
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2013

Atmospheric Impact on Long Pulse Laser
Detection and Ranging (LADAR) Systems
Isaac B. Putnam

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Other Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Putnam, Isaac B., "Atmospheric Impact on Long Pulse Laser Detection and Ranging (LADAR) Systems" (2013). Theses and
Dissertations. 896.
https://scholar.afit.edu/etd/896

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/896?utm_source=scholar.afit.edu%2Fetd%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Atmospheric Impact on Long Pulse Laser Detection and Ranging 
(LADAR) Systems 

 
THESIS 

 

Isaac B. Putnam, First Lieutenant, USAF 

AFIT-ENG-13-M-39 

 

 
DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
  

Wright-Patterson Air Force Base, Ohio 
 

DISTRIBUTION STATEMENT A.  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.   

 



 

 

 
 

ATMOSPHERIC IMPACT ON LONG PULSE LASER DETECTION AND RANGING 
(LADAR) SYSTEMS 

 
 

THESIS 
 
 
 

Presented to the Faculty 
 

Department of Electrical and Computer Engineering 
 

Graduate School of Engineering and Management 
 

Air Force Institute of Technology 
 

Air University 
 

Air Education and Training Command 
 

In Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science in Electrical Engineering 
 
 
 
 

Isaac B. Putnam, BS 
 

First Lieutenant, USAF 
 
 
 
 

March 2013 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 



ATMOSPHERIC IMPACT ON LONG PULSE LASER DETECTION AND RANGING 
(LADAR) SYSTEMS 

Approved: 

Isaac B. Putnam, BS 
First Lieutenant, USAF 

Dr. Stephen C. Cain, PhD (Chairman) 

Dr. Victor Gamiz, PhD (Member) 

7Feb2013 
Date 

7Feb2013 
Date 

7 Feb2013 
Date 



iv 
 

Abstract 

For conventional imaging systems, geosynchronous earth orbit (GEO) space 

objects cannot be resolved due to their 40 Mm distance. There exists a strong need to 

obtain high resolution images of GEO objects and to accomplish this task, investigation 

into the suitability of inverse synthetic aperture laser radar (ISAL) is currently underway.  

A critical component in determining this suitability is to accurately model the 

atmospheric impacts on laser detection and ranging (LADAR) pulses.  The expected 

result is that atmospheric impacts are a strong function of the illumination beam length.   

Conventional knowledge says that while the atmosphere churns, wind is the 

predominant cause of temporal evolution which simplifies all modeling and simulation 

into the frozen flow hypothesis.  The concern is that the frozen flow hypothesis based 

phase screen generation techniques fail to accurately predict the temporal development of 

optical phase.  Additionally, wavefront phase aberrations introduced by the atmosphere 

are dominated by tilt, which is often underrepresented in the frozen flow approximation 

and causes the most degradation of direct-detection LADAR system performance.   

This thesis proposes a new approach and provides a detailed derivation of a new 

temporally evolving Zernike polynomial based atmospheric phase screen generation 

model.  This new model is verified through laboratory experiment, and then utilized to 

analyze atmospheric effects on long pulse LADAR beams and their impact on mixing 

efficiencies.  It is shown that this new turbulent flow model more accurately predicts 

mixing efficiency than that of the basic frozen flow approximation.     



 

v 
 

Acknowledgments 

I would like to earnestly thank Dr. Stephen Cain for his guidance which has been 

crucial to the development of this research.  Dr. Cain always demonstrated unparalleled 

dedication and enthusiasm when assisting me.  I hope that I have gleaned some of his 

professionalism and research methodologies.  I would also like to thank my committee 

members, Maj Milo Hyde and Dr. Victor Gamiz, for taking me on as a student; both have 

a wealth of knowledge and have been truly remarkable resources.  I consider myself 

entirely fortunate to have these three subject matter experts on my committee.  

 

 
       Isaac B. Putnam 



 

vi 
 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

List of Equations ................................................................................................................ xi 

I.  Introduction .....................................................................................................................1 

1.1 Problem Statement and Hypothesis ..........................................................................1 
1.2 Research Focus..........................................................................................................2 
1.3 Thesis Overview........................................................................................................3 

II. Background Theory .........................................................................................................4 

2.1 Inverse Synthetic Aperture LADAR (ISAL) ............................................................4 
2.2 System Overview ......................................................................................................5 
2.3 Atmospheric Model ...................................................................................................6 

2.3.1 FFT-based Phase Screen Generation ................................................................ 7 
2.3.2 Zernike-based Phase Screen Generation .......................................................... 8 

2.4 Mixing Efficiency ...................................................................................................11 
2.5 Chapter Summary....................................................................................................12 

III. Temporal Correlation ...................................................................................................13 

3.1 Expanding the Random Walk Algorithm ................................................................13 
3.2 Temporal Evolution of Zernike-based Phase Screens ............................................18 
3.3 Chapter Summary....................................................................................................19 

IV. Model Evaluation.........................................................................................................20 

4.1 Laboratory Experiment Configuration ....................................................................20 
4.1.1 Point Source ................................................................................................... 21 
4.1.2 Optics ............................................................................................................. 21 
4.1.3 Turbulent Medium .......................................................................................... 22 

4.2 Extracting r0 ............................................................................................................23 
4.2.1 Maximum Correlation .................................................................................... 23 
4.2.2 Gerchberg-Saxton Phase Retrieval ................................................................. 24 



 

vii 
 

4.2.3 Results of Extracting r0 .................................................................................. 25 
4.3 Comparing Recorded, Simulated, and Theoretical Tilt Correlation in Time ..........26 
4.4 Chapter Summary....................................................................................................28 

V.  Simulation Analysis and Results..................................................................................29 

5.1 Simulation Environment .........................................................................................29 
5.1.1 Atmosphere .................................................................................................... 30 
5.1.2 Sub Pixel Shifting ........................................................................................... 35 
5.1.3 Coherent Illumination Beam .......................................................................... 36 
5.1.4 System Integration .......................................................................................... 36 

5.2 Modulation Efficiency as the Pulse Length Varies .................................................38 
5.2.1 Total Atmospheric Change ............................................................................. 39 
5.2.2 Mixing Efficiency Results .............................................................................. 43 

5.3 Chapter Summary....................................................................................................44 

VI. Conclusions and Recommendations ............................................................................45 

6.1 Summary .................................................................................................................45 
6.2 Conclusions of Research .........................................................................................46 
6.3 Significance of Research .........................................................................................46 
6.4 Recommendations for Future Research ..................................................................47 
6.5 Chapter Summary....................................................................................................48 

Appendix A – Zernike-based Mixing efficiency ...............................................................49 

Appendix B – FFT-based Mixing efficiency .....................................................................51 

Bibliography ......................................................................................................................53 

  



 

viii 
 

List of Figures 

 Page 
Figure 1:  FFT-based phase screen generation. .................................................................. 7 

Figure 2:  FFT-based phase screen. .................................................................................... 8 

Figure 3:  Zernike-based phase screen. ............................................................................. 10 

Figure 4:  Interferometer functionality. ............................................................................ 11 

Figure 5:  Experimental configuration. ............................................................................. 20 

Figure 6:  Camera and optics. ........................................................................................... 22 

Figure 7:  Gerchberg-Saxton algorithm. ........................................................................... 24 

Figure 8:  Phase extracted from raw data.......................................................................... 25 

Figure 9:  Maximum correlation r0 fitting. ....................................................................... 25 

Figure 10:  Mean squared error r0 fitting. ......................................................................... 26 

Figure 11:  Theoretical OTF compared to Fourier (left) & Zernike (right). ..................... 28 

Figure 12:  Atmosphere’s structure................................................................................... 30 

Figure 13:  Zernike phase screens representing atmospheric layers. ................................ 32 

Figure 14:  FFT phase screens representing atmospheric layers. ..................................... 33 

Figure 15:  Total Zernike-based phase, representing 8 atmospheric layers. ..................... 34 

Figure 16:  Total FFT-based phase, representing 8 atmospheric layers. .......................... 34 

Figure 17:  Atmospheric effects over 10 µsec pulse. ........................................................ 37 

Figure 18:  Atmospheric effects over 100 µsec pulse. ...................................................... 38 

Figure 19:  Total atmospheric change in Zernike-based (top) and FFT-based (bottom). . 40 

Figure 20:  Zernike-based θatmΔ over 10 µsec pulse (top) and 100 µsec pulse (bottom). . 41 

Figure 21:  FFT- based θatmΔ over 10 µsec pulse (top) and 100 µsec pulse (bottom). ...... 42 



 

ix 
 

Figure 22:  Average mixing efficiency with logarithmic trend lines. ............................... 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

List of Tables 

 Page 
Table 1:  Tilt correlation in time ....................................................................................... 27 

Table 2:  Zernike-based mixing efficiency ....................................................................... 50 

Table 3:  FFT-based mixing efficiency ............................................................................. 52 

 

  



 

xi 
 

List of Equations 

 Page 
Equation 1:  Modified von-Kármán spectrum .................................................................... 7 

Equation 2:  Idealized von-Kármán spectrum .................................................................... 8 

Equation 3:  Definition of Zernike polynomials ................................................................. 9 

Equation 4:  Radial function definition ............................................................................... 9 

Equation 5:  Zernike phase screen ...................................................................................... 9 

Equation 6:  Definition of aj vector .................................................................................... 9 

Equation 7:  Cholseky factorization .................................................................................... 9 

Equation 8:  Covariance matrix ........................................................................................ 10 

Equation 9:  Definition of Kzz’ ........................................................................................... 10 

Equation 10:  Conditional delta function .......................................................................... 10 

Equation 11:  Average interferometer intensity ................................................................ 12 

Equation 12:  Bayes’ conditional density ......................................................................... 14 

Equation 13:  Standard bivariate Gaussian ....................................................................... 14 

Equation 14:  Marginal density function .......................................................................... 14 

Equation 15:  Expanded joint density function ................................................................. 15 

Equation 16:  ñ vector conditional mean .......................................................................... 15 

Equation 17:  ñ vector conditional variance ..................................................................... 15 

Equation 18:  Base definition of Rn(δt) ............................................................................. 15 

Equation 19:  Tilt correlation at time, t=0 ........................................................................ 15 

Equation 20:  Tilt correlation at time, t=0+Δt .................................................................. 15 

Equation 21:  Rn(δt) expanded ........................................................................................... 16 



 

xii 
 

Equation 22:  Rn(δt) expanded and rearranged .................................................................. 16 

Equation 23:  Rn(δt) expanded by change of variable ....................................................... 16 

Equation 24:  First Fourier correlation.............................................................................. 17 

Equation 25:  Second Fourier correlation ......................................................................... 17 

Equation 26:  Pk,l correlation of aperture with Zernike polynomial ................................. 17 

Equation 27:  Rn(δt) in terms of Rθ correlation .................................................................. 17 

Equation 28:  Phase structure-correlation relationship ..................................................... 17 

Equation 29:  Dn(δt) in terms of phase correlations .......................................................... 17 

Equation 30:  Dn(δt) in terms of structure difference ........................................................ 18 

Equation 31:  Phase structure function ............................................................................. 18 

Equation 32:  Maximum spatial frequency for circular aperture ...................................... 21 

Equation 33:  Lensmaker’s equation................................................................................. 21 

Equation 34:  Convective air velocity ............................................................................... 23 

Equation 35:  Cross correlation of real-valued signals ..................................................... 23 

Equation 36:  Theoretical tilt in time ................................................................................ 26 

Equation 37:  Theoretical tilt correlation in time .............................................................. 27 

Equation 38:  Far field propagation criteria ...................................................................... 31 

Equation 39:  Fourier shift theorem .................................................................................. 35 

Equation 40:  Sub pixel shift ............................................................................................. 35 

Equation 41:  Euler’s formula ........................................................................................... 35 

Equation 42:  Total control intensity ................................................................................ 38 

Equation 43:  Total test intensity ...................................................................................... 38 

Equation 44:  Test beam ................................................................................................... 38 



 

xiii 
 

Equation 45:  Control beam .............................................................................................. 38 

Equation 46:  Mixing efficiency ....................................................................................... 39 

 



 

1 

Atmospheric Impact on Long Pulse 
Laser Detection and Ranging 

(LADAR) Systems 

I.  Introduction 

Imaging otherwise non-resolvable Geosynchronous Earth Orbiting (GEO) objects 

with Inverse Synthetic Aperture Laser detection and ranging (LADAR), or ISAL is 

currently the focus of a recent Air Force Research Laboratory (AFRL) effort.  ISAL 

acquires images of a coherently illuminated target as it traverses the sky.  This 

synthesizes a much larger aperture than that of the observatory and through post 

processing, permits the construction of high resolution images.  Considering the 3.67 m 

primary mirror of the Advanced Electro Optical System (AEOS), and a typical operating 

wavelength λ of 0.5 μm, the minimal resolvable angle 𝐴𝜃 is equal to 𝐴𝜃 = 1.22𝜆 3.67⁄ , 

or roughly 0.1667 μrad.  Transposing that to the smallest resolvable object at a typical 

GEO distance of 40 Mm equates to approximately 6.5 meters.  The largest of GEO 

satellites therefore occupy no more than a few pixels of an image.  ISAL is intended to 

overcome the physical limitations of meter class telescopes such as the AEOS.        

1.1 Problem Statement and Hypothesis 

This thesis evaluates the atmospheric impacts on long pulse LADAR systems, a 

manageable portion of the much larger ISAL problem.  More specifically, this thesis 

analyzes mixing efficiencies as a function of the pulse length.  The analysis provided 

herein aids in the investigation of ISAL.   
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Conventional knowledge implies atmospheric impacts are a strong function of the 

illumination wavelength and beam duration.  The often ignored additional dimension of 

temporal evolution, the boiling and churning of turbulence, is the primary focus of this 

thesis.  Even during the relatively long beam pulses used in ISAL, the atmosphere simply 

does not have time to “shift” according to the frozen flow hypothesis approximation.  

Note that ISAL utilizes a chirped waveform, which is paraphrased as a pulse within this 

thesis.  Consider for a moment a 100 μsec long pulse where the combined and prevailing 

wind is 10 m/sec.  If prognostic analysis is limited to frozen flow, then the atmosphere 

will shift a single millimeter during that pulse.  For shorter pulse lengths, lower wind 

speeds, or a combination of the two, the superficial shift is even less significant.  It is 

expected that the affects of the atmosphere upon the pulse are directly related to the 

illumination wavelength and the duration of the pulse.   

1.2 Research Focus 

It is hypothesized that since the atmosphere cannot flow by any considerable 

amount on these time scales, perhaps it can boil, or churn.  Therefore, the critical 

component of this thesis is the development of a new, accurate atmospheric phase screen 

generation technique that not only shifts as the frozen flow model does, but also evolves.  

This new model permits realistic atmospheric evolution during the relatively short pulses 

of spotlight-mode ISAL illumination, and ultimately the detection and imaging of GEO 

space objects.   

The predominate focus of this research is the development and validation of the 

new temporal phase screen generation model.  As previously mentioned, it is expected 
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that atmospheric impacts are a function of the ISAL system’s pulse lengths.  This new, 

unique and useful tool should not only verify such conventional understanding, but can 

be used in numerous applications, particularly within LADAR based applications.  This 

model is validated through laboratory experiment in which recorded data will be 

collected, then compared to theoretical as well as the new and commonly used models.  

The modeling and simulation, recorded lab data analysis, and subsequent validation are 

performed within the Matlab® environment.     

1.3 Thesis Overview 

Following this brief introductory chapter, Ch. II provides an introduction to ISAL, 

simulating atmospheric turbulence with phase screens, and mixing efficiency.  Two 

principal existing methods of phase screen simulation are discussed: Fourier-based and 

Zernike-based approaches.  The development of temporal correlation of the new Zernike-

based turbulent-flow phase screen generation is the topic of Ch. III.  The laboratory 

configuration which provides measured data for the new model’s comparison is discussed 

in Ch. IV as well as the results of this with comparative analysis.  The methodologies of 

simulation used to achieve the objectives of Sec. 1.2 are discussed in Ch. V, as well as a 

presentation and discussion of the findings.  Finally, Ch. VI summarizes the research 

efforts of this thesis, discusses the challenges, critical results, and provides guidance for 

future related research efforts.   
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II. Background Theory 

This chapter introduces the basic concepts and components of the ISAL system 

that are modeled into simulation for subsequent analysis.  Basic phase screen generation 

techniques are discussed in terms of simulating atmospheric turbulence, with particular 

emphasis on the Zernike polynomial-based approach.  This is because Ch. III develops 

the new model based on the basic Zernike theory provided here.  Additionally, an 

overview of the system is presented, highlighting the relevant concepts of interferometry 

and its application to mixing efficiency. 

2.1 Inverse Synthetic Aperture LADAR (ISAL) 

Conventional imaging systems require a 10m class or larger aperture to provide 

useful information of distant GEO objects [12].  Synthetic aperture systems rely on 

relative movement between the target and observation point to effectively synthesize a 

larger aperture.  This permits cost savings by utilizing smaller optics.  Where synthetic 

aperture radar (SAR) systems rely on a moving observer with a static target, ISAL 

conversely relies on a moving target with static observation. 

ISAL has three key characteristics which differentiate it from these previously 

proposed solutions: tomographic imaging techniques, coherent illumination and 

heterodyne detection, and utilizing a chirped ISAL waveform [12].  These three 

characteristics in combination are expected to permit high resolution imaging.  Utilizing 

coherent illumination allows for tomographic reconstruction from the Fourier data, and in 

combination with heterodyne detection, provides methods for boosting the signal to noise 

ratio (SNR).   
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2.2 System Overview  

While utilizing ISAL eliminates the difficulty and cost of obtaining a 10m class 

telescope, it requires actively illuminating GEO objects and coherently detecting the 

return signal.  The process of active illumination incurs atmospheric perturbations of both 

the outbound and return waveform.  However the atmosphere effectively ends at 600km, 

1.5% of the 40 Mm distance.  As such, regardless of any irradiance fluctuations, beam 

spreading, or loss of spatial coherence of the outbound wavefront the remaining 39.4 Mm 

vacuous propagation ensures that even the largest GEO satellites are uniformly and 

coherently illuminated [1].   Therefore, as the goal is to determine the mixing efficiencies 

as the pulse length varies, the simulation may be modeled as a one-directional, 

illuminated-GEO-object-to-observation-point propagation.  Pulse length dictates the 

duration in which light propagates through the atmosphere, directly limiting the time for 

the atmosphere to evolve.  It is during this period that relative phase differences between 

the transmitted and reference beams affect mixing efficiencies.   

It is readily understood that even the most impressive adaptive optics (AO) 

systems, such as those within the AEOS, cannot continuously and fully correct wavefront 

perturbations.  If the AO system could fully compensate then there would be no losses in 

mixing efficiency.  This uncorrectable time interval in which modulation efficiency 

losses occur is what concerns AFRL.  Recall that if temporal evolution is limited to a 

frozen flow approximation, the AO system will require minimal to no compensation due 

to nearly non-existent shift. 

The ISAL system is expected to be integrated into the 3.67m class AEOS at the 

Air Force Maui Optical and Supercomputing (AMOS) observatory, where some of the 
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best seeing in the world is common.  A seeing parameter (Fried's constant), or r0, of 14 

cm is typical and is the value utilized in simulating the objectives of Sec. 1.2.  The GEO 

object will effectively be modeled as a point source illuminated by varying pulse lengths 

with a visible wavelength λ = 550 nm.  The GEO object illumination propagates through 

a discrete number of independently evolving phase screens to the 3.67m aperture as 

described in Sec 5.1.1. Then after propagating to the detector plane, the measured test 

beam is combined with the control beam to measure mixing efficiency.   

2.3 Atmospheric Model 

Turbulence is largely located within relatively few narrow concentrated layers at 

good astronomical sites such as AMOS [1].  Consider for a moment a critical component 

of optical imaging systems: lenses.  While a lens can converge, diverge, focus and 

disperse light, the most important property of a lens is the phase transformation 

introduced to the propagating light [6].  A lens in which light enters and exits at 

approximately the same transaxial coordinates is referred to as a thin lens.  Thin lenses 

primarily delay the incident wavefront proportional to the thickness of the lens at each 

coordinate.  In this sense, thin lens approximations of atmospheric turbulence and phase 

screens are synonymous.  This discrete modeling of the atmosphere is permitted by the 

profile of the structure constant of 𝐶𝑛2(ℎ), the refraction index fluctuations, with discrete 

values of height ℎ [1].  The layers of atmospheric turbulence are simulated with random 

phase screens whose power spectrum follows a Kolmogorov model.   

Two common phase screen generation models are comparatively analyzed for the 

objectives outlined in Sec 1.2.: the fast-Fourier-transform (FFT)-based method and the 
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Zernike polynomial-based method.  Other methods such as the Fourier series model will 

not be analyzed as they use the same frozen flow temporal evolution that the FFT method 

does [15].  The FFT-based method will provide comparison of frozen flow approximation 

to the new Zernike-based turbulent flow results.  The basic Zernike-based theory 

presented here is expanded to provide temporal evolution in Ch. III.  

2.3.1 FFT-based Phase Screen Generation 

The FFT-based methods are quite common since very large phase screens may be 

generated quickly.  FFT-based methods are similar in that they are generated from their 

respectively named power spectral densities (PSDs).  Put simply, these screens are 

generated by taking the inverse FFT of the square root of the PSD multiplied by a random 

zero mean, unit variance matrix.  See Fig. 1 for a basic visualization of this process.  

 

Figure 1:  FFT-based phase screen generation. 

One well known disadvantage of this approach is that lower-order aberrations such as tilt 

are often under-represented [14].  These lower-order aberrations make up a majority of 

the atmospheric energy spectrum and as such, must be included to produce realistic 

models.  One of the more widely used FFT-based methods is that of the modified von-

Kármán spectrum,  

Φ(𝜅) = 0.023(𝑟0)−5 3⁄ 𝑒−�
𝜅
𝜅𝑚

�
2

(𝜅2 + 𝜅02)−11 6⁄ . 
 

(1) 

Equation 1:  Modified von-Kármán spectrum  

The modified von-Kármán, allows an application of the inner (l0) and outer (L0) scales of 

turbulent eddies, leading to κm = 5.92/l0, and κ0 = 2π/L0, in which κ is the spatial 
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frequency and is scaled by a factor of Fried's constant, r0.  This investigation assumes 

ideal limits where L0 approaches infinity and l0 approaches zero, as this best reflects the 

inner and outer scales of the subsequently discussed Zernike-based method.  With these 

inner and outer scales, Eq. (1) reduces to Eq. (2).   

Φ(𝜅) = 0.023(𝑟0)−5 3⁄ (𝜅2)−11 6⁄  (2) 
Equation 2:  Idealized von-Kármán spectrum  

A sample screen generated by this method is shown in Fig. 2.  Discussion of generating 

FFT-based screens is limited to this point as they are well known [9], [14], [15], and only 

utilized for comparative analysis.  Further discussion and methodology for generating 

FFT-based frozen flow approximation phase screens is readily available. 

 

Figure 2:  FFT-based phase screen. 

 
2.3.2 Zernike-based Phase Screen Generation 

Drawing a stark contrast to Fourier methods, the Zernike polynomial approach 

does not begin with a random phase array.  Instead coefficients are combined into two-
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dimensional random functions.  In his 1976 paper, Noll [10] defined a new modified set 

of Zernike polynomials, 𝑍𝑗(𝑟, 𝜃).  He defined these polynomials to be  

 �
𝑍𝑒𝑣𝑒𝑛 𝑗(𝑟,𝜃) = √𝑛 + 1𝑆𝑛𝑚√2 cos(𝑚𝜃)

𝑍𝑜𝑑𝑑 𝑗(𝑟,𝜃) = √𝑛 + 1𝑆𝑛𝑚√2 sin(𝑚𝜃)  
� , 𝑚 ≠ 0 

 𝑍𝑗(𝑟,𝜃) = √𝑛 + 1𝑆𝑛0(𝑟),                                      𝑚 = 0 

(3) 

Equation 3:  Definition of Zernike polynomials 

where the functions 𝑆𝑛𝑚(𝑟) are referred to as radial functions and are defined as 

𝑆𝑛𝑚(𝑟) =  �
(−1)𝑠(𝑛 − 𝑠)!

𝑠! [(𝑛 + 𝑚) 2 − 𝑠⁄ ]! [(𝑛 −𝑚) 2 − 𝑠⁄ ]!
𝑟𝑛−2𝑠.

𝑛−𝑚
2

𝑠=0

 (4) 

Equation 4:  Radial function definition 

This function is based on a polar coordinate system where S is the radius, r is the position 

along the radius, and θ is the angle with respect to the x-axis.  Noll’s numbering sequence 

of the index j corresponding to each polynomial 𝑍𝑗 proceeds by row, then value of radial 

degree 𝑛, and increases with azimuthal frequency 𝑚.  Combining these equations, it is 

then possible to generate independent, random phase screens 𝛩𝑎𝑡𝑚 from the relationship 

𝛩𝑎𝑡𝑚(𝑆𝑟,𝜃) =  �𝑎𝑗𝑍𝑗(𝑟,𝜃)
𝐽

𝑗=1

. (5) 

Equation 5:  Zernike phase screen 

To generate the phase screen with accurate correlation it is necessary to calculate the 

coefficient amplitude vector 𝑎𝑗 by multiplying Φ with a zero-mean, unit-variance random 

vector 𝑛�⃗ .  The 𝑛�⃗  vector has a length equal to J.  The 𝑎𝑗 vector is defined as 

𝑎𝑗 = Φ𝑛�⃗ , (6) 
Equation 6:  Definition of aj vector 

where Φ is the Cholesky decomposition of the covariance matrix,   

Φ = √𝐶                 and                  ΦTΦ = 𝐶. (7) 
Equation 7:  Cholseky factorization 
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The covariance matrix 𝐶 is generated from the covariance of any two Zernike polynomial 

coefficients 𝑎𝑗 and 𝑎𝑗′  [13] as provided in Eq. (8):   

𝐶𝑗,𝑗′ =  𝐸�𝑎𝑗,𝑎𝑗′� =  
𝐾𝑧𝑧′𝛿𝑧Γ��𝑛 + 𝑛′ − 5 3⁄ �/2�(𝐷 𝑟𝑜⁄ )5/3

Γ[(𝑛 − 𝑛′ − 17 3⁄ )/2]Γ[(𝑛 − 𝑛′ − 17 3⁄ )/2]Γ[(𝑛 + 𝑛′ − 23 3⁄ )/2], (8) 

Equation 8:  Covariance matrix 

in which 

𝐾𝑧𝑧 ′ =  
Γ �14

3 � ��
24
5 �Γ �6

5��
5
6
�Γ �11

6 ��
2

2π2
×  (−1)

�𝑛+𝑛′−2𝑚�
2 �(n + 1)(n′ + 1) 

(9) 

Equation 9:  Definition of Kzz’ 

and  

𝛿𝑧 =  (𝑚 = 𝑚′) ��𝑝𝑎𝑟𝑖𝑡𝑦(𝑗, 𝑗 ′)   ∨   (𝑚 = 0)�. (10) 
Equation 10:  Conditional delta function  

An example of a phase screen generated by this method using 1,024 Zernike polynomials 

is provided in Fig. 3.   

 

 

Figure 3:  Zernike-based phase screen. 
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2.4 Mixing Efficiency 

Mixing efficiency, referenced interchangeably with modulation efficiency throughout this 

text, is the percent efficiency of combining a test signal with a control signal.  It should 

be accentuated that analysis of mixing efficiency has not previously been accomplished 

in terms of ISAL application.  The illumination signal is split and then later combined by 

interferometers, or beam splitters, as Fig. 4 depicts.   

 

Figure 4:  Interferometer functionality. 

The intended application in regards to ISAL involves boosting the target return signal 

SNR by adding it to an undistorted and delayed control signal.  In other words, mixing 

efficiency is the percent efficiency in which a split beam propagated through different 

paths, may be recombined.  Conventional knowledge assumes that obtainable modulation 

efficiencies are approximately 10%.  Sec 5.2 provides the mathematical methodology for 

accomplishing this analysis.  For the purposes of this introduction, mixing efficiency is 

defined as the fraction of test beam intensity minus the bias, all of which is divided by the 

bias; where the bias is half of the control beam intensity.  The control intensity is 

calculated by combining the intensity of two vacuous far-field propagated point sources, 
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subsequently synonymous with control beams.  The test intensity is calculated by 

combining the intensity of a vacuous far-field propagated point source with the intensity 

of point source propagated through turbulence [8]. The intensity ID incident on the 

detector D when taking account for the relative time delay, 2 ℎ 𝑐⁄ , where ℎ is the 

pathlength and 𝑐 is the speed of light, can be written as  

𝐼𝐷(ℎ) = 〈�𝐾1𝐮(𝑡) + 𝐾2𝐮 �𝑡 +
2ℎ
𝑐
��
2

〉, (11) 

Equation 11:  Average interferometer intensity  

where K1 and K2 are real numbers determined by the losses in the two paths and u(t) is 

the analytic signal representation of the light emitted by the source [7].   

2.5 Chapter Summary  

In summary, the ISAL system may be simplified into a one-directional, GEO-

object-to-observatory-point-source propagation.  Atmospheric turbulent layers will be 

represented by the FFT- and Zernike-based phase screens previously described, and will 

be temporally evolved by their individual means as detailed in Sec. 5.1.2 and Ch. 3 

respectively.  The pulse lengths dictate the duration of light traveling through the 

atmosphere, which in turn directly effects the time in which the atmosphere may evolve.  

It is during these brief pulses that attempting to combine the propagated beam with a 

control beam will effectively measure the theoretical mixing efficiency. 

 

 

 



 

13 

III. Temporal Correlation 

This chapter builds upon the understanding of Zernike-based phase screen 

generation discussed in Sec 2.3.2, providing the ability for statistically accurate temporal 

evolution of a phase screen not limited to the frozen flow approximation.  Atmospheric 

layers are modeled into the simulation by two dimensional phase screens representing 

respective layers of turbulence.  This alternating free-space diffraction and phase screen 

accumulation represents the effect of propagating through an extended volume of 

turbulence.  The Zernike-based approach is utilized because traditional, FFT-based phase 

screens are limited to frozen flow evolution.   Without determining the factor of 

correlation between individual pixels, the FFT methods can only shift, not evolve, with 

statistical accuracy.  In the application of ISAL, the atmosphere cannot shift any 

significant distance.  Yet atmospheric effects are still observed, thus, the need to 

investigate a new model that permits turbulent flow.  This chapter develops the means to 

generate a phase screen that evolves as it shifts to overcome the shortfall of frozen flow 

limitations.  

3.1 Expanding the Random Walk Algorithm  

The benefit of the Zernike-based method is that once a single random screen is 

generated, the correlation between each pixel is inherent within the Zernike polynomials.  

Cain's [3] work with atmospheric tilt has already generated a statistically accurate 

algorithm to temporally evolve tilt, the second and third Zernike polynomials.  By 

expanding this algorithm from these two polynomials to any N maximum number of 

Zernike polynomials and utilizing the methodology of the expanded algorithm, the 
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generation of a temporal correlation of the 𝑛�⃗  vector is computed.  Updating the 𝑛�⃗  vector 

is much more computationally efficient than it is to update the aj vector, as the 𝑛�⃗  vector is 

independent and identically distributed (IID).  With a temporally correlated 𝑛�⃗  vector, the 

aj vector can evolve accurately and in turn, contiguous phase screens may evolve.  The 

expansion of the random walk algorithm begins by utilizing Bayes' theorem of the 

conditional density function Eq. (12),  

𝑓�𝑛(𝑡𝑘+1)|𝑛(𝑡𝑘)�(𝑥|𝑦) =
𝑓𝑛(𝑡𝑘+1),𝑛(𝑡𝑘)(𝑥,𝑦)

𝑓𝑛(𝑡𝑘)(𝑦)  (12) 

 Equation 12:  Bayes’ conditional density 

in which the joint density function 𝑓�𝑛(𝑡𝑘+1),𝑛(𝑡𝑘)�(𝑥,𝑦) is zero mean Gaussian, 𝑡𝑘 and 𝑡𝑘+1 

are two different observation times, and 𝑛(𝑡𝑘) is a single element of the 𝑛�⃗  vector at time 

𝑡𝑘.  By denoting 𝐸[𝑛(𝑡𝑘)2]  =  𝐸[𝑛(𝑡𝑘 + 1)2] as 𝑅𝑛(0) and 𝐸[𝑛(𝑡𝑘)𝑛(𝑡𝑘 + 1)] as 

𝑅𝑛(𝛿𝑡), where 𝛿𝑡  =  𝑡𝑘 +  1 – 𝑡𝑘, the joint density assumes the standard bivariate 

Gaussian form [2]: 

𝑓𝑛(𝑡𝑘+1),𝑛(𝑡𝑘)(𝑥,𝑦) =
1

2𝜋[𝑅𝑛2(0)− 𝑅𝑛2(𝛿𝑡)]
1
2

× 𝑒
� −𝑅𝑛2(0)
2�𝑅𝑛2(0)−𝑅𝑛2(𝛿𝑡)�

� 𝑦2
𝑅𝑛(0)−

2𝑅𝑛(𝛿𝑡)𝑥𝑦
𝑅𝑛2(0)

+ 𝑥2
𝑅𝑛(0)��

. (13) 

 Equation 13:  Standard bivariate Gaussian 

The marginal density function 𝑓𝑛(𝑡𝑘)(𝑦) has the standard form of a Gaussian random 

variable as provided in Eq. (14).   

𝑓𝑛(𝑡𝑘)(𝑦) =
𝑒−𝑦2 2𝑅𝑛(0)⁄

�2𝜋𝑅𝑛(0)
. (14) 

 Equation 14:  Marginal density function 

By substituting Eq. (13) and Eq. (14) into Eq. (12) the expanded conditional density 

function is redefined as 
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𝑓𝑛(𝑡𝑘+1)|𝑛(𝑡𝑘)(𝑥|𝑦) =
1

�2𝜋�𝑅𝑛2(0)− 𝑅𝑛2(𝛿𝑡)� 𝑅𝑛(0)⁄
× 𝑒

�− 𝑅𝑛(0)
2�𝑅𝑛2(0)−𝑅𝑛2(𝛿𝑡)�

�𝑥 − 𝑦𝑅𝑛(𝛿𝑡)
𝑅𝑛(0) �

2
�

. (15) 

 Equation 15:  Expanded joint density function 

From this expanded conditional density, the conditional mean, Eq. (16), and the 

conditional variance, Eq. (17), of 𝑛(𝑡𝑘 + 1) given 𝑛(𝑡𝑘) necessary to update the 𝑛�⃗  vector 

are extracted: 

𝜇𝑛(𝑡𝑘+1)|𝑛(𝑡𝑘) =
𝑛(𝑡𝑘)𝑅𝑛(𝛿𝑡)

𝑅𝑛(0)  
 

𝜎𝑛(𝑡𝑛+1)|𝑛(𝑡𝑘)
2 =

�𝑅𝑛2(0) − 𝑅𝑛2(𝛿𝑡)�
𝑅𝑛(0) . 

 
(16) 

 
 

(17) 

Equation 16:  ñ vector conditional mean Equation 17:  ñ vector conditional variance 

Of significance at this point is the mathematical representation of the correlation of the 𝑛�⃗  

vector in time 𝑅𝑛�⃗ (𝛿𝑡), which once computed provides the ability to update the phase 

screens while maintaining both correlation and randomness.  The conditional mean in Eq. 

(16) can be rewritten as an expectation: 𝜇𝑛(𝑡𝑘+1)|𝑛(𝑡𝑘) = 𝐸[𝑛�⃗ (𝑡2)|𝑛�⃗ (𝑡1)].  By substitution 

of the inverse definition of the 𝑛�⃗  vector from Eq. (6), 𝑛�⃗ = Φ−1𝑎𝑗, the correlation between 

elements of the 𝑛�⃗  vectors can therefore be defined as 

𝑅𝑛�⃗ 𝑗(𝛿𝑡) = 𝐸 ���Φ𝑗,𝑘
−1𝑎𝑘(𝑡1)

𝑁

𝑘=1

���Φ𝑗,𝑙
−1

𝑁

𝑙=1

𝑎𝑙(𝑡2)��. (18) 

Equation 18:  Base definition of Rn(δt)  

Solving for the accurate correlation requires substitution of the a’s defined by [3] which 

expands Eq. (18) by the definitions of aj,k and aj,l in Eq. (19) and Eq. (20), respectively:   

𝑎𝑗,𝑘(𝑡1) =
∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑘(𝑤, 𝑠)𝛩𝑎𝑡𝑚(𝑤, 𝑠)𝑑𝑤𝑑𝑠

∫ ∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑘
2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

 

 

      𝑎𝑗,𝑙(𝑡2) =
∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑙(𝑤, 𝑠)𝛩𝑎𝑡𝑚�𝑤 + (𝑣𝑥)𝛿𝑡, 𝑠 + (𝑣𝑦)𝛿𝑡�𝜕𝑤2𝜕𝑠2

∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑘
2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

. 

(19)  
 
 
 

(20) 

Equation 19:  Tilt correlation at time, t=0 Equation 20:  Tilt correlation at time, t=0+Δt 

 



 

16 

The aperture is represented as A and the random atmospheric phase screen as 𝛩𝑎𝑡𝑚, each 

with the same coordinate system (w,s).  Note that 𝑎𝑗,𝑘 is considered to be at 𝑡 = 0 and 𝑎𝑗,𝑙 

is at time 𝑡 = 0 + 𝛿𝑡, where 𝛿𝑡 is the difference in time.  Finally, 𝑣𝑥 and 𝑣𝑦 are wind 

velocities.  With this substitution, observatory parameters, and atmospheric conditions 

are included in the definition of 𝑅𝑛�⃗ (𝛿𝑡) provided in Eq. (21):  

𝑅𝑛�⃗ 𝑗(𝛿𝑡) = 𝐸

⎣
⎢
⎢
⎢
⎢
⎡ ��Φ𝑗,𝑘

−1 ∫ ∫𝐴(𝑤1 , 𝑠1)𝜑𝑘(𝑤, 𝑠)𝛩𝑎𝑡𝑚(𝑤1, 𝑠1)𝜕𝑤1𝜕𝑠1
∫ ∫𝐴(𝑤, 𝑠)𝜑𝑘2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

𝑁

𝑘=1

�  ×

��Φ𝑗,𝑙
−1

𝑁

𝑙=1

∫ ∫𝐴(𝑤2, 𝑠2)𝜑𝑙(𝑤2, 𝑠2)𝛩𝑎𝑡𝑚�𝑤2 + 𝑣𝑥𝛿𝑡 , 𝑠2 + 𝑣𝑦𝛿𝑡�𝜕𝑤2𝜕𝑠2
∫ ∫𝐴(𝑤, 𝑠)𝜑𝑙2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

�
⎦
⎥
⎥
⎥
⎥
⎤

. (21) 

Equation 21:  Rn(δt) expanded 

The previous notation of the indexed Zernike polynomials 𝑍𝑗 has been redefined as 𝜑𝑘 

and 𝜑𝑙 in Eq. (21), permitting the update operation, which is the means for temporally 

correlated evolution.  By rearranging, recognizing that the expectation operation is linear, 

and grouping similar terms, Eq. (21) is redefined as Eq. (22):  

𝑅𝑛�⃗ 𝑗(𝛿𝑡) = ��Φ𝑗,𝑘
−1Φ𝑗,𝑙

−1
𝑁

𝑙=1

∫∫ ∫ ∫𝐴(𝑤1, 𝑠1)𝐴(𝑤2, 𝑠2)𝜑𝑗,𝑘(𝑤1 , 𝑠1)𝜑𝑗,𝑙(𝑤2, 𝑠2)
∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑘

2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 ∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑙
2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

.
𝑁

𝑘=1

   

×   𝐸[Θatm(𝑤1, 𝑠1)𝛩𝑎𝑡𝑚(𝑤2 + 𝑣𝑥𝛿𝑡 , 𝑠2 + 𝑣𝑥𝛿𝑡)]𝜕𝑤1𝜕𝑠1𝜕𝑤2𝜕𝑠2 

(22) 

Equation 22:  Rn(δt) expanded and rearranged 

This is possible due to the first line in Eq. (21) being deterministic.  Recognizing that the 

expectation in the second line is a correlation, Eq. (22) is redefined as Eq. (23) by a 

change of variables, 𝜏𝑥  = (𝑤2 − 𝑤1), 𝜏𝑦 = (𝑠2 − 𝑠1) and 𝜕𝜏𝑥 =  𝜕𝑤2, 𝜕𝜏𝑦 =  𝜕𝑠2.  

𝑅𝑛�⃗ 𝑗(𝛿𝑡) = ��Φ𝑗,𝑘
−1Φ𝑗,𝑙

−1
𝑁

𝑙=1

∫ ∫∫ ∫𝐴(𝑤1, 𝑠1)𝐴�𝑤1 + 𝜏𝑥 , 𝑠1 + 𝜏𝑦�𝜑𝑗,𝑘(𝑤1, 𝑠1)𝜑𝑗,𝑙�𝑤1 + 𝜏𝑥, 𝑠1 + 𝜏𝑦�
∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑘

2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 ∫∫𝐴(𝑤, 𝑠)𝜑𝑗,𝑙
2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

𝑁

𝑘=1
×    𝑅𝜃��𝜏𝑥 + (𝑣𝑥 + 𝑣𝑏)𝛿𝑡, 𝜏𝑦 + (𝑣𝑥 + 𝑣𝑏)𝛿𝑡��𝜕𝑤1𝜕𝑠1𝜕𝜏𝑥𝜕𝜏𝑦 

(23) 

Equation 23:  Rn(δt) expanded by change of variable 

The first line of the Eq. (23) numerator is simplified as two independent correlations of 

Zernike polynomials with the aperture, Eq. (24) and Eq. (25):   
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𝐹 =  𝐴(𝑤1, 𝑠1)𝜑𝑗,𝑘(𝑤1, 𝑠1) 
 

𝐺 =  𝐴�𝑤1 + 𝜏𝑥, 𝑠1 + 𝜏𝑦�𝜑𝑗,𝑙�𝑤1 + 𝜏𝑥, 𝑠1 + 𝜏𝑦� 

(24)  
 
 

(25) 
Equation 24:  First Fourier correlation Equation 25:  Second Fourier correlation 

 Using Fourier transform correlation, this is subsequently redefined as the inner double 

integral operation Pk,l: 

𝑃𝑘,𝑙�𝜏𝑥 , 𝜏𝑦� = � � 𝐴(𝑤1, 𝑠1)𝜑𝑗,𝑘(𝑤1, 𝑠1)𝐴�𝑤1 + 𝜏𝑥 , 𝑠1 + 𝜏𝑦�𝜑𝑗,𝑙�𝑤1 + 𝜏𝑥 , 𝑠1 + 𝜏𝑦�
∞

∞

∞

∞

 𝜕𝑤1𝜕𝑠1 (26) 

Equation 26:  Pk,l correlation of aperture with Zernike polynomial 

Pk,l, provided in Eq. (26), is deterministic with the previously mentioned inputs, and is 

therefore only calculated once while computing a 𝑅𝑛�⃗ 𝑗(𝛿𝑡).  By defining Pk,l in this manner, 

the quadruple integral in Eq. (23) is simplified in Eq. (27) as the correlation operation is 

independent of the outer double integral:  

𝑅𝑛�⃗ 𝑗(𝛿𝑡) = ��𝛷𝑗,𝑘
−1𝛷𝑗,𝑙

−1
𝑁

𝑙=1

∫ ∫𝑃𝑘.𝑙�𝜏𝑥, 𝜏𝑦�𝑅𝜃��𝜏𝑥 + 𝑣𝑥𝛿𝑡, 𝜏𝑦 + 𝑣𝑥𝛿𝑡��𝜕𝜏𝑥𝜕𝜏𝑦
∫ ∫𝐴(𝑤, 𝑠)𝜑𝑘2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 ∫∫𝐴(𝑤, 𝑠)𝜑𝑙2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

𝑁

𝑘=1

. (27) 

Equation 27:  Rn(δt) in terms of Rθ correlation 
Unfortunately there is no method to compute the correlation between atmospheric phase 

screens 𝑅𝜃 directly using Kolmogorov models for the atmosphere because 𝑅𝜃(0) → ∞. 

Therefore, the relationship of the phase structure to phase correlation defined by Eq. (28), 

is substituted in [3]:   

𝐷𝑛�⃗ 𝑗(𝛿𝑡) = 2𝑅𝑛�⃗ 𝑗(0) − 2𝑅𝑛�⃗ 𝑗(𝛿𝑡). (28) 
Equation 28:  Phase structure-correlation relationship 

Mathematical manipulation is required to use this relationship; it is necessary to rearrange 

Eq. (27) as well as add zero (+ 𝑅𝜃[0,0] − 𝑅𝜃[0,0]).  This substitution redefines Eq. (27) as 

Eq. (29), now in terms of 𝐷𝑛�⃗ 𝑗(𝛿𝑡) instead of 𝑅𝑛�⃗ 𝑗(𝛿𝑡):    

𝐷𝑛⃗𝑗(𝛿𝑡) = ��Φ
𝑗,𝑘

−1Φ
𝑗,𝑙

−1

𝑁

𝑙=1

∫∫ 𝑃𝑘.𝑙�𝜏𝑥, 𝜏𝑦�2�
𝑅𝜃[0,0]−𝑅𝜃[0,0] + 𝑅𝜃�𝜏𝑥, 𝜏𝑦� −
𝑅𝜃��𝜏𝑥 + 𝑣𝑥𝛿𝑡, 𝜏𝑦 + 𝑣𝑥𝛿𝑡��

� 𝜕𝜏𝑥𝜕𝜏𝑦

∫ ∫ 𝐴(𝑤, 𝑠)𝜑𝑘2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 ∫∫𝐴(𝑤, 𝑠)𝜑𝑙2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

𝑁

𝑘=1

 
(29) 

Equation 29:  Dn(δt) in terms of phase correlations 
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By pairing the phase variances with the appropriate phase correlations, the correlation 

functions in Eq. (29) can be expressed in terms of a phase structure function difference:  

𝐷𝑛⃗𝑗(𝛿𝑡) = ��Φ
k

−1Φ
l

−1

𝑁

𝑙=1

𝑁

𝑘=1

∫∫ 𝑃𝑘.𝑙�𝜏𝑥, 𝜏𝑦��𝐷𝜃�𝜏𝑥 + 𝑣𝑥𝛿𝑡, 𝜏𝑦 + 𝑣𝑥𝛿𝑡� − 𝐷𝜃�𝜏𝑥, 𝜏𝑦��𝜕𝜏𝑥𝜕𝜏𝑦
∫ ∫ 𝐴(𝑤, 𝑠)𝜑𝑘2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 ∫∫𝐴(𝑤, 𝑠)𝜑𝑙2(𝑤, 𝑠)𝜕𝑤𝜕𝑠 

. (30) 

Equation 30:  Dn(δt) in terms of structure difference 
With Eq. (30) in terms of a difference in phase structure function, Eq. (31) providing the 

methodology to analytically calculate 𝐷𝜃, 𝐷𝑛�⃗  may now be solved for, and subsequently 

𝑅𝑛�⃗ , by rearranging the relationship of Eq. (28), 𝑅𝑛�⃗ = (𝐷𝑛�⃗ − 2) 2⁄ .   Recall that the 𝑛�⃗  

vector is zero mean and unit variance and as such, 𝑅𝑛�⃗ (0) = 1.  Note that 

𝐷𝜃�𝜏𝑥, 𝜏𝑦� = 6.88�
𝜏𝑥2 + 𝜏𝑦2

𝑟𝑜2
�
5 6⁄

. (31) 

Equation 31:  Phase structure function 

3.2 Temporal Evolution of Zernike-based Phase Screens  

With 𝑅𝑛�⃗  calculated for a desired number of polynomials N, and inputs A, r0, and 

wind speeds 𝑣𝑥 &  𝑣𝑦, the random 𝑛�⃗  vector can be accurately updated with conditional 

mean, Eq. (16) and conditional variance, Eq. (17).  The 𝑅𝑛�⃗  vector only needs to be 

generated once for each set of conditions.  Subsequently, from the definition of the 

Zernike polynomial coefficient amplitudes, Eq. (6), the phase screen 𝜙(𝑆𝑝,𝜃) defined in 

Sec 2.3.2 can be temporally evolved very quickly.  Note that an independent 𝑅𝑛�⃗  is 

required for each individual phase screen given various wind velocities.  The 

computational requirements to generate a 𝑅𝑛�⃗  vector is a function of the number of 

Zernike polynomials used to simulate a phase screen.  For instance, it requires less than a 

minute to generate 𝑅𝑛�⃗  with 128 polynomials on the computer system used to perform the 

analysis in this thesis.  The system requires roughly 12 minutes to generate a 𝑅𝑛�⃗  with 
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1,024 polynomials, the amount used in all subsequent analysis.  As alluded to previously, 

the tradeoff between this Zernike-based approach and the FFT-based approach is time.  

To generate the first 8 screens takes just over an hour due to the eight computations of 

𝑅𝑛�⃗ .  However, once the 𝑅𝑛�⃗  vectors are generated, the Zernike-based simulations 

described in subsequent chapters are completed in well under an hour.  Inversely, the 

FFT-based simulations generate the initial 8 large phase screens in less than a minute, but 

the temporal simulations used for comparative analysis requires multiple hours to 

complete.  This is in large part due to the computational requirements necessary to 

perform the sub-pixel shifts of the frozen flow model based on the Fourier shift theorem.  

A detailed description of implementing this sub pixel shift is provided in Sec. 5.1.2. 

3.3 Chapter Summary 

While computationally it is inefficient to regenerate the 𝑅𝑛�⃗   vector each time a 

simulation is performed, generating and storing a database of vectors for given input 

conditions permits the efficient temporal evolution of phase screens with highly accurate 

correlation.  In contrast to the frozen-flow method in which very large phase arrays must 

be generated, stored, and then shifted, this Zernike-based turbulent flow method requires 

only the sparsely populated correlation matrix C, the correlation vector 𝑅𝑛�⃗ , and the 

Zernike polynomials Zj to be stored.  The update then becomes an extremely fast matrix 

operation which does not require the enormous amount of memory and processing time 

required to store and shift giant phase arrays.   
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IV. Model Evaluation 

This chapter’s focus is the assessment of the new Zernike-based temporal model 

developed in the previous chapter through laboratory experiment.  The first section 

describes the laboratory configuration within which the new model is assessed as well as 

the approach of extracting the observed r0 in the laboratory.  Next, the comparative 

methods of evaluating recorded, simulated, and theoretical data are evaluated.  Finally, 

the results of this comparison are presented.   

4.1 Laboratory Experiment Configuration  

The evaluation of this new turbulent flow model is critical to the analysis 

accuracy of the thesis objectives.  Evaluation requires the comparison of recorded 

experimental data to generated simulation.  The experimental data was recorded by 

capturing one hundred successive photos, 14 photos per second, of a pinhole point source 

propagated though a concentrated turbulent medium directly in front of a 2 mm limiting 

aperture and then focused by a lens of focal length, fl = 100 mm. A large temperature 

differential generated the turbulent medium.  Extracting the r0 of the turbulence in this 

experiment is the subject of Sec. 4.2. 

         

Figure 5:  Experimental configuration. 
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4.1.1 Point Source 

The point source is created by puncturing a piece of aluminum foil with a 22 

gauge wire.  The point source was illuminated by a LED with wavelength λ = 550 nm.  

The backlit point source was given uniform lighting to prevent directional propagation by 

placing partially translucent material directly on the aluminum foil.   The LED light 

source was then enclosed to prevent ambient light noise.  

4.1.2 Optics 

Nyquist sampling requires a sampling frequency to be greater than or equal to 

twice the spatial frequency cut off, fs ≥ 2 fc.  The spatial frequency cut off for circular 

apertures is equal to the aperture diameter A divided by the wavelength times the focal 

length fl, given as fc = A/λ∙fl [6].  Therefore Nyquist sampling is fs ≥ 2A/λ∙fl.  By 

rearranging and accounting for the pixel size (Δ) as the spatial cut off, the limiting 

aperture diameter A can be used to force Nyquist sampling, as provided in Eq. (32):  

𝐴 <  
𝜆(𝑓𝑙)
2(𝛥)

<
(550𝑛𝑚)(0.1042𝑚)

2(16𝜇𝑚)
< 2.32𝑚𝑚. (32) 

Equation 32:  Maximum spatial frequency for circular aperture 

The focusing length was set based on a 97” propagation to the lens which has a focal 

length of 100 mm, or 3.937”.   Therefore, by the lens maker’s equation,  

1
3.937"

= �
1

4.103"
+

1
97"

� (33) 

Equation 33:  Lensmaker’s equation 
the focusing length fL was set to the image distance, approximately 4.1”, previously 

provided as 0.1042m.   

The camera’s CCD converts photons to charge, which is then read out serially 

through register operations.  The camera attempts to remove the Poisson distributed 
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incident bias from ambient noise by subtracting the average background from the entire 

signal.  See Fig. 6 for a physical picture of the Camera, limiting aperture, and focusing 

lens configuration.  

 

Figure 6:  Camera and optics. 

4.1.3 Turbulent Medium 

Had a turbulence wheel been utilized, this analysis would be incorrectly 

evaluating a frozen flow approximation.  Therefore a realistic concentrated turbulent 

medium was produced by using a soldering iron placed immediately in front of and 

below the limiting aperture.  The iron has a rating corresponding to a tip temperature of 

250 °C.  This temperature differential creates a very strong turbulent medium with 

convective air flow.  The velocity in the center of the convection vc of the flow is given in 

Eq. (34) and is a function of the acceleration of gravity g, vertical distance from the 

surface l, ambient room temperature te, surface temperature ts, and the temperature 

differential between the two dt = ts  - te [4]:  
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𝑣𝑐 = 0.65 � 𝑔×𝑙×𝑡𝑒
(273+𝑑𝑡)�

1 2⁄
. (34) 

Equation 34:  Convective air velocity 

Based on a 230 °C temperature difference over a 5 mm vertical distance, the vc is 

calculated to be 2.68 cm/sec, which translates to just under 2 mm per captured image.  

This is reflected in the subsequent results section of this chapter with small yet tangible 

correlations in time.  Based upon the long exposure OTF analysis provided in Sec. 4.3 it 

appears that the induced turbulent medium is Kolmogorov.   

4.2 Extracting r0 

To accurately simulate the new model, the first concern is to match the laboratory 

configuration as closely as possible.  Simulating this experiment is relatively easy given 

the aperture size, vertical air velocity, propagation distances, etc., except that r0 is 

initially unknown.  Knowing r0 is crucial for accurately comparing simulation to 

measured data, therefore two independent approaches are utilized in its extraction.   

4.2.1 Maximum Correlation 

The first method measures the point spread function (PSF) of the raw data which 

is compared to theoretical PSFs as a function of r0 through a maximum correlation 

estimator.  The mathematical representation for cross-correlation of real-valued signals 

across N discrete shifts is:     

𝜌(𝑡) =  
1
𝑁

 �
�𝑑(𝑡) − 𝑑̅�(𝛾(𝑡 + 𝜏) − 𝛾̅)

𝜎𝑑�𝜎𝛾�

𝑁

𝑟=0

 . (35) 

Equation 35:  Cross correlation of real-valued signals 
Here, d(t) is the measured intensity value and γ(t + τ) is the value at time t of the 

reference waveform shifted by time 𝜏, with their standard deviations, 𝜎𝑑� and 𝜎𝛾�, to 

normalize the value [5].  The cross correlation value ρ reaches an absolute maximum 
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when the two waveforms are at an optimized alignment.  Fig. 9 in Sec. 4.2.3 shows the 

resulting plot.   

4.2.2 Gerchberg-Saxton Phase Retrieval 

Additionally, as a verification of the maximum correlation estimator, the recorded 

long exposure optical transfer function (OTF) is extracted using a Gerchberg-Saxton 

phase retrieval algorithm, and compared to theoretical long exposure OTFs as a function 

of r0.  The Gerchberg-Saxton algorithm iteratively uses the forward and inverse Fourier 

transforms to approximate the amplitudes at the source and target plane, and the intensity 

of the target to the source intensity.  This iterative process progressively estimates, or 

extracts, the phase as it cycles.  Figure 7 depicts the entire cycle.   

         

Figure 7:  Gerchberg-Saxton algorithm. 

The square-root of the PSF estimate �𝐻(𝑤, 𝑠) is combined with the phase 

estimate 𝑒𝑗𝜑(𝑤,𝑠) to initiate the algorithm.  This iterative process updates the phase 

estimate as it cycles.  Figure 8 shows the extracted phase from this process, both wrapped 

and, by a least squares error algorithm, unwrapped.  The resulting mean squared error 

(MSE) plot between the measured and theoretical long exposure OTFs is presented in 

Sec. 4.2.3 Fig. 10.    
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Figure 8:  Phase extracted from raw data. 

4.2.3 Results of Extracting r0  

Figures 9 and 10 have maximum and minimums at 3.4 mm and 3.3 mm, 

respectively.  With these two independent approaches of measuring r0, it is with 

confidence to infer that the laboratory seeing parameter is accurately estimated as 3.4 

mm.  This extracted r0 allows for simulation of the frozen- and turbulent-flow models for 

comparative analysis.  Laboratory comparison next compares the measured results with 

generated and theoretical results.   

 

Figure 9:  Maximum correlation r0 fitting. 
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Figure 10:  Mean squared error r0 fitting. 

 Note that after reaching the maximum correlation and minimum MSE values, these 

graphs become asymptotic because as the respective r0 increases, the two comparison's 

approaches become diffraction limited. 

4.3 Comparing Recorded, Simulated, and Theoretical Tilt Correlation in Time 

With a measured r0, [3] provides the methodology to analytically calculate the 

theoretical tilt correlation given input parameters A=2 mm, r0=3.4 mm, and wind 

velocities vx = 0 & vy = 0.00192 m/s.  Based on the concentration of the turbulence 

analysis, the atmospheric phase is accepted as a thin lens approximation.  The theoretical 

basis for calculating x and y tilt in time is provided in Eq. (36) [3]:     

𝛼𝑥,𝑦(𝑡𝑛) =
∫ ∫ 𝐴(𝑤, 𝑠)𝜃𝑎𝑡𝑚(𝑤, 𝑠, 𝑡𝑛)𝜑𝑥,𝑦(𝑤, 𝑠)∞

∞
∞
∞

∫ ∫ 𝐴(𝑤, 𝑠)∞
∞

∞
∞ 𝜑𝑥,𝑦

2 (𝑤, 𝑠)
. (36) 

Equation 36:  Theoretical tilt in time 
Tilt 𝛼𝑥,𝑦 is calculated from the second and third Zernike polynomials φx,y which 

correspond to x and y tilt respectively, the aperture 𝐴, and instant draws of successive 

Zernike-based turbulent flow and FFT-based frozen flow phase screens 𝜃𝑎𝑡𝑚.  Since tilt is 



 

27 

zero mean [3], to calculate the temporal correlation of these tilts, it is important to 

recognize that the correlation of tilt in time is 

𝑅𝛼(𝑡1, 𝑡2) = 𝐸�𝛼𝑥,𝑦(𝑡1),𝛼𝑥,𝑦(𝑡2)�. (37) 
Equation 37:  Theoretical tilt correlation in time 

By Monte Carlo, an average of 100 simulations produce a Zernike- and Fourier-based 

generated mean tilt correlation in time.  These simulations draw on the same low wind-

velocity conditions calculated in Sec. 4.1.3 and the laboratory configuration of Sec. 4.1.  

The simulated measurements are compared to both recorded and theoretical values, all of 

which are presented in Table 1.  The results indicate that the turbulent flow Zernike-

based approach closely imitates both the recorded, and theoretical tilt correlation in time.  

Inversely, the frozen flow results poorly reflect both theory and recorded measurements.  

X Tilt Correlation in Time Y Tilt Correlation in Time 
Zernike Recorded Theory Fourier Zernike Recorded Theory Fourier 
0.1546 0.1596 0.1489 0.8194 0.1089 0.1022 0.1080 0.0512 

 

Table 1:  Tilt correlation in time 

This table is divided left to right by the observed x and y tilt correlations in time.  The x 

direction is horizontal, and the y direction is vertical while viewing from the direction of 

propagation.  Each section is further divided by the: Zernike-based turbulent flow 

simulation, laboratory measured and Recorded, analytically calculated Theory values, and 

Fourier-based frozen flow modeled tilt correlations in time.   

 In addition to these findings on temporal tilt correlation in time, including 1,024 

Zernike polynomials provides comparatively equivalent high special frequency content as 

that of Fourier-based approaches.  This is evidenced by the simulated long exposure OTF 

of this new turbulent flow model being equivalent to the OTF of standard frozen flow 

models [11].  This related technical paper shows that with using a mere 400 Zernike 
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polynomials acceptably mimics the frequency content of the long exposure OTF as 

evidenced by Fig. 11 which provides MSE values of 1.14E-4 and 9.08E-5 between the 

theoretical and the Fourier and Zernike OTFs, respectively.  

  

Figure 11:  Theoretical OTF compared to Fourier (left) & Zernike (right). 

4.4 Chapter Summary 

In summary, comparison of the Zernike-based temporally evolving screen is 

accomplished by pairing a simulated thin lens approximation with the parameters as 

described in Sec. 4.1.  The laboratory configuration circumvents the need to account for 

multiple layers of atmospheric turbulence and high wind speeds, which frozen flow 

approximations already accurately model.  Through this laboratory experiment it is 

shown that the new turbulent flow Zernike-based model provides better tilt correlation in 

time than the frozen flow approximation does.  This finding is the result of Monte Carlo 

analysis which compares theoretical, recorded, and the two approaches to simulate values 

of tilt correlation.  Further testing is required to verify higher order aberrations are 

correctly simulated since the laboratory environment was limited to an A / r0 ≤ 1. 
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V.  Simulation Analysis and Results 

This chapter discusses the methodology for accomplishing the objectives outlined 

in Sec. 1.2.  Based upon simulated phase screen analysis, this chapter discusses 

atmospheric attributes and related approximations, as well as how both the Zernike- and 

FFT-based phase screens are appropriately simulated.   Additionally, the approach for 

calculating modulation efficiency is included.  Finally, this chapter provides the  

analytical results for both approaches of atmospheric impacts on long pulse LADAR 

beams in the form of mixing efficiencies.   

5.1 Simulation Environment 

In order to analyze what effects the atmosphere has upon mixing efficiency as the 

LADAR pulse length changes, propagation through atmospheric turbulence must be 

accurately simulated.  The 3.67 m class AEOS telescope at the AMOS on Mt. Haleakalã 

is the intended observatory to utilize the ISAL capability.  Therefore utilizing the basic 

parameters of the AEOS will best address the objectives of this thesis.  Note that the AO 

system is not directly modeled into the simulation because the AO cannot account for the 

temporal effects as previously discussed.  However, it is assumed that the AO system 

effectively corrects wavefront error at time t = 0, or at the initiation of each illumination 

pulse.   

Two additional and forefront simplifications of this simulation are the absence of 

anisoplanatic effects and scintillation noise.  Anisoplanatic effects are of primary concern 

while viewing objects large enough for light from the target to propagate through 

different parts of the atmosphere to the observatory.  For example, looking at the moon 
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versus looking at a distant star.  Due to the significant distance and a relative point source 

target anisoplanatic effects may be ignored for this analysis, which greatly simplifies the 

simulation.  Secondly, ignoring scintillation noise is a conscious calculation.  The 

concentration of this analysis is to simulate and analyze idealistic conditions so that 

research efforts will better understand mixing efficiencies.  By ignoring scintillation 

effects, this analysis provides a baseline for such understanding.   

5.1.1 Atmosphere 

Atmospheric turbulence is represented by phase screens generated using two 

methods: the turbulent flow model described in Ch. III and then compared in Ch. IV, and 

the frozen flow model generated by Sec. 2.3.1 and evolved by Sec. 5.1.2.  Eight 

independent screens are generated representing thin lens approximations of the eight 

respective atmospheric regions shown in Fig. 12.  

 

Figure 12:  Atmosphere’s structure. 
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These phase screen representations of atmospheric regions are the: Thermosphere, 

Mesopause, Mesosphere, Stratopause, Stratosphere, Tropopause, and Troposphere, and 

an eighth screen is dedicated to the fast flowing, narrow current of the Jet Stream; which 

is located near the transition between the Troposphere and Tropopause [1].  The FFT-

based frozen flow approach is simulated for comparative analysis to the Zernike-based 

turbulent flow approach, and the results of this experiment are presented in Sec. 5.2.2.   

As a consequence of ignoring anisoplanatism, the atmospheric phase screens do 

not require screen to screen propagation.   As such, the eight independently evolving 

Zernike-based screens depicted in Fig. 13 and FFT-based screens shown in Fig. 14 are 

summed together, the results of which are presented in Fig. 15 and Fig. 16, respectively.  

By this summation a single far field propagation is easily performed for each time sample 

effectively modeling turbulence as being directly in front of the telescope.  Due to the 40 

Mm propagation the Fraunhofer diffraction condition in Eq. (38) is easily satisfied, i.e.,   

𝑧 ≫
𝑘(𝜉2 + 𝜂2)𝑚𝑎𝑥

2
  = 4 × 107𝑚 ≫ 5.712 × 106 𝑚 (38) 

Equation 38:  Far field propagation criteria 
where z is the 40Mm distance propagated, k is the wave number, 2π/λ where λ is 550 nm, 

and (𝜉,𝜂) are the Cartesian coordinates in the parallel plane in the x and y directions. The 

variables 𝜉2 and 𝜂2 denote the distance in the x and y directions.  With this condition met, 

a simple two-dimensional FFT of the GEO target may be performed, accurately modeling 

a Fraunhofer propagation [7]. 
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Figure 13:  Zernike phase screens representing atmospheric layers. 
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Figure 14:  FFT phase screens representing atmospheric layers. 
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Figure 15:  Total Zernike-based phase, representing 8 atmospheric layers. 
 
 
 
 
 

         

Figure 16:  Total FFT-based phase, representing 8 atmospheric layers. 
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5.1.2 Sub Pixel Shifting  

As previously stated, FFT-based screens are temporally evolved by the frozen 

flow approximation.  However due to the time scales of ISAL, winds in excess of 30 

m/sec translate to simulated screen shifts significantly less than a single pixel.  If this 

analysis were simplified, and these fractional shifts simply rounded, the screens would 

not move.  Therefore, to accomplish a non-discrete shift in a discrete environment the 

very large FFT screens are shifted using the Fourier shift theorem.  This theorem states 

that if F{g(x,y)} = G(fX,fY), then with real-valued constants 𝑎 and 𝑏 

ℱ{𝑔(𝑥 − 𝑎,𝑦 − 𝑏)} = 𝐺(𝑓𝑋 ,𝑓𝑌)𝑒−𝑗2𝜋(𝑓𝑋𝑎,𝑓𝑌𝑏). (39) 

Equation 39:  Fourier shift theorem 
In essence, the shift in the spatial domain is completed by introducing a linear phase shift 

in the frequency domain.  This linear phase shift 𝑒−𝑗2𝜋(𝑓𝑋𝑎,𝑓𝑌𝑏) is calculated by Euler’s 

formula.  For instance, a 13 m/sec x-directional wind velocity translates to a sub pixel 

shift according to  

𝑋𝑠ℎ𝑖𝑓𝑡 =  
(13 𝑚/𝑠𝑒𝑐)(𝛥𝑡)

(𝐴/𝑁) = 0.0145, (40) 

Equation 40:  Sub pixel shift 
where 𝛥𝑡 is 1 μsec (the time between samples), A is 3.67 m (the primary aperture 

diameter), and N is 4,096 (the number of pixels on the phase screen in the x direction).  

This fraction is fed into Euler’s formula  

𝑒𝑗𝑥𝑠ℎ𝑖𝑓𝑡 = �cos 𝑥𝑠ℎ𝑖𝑓𝑡 + 𝑗 sin 𝑥𝑠ℎ𝑖𝑓𝑡�, (41) 

Equation 41:  Euler’s formula 
which is then factored into the fX and fY of the Fourier shift theorem for x and y directional 

winds respectively.  This ensures that the spatial domain of the original screen remains 

unaltered, but simply shifted.   
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5.1.3 Coherent Illumination Beam  

The ISAL beam will be utilizing a chirped waveform; however this is modeled 

into the simulation environment with a rectangle function waveform.   The GEO space 

object is modeled as a single pixel in the source plane, illuminated by this unit amplitude 

rectangle waveform of varying length.  This analysis permits the ISAL beam length to 

vary from 10 µsec to 100 µsec, by 1 µsec intervals, for a total of 91 different pulse 

lengths.   The modulation efficiency is calculated by the total intensity received per pulse, 

Eq. (46).   

5.1.4 System Integration  

The simulation is built into Matlab® in the following manner.  First the constant 

variables such as aperture diameter A, Fried's constant r0, sampling sizes for the aperture 

and receiver planes are set, and the first 1,024 Zernike polynomials are loaded.  From the 

Zernike polynomials and the methodology detailed in Ch. II, the covariance matrix C is 

generated.  Random wind velocities for each atmospheric layer are randomly populated 

from a uniform distribution of -35 m/s to +35 m/s wind speeds in the x and y directions, 

permitting 360° of directional wind of randomly varying intensity for each independent 

atmospheric layer.   

These parameters are then fed into the temporal correlation algorithm developed 

in Ch. III, providing the correlation vector 𝑅𝑛�⃗ (𝛿𝑡) for evolving the eight Zernike-based 

atmospheric phase screens.  Transversely, these random wind speeds feed into the frozen 

flow approach which equate to the sub-pixel shifts detailed in Sec. 5.1.2.  The Zernike 

phase screens are then randomly generated by Eq. (5) and Eq. (6), the FFT screens are 
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generated by the approach described in Sec. 2.3.1, and then both are evolved in their 

respective manner.   

These eight independently generated, evolving and flowing screens are then 

summed over the third dimension for each time interval, where 𝛿𝑡 = 1 𝜇sec since 

anisoplanatic effects are ignored.   A single FFT propagation is performed to the aperture 

through that instance of the total atmosphere.   Then a second FFT propagation is 

performed from the aperture to the receiver plane, where the test and reference beams are 

combined as discussed in Sec. 2.4 and are shown in Fig. 17 and Fig. 18.  The raw images 

on the left of these figures are the total test beam image in the receiver plane; whereas, 

the combined images on the right are the test and reference beams combined.  These 

beams are used to measure the mixing efficiencies as calculated in Sec 5.2.  It is visually 

apparent that this method of heterodyne detection greatly increases the SNR. 

 

 

Figure 17:  Atmospheric effects over 10 µsec pulse. 
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Figure 18:  Atmospheric effects over 100 µsec pulse. 

5.2 Modulation Efficiency as the Pulse Length Varies 

 Building on the introduction of modulation efficiency provided in Sec. 2.4, the 

total intensity I in both beams is provided in Eq. (42) and Eq. (43), of which gcontrol and 

gtest are the resulting fields in the receiver plane with coordinates (x,y): 

𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = ��|𝑔𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥,𝑦) + 𝑔𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥,𝑦)|2
𝑁

𝑦=1

𝑁

𝑥=1

 

 
𝐼𝑡𝑒𝑠𝑡 = ∑ ∑ |𝑔𝑡𝑒𝑠𝑡(𝑥, 𝑦) + 𝑔𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥,𝑦)|2𝑁

𝑦=1
𝑁
𝑥=1 . 

(42) 
 
 
 

(43) 
Equation 42:  Total control intensity Equation 43:  Total test intensity 

The gbeam’s are calculated by Eq. (44) and Eq. (45), the FFT of the image in the aperture 

plane PA, multiplied by the aperture A, and the complex phase at the aperture plane:   

𝑔𝑇𝑒𝑠𝑡 = ℱ�𝑃𝐴 × 𝐴 × 𝑒𝑗𝜃𝑎𝑡𝑚𝛥� 
 

𝑔𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = ℱ�𝑃𝐴 × 𝐴 × 𝑒𝑗0� 

(44) 
 

(45) 

Equation 44:  Test beam Equation 45:  Control beam 

Note that for the control beam, atmospheric perturbations θatmΔ, is a zero matrix because 

it is assumed that the control beam used to boost the SNR ratio does not incur any phase 
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delays or aberrations within its delay loop.  The test beam θatmΔ is the total atmospheric 

change for a given pulse length as previously described. The ratio of these total energies, 

provided in Eq. (46), provides the modulation efficiency Μ:  

𝛭 =
𝐼(𝑡𝑒𝑠𝑡) − �𝐼(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 2⁄ �

�𝐼(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) 2⁄ �
. (46) 

Equation 46:  Mixing efficiency 

The approach to this ratio isolates the modulation efficiency from the total intensity. 

5.2.1 Total Atmospheric Change 

The total atmospheric change θatmΔ varies as the pulse length varies.  For shorter 

pulse lengths, the atmosphere has less time to change, thus the impacts the atmosphere 

has on any light propagating through it will understandably be less.  Of particular interest 

is the nature in which the two approaches vary as they evolve during the pulse length as 

shown in Fig. 19.  The image on the top is the Zernike-based approach whereas the 

bottom is the FFT-based approach.  Both images are the simulated total atmospheric 

change during a 100 µsec pulse.  Recall that it is assumed the AEOS AO system corrects 

for the atmospheric wavefront at time t = 0.  
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Figure 19:  Total atmospheric change in Zernike-based (top) and FFT-based (bottom). 

Of additional concern are the significant differences in amplitude between the two 

approaches.  Note the z-axis scale in units of radians, see Figures 20 and 21.     

Total Atmospheric ∆
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Figure 20:  Zernike-based θatmΔ over 10 µsec pulse (top) and 100 µsec pulse (bottom). 
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Figure 21:  FFT- based θatmΔ over 10 µsec pulse (top) and 100 µsec pulse (bottom). 
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The z axis scales from the mesh plots of these two figures indicate that between the two 

approaches, the total atmospheric change is considerably less for the frozen flow method 

than that of the turbulent flow.  It is expected that large amount of high frequency content 

in Fig. 19 and Fig. 21 is largely due to the sub-pixel shifting method utilized.   

5.2.2 Mixing Efficiency Results 

The differences in amplitude of atmospheric change are confirmed and validated 

by Monte Carlo experiment of the simulation process of Sec. 5.1.  Appendix A provides 

the full set of captured mixing efficiencies for the Zernike results, and Appendix B 

provides the corresponding FFT results.  The mean values of the captured data are plotted 

in Fig. 22 and represent the average mixing efficiency values.  

 

Figure 22:  Average mixing efficiency with logarithmic trend lines. 
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Two items are readily apparent from this scatter plot: the FFT based approach has a much 

higher standard deviation from its trend and is on average much higher than the Zernike 

based results.  The σ2 for the FFT method is 2.74% and 0.35% for the Zernike based 

method.  Additionally, the frozen flow approximation mean is on average 47% higher 

than what the turbulent flow model predictions.  This indicates that if the ISAL program 

limits its investigation of mixing efficiency to a frozen flow approximation, they will 

potentially be over estimating mixing efficiencies by roughly 50 percent.   

5.3 Chapter Summary 

This chapter addressed the approach to the simulation used to meet the objectives 

set in Sec. 1.2.   It built upon the theory and validation of Ch.’s III and IV, respectively, 

and showed that as the pulse length extends, the modulation efficiency is degraded for 

both the FFT and the Zernike approaches.  Of particular significance, the predicted 

average values of the frozen flow approximation results are greater than expected.  This 

chapter showed that for small time scales the atmosphere can in fact significantly evolve, 

reaffirming the understanding that the atmosphere does not in fact adhere to frozen flow.  

Additionally, it was shown that the new Zernike model provides more tightly fitting 

predictions given the measured standard deviation of the mean mixing efficiencies 

between the two approaches.   
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VI. Conclusions and Recommendations 

This chapter summarizes the efforts of this research and the resulting findings.  

Particular contributions are highlighted and the challenges are detailed. In addition, 

recommendations for future work are included to help further the research of turbulent 

flow, temporally evolving phase-screen generation.  

6.1 Summary 

As discussed in Ch. 1, the objective of this research has been to evaluate the 

atmospheric effects on long pulse LADAR beams.  To meet this objective, this thesis 

predominately focused on the development, comparison, and utilization of an entirely 

new temporally evolving Zernike-based turbulent flow phase screen generation model.  

Building on the understanding of generating independent Zernike-based phase screens 

established in Ch. II, the temporal model was developed by expanding a random walk 

algorithm.  This random walk algorithm was previously applied to atmospheric tilt [3], 

and Ch. III expanded the algorithm to include any N number of Zernike polynomials.  

This model was then validated through laboratory experiment in Ch. IV and used to 

provide the analysis of the objectives listed in Sec. 1.2.  The simulation application of the 

mathematics behind the temporal aspect to Zernike-based phase screens was by far the 

most difficult aspect of this research effort.   The analysis of the objectives was 

completed in Ch. V and compared to FFT-based frozen flow analysis.  It was determined 

that as the pulse length elongates, the mixing efficiency declines.  Furthermore, it was 

shown that the frozen flow approach has a higher standard deviation from its trend line, 

while the turbulent flow approach provided much tighter fitting data points.  The 
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assumptions made at the initiation of this research effort, such as the limitation of the 

frozen flow approximation to relatively small atmospheric effects, were confirmed. 

6.2 Conclusions of Research 

It was determined that as the pulse length extends, mixing efficiencies decline.  

Based upon the Zernike results, a roughly 8% efficiency at 10 µsec and 2% mixing 

efficiency at 100 µsec closely follows a logarithmic decline.  Similar in general decline, 

but strikingly different in noise levels, the frozen flow approach potentially overestimated 

the mixing efficiencies of the new turbulent flow model.    Additionally the turbulent 

flow model was validated through laboratory experiment.  The experiment captured 

images of a point source with a concentrated turbulent medium directly in front of the 

limiting aperture, and through a PSF likelihood maximization algorithm and Gerchberg-

Saxton phase retrieval algorithm, extracted realistic, turbulent, temporally evolving 

phase.  Modeling the laboratory conditions into simulation and then applying both the 

new Zernike-based turbulent flow model and the FFT-based frozen flow model, it was 

determined that the turbulent flow outperformed the frozen flow in accurately predicting 

tilt in time.  Through previous and directly related analysis [11], it was shown that this 

new Zernike approach outperforms the frozen flow approximation in predicting 

atmospheric effects in temporal analysis.   

6.3 Significance of Research 

As stated previously, the true significance of this research was the development of 

the new turbulent flow model of atmospheric phase screen generation and its comparison.  

This new model outperformed the frozen flow approximation in comparing both 
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laboratory results and theoretical tilt correlations in time.  With these results, a baseline 

may be struck for future efforts within the ISAL program. Furthermore, the new model 

may be applied to an assortment of applications in Space Situational Awareness (SSA), 

Defense Advanced Research Programs Agency (DARPA), and deep space surveillance, 

to name a few.  The predominate application to the relevant programs directly involves 

more accurately estimating temporal effects when imaging through the atmosphere.  The 

novelty of this new model’s approach is of considerable significance, as currently there is 

no other temporal evolution phase screen generation model that is not limited to frozen 

flow approximations, much less any such model that has been validated as this one has.  

6.4 Recommendations for Future Research 

The overarching question in response to proposing this new approach to phase 

screen generation has been, “Can this methodology be applied to Fourier-based methods 

of phase screen generation?”  The answer is yes.  However, the number of calculations 

for correct correlation will balloon to an N2 number of calculations for individual pixel 

updates.  Instead of building on the inherent correlation between Zernike’s, it is expected 

that the pixel to pixel correlation update be rooted within the power spectrum used for 

generating the individual FFT-based phase screens.  Instead of generating an Rn(δt) 

vector, an Rn(δt) matrix must be generated for each set of given atmospheric conditions, 

observatory parameters, etc.  This correlation matrix would then feed into the conditional 

mean and conditional variance update matrices.  Finally, in similar fashion to the 

considerably easier simulation described in the previous chapters, the correlation matrix 

can be paired with FFT based phase screen generation, and each pixel could then be 
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updated.  The theoretical mathematics to accomplish this is not overly difficult and will 

likely follow a very similar approach to that of Ch. III.  However, the difficulty in 

adapting such math into simulation space is known to be considerable.  

6.5 Chapter Summary 

This chapter summarized the activities of this research and the results obtained.  

Accomplishing the objectives presented in Ch. I supported the hypothesis that as the 

LADAR pulse elongates, the atmospheric effects increase.  This degradation in mixing 

efficiency appeared to follow a logarithmic decline.  The challenges overcome and 

significant contributions were also highlighted.  Finally, this chapter outlined the 

expected approach to developing a Fourier-based temporal model not limited to frozen 

flow approximations.   
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Appendix A – Zernike-based Mixing efficiency 

10 μsec 11 μsec 12μsec 13 μsec 14 μsec 15 μsec 16 μsec 17 μsec 18 μsec 19 μsec 

0.0708 0.0708 0.0731 0.0599 0.0709 0.0629 0.055 0.07 0.0791 0.0612 

0.0604 0.064 0.0817 0.0646 0.0718 0.0693 0.0683 0.0599 0.0691 0.0707 

0.0701 0.095 0.0623 0.0655 0.0602 0.0703 0.0679 0.0656 0.0594 0.0494 

0.0789 0.0734 0.0653 0.0872 0.0652 0.0682 0.0709 0.0669 0.0622 0.0664 

0.0689 0.0736 0.0627 0.0862 0.0823 0.0761 0.0721 0.071 0.0584 0.0683 

0.06982 0.07536 0.06902 0.07268 0.07008 0.06936 0.06684 0.06668 0.06564 0.0632 

20 μsec 21 μsec 22 μsec 23 μsec 24 μsec 25 μsec 26 μsec 27 μsec 28 μsec 29 μsec 

0.0619 0.0518 0.0544 0.0533 0.054 0.0679 0.0579 0.0521 0.0447 0.0533 

0.0691 0.0582 0.0516 0.0664 0.0406 0.0617 0.0463 0.0453 0.055 0.0443 

0.0558 0.0555 0.0579 0.0594 0.0473 0.0685 0.0584 0.0565 0.0663 0.0441 

0.0653 0.0566 0.0636 0.0568 0.0479 0.046 0.0693 0.0505 0.0535 0.0673 

0.0596 0.0592 0.0568 0.0642 0.0637 0.0697 0.056 0.0485 0.0454 0.0488 

0.06234 0.05626 0.05686 0.06002 0.0507 0.06276 0.05758 0.05058 0.05298 0.05156 
30 μsec 31 μsec 32 μsec 33 μsec 34 μsec 35 μsec 36 μsec 37 μsec 38 μsec 39 μsec 

0.0547 0.0493 0.0506 0.0459 0.0387 0.0564 0.0472 0.0553 0.0465 0.0404 

0.0518 0.0521 0.0468 0.0545 0.0599 0.0623 0.0558 0.0526 0.0536 0.0528 

0.0494 0.0582 0.0625 0.0587 0.0435 0.0426 0.0351 0.0557 0.0385 0.039 

0.0573 0.0595 0.0522 0.0466 0.0495 0.0466 0.0497 0.0564 0.0382 0.0351 

0.051 0.04 0.0605 0.0437 0.0388 0.0604 0.0643 0.0427 0.0532 0.0546 

0.05284 0.05182 0.05452 0.04988 0.04608 0.05366 0.05042 0.05254 0.046 0.04438 

40 μsec 41 μsec 42 μsec 43 μsec 44 μsec 45 μsec 46 μsec 47 μsec 48 μsec 49 μsec 

0.05 0.0438 0.0456 0.0487 0.0417 0.0491 0.0389 0.0486 0.0587 0.0403 

0.0535 0.0547 0.0335 0.0385 0.0393 0.0357 0.035 0.0537 0.0373 0.0533 

0.0418 0.0535 0.0438 0.0479 0.0435 0.0413 0.0499 0.047 0.0449 0.0474 

0.0505 0.0337 0.0451 0.0515 0.0604 0.0395 0.0453 0.0435 0.0485 0.0329 

0.0442 0.0628 0.0375 0.0363 0.0574 0.0365 0.0511 0.0637 0.0404 0.0432 
0.048 0.0497 0.0411 0.04458 0.04846 0.04042 0.04404 0.0513 0.04596 0.04342 

50 μsec 51 μsec 52 μsec 53 μsec 54 μsec 55 μsec 56 μsec 57 μsec 58 μsec 59 μsec 

0.0332 0.0474 0.0362 0.0435 0.0405 0.0377 0.0331 0.0388 0.0272 0.0454 

0.0418 0.0379 0.0497 0.0383 0.0383 0.0395 0.0362 0.0444 0.0239 0.0391 
0.0488 0.0397 0.039 0.0416 0.0364 0.0376 0.0457 0.0423 0.0408 0.0345 
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0.0378 0.0467 0.0291 0.0409 0.0345 0.0355 0.0495 0.0431 0.0328 0.0289 

0.0615 0.0518 0.0431 0.0355 0.0413 0.0407 0.0333 0.0367 0.045 0.0507 

0.04462 0.0447 0.03942 0.03996 0.0382 0.0382 0.03956 0.04106 0.03394 0.03972 

60 μsec 61 μsec 62 μsec 63 μsec 64 μsec 65 μsec 66 μsec 67 μsec 68 μsec 69 μsec 

0.0399 0.0374 0.0329 0.0325 0.0371 0.0439 0.0191 0.0433 0.0313 0.0255 

0.0336 0.0479 0.0425 0.0307 0.0363 0.0424 0.0228 0.0364 0.0259 0.0301 

0.0431 0.0421 0.0332 0.0247 0.0508 0.0331 0.0301 0.0287 0.0376 0.032 

0.0355 0.0361 0.0355 0.0283 0.0448 0.0298 0.0229 0.0349 0.0392 0.0343 

0.0381 0.0343 0.0391 0.0473 0.0444 0.0384 0.0383 0.0549 0.0339 0.0324 

0.03804 0.03956 0.03664 0.0327 0.04268 0.03752 0.02664 0.03964 0.03358 0.03086 

70 μsec 71 μsec 72 μsec 73 μsec 74 μsec 75 μsec 76 μsec 77 μsec 78 μsec 79 μsec 

0.0409 0.0358 0.0378 0.0347 0.0226 0.0314 0.0277 0.0251 0.0278 0.0124 

0.0363 0.0287 0.0329 0.0151 0.0152 0.0303 0.0145 0.0253 0.023 0.0253 

0.0339 0.0289 0.0267 0.0341 0.0484 0.0124 0.0528 0.0295 0.0305 0.0287 

0.0256 0.0355 0.0285 0.0375 0.0344 0.0304 0.0302 0.0309 0.0274 0.0271 

0.0484 0.0358 0.0457 0.0335 0.0444 0.0405 0.024 0.032 0.0442 0.0372 

0.03702 0.03294 0.03432 0.03098 0.033 0.029 0.02984 0.02856 0.03058 0.02614 

80 μsec 81 μsec 82 μsec 83 μsec 84 μsec 85 μsec 86 μsec 87 μsec 88 μsec 89 μsec 

0.022 0.0295 0.0301 0.0278 0.0216 0.0222 0.0266 0.0337 0.0342 0.0184 

0.0117 0.0323 0.0265 0.0318 0.0229 0.0217 0.0263 0.0277 0.0303 0.0185 

0.039 0.022 0.0227 0.034 0.0412 0.0283 0.0174 0.0209 0.0262 0.0226 

0.0325 0.0148 0.0249 0.0283 0.0264 0.0408 0.0269 0.03 0.0197 0.0208 

0.0357 0.0386 0.0288 0.0254 0.0365 0.0264 0.0363 0.0312 0.0355 0.037 

0.02818 0.02744 0.0266 0.02946 0.02972 0.02788 0.0267 0.0287 0.02918 0.02346 

90 μsec 91 μsec 92 μsec 93 μsec 94 μsec 95 μsec 96 μsec 97 μsec 98 μsec 99 μsec 

0.0118 0.0055 0.0453 0.0197 0.0196 0.0122 0.021 0.0234 0.0173 0.0305 

0.0169 0.0251 0.0294 0.0303 0.0224 0.0207 0.0212 0.0229 0.0134 0.0212 

0.0172 0.0061 0.0168 0.0187 0.0184 0.0337 0.0182 0.0195 0.0181 0.0223 

0.0499 0.0254 0.0265 0.0374 0.0254 0.0258 0.028 0.0285 0.0425 0.0108 

0.0298 0.0354 0.0393 0.0327 0.0368 0.0311 0.0422 0.0232 0.0323 0.0201 

0.02845 0.023 0.028 0.029775 0.02575 0.027825 0.0274 0.023525 0.026575 0.0186 

100 μsec                   

0.0069 0.0206 0.0206 0.0226 0.0308 0.02365 Table 2:  Zernike-based mixing efficiency 
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Appendix B – FFT-based Mixing efficiency 

10 μsec 11 μsec 12μsec 13 μsec 14 μsec 15 μsec 16 μsec 17 μsec 18 μsec 19 μsec 

0.1383 0.106 0.1068 0.104 0.0932 0.0988 0.0936 0.1158 0.0837 0.1035 

0.1062 0.1179 0.136 0.093 0.045 0.0402 0.044 0.0716 0.09 0.072 

0.1447 0.124 0.078 0.071 0.0424 0.042 0.0396 0.0244 0.016 0.026 

0.1756 0.1658 0.1149 0.0876 0.087 0.082 0.077 0.0664 0.0618 0.0776 

0.1062 0.1395 0.1064 0.0924 0.0908 0.0772 0.0556 0.0596 0.0888 0.0808 

0.1342 0.13064 0.10842 0.0896 0.07168 0.06804 0.06196 0.06756 0.06806 0.07198 
20 μsec 21 μsec 22 μsec 23 μsec 24 μsec 25 μsec 26 μsec 27 μsec 28 μsec 29 μsec 

0.0972 0.1242 0.0922 0.0535 0.0621 0.0702 0.0605 0.05265 0.0580 0.0999 

0.0904 0.0963 0.0796 0.0787 0.0666 0.0661 0.0670 0.0621 0.0715 0.0706 

0.054 0.0693 0.0882 0.0562 0.054 0.0846 0.1025 0.0625 0.063 0.1030 

0.0711 0.0891 0.0895 0.0661 0.0607 0.0711 0.0715 0.0576 0.0666 0.0841 

0.0324 0.0345 0.0455 0.0310 0.0895 0.0918 0.0846 0.0877 0.063 0.027 
0.06903 0.08271 0.07902 0.05715 0.0666 0.07677 0.07722 0.06453 0.06444 0.07695 
30 μsec 31 μsec 32 μsec 33 μsec 34 μsec 35 μsec 36 μsec 37 μsec 38 μsec 39 μsec 

0.0885 0.1251 0.0835 0.0279 0.0445 0.1044 0.0855 0.0927 0.0747 0.0725 

0.0918 0.0495 0.0522 0.0755 0.1053 0.0522 0.0639 0.0517 0.0832 0.0735 

0.0715 0.0243 0.0072 0.0189 0.0589 0.0925 0.0936 0.0855 0.0679 0.0670 

0.0958 0.0382 0.0373 0.0198 0.0234 0.0508 0.0198 0.0555 0.0355 0.0193 

0.0576 0.094 0.0935 0.0994 0.0364 0.0441 0.0576 0.0963 0.1015 0.0486 

0.08025 0.06633 0.05463 0.04824 0.05373 0.06876 0.06408 0.07632 0.07254 0.05616 
40 μsec 41 μsec 42 μsec 43 μsec 44 μsec 45 μsec 46 μsec 47 μsec 48 μsec 49 μsec 

0.0187 0.0665 0.0515 0.1107 0.0702 0.1134 0.0675 0.0333 0.1075 0.0705 

0.0202 0.0486 0.0855 0.1314 0.0345 0.0423 0.0657 0.0595 0.0375 0.0441 

0.0395 0.1105 0.126 0.1089 0.1377 0.0351 0.0105 0.0765 0.09 0.0666 

0.1005 0.1062 0.0702 0.0335 0.0485 0.0765 0.0955 0.0531 0.0585 0.0345 

0.0513 0.0475 0.0655 0.0285 0.054 0.0477 0.0385 0.0725 0.0625 0.0819 

0.04595 0.07605 0.07965 0.08262 0.06768 0.063 0.05607 0.0594 0.07056 0.06066 
50 μsec 51 μsec 52 μsec 53 μsec 54 μsec 55 μsec 56 μsec 57 μsec 58 μsec 59 μsec 

0.074 0.08 0.0196 0.0196 0.0364 0.0464 0.0744 0.02 0.046 0.0844 

0.0776 0.0928 0.0276 0.0276 0.0148 0.0716 0.0384 0.0136 0.0684 0.0908 

0.0532 0.0492 0.0504 0.0504 0.034 0.0792 0.0196 0.044 0.0708 0.0624 
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0.0684 0.0544 0.0348 0.0348 0.0492 0.0088 0.0428 0.0428 0.0408 0.0464 

0.0504 0.0644 0.0972 0.0972 0.0384 0.0848 0.0696 0.0516 0.0412 0.0728 

0.06472 0.06816 0.04592 0.04592 0.03456 0.05816 0.04896 0.0344 0.05344 0.07136 
60 μsec 61 μsec 62 μsec 63 μsec 64 μsec 65 μsec 66 μsec 67 μsec 68 μsec 69 μsec 

0.0785 0.0525 0.098 0.0365 0.0441 0.0476 0.0567 0.0155 0.0399 0.0385 

0.0615 0.0651 0.0595 0.0715 0.0505 0.0505 0.0555 0.035 0.0511 0.0189 

0.0185 0.0056 0.0735 0.0294 0.0644 0.0553 0.0658 0.0505 0.028 0.0665 

0.0437 0.0444 0.0574 0.0505 0.0658 0.0322 0.0469 0.0259 0.0845 0.0065 

0.0147 0.0445 0.0238 0.0511 0.0371 0.0525 0.0441 0.0749 0.0651 0.0505 

0.04354 0.04242 0.06244 0.04907 0.05243 0.049 0.05383 0.04018 0.05369 0.03619 

70 μsec 71 μsec 72 μsec 73 μsec 74 μsec 75 μsec 76 μsec 77 μsec 78 μsec 79 μsec 

0.0567 0.0387 0.0096 0.0474 0.0525 0.0663 0.0363 0.0801 0.0183 0.021 

0.0531 0.0726 0.0663 0.0582 0.0336 0.0393 0.0261 0.0684 0.0471 0.0171 

0.0048 0.0096 0.0159 0.0585 0.0231 0.0351 0.0555 0.0303 0.0477 0.0525 

0.0183 0.0591 0.0618 0.0168 0.0618 0.0375 0.0726 0.0651 0.048 0.0216 

0.0606 0.054 0.0417 0.0714 0.0504 0.0528 0.0552 0.0522 0.0312 0.0897 

0.0387 0.0468 0.03906 0.05046 0.04428 0.0462 0.04914 0.05922 0.03846 0.04038 
80 μsec 81 μsec 82 μsec 83 μsec 84 μsec 85 μsec 86 μsec 87 μsec 88 μsec 89 μsec 

0.0723 0.0396 0.0282 0.0354 0.0447 0.0513 0.0612 0.0519 0.0231 0.0555 

0.0849 0.0525 0.0165 0.0426 0.0285 0.063 0.0264 0.0186 0.0366 0.0201 

0.0225 0.0168 0.0477 0.057 0.0426 0.0615 0.0468 0.0429 0.0144 0.0396 

0.0318 0.0741 0.0537 0.0567 0.0414 0.0564 0.0459 0.0522 0.0564 0.0345 

0.0342 0.0258 0.0537 0.0339 0.0483 0.072 0.0519 0.021 0.0612 0.0219 
0.04914 0.04176 0.03996 0.04512 0.0411 0.06084 0.04644 0.03732 0.03834 0.03432 

90 μsec 91 μsec 92 μsec 93 μsec 94 μsec 95 μsec 96 μsec 97 μsec 98 μsec 99 μsec 

0.0506 0.0206 0.032 0.0332 0.0304 0.052 0.0436 0.0258 0.0226 0.0242 

0.035 0.0342 0.0262 0.0592 0.0394 0.0338 0.0362 0.0266 0.0414 0.0388 

0.0372 0.0423 0.0213 0.0738 0.0399 0.0567 0.0591 0.0483 0.0438 0.0129 

0.0396 0.0309 0.0207 0.0411 0.0264 0.0138 0.0375 0.0411 0.0402 0.0297 

0.0555 0.051 0.0363 0.0693 0.0393 0.0423 0.0177 0.0318 0.0366 0.0225 

0.04358 0.0358 0.0273 0.05532 0.03508 0.03972 0.03882 0.03472 0.03692 0.02562 
100 μsec                   

0.0213 0.0216 0.0336 0.045 0.06 0.0363 Table 3:  FFT-based mixing efficiency 
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