
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2013

The Miniaturization of the AFIT Random Noise
Radar
Aaron T. Myers

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Signal Processing Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Myers, Aaron T., "The Miniaturization of the AFIT Random Noise Radar" (2013). Theses and Dissertations. 890.
https://scholar.afit.edu/etd/890

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/890?utm_source=scholar.afit.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

THE MINIATURIZATION OF THE AFIT RANDOM NOISE RADAR

THESIS

Aaron T. Myers, Captain, USAF

AFIT-ENG-13-M-37

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-37

THE MINIATURIZATION OF THE AFIT RANDOM NOISE RADAR

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Aaron T. Myers, B.S.E.E.

Captain, USAF

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-13-M-37

THE MINIATURIZATION OF THE AFIT RANDOM NOISE RADAR

Aaron T. Myers, B.S.E.E.
Captain, USAF

Richard G. Cobb, PhD (Member)

z t r::£/t:S ZP•.::S
Date

21 Fd-;i;J3

Date

2/reA l iJ /3
Date

AFIT-ENG-13-M-37
Abstract

Advances in technology and signal processing techniques have opened the door to

using an ultra-wideband random noise waveform for radar imaging. This unique, low

probability of intercept waveform has piqued the interest of the United States Department

of Defense (DoD) as well as law enforcement and intelligence agencies alike. Noise radar

has shown tremendous potential in through the wall surveillance, monostatic and multistatic

ranging, and communication. Ultimately, the Air Force Institute of Technology (AFIT)

would like to explore the use of a random noise radar (RNR) as a potential unmanned

aerial system (UAS) or remotely piloted aircraft (RPA) sensor.

As the employment of UASs and RPAs proliferates across the DoD, several design

challenges must be considered: the ability to operate in noisy radio frequency (RF)

environments (to include the presence of jamming), reliable and secure communication

from the control facilities to the remote vehicles, and the option to operate surreptitiously.

RNR systems have been shown to operate with all three of these desirable characteristics.

While AFIT’s noise radar has made significant progress, the current architecture needs

to be redesigned to meet the space constraints and power limitations of an aerial platform.

This research effort is AFIT’s first attempt at RNR miniaturization and centers on two

primary objectives: 1) identifying a signal processor that is compact, energy efficient,

and capable of performing the demanding signal processing routines and 2) developing

a high-speed correlation algorithm that is suited for the target hardware. A correlation

routine was chosen as the design goal because of its importance to the noise radar’s

ability to estimate the presence of a return signal. Furthermore, it is a computationally

intensive process that was used to determine the feasibility of the processing component.

To determine the performance of the proposed algorithm, results from simulation and

experiments involving representative hardware were compared to the current system. Post-

iv

implementation reports of the field programmable gate array (FPGA)-based correlator

indicated zero timing failures, less than a Watt of power consumption, and a 44% utilization

of the Virtex-5’s logic resources.

v

Dedicated to my youngest child.

vi

Acknowledgments

First and foremost I would like to thank my Lord and Savior, Jesus Christ. This

research effort has been a sobering reminder of how little I truly know, and it has been nice

to know that He is in control and is there to provide us strength when needed the most.

To my lovely wife...Thank you for your love and support throughout this program. Your

patience and encouragement means the world to me. To my three kids, thank you for being

there to greet me with hugs and excitement when coming home from too many long days at

school. Your unconditional love fills my heart with joy. Finally, I could not have done this

with out the guidance and encouragement from those at AFIT. Dr. Collins, the investment

that you and others have put into educating me has taken a guy who couldn’t spell “LO”

and managed to turn me into a fairly competent engineer. To the rest of the “LO Mafia”,

thanks for your friendship and being willing to carry a scrub like me along for the ride.

Aaron T. Myers

vii

Table of Contents

Page

Abstract . iv

Dedication . vi

Acknowledgments . vii

Table of Contents . viii

List of Figures . xi

List of Tables . xiv

List of Acronyms . xv

I. Introduction . 1

1.1 Research Motivation . 2
1.2 Research Goals . 3
1.3 Background . 4
1.4 Chapter Conclusion . 7

II. Theory . 8

2.1 Chapter Overview . 8
2.2 Random Noise Radar . 8

2.2.1 Random Noise Waveform . 8
2.2.2 Advantages of Ultra-Wide Band Noise Radar 9
2.2.3 UWB Noise Radar Challenges . 11

2.3 Transmitter Theory . 14
2.3.1 Continuous Wave Random Noise 14
2.3.2 Pseudo Random Noise . 15

2.4 Receiver Theory . 16
2.4.1 Sampling Theory . 16
2.4.2 Discrete Fourier Transform . 18
2.4.3 Fast Implementations of the Discrete Fourier Transform 19
2.4.4 Cross-correlation . 24
2.4.5 Matched Filtering . 25

2.5 Chapter Conclusion . 26

viii

Page

III. System Description and Methodology . 27

3.1 Chapter Overview . 27
3.2 Requirements Definition . 27

3.2.1 System of Systems Requirements 28
3.2.2 System Requirements . 28

3.3 Hardware Design . 30
3.3.1 Signal Processor . 31
3.3.2 Data Converters . 33
3.3.3 Clock Generation . 33

3.4 Algorithm Development . 35
3.4.1 Radix-22 Architecture . 35
3.4.2 Bit-Order . 41
3.4.3 FPGA Correlation . 43

3.5 Design Tools . 45
3.5.1 Simulink . 45
3.5.2 Xilinx ISE . 45
3.5.3 ML555: Virtex-5 Development Board 46

3.6 System Characterization . 46
3.6.1 Modeling and Simulation . 46
3.6.2 Power Assessment . 48
3.6.3 Performance Assessment . 48

3.7 Conclusion . 49

IV. Results . 50

4.1 Chapter Overview . 50
4.2 Modeling and Simulation . 50

4.2.1 Model Description . 50
4.2.2 Simulation Results . 55

4.3 FPGA Implementation . 58
4.4 Accuracy of the Correlation Algorithm . 64
4.5 Performance of the Correlation Algorithm in Degrading SNRs 69
4.6 Timing Results . 71
4.7 Conclusion . 72

V. Conclusions . 74

5.1 Chapter Overview . 74
5.2 Research Goals . 74
5.3 Results and Contributions . 74
5.4 Future Work . 76

ix

Page

5.4.1 Hardware Design Work . 76
5.4.2 Algorithm Improvements . 77
5.4.3 Ancillary Applications . 77

Appendix A: HDL Correlator . 79

Appendix B: MATLAB Code . 118

Appendix C: Compressed Sampling Theory . 145

Bibliography . 147

x

List of Figures

Figure Page

1.1 Soldier Launching a Small UAS [5] . 2

1.2 AFIT’s RNR [6] . 6

2.1 Fourier domain representation of an LFM radar (left) and RNR (right). Np is

the number of radar pulses within the observation time. The SNR was 0 dB [34] 10

2.2 RFI from an UWB signal . 11

2.3 PSD of the AFIT RNR Noise Source [25] . 15

2.4 Two-point DFT (DIT Butterfly) . 20

2.5 Signal Flow Graph for an 8-point DIT Radix-2 FFT 20

2.6 Two-point DFT (DIF Butterfly) . 21

2.7 Signal Flow Graph for an 8-point Radix-2 DIF FFT 22

2.8 16-Point Signal Flow Graph (Radix-22 SDF) 23

2.9 Example of Linear Convolution . 24

3.1 Systems Engineering V-Model . 28

3.2 RNR Functional Hierarchy . 29

3.3 RNR Miniaturization Tasks . 30

3.4 Typical Clock for High-Speed Data Converters 34

3.5 Quantization Error Caused by Clock Jitter . 35

3.6 radix-22 single-path delay feedback (R22SDF) Block Diagram 36

3.7 BFI Architecture . 37

3.8 BFII Architecture . 38

3.9 BFII Sign Inverter . 38

3.10 Pipelined Complex Multiplier . 39

3.11 Basic Circuit To Exchange Dimensions of Serial Data 42

xi

Figure Page

3.12 1024-Point Bit-Reverse Circuit . 43

3.13 Proposed FPGA Correlation Algorithm . 44

3.14 Annotated ML555 Board [43] . 47

4.1 Simulink Model of the Correlation Algorithm 51

4.2 Simulink Model (a)R22SDF FFT, (b)BFI Model and (c) BFII Model 52

4.3 Simulink Bitreversal Unit . 54

4.4 Simulink Model of the Bit Reversal Circuit 54

4.5 Simulink Model of the Filter . 55

4.6 Comparison of R22SDF FFT in Simulink and MATLAB FFT (The plot in the

upper right-hand corner is a closeup of the first 80 samples to illustrate the

agreement between the two results) . 56

4.7 Simulation Results (a) Correlation Algorithm vs MATLAB (The plot in the

upper right-hand corner is a closeup of the first 40 samples to illustrate the

agreement between the two results) (b) Simulation Error 57

4.8 FPGA Correlator Schematic . 59

4.9 Fixed-Point Manipulations in the Correlation Algorithm (a) FFT, (b) Complex

Multiplier, and (c) IFFT . 61

4.10 Resource Utilization Summary for the FPGA Correlator 63

4.11 XPower Analyzer Report for the Correlation Algorithm 64

4.12 ML555 Current Sensing Locations [43] . 66

4.13 FPGA Correlator’s Output Format . 67

4.14 Experimental Results (a) FPGA Correlation, (b) FPGA Result Compared to

MATLAB . 67

4.15 FPGA FFT Versus MATLAB FFT (The plot in the upper right-hand corner is

a closeup of the first 40 samples) . 68

xii

Figure Page

4.16 Projected Correlation From FPGA FFT Results 69

4.17 Correlation Results with Varying Input SNRs (a) SNR = 10 dB, (b) SNR = 0

dB, (c) SNR = -10 dB and (d) SNR = -15 dB 70

4.18 Timing Results (a) 1024-point Correlation, (b) 10240-point Correlation 72

A.1 FPGA Correlator Schematic . 79

xiii

List of Tables

Table Page

2.1 RNR SNR vs Range . 13

3.1 Miniature RNR Requirements . 29

4.1 Logic Tables for MUXinv . 53

4.2 ML555 Power Measurement Results . 65

xiv

List of Acronyms

Acronym Definition

ADC analog-to-digital converter

AFIT Air Force Institute of Technology

ALU arithmetic logic unit

CLB configurable logic block

CORDIC coordinate rotation digital computer

CPLD complex programmable logic device

CS compressive sensing

CW continuous wave

DAC digital-to-analog converter

DCR direct correlation receiver

DFT discrete Fourier transform

DIF decimation in frequency

DIT decimation in time

DSP digital signal processor

DoD Department of Defense

ECCM electronic counter-counter measure

FCC Federal Communications Commission

FFT fast Fourier transform

FIR finite impulse response

FPGA field programmable gate array

GPU graphical processing unit

HDL hardware description language

IDE integrated development environment

xv

Acronym Definition

IDFT inverse discrete Fourier transform

IF intermediate frequency

IFFT inverse fast Fourier transform

IO input/output

IP intellectual property

LED light-emitting diode

LFM linear frequency modulation

LNA low noise amplifiers

LPI low probability of intercept

PCI peripheral component interface

PLL phase-locked loop

PNR pseudo-random noise radar

PSD power spectral density

PSU Pennsylvania State University

R22SDF radix-22 single-path delay feedback

RAM random-access memory

RF radio frequency

RIP restricted isometric property

RMS root mean squared

RNR random noise radar

ROM read-only memory

RPA remotely piloted aircraft

RF radio frequency

SMA subminiature version A

SNR signal to noise ratio

xvi

Acronym Definition

SQNR signal-to-quantization noise ratio

UART universal asynchronous receiver/transmitter

UAS unmanned aerial system

UNL University of Nebraska, Lincoln

USB universal serial bus

UWB ultra-wideband

VCO voltage-controlled oscillator

WGN white Gaussian noise

xvii

THE MINIATURIZATION OF THE AFIT RANDOM NOISE RADAR

I. Introduction

Recent advances in technology and signal processing techniques have opened the

door to using an ultra-wide band random noise waveform for radar imaging. This

unique, low probability of intercept waveform has piqued the interest of the United States

Department of Defense (DoD) as well as law enforcement and intelligence agencies alike.

Noise radar has shown tremendous potential in through-the-wall surveillance, monostatic

and multistatic ranging, and communication. Ultimately, Air Force Institute of Technology

(AFIT) would like to explore the use of an random noise radar (RNR) as a potential

unmanned aerial system (UAS) or remotely piloted aircraft (RPA) sensor.

As the employment of UASs and RPAs proliferates across the DoD, several design

challenges must be considered: the ability to operate in noisy radio frequency (RF)

environments (to include the presence of jamming), reliable and secure communication

from the control facilities to the remote vehicles, and the option to operate surreptitiously.

RNR systems have been shown to operate with all three of these desirable characteristics.

To integrate an RNR into a small UAS like the one pictured in Figure 1.1, a major

question remains to be answered: can an RNR be designed small enough to meet the

physical space constraints while simultaneously operating on very little power from the

host vehicle? The current AFIT RNR configuration is simply too large for these types

of airborne applications. As a result, new architectures will need to be explored for this

sensor integration to become a reality. The quest for RNR miniaturization naturally leads

to a series of questions:

1

Figure 1.1: Soldier Launching a Small UAS [5]

• What is a chip-based RNR architecture that would meet the requirements of the host

vehicle?

• How does the miniaturized system perform when compared to the current AFIT

RNR?

• Are there any performance compromises that must occur as a result of the

miniaturization effort?

• Are the proposed architectures operationally viable?

1.1 Research Motivation

This research effort will serve as a concerted effort to utilize RNR for UAS collision

avoidance and secure communication. The integration of an RNR into small RPAs or

UASs would provide follow-on researchers with a covert sensor that could be used as a

low probability of detection, jam resistant radar or communication device. A sensor of this

type could prove useful in a swarm scenario as RNR signals behave well in the presence of

interference.

2

1.2 Research Goals

AFIT’s involvement in RNR design began in 2009. Since that time, researchers at

AFIT have developed six monostatic nodes. With the exception of a new antenna design,

the hardware configuration has remained relatively constant. Endeavors to miniaturize

AFIT’s RNR will take full advantage of the system understanding provided by past thesis

work, but represent a drastic change in the hardware configuration and requisite signal

processing algorithms.

Currently, AFIT’s noise radar is a continuous wave (CW), direct correlation system.

Radars of this type do not employ an intermediate frequency (IF) for signal transmission

or reception. In other words, the CW noise signal is transmitted, received, and sampled at

base-band. To determine a target’s presence and estimate its range, the noise radar must

execute a series of events. First, the AFIT noise radar directly samples the analog noise

source with an ultra-high speed analog-to-digital converter (ADC) and stores the samples

in memory. An array of filters are generated by digitally delaying copies of the transmission

signal corresponding to a desired number of range bins. Finally, RF energy that is incident

upon the receive antenna is sampled and compared to the transmission signal in each range

bin. The comparison of the two signals is accomplished by calculating a statistical measure

of similarity, correlation. When the two signals are highly correlated (i.e., the correlation

coefficient is above a given threshold) a detection is declared.

Computing the correlation of two signals is a critical function required of the noise

radar. However, generating correlation results is a computationally intensive process.

Reducing the footprint and power consumption of the RNR while maintaining the ability

to execute correlation routines in a timely manner presents a significant design challenge.

For that reason, the primary focus of this document centers on the development of a high

speed correlation routine that can be efficiently implemented in representative hardware.

Consequently, this research effort can be summarized by the following goals:

3

1. Identify a preliminary RNR architecture that significantly reduces the size and power

requirements of the current AFIT RNR.

2. Develop a correlation algorithm for the host architecture.

3. Develop a computer model of the proposed signal processing routine.

4. Demonstrate the algorithm in representative hardware to serve as a verification to the

computer model.

5. Compare the new algorithm’s performance to the current system.

6. Determine whether or not the proposed system is a good candidate for a small UAS

or RPA.

A discussion of the fundamental principles and theoretical background necessary for

accomplishing these research objectives is provided in Chapter 2. This theoretical basis will

serve as the necessary foundation upon which the methodology of Chapter 3 will be built.

The investigative steps outlined in Chapter 3 should provide the necessary information

to conduct the analysis detailed in Chapter 4 and ultimately lead to an assessment of

the proposed system. Finally, the conclusions drawn from data analysis are discussed

in Chapter 5 and recommendations for future work will be contained therein. Now that

the research goals have been proposed, a brief background will be provided to expose the

reader to the foundations of noise radar systems and provide the appropriate context for

this research effort.

1.3 Background

Noise modulated radar systems were first explored in the late 1950s and early 1960s.

In 1959 Horton first proposed the use of noise-modulated systems as a distance measuring

device which could serve as an altimeter for blind landings [15]. The concept of a random

4

noise radar was later developed by researchers from Purdue University [12], and several

prototype systems were developed in the United States and in the Netherlands [21, 32].

Soon after the first prototypes were built, research in the area of noise radar slowed

significantly due to the computing power necessary to process ultra-wideband (UWB)

signals. However, in the late 1990s researchers at the University of Nebraska and the

Ohio State University began a resurgence in RNR exploration [24, 22, 35, 39]. Solid-state

technology had finally advanced to the point where near real time processing of a wideband

noise signal could be accomplished. Since that time, the intensity of RNR research and

development has steadily increased. Commercially, RNR technology has been proposed as

an anti-collision radar for vehicles, and applications for meteorological radar, marine radar,

and air search have all been explored [13].

The use of a broadband stochastic signal to conduct detection and ranging is certainly

a unique concept in a discipline that has existed since the 1930s. One obvious difference

between RNRs and their more traditional brethren is that since radar’s inception, an

emphasis has been placed on the reduction of noise to improve target detection. Another

more subtle difference is that the first radars operated at a single frequency or very narrow

bandwidth of signals. RNR is a subset of an emerging class of UWB radars that are being

developed. Both forms of radar have strengths and weaknesses. The theoretical discussion

in Chapter 2 should bring more clarity to this classic engineering investigation.

AFIT’s RNR design was largely based on that developed at the Pennsylvania State

University (PSU) for through the wall surveillance. The researchers at PSU foresaw the

need for a compact system and modeled their design on an architecture designed for a

software defined radio [16]. Since Lai and Narayanan’s paper was written in 2006, six

working prototypes have been built at AFIT.

A closeup view of the actual hardware can be seen in Figure 1.2. Little was changed

from the design developed by Lai et al. except that bandpass filters were added before the

5

Figure 1.2: AFIT’s RNR [6]

transmit antenna and after the receive antenna, shown highlighted in red in Figure 1.2. The

component shown highlighted in yellow is the analog noise source that is used to generate

the transmit waveform. The block with the blue surround is a power splitter that sends the

noise signal to the ADC where it is sampled as the reference signal as well as to the transmit

antenna to be radiated to the surrounding environment. Finally, the objects surrounded by

green are the low noise amplifiers (LNA) used to amplify the return signal before being

6

sent to the ADC and digital correlator. The ADC samples both the transmitted and received

signals at 1.5 GHz. This data is sent to the laptop for signal processing in the MATLAB®

environment.

Much of AFIT’s RNR research to date has centered on improving the computational

efficiency of the current architecture. This will be the first attempt to make substantial

changes to the current hardware configuration. Many of the lessons learned from past

research will serve as a springboard for this effort. Of particular interest is the work

that Priestly and Collins accomplished in pseudo-random noise radar (PNR) template

replay. While the details of this effort will be discussed later, they were able to show

that if implemented correctly, PNR template replay could maintain the low probability

of intercept (LPI) nature of a truly random noise waveform [27, 6]. In addition to PNR

template replay, the correlation process of the current AFIT RNR was often identified

as a bottleneck in system throughput. As a result, Lievsay and Thorson proposed the

development of graphical processing unit (GPU) or field programmable gate array (FPGA)-

centric correlation routines that would increase the computational rate of the current

system [18, 36].

1.4 Chapter Conclusion

This chapter defined the problem statement for this thesis and identified a few of the

motivations for RNR miniaturization. The research goals were presented as a research

blueprint. Finally, a background section was provided to capture the evolution of AFIT’s

RNR research. The next chapter presents the fundamentals of RNR operation and serves

as a theoretical basis for RNR miniaturization.

7

II. Theory

2.1 Chapter Overview

This chapter presents the theoretical background necessary to explore the miniaturiza-

tion of the AFIT’s RNR. A two part introduction to RNR will begin with a mathe-

matical description of a random noise waveform, description of the advantages stochastic

signals provide to detection and ranging, and identification of several challenges associ-

ated with UWB systems. The RNR introduction will conclude with a theoretical basis for

random signal generation and reception. Finally, the chapter will conclude by delving into

specific concepts related to the miniaturization of RNR hardware.

2.2 Random Noise Radar

2.2.1 Random Noise Waveform.

To understand the operation of noise radar one must first look at the waveform.

Many conventional radar systems employ a deterministic transmit signal. As a result, a

clear mathematical representation can be derived. However, the stochastic nature of RNR

waveform means that it can be defined only in terms of its statistics. UWB noise signals are

often modeled as band-limited white Gaussian noise (WGN). Applying the WGN model,

the UWB noise signals can be described using the following properties:

• The power spectral density of the UWB noise waveform is uniform and distributed

evenly across the all frequencies.

• The amplitude of the noise signal is distributed according to the Gaussian probability

density function with a mean of zero.

• The autocorrelation, Rxx(τ) is approximately an impulse at τ = 0.

8

Adhering to the statistics above, a model can be developed to represent the time-frequency

characteristics of the noise waveform. The first mathematical representation is

s(t) = sI(t) cos(ωot) − sQ(t) sin(ω0t), (2.1)

where sI(t) and sQ(t) are zero-mean, Gaussian random variables. Alternatively, Equa-

tion (2.1) can be rewritten as

s(t) = a(t) cos[ωot + φ(t)], (2.2)

where a(t) is a Rayleigh distributed amplitude and φ(t) is a uniformly distributed phase

term [40].

2.2.2 Advantages of Ultra-Wide Band Noise Radar.

One of the main advantages that an UWB RNR has over traditional radar systems

is range resolution. Because the random noise waveform will be uncorrelated with any

other signal except for itself, the random noise waveform has an ideal “thumbtack” range-

Doppler ambiguity function [17]. Theoretically, the range resolution, ∆R, of a radar system

is determined by its time-bandwidth product. Range resolution can be found using the

following equation:

∆R =
c

2B
, (2.3)

where c is the speed of light (approximately 2.998×108 m/s) and B is the signal

bandwidth [30]. When compared to traditional, narrowband radar systems, AFIT’s RNR

has an incredible range resolution. The transmission bandwidth of the AFIT noise radar

gives it a range resolution of ≈ c/(2 ∗ 400 MHz) = 0.375 m. Other prototype noise

radars, such as the one developed at the University of Nebraska, Lincoln (UNL), have

an instantaneous bandwidth of 1 GHz [23]. Inserting instantaneous bandwidth of UNL’s

RNR into Equation (2.3), down range distances on the order of 15 cm can be resolved.

In addition to improved range resolution, the random nature of an RNR’s waveform

gives the radar several favorable characteristics. The random noise waveform results in

9

inherently low probability of intercept and low probability of detection, making it ideal for

covert operations. Figure 2.1 shows a comparison of the ability to detect the presence of a

noise radar compared to a conventional linear frequency modulation (LFM) radar.

Figure 2.1: Fourier domain representation of an LFM radar (left) and RNR (right). Np is

the number of radar pulses within the observation time. The SNR was 0 dB [34]

RNR’s waveform allows it to operate in dense RF environments without causing

interference to existing narrowband systems [10]. Figure 2.2 demonstrates that while

the UWB signal stretches across the spectrum of the narrowband signal, the power

level remains below the Federal Communications Commission (FCC) requirement for

in-band interference. This characteristic has generated interest in the commercial sector

10

as frequency allocation in the United States has become increasingly competitive and

expensive. The DoD, on the other hand, is more interested in UWB RNR’s capability

as an electronic counter-counter measure (ECCM). Garmatyuk and Narayanan explored

this issue and found that UWB RNRs perform much better in the presence of jamming than

conventional LFM radars [10].

Figure 2.2: RFI from an UWB signal

Unlike conventional radars, RNRs have very simple architectures. This simplicity

means that these radars are cost effective to produce. AFIT’s noise radar has a

predominately digital architecture making it tolerant of rapid reconfigures and updates.

2.2.3 UWB Noise Radar Challenges.

While UWB RNRs have inherent advantages, there are several weaknesses that

they must overcome. One challenge is the ability to accomplish simultaneous velocity

and ranging processing. Conventional Doppler processing requires phase coherency and

narrowband signals. If these two conditions are satisfied, the Doppler shift can be found

by:

fd =
2v
λ

cosψ, (2.4)

11

where λ is the wavelength of the center frequency, ψ is the angle between propagation of

the radar’s energy and the velocity of the target, and v is the velocity of the target [30].

To achieve phase coherence, many radar systems implement a heterodyne receiver

to generate in-phase and quadrature information for both the transmitted and received

waveforms. However, AFIT’s noise radar implements a direct correlation receiver (DCR)

to directly sample the outgoing and incoming waveforms. The random, non-repetitive

nature of the CW transmit waveform leads to a lack of phase-incoherence [38]. Other RNR

systems, such as the one proposed by Narayanan and Dawood, are heterodyne architectures

capable of realizing phase coherency [23]. However, those systems give up the simplicity

realized by DCR architectures by adding analog parts, increasing both size and weight.

Furthermore, the presence of a carrier signal negates the low probability of detection

characteristic enjoyed by baseband CW noise radars.

RNRs that are able to achieve phase coherence still have a problem that they have

high fractional bandwidths. Equation (2.4) assumes the pulse transmitted by the radar is

at a single frequency. AFIT’s RNR transmits a CW noise signal with frequencies ranging

from 350 to 750 MHz. This frequency range corresponds to wavelengths that are 37.5 to

75 cm. Significant error would be induced if the central wavelength was used to estimate

target velocity [38]. In order to address these shortcomings, Lievsay and Thorson used

time domain signal processing techniques to approximate the velocity of a target [18, 36].

They were able to utilize a technique that was proposed by Axelsson [1] that compressed

the time scale of the transmitted signal by ∆T for each time sample where ∆T was given

by [37]:

∆T =
2v

(c − v) fs
. (2.5)

This approach assumed that the target’s velocity remained constant over the entire

measurement window. Lievsay demonstrated a velocity resolution of 3 m/s, however, his

technique required a lot of computing power and processing time [18]. Thorson lowered

12

the processing time to approximately five minutes, but more work is required to accomplish

real-time range and velocity processing [36].

Improving the transmit range of UWB RNRs is another challenge that must be

overcome. The PSU noise radar (on which the AFIT RNR is based) has a transmit power

of 23 dBm, an antenna gain of 6 dB, and a center frequency of 550 MHz with a bandwidth

of 200 MHz [17]. The radar range equation given in [30] can be used to calculate the signal

to noise ratio (SNR)

S NR =
PtGtGrλ

2σ

(4π)3R4Ls
. (2.6)

Inserting the values for the PSU RNR above into Equation (2.6), the following expression

is obtained:

S NR =
(200 mW)(6 dB)2(.545 m)2(1)

(4π)3R4 . (2.7)

Equation (2.7) assumes a radar cross section, σ, of one and that the losses, Ls, are

negligible. Table 2.1 provides SNR values calculated for three sample ranges.

Table 2.1: RNR SNR vs Range

Range SNR

1 m -33 dB

10 m -73 dB

100 m -113 dB

Although UWB RNRs perform well in low signal to noise conditions, distances

approaching 100 m result in very poor SNRs making target detection difficult. UWB

beamforming could be employed to improve the directional gain of the RNR antenna, thus

improving RNR performance at long range.

13

2.3 Transmitter Theory

Noise radars are separated into two categories: continuous wave random noise and

pseudo random noise. The distinction comes from the various ways of generating the

transmit waveform. A description of both types of RNR and the underlying theory is

presented below.

2.3.1 Continuous Wave Random Noise.

Continuous wave random noise radars derive their transmit waveform by continuously

sampling and amplifying a signal from a truly random source. The AFIT RNR utilizes a

solid-state thermal noise generator as its source. The noise source is a commercial off

the shelf product designed to generate a band-limited noise waveform with characteristics

described in Section 2.2.1. Thermal noise, often called Johnson noise, is a well studied

topic as it is a source of contamination in many engineering disciplines. The root mean

squared (RMS) voltage is given by

vn =
√

4kBTRB (2.8)

where kB is the Boltzmann constant (1.381 × 10−23 joules per kelvin), T is the absolute

temperature in kelvin, R is the resistance in ohms, and B is the bandwidth [8]. Nelms

was able to produce a plot of the power spectral density (PSD) for the AFIT noise source,

shown in Figure 2.3. Throughout the AFIT RNR’s operational bandwidth (350 MHz to

750 MHz) the noise source provided a nearly uniform response.

The benefit of continuous wave random noise radars is that they provide signals that

are ideal for covert operation. The LPI nature of these signals makes them difficult to detect.

Furthermore, continuous wave random noise signals are non-cyclical which prevents non-

cooperative networks from intercepting and identifying characteristics of the transmitted

waveform [27].

14

Figure 2.3: PSD of the AFIT RNR Noise Source [25]

While a continuous noise signal has its benefits, several challenges must be faced.

First, constantly sampling noise sources with high-speed ADCs generates gigabytes of data

and presents a computational challenge for even the most modern processors. Second, the

noise sources for continuous wave RNRs are unique and must be sampled at the central

node. This is an undesirable attribute if a distributed network is desired.

2.3.2 Pseudo Random Noise.

Pseudo random noise radars transmit templates of random numbers that have been

stored in the system’s memory. The templates are typically generated by one of two

ways: storing snapshots of data collected from continuous random sources such as the

thermal noise source describe above or by using random number generators. Both of these

techniques have been explored at AFIT [6].

Pseudo random signals present researchers with more design options than continuous

wave RNRs. Because the random templates are stored in memory, they can be distributed

among cooperative networks. This simple change in the modus operandi allows RNR to

become a true multi-static network for radar imaging. Furthermore, the orthogonality of

one random template to another has enabled communication between nodes. In addition

15

to design flexibility, Collins and Priestly demonstrated a significant improvement in the

performance of distributive processing [6].

Although the UWB characteristics are preserved when transmitting pseudo random

signals of sufficient length, the number of templates that can be stored on the host machine

is limited by the available memory. The implication is that eventually any given template

will be transmitted by the RNR more than once. If these repetitions occur regularly

or in a predictable manner, detection by external networks become likely. One method

to combat repetition in the transmitted signal is to develop a scheme where each radar

or communication node is capable of synchronously generating the same set of random

numbers. Then a cooperative network of pseudo random noise systems could generate new

templates on the fly [6].

2.4 Receiver Theory

The receiver is the considered by many to be the most important component of a

radar or communication system. The receiver not only accepts the incoming signals but

is responsible for demodulation and hypothesis testing to determine whether or not the

received waveform contains pertinent information. The fundamental concepts will be

discussed in this section.

2.4.1 Sampling Theory.

Modern radars have processors that operate on digital signals. As a result, the analog

waveforms incident upon the receiver must be digitized through the process of sampling.

The discretization of analog signals leads to two questions: what sampling rate is sufficient

for adequate representation of the continuous time signal and how many quantization levels

are needed to capture the signal’s amplitude?

To answer the first question the Nyquist sampling theorem must be considered.

Assume that a continuous time signal, x(t), has a band-limited Fourier transform, X(f),

16

that exists over the interval [−B/2, B/2]. Sampling x(t) leads to the following expression:

xs(t) = x(t)

 ∞∑
n=−∞

δD(t − nTs)

=

∞∑
n=−∞

x(nTs) δD(t − nTs)

=

∞∑
n=−∞

x[n] δD(t − nTs). (2.9)

The Fourier transform of (2.9) can be shown to be:

Xs(f) =
1
Ts

∞∑
k=−∞

X(f − k fs) . (2.10)

In other words, the Fourier transform of the discrete signal produces infinite copies of the

continuous transform centered around integer multiples of the sampling frequency, fs. If

the sampling rate is too low, the spectrum of the original signal and the resulting copies

would overlap making it impossible to recover x(t). This observation led directly to the

Nyquist sampling criterion. So long as fs satisfies

fs > B, (2.11)

the spectrum of the original signal can be recovered by low-pass filtering Xs(f) and

multiplying by the sample period, Ts [30].

In addition to the sampling rate, discretization of the signal’s amplitude, or

quantization, must also be considered. This occurs because ADCs only have a finite number

of bits to represent the amplitude. For example, a b-bit ADC has a range of −2(b−1) ∆ to

(2(b−1) − 1) ∆, where ∆ is the step size (assumes that the amplitude is represented in two’s-

complement form). There is an inherent trade between the dynamic range of the ADC and

quantization error [30]. The inclusion of a binary point (similar to the decimal point in

base 10) provides a clearer illustration of this point. For every bit that the binary point

moves to the right the dynamic range increases by a power of two (≈ 6 dB). If bits are

added to the right of the binary point, the precision of the fixed-point number is increased

17

and quantization error is reduced. Richards and others were able to express the signal-to-

quantization noise ratio (SQNR) as

S QNR (dB) = 6.02 b − 10 log10

(
A2

sat

3σ2

)
, (2.12)

where b is the number of bits, Asat is the largest value that can be represented without

saturation and σ2 is the power of the input signal [30]. If the input remains at a constant

power and the dynamic range is normalized to Asat, increasing the number of bits results in

a 6 dB increase in the SQNR.

2.4.2 Discrete Fourier Transform.

Following the discussion on sampling, it seems appropriate to mention the transfor-

mation of temporal samples into the frequency domain. For continuous signals, the Fourier

transform is defined as

X(ω) =

∫ ∞

−∞

x(t) e− jωt dt, (2.13)

while the inverse Fourier transform is defined as [2]

x(t) =
1

2π

∫ ∞

−∞

X(ω) e jωt dω. (2.14)

Trying to use Equation (2.13) in practical systems is problematic in that x(t) must be known

for all time, t, before the transform can be calculated. Conversely, sampling x(t) only

provides a snapshot of the continuous time signal. Therefore, it is often assumed that the

known portion of the signal can be extended periodically and, hence, the discrete Fourier

transform (DFT) can be used to estimate the signal’s spectral content. The equations for

the DFT and inverse discrete Fourier transform (IDFT) are described by Rabiner and Gold

as:

Xp[k] =

N−1∑
n=0

xp[n] e− j(2π/N)nk, (2.15)

and

xp[n] =
1
N

N−1∑
n=0

Xp[k] e j(2π/N)nk (2.16)

18

respectfully, where p denotes periodicity [28].

The symmetry that exists between the DFT and IDFT is of practical importance.

Algorithms that are developed to compute the DFT can be easily adapted for the IDFT.

There will be more discussion on this matter in Section 3.4.

2.4.3 Fast Implementations of the Discrete Fourier Transform.

With spectrum analysis at the center of many operations in signal processing,

researchers are continually looking for fast and efficient implementations of the DFT.

These algorithms are often referred to as a fast Fourier transform (FFT).

One of the earliest and best known algorithms was introduced by James Cooley and

John Tukey in 1965 [7]. If the number of elements in the transform, N, is chosen to be

highly composite, then great efficiencies could be realized when computing the DFT. The

smallest decomposition of N occurs when the number of elements in the transform is a

power of two (i.e. N = 2ν) and forms the basis of the Radix-2 FFT. Equation (2.15) can be

re-written as follows:

X[k] =

N−1∑
n=0

x(n)Wnk
N , (2.17)

where WN = e− j(2π/N). Since the N-point sequence is even, it can be broken into two N/2-

point sequences:

x1[n] = x[2n]

x2[n] = x[2n + 1], n = 0, 1, 2, . . . ,
N
2
− 1.

Equation (2.17) can then be rewritten as

X[k] =

N/2−1∑
n=0

x1[n]Wnk
N/2 + Wk

N

N/2−1∑
n=0

x2[n]Wnk
N/2, (2.18)

effectively decomposing the N-point DFT into two N/2-point DFTs [28]. This decomposi-

tion can be repeated log2(N) until the computation is a two-point DFT. The two-point DFT

19

is computed as follows [28]:

F[0] = f [0] + f [1]W0 = f [0] + f [1] (2.19)

F[1] = f [0] + f [1]WN/2 = f [0] − f [1]. (2.20)

Graphically, the two point DFT is shown in Figure 2.4. The decomposition of the DFT

Figure 2.4: Two-point DFT (DIT Butterfly)

described above is often referred to as a decimation in time (DIT) FFT. Figure 2.5 provides

a signal flow graph of the DIT FFT for an eight-point sequence.

Figure 2.5: Signal Flow Graph for an 8-point DIT Radix-2 FFT

20

Another approach that is often taken is the decimation in frequency (DIF) algorithm.

This algorithm starts by decomposing Equation (2.17) as follows [28]:

X[k] =

N/2−1∑
n=0

x[n]Wnk
N +

N−1∑
n=N/2

x[n]Wnk
N

=

N/2−1∑
n=0

x[n]Wnk
N +

N/2−1∑
n=0

x[n + N/2]W (n+N/2)k
N

=

N/2−1∑
n=0

[
x[n] + e− jπkx[n + N/2]

]
Wnk

N . (2.21)

Like the DIT algorithm, the decimation continues until a two-point DFT remains. For the

DIF FFT, the two-point DFT is computed as follows [28]:

F[n] = x[n] + x[n + N/2] (2.22)

G[n] = [x[n] − x[n + N/2]]Wn
N n = 0, 1, 2, . . . ,

N
2
− 1. (2.23)

An illustration of the DIF butterfly is shown in Figure 2.6. An example of an eight-point

Figure 2.6: Two-point DFT (DIF Butterfly)

DFT utilizing the radix-2 DIF algorithm can be seen in Figure 2.7.

While the two algorithms produce similar flow graphs, the DIT algorithm requires

that the input signal be in bit-reversed order and the DIF’s input is in normal order. For this

reason, the DIF algorithm is often preferred when designing hardware routines.

Since the Cooley-Tukey FFT was introduced in 1965, researchers have continued

to look for ways to improve the computational efficiency of the DFT. This includes

reducing the overall number of operations required to complete the transform while

assessing how conducive it is to hardware implementation. In 1996, He and Torkelson

21

Figure 2.7: Signal Flow Graph for an 8-point Radix-2 DIF FFT

introduced the R22SDF DIF algorithm which has since gained traction in the FPGA design

communities [14]. The algorithm’s signal flow graph has spatial regularity, making it ideal

for pipelining. Furthermore, the R22SDF has the added benefit of minimizing complex

multipliers and memory registers while maintaining the basic structure and control as a

radix-2 design [14].

The derivation of the R22SDF applies the following linear index map to Equation (2.17):

n =<
N
2

n1 +
N
4

n2 + n3 > N (2.24)

k =< k1 + 2k2 + 4k3 > N. (2.25)

Following some simplification, He and Torkelson show that the result is four DFTs of

length N/4

X[k1 + 2k2 + 4k3] =

N/4−1∑
n=0

[
H(k1, k2, n3) Wn3(k1+2k2)

N

]
Wn3k3

N/4 , (2.26)

22

where H is given by the expression [14]

H(k1, k2, n3) =

BFI︷ ︸︸ ︷[
x[n3] + (−1)k1 x[n3 + N/2]

]
+(− j)k1+2k2

BFI︷ ︸︸ ︷[
x[n3 + N/4] + (−1)k1 x[n3 + 3N/4]

]︸ ︷︷ ︸
BFII

.

(2.27)

Recursive decomposition of a 16-point sequence results in the flow graph depicted if

Figure 2.8.

Figure 2.8: 16-Point Signal Flow Graph (Radix-22 SDF)

23

2.4.4 Cross-correlation.

Cross-correlation is a mathematical tool used in signal processing to determine the

similarity of two waveforms and is often employed to detect a known signal in the presence

of noise. In the case of two deterministic signals or stationary stochastic processes, x and

y, the cross-correlation is defined by

cxy[m] =

∞∑
n=−∞

x∗[n] y[n + m]. (2.28)

Inspection of Equation (2.28) shows that the cross-correlation and convolution are

closely related. Like the DFT, however, practical systems only provide a finite number of

samples. Given the assumption made in Section 2.4.2, two periodic sequences xp[n] and

hp[n] have transforms that can be described by Equation (2.15). This is an important result

for linear-time-invariant systems as it allows for the development of circular convolution

and correlation. For example, let yp[n] represent the circular convolution of xp[n] and hp[n]:

yp[n] =

N−1∑
l=0

xp[l] hp[n − l]. (2.29)

The sequences x[n] and h[n] don’t necessary have to be the same length, but they must be

zero padded to the period of y[n] for circular convolution to work [28]. An illustration is

provided in Figure 2.9.

Figure 2.9: Example of Linear Convolution

24

Taking the DFT of yp[n] leads to the following result [28]:

Yp[k] =

N−1∑
n=0

N−1∑
l=0

xp[l] hp[n − l]

 e− j(2π/N)nk

=

N−1∑
l=0

xp[l]

N−1∑
n=0

hp[n − l] e− j(2π/N)(n−l)k

 e− j(2π/N)lk

= Hp[k]
N−1∑
l=0

xp[l] e− j(2π/N)lk

= Hp[k] Xp[k]. (2.30)

In other words, convolution and multiplication form a transform pair. A similar derivation

can be done to show that the cross-correlation of two signals xp[n] and yp[n] can be

calculated by taking the IDFT of a point-wise multiplication of Xp[k] and Y∗p[k] [28]:

DFT−1[Xp[k] Y∗p[k]] =
1
N

N−1∑
k=0

Xp[k] Y∗p[k] e j(2π/N)mk

=
1
N

N−1∑
k=0

N−1∑
r=0

xp[r] e− j(2π/N)rk

 × N−1∑
s=0

y∗p[s] e j(2π/N)sk

 e j(2π/N)mk

=

N−1∑
r=0

N−1∑
s=0

xp[r] y∗p[s]

 1
N

L−1∑
k=0

e j(2π/N)k(m−r+s)

=

N−1∑
r=0

N−1∑
s=0

xp[r] y∗p[s] δ(m − r + s)

=

N−1∑
s=0

y∗p[s] xp[m + s]. (2.31)

This result has greatly improved the computational efficiency of correlation algorithms,

reducing the number of complex operations from N2 to N log N [2].

2.4.5 Matched Filtering.

In radars and communication systems alike, performance and SNR are directly related.

Therefore, removing extraneous noise from the received waveform while enhancing the

signal of interest is paramount. In vector notation, the power of the signal component at

the output of a finite impulse filter is shown by Richards and others as

|y|2 = y∗yT = HHX∗XTH, (2.32)

25

where X is the signal of interest and H is the filter [30]. The expected value of filtered noise

is

|y|2noise = HHRIH (2.33)

with RI being the noise covariance matrix. From these two expressions, the SNR is simply

a ratio of the signal and noise powers. The authors go on to find an H that maximizes the

SNR. As a result of this optimization, the ideal filter is found to be

H = kR−1
I X∗. (2.34)

For the special case that the noise in the transmission channel is white and Gaussian,

RI = σ2
n. If k is chosen to be 1/σ2, the result is simply [30]

H = X∗. (2.35)

In other words, the ideal filter in the presence of white noise is just the complex conjugate

of the signal of interest. Hence, H is known as a “matched filter”.

2.5 Chapter Conclusion

This chapter presented the basic principles of noise radar technology. The next chapter

will tie these principles to the research effort of miniaturizing the AFIT RNR architecture

and corresponding algorithm development.

26

III. System Description and Methodology

3.1 Chapter Overview

The miniaturization of the AFIT RNR is a complex architectural design problem. To

ensure that this design effort is accomplished in an efficient and logical manner,

methodologies related to design, algorithm development, and system characterization will

be discussed in this chapter. A preliminary set of requirements will be outlined in the

following section in order to justify the selection of critical hardware components. The

remainder of the chapter will center around developing signal processing routines that

can be implemented on the host system and the evaluation of the resulting system’s

performance.

3.2 Requirements Definition

The design of a new architecture for AFIT’s noise radar is a classic systems

engineering problem. Figure 3.1 depicts the V-model often used to model processes

associated with system design and implementation [26]. To begin the process, one must

start by defining the concept of operation. This was accomplished in the thesis introduction.

The next step shown in Figure 3.1 is identifying the system requirements.

The design requirements for a miniature RNR can be separated into two major

categories: the requirements at the system of systems level (i.e., the requirements that

originate from the interactions between the host vehicle and the RNR) and those at the

system level (i.e., the attributes that enable the RNR to operate as intended). A complete

understanding of how the RNR will be integrated into the host vehicle is beyond the scope

of this research effort. However, before the second category can be addressed, a top-level

description of the operating environment must be understood.

27

Figure 3.1: Systems Engineering V-Model

3.2.1 System of Systems Requirements.

Smaller UASs are highly constrained in cargo capacity and battery power. For an

RNR to operate in this environment, it must be compact, lightweight, and consume minimal

amounts of power. Finally, the input/output (IO) interface and communication protocol of

the host vehicle will need to be defined before an RNR design can be finalized.

3.2.2 System Requirements.

In order to define component level requirements it is a good idea to begin with a

description of the functional baseline. The basic functions of an RNR are outlined in Figure

3.2. These functions are shared by a majority of existing radar systems. The functional

hierarchy is separated into two main paths: the transmit functions and the receive functions.

In order for the radar to transmit a signal, it must generate the waveform, delay (or store)

a copy of the generated waveform for coherence, and send the signal through the transmit

hardware and out the antenna. When the radar is ready to execute the receive function, it

must accept the incoming waveform through the receive hardware, sample the incoming

signal, and compare the received signal to the delayed transmit waveform to determine

whether or not it is a target return.

28

Figure 3.2: RNR Functional Hierarchy

It is strongly desired that the miniaturized RNR achieve a performance that rivals

AFIT’s current RNR configuration. As a result, the proposed system will need to process

RF bandwidths of at least 750 MHz. Furthermore, the proposed design should provide

two possible modes of operation: radar and communication (i.e., the received signal will

need to be cross-correlated with either delayed versions of the transmit waveform or

communication templates). A preliminary set of requirements for the miniature RNR is

provided in Table 3.1.

Table 3.1: Miniature RNR Requirements

Specification AFIT RNR Miniature RNR

Threshold Objective

Bandwidth 750 MHz 750 MHz 1 GHz

Computation Speed - 1024 pt Correlation 1 ms 10 µs 1 µs

Transmit Power 1 W 5 W 5 W

Size 9 ft3 0.5 ft3 0.2 ft3

Power Consumption 110 W 20 W 10 W

ADC/DAC Resolution 8-bit 8-bit 12-bit

29

The development of a miniature RNR requires the successful completion of several

component-level design tasks. These tasks have been summarized in Figure 3.3. In addition

to enumeration, Figure 3.3 also captures the design time and level of effort required to

complete each task. Given the time constraints placed on this research effort, the focus

is centered on the design of the correlation algorithm and its implementation. Successful

completion of this task will demonstrate the feasibility of a miniature RNR and clears a

significant hurdle in system design.

Figure 3.3: RNR Miniaturization Tasks

3.3 Hardware Design

With a basic set of requirements defined for the miniaturized RNR, some design

choices need to be made before signal processing routines can be developed. While

the development of a detailed architecture is left as a follow-on effort, the primary

computational component will be identified. Furthermore, some design considerations for

the RNR’s peripheries will be outlined in this section.

30

3.3.1 Signal Processor.

The need to minimize size and power consumption while simultaneously maintaining

the ability to accomplish high-performance signal processing routines narrows the field of

possible signal processors down to two categories: digital signal processors (DSPs) and

FPGAs. To choose between them a comparison of both architectures is needed.

DSPs have been around for many years and are considered a critical component of

many electronic systems. DSPs are specially designed microprocessors that are well suited

for arithmetic-intensive tasks. The algorithms written for DSPs are often programmed in

C and are executed sequentially as each element has to pass through an arithmetic logic

unit (ALU). To meet the ever increasing need for high-speed signal processing, modern

DSPs have been designed with multiple ALU cores allowing designers to take advantage

of parallel processing [44].

While DSPs have come a long way in computational throughput, they are still severely

limited by clock speed and their sequential, instructional based architectures. Despite the

availability of multicore DSPs, many designers have resorted to multiple DSP devices on

a single board [44]. In the context of a miniature RNR, this would be counter productive

to the goals of minimizing the overall size of the design and limiting power consumption.

Additionally, multiple device or multicore designs often shift the focus of programmers

from executing the signal processing routine to scheduling tasks and resources across the

multiple devices. The result is a significant increase in code that functions as overhead

and an exponential trend in system performance. In other words, it may take two devices

to double the throughput of a signal DSP, but to double it again would require four

devices [44].

The primary alternative to a DSP is an FPGA. While FPGAs vary by manufacturer

and price, most contain the following elements: massive arrays of uniform configurable

logic blocks (CLBs), memory, DSP slices, IO transceivers, and clock management

31

devices. The FPGA’s architecture enables two modules, A and B, to operate in parallel

and independently. Designers are able to tailor implementations to match the system’s

requirements (i.e., high speed signal processing routines would utilize multiple channels

and maximize parallelism while lower-rate designs could be designed to minimize

resources reducing power consumption).

The delineation of the two may be clearly understood through an example. The one

used by Zatrepalek in [44] is the finite impulse response (FIR) filter. The FIR filter was

chosen because it is the most commonly used signal processing element, and it provides a

good illustration of the strengths and weakness of the DSP and FPGA architectures [44].

Mathematically a simple FIR filter is represented by:

Yn =

N−1∑
i=0

kn−1S i, (3.1)

where S is a continuous stream of input samples, kn−1 are the filter coefficients, n is a

particular instant in time, and Y is the filtered signal. The basic steps for implementing

the FIR filter are: sample the incoming signal, organize the samples in a memory buffer,

multiply each sample with the corresponding coefficient and accumulate the result, and

output the filtered result [44].

Zatrepalek implemented a 31-tap multiply-and-accumulate FIR filter in a DSP running

at a clock rate of 1.2 GHz. The maximum performance was measured at 9.68 MHz, or 9.68

Megasamples per second (MS/s). On the other hand, a parallel implementation of the filter

on an FPGA could output a result on every clock cycle while simultaneously leaving a

majority of the chip’s resources to execute other processes or algorithms. The maximum

performance that could be achieved on a Virtex 7 FPGA was calculated to be 600 MHz or

600 MS/s [44].

The efficiencies and computational performance of an FPGA make it the ideal choice

for the miniaturized RNR. In addition to handling the data rate and high-speed correlation

associated with a baseband receiver, the FPGA could potentially execute the transmit

32

and receive functions simultaneously. Furthermore, an FPGA would provide follow-on

researchers the ability to quickly reconfigure the design without changing or rewiring any

hardware.

3.3.2 Data Converters.

The ability to convert an analog signal to the digital domain and vise-versa is critical to

the miniature RNR’s operation. In order to meet the requirement that the proposed system

process RF bandwidths of at least 750 MHz, the sampling rates of the data converters

will need to exceed 1.5 GS/s. The interface between ultra-high speed data converters and

memory is often a significant challenge. For this reason, data converters with buffered or

demultiplexed output should be considered. While the selection of ultra-high speed data

converters is ever increasing, a good example of an ADC that meets the aforementioned

requirements is the MAX109 from Maxim Integrated Products. The MAX109 can achieve

sampling rates of 2.2 GS/s and includes a demultiplexer that directs the 8-bit samples to

four different output registers. The MAX109’s output configuration allows four consecutive

samples (32-bits) to be read at one-forth the sampling clock [19].

3.3.3 Clock Generation.

With two ultra-fast data converters and one or more FPGAs, clock generation and

distribution is of the utmost importance. The RNR’s clock signal needs to be fast enough

to drive the ADC and digital-to-analog converter (DAC), and it must have very little phase

distortion (low-jitter).

Conventional crystal oscillators usually generate clock frequencies that are well below

what is needed for the RNR. As a result, the combination of a crystal oscillator, phase-

locked loop (PLL), and a voltage-controlled oscillator (VCO) is often used to meet the

clocking requirements of an ultra-high speed data converter. The VCO uses the signal from

the crystal oscillator to produce the output clock signal. To keep the VCO’s output locked

33

at the desired frequency, the VCO output is fed back to a PLL and compared to the crystal

oscillator’s frequency. A simple block diagram of the circuit is shown in Figure 3.4 [20].

Figure 3.4: Typical Clock for High-Speed Data Converters

To improve the stability of the VCO a loop filter is often used to low-pass filter the

signal from the PLL’s charge pump. The design of the loop filter is often a balancing act

between how quickly the VCO can respond to changes in the PLL signal and stability. To

aid in the design process, many manufacturers have free software tools or look-up tables

that help identify the necessary filter components to achieved the desired performance.

Once a clock circuit has been designed that can generate the appropriate frequency,

special consideration should be given to clock jitter. An irregularity in the clock’s period

translates to an uncertainty in the quantization of the received signal. An illustration of

this phenomena is provided in Figure 3.5. Rapidly changing signals, such as the one used

by the RNR, accentuates this uncertainty. Hence, the lower the jitter the better the ADC’s

SNR. These distortions of the clock’s phase and period are the result of internal noise

sources: thermal noise, phase noise and spurious noise. A good description of each of

these noise sources and their effect on clock jitter is given in Application Note 800 from

Maxim Integrated Products [20].

34

Figure 3.5: Quantization Error Caused by Clock Jitter

3.4 Algorithm Development

The selection of an FPGA as the primary signal processing device has a profound

impact on the correlation algorithm that will be used to execute the radar’s receive function.

To maximize the performance, the design will need to incorporate the FPGA’s ability

to execute operations in parallel. In other words, the algorithm will need to be highly

pipelined. Finally, the correlation routine should efficiently utilize the FPGA’s limited

resources.

It was shown in Chapter 2 that the cross-correlation of two signals, x[n] and y[n],

could be calculated by taking the IDFT of their cross-power spectral density. This method

is well suited for FPGA implementation because it is built around the inherent efficiencies

of the DFT. For that reason, a hardware realization of the R22SDF FFT will be presented

below. The FFT module will serve as a cornerstone upon which the rest of the correlation

algorithm will be built.

3.4.1 Radix-22 Architecture.

A block diagram of the R22SDF is presented in Figure 3.6 [31]. An N-point

R22SDF processor usually contains log4(N) stages. Each of the stages contain two

35

Figure 3.6: R22SDF Block Diagram

hardware modules that are designed to compute a two-point DFT and will hereafter be

referred to as BFI and BFII respectively (BF is a shortened version of butterfly, a word

commonly used to describe the signal flow graph of a two-point DFT). Each of the butterfly

units are connected to a series of memory registers that are used to delay the feedback

signal. The output of BFII flows through a complex multiplier where it is multiplied by the

complex roots of unity (i.e. “twiddle-factors”) described in Equation (2.26). The twiddle

factors are stored in the FPGA’s block random-access memory (RAM). Finally, a log2(N)-

bit counter is used as a control unit for the R22SDF processor [14]. In cases where N is not

a power of four but is a power of two, the final stage will only contain a BFI module.

A detailed view of the BFI architecture is shown in Figure 3.7 [31]. The control

signal, C1, oscillates between 0 and 1 every N/2stage+1 clock cycles. Initially, C1 is in state

0 and the multiplexers direct the input signal to the delay buffers. When C1 changes to state

1, a two-point DFT is computed between the input signal and the delayed signal. The real

and imaginary outputs of the BFI module are fed to the next component, normally a BFII

module.

The schematic of the BFII module is shown in Figure 3.8 [31]. The structure

of the BFII is more complex than the BFI as it is responsible for computing the trivial

36

Figure 3.7: BFI Architecture

multiplications by − j prescribed by Equation (2.27). Multiplying a complex number,

A + jB, by − j results in:

− j (A + jB) = B − jA. (3.2)

In other words, INreal and INimag would be swapped and the sign of the real input would

be inverted. There are two control signals, C1 and C2 used to route the signals through the

BFII. The signal C2 is used direct the output of the MUXim module to the delay buffers or

through the two-point DFT butterflies. C2 changes state every N/2stage+2 clock cycles (i.e.

twice the rate of C1). The control signal C1 is the same input that is used to control the BFI,

and is combined with C2 to control the MUXim and sign inversion modules. A detailed

view of the sign inversion module is shown in Figure 3.9 [31].

The next component in the R22SDF architecture that is worthy of discussion is the

complex multiplier. Traditionally the multiplication of two complex numbers is computed

as follows:

(A + jB)(C + jD) = AC − BD + j(AD + BC). (3.3)

37

Figure 3.8: BFII Architecture

Figure 3.9: BFII Sign Inverter

38

The end result requires four real multipliers and two real adders. Since FPGA multipliers

are often a scarce resource, a secondary approach is often taken to minimize the number of

multiplications required for the complex product. If (3.3) is rearranged as follows:

(A + jB)(C + jD) = (C (A − B) + B (C − D)) + j(D (A + B) + B (C − D)), (3.4)

the number of additions required is increased to five, but the number of multiplications

drops to three. Equation (3.4) results in a computational latency of six clock cycles. A

schematic of the pipelined complex multiplier can be seen in Figure 3.10 [33].

Figure 3.10: Pipelined Complex Multiplier

Another critical component in any FFT algorithm is the twiddle-factor generator.

Many different techniques have been proposed throughout existing literature. These in-

clude, but are not limited to, coordinate rotation digital computer (CORDIC) algorithms,

polynomial based approaches, ROM-based lookup tables, and recursive function gener-

ators. CORDIC algorithms are often used in smaller FPGAs to calculate trigonometric

functions using a combination of adders, bitshift operations, and lookup tables. While

39

CORDIC algorithms are efficient, they introduce unnecessary delays in larger, more capa-

ble devices like the Xilinx Virtex-5. The polynomial and recursive function approaches

use polynomials as a piecewise approximation to complex functions. These algorithms

use more resources than the CORDIC-based approach and grow in complexity as preci-

sion is increased. Finally, ROM-based lookup tables can be used to store pre-calculated

values of the desired function. This approach eliminates the computational latencies in

the other algorithms, but can consume copious amounts of memory for larger transforms.

The ideal choice depends heavily on the design parameters of the FFT processor. For ex-

ample, a ROM-based lookup table for an 8192-point transform may consume too much

of the FPGA’s memory, and CORDIC algorithms may be too slow for high-throughput

processors [4].

While the authors of [4] only recommend the ROM-based approach for transform sizes

of N = 512 or less, the proposed FFT processor will utilize a lookup table for simplicity.

The twiddle-factors are precomputed in MATLAB, converted to fixed-point precision, and

then loaded into the FPGA’s read-only memory (ROM) upon implementation. The twiddle-

factors are generated according to the following algorithm:

Wi = {ux}; x = 0, 1, 2, . . . ,N/22i, (3.5)

ux = e− j2πν/N , (3.6)

ν =

0, 0 ≤ x < a

22i+1(x − a), a ≤ x < 2a

22i(x − 2a), 2a ≤ x < 3a

3 · 22i(x − 3a), 3a ≤ x < 4a

(3.7)

a =
N

22(1+i) , (3.8)

where i corresponds to the current stage and ranges from zero to log4(N) − 2 [31]. If

the algorithm is computing the inverse fast Fourier transform (IFFT), the twiddle-factors

40

generated by the above routine would need to be conjugated before being stored to the

FPGA.

3.4.2 Bit-Order.

The R22SDF FFT processor is an example of a DIF routine. As a result the input

signal, x[n], will enter the R22SDF algorithm in normal order. Once the transform has been

completed, the algorithm’s output, X[k], exits the routine in bit-reversed order. Therefore,

there are two options that will impact the components that follow the FFT block in the

correlation routine: bit-reverse the matched filter and design an entirely new architecture

to compute the IFFT or bit-reverse X[k] so that the same R22SDF architecture can be used

to compute the FFT and IFFT. The first option would reduce the overall latency of the

correlation algorithm. However, the challenge of designing a piplined DIT algorithm that

operates with the same efficiency as the R22SDF is not a trivial task. For that reason,

the correlation algorithm presented in this chapter bit-reverses X[k] so the R22SDF can be

reused.

The hardware module that will be used to execute the bit reversal was introduced

Garrido, et al. in [11]. If N = 2n, then a positional vector (i.e. index), P can be defined as

P =

n−1∑
i=0

xi2i. (3.9)

Consider an X[k] that has an initial index of P0 = un−1, un−2, . . . , u0. An elementary bit

exchange of two dimensions x j and xk, where j > k, consists of moving each sample in

position P0 to the new index P1 where:

P0 = un−1, un−2, . . . , u j+1, u j, u j−1, . . . , uk+1, uk, uk−1, . . . , u0 (3.10)

P1 = un−1, un−2, . . . , u j+1, uk, u j−1, . . . , uk+1, u j, uk−1, . . . , u0. (3.11)

In other words, the N/2 samples that have an indices x j , xk will exchange places while

the rest are unaffected [11].

41

In the case of the R22SDF architecture the samples arrive in a serial manner.

Therefore, the position of the sample is equal to the order of arrival, and the number of

the clock cycles between x j and xk is equal to

∆t = 2 j − 2k. (3.12)

Exchanging the samples in indices x j , xk requires delaying some samples while advancing

others. This can be accomplished in hardware using two muxes and L = ∆t registers.

Figure 3.11 depicts the basic circuit necessary for exchanging serial dimensions [11]. The

Figure 3.11: Basic Circuit To Exchange Dimensions of Serial Data

control signal, S, is driven by the following logic:

S = x jORxk. (3.13)

Two samples, S 1 and S 2, are exchanged every time x j = 1 and xk = 0.

Now that the basic circuit for dimensional exchange has been identified, a framework

for bit-reversal can be developed. Let σ represent the following permutation:

σ(xn−1, xn−2, . . . , x0) = x0, x1, . . . , xn−1. (3.14)

42

Equation (3.14) can be seen as a composition of elementary bit exchanges. Therefore, it

can be represented as

σi =

xi ↔ xn−1−i ; i ∈ [0, n/2 − 1] ∀ Even {log2(N)}

xi ↔ xn−1−i ; i ∈ [0, (n − 3)/2] ∀ Odd {log2(N)}
[11]. (3.15)

The R22SDF algorithm introduced in this chapter outputs N = 1024 samples in bit-

reversed order. Hence, to compute

σ(x0, x1, . . . , x9) = x9, x8, . . . , x0 (3.16)

a total of 5 exchange circuits are needed. The number of delay registers needed in each σi

is defined by:

D(σi) = 2(n−1−i) − 2i [11]. (3.17)

A complete schematic of the circuit is shown in Figure 3.12.

Figure 3.12: 1024-Point Bit-Reverse Circuit

3.4.3 FPGA Correlation.

Now that the architectures of the FFT, complex multiplier and bit-reverser have been

established, the FPGA correlation algorithm can be constructed. A block diagram of the

proposed algorithm can be seen in Figure 3.13. The real and imaginary components of the

43

Figure 3.13: Proposed FPGA Correlation Algorithm

input signal are fed into the first R22SDF FFT. The output of the FFT is then sent through a

bit-reversal module to convert the data back into normal serial order. Next, the data stream

enters the complex multiplier where it is multiplied by corresponding filter coefficients that

have been predetermined and loaded in FPGA ROM. The result is then sent through a

second R22SDF module that has been configured to compute the IFFT. Finally, the data is

scaled according to Equation (2.16) and then rearranged back into normal order.

The proposed correlation algorithm assumes that the input is synchronized with the

template such that when the signal of interest is received

template[0:1023] = (input[0:1023] − U[0:1023])∗ (3.18)

where U is the channel noise. Additionally, an FPGA implementation of the proposed

algorithm has to account for the latencies of each component so that all of the mathematical

operations are appropriately aligned.

44

3.5 Design Tools

In order to develop a simulation and hardware implementation of the proposed

correlation algorithm, a few design tools were needed. Below is a brief description of

those that were used during this research effort.

3.5.1 Simulink.

Simulink is a software tool developed by MathWorks that uses a graphical design

environment to model, simulate and analyze dynamic systems across many different

domains. Simulink is closely coupled with MATLAB. This allows Simulink models to

be run from MATLAB scripts and for the data generated within a Simulink model to be

exported to MATLAB for further analysis. The solvers within Simulink are capable of

handling continuous-time and discrete-time models.

3.5.2 Xilinx ISE.

The ISE Design Suite from Xilinx is a comprehensive integrated development

environment (IDE) that facilitates FPGA design from start to finish. There are several

specialized versions of the ISE Design Suite that have been tailored to specific design

paradigms (i.e. embedded systems, DSP, etc.) and include support for a wide range of

Xilinx hardware. In addition to licensed versions above, the ISE Webpack is a free version

of the software available for download on the company’s website. The licensed versions

of the software and the ISE Webpack provide developers with a library of pre-developed

FPGA modules known as “intellectual property (IP) cores”. A thorough description of the

development environment and related software modules can be found in [42, 41].

The ISE Webpack, version 14.4 was chosen for this development effort because it

included support for AFIT’s Virtex-5 (XC5VLX50T-FFG1136C -1). Furthermore, the

standard set of IP cores that is included under the Webpack license was sufficient for the

proposed correlation algorithm.

45

3.5.3 ML555: Virtex-5 Development Board.

To facilitate the design of the correlation algorithm on an FPGA, Xilinx’s Virtex-5

ML555 development kit was employed. The ML555’s primary purpose is the design of

FPGA algorithms for parallel peripheral component interface (PCI) and serial PCI Express

communication. However, the development board presents developers with several options

for IO. The ML555 development board is pictured in Figure 3.14. To operate the ML555

it must be properly configured and then inserted into a PCI or PCI Express add-on slot.

The board includes three push button switches and three light emitting diodes that allow

users to interact directly with their algorithm. The ML555 has three global clock sources,

a differential subminiature version A (SMA) clock input, and two programmable clock

sources [43].

Bitstreams can be programmed directly to the FPGA via the Xilinx Platform Cable

universal serial bus (USB). Conversely, the bitstream files can be converted to a format

compatible with the ML555’s Platform Flash via the Xilinx software module iMPACT.

The development board includes a complex programmable logic device (CPLD) that can

be configured as a bootloader for FPGA programs stored in the two Platform Flash units.

The two Platform Flash units can support a total of four different bitstreams [43].

3.6 System Characterization

Now that a design has been proposed for a correlation algorithm and the required

tools have been identified, the next step is to characterize the system against the key system

attributes for the miniature RNR’s receiver.

3.6.1 Modeling and Simulation.

A model of the proposed algorithm will be designed in Simulink. A simulation of

the correlation algorithm will be used to determine if the proposed design delivers a valid

46

Figure 3.14: Annotated ML555 Board [43]

47

result. If problems are encountered, the necessary changes will be made to the model before

proceeding to FPGA design.

The one drawback to this approach is that AFIT’s license does not currently cover

MATLAB’s fixed-point toolbox. Hence, all simulations will be executed at double

precision. Design features that handle overflow control, loss of precision, and rounding

will have to be addressed during hardware description language (HDL) coding.

3.6.2 Power Assessment.

The ML555 provides current sensing circuits for monitoring the current required to

power the FPGA and select peripherals [43]. These circuits will be used in conjunction

with a volt-ohm meter to characterize the power required by the system when idle and

when executing the correlation algorithm. The difference should provide some insight to

the power required to run the routine.

In addition to the direct measurement described above, the Xilinx ISE is able to

estimate the power required to run a given design. The Xilinx program, XPower Analyzer,

is included with the ISE Webpack installation. The XPower Analyzer provides a detailed

report of the power consumed by a given design once it has been implemented and a

successful place and route has been accomplished. For an accurate measurement, the

program requires a well defined user constraint file to get an idea of net toggle rates. The

XPower Analyzer report can be used to highlight areas of the design (specific hardware

or code modules) that are consuming the most power and have the greatest potential for

energy savings. The results provided by this program should provide a good complement

the ML555’s current sensing circuits.

3.6.3 Performance Assessment.

To determine if the proposed correlation algorithm is a good candidate for future RNR

miniaturization efforts the system’s performance will need to be assessed. The current

48

AFIT RNR will be used as a performance baseline and comparisons will be made to

determine the suitability of an FPGA-based receiver.

The first attribute that is of interest is the computational speed of the proposed

algorithm. For the proposed design to be considered a success, it must achieve a

computational rate at least equal to that of the current AFIT RNR.

The ML555 development board does not provide a convenient way to send a timing

strobe to a logic analyzer or oscilloscope. For this reason, an alternative approach will be

taken to determine the time required to complete a correlation. In the top-level module

of the FPGA correlation algorithm, a memory register will be added that begins counting

clock cycles when the start signal is asserted and stops after the result is stored in the

FPGA’s memory. The count value is then sent to a computer where it is multiplied by the

clock period to determine the overall time elapsed.

Another important aspect of the algorithm’s performance is accuracy. To assess the

ability of the proposed algorithm to provide the correct result, an input signal will be

generated in MATLAB and stored in the FPGA’s ROM. An arbitrary 1024-point sample

will be taken from the input signal to generate coefficients of the matched filter. When the

start signal is asserted the input signal will flow through the correlation algorithm and the

result will be stored in RAM. Upon completion of the transform, the result will be sent to

a computer and plotted in MATLAB. Finally, the result of this test will be compared to a

similar correlation routine in MATLAB.

3.7 Conclusion

The selection of an FPGA centric design for the miniature RNR led to the development

of a correlation algorithm. Once a model of the proposed routine is proven in Simulink, an

FPGA implementation will be used to assess the performance of the proposed algorithm.

The result of these evaluations will be discussed in the next chapter.

49

IV. Results

4.1 Chapter Overview

The R22SDF correlation routine that was introduced in the previous chapter was

simulated and then implemented in actual hardware. Each of the assessments

described in Chapter 3 were performed and the results are presented in the sections below.

Comparisons are made between the computer-based approach used in the prior RNR

architecture and the simulated/measured results of the proposed system. The chapter begins

with a description of the R22SDF -based correlation model, followed by a description of the

FPGA implementation of the routine and concludes with the presentation of the measured

results.

4.2 Modeling and Simulation

Before engaging in hardware implementation, a the R22SDF correlation routine was

modeled in Simulink. Simulink was chosen as the modeling and simulation vehicle over

HDL simulators like Xilinx’s iSim because it provided an interface to MATLAB for

plotting and analysis, changes/corrections were much quicker in Simulink, and familiarity

alleviated the steep learning curve associated with the HDL simulator. The model served

two purposes: it provided valuable insight into the inner workings of the proposed

algorithm, and it ensured that it could produce results that closely agreed with theory.

4.2.1 Model Description.

A top-level view of the correlation routine is provided in Figure 4.1. The input signal

is generated in MATLAB and loaded into the model via the workspace. The input signal

flows through the FFT and bit-reversal subsystems where it is then multiplied by filter

coefficients. The filtered result is inverse transformed and then sent through a second bit-

50

reversal subsystem to put the result in normal order. The simulation output is sent to the

MATLAB workspace where further analysis can be carried out.

Figure 4.1: Simulink Model of the Correlation Algorithm

The R22SDF FFT subsystem is modeled after the description given in Chapter 3 and

can be seen in Figure 4.2. There are a total of five stages, each containing a BFI subsystem,

BFII subsystem, and delay units. The output from the first four stages flows through a

complex multiplier where it is multiplied by twiddle factors. The twiddle-factors were

computed in MATLAB and then stored as MATLAB data files. To successfully execute the

FFT, the twiddle-factors have to be loaded to the MATLAB workspace before running the

model. The model for the inverse transform has the exact same structure except that the

twiddle-factors are the conjugates of those used in the forward transform.

The Simulink design elements, “N-sample enable” and “pulse generator”, have been

combined to emulate a 10-bit counter that serves as the control unit for the FFT routine.

However, this implementation of a counter results in an inverted output (i.e. 0x0 is

51

(a)

(b) (c)

Figure 4.2: Simulink Model (a)R22SDF FFT, (b)BFI Model and (c) BFII Model

represented as 0xF). The inverted control signals and the implementation of Simulink

switches result in butterfly units that are slightly different than what was shown in

Chapter 3. The logic table for the MUXinv has to be inverted to maintain proper flow

through the BFII subsystem. Table 4.1 illustrates the difference between the Chapter 3

MUXinv logic and the Simulink implementation. To achieve the desired result an OR gate

52

is used in place of the AND gate shown in Chapter 3. The Simulink representation of the

BFI and BFII can be seen in Figures 4.2b and 4.2c respectively.

Table 4.1: Logic Tables for MUXinv

Chapter 3

C1 C2 Cc MUXinv Status

1 0 0 Normal

1 1 0 Normal

0 0 0 Normal

0 1 1 Switch

Simulink

C1 C2 Cc MUXinv Status

0 1 1 Normal

0 0 1 Normal

1 1 1 Normal

1 0 0 Switch

Following the R22SDF FFT in the correlation model is the Simulink model of the

bit reversal circuit described in Chapter 3. A top-level view of the bitreverser is shown

in Figure 4.3. For the bitreverser to successfully reorder the incoming data, the module’s

control signals need to be synchronized with the index of the incoming data. Since the

latency of the FFT subsystem is exactly 1024 clock cycles, aligning the bitreverser with

the incoming signal is quite simple. A ten-bit counter that increments on every clock cycle

will return to zero as soon as the first input sample enters the bit reversal module. Hence,

the counter is the only control element needed.

Within the bit reversal subsystem, there are two lower-level routines that operate on

the real and imaginary data streams respectively. The two submodules are identical and

are a Simulink implementation of the circuit described in Section 3.4.2. The constituents

of this routine are shown in Figure 4.4. The Simulink implementation of the bit reversal

routine is a very close representation of the circuit described in Section 3.4.2.

53

Figure 4.3: Simulink Bitreversal Unit

Figure 4.4: Simulink Model of the Bit Reversal Circuit

54

The latency of the bit reversal routine is 962 clock cycles. Thus, a delay of 62 clock

cycles is added to the output in order to increase the overall latency of the bitreverser

subsystem to 1024 clock cycles. The added delay allows the downstream subsystems to

maintain simple control elements.

The final component in the correlation model is the filter subsystem. The complex

filter coefficients are stored in a single lookup table. Because the overall latency of the

subsystems preceding the filter is a multiple of 1024, a ten-bit counter can be used to

access the data in the lookup table. The real and imaginary components of the input signal

are combined into a single complex value and then multiplied by the corresponding filter

coefficient. The Simulink model of the filter is shown in Figure 4.5.

Figure 4.5: Simulink Model of the Filter

4.2.2 Simulation Results.

To demonstrate the correlation model, a random 10240-point input signal was

generated using MATLAB’s randn function. The input signal was designed to represent

ten consecutive captures of an RNR return in a noiseless channel. Each representation of

the captured signal is assumed to be 1024 samples long. Two experiments were run on

55

the Simulink model to determine if the R22SDF FFT and correlation algorithm generated

results that agreed with MATLAB.

To verify that the Simulink model of the R22SDF FFT provides an expected result,

the simulation output was plotted along side MATLAB’s FFT. The result is shown in

Figure 4.6. The smaller plot in the upper right-hand corner of Figure 4.6 shows that the

two plots are the same. A mean square error of approximately 6×10−29 was calculated, but

that could be attributed to machine precision.

0 2000 4000 6000 8000 10000

0

50

100

150

200

Samples

M
ag

ni
tu

de

0 20 40 60 80
0

20

40

60

80Simulink FFT
Matlab FFT

Figure 4.6: Comparison of R22SDF FFT in Simulink and MATLAB FFT (The plot in

the upper right-hand corner is a closeup of the first 80 samples to illustrate the agreement

between the two results)

Once the R22SDF FFT had been shown to produce a valid transform of the input data,

the attention shifted to the correlation algorithm. The coefficients for the matched filter

were calculated by taking one of the ten captures and conjugating its Fourier transform.

The second collection (input(1025:2048)) was arbitrarily chosen for this experiment. Upon

56

completion of the simulation, the result was written to a file and was later plotted against

the MATLAB result. Figure 4.7a shows the comparison of the correlation algorithm to a

straight forward MATLAB calculation. The two appear to be highly correlated. However,

the filter and inverse transform does introduce a small error in the final result. Small

differences can be observed in the upper right-hand corner of Figure 4.7a. To explore the

error further, a plot of the squared difference between the two is presented in Figure 4.7b.

The mean-squared-error was calculated at approximately 7.1 and is shown by the red dotted

line in Figure 4.7b.

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Samples

M
ag

ni
tu

de

0 20 40
0

50

100

Simulink Result
Matlab Result

(a)

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

Samples

Squared Error
MSE

(b)

Figure 4.7: Simulation Results (a) Correlation Algorithm vs MATLAB (The plot in the

upper right-hand corner is a closeup of the first 40 samples to illustrate the agreement

between the two results) (b) Simulation Error

Despite the minor differences in the simulation and MATLAB results, the correlation

algorithm has been shown to properly identify the portion of the return signal that

corresponded to the filter. The success of the Simulink model provided the justification

necessary to pursue an FPGA implementation of the correlation algorithm.

57

4.3 FPGA Implementation

The ISE Webpack from Xilinx was used to develop an HDL design of the correlation

algorithm. The target hardware for FPGA implementation was the ML555’s Virtex-5. The

HDL code for the correlation algorithm consists of a combination of Verilog, schematic-

based coding, and Xilinx IP Cores. Verilog is an HDL programing language that is

used to establish a hierarchy of modules and describes the propagation of signals through

the design. Verilog is an attractive choice for FPGA coding because it has a syntax

that is similar to the C programming language and includes statements that are directly

synthesizable. In addition to Verilog coding, the Xilinx ISE includes a graphical method

for representing the register-transfer level circuits needed for synthesis. This schematic

based design option lets users build modules similar to the way they would in Simulink.

Finally, Xilinx provides designers with a library of proprietary black box modules that

can be used within a top-level design to carry out common FPGA routines. Because the

ML555 includes a Virtex-5, several of these IP Cores were used in the top-level design

because it reduced the overall design time for the correlation algorithm and took advantage

of the manufacturer’s efforts to optimize the design for the target device. A schematic of

the top-level module is provided in Figure 4.8.

The primary purpose of the architecture shown in Figure 4.8 is to demonstrate the

FPGA-based correlation of an input signal to a single matched filter. The design’s similarity

to the Simulink model is key to the algorithm’s verification as it enables a straight-forward

comparison of the two results. To provide a surrogate for an ADC, the input signal is loaded

into the FPGA’s ROM and streamed through the correlator one sample at time. The same

process that was used to generate the input signal and filter coefficients for the Simulink

model was also used for the FPGA correlator. However, the 64-bit double precision values

produced by MATLAB were converted to signed 16-bit integers. To avoid overflow while

maximizing the precision of the input signal, five integer bits and 11 fractional bits were

58

Figure 4.8: FPGA Correlator Schematic

used to represent each value of the fixed-point signal array. A similar approach was taken

for the filter coefficients. The larger values in the filter array required eight bits to represent

the integer values leaving eight bits for the fractional part.

The ML555’s two programmable clock sources are used to generate the differential

clock inputs seen in Figure 4.8. The first clock is programmed to generate a 50 MHz clock

signal that drives the communications interface. The two differential inputs are tied to pins

H19 and H20 on the Virtex-5. The second programmable clock was configured to provide

a 125 MHz clock to the correlation algorithm. The leads for this clock are connected to

pins J20 and J21.

To reduce the design and debugging time required for the FPGA implementation of

the correlation algorithm, Xilinx’s FFT IP Core was used to compute the routine’s forward

and inverse transforms. While the literature does not explicitly describe the IP Core as an

R22SDF FFT, it is a pipelined design with log4(N) stages. The benefits of utilizing the

IP Core are as follows: it contains a built-in bit reversal routine, there are control outputs

59

that allow the operation to be synchronized with interface modules, and the designer’s have

ensured that the implementation is optimized for the target FPGA. Follow-on efforts could

simply substitute the R22SDF routine in the place of the FFT IP Core for FPGAs produced

by manufacturers other than Xilinx. IP Cores were also employed for the correlator’s

memory components and the complex multiplier. While a tailored approach may have

reduced resource utilization, the design process is considerably longer.

When generating the Xilinx FFT IP Core, an option is provided for scaled or unscaled

arithmetic. The scaled option keeps the output in the same format as the input. To avoid

overflow, the output from each fixed-point operation is shifted to the right and a rounding

scheme is applied to the least-significant bit. However, erroneous results were observed

when attempting to calculate the FFT of the input data. Because of the problems observed

with the scaled option, the FFT module was configured to provide unscaled output. When

configured for unscaled arithmetic, the output from the FFT module experiences a bit-

growth from 16-bits to 27-bits in order to avoid overflow. For clarity an illustration is

provided in Figure 4.9a. The bit-growth, however, was too conservative and the output was

only observed to utilize eight integer bits. Hence, eight of the eleven fractional bits were

kept to generate the 16-bit input to the filter module. Similar fixed-point considerations

were given to the complex multiplier and IFFT.

A universal asynchronous receiver/transmitter (UART) module is included in the

design to conduct serial communications. The UART module serves as an interface

between the FPGA and the ML555’s UART-to-USB bridge (CP2102). The CP2102 enables

a computer to interact with the FPGA via a USB connection. Silicon Laboratories, the

manufacturer of the CP2102, provides a device driver that allows the ML555 to appear as a

COM port in the computer’s device manger. As the correlation routine executes the results

are stored inside the FPGA’s RAM. An indication is given to the user when the results

are ready to be accessed via one of the ML555’s light-emitting diodes (LEDs). When

60

(a)

(b) (c)

Figure 4.9: Fixed-Point Manipulations in the Correlation Algorithm (a) FFT, (b) Complex

Multiplier, and (c) IFFT

the development board’s AF20 push button is pressed, the algorithm’s memory controller

converts the hex values into its ASCII representation and then transmits the result to the

computer one byte at a time. The serial communication is configured for a BAUD rate of

115200 and inserts two stop bits between each byte.

Once the code for the algorithm had been written, the Xilinx ISE was used to

synthesize (i.e., compile) and implement the design shown in Figure 4.8. Following

61

the software’s place and route routine, a post-implementation report was generated.

Figure 4.10 is the resource utilization summary for the FPGA correlation routine. It is

important to note that the percentages given in the resource utilization summary includes

the additional overhead associated with storing the input signal on the FPGA. While the

correlation routine consumes 60-percent of the Virtex-5’s DSP specific slices, less than half

of the logic slices are occupied. This is an encouraging result as a significant portion of

the Virtex-5’s resources would be available for ancillary modules like transmitter logic or

additional correlation channels.

The post-implementation timing analysis reported zero errors for a system clock

of 125 MHz. The delays for each of the signal paths were calculated and the longest

was reported to be 6.721 nano-seconds. Hence, the design’s final implementation could

operate at a maximum frequency of 148 MHz. It is important to note that this number is

derived from the propagation delays of the placed and routed design and uses software

models of the FPGA’s components to estimate the maximum delay. Actual hardware

implementation would be required to determine if the proposed design can operate at the

maximum frequency.

To estimate the power consumed by the correlation routine the Xilinx XPower

Analyzer was executed. A summary of the program’s analysis is depicted in Figure 4.11.

When idle, the design consumes just under half a Watt. However, power consumption rises

to 863 mW when the algorithm is executing.

To verify the amount of power consumed by the correlation algorithm, the ML555

development board provides developers access to several current sensing resisters. These

measurement pins can be seen in Figure 4.12. A digital multimeter was used to measure

the voltage drop across each of the resisters to determine the current. The power consumed

at each location can then be calculated by: Pconsumed = I ∗ V . Table 4.2 summarizes the

results.

62

Figure 4.10: Resource Utilization Summary for the FPGA Correlator

63

Device Utilization Summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 9,765 28,800 33%

Number used as Flip Flops 9,765

Number of Slice LUTs 8,558 28,800 29%

Number used as logic 4,979 28,800 17%

Number using 06 output only 3,598

Number using 05 output only 154

Number using 05 and 06 1,227

Number used as Memory 2,836 7,680 36%

Number used as Single Port RAM 64

Number using 06 output only 64

Number used as Shift Register 2,772

Number using 06 output only 2,748

Number using 05 output only 6
+

Number using 05 and 06 18

Number used as exclusive route-thru 743

Number of route-thrus 923

Number using 06 output only 897

Number using 05 output only 26

Number of occupied Slices 3,221 7,200 44%

Number of LUT Flip Flop pairs used 10,865

Number with an unused Flip Flop 1,100 10,865 10%

Number with an unused LUT 2,307 10,865 21%

Number of fully used LUT-FF pairs 7,458 10,865 68%

Number of unique control sets 43

Number of slice register sites lost 33 28,800 1%
to control set restrictions

+
Number of bonded lQB.s 14 480 2%

Number of LOCed lOBs 14 14 100%

Number of BlockRAM/FIFO 28 60 46%

Number using BlockRAM only 28
+

Number of 36k BlockRAM used 12

Number of 18k BlockRAM used 27

Total Memory used (KB) 918 2,160 42%

Number of BUFG/BUFGCTRLs 3 32 9%

Number used as BUFGs 2

Number used as BUFGCTRLs

Number of DSP48Es 29 48 60%

Average Fanout of Non-Clock Nets 2.15

Figure 4.11: XPower Analyzer Report for the Correlation Algorithm

4.4 Accuracy of the Correlation Algorithm

The input signal and template were generated to have the same characteristics as the

Simulink model. The input signal consisted of ten 1024-point collections for a total of

10240 data points. Furthermore, there was no noise added to the input signal providing

the algorithm with the ideal conditions for correlation. The coefficients for the matched

filter were generated from the second collection (inputSignal(1025:2048)). As mentioned

in Section 4.3, the input signal and filter coefficients consisted of 16-bit signed integers.

The input was of the format Q4.11 (one sign, four integer, and eleven fractional bits) and

the filter coefficients were formatted as Q7.8.

To execute the program, the ML555 is powered on and the program is loaded into the

FPGA via the platform flash and CPLD. Following the indication given by the ML555 that

the algorithm is successfully programed to the Virtex-5, the user pushes the start button

(AF20) to initiate the flow of the input signal through the correlation routine. The result is

stored in RAM and can be transferred to a computer using the UART interface introduced

in Section 4.3. The serial output is the ASCII representation of the hex values. Figure 4.13

provides a visual representation of the output format. Once the ASCII file has been captured

64

Table 4.2: ML555 Power Measurement Results

IDLE

Name Description Pin Resistance (Ω) Current (A) Power (W)

AVTTX 1.2V GTP Termination P41 0.01 0.00 0.00

AVCCPLL 1.2V PLL Supply P42 0.01 0.05 0.06

AVCC 1.0V GTP Supply P43 0.01 0.02 0.02

VCCINT 1.0V FPGA Internal P44 0.01 0.48 0.48

PCIe Converter 5.0V PCIe Supply P19 0.15 0.00 0.00

0.56

RUNNING

Name Description Pin Resistance (Ω) Current (A) Power (W)

AVTTX 1.2V GTP Termination P41 0.01 0.00 0.00

AVCCPLL 1.2V PLL Supply P42 0.01 0.05 0.06

AVCC 1.0V GTP Supply P43 0.01 0.02 0.02

VCCINT 1.0V FPGA Internal P44 0.01 0.58 0.58

PCIe Converter 5.0V PCIe Supply P19 0.15 0.00 0.00

0.66

on the computer, MATLAB is used to convert the ASCII characters into a numerical format

and generate the plots.

The correlation result provided by the experiment is shown in Figure 4.14a. There

is an obvious correlation spike at the beginning of the second template. A comparison

to the MATLAB result shows that the correlation peaks occur at the same point in time

(Figure 4.14b). However, the peak for the FPGA result does not quite reach the same

magnitudes observed for the MATLAB or Simulink correlation.

65

Figure 4.12: ML555 Current Sensing Locations [43]

There are several factors that could contribute to the difference observed in

Figure 4.14b. First, the MATLAB and Simulink results are calculated using 64-bit double

precision values while the FPGA correlator uses 16-bit. The loss in precision could

introduce quantization noise where the filter coefficients are no longer perfectly matched to

66

Figure 4.13: FPGA Correlator’s Output Format

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

Samples

M
ag

ni
tu

de

FPGA XCORR

(a)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

1100

Samples

M
ag

ni
tu

de

Matlab Result
FPGA XCORR

(b)

Figure 4.14: Experimental Results (a) FPGA Correlation, (b) FPGA Result Compared to

MATLAB

the FFT output. When the FFT results from the FPGA and MATLAB are plotted together,

there are obvious differences in the two results (Figure 4.15).

These differences alone account for much of the error observed in Figure 4.14. A

projected correlation result could be calculated using the values from the FPGA’s FFT. A

67

0 2000 4000 6000 8000 10000

0

50

100

150

200

Samples

M
ag

ni
tu

de

0 20 40
0

50

100FPGA FFT
Matlab FFT

Figure 4.15: FPGA FFT Versus MATLAB FFT (The plot in the upper right-hand corner is

a closeup of the first 40 samples)

plot of this projection is shown in Figure 4.16. The peak for the projected correlation does

not differ very much from the magnitude observed in Figure 4.14.

Other factors that could cause differences between the hardware and Simulink

correlation results are truncation and internal noise. To keep from adding additional

components to the correlation design, the output from the FFT and IFFT was simply

truncated in order to maintain the 16-bit flow. This truncation results in a biased rounding

scheme for the least significant digit. Ideally, the least significant digit would be rounded

based on the digit(s) to the right of the truncation (analogous to rounding in base 10).

Finally, internal noise sources could result in false logic outputs commonly referred to as

bit errors. An erroneous calculation within any of the correlation algorithm’s computational

elements could result in an output that does not agree with simulation.

68

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

Samples

M
ag

ni
tu

de

projected XCORR

Figure 4.16: Projected Correlation From FPGA FFT Results

It should be reiterated, however, that despite the minor deviation from theory the

FPGA correlation algorithm was able to produce a usable result. The algorithm correctly

identified the portion of the input signal that corresponded to the matched filter. One trade-

off from the miniaturization effort may be that higher signal to noise ratios are needed to

detect the desired signal than in the current AFIT RNR.

4.5 Performance of the Correlation Algorithm in Degrading SNRs

The successful identification of the signal of interest in the previous section naturally

leads to the following question: How poor can the SNR of the input signal be and still be

detected by the FPGA correlator? To answer this question, normally distributed noise was

added to the input signal according to the following formula:

InputSignal = x[n] +
√
σ2 ∗ w[n], (4.1)

where x[n] is the input signal used in the previous section, σ2 is the power of the noise

signal and w[n] is a normally distributed random signal with a mean of zero and a standard

69

deviation of one. Input signals with SNRs of 10 dB, 0 dB, -10 dB, and -15 dB were

generated in MATLAB and then put through the FPGA correlation routine. The plots for

each of these experiments are shown in Figure 4.17.

(a) (b)

(c) (d)

Figure 4.17: Correlation Results with Varying Input SNRs (a) SNR = 10 dB, (b) SNR = 0

dB, (c) SNR = -10 dB and (d) SNR = -15 dB

The correlation routine correctly identified the signal of interest in each of the four

test cases. As the noise conditions of the input signal worsened, the magnitude of the

70

correlation spike decreased. At an SNR of -15 dB the maximum correlation spike was just

above the noise floor, and as the SNR approached -20 dB the correlation algorithm was

unable to locate the signal of interest within the input data stream.

4.6 Timing Results

Now that the correlation algorithm has been demonstrated, the computational speed

will be compared to similar calculations in MATLAB. To begin, the time required for the

FPGA-based algorithm to compute a single 1024-point correlation will be determined. The

time will be compared to the computational time required to execute two commonly used

MATLAB correlation routines: the xcorr function and an FFT/IFFT approach. Finally, the

same comparison will be made for ten consecutive calculations. The matlab routines will

be computed on a laptop equipped with an Intel i5 processor and 8 giga-bytes of RAM.

Because the ML555 does not have an IO port that could be easily interfaced with

an oscilloscope or a logic analyzer, an alternative method will be used to determine the

computational time of the FPGA routine. Included in FPGA correlation algorithm is a 32-

bit counter. When the start button on the ML555 is pressed by the user, the counter begins

to increment on every clock cycle. The counter will continue to increment until the final

correlation data point is written to the FPGA’s memory. At the end of the calculation the

results are sent to the computer via the UART module. The count can then be multiplied

by the clock period to determine the overall time elapsed.

The timing experiment was run ten times to ensure that the results were consistent.

On each of the ten trials, the number of clock cycles required to compute the correlation

result for the 10,240 input samples was measured at 13,053. When multiplied by the 8 ns

clock period, the total time elapsed was 104.42 us. Figure 4.18 shows how the performance

of the FPGA algorithm compares to the two MATLAB methods. In MATLAB, the fastest

routine was the Fourier transform method of computing the correlation. However, the

71

FPGA algorithm out performed the fastest MATLAB routine by six times, and was 60

times faster than the xcorr function.

(a) (b)

Figure 4.18: Timing Results (a) 1024-point Correlation, (b) 10240-point Correlation

If the FPGA routine was optimized to run at higher clock speeds, the performance

gap between computer-based correlation and the FPGA routine would continue to increase

(i.e., a system clock of 200 MHz would decrease the time required to execute the algorithm

to 65.27 us). Furthermore, when multiple templates are involved the serial nature of the

computer-base calculations would lead to a linear increase in computation time. The

FPGA implementation could execute these calculations in parallel and little to no increase

in computation time would be observed.

4.7 Conclusion

In this chapter, the proposed correlation algorithm was realized in a computer-base

model and in representative hardware. The simulation produced results that were nearly

identical to theory, and the FPGA implementation of the routine showed tremendous

potential for miniature RNR applications. The FPGA correlator is predicted to use very

72

little power and leaves a significant portion of the Virtex-5 open for additional development.

Furthermore, the routine was able to correctly identify the signal of interest, and it out

performed computer-based routines in computational speed. The next chapter will review

the research objectives and make conclusions based on the observed results.

73

V. Conclusions

5.1 Chapter Overview

Aminiaturized RNR provides a sensor with a unique set of characteristics to a plethora

of design possibilities. The smaller system can be infused into applications ranging

from collision avoidance in autonomous vehicles to hand-held navigation systems. The

intent of this research effort was to advance AFIT’s RNR capability while initiating the

effort to shrink the current system down to a chip-based architecture. This chapter reviews

the stated research goals, presents a summary of the research results and contributions, and

identifies areas for future study to further advance the miniaturization of AFIT’s RNR.

5.2 Research Goals

The over-arching goal of this research was to begin the exploration into suitable chip-

based architectures for the RNR. One of the most significant hurdles to the miniaturization

of the noise radar, is reducing the size and power consumption of the radar’s components

while maintaining the ability to accomplish high speed signal processing. As a result, this

drove the primary focus toward identifying a signal processing component that could meet

all three of the aforementioned objectives and adequately perform the noise radar’s receive

function. To demonstrate the suitability of the target hardware, an algorithm had to be

developed to execute the correlation of an incoming RF waveform with a delayed copy of

the transmit signal. The current AFIT RNR was used as a performance baseline to which

the system under test would be compared to.

5.3 Results and Contributions

The requirement for capable signal processors that are compact and energy efficient

narrowed the field of possibilities to DSPs and FPGAs. An FPGA-base architecture was

chosen because of the performance gains attributed to parallel processing. Furthermore,

74

FPGAs are highly reconfigurable and can be molded to fit the design constraints of

future research projects. The latest class of FPGA technology contains many more logic

elements than previous generations. The larger FPGAs could possibly eliminate multi-chip

architectures saving a tremendous amount of space and energy consumption.

The selection of the FPGA as the primary signal processing device had a profound

impact on the algorithm used for computing the cross-correlation. The algorithm had to

maximize the number of parallel computations while minimizing the impact on the FPGA’s

resources. For this reason, the R22SDF FFT was chosen as the primary computational

element in the correlation routine. The mathematical and architectural development of the

routine was presented.

To ensure that the proposed correlation routine worked as expected, a Simulink model

was developed. Simulations of the correlation model showed little to no difference when

compared to the same computations in MATLAB.

The successful verification of the correlation model led to an FPGA implementation

of the design. The design of the correlation algorithm closely followed the setup proposed

in the model so that the two results could be compared. Post-implementation reports

of the FPGA-based correlator indicated zero timing failures, less than a Watt of power

consumption, and a 44% utilization of the Virtex-5’s logic resources.

The experimental results from the hardware implementation of the correlation routine

were promising. The algorithm was able to successfully locate the presence of a signal

of interest within an input data stream, and despite a system clock of only 125 MHz, the

algorithm was able to compute the correlation six times faster than MATLAB (60 times

faster than the xcorr function). The contributions provided by this research effort has

culminated in a foundation upon which the miniaturized RNR’s receiver can be built.

75

5.4 Future Work

While successes where realized in this research effort, the immensity of the

miniaturization effort has left much of the work to follow-on efforts. These efforts have

been sorted into three categories: hardware design work, algorithm improvements, and

ancillary applications.

5.4.1 Hardware Design Work.

For a prototype chip-based RNR to become a reality, there is some hardware design

left to accomplish. For starters a target platform needs to be identified so that the following

questions can be answered: What inputs will the host vehicle provide to the RNR? What

outputs should the RNR provide to the host vehicle and what does the update rate need to

be? What are the minimum and maximum power levels available to the RNR? What are

the weight and space limitations? What will the primary mode of operation be for the RNR

sensor: communication or radar? What range is needed to achieve each mode of operation?

What is the average range/battery life of the host vehicle without the RNR? Once these

questions have been answered the systems engineering approach can be applied to further

refine the RNR’s design. In addition to refining the hardware design, the following research

topics could provide some valuable insight:

• An implementation of the correlation algorithm in the latest generation of FPGAs

(i.e. the Virtex 7) should be explored to determine its performance and scalability.

• A high-speed FPGA-based transmitter should be explored to determine feasibility of

a pseudo-random architecture.

• Interface devices like ultra-high speed data converters, memory units should be

integrated with the FPGA and the requisite signal processing routines should be

tested.

76

• Ultimately, the integration of the miniature RNR with the host vehicle will need to

be demonstrated.

5.4.2 Algorithm Improvements.

Research has provided the following areas where the correlation routine can be

improved:

• Designing a DIT implementation of the R22SDF IFFT would cut the latency of the

current correlation routine in half and would lead to a reduction in the amount of

FPGA resources consumed by the design.

• An FPGA-based signal acquisition routine should be developed so that the nodes of

a distributed network could synchronize the correlation routine with the incoming

signal.

• A systolic, pipelined approach to the FFT and IFFT should be explored to determine

if real-time correlation can be accomplished.

• Direct correlation receivers produce an enormous amount of data and could benefit

from the emerging field of compressed sampling, and the exploration of hardware

designs that exploit this theory could achieve better performance at lower data rates

(see Appendix C).

5.4.3 Ancillary Applications.

In addition to the chip-based RNR other opportunities exists where the research

presented in this thesis can be applied:

• The miniaturized RNR can be reconfigured to a highly portable, secure communica-

tion device.

77

• An FPGA can be added to AFIT’s current RNR and many of the computationally

intensive processes can be off-loaded to FPGA-based signal processing algorithms,

and additional logic can be added to synchronize a distributed network of noise radars

for communication or navigation routines.

78

Appendix A: HDL Correlator

4

Figure A.1: FPGA Correlator Schematic

79

-H

,,,JI i i
l .. !.1

j I I
q l :II

'!!q
I. t '

I

l'l~ ~ '~ ~ ..

Sunday, February 10, 2013 4:59 PM

/// //////////////

// Configurable delay element used to align the FFT output and

// the filter data

//

// Aaron Myers

// Winter 2012

/// //////////////

module circBuffer (clk , reset , enable , wrdata , rddata) ;

input clk ; // clock

input reset ; // asynchronous reset

input enable ; // assert high to write data

input [15:0] wrdata ; // data to write port - use 1 byte width for this e xample

output [15:0] rddata ; // data on read port

parameter LAST_ELEMENT= 4'hf ;

parameter WR_START= 0;

// locally used flops

reg [3:0] wrptr = WR_START;

reg [3:0] rdptr = 0; // write and read pointers

wire [3:0] new_wrptr ;

wire [3:0] new_rdptr ;

reg wrenable = 1 ;

reg rdenable = 0; // write enable to memory

// basic 2 port memory – for this small size, assum e read is asynch

dualPortRAM dpr1 (

.clka (clk),

.wea(wrenable),

.ena(enable),

.addra (wrptr),

.dina (wrdata),

.douta (),

.clkb (clk),

.web(rdenable),

.addrb (rdptr),

.dinb (),

.doutb (rddata));

assign new_wrptr = (wrptr == LAST_ELEMENT) ? 2'b0 : (wrptr + 1);

assign new_rdptr = (rdptr == LAST_ELEMENT) ? 2'b0 : (rdptr + 1);

always @ (posedge clk)

if (reset) begin // async reset

wrptr <= WR_START;

rdptr <= 0 ;

end

else begin

wrptr <= new_wrptr ;

rdptr <= new_rdptr ;

-1-

80

Sunday, February 10, 2013 4:59 PM

end

endmodule

-2-

81

Sunday, February 10, 2013 4:57 PM

//--- ----------------------------

//Design Name: counter

//File Name: counter.v

//Function: toggles an led everytime the counter ro lls over.

//Coder: Aaron Myers

//--- -----------------------------

module counter (clk , enable , outPulse , dataOut_r , dataOut_i , addrOut);

//input ports

input clk ;

input enable ;

//output ports

output outPulse ;

output [26:0] dataOut_r ;

output [26:0] dataOut_i ;

output [9:0] addrOut ;

//parameters

parameter TARGET= 10'h3FF ;

parameter EDONE= 10'h3FE ;

//data types

reg[26:0] count = 0;

reg [9:0] pulseCount = 0;

reg [9:0] addrCount = 0;

reg [9:0] numPulses = 0;

//assign statements

assign outPulse = pulseCount == EDONE;

assign dataOut_r [26:0] = count [26:0];

assign dataOut_i [26:0] = count [26:0];

assign addrOut [9:0] = addrCount [9:0];

//--------------program---------------

always @(posedge clk) begin

if (enable) begin

pulseCount <= pulseCount + 1;

addrCount <= addrCount + 1;

if (pulseCount == TARGET) begin

numPulses = numPulses + 1;

end

if(numPulses >= 1) begin

count = count + 1;

end

end

end

endmodule

-1-

82

Sunday, February 10, 2013 4:56 PM

///

//

// Pushbutton Debounce Module

//

// Source taken from: http://web.mit.edu/6.111/www/f2005/code/jtag2mem_6111/debounce.v.html

///

module debounce (clk, noisy, clean);

input clk, noisy;

output clean;

parameter NDELAY = 2500000;

parameter NBITS = 23;

reg [NBITS-1:0] count;

reg xnew, clean;

always @(posedge clk)

if (noisy != xnew) begin xnew <= noisy; count <= 0; end

else if (count == NDELAY) clean <= xnew;

else count <= count+1;

endmodule

-1-

83

Sunday, February 10, 2013 4:55 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// Simple enable switch for the input signal

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module enableSwitch (startButton , on_off);

input startButton ;

output on_off ;

parameter ON = 1'b1 ;

parameter OFF = 1'b0 ;

reg sw_enable = 0;

assign on_off = sw_enable ;

always @(posedge startButton) begin

case(sw_enable)

OFF: sw_enable = ON;

ON: sw_enable = OFF;

endcase

end

endmodule

-1-

84

Sunday, February 10, 2013 4:55 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// Simply combines the two 16-bit real and imag val ues into a single 32 bit word.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module fftBusSelect (realInput , imagInput , realOut , imagOut , combOut);

//define I/O

input [26:0] realInput ;

input [26:0] imagInput ;

output [15:0] realOut ;

output [15:0] imagOut ;

output [31:0] combOut;

//define elements

//program code

assign realOut [15:0] = realInput [18:3];

assign imagOut [15:0] = imagInput [18:3];

assign combOut[31:0] = {realInput [18:3], imagInput [18:3]};

endmodule

-1-

85

Sunday, February 10, 2013 4:54 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module handles all of the control parameter s for the first fft instance

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module fftInit (clk , activity , cmplStrobe , fftImagInput , start , fwd_inv , fwd_inv_we , ifft_rdy);

//define inputs and outputs

input clk ;

input activity ;

input cmplStrobe ;

output [15:0] fftImagInput ;

output fwd_inv ;

output fwd_inv_we ;

output ifft_rdy ;

output start ;

//define parameters

parameter FFT_TYPE = 1'b1 ;

parameter BEGIN = 1'b1 ;

parameter STOP = 1'b0 ;

parameter MULT_LATENCY= 8;

//define elements

reg [3:0] fftCount = 0;

reg [4:0] multLatencyCount = MULT_LATENCY;

reg ifftStatus = STOP;

//make assignments

assign fwd_inv = FFT_TYPE;

assign fftImagInput [15:0] = 16'h0 ;

assign fwd_inv_we = 1'b0 ;

assign start = activity ;

assign ifft_rdy = ifftStatus == BEGIN;

//program starts here

always @(posedge clk) begin

if (cmplStrobe) begin

fftCount = fftCount + 1;

end

if(fftCount == 1) begin

if(multLatencyCount == 0) begin

ifftStatus = BEGIN;

end

else begin

multLatencyCount = multLatencyCount - 1;

end

-1-

86

Sunday, February 10, 2013 4:54 PM

end

end

endmodule

-2-

87

Sunday, February 10, 2013 4:54 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module will serve as the memery controller for the xcorr results.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module fftMemController (dataIn , fftDone , rd_en , wr_clk , rd_clk , is_reading , is_writing , byteOut ,

selOut);

//define I/O pins

input [31:0] dataIn ;

input fftDone ;

input rd_en ;

input rd_clk ;

input wr_clk ;

output is_reading ;

output is_writing ;

output [7:0] byteOut ;

output [7:0] selOut ;

//define parameters

parameter ERROR= 1'b1 ;

parameter NFFT = 1024;

parameter NUMELEMENTS= 10240 ;

parameter WRITE = 1'b1 ;

parameter READ = 1'b0 ;

parameter START = 1'b1 ;

parameter STOP = 1'b0 ;

parameter ASCII_NUM = 48;

parameter ASCII_LET = 55;

//define elements

reg [31:0] current_result ;

reg [13:0] totalWrites = 0;

reg [13:0] addr = 0;

reg [3:0] fftCount = 0;

reg [7:0] sel = 0;

reg [7:0] outReg = 0;

reg [3:0] char = 0;

reg enable = 0;

reg wrStatus = 1;

reg clkSelect = 0;

wire [13:0] ramAddr ;

//wire [31:0] wr_data;

wire [31:0] ramDataOut ;

wire wrEnable ;

wire clk ;

//assignment statements

//assign wr_data[31:0] = dataIn[31:0];

assign byteOut [7:0] = outReg [7:0]; //element count will be provided to the cpu via uar t

-1-

88

Sunday, February 10, 2013 4:54 PM

assign selOut [7:0] = sel [7:0];

assign wrEnable = wrStatus == WRITE;

assign ramAddr [13:0] = addr [13:0];

assign is_reading = wrStatus == WRITE;

assign is_writing = (wrStatus == READ) & (enable ==START) & rd_en ;

//assign clk = (wrStatus == READ) ? rd_clk : wr_clk ;

//instatiation

resultRAM rRAM0 (

.clka (clk),

.wea(wrEnable),

.addra (ramAddr),

.dina (dataIn),

.douta (ramDataOut));

BUFGMUX_CTRL clkbuf1(

.I0 (wr_clk),

.I1 (rd_clk),

.S(clkSelect),

.O(clk));

//program starts here

always @(posedge clk) begin

current_result <= ramDataOut ;

if(fftDone) begin

fftCount = fftCount + 1;

end

if(fftCount > 0 && totalWrites == 0) begin

enable = START;

end

if(enable) begin

case(wrStatus)

WRITE: begin

if (totalWrites == 0) begin

addr = 0;

totalWrites = totalWrites + 1;

end

else if (totalWrites != 0 && totalWrites < NUMELEMENTS) begin

addr = addr + 1;

totalWrites = totalWrites + 1;

end else begin

addr = 0;

clkSelect = 1;

wrStatus = READ;

end

end

//--- ------

-2-

89

Sunday, February 10, 2013 4:54 PM

// Need to send the 32-bit data to an external UART trans-

// mitter, therefore this module will send the 32-b it complex

// result out in the following format: Rh, Rl, Ih, Il.

//--- ------

READ: begin

if (rd_en) begin

case(sel)

8'h0 : begin

char = current_result [31:28];

sel = sel +1;

end

8'h1 : begin

char = current_result [27:24];

sel = sel +1;

end

8'h2 : begin

char = current_result [23:20];

sel = sel +1;

end

8'h3 : begin

char = current_result [19:16];

sel = sel +1;

end

8'h4 : begin

char = current_result [15:12];

sel = sel +1;

end

8'h5 : begin

char = current_result [11:8];

sel = sel +1;

end

8'h6 : begin

char = current_result [7:4];

sel = sel +1;

end

8'h7 : begin

char = current_result [3:0];

sel = sel +1;

end

8'h8 : begin

outReg = 8'hff ;

addr = addr + 1;

sel = 0;

end

default: sel = 0;

endcase

if (outReg == 8'hff && sel ==0) begin

outReg = 8'h0d ;

end

else if(char <= 9) begin

outReg = char + ASCII_NUM;

-3-

90

Sunday, February 10, 2013 4:54 PM

end

else begin

outReg = char + ASCII_LET ;

end

if(addr >= totalWrites) begin

enable = STOP;

end

end

end

default: wrStatus = WRITE;

endcase

end

end

endmodule

-4-

91

Sunday, February 10, 2013 4:53 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// Selects the 16 bits for the IFFT from the 32-bit filter output

//

// Aaron Myers

// Winter 2012

/// ///////////////////////////////

module filtDataBus (in_real , in_imag , dOut);

input [26:0] in_real ;

input [26:0] in_imag ;

output [31:0] dOut ;

assign dOut = {in_real [26:11], in_imag [26:11]};

endmodule

-1-

92

Sunday, February 10, 2013 4:50 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module contains two instances of single por t roms that contain the coefficents

// for the correlator's matched filter and an insta nce of a complex multiplier.

// The filter corresponds to a "template" matched t o the second 1024 pt sample in the

// input signal.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module filter (in_real , in_imag , xk_index , fftDone , clk , out_real , out_imag , current_real);

//define inputs and outputs

input clk ;

input fftDone ;

input [9:0] xk_index ;

input [15:0] in_real ;

input [15:0] in_imag ;

output reg [15:0] out_imag ;

output reg [15:0] out_real ;

output reg [31:0] current_real ;

//define element

reg start = 0;

reg [3:0] fftCount = 0;

reg [9:0] rd_addr = 0;

wire [15:0] filtImag ;

wire [15:0] filtReal ;

wire [9:0] memAddr;

wire [15:0] delayed_out_r ;

wire [15:0] delayed_out_i ;

wire [15:0] delayed_filt_r ;

wire [15:0] delayed_filt_i ;

wire [15:0] outImag ;

wire [15:0] outReal ;

wire carry = 1'b0 ;

wire rst = 1'b0 ;

wire enable ;

wire wea = 1'b0 ;

//assign statements

//assign current_real[31:0] = {delayed_out_r[15:0], delayed_out_i[15:0]};

assign memAddr[9:0] = rd_addr [9:0];

assign enable = start == 1'b1 ;

//instantiation

ti_ROM fI (

.clka (clk),

.wea(wea),

.addra (memAddr),

-1-

93

Sunday, February 10, 2013 4:50 PM

.douta (filtImag));

tr_ROM fR (

.clka (clk),

.wea(wea),

.addra (memAddr),

.douta (filtReal));

circBuffer #(.LAST_ELEMENT(8'hf), .WR_START(1)) filtbuff_real (

.clk (clk),

.reset (rst),

.enable (enable),

.wrdata (filtReal),

.rddata (delayed_filt_r)) ;

circBuffer #(.LAST_ELEMENT(8'hf), .WR_START(1)) filtbuff_imag (

.clk (clk),

.reset (rst),

.enable (enable),

.wrdata (filtImag),

.rddata (delayed_filt_i)) ;

circBuffer #(.LAST_ELEMENT(8'hf), .WR_START(2)) delaybuff_real (

.clk (clk),

.reset (rst),

.enable (enable),

.wrdata (in_real),

.rddata (delayed_out_r)) ;

circBuffer #(.LAST_ELEMENT(8'hf), .WR_START(2)) delaybuff_imag (

.clk (clk),

.reset (rst),

.enable (enable),

.wrdata (in_imag),

.rddata (delayed_out_i)) ;

ComplexMult cm1 (

.clk (clk),

.round_cy (carry),

.ai (delayed_out_i),

.bi (delayed_filt_i),

.ar (delayed_out_r),

.br (delayed_filt_r),

.pi (outImag),

.pr (outReal));

//Program Code...

always @(posedge clk) begin

current_real [31:0] = {outReal [15:0], outImag [15:0]};

out_real = outReal ;

out_imag = outImag ;

-2-

94

Sunday, February 10, 2013 4:50 PM

if (fftDone) begin

fftCount <= fftCount + 1;

start <= 1'b1 ;

end

if (start) begin

rd_addr <= rd_addr + 1;

end

end

endmodule

-3-

95

Sunday, February 10, 2013 4:49 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module handles all of the control parameter s for the second fft instance

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module ifftInit (clk , enable , start , fwd_inv , fwd_inv_we);

//define inputs and outputs

input clk ;

input enable ;

output fwd_inv ;

output fwd_inv_we ;

output start ;

//define parameters

//parameter SCALE_SCH = 10'b1010101010; //divides e nd result by 1024

parameter FFT_TYPE = 1'b0 ;

parameter BEGIN = 1'b1 ;

parameter STOP = 1'b0 ;

//define elements

//reg [9:0] scale_sch = SCALE_SCH;

reg enableStatus = STOP;

//make assignments

assign fwd_inv = 1'b0 ;

assign fft_fwd_inv_we = 1'b1 ;

assign start = (enableStatus == BEGIN) ? 1'b1 : 1'b0 ;

//program starts here

always @(posedge clk) begin

if(enable) begin

enableStatus <= BEGIN;

end

else begin

enableStatus <= STOP;

end

end

endmodule

-1-

96

Sunday, February 10, 2013 4:48 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module will serve as the memery controller for the input2MemTest.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module input2MemController (dataIn , data_rdy , rd_en , wr_clk , rd_clk , is_reading , is_writing ,

byteOut);

//define I/O pins

input [15:0] dataIn ;

input data_rdy ;

input rd_en ;

input rd_clk ;

input wr_clk ;

output is_reading ;

output is_writing ;

output [7:0] byteOut ;

//define parameters

parameter NUMELEMENTS= 10240 ;

parameter WRITE = 1'b1 ;

parameter READ = 1'b0 ;

parameter START = 1'b1 ;

parameter STOP = 1'b0 ;

parameter ASCII_NUM = 48;

parameter ASCII_LET = 55;

//define elements

reg [13:0] totalWrites = 0;

reg [13:0] addr = 0;

reg [7:0] sel = 0;

reg [7:0] outReg = 0;

reg [3:0] char = 0;

reg clkSelect = 0;

reg enable = 0;

reg rw_status = 1;

wire [13:0] ramAddr ;

wire [31:0] ramDataIn ;

wire [31:0] ramDataOut ;

wire wrEnable ;

wire rw_select ;

wire clk ;

//assignment statements

assign byteOut [7:0] = outReg [7:0]; //element count will be provided to the cpu via uar t

assign ramAddr [13:0] = addr [13:0];

assign ramDataIn [31:0] = {16'h0 , dataIn };

assign rw_select = rw_status == WRITE;

assign is_reading = rw_status == WRITE;

assign is_writing = (rw_status == READ) & (enable == START);

-1-

97

Sunday, February 10, 2013 4:48 PM

//instatiation

resultRAM in2mem (

.clka (clk),

.wea(rw_select),

.addra (ramAddr),

.dina (ramDataIn),

.douta (ramDataOut));

BUFGMUX_CTRL clkbuf1(

.I0 (wr_clk),

.I1 (rd_clk),

.S(clkSelect),

.O(clk));

//program starts here

always @(posedge clk) begin

if (data_rdy == 1 && totalWrites == 0) begin

enable = START;

end

if(enable == START) begin

case(rw_status)

WRITE: begin

if (totalWrites == 0) begin

addr = 0;

totalWrites = totalWrites + 1;

end

else if (totalWrites != 0 && totalWrites < NUMELEMENTS) begin

addr = addr + 1;

totalWrites = totalWrites + 1;

end else begin

addr = 0;

rw_status = READ;

end

end

//--- ------

// Need to send the 32-bit data to an external UART trans-

// mitter, therefore this module will send the 32-b it complex

// result out in the following format: Rh, Rl, Ih, Il.

//--- ------

READ: begin

clkSelect = 1;

if (rd_en) begin

case(sel)

8'h0 : begin

char = ramDataOut [31:28];

sel = sel +1;

end

8'h1 : begin

char = ramDataOut [27:24];

-2-

98

Sunday, February 10, 2013 4:48 PM

sel = sel +1;

end

8'h2 : begin

char = ramDataOut [23:20];

sel = sel +1;

end

8'h3 : begin

char = ramDataOut [19:16];

sel = sel +1;

end

8'h4 : begin

char = ramDataOut [15:12];

sel = sel +1;

end

8'h5 : begin

char = ramDataOut [11:8];

sel = sel +1;

end

8'h6 : begin

char = ramDataOut [7:4];

sel = sel +1;

end

8'h7 : begin

char = ramDataOut [3:0];

sel = sel +1;

end

8'h8 : begin

outReg = 8'hff ;

addr = addr + 1;

sel = 0;

end

endcase

if (outReg == 8'hff) begin

outReg = 8'h0d ;

end

else if(char <= 9) begin

outReg = char + ASCII_NUM;

end

else begin

outReg = char + ASCII_LET ;

end

if(addr >= totalWrites) begin

enable = STOP;

end

end

end

endcase

end

end

-3-

99

Sunday, February 10, 2013 4:48 PM

endmodule

-4-

100

Sunday, February 10, 2013 4:48 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// Checks the input signal.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module input2UART (dataIn , clk , input_active , rdy_for_next , byteOut , selOut);

//define I/O pins

input [15:0] dataIn ;

input clk ;

input input_active ;

output rdy_for_next ;

output [7:0] byteOut ;

output [7:0] selOut ;

//define parameters

parameter START = 1'b1 ;

parameter STOP = 1'b0 ;

parameter ASCII_NUM = 48;

parameter ASCII_LET = 55;

//define elements

reg [7:0] sel = 8'h0 ;

reg [7:0] outReg = 0;

reg [3:0] char = 0;

reg enable = 0;

wire[15:0] txData ;

//assignment statements

assign byteOut [7:0] = outReg [7:0]; //element count will be provided to the cpu via uar t

assign rdy_for_next = enable ;

assign txData [15:0] = dataIn [15:0];

assign selOut [7:0] = sel [7:0];

//instatiation

//program starts here

always @(posedge clk) begin

//--- ------

// Need to send the 32-bit data to an external UART trans-

// mitter, therefore this module will send the 32-b it complex

// result out in the following format: Rh, Rl, Ih, Il.

//--- ------

case(sel)

8'h0 : begin

char = txData [15:12];

sel = 8'h1 ;

end

8'h1 : begin

char = txData [11:8];

-1-

101

Sunday, February 10, 2013 4:48 PM

sel = 8'h2 ;

end

8'h2 : begin

char = txData [7:4];

sel = 8'h3 ;

end

8'h3 : begin

char = txData [3:0];

sel = 8'h4 ;

end

8'h4 : begin

outReg = 8'hff ;

enable = 1;

sel = 8'h0 ;

end

endcase

if (outReg == 8'hff) begin

outReg = 8'h0d ;

end

else if(char <= 9) begin

outReg = char + ASCII_NUM;

enable = 0;

end

else begin

outReg = char + ASCII_LET ;

enable = 0;

end

end

endmodule

-2-

102

Sunday, February 10, 2013 4:45 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module instatiates an async-FIFO and handle s I/O control. Designed to

// handle the uart communication for the FPGACorrel ator.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module outputBuffControler (rst , wr_clk , wr_en , din , rd_clk , dout , uart_en , rd_rdy ,

fifo_underflow);

//define I/O pins

input rst ;

input wr_clk ;

input wr_en ;

input [7:0] din ;

input rd_clk ;

output [7:0] dout ;

output uart_en ;

output rd_rdy ;

output fifo_underflow ;

//define parameters

parameter FULL = 1'b1 ;

parameter READ = 1'b1 ;

parameter EMPTY= 1'b1 ;

parameter ENABLE = 1'b0 ;

parameter DISABLE = 1'b1 ;

//define elements

reg wr_full = 0;

reg rd_status = 0;

reg en_status = 1;

reg full_status = 0;

wire [7:0] outByte ;

wire fifoRd ;

wire isempty ;

wire isfull ;

//assignment definitions

assign fifoRd = rd_status == READ;

assign dout [7:0] = outByte [7:0];

assign uart_en = en_status ;

assign rd_rdy = full_status ;

//instantiation

outputFIFO outbuff1 (

.rst (rst),

.wr_clk (wr_clk),

.din (din),

.wr_en (wr_en),

-1-

103

Sunday, February 10, 2013 4:45 PM

.full (),

.prog_full (isfull),

.rd_clk (rd_clk),

.dout (outByte),

.rd_en (fifoRd),

.empty (isempty),

.underflow (fifo_underflow));

//program code

always @(posedge wr_clk) begin

if(isfull) begin

full_status = FULL;

end

if(full_status == FULL) begin

rd_status = READ;

en_status = ENABLE;

end

if(rd_status == READ) begin

if (isempty) begin

rd_status = 0;

en_status = DISABLE;

full_status = 0;

end

end

end

endmodule

-2-

104

Sunday, February 10, 2013 4:45 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// Simply combines the two 16-bit real and imag val ues into a single 32 bit word.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module realImagCombiner (realInput , imagInput , combOut);

//define I/O

input [15:0] realInput ;

input [15:0] imagInput ;

output [31:0] combOut;

//define elements

//assignment statements

assign combOut[31:0] = {realInput [15:0], imagInput [15:0]};

endmodule

-1-

105

Sunday, February 10, 2013 4:44 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module will serve as the memery controller for the xcorr results.

//

// Aaron Myers

// Winter 2012

//

/// ///////////////////////////////

module resultMemController (dataIn , xkIndex , fftDone , wr_clk , rd_clk , is_reading , is_writing ,

byteOut , selOut);

//define I/O pins

input [31:0] dataIn ;

input [9:0] xkIndex ;

input fftDone ;

input rd_clk ;

input wr_clk ;

output is_reading ;

output is_writing ;

output [7:0] byteOut ;

output [7:0] selOut ;

//define parameters

parameter ERROR= 1'b1 ;

parameter NFFT = 1024;

parameter NUMELEMENTS= 10240 ;

parameter WRITE = 1'b1 ;

parameter READ = 1'b0 ;

parameter START = 1'b1 ;

parameter STOP = 1'b0 ;

parameter ASCII_NUM = 48;

parameter ASCII_LET = 55;

//define elements

reg [13:0] totalWrites = 0;

reg [13:0] addr = 0;

wire [31:0] ramDataOut ;

reg [3:0] fftCount = 0;

reg [7:0] sel = 0;

reg [7:0] outReg = 0;

reg [3:0] char = 0;

reg enable = 0;

reg wrStatus = 1;

reg clkSelect = 0;

wire [13:0] ramAddr ;

wire wrEnable ;

wire clk ;

//assignment statements

assign byteOut [7:0] = outReg [7:0]; //element count will be provided to the cpu via uar t

assign selOut [7:0] = sel [7:0];

assign wrEnable = wrStatus == WRITE;

assign ramAddr [13:0] = addr [13:0];

-1-

106

Sunday, February 10, 2013 4:44 PM

assign is_reading = wrStatus == WRITE;

assign is_writing = (wrStatus == READ) & (enable ==START);

//instatiation

resultRAM rRAM2 (

.clka (clk),

.wea(wrEnable),

.addra (ramAddr),

.dina (dataIn),

.douta (ramDataOut));

BUFGMUX_CTRL clkbuf1(

.I0 (wr_clk),

.I1 (rd_clk),

.S(clkSelect),

.O(clk));

//program starts here

always @(posedge clk) begin

if(fftDone) begin

fftCount = fftCount + 1;

end

if(fftCount > 0 && totalWrites == 0) begin

enable = START;

end

if(enable) begin

case(wrStatus)

WRITE: begin

if (totalWrites < NUMELEMENTS) begin

addr = addr + 1;

totalWrites = totalWrites + 1;

end else begin

addr = 0;

clkSelect = 1;

wrStatus = READ;

end

end

//--- ------

// Need to send the 32-bit data to an external UART trans-

// mitter, therefore this module will send the 32-b it complex

// result out in the following format: Rh, Rl, Ih, Il.

//--- ------

READ: begin

case(sel)

8'h0 : begin

char = ramDataOut [31:28];

sel = sel +1;

end

-2-

107

Sunday, February 10, 2013 4:44 PM

8'h1 : begin

char = ramDataOut [27:24];

sel = sel +1;

end

8'h2 : begin

char = ramDataOut [23:20];

sel = sel +1;

end

8'h3 : begin

char = ramDataOut [19:16];

sel = sel +1;

end

8'h4 : begin

char = ramDataOut [15:12];

sel = sel +1;

end

8'h5 : begin

char = ramDataOut [11:8];

sel = sel +1;

end

8'h6 : begin

char = ramDataOut [7:4];

sel = sel +1;

end

8'h7 : begin

char = ramDataOut [3:0];

sel = sel +1;

end

8'h8 : begin

outReg = 8'hff ;

addr = addr + 1;

sel = 0;

end

endcase

if (outReg == 8'hff) begin

outReg = 8'h0d ;

end

else if(char <= 9) begin

outReg = char + ASCII_NUM;

end

else begin

outReg = char + ASCII_LET ;

end

if(addr >= totalWrites) begin

enable = STOP;

end

end

endcase

-3-

108

Sunday, February 10, 2013 4:44 PM

end

end

endmodule

-4-

109

Sunday, February 10, 2013 4:42 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module will generate a simulated input sign al into the fpga correlator.

// Relys on a xilinx ip core for the single port ro m to save generating 10000 inputs

// in a case statement. The signal was generated i n matlab as 16-bit, signed integers

// and follow a normal distribution with zero mean and sigma = 1

//

// Aaron Myers

// Winter 2012

/// ///////////////////////////////

module testInput (clk , rst , enable , done, active , data);

//Define input and output

input clk ;

input rst ;

input enable ;

output done;

output active ;

output [15:0] data ;

//Variable definitions

parameter NUMELEMENTS= 10240 ;

parameter DONE= 1'b1 ;

parameter WRITE = 1'b0 ;

//Element definition

reg[14:0] addr = 0;

wire[15:0] dout ;

reg wrStatus = WRITE;

wire wrEnable ;

wire[14:0] writeAddr ;

//Assigment statements

assign data [15:0] = dout [15:0];

assign writeAddr [14:0] = addr [14:0];

assign done = wrStatus == DONE;

assign wrEnable = (wrStatus != DONE) & enable ;

assign active = (wrStatus != DONE) & enable ;

innputROM d_in (

.clka (clk),

.ena(wrEnable),

.addra (writeAddr),

.douta (dout));

//Program Starts Here....

always @(posedge clk) begin

if(rst) begin

addr = 0;

wrStatus = WRITE;

end

-1-

110

Sunday, February 10, 2013 4:42 PM

if(enable) begin

case(wrStatus)

WRITE: begin

if(addr >= NUMELEMENTS-1) begin

wrStatus = DONE;

end

else begin

addr = addr + 1;

end

end

DONE: begin

addr = 0;

end

endcase

end

end

endmodule

-2-

111

Sunday, February 10, 2013 4:41 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// tx count result to uart

//

/// ///////////////////////////////

module timing_output (clk , timing_result , char_out);

input clk ;

input [31:0] timing_result ;

output [7:0] char_out ;

parameter ASCII_NUM = 48;

parameter ASCII_LET = 55;

reg [3:0] char = 0;

reg [7:0] sel = 0;

reg [7:0] outReg = 0;

reg [31:0] count = 0;

wire done;

assign char_out [7:0] = outReg [7:0];

assign done = (sel == 0);

always @(posedge clk) begin

case(sel)

8'h0 : begin

char = count [31:28];

sel = sel +1;

end

8'h1 : begin

char = count [27:24];

sel = sel +1;

end

8'h2 : begin

char = count [23:20];

sel = sel +1;

end

8'h3 : begin

char = count [19:16];

sel = sel +1;

end

8'h4 : begin

char = count [15:12];

sel = sel +1;

end

8'h5 : begin

char = count [11:8];

sel = sel +1;

end

8'h6 : begin

char = count [7:4];

sel = sel +1;

-1-

112

Sunday, February 10, 2013 4:41 PM

end

8'h7 : begin

char = count [3:0];

sel = sel +1;

end

8'h8 : begin

outReg = 8'hff ;

sel = 0;

end

default: sel = 0;

endcase

if (outReg == 8'hff && sel ==0) begin

outReg = 8'h0d ;

end

else if(char <= 9) begin

outReg = char + ASCII_NUM;

end

else begin

outReg = char + ASCII_LET ;

end

end

always @(posedge done) begin

count <= timing_result [31:0];

end

endmodule

-2-

113

Sunday, February 10, 2013 4:40 PM

`timescale 1ns / 1ps

/// ///////////////////////////////

// This module is design to determine the overall r un time of the XCORR_Test scenario

//

// Aaron Myers

// winter 2012

//

/// ///////////////////////////////

module timingAnalyzer (clk , start , storing_result , result);

//define I/O

input clk ;

input start ;

input storing_result ;

output [31:0] result ;

//define element

wire timing_str ;

reg [15:0] count ;

//assignment statements

assign timing_str = start | storing_result ;

assign result = {16'h0 , count };

//program code

always @(posedge clk) begin

if (timing_str)

count <= count + 1;

end

endmodule

-1-

114

Sunday, February 10, 2013 4:59 PM

`timescale 1ns / 1ps

// Documented Verilog UART

// Copyright (C) 2010 Timothy Goddard (tim@goddard. net.nz)

// Distributed under the MIT licence.

//

// Permission is hereby granted, free of charge, to any person obtaining a copy

// of this software and associated documentation fi les (the "Software"), to deal

// in the Software without restriction, including w ithout limitation the rights

// to use, copy, modify, merge, publish, distribute , sublicense, and/or sell

// copies of the Software, and to permit persons to whom the Software is

// furnished to do so, subject to the following con ditions:

//

// The above copyright notice and this permission n otice shall be included in

// all copies or substantial portions of the Softwa re.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRAN TY OF ANY KIND, EXPRESS OR

// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN TIES OF MERCHANTABILITY,

// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE MENT. IN NO EVENT SHALL THE

// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY C LAIM, DAMAGES OR OTHER

// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TOR T OR OTHERWISE, ARISING FROM,

// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

// THE SOFTWARE.

//

module uart (

input clk , // The master clock for this module

input rst , // Synchronous reset.

output tx , // Outgoing serial line

input transmit , // Signal to transmit

input [7:0] tx_byte , // Byte to transmit

output is_transmitting // Low when transmit line is idle.

);

parameter CLOCK_DIVIDE = 109; // clock rate (50Mhz) / (baud rate (115200) * 4)

// States for the transmitting state machine.

// Constants - do not override.

parameter TX_IDLE = 0;

parameter TX_SENDING = 1;

parameter TX_DELAY_RESTART= 2;

reg [10:0] tx_clk_divider = CLOCK_DIVIDE;

reg tx_out = 1'b1 ;

reg [1:0] tx_state = TX_IDLE;

reg [5:0] tx_countdown ;

reg [3:0] tx_bits_remaining ;

reg [7:0] tx_data ;

assign tx = tx_out ;

assign is_transmitting = tx_state != TX_IDLE;

always @(posedge clk) begin

if (rst) begin

-1-

115

Sunday, February 10, 2013 4:59 PM

tx_state = TX_IDLE;

end

// The clk_divider counter counts down from

// the CLOCK_DIVIDE constant. Whenever it

// reaches 0, 1/16 of the bit period has elapsed.

// Countdown timers for the receiving and transmitt ing

// state machines are decremented.

tx_clk_divider = tx_clk_divider - 1;

if (!tx_clk_divider) begin

tx_clk_divider = CLOCK_DIVIDE;

tx_countdown = tx_countdown - 1;

end

// Transmit state machine

case (tx_state)

TX_IDLE: begin

if (transmit) begin

// If the transmit flag is raised in the idle

// state, start transmitting the current content

// of the tx_byte input.

tx_data = tx_byte ;

// Send the initial, low pulse of 1 bit period

// to signal the start, followed by the data

tx_clk_divider = CLOCK_DIVIDE;

tx_countdown = 4;

tx_out = 0;

tx_bits_remaining = 8;

tx_state = TX_SENDING;

end

end

TX_SENDING: begin

if (!tx_countdown) begin

if (tx_bits_remaining) begin

tx_bits_remaining = tx_bits_remaining - 1;

tx_out = tx_data [0];

tx_data = {1'b0 , tx_data [7:1]};

tx_countdown = 4;

tx_state = TX_SENDING;

end else begin

// Set delay to send out 2 stop bits.

tx_out = 1;

tx_countdown = 8;

tx_state = TX_DELAY_RESTART;

end

end

end

TX_DELAY_RESTART: begin

// Wait until tx_countdown reaches the end before

// we send another transmission. This covers the

// "stop bit" delay.

tx_state = tx_countdown ? TX_DELAY_RESTART: TX_IDLE;

-2-

116

Sunday, February 10, 2013 4:59 PM

end

endcase

end

endmodule

-3-

117

Appendix B: MATLAB Code

%==

% Testing the baud generatation code for the verilog UART module found on

% fpga4fun.com

%

% Aaron Myers

% Winter 2012

%==

clc; clear all; close all;

%Define Variables

baud = int32(115200);

clkfrequency = int32(50e6);

baud8 = int32(8*baud);

accWidth = int32(16);

tclk = 1/double(clkfrequency);

time = 0:tclk:.0001−tclk;

clkout = zeros(1, length(time));

%Determine Increment

increment = ((baud8*2ˆ(accWidth−7))+clkfrequency*2ˆ−8)/(clkfrequency*2ˆ−7);

clkAcc = int32(0);

for n = 1:length(time),

clkAcc = clkAcc + increment;

if(bitget(clkAcc, 17)==1)

clkAcc = 0;

clkout(n) = 1;

118

end

end

119

%−−

% BRO fft

%

% This scrip will execute the simulink model of the fft processor that has

% been designed to process input data in bit reversed order

%

% Aaron Myers, Winter 2012

%−−

clc; clear; close all;

% Run simulation

load('tw0.mat');

load('tw1.mat');

load('tw2.mat');

load('tw3.mat');

load('inputSignal.mat');

sim('Radix2 SDF FFT');

% Analyze fft

load('SimResult.mat');

get(result);

get(input);

out = bitrevorder(squeeze(result.Data(1024:2047)));

figure;

hold on;

plot(abs(out), 'r', 'linewidth', 3);

plot(abs(fft(squeeze(input.Data(1:1024)), 1024)), 'b');

120

%==

% This file will explore the results that was provided by the fpga

% following the complex multiplier. Results provided as a continuous

% stream of serial hex data.

%

% Aaron Myers

% Winter 2012

%==

clc; clear all; close all;

fid = fopen('corrResult.txt', 'r');

A = fscanf(fid, '%c\n', [4, inf]);

A = A.';

fclose(fid);

A = cellstr(A);

A = reshape(A, 2, 10240)';

A r = A(:,1);

A i = A(:,2);

result r = zeros(size(A,1), 1);

result i = zeros(size(A,1), 1);

result = zeros(size(A,1), 1);

%Convert ascii values to actual hex

for n = 1:length(A),

result r(n) = double(typecast(uint16(hex2dec(A r{n})), 'int16'))/2ˆ3;

result i(n) = double(typecast(uint16(hex2dec(A i{n})), 'int16'))/2ˆ3;

end

result = complex(result r, result i);

121

load('fpgaCOEGeneration 20130108.mat', 'inputSig', 'template', 'tr fixed');

expectedFFTResult = zeros(length(inputSig), 1);

expectedFiltResult = zeros(length(inputSig), 1);

for n = 0:9,

expectedFFTResult(n*1024+[0:1023]+1) = fft(inputSig(n*1024+[0:1023]+1), 1024);

expectedFiltResult(n*1024+[0:1023]+1) = expectedFFTResult(n*1024+[0:1023]+1).*template.';

expectedCorrResult(n*1024+[0:1023]+1) = ifft(expectedFiltResult(n*1024+[0:1023]+1));

end

figure

plot(abs(result));

set(gca, 'fontsize', 14, 'xlim', [0 10240], 'ylim', [−10 1000])

legend('FPGA XCORR');

figure

hold on

plot(abs(expectedCorrResult), 'r', 'linewidth', 4);

plot(abs(result), 'linewidth', 3);

set(gca, 'fontsize', 14, 'xlim', [0 10240], 'ylim', [−10 1100]);

legend('matlab result', 'FPGA XCORR');

% figure;

% hold on;

% plot(abs(result), 'b');

% plot(abs(expectedFFTResult), 'r');

% legend('fpga FFT (16−bit resolution)', 'matlab FFT');

122

%−−

% FPGACorrelation

%

% This scrip test the radix2ˆ2 SDF FFT's ability to accomplish correlation

% on an FPGA. The FPGACorrelator model will serve as the model upon wich

% the verilog code will be written for actual implemenation

%

% Aaron Myers, Winter 2012

%−−

clc; clear; close all;

% Load the necessary variables

load('tw0.mat');

load('tw1.mat');

load('tw2.mat');

load('tw3.mat');

load('tw0 ifft.mat');

load('tw1 ifft.mat');

load('tw2 ifft.mat');

load('tw3 ifft.mat');

load('inputSignal.mat');

load('filtData.mat');

% Run the simulation

sim('FPGACorrelator');

% Analyze Corr Results

load('CorrResult.mat');

load('FFTResult.mat');

fpgaCorr = get(CorrResult);

fpgaFFT = get(FFTResult);

123

% Matlab's fft correlation answer

sigin = get(inputSignal);

sigin = squeeze(sigin.Data);

matlab fft = zeros(length(sigin), 1);

matlab result = zeros(length(sigin), 1);

for n = 0:length(sigin)/1024 − 1,

matlab fft(n*1024+[0:1023]+1) = abs(fft(sigin(n*1024+[0:1023]+1), 1024));

matlab result(n*1024+[0:1023]+1) = abs(ifft(fft(sigin(n*1024+[0:1023]+1), 1024).*filtData.'));

end

% Get Simulation Output

dstart = 4096;

fftstart = 2048;

fft result = abs(squeeze(fpgaFFT.Data(fftstart:fftstart+10239)));

result = abs(squeeze(fpgaCorr.Data(dstart:dstart+10239)));

diff = result−matlab result;

fft diff = fft result−matlab fft;

% Plot Correlation Results

h0 = figure;

hold on

plot(abs(result), 'r', 'linewidth', 3);

plot(abs(matlab result), 'b');

% legend('Simulink Result', 'Matlab Result');

set(gca, 'fontsize', 14);

h0b = figure;

hold on

plot(abs(result), 'r', 'linewidth', 3);

plot(abs(matlab result), 'b');

% legend('Simulink Result', 'Matlab Result');

124

set(gca, 'xlim', [0 40]);

[h0 m h0 i] = inset(h0, h0b);

legend(h0 m,'Simulink Result', 'Matlab Result', 'location', 'southeast');

close(h0, h0b);

mean((diff.ˆ2), 1)

MSE = mean((diff.ˆ2), 1).*ones(length(diff), 1);

h1 = figure;

hold on;

bar(diff.ˆ2, 'edgecolor', 'none');

plot(MSE, 'r−−', 'linewidth', 3);

set(gca, 'ylim', [0 30], 'xlim', [0 10240], 'fontsize', 14);

legend('Squared Error', 'MSE');

% Plot FFT Results

h2 = figure;

hold on;

plot(fft result, 'r', 'linewidth', 3);

plot(matlab fft);

set(gca, 'xlim', [0 10240], 'ylim', [−10 200], 'fontsize', 14);

h3 = figure;

hold on;

plot(fft result, 'r', 'linewidth', 3);

plot(matlab fft);

set(gca, 'xlim', [0 80], 'ylim', [0 80]);

[h m h i] = inset(h2, h3);

125

legend(h m,'Simulink FFT', 'Matlab FFT', 'location', 'northwest');

close(h2, h3);

h4 = figure;

plot(fft diff.ˆ2);

%Save Figures

% cd('C:\Users\Aaron\Dropbox\Thesis\Chapter4\Figures\');

% saveas(h0, 'CorrAlgorithm vs matlab 2', 'png');

% pause(5);

% saveas(h1, 'CorrAlgorithm vs matlab 2 error', 'png');

126

%==

% This file will explore the results that was provided by the fpga

% fft routine. Results provided as a continuous stream of serial

% hex data.

%

% Aaron Myers

% Winter 2012

%==

clc; clear all; close all;

fid = fopen('fftCapture.txt', 'r');

A = fscanf(fid, '%c\n', [4, inf]);

A = A.';

fclose(fid);

A = cellstr(A);

A = reshape(A, 2, 10240)';

A r = A(:,1);

A i = A(:,2);

result r = zeros(size(A,1), 1);

result i = zeros(size(A,1), 1);

result = zeros(size(A,1), 1);

%Convert ascii values to actual hex

for n = 1:length(A),

result r(n) = double(typecast(uint16(hex2dec(A r{n})), 'int16'))/2ˆ8;

result i(n) = double(typecast(uint16(hex2dec(A i{n})), 'int16'))/2ˆ8;

end

result = complex(result r, result i);

127

load('fpgaCOEGeneration 20130108.mat', 'inputSig', 'template');

expectedFFTResult = zeros(length(inputSig), 1);

expectedCorrResult = zeros(length(inputSig), 1);

projectedCorr = zeros(length(inputSig), 1);

for n = 0:9,

expectedFFTResult(n*1024+[0:1023]+1) = fft(inputSig(n*1024+[0:1023]+1), 1024);

projectedCorr(n*1024+[0:1023]+1) = ifft(result(n*1024+[0:1023]+1).*template.');

expectedCorrResult(n*1024+[0:1023]+1) = ifft(expectedFFTResult(n*1024+[0:1023]+1).*template.');

end

expectedFFTResult fp = int32(expectedFFTResult.*2ˆ11);

figure

hold on

plot(abs(projectedCorr), 'linewidth', 2);

% plot(abs(expectedCorrResult), 'r');

set(gca, 'fontsize', 14, 'xlim', [0 10240]);

legend('projected XCORR');

h1 = figure;

hold on;

plot(abs(result), 'b');

plot(abs(expectedFFTResult), 'r');

set(gca, 'fontsize', 14, 'xlim', [0 10240], 'ylim', [−15 200]);

h2 = figure;

hold on;

plot(abs(result), 'b', 'linewidth', 3);

plot(abs(expectedFFTResult), 'r', 'linewidth', 3);

set(gca, 'xlim', [0 40]);

128

[hm, hi] = inset(h1, h2)

legend(hm,'fpga FFT', 'matlab FFT', 'location', 'northwest');

129

%==

% This file will explore the results that was provided by the fpga

% following the complex multiplier. Results provided as a continuous

% stream of serial hex data.

%

% Aaron Myers

% Winter 2012

%==

clc; clear all; close all;

fid = fopen('filtTest.txt', 'r');

A = fscanf(fid, '%c\n', [4, inf]);

A = A.';

fclose(fid);

A = cellstr(A);

A = reshape(A, 2, 10240)';

A r = A(:,1);

A i = A(:,2);

result r = zeros(size(A,1), 1);

result i = zeros(size(A,1), 1);

result = zeros(size(A,1), 1);

%Convert ascii values to actual hex

for n = 1:length(A),

result r(n) = double(typecast(uint16(hex2dec(A r{n})), 'int16'))/2ˆ4;

result i(n) = double(typecast(uint16(hex2dec(A i{n})), 'int16'))/2ˆ4;

end

result = complex(result r, result i);

130

load('fpgaCOEGeneration 20130108.mat', 'inputSig', 'template', 'tr fixed');

expectedFFTResult = zeros(length(inputSig), 1);

expectedFiltResult = zeros(length(inputSig), 1);

projectedCorr = zeros(length(inputSig), 1);

for n = 0:9,

expectedFFTResult(n*1024+[0:1023]+1) = fft(inputSig(n*1024+[0:1023]+1), 1024);

projectedCorr(n*1024+[0:1023]+1) = ifft(result(n*1024+[0:1023]+1));

expectedFiltResult(n*1024+[0:1023]+1) = expectedFFTResult(n*1024+[0:1023]+1).*template.';

expectedCorrResult(n*1024+[0:1023]+1) = ifft(expectedFiltResult(n*1024+[0:1023]+1));

end

figure

hold on

plot(abs(expectedCorrResult), 'r', 'linewidth', 2);

plot(abs(projectedCorr));

legend('matlab result', 'projected XCORR');

% delayTestSig = [0; expectedFFTResult(1:end−1)];

% for n = 0:9,

% delayFiltResult(n*1024+[0:1023]+1) = delayTestSig(n*1024+[0:1023]+1).*template.';

% delayCorrResult(n*1024+[0:1023]+1) = ifft(delayFiltResult(n*1024+[0:1023]+1));

% end

%

% figure

% hold on

% plot(abs(delayCorrResult), 'r', 'linewidth', 2);

% % plot(abs(projectedCorr));

% legend('delayed result', 'projected XCORR');

131

%==

%in order to test the fpga correlation algorithm the input signal and the

%template will be stored in ROM. This should enable the assessment of the

%algorithm's performance (speed, accuracy, etc.)

%

%Aaron Myers

%Winter 2012

%==

clc; clear all; close all;

%Initialize Variables

sum = 0;

ipname = 'inputSig.txt';

trname = 'templateReal.txt';

tiname = 'templateImag.txt';

load('fpgaCOEGeneration 20130108.mat', 'inputSig');%comment when gen new signal

%Generate a test input/template signal (double precision)

% inputSig = randn(1,1024*10);

fft 2 = fft(inputSig(1025:2048),1024).';

template = conj(fft 2); %aribtrarily picked the 2nd "pulse"

t real = real(template);

t imag = imag(template);

% %Plot the expected result

% result = zeros(1, length(inputSig));

% result real = zeros(1, 1024);

% result imag = zeros(1, 1024);

%

% for n = 0:9,

% result imag = int16(imag(template)).*int16(imag(fft(inputSig(n*1024+[0:1023]+1))));

% result real = int16(real(template)).*int16(real(fft(inputSig(n*1024+[0:1023]+1))));

132

% result(n*1024+[0:1023]+1) = ifft(double(complex(result real, result imag))./1024);

% end

%

% figure

% plot(abs(result));

%Covert the double precision vectors to signed, 16−bit integers (assumes 1

%sign bit, 4 int bits, and 11 fraction bits). Range => −16:15.9995

inputSig fixed = int16(inputSig.*2ˆ11);

%1 sign bit, 7 int bits, and 8 sign bits. Range => −128:127.9961

tr fixed = int16(t real.*2ˆ8);

ti fixed = int16(t imag.*2ˆ8);

%Save files as text files in hex format so that they can be made into .coe

%files for the initialization of xilinx ROM

%Input Signal

fid = fopen(ipname, 'w');

for j = 1:length(inputSig fixed),

fprintf(fid, '%04X\n', typecast(inputSig fixed(j),'uint16'));

end

fclose(fid);

clear fid j;

%Real part of template

fid = fopen(trname, 'w');

for j = 1:length(tr fixed),

fprintf(fid, '%04X\n', typecast(tr fixed(j),'uint16'));

end

133

fclose(fid);

clear fid j;

%Imaginary part of template

fid = fopen(tiname, 'w');

for j = 1:length(ti fixed),

fprintf(fid, '%04X\n', typecast(ti fixed(j),'uint16'));

end

fclose(fid);

clear fid j;

134

%==

%exploration of the effect of taking randn double values and transforming

%them to 16 bit fixed point notation with the value represented in two's

%complement format with four integer bits and 11 fraction bits or 7 and 8.

%

%Aaron Myers

%Winter 2012

%==

clc; clear all; close all;

A = randn(1,1024);

a = int16(A.*2ˆ8);

af = zeros(1, length(a));

sum = 0;

filename = 'inputSig.txt';

filename2 = 'inputSig.csv';

for n = 1:length(a),

for i = 1:15,

currentBit = double(bitget(a(n),i));

sum = sum + 2ˆ(−8+(i−1))*currentBit;

end

sum = sum − 2ˆ7*double(bitget(a(n),16));

af(n) = sum;

sum = 0;

end

diff = A−af;

figure;

135

stem(diff)

figure;

hold on;

plot(abs(xcorr(A,af)), 'r', 'linewidth', 3);

plot(abs(xcorr(A,A)), 'b');

136

%−−

% Radix−2ˆ2 SDF IFFT

%

% This scrip will execute the simulink model of the inverse fft processor

% that has been designed to process fft input data

%

% Aaron Myers, Winter 2012

%−−

clc; clear; close all;

% Initialize input signal

load('inputSignal.mat');

signal = get(input);

IFFTdata = fft(squeeze(signal.Data(1:1023)), 1024);

time = signal.Time(1:1024);

IFFTin = timeseries(IFFTdata, time);

save('IFFTin.mat', 'IFFTin', '−v7.3');

% Run simulation

load('tw0 ifft.mat');

load('tw1 ifft.mat');

load('tw2 ifft.mat');

load('tw3 ifft.mat');

load('IFFTin.mat');

sim('Radix2 SDF IFFT');

% Analyze IFFT Return

load('IFFTout.mat');

out = get(IFFTout);

result = bitrevorder(squeeze(out.Data(1024:2047)));

plot(real(result));

137

%−−

% Signal Generator

%

% This scrip generates the input signal into the model

%

% Aaron Myers, Winter 2012

%−−

clc; clear; close all;

% Generate input signal

signal = randn(1, 10240);

time = 0:10239;

inputSignal = timeseries(signal, time);

filtData = conj(fft(signal(1025:2048), 1024));

save('inputSignal.mat', 'inputSignal', '−v7.3');

save('filtData.mat', 'filtData');

138

%==

% Timing Analysis for Correlation Routines

%

% Aaron Myers

% Winter 2012

%==

clc; clear all; close all;

%FPGA Results

fpga corr = 10.442e−6;

fpga corr10 = 104.42e−6;

%variables

signal = randn(10240, 1);

template = conj(fft(signal(1025:2048), 1024));

temp2 = signal(1025:2048);

result = zeros(length(signal), 1);

time1a = 0;

time2a = 0;

time1b = 0;

time2b = 0;

%Single Transform xcorr

tic;

ans1 = xcorr(temp2, temp2);

time1a = toc;

%Single Transform FFT/IFFT

tic;

ans2 = ifft(fft(signal(1025:2048), 1024).*template);

time1b = toc;

139

%10 Collection xcorr

tic;

ans3 = xcorr(signal, temp2);

time2a = toc;

%10 Collection FFT/IFFT

tic;

for n = 0:9,

result(n*1024+[0:1023]+1) = ifft(fft(signal(n*1024+[0:1023]+1),1024).*template);

end

time2b = toc;

names = {'XCORR'; 'FFT/IFFT'; 'FPGA Corr'};

timing results1 = 10ˆ3.*[time1a, time1b, fpga corr];

timing results10 = 10ˆ3.*[time2a, time2b, fpga corr10];

h1 = figure;

bar(timing results1);

set(gca, 'XTickLabel',names, 'XTick',1:numel(names), 'ylim', [0 40],'fontsize', 14);

ylabel('time (ms)');

h2 = figure;

bar(timing results1);

set(gca, 'ylim', [0 .15]);

ylabel('time (ms)');

[hm, hi] = inset(h1, h2)

close(h1, h2);

figure;

bar(timing results10);

140

set(gca, 'XTickLabel',names, 'XTick',1:numel(names), 'fontsize', 14);

ylabel('time (ms)');

141

N = 1024;

i = 0:1:(log(1024)/log(4) − 2)

a = N./(2.ˆ(2+2.*i))

tw0 = [ones(1,N)];

tw1 = [ones(1,N/4)];

tw2 = [ones(1,N/(2ˆ4))];

tw3 = [ones(1,N/(2ˆ6))];

tw0 BR = [ones(1,N)];

tw1 BR = [ones(1,N/4)];

tw2 BR = [ones(1,N/(2ˆ4))];

tw3 BR = [ones(1,N/(2ˆ6))];

%compute the twiddle factors for stage 0

for n = a(1)+1:length(tw0),

if n <= 2*a(1),

v = 2*(n−a(1)−1);

elseif (n > 2*a(1)) && (n <= 3*a(1)),

v = (n−(2*a(1))−1);

elseif (n > 3*a(1)) && (n <= 4*a(1)),

v = 3*(n−(3*a(1))−1);

end

tw0(n) = exp(−j*2*pi*v/N);

end

%compute the twiddle factors for stage 1

for n = a(2)+1:length(tw1),

if n <= 2*a(2),

v = 2ˆ3*(n−a(2)−1);

elseif (n > 2*a(2)) && (n <= 3*a(2)),

v = 4*(n−(2*a(2))−1);

elseif (n > 3*a(2)) && (n <= 4*a(2)),

142

v = 12*(n−(3*a(2))−1);

end

tw1(n) = exp(−j*2*pi*v/N);

end

%compute the twiddle factors for stage 2

for n = a(3)+1:length(tw2),

if n <= 2*a(3),

v = 2ˆ5*(n−a(3)−1);

elseif (n > 2*a(3)) && (n <= 3*a(3)),

v = 2ˆ4*(n−(2*a(3))−1);

elseif (n > 3*a(3)) && (n <= 4*a(3)),

v = 3*2ˆ4*(n−(3*a(3))−1);

end

tw2(n) = exp(−j*2*pi*v/N);

end

%compute the twiddle factors for stage 3

for n = a(4)+1:length(tw3),

if n <= 2*a(4),

v = 2ˆ7*(n−a(4)−1);

elseif (n > 2*a(4)) && (n <= 3*a(4)),

v = 2ˆ6*(n−(2*a(4))−1);

elseif (n > 3*a(4)) && (n <= 4*a(4)),

v = 3*2ˆ6*(n−(3*a(4))−1);

end

tw3(n) = exp(−j*2*pi*v/N);

end

tw0 BR = bitrevorder(tw0);

tw1 BR = repmat(bitrevorder(tw1), 1,4);

tw2 BR = repmat(bitrevorder(tw2), 1,16);

143

tw3 BR = repmat(bitrevorder(tw3), 1,64);

tw0 ifft = conj(tw0);

tw1 ifft = conj(tw1);

tw2 ifft = conj(tw2);

tw3 ifft = conj(tw3);

save('tw0.mat', 'tw0');

save('tw1.mat', 'tw1');

save('tw2.mat', 'tw2');

save('tw3.mat', 'tw3');

save('tw0 BR.mat', 'tw0 BR');

save('tw1 BR.mat', 'tw1 BR');

save('tw2 BR.mat', 'tw2 BR');

save('tw3 BR.mat', 'tw3 BR');

save('tw0 ifft.mat', 'tw0 ifft');

save('tw1 ifft.mat', 'tw1 ifft');

save('tw2 ifft.mat', 'tw2 ifft');

save('tw3 ifft.mat', 'tw3 ifft');

144

Appendix C: Compressed Sampling Theory

UWB radars and communication systems have always been constrained by the

sampling rates of available ADCs. To further complicate things, the sampling of UWB

waveforms creates large amount of data that is difficult to process in a timely manner. This

miniaturization effort compounds both these problems by reducing the available sampling

bandwidth and computing horse power. In order to combat these issues, compressive

sensing (CS) will be explored.

Reconstruction of the received signal is a vital aspect of any radar or communication

system. Conventional systems are able to accomplish this reconstruction by sampling

according to the Nyquist-Shannon theorem. This theorem requires that the incoming signal

be sampled at a rate slightly above twice the highest frequency content. If, however, the

signal of interest is sparse in a given domain, the information may be contained in a much

smaller effective bandwidth. Using CS, it may be possible to fully reconstruct the received

signal with far fewer samples than required by traditional methods. Furthermore, CS is

a particularly interesting proposition for RNR as “CS exploits the fact that many natural

signals are sparse or compressible in the sense that they have concise representations in the

proper basis ψ” [3].

To describe the process of CS the following mathematical development is often

presented: Consider a discretely sampled, one-dimensional signal x = [x[1], · · · , x[N]]

that can be represented as an Nx1 vector in N-dimensional space. Let Ψ =
[
ψ1, · · · , ψn

]
.

Ψ is an NxN dimensional matrix where the ψi’s are Nx1 basis vectors. Now x can be

represented as

x =

N∑
i=0

siψi, or x = Ψs [29]. (C.1)

Now, K will be defined as the number of non-zero coefficient in x. For x to be considered

sparse in ψ, K needs to be much smaller than N. If the signal, x, is sparse, then only M

145

samples of x will be collected, where K < M << N. The result is an M-length observation

vector, y that can be expressed as

y = Φx [40]. (C.2)

Substituting Equation (C.1) into Equation (C.2) one arrives at

y = ΦΨs = Θs. (C.3)

According to Candes and Wakin, sparsity in and of itself is not a sufficient condition

for CS. The product of φ and ψ, Θ must be incoherent [3]. To ensure this condition is

upheld Θ must satisfy the restricted isometric property (RIP) [9]. If φ is chosen to be a

independent identically distributed Gaussian matrix, then Θ has been shown to satisfy the

RIP with high probability for many orthonormal bases: spikes, sinusoids, wavelets, Gabor

functions, and curvelets [40].

Once the sparsity and incoherence properties have been satisfied, the reconstruction

of the signal of interest, x, is accomplished by solving the l1-norm minimization problem:

ŝ = arg min ‖s‖1 s.t. y = ΦΨs [29]. (C.4)

Equation (C.4) is one of several proposed techniques to recover sparse signals, but is the

one that is most commonly used.

146

Bibliography

[1] Axelsson, Sune R.J. “Generalized Ambiguity Functions for Ultra Wide Band Random
Waveforms”. Radar Symposium, 2006. IRS 2006. International, 1 –4. may 2006.

[2] Burrus, C.S. and T.W. Parks. DFT/FFT and Convolution Algorithms. John Wiley and
Sons, 1985.

[3] Candes, E.J. and M.B. Wakin. “An Introduction To Compressive Sampling”. Signal
Processing Magazine, IEEE, 25(2):21 –30, march 2008. ISSN 1053-5888.

[4] Chi, J.C. and S. Chen. “An efficient FFT Twiddle Factor Generator”. Proc. European
Signal Processing Conference, 1533–1536.

[5] 1st Class Michael Guillory, Sgt. “Up, Up and Away”, November 2006. URL http:
//www.army.mil/-images/2006/11/22/1024/army.mil-2006-11-22-114612.jpg. ...and
away it goes, on an aerial reconnaissance mission for Iraqi and U.S. Soldiers on the
ground.

[6] Collins, Peter J. and John A. Priestly III. “An Investigation of the Trade-offs
Between Electronic Protection and Processing Efficiency in a Multistatic Noise Radar
Network”. Waveform Diversity Conference, 2012. 2012.

[7] Cooley, James W. and John W. Tukey. “An Algorithm for the Machine Calculation of
Complex Fourier Series”. 19(90).

[8] Dereniak, E.L. and G.D. Boreman. Infrared Detectors and Systems. John Wiley and
Sons, Inc., 1996.

[9] Donoho, D. “Compressed Sensing”. IEEE Trans. on Information Theory,
52(4):1289–1306, April 2006.

[10] Garmatyuk, D. S. and R. M. Narayanan. “ECCM capabilities of an ultrawideband
bandlimited random noise imaging radar”. Aerospace and Electronic Systems, IEEE
Transactions on, 38(4):1243–1255, 2002. ID: 1.

[11] Garrido, M., J. Grajal, and O. Gustafsson. “Optimum Circuits for Bit Reversal”.
Circuits and Systems II: Express Briefs, IEEE Transactions on, 58(10):657 –661, oct.
2011. ISSN 1549-7747.

[12] Grant, M.P., G.R. Cooper, and A.K. Kamal. “A class of noise radar systems”.
Proceedings of the IEEE, 51(7):1060 – 1061, july 1963. ISSN 0018-9219.

[13] Guosui, Liu, Gu Hong, and Su Weimin. “Development of random signal radars”.
Aerospace and Electronic Systems, IEEE Transactions on, 35(3):770–777, 1999. ID:
1.

147

[14] He, Shousheng and M. Torkelson. “A new approach to pipeline FFT processor”. Par-
allel Processing Symposium, 1996., Proceedings of IPPS ’96, The 10th International,
766 –770. apr 1996.

[15] Horton, B.M. “Noise-Modulated Distance Measuring Systems”. Proceedings of the
IRE, 47(5):821 –828, may 1959. ISSN 0096-8390.

[16] Lai, Chieh-Ping and R.M. Narayanan. “Through Wall Surveillance Using Ultrawide-
band Random Noise Radar”. 2006.

[17] Lai, Chieh-Ping and R.M. Narayanan. “Ultrawideband Random Noise Radar
Design for Through-Wall Surveillance”. Aerospace and Electronic Systems, IEEE
Transactions on, 46(4):1716 –1730, oct. 2010. ISSN 0018-9251.

[18] Lievsay, James R. Simultaneous Range/Velocity Detection with an Ultra-Wideband
Random Noise Radar through Fully Digital Cross-Correlation in the Time Domain.
Master’s thesis, Air Force Institute of Technology, Wrigh-Patterson AFB, OH, 2011.

[19] Maximum Integrated Products. 8-Bit, 2.2Gsps ADC with Track/Hold Amplifier and
1:4 Demultiplexed LVDS Outputs. URL http://datasheets.maximintegrated.com/en/

ds/MAX109.pdf.

[20] Maximum Integrated Products. Application Note 800: Design a Low-Jitter Clock for
High-Speed Data Converters. URL http://www.maximintegrated.com/an800.

[21] McGillem, C.D., G.T. Cooper, and W.B. Waltaman. “An Experimental Random
Signal Radar”. Proceedings of the National Electronics Conference, 409–411.
October 1967.

[22] Narayanan, Ram M., Robert D. Mueller, and Robert D. Palmer. “Random noise radar
interferometry”. 75–82, 1996. URL +http://dx.doi.org/10.1117/12.257243.

[23] Narayanan, R.M. and M. Dawood. “Doppler estimation using a coherent ultrawide-
band random noise radar”. Antennas and Propagation, IEEE Transactions on,
48(6):868 –878, jun 2000. ISSN 0018-926X.

[24] Narayanan, R.M., Y. Xu, P.D. Hoffmeyer, and J.O. Curtis. “Design and performance
of a polarimetric random noise radar for detection of shallow buried targets”. Proc.
SPIE Meeting on Detection Techn. Mines, Orlando, volume 2496, 20–30. 1995.

[25] Nelms, Matthew. Development and Evaluation of a Multistatic Ultrawideband
Random Noise Radar. Master’s thesis, Air Force Institute of Technology, Wrigh-
Patterson AFB, OH, 2010.

[26] Osborn, Leon, Jeffrey Brummond, Robert Hart, Mohsen Zarean, and Steven Conger.
“Clarus Concept of Operations”. FHWA-JPO-05-072. 2005.

148

[27] Priestly, John A. III. AFIT NoNET Enhancements: Software Model Development and
Optimization of Signal Processing Architecture. Master’s thesis, Air Force Institute
of Technology, 2011.

[28] Rabiner, Lawrence R. and Bernard Gold. Theory and Application Of Digital Signal
Processing. Prentice-Hall, Inc., 1975.

[29] Rawat, Ankit Singh and Kartik Venkat. “Compressed Sensing and its Applications
in UWB Communication Systems”, Oct 2010. Term paper written for EENG 670,
Stanford University.

[30] Richards, Mark A., James A. Scheer, and William A. Holm (editors). Principles of
Modern Radar: Basic Principles. SciTech Publishing, Inc., 2010.

[31] Saeed, Ahmed, M. Elbably, G. Abdelfadeel, and M.I. Eladawy. “Efficient FPGA
Implementation of FFT/IFFT Processor”. 3.

[32] Smit, J. A. “Radar - An experimental noise radar system”. AGARD Conference
Proceedings, 39.1–39.7. 1970.

[33] Sule, Ambarish Mukund. “Design of Pipeline Fast Fourier Transform Processors
Using 3 Dimensional Integrated Circuit Technology”. URL http://www.lib.ncsu.edu/

resolver/1840.16/3879.

[34] Thayaparan, T. and C. Wernik. Noise Radar Technology Basics. Technical
report, DEFENCE RESEARCH AND DEVELOPMENT CANADA OTTAWA
(ONTARIO);, Dec-2006.

[35] Theron, I.P., E.K. Walton, and S. Gunawan. “Compact range radar cross-section
measurements using a noise radar”. Antennas and Propagation, IEEE Transactions
on, 46(9):1285–1288, 1998.

[36] Thorson, T. Joel. Simulataneous Range-Velocity Processing and SNR Analysis of
AFIT’s Random Noise Radar. Master’s thesis, Air Force Institute of Technology,
Wrigh-Patterson AFB, OH, 2012.

[37] Thorson, T. Joel and Geoffrey A. Akers. “Investigating the Use of a Binary ADC
for Simultaneous Range and Velocity Processing in a Random Noise Radar”, 2010.
Note.

[38] Thorson, T. Joel and Geoffrey A. Akers. “Near Real-Time Simultaneous Range and
Velocity Processing in a Random Noise Radar”, 2011. Note.

[39] Walton, EK, IP Theron, S. Gunawan, and L. Cai. “Moving vehicle range profiles
measured using a noise radar”. Antennas and Propagation Society International
Symposium, 1997. IEEE., 1997 Digest, volume 4, 2597–2600. IEEE, 1997.

149

[40] Wu, Ji, Qilian Liang, Zheng Zhou, Xiaorong Wu, and Baoju Zhang. “Compressive
sensing for sense-through-wall UWB noise radar signal”. Communications and
Networking in China (CHINACOM), 2011 6th International ICST Conference on,
979 –983. aug. 2011.

[41] Xilinx, Inc. ISE Help. URL http://www.xilinx.com/support/documentation/sw
manuals/xilinx14 4/isehelp start.htm.

[42] Xilinx, Inc. ISE In-Depth Tutorial. URL http://www.xilinx.com/support/
documentation/sw manuals/xilinx14 4/ise tutorial ug695.pdf.

[43] Xilinx, Inc. Virtex-5 FPGA ML555 Development Kit For PCI and PCI Express
Designs, User Guide. URL http://www.xilinx.com/support/documentation/boards
and kits/ug201.pdf.

[44] Zatrepalek, Reg. “Using FPGAs to Solve Tough DSP Design Challenges”. Xcell
Journal.

150

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

21-03-2013 Master's Thesis Oct 2011 - Mar 2013

The Miniaturization of the AFIT Random Noise Radar

Myers, Aaron T., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-37

Advanced Navigation Technology Center
Attn: Dr. John F. Raquet
2950 Hobson Way
WPAFB, OH 45433-7765

ANT

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Advances in technology and signal processing techniques have opened the door to using an UWB random noise waveform for
radar imaging. This unique, low probability of intercept waveform has piqued the interest of the U.S. DoD as well as law
enforcement and intelligence agencies alike. While AFIT's noise radar has made significant progress, the current architecture
needs to be redesigned to meet the space constraints and power limitations of an aerial platform. This research effort is AFIT's
first attempt at RNR miniaturization and centers on two primary objectives: 1) identifying a signal processor that is compact,
energy efficient, and capable of performing the demanding signal processing routines and 2) developing a high-speed
correlation algorithm that is suited for the target hardware. A correlation routine was chosen as the design goal because of its
importance to the noise radar's ability to estimate the presence of a return signal. Furthermore, it is a computationally intensive
process that was used to determine the feasibility of the processing component. To determine the performance of the proposed
algorithm, results from simulation and experiments involving representative hardware were compared to the current system.
Post-implementation reports of the FPGA-based correlator indicated zero timing failures, less than a Watt of power
consumption, and a 44% utilization of the Virtex-5's logic resources.

Random Noise Radar, FPGA Correlation, Noise Radar Miniaturization

U U U

UU 169
Dr. Peter J. Collins (AFIT/ENG)

(937) 255-3636 x7526

	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	The Miniaturization of the AFIT Random Noise Radar
	Aaron T. Myers
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Motivation
	Research Goals
	Background
	Chapter Conclusion

	Theory
	Chapter Overview
	Random Noise Radar
	Transmitter Theory
	Receiver Theory
	Chapter Conclusion

	System Description and Methodology
	Chapter Overview
	Requirements Definition
	Hardware Design
	Algorithm Development
	Design Tools
	System Characterization
	Conclusion

	Results
	Chapter Overview
	Modeling and Simulation
	FPGA Implementation
	Accuracy of the Correlation Algorithm
	Performance of the Correlation Algorithm in Degrading SNRs
	Timing Results
	Conclusion

	Conclusions
	Chapter Overview
	Research Goals
	Results and Contributions
	Future Work

	Appendix A: HDL Correlator
	Appendix B: MATLAB Code
	Appendix C: Compressed Sampling Theory
	Bibliography

