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Abstract

The aiding of an INS using measurements over time of the line of sight of ground

features as they come into view of an onboard camera is investigated. The objective is to

quantify the reduction in the navigation states’ errors by using bearings-only

measurements over time of terrain features in the aircraft’s field of view. INS aiding is

achieved through the use of a Kalman Filter. The design of the Kalman Filter is presented

and it is shown that during a long range, wings level cruising flight at constant velocity

and altitude, a 90% reduction in the aided INS-calculated navigation state errors compared

to a free INS, is possible.
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Inertial Navigation System Aiding Using Vision

1 Introduction

1.1 Background

Navigation can be defined as the process of reading, and controlling the movement of

a craft or vehicle from one place to another[1]. Navigation is achieved by comparing the

navigator’s position to known locations and this can be done in many different ways.

These include but are not limited to an individual using a map, a vehicle using Global

Positioning System (GPS), or an aircraft using an Inertial Navigation Systems (INS) in

combination with a GPS to provide very precise navigation.

An aircraft using an Inertial Navigation Systems (INS) aided by GPS measurements

is afforded very precise navigation. GPS is very accurate but may be occasionally denied

due to outages. It is therefore prudent to have workarounds for situations where the

precision available from GPS is denied. Aiding INS using the measurements of terrain

features’ bearings render the integrated navigation system less dependent on GPS. This is

desirable since the vision-aided INS will be an autonomous navigation system which is

self-contained and not susceptible to jamming and spoofing. The crucial issues of

detection of ground features in a camera’s field of view and the autonomous tracking of

these features/image registration, [5], [7], and [6] are not addressed in this paper. The

focus is on gaining an understanding of the INS aiding action afforded by bearings

measurements over time of possibly unknown ground features.

In [12] it was shown using covariance analysis that the rate of growth of position

uncertainty is significantly reduced when the aircraft uses terrain features bearing

1



measurements to aid the INS. The same applies to the uncertainty in velocity and the

aircraft’s Euler angles.

This paper focuses on the mechanization of the Kalman Filter (KF) for vision aided

INS. It is shown that using the measurement over time of the bearings of ground features

in an aircraft’s field of view, a KF can significantly reduce the errors in the aircraft’s

navigation states in a GPS denied environment. A cross country navigation scenario using

the concept of “bootstrapping” where new ground features as they come in the camera’s

field of view are sequentially geolocated and then tracked during their residence in the

camera’s field of view, is analyzed. The Kalman Filter is mechanized in the context of

Simultaneous Localization and Mapping (SLAM).

It is shown that the synergetic action of the designed Kalman Filter and the

geolocation algorithm makes SLAM possible and using the “bootstrapping” concept long

range flight which entails INS aiding using bearing measurements of unknown ground

features is feasible-this, provided that the image registration problem is solved.

1.2 Motivation

Consider a Low Observable (LO) aircraft carrying a LO munition on a mission into a

territory to eliminate a High Value Target (HVT). The objective is to eliminate the target

with as minimal collateral damage as possible, so precision is of utmost importance. The

HVT is limited to a small area such that it takes approximately an hour to fly from the

origin of the military base. The adversary actively uses anti-GPS technologies, thus

denying the precision and accuracy of GPS. The aircraft has a navigation quality INS but

the duration of the flight is long enough that the errors produced by the INS are too large

for precise lock onto the HVT. The pilot needs a better navigation solution, but does not

want to inform the enemy of the aircraft’s presence by using active navigation techniques,

such as radar. The autonomy of the INS is good for stealth but is not enough to provide

precise navigation solution given the errors that accumulate over time.
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The proposed solution is to use the bearing measurements of known and unknown

ground features to aid the navigation provided by the INS. The aircraft uses its camera to

geolocate ground features, track those features to aid the INS, and using that aided

estimate geolocate new features as the original features leave the camera’s FOV. This

aiding scheme constrains the error enough to obtain target solution. The on board

munition, with its lower quality INS, uses a similar visual scheme. It looks within the area

given during the mission briefing for the HVT. The munition impacts the HVT and the

aircraft leaves the scene without emitting any signal that will give away its location.

1.3 Approach

This paper will be structured such that each chapter will begin with a brief

description of topics that will be forthcoming. Chapter 2 provides information on the

various coordinate frames of reference that is used when working with an INS, the

transformations between the coordinate frames, INS mechaniztion equations, a brief

discussion of Simultaneous Localization and Mapping (SLAM) and concludes with recent

research in the field. Chapter 3 shows the mathematical development of the 2-D case,

including the dynamics and measurement model development, the state space

representation and the use of the KF mechanization. This information is then extended to

look at the 3-D case for both a horizontal flight and a vertical fall. Chapter 4 looks at the

results of the covariance analysis. Finally, Chapter 5 summarizes the key points of the

paper, focusing on the impact the INS aiding scheme provided.

3



2 Literature Review

2.1 Introduction

This section provides information on the various coordinate frames of reference that

is used when working with INS. Section 2.2 discusses the different coordinate frames of

reference. Section 2.3 discuses the transformations between the various coordinate

frames. Section 2.4 discusses the fundamentals of inertial navigation, including a brief

discussion of the sensors used and how they work. Section 2.6 discusses the fundamental

INS equation and the INS equations for some common frames. Section 2.7 discusses

SLAM. Section 2.8 discusses the camera model that will be used as a sensor. Finally,

Section 2.9 reviews recent research that contributed to this paper.

2.2 Reference Frames

2.2.1 Inertial Reference Frame. The Inertial Reference Frame which is also

known as the “true” inertial frame is denoted as the I-frame. The I-frame is located in the

sky and it is in this frame that Newton’s laws apply. All reference frames used in this

paper follow the right handed reference system. The I-frame is shown in Figure 2.1.

2.2.2 Earth-Centered, Earth-Fixed Inertial Reference Frame. The Earth-centered,

Earth-Fixed (ECEF) inertial reference frame, as the name imply, has its origin fixed to the

center of the earth. It is denoted as the i-frame and moves with the earth relative to the

I-frame. With the Earth modelled as an ellipsoid, the axes of the i-frame are partially fixed

to the I-frame and are defined as follows:

• xi-axis , along the Equator and pointing towards the first star in the Aries

• zi-axis , points towards the North Pole

• yi-axis , along the Equator, and completing the right handed reference system
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Figure 2.1: The I-frame

The i-frame in the earth model is shown in Figure 2.2.

2.2.3 Earth-fixed Reference Frame. The Earth-fixed reference frame has its origin

fixed to an arbitrary point on the surface of the Earth. The axes of the e-frame are defined

as follows:

• xe-axis points to the North

• ye-axis points to the east

• ze-points to the gravitational center of the Earth.

The e-frame is shown in Figure 2.3. Since the e-frame is fixed to an arbitrary point on the

surface of the earth, it moves at the earth rate. The rotation between the i-frame and the

e-frame is denoted by θe
ie, where θe

ie is given by:

θe
ie = ωe(t − t0)
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Figure 2.2: The i-frame

and ωe is the sidereal rate of the earth ≈ 360◦/day

2.2.4 Navigation Reference Frame. The navigation frame, also known as the local

level frame is denoted as the n-frame. The origin of this reference frame is located on a

plane which is tangential to the surface of the Earth, where z = 0 is for the surface of the

Earth. The e-frame is fixed to the earth, but the n-frame is not. The axes of the n-frame are

defined as follows:

• xn-axis , points from the origin to the North pole

• yn-axis , points to the west

• zn-axis , points down away from the center of the Earth

Figure 2.4 shows the n-frame in the Earth model.
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Figure 2.3: The e-frame

2.2.5 The Body Frame. The body frame, denoted as the b-frame is rigidly attached

to the body of a vehicle (airplane, car, ship, etc.). The origin is located somewhere on the

body, either the center of gravity (CG) or something measurable. The axes do not change

with changes to an aircraft’s trajectory or orientation of a car. Due to the fact that an

aircraft loses fuel in the cause of flight and the center of gravity will consequently change,

the origin of the body frame will be fixed to the origin of the camera in this paper. The

body axes are defined as follows:

• xb-axis , points out of the nose of the aircraft

• yb-axis , points out of the left wing of the aircraft

• zb-axis , points out of the top of the aircraft

Figure 2.5 shows the body frame for an airplane.
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Figure 2.4: The n-frame

2.2.6 Sensor Frame. The sensor frame, denoted as the s-frame is defined by the

designer using the right handed reference system. It is completely up to the designer to

define the origin and axes of the s-frame. Figure 2.6 shows two sensors (INS and camera)

with their respective s-frames in relation to the b-frame of an object whose origin is at the

CG. Again, for reasons discussed in sub-section 2.2.5 the origin of the body frame will be

co-located with the origin of the camera frame in this paper.

2.3 Coordinate System Transformations

In INS computations, it is often convenient to convert the different frames to a single

frame (often the navigation frame) for easy calculations. In order to transform points and

vectors from one frame to the other, there is the need to perform either translation,

rotation, or both. Translation is an n × 1 vector that relates the origins of two frames of
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Figure 2.5: The b-frame for Airplane

interest. The translation of a point P, from a-frame to b-frame in the a-frame is denoted by

Pa
ab. Rotations on the other hand are defined with respect to the orthogonal right-handed

axis set. Rotation of a set of axes in one frame to another frame can be done in one of

three ways, namely:

1. Euler angles (φ, θ, ψ): This is a transformation of one frame to another by three

successive rotations about three different axes taken in turn [13]. It is worth noting

that the order of rotation matters; rotation in the order (φ, θ, ψ) is different from

rotation in the order (θ, ψ, φ).

2. Quaternions (4 × 1 vector): The quaternion attitude representation allows a

transformation from one coordinate frame to another to be effected by a single

rotation about a vector defined in the reference frame. The quaternion is a

9



Figure 2.6: s-frame for INS Sensor and Camera

four-element vector representation, the elements of which are functions of the

orientation of this vector and the magnitude of the rotation.

3. Direction Cosine Matrix (DCM) (3 × 3 matrix): The Direction Cosine Matrix

(DCM), is a 3 × 3 matrix, the columns of which represent unit vectors in body axes

projected along the reference axes. The DCM from a b-frame to an a-frame is

denoted by Ca
b, which is written as follows:

Ca
b =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.1)

Where the element in the ith row and the jth column represents the cosine of the angle

between the i-axis of the a-frame and the j-axis of the b-frame.
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This paper uses DCM for coordinate system transformations. For right-handed,

orthonormal reference frames, some DCM rules are as follows:

Det
(
Ca

b
)

=
∣∣∣Ca

b

∣∣∣ = 1

(Ca
b)−1 = (Ca

b)T = Cb
a

Ca
c = Ca

bCb
c

2.4 Inertial Navigation

This section provides an overview of the basic principles of inertial systems. To

navigate, knowledge of the measurements of specific force and angular rates are required.

These measurements are provided by an INS, which consists of accelerometers and gyros.

Accelerometers measure specific force, while gyros measure angular rate. An INS is a

self-contained and nonjammable navigation instrument that provides redundancy for radio

navigation systems that can experience interference or be jammed; however, an INS does

suffer from drift, the unbounded growth of errors over time. Even, with perfect alignment,

accelerometer biases and gyro drift causes the errors in INS to grow over time [10].

2.5 Specific Force and Gravity

2.5.1 Specific Force. From Newton’s Second Law of Motion, the force, FI acting

on a body of mass m, moving with an acceleration of p̈I in the inertial frame is given by:

FI = mp̈I (2.2)

Accelerometers, as was mentioned earlier, measure specific force, f I , and it is defined

as the inertial force, FI , per unit mass m, required to produce the acceleration p̈I . This

relationship is given by Equation 2.3.

fI ,
FI

m
≈ fi (2.3)

Examples of inertial forces include spring force, friction, lift, thrust, and support.
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Figure 2.7: Relationship Between g, G and Earth’s Rate of a Point Mass

2.5.2 Gravity. The acceleration p̈I , acting on a particle in a gravitational field is

given by the fundamental equation of inertial navigation as:

p̈I = fi + Gi (2.4)

Gravity g, is then defined by equation 2.5 below.

g = G(p) −ΩieΩie p (2.5)

where G is the Earth’s gravitational force acting on the particle at position p and Ωie is the

centrifugal force pulling outward due to the rotation of the earth. It is worth noting that

gravity is not an inertial force. This relationship is as depicted in Figure 2.7.

This effect is not very significant, since the centrifugal force is only a fraction of the

gravitational force:

‖ΩieΩie p‖ ≈
1

300
‖G(p)‖ (2.6)
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2.6 INS Equation

Consider relating the time derivative of vectors in rotating reference frames. From

vector addition:

ra
a0 p = ra

a0b0
+ ra

b0 p (2.7)

where ra
a0 p and ra

a0b0
and it is the desire to find ra

b0 p in the b-frame:

rb
b0 p = Cb

ara
b0 p = Cb

a(ra
a0 p − ra

a0b0
) = Cb

ara
a0 p + rb

b0a0
(2.8)

For short-hand, write as

pb = Cb
apa + rb

ba (2.9)

Taking the time derivative of pb yields:

d
dt

(
pb

)
, vb =

d
dt

(
Cb

a

)
pa + Cb

a
d
dt

(
pa

)
+

d
dt

(
rb

ba

)
(2.10)

= Cb
aΩ

a
abpa + Cb

a
d
dt

(
pa

)
+

d
dt

(
rb

ba

)
(2.11)

vb =
d
dt

(
rb

ba

)
+ Cb

a (Ωa
abpa + va) (2.12)

where d
dt (r

b
ba) accounts for the relative velocity betwwen the a-frame and b-frame,

Cb
aΩ

a
abpa is the instantaneous velocity of p relative to the b-frame due to the relative

rotation of the a-frame, and Cb
ava is the instantaneous velocity of p in the a-frame

transformed into b-frame. Taking another time derivative of Eq. 2.12 results in:

d
dt

(
vb

)
, ab =

d2

dt2 rb
ba +

d
dt

[
Cb

a (Ωa
abpa + va)

]
(2.13)

= r̈b
ba +

dCb
a

dt
(Ωa

abpa + va) + Cb
a

d(Ωa
abpa + va)

dt
(2.14)

= r̈b
ba +

(
Cb

aΩ
a
ab

)
(Ωa

abpa + va) + Cb
a(Ω̇a

abpa +Ωa
abva) + Cb

aaa (2.15)

ab = r̈b
ba + Cb

a[(Ωa
abΩ

a
ab + Ω̇a

ab)pa + 2Ωa
abva + aa] (2.16)

Eq. 2.16 represents the fundamental relationship for an INS.

13



2.6.1 INS Equations for Common Frames. The previous section dealt with INS

equations for some arbitrary frames. This section will briefly provide the strapdown INS

equations for the following frames:

2.6.1.1 Strapdown INS Equation in i-frame. In the i-frame, Eq. 2.16 reduces

to
d2 pi

dt2 = Ci
b fb + gi (2.17)

2.6.1.2 Strapdown INS Equation in e-frame. In the e-frame, Eq. 2.16 reduces

to
d2 pe

dt2 = Ce
b fb + ge − 2Ωe

ieve (2.18)

2.6.1.3 Strapdown INS Equation in n-frame. In the n-frame, Eq. 2.16 reduces

to
d2 pn

dt2 = Cn
b fb + gn − (2Ωn

ievn + Ωn
en)vn (2.19)

2.7 SLAM

Maps are needed to depict an environment for planning and navigation. They may or

may not be readily available depending on the environment of interest. In the case that

they are not readily available (due to topographical changes or an unfamiliar indoor

environment), the techniques of SLAM come in very handy. SLAM is a process by which

a mobile robot or an autonomous vehicle can build a map of an environment and at the

same time use this map to deduce its location [2]. The essential SLAM problem is shown

in Figure 2.8 [2]

To understand SLAM, consider a mobile robot having an onboard sensor, a camera

for example, moving through an unknown environment with no a priori information

about the environment. The robot probabilistically estimates its own position and uses the

onboard camera to estimate the position of unknown landmarks. It is a recursive process
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Figure 2.8: Basic SLAM Problem. The essential problem of SLAM requires the
simultaneous estimation of both robot or autonomous vehicle and landmark positions.
Neither position is truly known[2].

where the robot uses its position to estimate the position of unknown ground features and

then uses the the estimates of the ground features to estimate its own position. This

recursive process is typically achieved through the use of a Kalman Filter (KF).

With the introduction of each additional unknown ground feature, the states used in

the State Space (SS) equation of the KF increases depending on the type information

required by the KF for its estimation. In this paper, the x and y positions of stationary

ground features are the informtation of interest so with the addition of an unknown ground

feature whose position is to be estimated, the states in the SS of the KF increase by two.

This is because stationary ground features are at zero elevation, so only the x and y

positions of the ground features are considered. Likewise, with the drop of ground feature

by the sensor (camera) because it is no longer in its FOV the states in the SS of the KF

decrease by two.
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2.8 Camera Model

In this paper, the camera will be modelled as the basic pinhole camera where it is

assumed that there are no camera distortions. Camera caliberation will therefore not be

considered. The basic pinhole camera is shown in Figure 2.9. The focal length of the

Figure 2.9: Pinhole Camera Geometry. C is the camera centerand p the principal point.
The camera center is placed at the coordinate origin [4].

camera is f . Features are considered as points which are projected in space onto an image

plane. A point in space with coordinates X = (X,Y,Z)T is projected onto the image plane.

From the geometry, it can be computed by similar triangles that (X,Y,Z)T maps onto the

point (fX/Z, fY/Z, f)T on the image plane[4]. Ignoring the final image coordinate, it can be

seen that

(X,Y,Z)T 7→ (fX/Z, fY/Z)T (2.20)

2.9 Recent Research

In [10], Pachter et. al researched the idea of using bearings-only measurements for

aiding INS. This was a theoretical work, where no simulations or empirical data were used

to substantiate the theory. The significance of this research was the development of the
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mathematics for observing the Line Of Sight (LOS) angle measurements to a ground

feature over time and using that information to update an INS. The update was theorized

to constraining the unbounded errors developed by an INS if it were allowed to operate

freely.

In [3], Giebner aided an aircraft INS using visual measurements when the aircraft

flies in a circular orbit around a several ground features. A KF was used to achieve the

aiding and this was done both in simulation and in an actual test environment. It was

found that the uncertainty in the aircraft’s position after six minutes of flight time, was

reduced from 350 meters, in the unaided INS case, down to 50 meters, in the aided INS

case, when the visual measurements were combined with barometric altimeter readings.

In [9], Pachter and Mutlu explored the observability of a vision-aided INS. The

bearing measurements used were time dependent because the position of the ground

feature(s) being tracked by the aircraft changed with time. The time dependent

measurement matrix prompted the use of observability Grammian. It was determined that

using the bearings-only visual measurements of a single ground feature to aid the INS, the

observability Grammian was rank deficient, making the INS aiding action incomplete. In

order for full rank observability Grammian and thereby have complete INS aiding action,

a second ground feature had to be simultaneously tracked. Complete INS aiding action

means all of the navigation states receive some improvement from the measurement when

compared to the unaided INS.

In [2], Durrant-Whyte and Bailey provided the origins of SLAM. It was shown how

various filter methods can be used to implement SLAM using the limited information in a

robot’s environment. The uncertainty of detected features, as well as the navigation

estimate, was shown to be dependent on the number of measurements taken. The more

measurements that were taken, the less the uncertainty. In a scenario where a robot was

remotely piloted through an indoor environment, a pilot with no visual access of the robot,
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the robot autonomously returned to its starting point using map that it build up during the

navigation process.

In [14], Veth looked at the fusion of imaging and inertial sensors for navigation. A

statistical feature projection technique was developed which utilizes inertial

measurements to predict vectors in the feature space between images. The feature matches

and inertial measurements were used to estimate the navigation trajectory on-line using an

extended Kalman filter.

This paper is a continuation of [12]. In [12] it was shown using covariance analysis

that the rate of growth of position uncertainty is significantly reduced when the aircraft

uses terrain features bearing measurements to aid the INS. The same applies to the

uncertainty in velocity and the aircraft’s Euler angles. The method used for geolocating

new ground features were crude, where only the aircraft position was used in the

geolocation process. This paper will look at a more accurate method (include the other

navigation states in the geolocation of ground features) of calculating the covariances and

implement a KF in a simulation analysis to substantiate the theory.
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3 Methodology

3.1 Introduction

This chapter is broken up into three main sections. Section 3.2 discusses the

navigation scenario that is considered for the dynamics model development. Section 3.3

discusses the approach that is taking in calibrating the unaided INS with small angle

assumptions, measurement model development, the measurement equations that are sent

to the KF, and how the calculations are accomplished. Section 3.4 discusses the

performance of the aided INS, which includes the KF and its initialization at the

beginning of each epoch.

3.2 Development

The navigation scenario is as follows:

3.2.1 Aircraft Trajectory. The aircraft is flying wings-level at a constant altitude h.

The ground speed of the aircraft is constant and the aircraft flies in the positive xn

direction.

3.2.2 INS Alignment. The initial INS alignment is considered to be “perfect”.

That is, at the start of the flight at altitude h and velocity v in the positive xn direction, the

exact aircraft’s position, velocity, and attitude are known with very small errors. The

emphasis is on the contribution of the inertial instruments’ errors to the INS navigation

state errors. In this respect it is assumed that the x, y, and z accelerometers are of the same

quality; also the x, y, and z gyroscopes are of the same quality and the instruments’

measurement error is modeled as a random bias.

3.2.3 Terrain Features Assumptions. At all time two ground features need to be

tracked for observability [9]. Thus, it is assumed that the position of the first two ground
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features to come into the aircraft camera’s field of view are known. The position of

subsequent features are not known but these are geolocated as they come into the camera’s

field of view à la SLAM. Bearing measurements to these newly acquired features are

subsequently taken, hence the “bootstrapping” concept. Obviously, for vision-aided

navigation to be possible, one cannot fly over featureless terrain and the features need to

be more or less regularly spaced. Hence, without loss of generality it is assumed that the

features are nominally equally spaced in the positive xn direction and are at zero, a.k.a.

known, elevation. Two scenarios are considered. First the ground features are arranged in

a perfect straight line along the aircraft’s trajectory, and second, the ground features are

laterally staggered yp meters about the xn axis. Thus, in the first navigation scenario, yp is

zero meters and all the terrain features are on the xn axis. The Earth is assumed flat and

nonrotating. This assumption is reasonable considering the relatively short range and/or

the tactical grade specification of the gyros and accelerometers of small Unmanned Aerial

Vehicles (UAVs) for which this autonomous navigation system is being developed.

Kalman filtering in a SLAM scenario where the aircraft uses inertial navigation is

considered. Our novel approach to SLAM is rooted in the theory of inertial navigation, as

opposed to robotics or computer science.

3.3 Approach and Model Description

3.3.1 Dynamics. The navigation n-frame is the Earth fixed “inertial” (xn, yn, zn)

frame. The aircraft’s body axes are (xb, yb, zb). The aircraft’s and camera’s position in the

navigation frame is (x, y, z), with ψ, θ, and φ as its Euler angles. A strapdown [13] INS

arrangement is considered. When flying over a non-rotating and flat Earth as shown in

Figure 3.1, the INS error dynamics can be considerably simplified [11], [12], [13]. The

simplified dynamics of the INS errors in state space notation, also known as the error
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equations, are δẋ = Aδx + Γδu, where the navigation error state vector δx given by

δx = [ δP δV δΨ ]T (3.1)

are the errors in the navigation state’s position δP, velocity δV, and angles δΨ, and the

disturbances δu are the three accelerometers’ and the three rate gyroscopes’ random biases

δu = [ δ f b
x δ f b

y δ f b
z δωb

x δωb
y δωb

z ]T (3.2)

The superscript b indicates that the body frame of reference is being used. The errors in

Figure 3.1: Level Flight at Constant Altitude Along the xn-axis

the angles, δΨ, are given by

δΨ = −δCn
bCb

n (3.3)

and

δΨ = δΨ× (3.4)
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where Cb
n is the DCM and δΨ is the skew symmetric matrix formed from the angle errors

vector δΨ according to Eq. (3.4).

For small Euler angles ψ, θ, φ, the DCM

Cn
b(ψ, θ, φ) =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 (3.5)

and therefore its perturbation

δCn
b =


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0

 (3.6)

For constant altitude flight in the direction of the xn axis, the nominal Cb
n = I3. Thus, using

Eq. (3.3) the following is calculated

δΨ =


0 δψ −δθ

−δψ 0 δφ

δθ −δφ 0

 (3.7)

and since δΨ = δΨ× the errors in the aircraft’s Euler angles are recovered

δΨ = [ −δφ −δθ −δψ ]T (3.8)

Hence, the navigation state’s error vector is

δx = [ δx δy δz δvx δvy δvz −δφ −δθ −δψ ]T (3.9)

and the INS error state equations are

δẋ =


03×3 I3×3 03×3

03×3 03×3 F(n)
3×3

03×3 03×3 03×3

 δx +


03×3 03×3

Cb
n 03×3

03×3 −Cb
n

 δu (3.10)
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where F(n) = f(n)× is the skew symmetric matrix form of the specific force vector f(n). The

superscript (n) indicates that the inertial navigation frame of reference is being used. The

specific force measured by the accelerometer
→

f , total aircraft acceleration
→
a, and the

specific gravity vector
→
g are related according to Eq. 2.4 by

→

f =
→
a −

→
g, that is,

f(n) = a(n) − g(n). During wings level flight

a(n) =


a

0

0

 , g(n) =


0

0

−g


Therefore the nominal specific force components during constant altitude, wings level

flight are f (n)
x = a, f (n)

y = 0 and f (n)
z = g, where g is the acceleration of gravity and a is the

longitudinal acceleration of the aircraft. Thus,

f(n) =


f (n)
x

f (n)
y

f (n)
z

 =


a

0

g

 (3.11)

Eqs. (3.10) and (3.11) represent the dynamics of the navigation state’s error, (δP, δV, δΨ),

under the assumption that the Earth is flat and non-rotating. The meaning of the angular

errors’ vector δΨ, that is, its relationship to the Euler angles’ errors, is determined by the

aircraft’s trajectory, that is, the nominal DCM Cn
b. In the special case of wings level flight

when the body and navigation frames are aligned as shown in Figure 3.1, the angular

errors are the Euler angles. However, having negative angle error states is unorthodox. In

order for the navigation state error to be

δx = [ δx δy δz δvx δvy δvz δφ δθ δψ ]T (3.12)

the dynamics Eq. (3.10) is modified as follows

δẋ =


03×3 I3×3 03×3

03×3 03×3 −F(n)
3×3

03×3 03×3 03×3

 δx +


03×3 03×3

Cb
n 03×3

03×3 Cb
n

 δu (3.13)
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and for “perfect” INS alignment with very small uncertainties,

δx(0) =


δP(0)

δV(0)

δΨ(0)


9×1

where

(δP(b)
x (0), δP(b)

y (0), δP(b)
z (0) ∼ N(03×1, 1 × 10−6I3)

(δV(b)
x (0), δV(b)

y (0), δV(b)
z (0) ∼ N(03×1, 1 × 10−16I3)

(δΨ(b)
φ (0), δΨ(b)

θ (0), δΨ(b)
ψ (0) ∼ N(03×1, 1 × 10−8I3)

Since this is wings level, constant altitude flight, in the direction of the xn axis, the

nominal, true navigation variables are

x = x0 + vxt + 1
2at2, y = 0, z = h, φ = θ = ψ = 0. These variables are

non-dimensionalized as follows

x→
x
h
, y→

y
h
, z→

z
h
,

vx →
vx

v
, vx →

vx

v
, vz →

vz

v
,

δ fx →
δ fx

g
, δ fy →

δ fy

g
, δ fz →

δ fz

g
,

δωb
x → h

δωb
x

v
, δωb

y → h
δωb

y

v
, δωb

z → h
δωb

z

v
,

t → t
v
h
, T → T

v
h
,

where t is the current time, and T is the length of a measurement epoch.

The non-dimensional parameters are

g ,
hg
v2 and a ,

ha
v2

During cruise, a ≡ 0. If, for example,

h = 1000[m], v = 100
[ m

sec

]
, g = 10

[ m
sec2

]
,
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the non-dimensional parameter g = 1. Since the ground features are spaced 1 [km] apart,

the duration of a nondimensional measurement epoch T = 1.

It is assumed that the sensor errors are constant, albeit random biases that are

Gaussian distributed. This allows the state error vector to be augmented with the

disturbance vector δu; the augmented state is

δxa =


δx

. . .

δu


15×1

(3.14)

and the dynamics matrix is augmented by the Γ matrix, as shown

Aa =

 A Γ

06×9 06×6


15×15

(3.15)

One obtains a dynamic system in “free fall”. When converted to discrete time,

Aa→ Aad = eAa∆T , where ∆T is the sampling interval. The augmented discrete time state

dynamics become

δxa(l + 1) = Aadδxa(l), l = 0, . . . , L − 1 (3.16)

where l is the discrete time step counter and L is the total time during a measurement

epoch during which the two ground features are being tracked. The non-dimensional time

step is ∆T = T
L := ∆T v

h . The discrete-time dynamics matrix Aad can be analytically

derived.

This dynamics equation applies as long as the ground objects’ positions (xp, yp) are

known. Assuming the ground objects are stationary, but their position is not known, two

additional states, the x and y horizontal coordinates of the tracked ground objects, must be

added to the navigation state for each tracked ground object whose position will be

estimated on the fly. If the number of unknown ground features being tracked is m, then
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the augmented navigation state is

δxa :=



δxa

. . .

δxp1

...

δypm


(15+2m)×1

(3.17)

and

Aad :=

 Aad 015×2m

02m×15 I2m×2m


(15+2m)×(15+2m)

(3.18)

If, for example, one unknown ground feature is being tracked, as is the case during the

second measurement epoch, then the dimension of the augmented navigation state’s error

is 17. Two unknown ground features are being tracked during the measurement epoch

n ≥ 3, whereupon the dimension of the navigation state’s error is 19. On one hand, state

augmentation reduces the degree of observability, which decreases the strength of INS

aiding action. On the other hand, however, the inclusion of additional features to be

tracked increases the number of measurement equations, which helps wash out the bearing

angles measurement error.

3.3.2 Modeling/Calibrating the Free INS. With the dynamics from

Subsection 3.3.1, the values for the standard deviation σa and σg, the uncertainty in the

bias of the accelerometers and gyroscopes, respectively, are set such that the free INS is a

1 km
hr navigation system. Since the dynamics are not forced, that is, there is no controlled

input, the calibration is performed by using the solution to the Lyapunov difference

equation

P(l + 1) = AadP(l)AT
ad, 0 ≤ l ≤ LN−1 (3.19)
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with the initial covariance matrix

P(0) =


09×9 0 0

0 diag(σ2
a, σ

2
a, σ

2
a) 0

0 0 diag(σ2
g, σ

2
g, σ

2
g)


15×15

(3.20)

Note: During 1 hr the number of measurement epochs is N= 360.

Since the Lyapunov difference equation is linear, there is a linear relationship

between the uncertainty in the sensors’ biases variances and the ensuing uncertainty in the

aircraft’s x position:

P1,1(LN) = ασ2
a + βσ2

g (3.21)

where the coefficients α and β are constants. Therefore, Eq. (3.19) is solved for one

non-dimensional hour twice to calculate the values of the constants α and β. The first

time, σa is set to 1 and σg is set to 0. The second time, σa is set to 0 and σg is set to 1.

Then assigning the errors in the accelerometers and gyroscopes an equal role in the

uncertainty of the aircraft’s position at the nondimensional time 360, the values for the

nondimentionalized variances of the sensors’ biases are calculated as

σa =
1
√

2α
= 1.0912 × 10−5 (3.22)

σg =
1√
2β

= 9.0935 × 10−8 (3.23)

Using the calculated σa and σg, the errors of the free INS, δxa are generated through the

solution of the linear difference equation (3.16) with

δxa(0) =



δP(0)

δV(0)

δΨ(0)

δf(0)

δω(0)


15×1

(3.24)
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where

(δP(b)
x (0), δP(b)

y (0), δP(b)
z (0) ∼ N(03×1, 1 × 10−6I3)

(δV(b)
x (0), δV(b)

y (0), δV(b)
z (0) ∼ N(03×1, 1 × 10−16I3)

(δΨ(b)
φ (0), δΨ(b)

θ (0), δΨ(b)
ψ (0) ∼ N(03×1, 1 × 10−8I3)

(δf(b)
x (0), δf(b)

y (0), δf(b)
z (0)) ∼ N(03×1, σ

2
aI3)

(δω(b)
x (0), δω(b)

y (0), δω(b)
z (0)) ∼ N(03×1, σ

2
gI3)

Thus, it is assumed that the initial uncertainty in the aircraft position is ca. 1 [m], the

uncertainty in its velocity is ca. 10−3 [mm/sec], and the uncertainty in pitch, roll, and yaw

is a ca. 20 arc seconds. The ensuing navigation state error of the free INS is given by the

solution of Eq. (3.16) solved over the planning horizon 360L − 1. These are the errors of

an unaided/free INS and will serve as a benchmark to be compared to the errors when,

using SLAM the INS is aided by the measurement over time of the bearings of terrain

features.

3.3.3 Measurement Equation. The relationship of the inertial position and attitude

of the aircraft to that of the ground object/feature P is
x

y

z

 =


xp

yp

zp

 −
|RLOS |√

x2
f + y2

f + f 2
Cn

b


x f

y f

− f

 (3.25)

where x f and y f are the projections of the ground feature’s respective x and y coordinates

onto the focal plane of the camera and f is the camera’s focal length - see Figure 3.2. For

the case when the aircraft flies wings level at a constant altitude in the direction of the xn

axis and the Euler angles are small, the DCM for relating the body frame to the navigation

frame is given in Eq. (3.5). The relationship (3.25) has the appearance of three equations

but in fact has the strength of two independent equations. The first two equations in the
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Figure 3.2: Measurement Geometry in General Position.

relationship given by Eq. (3.25) are non-linearly dependent on the third. Now, the third

equation yields

zp − z =
|RLOS |√

x2
f + y2

f + f 2

[
0 0 1

]
Cn

b


x f

y f

− f


and thus

|RLOS |√
x2

f + y2
f + f 2

=
zp − z

[
0 0 1

]
Cn

b


x f

y f

− f


(3.26)
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Substituting Eq. (3.26) into Eq. (3.25) yields the two measurement equations for the three

dimensional case:

 x

y

 =

 xp

yp

 − zp − z

[
0 0 1

]
Cn

b


x f

y f

− f



 1 0 0

0 1 0

 Cn
b


x f

y f

− f



Multiplying out the matrices yields x

y

 =

 xp

yp

 − (zp − z)
1

− f − θx f + φy f

 x f − ψy f − f θ

y f + x fψ + fφ


and nondimensionalizing such that

x f →
x f

f
, y f →

y f

f

yields  x

y

 =

 xp

yp

 − (zp − z)
1

−1 − θx f + φy f

 x f − ψy f − θ

y f + x fψ + φ


Thus, two separate nonlinear measurement equations are obtained

xp − x = −(zp − z)
x f − ψy f − θ

1 + θx f − φy f
(3.27)

yp − y = −(zp − z)
y f + ψx f + φ

1 + θx f − φy f
(3.28)

Due to the small angles assumption, the denominator in Eqs. (3.27) and (3.28) can be

moved up such that

xp − x ≈ −(zp − z)(x f − ψy f − θ)(1 − θx f + φy f ) (3.29)

yp − y ≈ −(zp − z)(y f + x fψ + φ)(1 − θx f + φy f ) (3.30)

Since the aircraft is using ground objects to aid its INS, it can be assumed, without loss of

generality, that the terrain elevation is known and zp= 0. Due to the small values of the
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angles, when the former fraction is distributed out, the products of the angles are

negligible, yielding

xp − x = z[x f − θ(1 + x2
f ) + φx f y f − ψy f ] (3.31)

yp − y = z[y f − θx f y f + φ(1 + y2
f ) + ψx f ] (3.32)

Next, perturb the states and the measurements

x = xc − δx y = yc − δy z = zc − δz

θ = θc − δθ φ = φc − δφ ψ = ψc − δψ

xp = xpc − δxp yp = ypc − δyp

x f = x f m−δx f y f = y f m−δy f

where the subscript c indicates the navigation states components provided by the free INS

and the subscript m indicates measured quantities. The calculation of the “nominal”

position (xpc, ypc) of a geolocated ground feature will be discussed in the sequel. Inserting

the perturbation equations into the measurement Eqs. (3.31) and (3.32) yields

xpc−xc + δx − δxp =(zc − δz)
(
x f m−δx f − (θc − δθ)(1 + x2

f m − 2x f mδx f + δx2
f )

+ (φc − δφ)(x f m−δx f )(y f m−δy f ) − (ψc − δψ)(y f m−δy f )
)

Due to the small error in the measurements and the small angles, the products of these

terms can be neglected.

xpc−xc + δx − δxp =(zc − δz)
(
x f m−δx f − (θc − δθ)(1 + x2

f m)

+ (φc − δφ)x f my f m − (ψc − δψ)y f m

)
Similarly, in the second measurement equation

ypc−yc + δy − δyp =(zc − δz)
(
y f m−δy f − (θc − δθ)(x f m−δx f )(y f m−δy f ) + (φc − δφ)

(y2
f m − 2y f mδy f + δy2

f ) + (ψc − δψ)(x f m−δx f )
)

=(zc − δz)
(
y f m−δy f − (θc − δθ)x f my f m + (φc − δφ)(1 + y2

f m)

+ (ψc − δψ)x f m

)
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Moving all the error terms to the Right Hand Side (RHS) of the equation and all the

non-error terms to the Left Hand Side (LHS) yields

xpc−xc − zc[x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m] =

− δx − δz[x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m]

+ δθ(1 + x2
f m)zc − δφx f my f mzc + δψy f mzc + δxp − zcδx f

(3.33)

and

ypc−yc − zc[y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m] =

− δy − δz[y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m]

+ δθx f my f mzc − δφ(1 + y2
f m)zc − δψx f mzc + δyp − zcδy f

(3.34)

Finally, nondimensionalizing such that

xp →
xp

h
yp →

yp

h
zp →

zp

h
,

we also note that the nominal nondimensional altitude is z = 1. In addition, for the purpose

of covariance and Kalman Filtering analysis, set all of the calculated and measured values

on the RHS equal to the nominal/true values. This causes all of the angles to go to zero,

simplifying the measurement Eqs. (3.33) and (3.34). Also, on the RHS set x f m := x f and

y f m := y f , where, in view of the nondimensionalization, and since in the KF

mechanization in each measurement epoch t is the time elapsed from the beginning of the

epoch, x f = xp − t, y f = yp - see Figure 3.1. Hence, for the first ground object,

x f 1(t) = 1 − t, y f 1(t) = yp1 and for the second ground object x f 2(t) = 2 − t, y f 2(t) = yp2.

Thus, Eqs. (3.33) and (3.34) yield the linearized measurement equations

xpc−xc − zc[x f m − θc(1 + x2
f m) + φcx f my f m − ψcy f m] =

− δx − x fδz + δθ(1 + x2
f ) − x f y fδφ + y fδψ + δxp − δx f

(3.35)

and

ypc−yc − zc[y f m − θcx f my f m + φc(1 + y2
f m) + ψcx f m] =

− δy − δzy f + x f y fδθ − δφ(1 + y2
f ) − x fδψ + δyp − δy f

(3.36)
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Hence, the time dependent observation matrix H(l) during a measurement epoch with

one unknown ground feature is

Hu(l) =



−1 0

0 −1

−x f −y f

0 0

0 0

0 0

−x f y f −(1 + y2
f )

1 + x2
f x f y f

y f −x f

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1



T

(3.37)

where the subscript u indicates that the position of the ground object being tracked is

unknown. The nondimensional measurement error is [δx f , δy f ]T .

Since, for the sake of observability [9], in each measurement epoch two ground

objects will be tracked, there will be two subscripts 1 and 2. The first corresponds to the

ground object that is closer to the aircraft and the second to the ground object that is

further away. In the first measurement epoch it is assumed that both ground objects are
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known. If both ground objects are known, the observation matrix is

Hkk(l) =



−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



T

(3.38)

where the subscript k indicates that the position of the ground object is known. In the

second measurement epoch a new ground feature is acquired so that in the field of view of

the camera there is one known and one unknown ground object. When there is one known
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and one unknown ground object, the observation matrix is

Hku(l) =



−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



T

(3.39)
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Finally, starting at measurement epoch three when neither ground object’s position is

known, the observation matrix

Huu(l) =



−1 0 −1 0

0 −1 0 −1

−x f 1 −y f 1 −x f 2 −y f 2

0 0 0 0

0 0 0 0

0 0 0 0

−x f 1y f 1 −(1 + y2
f 1) −x f 2y f 2 −(1 + y2

f 2)

1 + x2
f 1 x f 1y f 1 1 + x2

f 2 x f 2y f 2

y f 1 −x f 1 y f 2 −x f 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



T

(3.40)

Two ground objects, P1 and P2 are tracked. The measurements z given to the Kalman

Filter during the nth measurement epoch at each time step, l=1, 2=L, are generated from
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the LHS of Eqs. (3.35) and (3.36) as

z =



xp1c − xc − zc(x f m1 − θc(1 + x2
f m1) + φcx f m1y f m1 − ψcy f m1)

yp1c − yc − zc(y f m1 − θcx f m1y f m1 + φc(1 + y2
f m1) + ψcx f m1)

xp2c − xc − zc(x f m2 − θc(1 + x2
f m2) + φcx f m2y f m2 − ψcy f m2)

yp2c − yc − zc(y f m2 − θcx f m2y f m2 + φc(1 + y2
f m2) + ψcx f m2)


(3.41)

where

x f 1(t) = 1 − t, x f 2(t) = 2 − t, t = l∆T, 1 ≤ l ≤ L

and

x f m1 = x f 1(t) + ξ1, x f m2 = x f 2(t) + ξ2,

ξ1 ∼ N(0, σ2), ξ2 ∼ N(0, σ2),

y f m1 = y f 1 + η1, y f m2 = y f 2 + η2,

η1 ∼ N(0, σ2), η2 ∼ N(0, σ2)

where σ= 1
3 × 10−3 (for a 9 mega pixels camera with an aspect ratio of 1). The calculated

navigation state is output by the free INS and given by

xc = xF = x + δxF

where x is the true (nondimensional) navigation state given by

x = [ t 0 1 1 0 0 0 0 0 ]T

and δxF is the navigation state error of the free INS. Thus, the sequence δxF is obtained as

follows:

δxF(l + 1) = AadδxF(k), δxa(0) =



δP(0)

δV(0)

δΨ(0)

δf(0)

δω(0)


15×1
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l = 0, . . . , LN − 1

where

(δP(b)
x (0), δP(b)

y (0), δP(b)
z (0) ∼ N(03×1, 1 × 10−6I3)

(δV(b)
x (0), δV(b)

y (0), δV(b)
z (0) ∼ N(03×1, 1 × 10−16I3)

(δΨ(b)
φ (0), δΨ(b)

θ (0), δΨ(b)
ψ (0) ∼ N(03×1, 1 × 10−8I3)

(δf(b)
x (0), δf(b)

y (0), δf(b)
z (0)) ∼ N(03×1, σ

2
aI3)

(δω(b)
x (0), δω(b)

y (0), δω(b)
z (0)) ∼ N(03×1, σ

2
gI3)

During a measurement epoch xp1c, xp2c, yp2c, and yp2c which feature in measurements

z given to the KF are held constant. At the end of the measurement epoch they are updated

for the next measurement epoch. They are calculated according to Tables B.1 - B.3 in

Appendix B.

3.3.4 Synthesis of the Measurement Sent to the KF in Epoch n. In epoch 1,

xp1c = 1, yp1c = −yp, and xp2c = 2, yp2c = yp. In epoch 2, xp1c = 2, yp1c = yp.

Consider measurement epoch n, 3 ≤ n ≤ N,N=360. In total, n + 1 ground features

are used. n − 1 new ground features are geolocated.

The meaning of x(n)
pc and y(n)

pc used during epoch n ≥ 2 to calculate the measurement

given to the KF - we refer to Eq. (3.41): they are kept constant during the measurement

epoch (n) and were calculated at the conclusion of epoch (n − 1) using

Eqs. (3.27) and (3.28) and setting therein zp ≡ 0:

x(n)
p2c = x + z

x f − ψy f − θ

1 + θx f − φy f
(3.42)

y(n)
p2c = y + z

y f + ψx f + φ

1 + θx f − φy f
(3.43)
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Since the scenario considered is wings level flight at constant altitude, in

Eqs. (3.42) and (3.43) set

x = n − 1 + δxF |n−1 − δ̂x|n−1,

y = δyF |n−1 − δ̂y|n−1,

z = 1 + δzF |n−1 − δ̂z|n−1,

ψ = δψF |n−1 − δ̂ψ|n−1,

θ = δθF |n−1 − δ̂θ|n−1,

φ = δφF |n−1 − δ̂φ|n−1

and since at the end of an epoch the newly acquired ground feature’s x f = 2, y f = ±yp, in

Eqs. (3.42) and (3.43) set

x f = 2 + ξ, ξ ∼ N(0, σ2),

y f = ±yp + η, η ∼ N(0, σ2)

where

σ =
1
3
× 10−3,

δxF |n−1 ≡ δxF((n − 1)L), δyF |n−1 ≡ δyF((n − 1)L)

whereas

δ̂x|n−1 ≡ δ̂x
(n−1)

(L), δ̂y|n−1 ≡ δ̂y
(n−1)

(L)

and the same applies to the navigation states z, ψ, θ, φ. In addition, at the end of the

measurement epoch n − 1, set

x(n)
p1c :=x(n−1)

p2c − δ̂x
(n−1)
p2 (L),

y(n)
p1c :=y(n−1)

p2c − δ̂y
(n−1)
p2 (L),

n =3, · · · , 360
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Also, at the end of the measurement epoch 1 set

x(2)
p1c = 2, y(2)

p1c = 0

Also, during measurement epoch n, at time l, in Eq. (3.41)

xc = t + δxF(t), yc = δyF(t), zc = 1 + δzF(t),

θc = δθF(t), φc = δφF(t), ψc = δψF(t)

where

t = n − 1 + ∆T ∗ l, l = 1, · · · , L, ∆T = 1/L

and

x f 1m = x f 1 + ξ1, ξ1 ∼ N(0, σ2),

x f 2m = x f 2 + ξ2, ξ2 ∼ N(0, σ2),

y f 1m = ±yp + η1, η1 ∼ N(0, σ2),

y f 2m = ∓yp + η2, η2 ∼ N(0, σ2)

where, during the measurement epoch (n)

x f 1 = 1 − l∆T, x f 2 = 2 − l∆T, l = 1, · · · , L

3.4 Performance of Aided INS

The performance of the aided INS is evaluated for the nominal scenario described in

Section 3.2 and illustrated in Figure 3.3. The aircraft is flying wings-level, at a constant

speed with ground features spaced at one kilometer apart. The first two ground features

are known and the aircraft starts one kilometer behind the first ground feature. In the

observation matrices H,

x f 1(t) = 1 − t, x f 2(t) = 2 − t, 0 ≤ t ≤ 1
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If ground features are arranged in a straight line on the positive xn axis, then in the H

matrix

y f 1(t) = y f 2(t) = 0

However, if the ground features are laterally staggered at equal distance yp about the

positive xn axis, then in the H matrix

y f 1(t) = yp y f 2(t) = −yp

Aircraft using measurement

Aircraft geo-locates unknown ground object

Aircraft stops using ground object

Zi

Xi

Known Ground Points Unknown Ground Points

Pos(t3)Pos(t2)Pos(t1) Pos(t4)

Xp3 Xp4Xp1 Xp2

Pos(t0)

1 1 1 1
2 2 2

Epoch 1 Epoch 2 Epoch 3

Xp1 Xp2

Epoch 1
Epoch 2

Epoch 3

Figure 3.3: In the first measurement epoch the two ground objects’ position are known,
but in the second measurement epoch there is one known and one unknown ground object,
where the unknown object’s position was estimated by the aircraft at the end of the first
epoch. From epoch 3 onward both ground objects’ locations are estimated using the
aircraft’s navigation state at the end of the preceding epoch and therefore are not exactly
known.
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3.4.1 Initialization of the KF. In the first measurement epoch the Kalman Filter is

initialized according to Eq. (3.44)

(δ̂x+

a (0))(1) = 015×1 (3.44)

while the covariance matrix is initialized as (P(0))(1) by using P as in the equation

following Eq. (3.24) where it is assumed that the position, velocity, and orientation are

known with an uncertainty of a = 1 × 10−6, b = 1 × 10−16, and c = 1 × 10−8, respectively

as in, Eq. (3.45).

(P(0))(1) =



A 0 0 0 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D 0

0 0 0 0 E


15×15

(3.45)

where

A = diag(a, a, a)

B = diag(b, b, b)

C = diag(c, c, c)

D = diag(σ2
a, σ

2
a, σ

2
a)

E = diag(σ2
g, σ

2
g, σ

2
g)

The superscripts in (δx̂+
a (0))(1) and (P(0))(1) represents the epoch number (epoch 1 in this

case). The three accelerometer and the three gyroscope set are of the same quality: the

random biases in the sensors are

δ f b
x ∼ N(0, σ2

a) δ f b
y ∼ N(0, σ2

a) δ f b
z ∼ N(0, σ2

a)

δωb
x ∼ N(0, σ2

g) δωb
y ∼ N(0, σ2

g) δωb
z ∼ N(0, σ2

g)

In each measurement epoch the KF is re-initialized. Since in measurement epoch n, n ≥ 2,

one navigates off a newly acquired ground feature, the KF is being re-initialized as

42



follows: In epoch n = 2 the KF state is a 17 × 1 vector initialized as

(δ̂x(0)15×1)(2) = (δ̂x(L)15×1)(1), δ̂xp2(0) = 0, δ̂yp2(0) = 0,

and (P(0))(2) =

 (P(L)15×15)(1) p(2)
15×2

(p(2)
2×15)T Π

(2)
2×2


17×17

where the covariance of the position error of the newly acquired ground feature and their

cross correlation terms are calculated using Eqs. (3.31) and (3.32). The ground position xp

and yp are isolated from Eqs. (3.31) and (3.32) as follows:

xp = x + z[x f − θ(1 + x2
f ) + φx f y f − ψy f ] (3.46)

yp = y + z[y f − θx f y f + φ(1 + y2
f ) + ψx f ] (3.47)

Perturbing Eq (3.46) yields

δxp2 =δx + δz[x f − θ(1 + x f
2) + φx f y f − ψy f ] + z[δx f − δθ(1 + x f

2) − 2x f θδx f + x f y fδφ

+ φx fδy f + φδx f y f − y fδψ − ψδy f ]

Setting z = 1, ψ = θ = φ = 0, x f = 2, y f = ±yp, δx f = ξ, and δy f = η, where

ξ ∼ N(0, σ2), η ∼ N(0, σ2)

we obtain: at the beginning of epoch 2 the error in the newly acquired feature’s position

δxp2(0) = δx + 2δz − 5δθ ± 2ypδφ ∓ ypδψ + ξ (3.48)

Similarly, perturbing Eq. (3.47) yields

δyp2 =δy + δz[y f − θx f y f + φ(1 + y f
2) + ψx f ] + z[δy f − x f y fδθ − θx fδy f − θy fδx f

+ 2y fφδy f + δφ(1 + y f
2) + ψδx f + x fδψ]

That is, at the beginning of epoch 2 the error in the newly acquired feature’s position

δyp2(0) = δy ± ypδz ∓ 2ypδθ + (1 + yp
2)δφ + 2δψ + η (3.49)
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Eqs. (3.48) and (3.49), can be re-written to give the x and y position of the second ground

feature at the beginning of an epoch as

δx(n)
p2 (0) =δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1) ∓ ypδψ(L)(n−1) + ξ (3.50)

δy(n)
p2 (0) =δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1)

+ y2
pδφ(L)(n−1) + η

(3.51)

3.4.2 Kalman Filter. The INS aiding scheme is as illustrated in Figure 3.4. The

Figure 3.4: INS Aiding Using a Kalman Filter

free INS outputs the calculated navigation state, xc, which is the sum of the true

navigation state, x and the errors in the navigation states of the free INS, δx. The aircraft’s

camera generates a noise corrupted measurement of the free INS navigation state and

upon linearizing the measurement equation a measurement of the navigation state’s error

is obtained, as shown in Figure 3.4. The results of this operation gives the measurement z,

which is provided to the KF. Using this information, the KF calculates an estimate δ̂x of

the free INS navigation state error δx, which is subtracted from the free INS navigation

state xF = x + δx to yield the calculated “clean” navigation state xc = x + δx − δ̂x. Thus in
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effect, the KF removes the error from the calculated navigation state, as shown in

Figure 3.4.

In the measurement epoch 1, the positions of both tracked ground features are

assumed known. Therefore, in epoch 1 the observation matrix Hkk(l)4×15, and the

dynamics matrix Aad15×15 are used. For both scenarios (ground features in a straight line

and staggered), the one hour flight duration results in 360 nondimensionalized seconds

resulting in 360 epochs. Each non-dimentionalized second is 10 [s]. Sampling at

0.2 [Hz] results in L = 2 bearing measurements in each measurement epoch. In the first

epoch, the error state estimate is propagated for two steps. The propagate equations of the

Kalman filter [8] are as follows:

δ̂x−l+1 = Aadδ̂x
+

l (3.52)

P−l+1 = AadP+
l AT

ad (3.53)

and the error state estimate is updated using the update equations of the Kalman filter [8]

δ̂x+

l+1 = δ̂x−l+1 + Kl+1[Zl+1 −Hl+1δ̂x
−

l+1] (3.54)

where the Kalman gain K is given by

Kl+1 = P−l+1HT
l+1[Hl+1P−l+1HT

l+1 + R]−1 (3.55)

and

P+
l+1 = (I −Kl+1Hl+1)P−l+1 (3.56)

In Eq. (3.55) R is the covariance matrix of the bearings angles’ measurement error. It

corresponds to one pixel measurement error in the camera’s focal plane:

x f m = x f + δx f , y f m = y f + δy f 

δx f 1

δy f 1

δx f 2

δy f 2


∼ N(0,R)
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For a small UAV, a 9 Mega pixel camera with an aspect ratio of 1 is assumed and therefore

σ = 1
3 × 10−3 (error in 1 pixel) and the nondimensional measurement error covariance

matrix

R =



1
9 0 0 0

0 1
9 0 0

0 0 1
9 0

0 0 0 1
9


× 10−6 (3.57)

At the conclusion of the first two steps/the first measurement epoch, the first ground object

is dropped from consideration, and a new, unknown ground object is brought in as shown

in Figure 3.3. In the second measurement epoch, the second ground object from epoch 1

becomes the ground object 1 in epoch 2, whose position is perfectly known so that at the

beginning of epoch 2, (δ̂xp2(0))(2) = 0, (δ̂yp2(0))(2) = 0, and the newly acquired ground

object becomes ground object 2, whose position during the measurement epoch 2 is

2 + δx(L)1, where δx(L)1 is the x-component of the free INS’s position’s error at the end of

the first measurement epoch. Thus the next time block requires the use of the augmented

dynamics matrix Aad17×17 from Eq. (3.18) and the observation matrix Hku(l)4×17.

At the start of the second measurement epoch, the error state’s covariance matrix at

the end of epoch 1, (P(L))(1), is transitioned from a 15 × 15 to a 17 × 17 matrix, while

including the correct cross-covariance terms. This is done as follows: when transitioning

from two known ground features to one known and one unknown ground feature, the new

covariance matrix at the beginning of measurement epoch 2 is

(P(0))(2) =

 (P(L)15×15)(1) p(2)
15×2

(p(2)
2×15)T Π

(2)
2×2


17×17

(3.58)
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where the elements of the matrix block p(2)
15×2 are obtained using Eqs. (3.50) and (3.51) as

follows:

p(2)
16,1 =E

(
δx(L)(1)

p2 · δx(0)(2)
p2

)
=E

(
δx(L)(1)

p2 ·
(
δx(L)(1) + 2δz(L)(1) − 5δθ(L)(1) ± 2ypδφ(L)(1) ∓ ypδψ(L)(1) + ξ

))
=P(L)(1)

1,1 + 2P(L)(1)
3,1 − 5P(L)(1)

8,1 ± 2ypP(L)(1)
7,1 ∓ ypP(L)(1)

9,1

p(2)
16,2 =E

(
δy(L)(1)

p2 · δx(0)(2)
p2

)
=E

(
δy(L)(1)

p2 ·
(
δx(L)(1) + 2δz(L)(1) − 5δθ(L)(1) ± 2ypδφ(L)(1) ∓ ypδψ(L)(1) + ξ

))
=P(L)(1)

1,2 + 2P(L)(1)
3,2 − 5P(L)(1)

8,2 ± 2ypP(L)(1)
7,2 ∓ ypP(L)(1)

9,2

...

p(2)
16,i =P(L)(1)

1,i + 2P(L)(1)
3,i − 5P(L)(1)

8,i ± 2ypP(L)(1)
7,i ∓ ypP(L)(1)

9,i

for i=1,. . . ,15

Similarly,

p(2)
17,i =P(L)(1)

2,i + P(L)(1)
7,i + 2P(L)(1)

9,i ± ypP(L)(1)
3,i ∓ 2ypP(L)(1)

8,i + y2
pP(L)(1)

7,i

for i=1,. . . ,15

The first and second diagonal terms of the matrix Π(0)(2)
2×2 are the respective

uncertainty in the x and y position of the new ground object, and it is obtained using Eqs.

(3.50) and (3.51) as follows:

Π(0)(2)
1,1 = P(0)(2)

16,16

where

P(0)(2)
16,16 =E

(
δx(0)(2)

p2 · δx(0)(2)
p2

)
=E

((
δx(L)(1) + 2δz(L)(1) − 5δθ(L)(1) ± 2ypδφ(L)(1) ∓ ypδψ(L)(1) + ξ

)
·
(
δx(L)(1)

+ 2δz(L)(1) − 5δθ(L)(1) ± 2ypδφ(L)(1) ∓ ypδψ(L)(1) + ξ
))

47



=P(L)(1)
1,1 + 4P(L)(1)

3,3 + 25P(L)(1)
8,8 + 4P(L)(1)

1,3 − 10P(L)(1)
1,8 − 20P(L)(1)

3,8 + 4y2
pP(L)(1)

7,7

+ y2
pP(L)(1)

9,9 ± 4ypP(L)(1)
1,7 ∓ 2ypP(L)(1)

1,9 ± 8ypP(L)(1)
3,7 ∓ 4ypP(L)(1)

3,9 ∓ 20ypP(L)(1)
7,8

± 10ypP(L)(1)
8,9 − 4y2

pP(L)(1)
7,9 + σ2

ξ

Π(0)(2)
2,2 = P(0)(2)

17,17

where

P(0)(2)
17,17 =E

(
δy(0)(2)

p2 · δy(0)(2)
p2

)
=E

((
δy(L)(1) + δφ(L)(1) + 2δψ(L)(1) ± ypδz(L)(1) ∓ 2ypδθ(L)(1) + y2

pδφ(L)(1) + η
)

·
(
δy(L)(1) + δφ(L)(1) + 2δψ(L)(1) ± ypδz(L)(1) ∓ 2ypδθ(L)(1) + y2

pδφ(L)(1) + η
))

=P(L)(1)
2,2 + P(L)(1)

7,7 + 4P(L)(1)
9,9 + 2P(L)(1)

2,7 + 4P(L)(1)
2,9 + 4P(L)(1)

7,9 ± 2ypP(L)(1)
3,7

∓ 4ypP(L)(1)
7,8 + 2y2

pP(L)(1)
2,7 ± 2y3

pP(L)(1)
3,7 ∓ 4y3

pP(L)(1)
7,8 + 2y2

pP(L)(1)
7,7 + y4

pP(L)(1)
7,7

± 4ypP(L)(1)
3,9 ∓ 8ypP(L)(1)

8,9 + 4y2
pP(L)(1)

7,9 ± ypP(L)(1)
2,3 ∓ 2ypP(L)(1)

2,8 ± ypP(L)(1)
2,3

+ y2
pP(L)(1)

3,3 − 2y2
pP(L)(1)

3,8 ∓ 2ypP(L)(1)
2,8 − 2y2

pP(L)(1)
3,8 + 4y2

pP(L)(1)
8,8 + σ2

η

Finally, the off-diagonal terms of the matrix block Π2×2 are obtained as follows:

Π1,2 = Π2,1 = P(0)(2)
16,17

where

P(0)(2)
16,17 =E

(
δx(0)(2)

p2 · δy(0)(2)
p2

)
=E

((
δx(L)(1) + 2δz(L)(1) − 5δθ(L)(1) ± 2ypδφ(L)(1) ∓ ypδψ(L)(1) + ξ

)
·
(
δy(L)(1)

+ δφ(L)(1) + 2δψ(L)(1) ± ypδz(L)(1) ∓ 2ypδθ(L)(1) + y2
pδφ(L)(1) + η

))
=P(L)(1)

1,2 + 2P(L)(1)
3,2 − 5P(L)(1)

8,2 + P(L)(1)
1,7 + 2P(L)(1)

3,7 − 5P(L)(1)
7,8 + 2P(L)(1)

1,9 + 4P(L)(1)
3,9

− 10P(L)(1)
8,9 ± ypP(L)(1)

1,3 ∓ 2ypP(L)(1)
1,8 + y2

pP(L)(1)
1,7 ± 2ypP(L)(1)

3,3 ∓ 4ypP(L)(1)
3,8

+ 2y2
pP(L)(1)

3,7 ∓ 5ypP(L)(1)
3,8 ± 10ypP(L)(1)

8,8 − 5y2
pP(L)(1)

7,8 ± 2ypP(L)(1)
2,7 ± 2ypP(L)(1)

7,7

± 4ypP(L)(1)
7,9 + 2y2

pP(L)(1)
3,7 − 4y2

pP(L)(1)
7,8 ± 2y3

pP(L)(1)
7,7 ∓ ypP(L)(1)

2,9 ∓ ypP(L)(1)
7,9

∓ 2ypP(L)(1)
9,9 − y2

pP(L)(1)
3,9 + 2y2

pP(L)(1)
8,9 ∓ y3

pP(L)(1)
7,9
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where, recall, ξ and η are the uncertainties caused by the error in the LOS angle

measurements. It is because of the correlation of the errors in the aircraft navigation state

x and the new ground object’s position state xp2 that the first row and column from

(P(L))(1)
15×15 are used in the calculation of their respective positions in (P(0))(2)

17×17. Since

there is no correlation between the LOS error of the camera and any of the INS navigation

or bias states, σ2 is not added in the calculations of any of the entries of the covariance

matrix except P(0)(2)
16,16 and P(0)(2)

17,17. The same holds true for the navigation state y and the

new state yp2. The covariance matrix is then propagated in the same manner as in the first

epoch, following Eqs. (3.53)-(3.56), with the proper substitution of the initial covariance,

(P+(0))(2)
17×17 for (P(2))(1)

15×15, dynamics, Aad17×17 for Aad15×15, and observation matrices, Hku

for Hkk.

The state estimate is transitioned by augmenting the state estimate at the last

measurement step L with zeros as

(δx̂+
a (0))(2) =

 (δx̂+
a (L)15×1)(1)

02×1


17×1

(3.59)

The transition at the beginning of the third epoch from one known/one unknown to

two unknown ground objects follows the same pattern as incorporating the first unknown

ground object. Now

(P(0))(3) =

 (P(L)17×17)(2) P(3)
17×2

(p(3)
2×17)T Π2×2


19×19

(3.60)

where the elements of the matrix block P(0)(3)
17×2 are obtained using Eqs. (3.50) and (3.51)

as follows:

P(0)(3)
16,1 =E

(
δx(L)(2)

p2 · δx(0)(3)
p2

)
=E

(
δx(L)(2)

p2 ·
(
δx(L)(2) + 2δz(L)(2) − 5δθ(L)(2) ± 2ypδφ(L)(2) ∓ ypδψ(L)(2) + ξ

))
=P(L)(2)

1,1 + 2P(L)(2)
3,1 − 5P(L)(2)

8,1 ± 2ypP(L)(2)
7,1 ∓ ypP(L)(2)

9,1
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P(0)(3)
16,2 =E

(
δy(L)(2)

p2 · δx(0)(3)
p2

)
=E

(
δy(L)(2)

p2 ·
(
δx(L)(2) + 2δz(L)(2) − 5δθ(L)(2) ± 2ypδφ(L)(2) ∓ ypδψ(L)(2) + ξ

))
=P(L)(2)

1,2 + 2P(L)(2)
3,2 − 5P(L)(2)

8,2 ± 2ypP(L)(2)
7,2 ∓ ypP(L)(2)

9,2

...

P(0)(3)
16,i =P(L)(2)

1,i + 2P(L)(2)
3,i − 5P(L)(2)

8,i ± 2ypP(L)(2)
7,i ∓ ypP(L)(2)

9,i

for i=1,. . . ,17

Similarly,

P(0)(3)
17,i =P(L)(2)

2,i + P(L)(2)
7,i + 2P(L)(2)

9,i ± ypP(L)(2)
3,i ∓ 2ypP(L)(2)

8,i + y2
pP(L)(2)

7,i

for i=1,. . . ,17

The first and second diagonal terms of the matrix block Π(0)(3)
2×2 are the respective

uncertainty in the x and y position of the new ground object, and they are obtained using

Eqs. (3.50) and (3.51) as follows:

Π(0)(3)
1,1 = P(0)(3)

16,16

where

P(0)(3)
16,16 =E

(
δx(0)(3)

p2 · δx(0)(3)
p2

)
=E

((
δx(L)(2) + 2δz(L)(2) − 5δθ(L)(2) ± 2ypδφ(L)(2) ∓ ypδψ(L)(2) + ξ

)
·
(
δx(L)(2)

+ 2δz(L)(2) − 5δθ(L)(2) ± 2ypδφ(L)(2) ∓ ypδψ(L)(2) + ξ
))

=P(L)(2)
1,1 + 4P(L)(2)

3,3 + 25P(L)(2)
8,8 + 4P(L)(2)

1,3 − 10P(L)(2)
1,8 − 20P(L)(2)

3,8 + 4y2
pP(L)(2)

7,7

+ y2
pP(L)(2)

9,9 ± 4ypP(L)(2)
1,7 ∓ 2ypP(L)(2)

1,9 ± 8ypP(L)(2)
3,7 ∓ 4ypP(L)(2)

3,9 ∓ 20ypP(L)(2)
7,8

± 10ypP(L)(2)
8,9 − 4y2

pP(L)(2)
7,9 + σ2

ξ

Π(0)(3)
2,2 = P(0)(3)

17,17

where

P(0)(3)
17,17 =E

(
δy(0)(3)

p2 · δy(0)(3)
p2

)
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=E
((
δy(L)(2) + δφ(L)(2) + 2δψ(L)(2) ± ypδz(L)(2) ∓ 2ypδθ(L)(2) + y2

pδφ(L)(2) + η
)
·(

δy(L)(2) + δφ(L)(2) + 2δψ(L)(2) ± ypδz(L)(2) ∓ 2ypδθ(L)(2) + y2
pδφ(L)(2) + η

))
=P(L)(2)

2,2 + P(L)(2)
7,7 + 4P(L)(2)

9,9 + 2P(L)(2)
2,7 + 4P(L)(2)

2,9 + 4P(L)(2)
7,9 ± 2ypP(L)(2)

3,7

∓ 4ypP(L)(2)
7,8 + 2y2

pP(L)(2)
2,7 ± 2y3

pP(L)(2)
3,7 ∓ 4y3

pP(L)(2)
7,8 + 2y2

pP(L)(2)
7,7 + y4

pP(L)(2)
7,7

± 4ypP(L)(2)
3,9 ∓ 8ypP(L)(2)

8,9 + 4y2
pP(L)(2)

7,9 ± ypP(L)(2)
2,3 ∓ 2ypP(L)(2)

2,8 ± ypP(L)(2)
2,3

+ y2
pP(L)(2)

3,3 − 2y2
pP(L)(2)

3,8 ∓ 2ypP(L)(2)
2,8 − 2y2

pP(L)(2)
3,8 + 4y2

pP(L)(2)
8,8 + σ2

η

Similarly the off-diagonal terms of the matrix Π(0)(3)
2×2 are obtained as follows:

Π(0)(3)
1,2 = Π(0)(3)

2,1 = P(0)(3)
16,17

where

P(0)(3)
16,17 =E

(
δx(0)(3)

p2 · δy(0)(3)
p2

)
=E

((
δx(L)(2) + 2δz(L)(2) − 5δθ(L)(2) ± 2ypδφ(L)(2) ∓ ypδψ(L)(2) + ξ

)
·
(
δy(L)(2)

+ δφ(L)(2) + 2δψ(L)(2) ± ypδz(L)(2) ∓ 2ypδθ(L)(2) + y2
pδφ(L)(2) + η

))
=P(L)(2)

1,2 + 2P(L)(2)
3,2 − 5P(L)(2)

8,2 + P(L)(2)
1,7 + 2P(L)(2)

3,7 − 5P(L)(2)
7,8 + 2P(L)(2)

1,9 + 4P(L)(2)
3,9

− 10P(L)(2)
8,9 ± ypP(L)(2)

1,3 ∓ 2ypP(L)(2)
1,8 + y2

pP(L)(2)
1,7 ± 2ypP(L)(2)

3,3 ∓ 4ypP(L)(2)
3,8

+ 2y2
pP(L)(2)

3,7 ∓ 5ypP(L)(2)
3,8 ± 10ypP(L)(2)

8,8 − 5y2
pP(L)(2)

7,8 ± 2ypP(L)(2)
2,7 ± 2ypP(L)(2)

7,7

± 4ypP(L)(2)
7,9 + 2y2

pP(L)(2)
3,7 − 4y2

pP(L)(2)
7,8 ± 2y3

pP(L)(2)
7,7 ∓ ypP(L)(2)

2,9 ∓ ypP(L)(2)
7,9

∓ 2ypP(L)(2)
9,9 − y2

pP(L)(2)
3,9 + 2y2

pP(L)(2)
8,9 ∓ y3

pP(L)(2)
7,9

In the previous epoch, the unknown object’s position was (xp2, yp2), but when it

transitioned to being the closer ground object, all of its cross-covariances goes with it.

Because (P(0))(3)
(16,16) and (P(0))(3)

17,17 show the uncertainty of the closest object to the

aircraft, the entirety of (P(0))(3)
15×15 is directly translated to the upper-diagonal section of

the new covariance matrix. Substituting Huu for Hku, and using the Aad19×19 dynamics

matrix, the covariance was propagated according to Eqs. (3.53)-(3.56). These matrices

were used for the remainder of the measurement epochs.
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Likewise, the state estimate is transitioned by augmenting the state estimate at the

last measurement step (L = 2) with zeros as

(δx̂+(0))(3) =

 (δx̂+(L)17×1)(2)

02×1


19×1

(3.61)

The transitions from the third to the last epoch, when the Kalman Filter completes a

time block using two unknown ground objects, and begins to use a new unknown ground

object, is done in a slightly different way.

(P(0))(n) =

 (P(L)15×15)(n−1) p(n)
15×4

(p(n)
4×15)T Π4×4


19×19

(3.62)

n = 4,. . . , N - 1

where the elements of the matrix p(n)
15×4 are obtained using Eqs. (3.50) and (3.51) as

follows:

P(0)(n)
16,i =P(L)(n−1)

18,i

P(0)(n)
17,i =P(L)(n−1)

19,i

P(0)(n)
18,i =E

(
δx(L)(n−1)

p2 · δx(0)(n)
p2

)
=E

(
δx(L)(n−1)

p2 ·
(
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1) ∓ ypδψ(L)(n−1)

+ ξ
))

=P(L)(n−1)
1,i + 2P(L)(n−1)

3,i − 5P(L)(n−1)
8,i ± 2ypP(L)(n−1)

7,i ∓ ypP(L)(n−1)
9,i

P(0)(n)
19,i =E

(
δy(0)(n)

p2 · δy(L)(n−1)
p2

)
=E

((
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1) + y2

pδφ(L)(n−1)

+ η
)
· δy(L)(n−1)

p2

)
=P(L)(n−1)

2,i + P(L)(n−1)
7,i + 2P(L)(n−1)

9,i ± ypP(L)(n−1)
3,i ∓ 2ypP(L)(n−1)

8,i + y2
pP(L)(n−1)

7,i

for i=1,. . . ,15
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The first and second diagonal terms of the matrix Π(0)(n)
4×4 are the respective

uncertainty in the x and y position of the first ground object, and they are obtained by

transplanting the uncertainty in the x and y position of the second ground object from the

previous epoch as:

P(0)(n)
16,16 =Π(0)(n)

1,1 = P(L)(n−1)
18,18

P(0)(n)
17,17 =Π(0)(n)

2,2 = P(L)(n−1)
19,19

The third and fourth diagonal terms of the matrix Π(0)(n)
4×4 are the respective

uncertainty in the x and y position of the second ground object, and they are obtained by

using Eqs. (3.50) and (3.51) as follows:

Π(0)(n)
3,3 = P(0)(n)

18,18

where

P(0)(n)
18,18 =E

(
δx(0)(n)

p2 · δx(0)(n)
p2

)
=E

((
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1) ∓ ypδψ(L)(n−1) + ξ

)
·
(
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1)(δx(L)(n−1) + 2δz(L)(n−1)

− 5δθ(L)(n−1) + ξ
))

=P(L)(n−1)
1,1 + 4P(L)(n−1)

3,3 + 25P(L)(n−1)
8,8 + 4P(L)(n−1)

1,3 − 10P(L)(n−1)
1,8 − 20P(L)(n−1)

3,8

+ 4y2
pP(L)(n−1)

7,7 + y2
pP(L)(n−1)

9,9 ± 4ypP(L)(n−1)
1,7 ∓ 2ypP(L)(n−1)

1,9 ± 8ypP(L)(n−1)
3,7

∓ 4ypP(L)(n−1)
3,9 ∓ 20ypP(L)(n−1)

7,8 ± 10ypP(L)(n−1)
8,9 − 4y2

pP(L)(n−1)
7,9 + σ2

ξ

Π(0)(n)
4,4 = P(0)(n)

19,19

where

P(0)(n)
19,19 =E

(
δy(0)(n)

p2 · δy(0)(n)
p2

)
=E

((
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1) + y2

pδφ(L)(n−1)

+ η
)
·
(
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1)
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+ y2
pδφ(L)(n−1) + η

))
=P(L)(n−1)

2,2 + P(L)(n−1)
7,7 + 4P(L)(n−1)

9,9 + 2P(L)(n−1)
2,7 + 4P(L)(n−1)

2,9 + 4P(L)(n−1)
7,9

± 2ypP(L)(n−1)
3,7 ∓ 4ypP(L)(n−1)

7,8 + 2y2
pP(L)(n−1)

2,7 ± 2y3
pP(L)(n−1)

3,7 ∓ 4y3
pP(L)(n−1)

7,8

+ 2y2
pP(L)(n−1)

7,7 + y4
pP(L)(n−1)

7,7 ± 4ypP(L)(n−1)
3,9 ∓ 8ypP(L)(n−1)

8,9 + 4y2
pP(L)(n−1)

7,9

± ypP(L)(n−1)
2,3 ∓ 2ypP(L)(n−1)

2,8 ± ypP(L)(n−1)
2,3 + y2

pP(L)(n−1)
3,3 − 2y2

pP(L)(n−1)
3,8

∓ 2ypP(L)(n−1)
2,8 − 2y2

pP(L)(n−1)
3,8 + 4y2

pP(L)(n−1)
8,8 + σ2

η

The off-diagonal terms of the matrix block Π(0)(n)
4×4 are obtained as follows:

Π(0)(n)
1,2 = Π(0)(n)

2,1 =P(L)(n−1)
18,19

Π(0)(n)
1,3 = Π(0)(n)

3,1 =P(L)(n)
16,18

where

P(L)(n)
16,18 =E

(
δx(L)(n−1)

p2 · δx(0)(n)
p2

)
=E

(
δx(L)(n−1)

p2 ·
(
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1)

=P(L)(n−1)
18,1 + 2P(L)(n−1)

18,3 − 5P(L)(n−1)
18,8 ± 2ypP(L)(n−1)

18,7 ∓ ypP(L)(n−1)
18,9

Π(0)(n)
2,3 = Π(0)(n)

3,2 = P(L)(n)
17,18

where

P(L)(n)
17,18 =E

(
δy(L)(n−1)

p2 · δx(0)(n)
p2

)
=E

(
δy(L)(n−1)

p2 ·
(
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1)

∓ ypδψ(L)(n−1) + ξ
))

=P(L)(n−1)
19,1 + 2P(L)(n−1)

19,3 − 5P(L)(n−1)
19,8 ± 2ypP(L)(n−1)

19,7 ∓ ypP(L)(n−1)
19,9

Π(0)(n)
3,4 = Π(0)(n)

4,3 = P(L)(n)
18,19

where

P(L)(n)
18,19 =E

(
δy(0)(n)

p2 · δx(0)(n)
p2

)
=E

((
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1)
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+ y2
pδφ(L)(n−1) + η

)
·
(
δx(L)(n−1) + 2δz(L)(n−1) − 5δθ(L)(n−1) ± 2ypδφ(L)(n−1)

∓ ypδψ(L)(n−1) + ξ
))

=P(L)(n−1)
1,2 + 2P(L)(n−1)

2,3 − 5P(L)(n−1)
2,8 + P(L)(n−1)

1,7 + 2P(L)(n−1)
3,7 − 5P(L)(n−1)

7,8 + 2P(L)(n−1)
1,9

+ 4P(L)(n−1)
3,9 − 10P(L)(n−1)

8,9 ± ypP(L)(n−1)
1,3 ∓ 2ypP(L)(n−1)

1,8 + y2
pP(L)(n−1)

1,7 ± 2ypP(L)(n−1)
3,3

∓ 4ypP(L)(n−1)
3,8 + 2y2

pP(L)(n−1)
3,7 ∓ 5ypP(L)(n−1)

3,8 ± 10ypP(L)(n−1)
8,8 − 5y2

pP(L)(n−1)
7,8

± 2ypP(L)(n−1)
2,7 ± 2ypP(L)(n−1)

7,7 ± 4ypP(L)(n−1)
7,9 + 2y2

pP(L)(n−1)
3,7 − 4y2

pP(L)(n−1)
7,8

± 2y3
pP(L)(n−1)

7,7 ∓ ypP(L)(n−1)
2,9 ∓ ypP(L)(n−1)

7,9 ∓ 2ypP(L)(n−1)
9,9 − y2

pP(L)(n−1)
3,9 + 2y2

pP(L)(n−1)
8,9

∓ y3
pP(L)(n−1)

7,9

Π(0)(n)
1,4 = Π(0)(n)

4,1 = P(L)(n)
16,19

where

P(L)(n)
16,19 =E

(
δy(0)(n)

p2 · δx(L)(n−1)
p2

)
=E

((
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1)

+ y2
pδφ(L)(n−1) + η

)
· δx(L)(n−1)

p2

)
=P(L)(n−1)

18,2 + P(L)(n−1)
7,18 + 2P(L)(n−1)

9,18 ± ypP(L)(n−1)
3,18 ∓ 2ypP(L)(n−1)

8,18 + y2
pP(L)(n−1)

7,18

Π(0)(n)
2,4 = Π(0)(n)

4,2 = P(L)(n)
17,19

where

P(L)(n)
17,19 =E

(
δy(0)(n)

p2 · δy(L)(n−1)
p2

)
=E

((
δy(L)(n−1) + δφ(L)(n−1) + 2δψ(L)(n−1) ± ypδz(L)(n−1) ∓ 2ypδθ(L)(n−1) + y2

pδφ(L)(n−1)

+ η
)
· δy(L)(n−1)

p2

)
± ypP(L)(n−1)

3,19

=P(L)(n−1)
2,19 + P(L)(n−1)

7,19 + 2P(L)(n−1)
9,19 ∓ 2ypP(L)(n−1)

8,19 + y2
pP(L)(n−1)

7,19

The state estimate transition for the fourth to the nth epochs is accomplished by

augmenting the first fifteen states of the previous epoch with the farthest ground feature
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and zeros as follows

(δx̂+(L))(n+1) =



(δx̂+(L)15×1)(n)

(δx̂+(L)18)(n)

(δx̂+(L)19)(n)

02×1


19×1

(3.63)

Starting at epoch 4, the transitions for the remainder of the epochs followed Eqs. (3.62)

and (3.63) for epoch 3, because there are no more known ground objects.

3.4.3 Summary. In summary, the KF is reinitialized at the beginning of each

measurement epoch. The KF operates twice in each measurement epoch at a frequency of

0.2 [Hz] in 10 seconds. At the beginning of measurement epoch one, the exact state of the

aircraft is known with very small uncertainties. The location of the two tracked ground

features are known so the KF starts operation using the fifteen original states.

At the beginning of measurement epoch two, the first ground feature is dropped out

of the FOV of the camera and the camera geolocates the first unknown ground feature,

which becomes the second ground feature for the second measurement epoch. The INS

provided state of the aircraft at the end of measurement epoch one is used to estimate the

position of the newly acquired unknown ground feature. SLAM is achieved through the

augmentation of the fifteen states state vector by two states (x and y position of the new

ground feature) to a seventeen states state vector. Zeros are used for the augmentation

because the derivative of position is zero.

In measurement epoch three and beyond, the errors in the position of the second

unknown ground feature for the previous measurement epoch becomes the error in

position of the first unknown ground feature. The INS provided state of the aircraft at the

end of the previous measurement epoch is used to estimate the position of the newly

acquired unknown ground feature. Because two unknown ground features are used from

measurement epoch three and beyond, the KF operates with 19 states, which includes 15
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original states and two states (x and y position of unknown ground feature) each from the

two unknown ground features. SLAM is achieved through the augmentation of states at

the beginning of each of these measurement epochs. Zeros are used for these

augmentations because the derivative of position of the newly acquired unknown ground

feature is zero.
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4 Simulation Results

4.1 Introduction

This chapter shows simulation experiments that were run for the one hour duration.

The chapter will start with plots showing the first three epochs of the first three navigation

states for the INS. This information will then be followed by plots of the first three epochs

of the aided INS. The effect of tracked ground features which are staggered is also

discussed. Plots showing the remainder of the navigation states, for both the unaided and

aided INS schemes are found in Appendix A.

4.2 Simulation

Simulation experiments were run to gauge the strength of the aiding action afforded

by bearings only measurements using “bootstrapping” for cross country flight. The aim is

to reduce the errors of the free INS as much as possible: the closer the KF-estimated and

the true errors are, the better the aiding action is. To study the effects of using known and

unknown ground features, the first three navigation states (position) estimation errors and

standard deviations of the unaided (free) INS for the first three epochs are plotted in

Figure 4.1. The error in the x position is of most concern and its uncertainty level after the

duration of thirty seconds of flight is about 110 [cm], with a realized error in position of

about 99 [cm]. For the same duration, the standard deviation of the aided INS and the

difference in the error of the true and estimated x position are plotted in Figure 4.2. The

uncertainty in the estimated x position (prediction of what the difference between the true

and estimated errors will be) after the third epoch is about 25 [cm] (better than the free

INS), with a realized error in position of about 27 [cm] (better than the free INS). It can be

seen that with aiding, when the aircraft’s position is estimated by two known ground

features, the errors in the position are almost negligible for the first epoch (first 10
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seconds). For the second epoch (next 10 seconds), when aiding is achieved by using one

known and one unknown geolocated ground feature, the errors start increasing because of

the higher uncertainty added by the unknown feature’s geolocation on the fly. With the

lost of the last known ground feature and addition of another unknown feature, the

uncertainty is even higher with the difference in the true and estimated error in position

eventually falling outside the aided INS predicted standard deviation.

Next, the simulation results for the whole one hour flight for the free and aided INS

are respectively plotted in Figures A.1 and A.2. The uncertainty in the x position for the

free INS after one hour is about six and a half kilometers, with a realized error in position

of about 6.02 [km] in Figure A.1. It can be seen from the plots that with aiding using the 9

mega pixel camera, the uncertainty in the x position is significantly reduced in Figure A.2.

After a one hour duration, the uncertainty in x position is only about 693 [m] with a

realized error in position of about 588 [m]. It is worth noting that from the third to the last

epoch, even with the introduction of two unknown ground features as opposed to at least

one known ground feature, the Kalman Filter learns and eventually reduce the estimation

errors in the x position.

In the scenario where ground features are arranged in a straight line, though aiding

was primarily achieved in the x position, the uncertainty and realized error in the y

position are also significantly reduced from six and a half kilometers and 5.98 [km] to

about 18.84 [m] and 1.78 [m] respectively. When the ground features are laterally

staggered 10 [m] about the aircraft trajectory, Figure A.3, the uncertainty in the x and y

positions remains almost the same. Beyond 10 [m] displacement, the KF is unstable. So,

as long as the ground features are within the LOS of the camera, aiding in the x direction

is not impacted, and there is little to no impact in the y direction.

There also are improvements in the other seven navigation states estimates, as shown

in Figures A.2 through A.5. In Figures A.4 and A.5, the plots show how the KF closely
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Figure 4.1: The development of the KF predicted standard deviation and realized position
estimates of the unaided INS in the first three measurement epochs.

estimate the true error (again the aim is to closely track the true errors to eliminate their

effect in the navigation process), thus achieving aiding action. This information is

potrayed in Table 4.1.
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Figure 4.2: The development of the KF predicted standard deviation and realized position
estimates of the aided INS for the first three measurement epochs.

The calculated first ground feature and geolocation of second ground feature are

shown in Figure A.7. The x position of the first ground feature starts at one kilometer

(because its position was exactly known) and it is calculated up to 360.61 [km] at the end

of one hour. Its y position starts at zero and it is calculated up to about four and a half

meters at the end of one hour. Likewise, the x position of the second ground feature starts
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Table 4.1: The final values for the standard deviations and errors for
the unaided navigation states. Also included are the final values for
the standard deviations and errors for the aided navigation states in
both the scenario when the ground features are in a straight line and
when they are staggered.

Standard
Deviation/Error

Unaided Final
Value

Aided Final
Value(Linear)

Aided Final
Value(Staggered)

σx (s.d) 6.56 [km] 692.72 [m] 692.70 [m]

δx (err) 6.02 [km] 587.84 [m] 697.19 [m]

σy (s.d) 6.56 [km] 18.84 [m] 18.88 [m]

δy (err) 5.98 [km] 1.78 [m] 2.54 [m]

σz (s.d) 707.11 [m] 5.72 [m] 5.72 [m]

δz (err) 18.96 [m] 5.04 [m] 5.60 [m]

σV x (s.d) 3.67 × 10−2 [m/s] 5.74 × 10−3 [m/s] 5.74 × 10−3 [m/s]

δvx (err) 3.21 × 10−2 [m/s] 5.15 × 10−3 [m/s] 5.53 × 10−3 [m/s]

σVy (s.d) 3.67 × 10−2 [m/s] 8.66 × 10−5 [m/s] 8.70 × 10−5 [m/s]

δvy (err) 3.19 × 10−2 [m/s] 4.54 × 10−5 [m/s] 2.52 × 10−6 [m/s]

σVz (s.d) 3.93 × 10−3 [m/s] 3.18 × 10−5 [m/s] 3.18 × 10−5 [m/s]

δvz (err) 1.02 × 10−4 [m/s] 2.86 × 10−5 [m/s] 3.06 × 10−5 [m/s]

σφ (s.d) 1.05 × 10−4 [rad] 1.09 × 10−5 [rad] 1.09 × 10−5 [rad]

δφ (err) 7.82 × 10−5 [rad] 1.10 × 10−6 [rad] 1.38 × 10−6 [rad]

σθ (s.d) 1.05 × 10−4 [rad] 3.27 × 10−5 [rad] 3.27 × 10−5 [rad]

δθ (err) 7.82 × 10−5 [rad] 3.30 × 10−5 [rad] 2.94 × 10−5 [rad]

σψ (s.d) 1.05 × 10−4 [rad] 5.85 × 10−5 [rad] 5.87 × 10−5 [rad]

δψ (err) 7.82 × 10−5 [rad] 1.02 × 10−5 [rad] 1.66 × 10−5 [rad]

at two kilometers (because its position was exactly known) and it is calculated up to

361.60 [km] at the end of one hour. Its y position starts at zero and it is calculated up to
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about five and a fifth meters at the end of one hour. Figures A.8 and A.9 shows the

uncertainties of the first eight epochs of the first and second ground features. Each epoch

consists of 2 bearing measurements which are sampled at a rate of 0.2 [Hz]. Each spike

corresponds to the utilization of bearing measurements. During a measurement epoch the

error increases. At the beginning of a new measurement epoch the knowledge from the

previous epochs causes the errors to decrease.

The errors in the positions of the aircraft with the attendant uncertainties for the aided

INS, and the two calculated ground features, are shown in Figure A.10. This shows the

accuracy in the calculated ground features and how well they are used to estimate errors in

the aircraft navigation process.
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5 Conclusion

In [12] covariance anlysis was performed and it was shown that the rate of growth of

position uncertainty is significantly reduced when the aircraft continuously uses the

measurement of the bearings of sequentially acquired unknown terrain features to aid the

INS. In this paper the analysis is refined. The LOS errors that will be present when using

an optical camera to aid the INS are accounted for. Furthermore, in this paper the Kalman

Filter’s design is provided and its performance is validated by simulation of the KF action.

The on-board INS of an aircraft was aided by an optical camera used to take the bearing

measurements of ground features. So long as the ground features are regularly spaced and

are not more laterally displaced than 10 [m] about the aircraft’s trajectory, the LOS of the

camera, the INS aiding action is strong. It is a cyclic process where the aircraft uses its

INS-provided ownship position to geolocate a ground object, then uses the bearing

measurements of the very same ground feature to aid its INS.

The navigation state of most concern was the aircraft’s position. For a one hour

flight, it was shown that with INS aiding, the error in the aided INS navigation system

provided position of the aircraft was significantly reduced from about 3.87 [km] with a KF

predicted uncertainty of about 6.5 [km], to about 583 [m] with an uncertainty of 693 [m].

This validates our analysis and showed that INS aiding using vision is possible for long

range flight. The practicality of this INS aiding scheme hinges on the robustness of the

image registration scheme, in particular, in an outdoors setting. In [5], [6], and [7] these

issues are addressed using the Scale-Invariant Feature Transform (SIFT) algorithms to

detect images registered on an optical camera’s focal plane.
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Appendix A: Simulation Results

0 500 1000 1500 2000 2500 3000 3500

−5

0

5

Free INS for One Hour

Time (sec)

δ x   
σ x (

km
)

 

 

True Pos. Err.
Unaided Uncert.

0 500 1000 1500 2000 2500 3000 3500

−5

0

5

δ y   
σ y (

km
)

0 500 1000 1500 2000 2500 3000 3500

−0.5

0

0.5

δ z   
σ z (

km
)

Time (sec)

Figure A.1: The development of the KF predicted standard deviation and realized position
estimate of the aided INS during a one hour flight.
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Figure A.2: The development of the KF predicted standard deviation and realized position
estimates of the aided INS during a one hour flight for ground features arranged in a straight
line.
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Figure A.3: The development of the KF predicted standard deviation and realized position
estimates in the aided INS during a one hour flight for staggered ground features.
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Figure A.4: The development of velocity estimates in the aided INS during a one hour
flight.
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Figure A.5: The development of attitude estimates in the aided INS during a one hour
flight.
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Figure A.6: The calculated position of the first ground feature.
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Figure A.7: The geolocated second ground feature’s position.
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Figure A.8: A zoomed in view of the development of the KF predicted standard deviation
of the first ground feature’s position in first seven measurement epochs.
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Figure A.9: A zoomed in view of the development of the KF predicted standard deviation
of the second ground object’s position in first seven measurement epochs.

71



0 500 1000 1500 2000 2500 3000 3500

−0.5

0

0.5
δ x   

σ x (
km

)

Aircraft and Ground Features Position and Uncertainty in X

 

 

True Pos. − Est Pos.
Aided Pos. Uncert.

0 500 1000 1500 2000 2500 3000 3500

100

200

300

x p1
c (

km
)

 

 

Calc. Pos.

0 500 1000 1500 2000 2500 3000 3500

100

200

300

Time (sec)

x p2
c (

km
)

 

 

Calc. Pos.

Figure A.10: Aircraft and ground objects’ position estimates with KF predicted standard
deviations.
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Appendix B: Ground Feature Calculations

The calculation and geolocation of ground features used for aiding are shown in

Tables B.1 - B.3 below:

Table B.1: Ground Features on X-Axis: X Position

Epoch # xp1c xp2c

1 1 2

2 2 3+δx̂(L)

n(≥ 3) n + δx̂(L(n − 2)) n + 1 + δx̂(L(n − 1))

Table B.2: Ground Features on X-Axis: Y Position

Epoch # yp1c yp2c

1 0 0

2 0 δŷ(L)

n(≥ 3) δŷ(L(n − 2)) δŷ(L(n − 1))

Table B.3: Y Positions of Laterally Staggered Ground Features on Both Sides of X-Axis

Epoch # yp1c yp2c

1 −yp yp

2 yp −yp + δŷ(L)

n(≥ 3) −yp + δŷ(L(n − 2)) yp + δŷ(L(n − 1))

where n is the epoch number.

73



Bibliography

[1] Bowditch, Nathaniel. The American Practical Navigator. National Imagery and
Mapping Agency, Bethesda, MD, 2002.

[2] Durrant-Whyte, H. and T. Bailey. “Simultaneous localization and mapping: part I”.
Robotics Automation Magazine, IEEE, 13(2):99 –110, june 2006. ISSN 1070-9932.

[3] Giebner, M. Tightly-Coupled Image-Aided Inertial Navigation System via a Kalman
Filter. Master’s thesis, AFIT, WPAFB, OH, 2003.

[4] Hartley, Richard and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, New York, NY, 2003.

[5] Lowe, David G. “Object Recognition from Local Scale-Invariant Features”.
International Journal of Computer Vision, 1150–1157, September 1999.

[6] Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints”.
International Journal of Computer Vision, 60(2):91–110, 2004.

[7] Lowe, David G. “Local Feature View Clustering for 3D Object Recognition”. IEEE
Conference on Computer Vision and Pattern Recognition, 682–688, December 2001.

[8] Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 2. Academic
Press, New York, NY, 1983.

[9] Pachter, M. and G. Mutlu. Dynamics of Information Systems: Theory and
Application, chapter The Navigation Potential of Ground Feature Tracking,
287–303. Springer, 2010.

[10] Pachter, M., A. Porter, and M. Polat. “INS Aiding Using Bearing-Only
Measurements of an Unknown Ground Object”. ION Journal Navigation,
53(1):1–20, 2006.

[11] Relyea, A. Covariance Analysis of Vision Aided Navigation by Bootstrapping.
Master’s thesis, Air Force Institute of Technology, WPAFB, OH, March 2012.

[12] Relyea, Andrew and Meir Pachter. “A Covariance Analysis of Vision-Aided Inertial
Navigation: 3-D case”. 568–587. Bar Itzhack Symposium, Haifa, Israel, October
14-17, 2012.

[13] Titterton, David and John Weston. Strapdown Inertial Navigation Technology 2nd
Edition. The Institution of Engineernig and Technology, London, UK, 2004.

[14] Veth, M. Fusion of Imaging and Inertial Sensors for Navigation. Ph.D. thesis, Air
Force Institute of Technology, WPAFB, OH, September 2006.

74



 
 
 
 
 
 
 
 

Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  

REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD–MM–YYYY)  
03-2013 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From — To) 
May 2012 – Mar 2013 

4. TITLE AND SUBTITLE  
Inertial Navigation System Aiding Using Vision 

5a. CONTRACT NUMBER  

5b. GRANT NUMBER  

5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
 
Quarmyne, James, O, 2Lt, USAF 

5d. PROJECT NUMBER  
 

5e. TASK NUMBER  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way  
WPAFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
 
AFIT-ENG-13-M-40 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  

Dr. Robert A. Murphey 
Air Force Research Laboratory, Munitions Directorate 
AFRL/RWG  
101 West Eglin Boulevard  
Eglin AFB, FL 32542-6810 
 

10. SPONSOR/MONITOR’S ACRONYM(S)  
AFRL/RWG 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES      This material is declared a work of the U.S. Government and is not subject to 
copyright protection in the United States. 

14. ABSTRACT  
 
The aiding of an INS using measurements over time of the line of sight of ground features as they come into view 
of an onboard camera is investigated. The objective is to quantify the reduction in the navigation states’ errors by 
using bearings-only measurements over time of terrain features in the aircraft’s field of view. INS aiding is 
achieved through the use of a Kalman Filter. The design of the Kalman Filter is presented and it is shown that 
during a long range, wings level cruising flight at constant velocity and altitude, a 90% reduction in the aided INS-
calculated navigation state errors compared to a free INS, is possible. 
 

15. SUBJECT TERMS 
INS Aiding, Bearings-Only Measurements, Kalman Filter, SLAM 

16. SECURITY CLASSIFICATION OF:  17. LIMITATION 
OF ABSTRACT  
 

UU  
 

18. NUMBER 
OF PAGES  
 
 90 
 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Meir Pachter, ENG 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

19b. TELEPHONE NUMBER (Include Area Code) 

(937)255-3636, ext 7247 
 


	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	Inertial Navigation System Aiding Using Vision
	James O. Quarmyne
	Recommended Citation


	Abstract
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Background
	Motivation
	Approach

	Literature Review
	Introduction
	Reference Frames
	Coordinate System Transformations
	Inertial Navigation
	Specific Force and Gravity
	INS Equation
	SLAM
	Camera Model
	Recent Research

	Methodology
	Introduction
	Development
	Approach and Model Description
	Performance of Aided INS

	Simulation Results
	Introduction
	Simulation

	Conclusion
	Appendix A: Simulation Results
	Appendix B: Ground Feature Calculations
	Bibliography

