.” 

How to Determine Station-Specific Optimum Family Size Thresholds 

1) Build a GT set of event arrivals on the infrasound station for which the optimum 

family size threshold(s) will be determined.  To achieve a representative sample of 

arrivals, it is desirable that the GT set consist of at least 100 confirmed detections.  If 

access to the International Data Centre’s (IDC) Standard Event Lists (SELs) is 

available, make note of events in the proximity of the station to be tested.  If access to 

either SELs or a specific monitoring agency’s  list of events (such as AFTAC’s) is 

unavailable, follow the process of building the GT set as outlined in Section 3.2.  

Regardless of how the GT set is constructed, do the following: 

a. Fix all WinPMCC settings, such as the filter parameters, detection parameters 

(including 𝑐𝑛), and families settings in Table 1.  These settings will be used 

throughout the process of determining the optimum family size threshold(s). 

b. Arrival WinPMCC detections on the station that can be associated with either the 

SEL events or AFTAC-confirmed events can be added to the GT set. 

2) Note detection characteristics for each of the GT event detections recorded by the 

station.  WinPMCC outputs a number of characteristics, such as family size, F-stat, 

and the number of sensor elements within the array participating in the detection.  Be 

sure to note the time of arrival and the window length of the produced family (ex. 15 

second detection).  These values may prove useful in identifying GT set detections 

throughout the process of determining the optimum threshold(s).  It is recommended 
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that the detection-characterizing data be organized in a matrix within Excel.  Excel is 

suggested because, if needed, MATLAB can import and analyze an Excel 

spreadsheet.  

3) Decide on a standard amount of time for which to run WinPMCC before and after a 

known GT set detection.  For example, if a GT set detection occurs at noon on a 

particular day, decide to run WinPMCC from 15 min prior to the arrival through  

15 min after, i.e. from 11:45-12:15.  This stipulation is offered to ensure WinPMCC 

canvasses time windows of data within which there should be no detections.  

Instances in which WinPMCC flags a time window of data as a detection (by 

producing a family) that cannot be associated with a GT set arrival are rejections, or 

non-event families. 

4) Run WinPMCC at the decided upon settings from Step 1a over all time windows 

established in Step 3.  There is now a finite set of WinPMCC-produced detections, or 

families, within these time windows. 

5) Sort these detections into either GT set true event detections or (rejection) non-event 

detections.  Prior to sorting, eliminate obvious detections produced by repetitive 

noise sources, for this is accomplished anyway during post-PMCC processing.  

Detection list cleaning was discussed in greater detail in Section 2.5 and is presented 

visually in Figure 14. 

6) Note the family sizes, or the number of pixels per family, for each of the GT set true 

event detections.  Do the same for the non-event families. 
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7) Plot probability histograms, also known as probability mass functions, that show the 

distribution of family sizes for both the GT set true event detections and non-event 

detections, as in Figure 30 and Figure 31. 

8) Decide which probability density functions (pdf’s) best characterize the data 

presented by the probability histograms.  For the analysis presented in this document, 

the lognormal pdf in Eqn. 36 best characterizes the true event data, and the 

exponential pdf in Eqn. 39 best characterizes the non-event data. 

9) Given the finite list of families established in Step 4, determine the probabilities of 

any randomly chosen family belonging to either the true event or non-event sets.  

These are the “a priori” probabilities described in the likelihood ratio test (LRT) of 

Eqn. 25. 

10) Scale the true event conditional pdf established in Step 8 by the a priori probability 

that any randomly chosen family belongs to the GT set true event detection list.  

Likewise, scale the non-event conditional pdf by the a priori probability that any 

randomly chosen family belongs to the non-event detection list.*  “Scaling” means to 

multiply a conditional pdf at each of its sample points by the appropriate a priori 

probability. 

11) Graph the scaled true event and non-event conditional pdfs, also known as likelihood 

functions, on the same plot, as in Figure 50.  Note the intersection, which should be 

rounded up to the nearest pixel.  This intersection marks the maximum a posteriori 

(MAP) threshold, which minimizes the probability of categorization error, 𝑃𝑒𝑟𝑟𝑜𝑟, 

defined as 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑃𝐹𝐴 + 𝑃𝑀𝐷.  𝑃𝐹𝐴 refers to the probability of false alarm, and 𝑃𝑀𝐷 

refers to the probability of missed detection.  Families that are comprised of at least as 
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many pixels as the MAP threshold are more likely to be true event families than non-

event families.  Families comprised of fewer pixels than the MAP threshold are more 

likely to be non-event families.  

Following are some additional thoughts:  

• Optimum decision thresholds based upon family-characterizing statistics other than 

size can be independently determined.  For example, true event and non-event 

probability histograms can be created by sorting GT set and noise set detections 

according to their F-statistics rather than their family sizes.  MAP and Bayes optimum 

F-statistic thresholds can be determined in the same manner as the optimum family 

size thresholds were determined.   

• The reliability of analysts’ decisions as to whether families should be preserved for 

network-level processing can only benefit from access to multiple decision thresholds 

based upon various family attributes. 

*Note in Step 10 that if the conditional pdf’s are also scaled by Bayes costs, as in  

Eqn. 41, their intersection denotes the optimum Bayes threshold. When categorization 

decisions are made based upon this threshold, decision risk – defined as the expected 

value of the Bayes costs – is minimized. 
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