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Abstract

Satellite based Tropical Cyclone (TC) intensity estimates are critical for TC warn-

ing centers and global Numerical Weather Prediction (NWP) Models due to the lack

of in-situ observations of mean sea-level pressure and TC winds. Passive microwave

instruments on polar-orbiting weather satellites are useful for estimating the inten-

sity of TCs because upwelling microwave radiation can generally penetrate clouds.

The upwelling radiation is converted to brightness temperatures and used to measure

the intensity of the TC’s warm core, precipitation, and ice particle formation via

the emitted radiation absorption and scattering signatures. Currently, operational

TC prediction centers rely on intensity estimates derived from Polar-orbiting Opera-

tional Environmental Satellite (POES) Advanced Microwave Sounding Unit (AMSU-

A) brightness temperatures. This study compares the performance of a variety of

TC intensity estimation techniques using both the imaging and sounding channels

from AMSU-A, the Defense Meteorological Satellite Program (DMSP) Special Sen-

sor Microwave Imager and Sounder (SSMI/S), and the Suomi-National Polar-orbiting

Partnership (S-NPP) Advanced Technology Microwave Sounder (ATMS) for a sample

of 28 North Atlantic storms from the 2011 through 2013 TC seasons. Using a stepwise

multivariate regression statistical model SSMI/S, AMSU, and ATMS achieve correla-

tion coefficients of 0.89, 0.86, and 0.73 respectively with TC mean sea level pressure

(MSLP), and root mean square error (RMSE) of 7.7, 9.3 and 12.8 mb, respectively.
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TROPICAL CYCLONE INTENSITY AND POSITION ANALYSIS USING

PASSIVE MICROWAVE IMAGER AND SOUNDER DATA

I. Introduction

1.1 Motivation

Analysis of tropical cyclone (TC) position and intensity is inhibited by the lack of

in-situ observations over the data-sparse tropical oceans. WC-130 aircraft from the

Air Force Reserve’s 53rd Weather Reconnaissance Squadron and P-3 aircraft from

the National Oceanographic and Atmospheric Administration (NOAA) provide the

main source of in-situ measurements of TC intensity, but these observations are not

available in the Pacific Ocean or areas of the Atlantic Ocean outside the range of these

aircraft. The lack of in-situ observations can be overcome by employing algorithms

to estimate intensity and position using visible, infrared (IR), and microwave data

from geostationary and polar-orbiting weather satellites.

The analysis of TCs via satellite instrumentation has grown in importance over

the last four decades. Since the beginning of satellite meteorology no TC has gone

undetected. Table 1 shows that during the period of 1995 to 2010 the average number

of TCs increased compared to the average number of TCs from 1851 to 2010 (Blake

et al. 2011). Despite this increase, there was a decrease in lives lost and an increase

and improvement in preparedness and plans to mitigate infrastructure damage to

coastal areas affected by TCs.
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Table 1. Average number of TC occurences at different storm categories over five
different periods from 1851 to 2010. Data from (Blake et al. 2011).

PERIOD
Number of

Years

Average number

of Tropical Storms

Average number

of Hurricanes

Average number

of Major Hurricanes

1851-2010 160 9.0 5.4 1.9

1944-2010 67 10.8 6.2 2.7

1966-2010 45 11.4 6.3 2.4

1981-2010 30 12.1 6.4 2.7

1995-2010 16 14.8 7.9 3.8

Meteorological satellites have helped this effort by providing forecasters with crit-

ical information about TC’s intensity, location and track. Several methods have been

developed to exploit satellite imagery to determine TC position and intensity re-

motely. However, these methods are subjective and suffer from biases introduced by

the human analyst. More recently, data from microwave sounding instruments has

enabled characterization of the thermodynamic structure of these storms, improving

forecasts of intensification and future track.

The purpose of this research is to develop a TC intensity algorithm using passive

microwave satellite instruments and compare performance between instruments to

enhance the forecaster’s confidence using the algorithm to analyze the intensity of

TCs.

1.2 Microwave Imagers and Sounders

The microwave portion of the electromagnetic spectrum has proven to be very ef-

fective for analyzing TC position and intensity. Microwave imagery from the Defense

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager/Sounder
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(SSMI/S) and more recently the Suomi National Polar-orbiting Partnership (S-NPP)

Advanced Technology Microwave Sensor (ATMS) are useful for determining TC po-

sition and structure because they can map spiral band precipitation through cloud

cover via scattering or absorption of the upwelling microwave radiation. Microwave

temperature sounder data from SSMI/S, ATMS and the Polar-orbiting Operational

Environmental Satellite (POES) Advanced Microwave Sounding Unit (AMSU) are

useful for estimating TC intensity via the warming in the upper troposphere above

the storm center. Several algorithms have been developed to characterize this warm

anomaly and show a correlation with the mean sea level pressure (MSLP).

1.3 Problem

In the North Atlantic and Eastern North Pacific basins, the National Hurricane

Center (NHC) is responsible for issuing TC forecasts and warnings. The Joint Ty-

phoon Warning Center (JTWC) is a joint Navy and Air Force command that provides

TC reconnaissance, forecasting, and warnings to support US government agencies op-

erating in the Western North Pacific and Indian Ocean basins (Air Force Weather

Agency accessed 2014). Currently only AMSU sounding data is used operationally by

JTWC to derive TC intensity estimates. However, the SSMI/S offers better spatial

resolution and constant instrument field of view due to its conical scan geometry. The

ATMS is a relatively new instrument that paves the way for future passive microwave

instrumentation and will eventually replace NOAA’s AMSU. Currently no TC inten-

sity estimation techniques tailored for the strengths of the SSMI/S and ATMS are in

operational use, so it is unknown how well these instruments perform in comparison

with AMSU-based TC intensity estimation techniques. It may be possible to exploit

ATMS and SSMI/S imagery channels, in addition to their sounder data, to aid in TC

intensity estimation.
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1.4 Objective

Several techniques, both objective and subjective, have been developed to charac-

terize the intensity of TCs. The majority of these techniques use passive microwave

radiometer data to exploit the capabilities of the AMSU sounding channels. While

the AMSU is a practical instrument heavily used in research and operations, the

SSMI/S offers better spatial resolution and constant field of view (FOV) geometry

across its scanline. The ATMS, which was recently launched, represents the future

of TC microwave remote sensing. The objective of this research is to develop a TC

intensity algorithm tailored for the SSMI/S and ATMS and to objectively compare

AMSU, SSMI/S, and ATMS TC intensity estimates.

This thesis contains five chapters: The introduction chapter presents the reader

the problem and objective of this research. The background chapter is a literature

review summarizing TC structure, microwave remote sensing, and existing satellite

based microwave TC intensity algorithms. The methodology chapter discusses how

the data were acquired and analyzed to accomplish the objective. Chapter four

provides the reader with the analysis and results. The final chapter summarizes the

results and elaborates on possible operational use and future work.
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II. Background

2.1 Tropical Cyclones

TCs are warm-core cyclonic circulations with extensive cumulus convection that

develop within 30◦ latitude of the equator. These storms track with the mid-level

atmospheric flow and are capable of sustained winds as high as 160 kt (1 kt = 0.51

m/s) and MSLP as low as 880 mb. TCs have the thermodynamic characteristics of a

Carnot engine, converting the sensible and latent heat contained in the tropical ocean

surface to the kinetic energy of the TC circulation. TC wind and pressure fields are

usually in hydrostatic and gradient balance.

TC season in the Northern Hemisphere varies by ocean basin, but in general these

systems develop during the summer months when the ocean surface temperature is

above 26.5◦ - 27.0◦C (Frank and Roundy 2006). In the Atlantic ocean, Hurricane

season officially starts on June 1st, peaks in September and concludes at the end of

November. In the Eastern Pacific, the season starts on May 15th, and ends at the

same time as the Atlantic season. Over the Western Pacific, Typhoon season lasts

year-round, peaking in late August and into September. The naming convention is

different for the Atlantic and Western Pacific (WESTPAC): TCs that develop and

reach 64 kt are called Hurricanes in the Atlantic and Eastern Pacific basins, but in

the WESTPAC, these systems are called Typhoons. Table 2 shows TC classification

by basin according to wind speed and MSLP.
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Table 2. TC classification by ocean basin. MSLP and the Saffir-Simpson wind scale
are used in the Atlantic Basin, Eastern and Central Pacific

MSLP [mb] Wind Speed [kt]
Atlantic Ocean,

Central and East Pacific
Western Pacific

≥ 1005 ≤ 33 Tropical depression Tropical depression

987-1005 34 - 63 Tropical storm Tropical storm

975-987 64 - 82 Cat 1 Hurricane Typhoon

965-975 83 - 95 Cat 2 Hurricane Typhoon

950-965 96 - 112 Cat 3 Hurricane Typhoon

925-950 113 - 136 Cat 4 Hurricane Typhoon

≤ 925 ≥ 137 Cat 5 Hurricane ≥ 130 Super Typhoon

Atlantic TCs generally develop from easterly waves exiting the African continent

embedded in the Intertropical Convergence Zone (ITCZ). These disturbances can of-

ten organize and form a cluster of thunderstorms. Cyclonic low level relative vorticity

and planetary vorticity can help the system organize and develop its own low level

cyclonic circulation. If the system of thunderstorms is deep enough and a strong low

level circulation is present, latent heat will become trapped in the center of the circu-

lation creating the warm core characteristic of a TC. As the TC gains intensity and

the convection wraps around the low level circulation, convective precipitation bands

develop and spiral into the center of the storm, creating rainbands or feeder-bands

in near-concentric rings. Heavy precipitation concentrates in these rings, where the

convection is isolated from any moderate to strong mid to upper level wind shear.

The convective updrafts in clouds forming the concentric rings are strong enough

to lift water drops beyond the freezing level and produce ice particles in the up-

per troposphere. As the rainbands spread further from the center of the TC, low
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level convergence decreases in magnitude and precipitation becomes more stratiform.

The released latent heat induced by precipitation will lower the surface pressure and

strengthen the winds at the perimeter of the low pressure system according to Hart

(2006). Strengthening winds converging towards the center of the storm will enhance

evaporation from the relatively warm ocean surface, moistening the low level envi-

ronment. The relatively deep layer of warm ocean surface water induces a continuous

sensible heat flux providing the thermal energy necessary for self-sustainment and

further intensification and counteracting any cooling resulting from evaporation or

convective downdrafts. Besides the presence of relatively deep warm ocean temper-

atures and relative cyclonic vorticity, weak winds and high relative humidity values

are required in the mid to upper troposphere for the storm to maintain its strength

and autonomy.

The presence of the warm core is imperative for the TC to sustain it self. Its

presence allows TC researchers to make the comparison to a Carnot engine, which is

a thermodynamic cycle that converts heat to mechanical energy in order to maintain

a thermodynamic balance (Emanuel 1986). Thermodynamic disequilibrium develops

between the relatively cool atmosphere and the warm ocean surface. With the ocean

as a heat source, air-sea interaction brings the system closer to equilibrium. Wind

spiraling into the center of the developed low pressure system advects sensible heat

from the ocean surface. Air parcels then ascend moist adiabatically to high altitudes

(15km) where some heat is lost via radiation to space. The cooled parcels then sink

adiabatically far from the center of the TC and close the cycle by converging radially

back into the storm, advecting in new sensible heat from the ocean surface (Emanuel

2003).
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Substituting the ideal gas law (2) and integrating the hydrostatic equation (1)

through the depth of the troposphere using the mean temperature of the layer as

shown in equation (3), the surface pressure can be computed (4).

p(z) = ρ(z)RT (z) (2)

∫ Ptop

Pbot

dp

p
=
g

R

∫ Ztop

Zsfc

dz

T (z)
(3)

p(z) = ptop exp

(
gztop

RT

)
(4)

Equation (4) then shows the relationship between the layer’s mean temperature

and the surface pressure of the column of air (Holton and Hakim 2012). In general,

the pressure gradient increases as the temperature differential between the core of

the storm and the environment increases. The drop of the MSLP at the center of the

storm can be correlated to the intensity of the warm core anomaly. TC wind speed

is strongly related to the pressure gradient of the TC as the system has to conserve

angular momentum (5); cyclonic circulation decreases with radius (Emanuel 1986).

M = rV +
1

2
fr2 (5)

Here r is the radial distance from the center of the storm, V is the wind speed and

f is the Coriolis parameter. After algebraic manipulation and using the hydrostatic

balance relation (1) to convert to radial coordinates using the geopotential height (φ),

the gradient balance equation (7) is resolved and can be used to estimate the wind

speed using the radial change in pressure.
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g
dz

dp
= φ (6)

V = −fr
2
±
(
f 2r2

4
− r∂φ

∂r

)1/2

(7)

The positive root of (7), ( R > 0 , ∂φ
∂r
< 0 ), represents the flow around a regular low

and is the balance between the Coriolis parameter, the centrifugal force and pressure

gradient forces.

Characterizing the warm core has been a challenge because of the lack of in-situ

observations. Using the infrared (IR) or microwave spectrum, satellite instruments

can measure vertical temperature profiles by using different frequencies. The mi-

crowave portion of the electromagnetic spectrum has proven to quantify this feature

better than at any other frequencies. In addition, passive microwave imagery of TCs

is possible due to interaction of microwaves and precipitation.

2.2 Microwave Remote Sensing

At microwave wavelengths (millimeters), cloud droplets (with radii of approxi-

mately 10 µm) absorb and scatter very weakly. This makes clouds effectively transpar-

ent to passive microwave instruments. Rain drops (with radii between approximately

100 µm and 1 mm) are good absorbers at low and high microwave frequencies. Grau-

pel and hail, often present in the upper parts of deep convective clouds, are strong

scatterers at higher microwave frequencies. This makes microwave imagers operating

between 19 and 91 GHz ideally suited for penetrating high cirrus to detect precipi-

tation and ice particle concentration. Microwave sounders use the molecular oxygen

absorption band between 50-70 GHz and the water vapor absorption band from 180

to 190 GHz to make temperature profiles and moisture profiles of the atmosphere.
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energetic photons are. The energy a photon is equal to its frequency multiplied by

Plank’s constant (h = 6.63E-34 Js). Plank’s Law describes the EM radiation emitted

by a blackbody in thermal equilibrium. Equation 8 is obtained by integrating over

all the frequencies emitted by the object of interest in thermal equilibrium with its

environment.

Bν(T ) =
2hν3

c2

1

e
hν
kBT − 1

(8)

Where Bν denotes the spectral radiance of the object in question as a function

of ν, its temperature T , and kB=1.3806E-23 m2kgs−2K−1, the Boltzmann constant.

In remote sensing the spectral radiance is given by the radiance counts measured by

the satellite instrument. Taking the inverse of Plank’s Law, one can solve for the

blackbody’s brightness temperature, given by

Tb =
hν

kb
ln−1

(
1 +

2hν3

B(ν)c2

)
(9)

In the limit of low frequencies, the brightness temperature of the blackbody can be

described by Rayleigh-Jeans Law (10), an approximately linear relationship between

the radiance and the brightness temperature of the object.

T =
Bν(T )c2

2ν2kb
(10)

In the microwave portion of the EM spectrum the brightness temperature of the

object can be approximated by using the Rayleigh-Jeans Law (10).
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of attenuation in a layer of the atmosphere from s1 to s2. β is distinctive for an at-

mosphere constituent and it obeys the superposition principle in the layer in question

(Petty 2006).

τ(s1, s2) =

∫ s2

s1

βa(s)ds (12)

t = e−
τ(s1,s2)

µ (13)

Transmittance is dependent on the incidence angle θ, the radiation’s angle with

respect to the vertical plane. We define µ = cos(θ). Radiation not transmitted is

absorbed; and by Kirchhoff’s law, absorptivity (α) is equal to emissivity. Under local

thermodynamic equilibrium (LTE) the microwave emission of the layer is basically

proportional to the temperature of the layer.

ε = α (14)

The Radiative Transfer model uses Beer’s law and Plank’s law under LTE condi-

tions to characterize the absorptivity, transmissivity, and emissivity of the medium.

A solution to the radiative transfer model for the total radiance sensed from the top

of the atmosphere (TOA) is given by the following equation.

ITOA(µ,∞) = εB(Tsfc)t
1
µ + (1− ε)B(Tspace)t

2
µ +

∫ ∞
0

W ↑(z, µ)B(T )dz (15)
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I(µ,∞) describes the sum of the upwelling surface radiation after attenuation by

the atmosphere constituents and the thermal contribution of each of the atmospheric

layers above the surface, weighted by the upwelling weighting function W ↑(z, µ) at a

given frequency.

W (z, µ) =

[
1 + (1− εsfc)

(
tsfc
t

) 2
µ

]
d

dz

(
t
1
µ

)
(16)

The weighting function W(z,µ), quantifies the contribution of radiation emitted

from given layer of the atmosphere at a specific frequency by measuring the transmis-

sivity’s rate of change with respect to height (Petty 2006). In general a frequency’s

weighting function provides a reference height to the layer providing most of the

radiation to the sensor.

Equation (16) is solved for each of the instrument’s channels. After the weighting

function at each frequency is computed, the radiance measured by the sensor can

be translated into a brightness temperature (Rayleigh-Jeans Law) corresponding to

a layer in the atmosphere where the weighting function peaks. Contribution from

other layers or atmosphere constituents can affect the brightness temperature sensed,

especially for channels that are highly susceptible to absorption or scattering when

deep convective precipitation is present in the general vicinity of where the weighting

function peaks.

Figure 5 shows the AMSU weighting function for channel 7 (54.9 GHz) for both

nadir and edge of scan (48.8 ◦) FOVs. The temperature at 11 km is best represented

by the channel 7 brightness temperature. Also note the dependency on the incidence

angle µ. At nadir the weighting function peaks near 11 km and at the off nadir position

a height gain of almost 2 km is observed. This discrepancy poses a problem when

trying to solve for the brightness temperature at nadir level for the entire scanline.
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size of the object (Kidder and Vonder-Haar 1995). Water vapor and oxygen are

effective absorbers and negligible scatterers at microwave frequencies due to their size

and molecular properties, but water, liquid droplets and rain drops are susceptible to

both scattering and absorption. Scattering of microwave radiation falls under three

different regimes; Mie scattering, Rayleigh scattering, and geometric optics. The size

of the scattering particle determines the scattering regime and also its absorptivity

potential.

Water vapor and oxygen are the main two atmospheric absorbers in the microwave

portion of the EM spectrum. These two atmospheric constituents absorb at different

frequencies. While water vapor absorptivity depends on the water vapor content in

the troposphere, oxygen can be assumed to be well mixed throughout A column of

the atmosphere. Oxygen absorption of EM radiation at these frequencies is mainly

due to molecular rotational transitions; microwave frequencies provide enough energy

for these transitions to take place, absorbing radiation. The most important oxygen

absorption band is centered at 60 GHz; a second absorption band, though much

weaker, is also centered around 118 GHz.

Water vapor contains many more absorption bands that are distributed along

the EM spectrum. These spectra of absorption bands are called the water vapor

absorption continuum because its not limited to a single absorption band. In the

microwave domain, water vapor absorption gets stronger as the frequency increases

(Petty 2006). The two important water vapor absorption bands that fall within the

microwave portion are at 22 GHz and a 180 GHz. Thus, the atmosphere is more

transparent to water vapor at low frequencies with no precipitation.

Liquid water particles are both good absorbers and good scatterers but absorption

dominates, while ice particles only scatter. Liquid droplets (< 1mm) and rain drops

(> 1mm) absorb and scatter at both low and high frequencies. Scattering of radiation
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can fall into three different regimes according to the size parameter χ, which is defined

as:

χ =
2πr

λ
(17)

Where r is the radius of the water liquid droplet or rain drop and λ is the radiation

wavelength. Figure 6 shows the different regimes according the values of χ (Wallace

and Hobbs 2006).

Figure 6. The size parameter χ determines the scattering regime for the particle in
question. In the microwave region the Mie regime plays a major role. (Wallace and
Hobbs 2006). Used with permission.

In the Mie regime, radiation interacts strongly with the particles, and the full Mie

equations have to be solved. The Rayleigh regime is a simplified version of the Mie

theory applied to smaller spherical shapes. Both theories are outside the scope of this

paper and will not be detailed here, but it suffices to say that particle size determines

the fate of the radiation and in the microwave frequencies the following has to be

considered:
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• Ice does not absorb microwave radiation; it only scatters.

• Liquid drops both absorb and scatter, but absorption dominates.

• Scattering and absorption increase with frequency and with rain rate. However

ice scattering increases much more rapidly than liquid absorption.

At lower frequencies, ≈< 60 GHz, rain drops and water vapor absorption dom-

inates, while scattering is of secondary importance. Above the oxygen absorption

band, ≈> 60 GHz, microwave radiation is more susceptible to scattering. For fre-

quencies around 60 GHz, both scattering and absorption of water particles is impor-

tant.

Microwave radiometers can see through ice particles at low frequencies, and via

liquid water absorption, map TC precipitation scenes. The low emissivity of ocean

surfaces offers good contrast between the radiometrically cold brightness temperature

of the ocean surface and the warm brightness temperature signature of the rainy

scene. Above 50 GHz, ice particles are no longer transparent to microwave radiation

and scatter upwelling radiation from below. Areas with scattering ice particles are

mapped as cold brightness temperatures (Kidder and Vonder-Haar 1995; Gunn and

East 1954).

Passive microwave radiometers like the AMSU, SSMI/S, and the ATMS fly on

polar orbiting satellites. All these instruments are extensively utilized to provide

insight into the structure of a TC, its formation, and development.

2.2.3 Advanced Microwave Sounding Unit (AMSU)

The AMSU instrument flies on board the NOAA satellites series 15-19 and the Eu-

ropean Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

Meteorological Operational polar satellites (METOP) A and B. Six out of seven in-
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struments are currently carrying out operations; the instrument on board NOAA-17

failed in 2003. AMSU-A and AMSU-B are two subsystems of the AMSU instrument.

The AMSU-A is a passive microwave radiometer comprised of 15 channels. For atmo-

spheric temperature soundings, 12 of these channels fall near the oxygen absorption

band with quasi-vertical and quasi-horizontal polarizations that vary across a scan-

line. AMSU-B’s five channels are near the 183 GHz water vapor absorption line, all

of them vertically polarized and at 89 and 150 GHz. Table 3 shows the AMSU A-B

channel and polarization distribution.

The AMSU instrument uses a cross-track scan strategy with 30 fields of view

(FOV) per scan line for a total width of 1650 km and an instantaneous field of view

(IFOV) size of 48 km at nadir from its altitude of 843 km. At the edge of the scan

(FOV=30 or FOV=1, at an angle of ±48.9◦ off-nadir) the FOV expands to 147 km

(Katsaros et al. 2014). See Figure 7.

The last AMSU instrument was launched in 2009 and flies on NOAA-19. One

more instrument is expected to be placed in orbit and fly on METOP-C with launch

scheduled for 2018. This instrument will be replaced by the ATMS instrument on

future NOAA satellites.

AMSU-A

48.9

 Swath  1650 km  

   48 km 

   147 km 

Track

Figure 7. AMSU Scan Geometry. With a scanline swath of 1650 km wide at 843
km in altitude the AMSU approximately covers the entire Earth surface with 7 full
orbits. The edge of scan FOVs have an incidence angle of ±48.9◦. The spatial resolution
depends on the incidence angle.
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2.2.4 Advanced Technology Microwave Sounder (ATMS)

The ATMS is the latest passive microwave instrument in orbit. This instrument

currently flies on S-NPP satellite launched October 28, 2011. The ATMS instrument

combines the capabilities of both AMSU-A and AMSU-B instruments; with smaller

volume, weight, and power consumption. The 22 channels are a combination of the

AMSU-A/B frequency range with the addition of 3 channels: 57.76 GHz, 183.31±4.5

GHz, and 183±1.8 GHz. Lastly, the wider swath width of the ATMS allows for

relatively smaller gaps between successive orbits with no gaps poleward of 20◦ latitude

(Weng et al. 2012).

The ATMS scans cross-track with 96 FOVs extending 52.73◦ either direction from

nadir yielding a scan line swath width of 2200 km from the satellite orbit altitude of

834 km. This scan geometry is shown in Figure 8. The spatial resolution at nadir for

channels 1-2 is 75 km, for channels 3-14 it is 32 km, and for channels 17-22 it is 16

km. Table 4 shows the channel frequencies and polarizations.

ATMS

52.73

Sw
ath

220
0 k
m

16
km

68.
4 k

m

Track

Figure 8. ATMS Scan Geometry. With a scanline swath of 2200 km wide at 830 km
in altitude the ATMS covers the entire Earth surface with 2 orbits leaving no gaps
between consecutive scan tracks. The edge of scan FOVs have an incidence angle of
±52.7◦. The spatial resolution depends on the beam width which is highly dependent
on the incidence angle.
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Table 3. AMSU-A/B channel list

Channel Central Frequency (GHz) Bandwidth (MHz) Polarization

1 23.800 270 V
2 31.400 180 V
3 50.300 180 V
4 52.800 400 V
5 53.596 ± 0.115 170 H
6 54.400 400 H
7 54.940 400 V
8 55.500 330 H
9 f0=57.290344 330 H
10 f0 ± 0.217 78 H
11 f0 ± 0.3222 ± 0.048 36 H
12 f0 ± 0.3222 ± 0.022 16 H
13 f0 ± 0.3222 ± 0.010 8 H
14 f0 ± 0.3222 ± 0.0045 3 H
15 89.00 6000 V
1 89.0 1000 V
2 150.0 1000 V
3 183.31 ± 7.0 2000 V
4 183.31 ± 3.0 1000 V
5 183.31 ± 1.0 500 V

Table 4. ATMS channel list

Channel Central Frequency (GHz) Bandwidth (MHz) Polarization

1 23.800 270 QV
2 31.400 180 QV
3 50.300 180 QH
4 51.760 400 QH
5 52.800 400 QH
6 53.596 ± 0.115 170 QH
7 54.400 400 QH
8 54.940 400 QH
9 55.500 330 QH
10 f0=57.290344 330 QH
11 f0 ± 0.217 78 QH
12 f0 ± 0.3222 ± 0.048 36 QH
13 f0 ± 0.3222 ± 0.022 16 QH
14 f0 ± 0.3222 ± 0.010 8 QH
15 f0 ± 0.3222 ± 0.0045 3 QH
16 89.5 5000 QV
17 165.5 3000 QH
18 183.31 ± 7.0 2000 QH
19 183.31 ± 4.5 2000 QH
20 183.31 ± 3.0 1000 QH
21 183.31 ± 1.8 1000 QH
22 183.31 ± 1.0 500 QH
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SSMI/S channels are distributed over a broad range of frequencies from 19 GHz

to 183 GHz. Table 5 shows the channels’ distribution and their specific resolution

and polarization. The channels are characterized by four main categories of measured

parameters: Lower Air Sounding (LAS), Upper Air Sounding (UAS), Environmental

(ENV) and imaging (IMA) data (Bell et al. 2006).

Table 5. SSMI/S channel list

Channel Center frequency (GHz) Polarization
Channel spatial
resolution (km)

Channel
application

1 50.3 V 37.5 LAS
2 52.8 V 37.5 LAS
3 53.596 V 37.5 LAS
4 54.4 V 37.5 LAS
5 55.5 V 37.5 LAS
6 57.29 RCP 37.5 LAS
7 59.4 RCP 37.5 LAS
8 150.0 H 12.5 IMA
9 183.31 ± 6.6 H 12.5 IMA
10 183.31 ± 3 H 12.5 IMA
11 183.31 ± 1 H 12.5 IMA
12 19.35 H 25 ENV
13 19.35 V 25 ENV
14 22.235 V 25 ENV
15 37.0 H 25 ENV
16 37.0 V 25 ENV
17 91.655 V 12.5 IMA
18 91.655 H 12.5 IMA
19 63.283248 ± 0.285271 RCP 75 UAS
20 60.792668 ± 0.357892 RCP 75 UAS
21 6.283248 ± 0.357892 ± 0.002 RCP 75 UAS
22 6.283248 ± 0.357892 ± 0.0055 RCP 75 UAS
23 6.283248 ± 0.357892 ± 0.016 RCP 75 UAS
24 6.283248 ± 0.357892 ± 0.050 RCP 37.5 LAS
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2.3 Joint Typhoon Warning Center (JTWC) and National Hurricane

Center (NHC)

JTWC produces TC warning products for DoD installations in the Western North

Pacific, while the NHC produces similar products for the Atlantic and Eastern Pacific

Oceans. These products include 6-hourly forecasts of TC track, intensity, and 34-,

50-, and 64-kt wind radii out to 120 hours. The accuracy of JTWC and NHC TC

forecasts depends critically on accurate numerical weather prediction (NWP) model

forecasts. These models are highly dependent on accurate TC position and intensity

analyses to properly initialize and assimilate data.

Forecasters at these two institutions primarily utilize animated visible, water va-

por, and infrared imagery from geostationary satellites to identify potential for TC

development. When a tropical disturbance with a low level circulation is observed,

forecasters begin the process of identifying the center of the low level circulation.

This is a time-consuming and laborious process, especially when the center of circula-

tion is covered by anvil clouds or cirrus blow-off associated with the convection from

the TC itself. Once the storm matures in its development process, microwave im-

agery and sounding data are utilized to locate the position of the storm based on the

passive microwave warm core signature. Intensity estimates are also obtained using

the brightness temperature difference between the warm core and the surrounding

environmental brightness temperature.

JTWC and NHC are not only responsible for issuing warning products, but they

also contribute to the NWP process. When a storm is fixed and an intensity based on

satellite techniques has been estimated, these organizations influence NWP models’

forecasts by bogusing the model at initialization. Bogusing is the process of manually

placing the coordinates of the TC center and its estimated MSLP in the model’s

analysis. This process allows the models to ingest the most accurate TC position and
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intensity instead of the numerical solution from the previous model run. This method

increases the accuracy of the forecast track and intensity.

NHC and JTWC keep records of all the data collected during the life span of TC.

At the conclusion of each TC season after a long verification process, a “best track”

archive is created for each storm. These best track files contain position, intensity,

and wind radii at 6-hour intervals for the duration of the storm. In the case of the

Eastern Pacific and WESTPAC, where aircraft reconnaissance is limited, the level of

confidence in the verification process is not as high since no in-situ observations are

available.

Utilizing passive microwave data to characterize TC position and intensity adds

an increased level of certainty to the products issued by NHC and JTWC. multi-

ple passive microwave techniques are available to these organizations, which provide

objective intensity and location estimates, thereby helping to lower the burden on

human analysts.

2.4 Previous Research

Passive microwave remote sensing meteorology is a relatively new field that derived

from the need to further exploit satellite meteorology. This section covers previous

research in TC passive microwave remote sensing. Brief overviews are presented of

previous published work and how those results contribute to the objective of this

paper. It is important to note that previous work related to TC intensity estimates

involving the SSMI/S is limited, so this section focus in on AMSU and its predecessors.

2.4.1 SCAMS-based Warm Anomaly Technique

Using data from the Nimbus 6 Scanning Microwave Spectrometer (SCAMS), Kid-

der et al. (1978) presented a technique to correlate the warm core temperature
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anomaly in the 55.45 GHz channel to TC minimum surface pressure. A correla-

tion coefficient of -0.89 and a best standard deviation from the regression line of ±15

mb to the MSLP were found. These results then were used to estimate tangential

wind speeds using the gradient wind balance. The left plot on Figure 10 shows the

brightness temperature anomaly vs the central pressure of 36 different storms; 27

typhoons and 9 hurricanes. The right plot shows the radius of the storm vs the wind

speed for four different storms from the bank of data analyzed.

Figure 10. Temperature anomaly correlation with MSLP at 55.45 GHz and derived
wind speed. Left: correlation coefficient of -0.859 and standard deviation of ±15 mb
was found using a linear regression method for 36 storms; 27 typhoons and 9 hurricanes.
Right: Wind speed distribution after the gradient wind balanced relation was applied
to the MSLPs derived from TC passive microwave brightness temperatures. Kidder
et al. (1978). c©American Meteorological Society. Used with permission.

2.4.2 MSU-based Warm Anomaly Technique

Velden and Smith (1982) used the AMSU’s predecessor, the Microwave Sound-

ing Unit (MSU) to find a correlation between TC development and the warm core

anomaly vertical distribution. In expanding Kidder’s work, Velden and Smith (1982)’s

technique used a newer and better resolution microwave instrument; NOAA’s MSU.
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In their study, the 250 mb tropospheric temperature level was used to calculate the

Laplacian and gradient of the temperature field. This parameter was tracked to in-

vestigate the time evolution of the warm core anomaly in the central column of the

storm. Their results show the largest warm core anomaly corresponds to the peak

intensity of the TC, and also found correlation coefficients that exceeded 0.90 and

standard deviations from the MSLP and wind speeds of 6 mb and 11 kt respectively

corresponding to estimates from the NHC. Figure 11 shows the warm core anomaly

vertical distribution through the life span of the storms.

Figure 11. Left: Hurricane Harvey warm core anomaly. Right: Hurricane Irene warm
core anomaly. The warm core anomaly for both storms is at its largest magnitude at
the same time as the storm’s peak intensity. Note the temperature anomaly area grows
and moves lower in height as the TC weakens. Velden and Smith (1982). c©American
Meteorological Society. Used with permission.

2.4.3 AMSU-based Warm Anomaly Technique

Brueske and Velden (2003) utilized AMSU’s sounding channels near 55 GHz to

characterize the temperature field near 250 mb. The AMSU weighting function in-

creases in height at the edge of the scanline due to the dependency on the scan angle.
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In order to compensate for the FOV height increase off nadir, they used a limb correc-

tion technique. This technique uses adjacent channels with lower weighting functions

to correct for the height discrepancy on the weighting function of the 54.94 GHz

channel at the edges of the scanline. After limb correction is performed, the adjusted

brightness temperatures of all channel 7 FOVs correspond to the same height. Figure

12 shows a schematic of the height gain with off nadir angle increase.

Figure 12. AMSU’s diagram illustrating the footprint interaction with the Upper
Tropospheric Warm Anomaly (UTWA) as a function of the scan angle. FOV and
height gain at the edge of the scan-line results in anomaly displacement. Brueske and
Velden (2003). c©American Meteorological Society. Used with permission.

A linear regression was then used to correlate brightness temperatures to MSLP.

In addition, they also used AMSU-B’s 89 GHz channel to infer TC “eye” size by char-

acterizing the moisture field and to more accurately find the position of the storm.

In their investigation they discussed out the susceptibility to hydrometeor scatter-

ing of the 54.94 GHz frequency and possible brightness temperature contamination

when convection extends deep into the troposphere. Additionally, they found that
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the size of the storm’s warm core in relation to the FOV resolution can impact the

reliability of intensity analysis using the warm anomaly, since the size of the storm

can be smaller than the IFOV. Figure 13 shows a vertical cross-section of Hurricane

Floyd’s brightness temperature anomaly derived from NOAA-15 AMSU-A radiance

data with limb correction applied. A warm anomaly of 18◦C was observed and aircraft

reconnaissance observed an MSLP of 924 mb.

Figure 13. Hurricane Floyd 1238 UTC 14 Sep 1999. Vertical temperature cross-section,
18◦C warm anomaly was observed at 250 mb. Aircraft reconnaissance reported MSLP
of 924 mb at 1113 UTC. Brueske and Velden (2003). c©American Meteorological
Society. Used with permission.
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2.4.4 TC Wind Retrievals from Microwave Imagery

Wind retrievals using passive microwave imager channels is one the most impor-

tant derived parameters of satellite microwave meteorology. Currently, various algo-

rithms exist that can provide operational forecasters with this information. Unfortu-

nately, algorithms using the imager channels do not work well around precipitation

due to the attenuation and scattering by hydrometeors and water vapor (Goodberlet

et al. 1990). Algorithms using the sounding channels are better suited to provide TC

estimates using the hypsometric and gradient wind balance approach.

Sounding channels are capable of producing temperature profiles of the atmo-

sphere. In TCs the warm anomaly associated with the core of the storm can be

retrieved by measuring the brightness temperature of the core and comparing it to

the brightness temperature of the surrounding environment. Assuming hydrostatic

and gradient balance, the tangential wind speed can be derived to a good approxima-

tion; to determine the tangential wind speed, it is necessary to compute the pressure

gradient of the cyclone. The first step is to retrieve the radial distribution of the

brightness temperatures at different pressure levels. The hydrostatic equation is then

integrated to determined the height of the different pressure levels where there are

brightness temperature pixels. Once the brightness temperature and pressure fields

are known, the gradient wind equation is solved. Results show lower tangential wind

speeds than actual tangential wind speeds. These anomalies are attributed to the

attenuation of the signal due to water vapor and the averaging of the tangential

wind speed over the large instrument FOV (Kidder et al. 2000). Figure 14 shows

the temperature anomaly as observed by the AMSU instrument (left figure) and the

estimated wind speed using the algorithm (right figure).
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Figure 14. Tangential average wind speeds derived from the temperature anomaly
observed by the AMSU instrument for hurricane Bonnie at 1200 UTC 25 Aug 1998.
Kidder et al. (2000). c©American Meteorological Society. Used with permission.

2.4.5 Observations of TCs with Passive Microwave Sensors: Imagery

Applications from Naval Research Lab

Passive microwave imagery utilizes atmospheric window frequencies that are sen-

sitive to atmospheric precipitation features. These frequencies are well suited to map

TCs due to water vapor, liquid water attenuation, and ice particle scattering, as dis-

cussed by Hawkins et al. (2008). The oxygen absorption signature not only measures

the warm core magnitude but also provides a somewhat accurate position to the TC

core.

The Naval Research Lab (NRL) maintains a web page focusing on TC imagery.

Using storm fixes from NHC, CPHC, and JTWC, the web page can accurately track

TCs in realtime. Passive microwave data from the SSMI/S, ATMS, and AMSU in-

struments are available via Fleet Numerical Meteorology and Oceanography Center

(FNMOC), the Air Force Weather Agency (AFWA), and NOAA. The entire constel-

lation of DMSP, NOAA, and NPP polar orbiting satellites are available, Reducing

the time span between satellite overpasses.
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Figure 15. 16 Oct 2005. Top left: IR image of Typhoon Kirogi, Top right: VIS image
of Kirogi. Bottom left: SSMI/S microwave image at 91 GHz H. Bottom right: 91 GHz
Polarization Corrected Brightness Temperature (PCT). Note the clearly defined inner-
core ( “storm eye”) and closed precipitation band with scattering signatures where ice
particles are present representative of strong convention in both microwave images.
VIS and IR imagery do not show the same level of detail. Hawkins et al. (2008). NRL
Tropical Cyclone Page (accessed 2014).

Figure 15 is an example of an NRL product. Here, visible (VIS) and Infrared

(IR) images are taken within a few minutes of the microwave image. The VIS and IR

images show an overcast inner-core while the microwave image shows a well defined

eye that can provide the forecaster a better storm position and TC intensity estimate

based on the magnitude of the warm core anomaly.
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All satellite files from 2011 to 2013 seasons were downloaded from NOAA’s Com-

prehensive Large Array-Data Stewardship System (CLASS) website. Using the best

track data from NHC; temporal and spatial information on every TC was used to find

SSMI/S, AMSU, and ATMS satellite files that contained passive microwave overpass

data corresponding to the TC. In-situ observations were acquired from aircraft recon-

naissance vortex bulletins, also available from NHC. These files were used to retrieve

the TC’s actual location, MSLP, and estimated wind speed.

3.2 Data Sources

3.2.1 NOAA CLASS

Satellite files were obtained through NOAA CLASS; an online archive that pro-

vides access to satellite data from NOAA POES, NPP, and DMSP (CLASS accessed

2014). A search interface provides options for spatial, temporal, and data format/type

of the various satellite data available in CLASS. Polar orbiting satellites fly over the

same point on the surface of the Earth approximately two times every 24 hours with

increasing coverage at higher latitudes; a polar orbiting satellite provides two TC

overpasses a day over the tropical latitudes. The satellite files contain a full orbit of

information, and by using the NHC best-track spatial and temporal parameters, one

can extract the correct orbit containing the TC data.

3.2.2 SSMI/S SDRs

The SSMI/S instruments are carried by DMSP F-15 through F-19. TC data was

collected from all satellites except F-19, which was recently launched on April 19,

2014. The data type used from the SSMI/S instrument are Sensor Data Records

(SDRs). SDRs are files containing brightness temperatures derived from all the chan-

nels raw radiances, calibrated, geolocated and antenna pattern corrected. SDRs are

derived from the raw instrument counts received at AFWA where they are processed.
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3.2.3 AMSU Level-1B

The AMSU-A is carried by NOAA-15 through NOAA-19 and METOP-A and

B. Data from all these platforms was collected, with the exception of NOAA-17.

The Level-1B data type was used for this research. Level-1B data is processed at

NOAA’s National Environmental Satellite Data and Information Service (NESDIS)

ground station after being downloaded from one of its many ground receiving stations.

This data format is derived from raw instrument counts; the process involves pixel

geolocation, satellite and solar azimuth and zenith estimation, computation of AMSU-

A calibration coefficients, AMSU-A brightness temperature calibration, and quality

control (NESDIS accessed 2014).

3.2.4 ATMS SDRs

SDR files were also collected from the Suomi-NPP ATMS. Similar to AMSU’s

data, these files are derived from raw instrument counts and downloaded at one of

NASA’s receiving stations. The raw counts are then processed at NESDIS where

the are packed into HDF5 file format. These files contain geolocated and calibrated

brightness temperatures for each channel. ATMS data was made available to the

public in December 2011.

3.2.5 NHC TC Best Track

TC best track data for the North Atlantic basin was obtained from NHC (accessed

2014b). This organization tracks all TCs that develop in its area of responsibility

(AOR). Best track files consist of a chronological record of TC category, latitude

and longitude of the storm center, estimated maximum sustained winds in knots,

minimum sea level pressure in mb, and 34-, 50- and 64-kt wind radii in km for up to

four quadrants, at 6 hour intervals.
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3.2.6 Aircraft Reconnaissance Vortex Bulletins

Aircraft reconnaissance data was obtained from NHC (accessed 2014c). Air Force

WC-130J weather reconnaissance aircraft and NOAA’s G-IV and WP-3D research

aircraft fly missions into storms that pose a threat to the United States and its terri-

tories, as well as other nations in North America and the Caribbean. The frequency

of missions is dependent on the threat level and proximity of the TC to land (U.S.

Department of Commerce 2014). Vortex bulletins disseminated from these missions

contain observed information on the storm’s center position, TC minimum sea level

pressure measured from deployed dropsondes, and estimated maximum wind speed.

Aircraft reconnaissance vortex bulletins are not available for all storms since not all

storms warrant aircraft missions.

3.3 Data Analysis Algorithms

This section discusses the processes used to analyze the data collected. In order

to analyze TC structure, intensity, and location, visualization of the TCs brightness

temperature is imperative. Passive microwave TC imagery and radial temperature

profiles are derived from the satellite files gathered from NOAA CLASS using ex-

traction algorithms developed in Matlabr. These computer algorithms extract and

map the geolocated brightness temperature pixels from each FOV and all scanlines

containing the TC to be observed. Analysis and statistical methods are evaluated us-

ing these brightness temperatures. Radial brightness temperature profiles are used to

look for patterns and passive microwave absorption and scattering signatures through

all the channels of the instruments in order to derive intensity predictors that will be

used in a statistical model to estimate TC intensity.
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3.3.1 Terminology

Low frequency channels refers to SSMI/S environmental channels or AMSU and

ATMS frequencies less than 37 GHz. High frequency channels refer to SSMI/S imag-

ing channels or AMSU and ATMS frequencies greater than 89 GHz. Sounding chan-

nels refer to the frequencies near the 60 GHz oxygen absorption band. Table 6 lists

the sounding, low, and high frequency channels by each instrument.

Table 6. Low frequency, High frequency, and Sounding channels of the SSMI/S, AMSU,
and ATMS instruments.

Frequency SSMI/S [GHz] AMSU [GHz] ATMS [GHz]

Low 19V, 19H 22V, 37V, 37H 23.8, 31.4 23.8, 31.4

High 150H, 91.6V, 91.6H 89 89.5, 165.5

Sounding
52.8H, 53.5H, 54.4H 52.8, 53.6 54.4 52.8, 53.6, 54.4

55.5H 54.9 54.9

3.3.2 Data Selection

Satellite files corresponding to 52 TCs were downloaded from NOAA CLASS; 19

TCs were from 2011, 19 were from 2012, and 14 were from 2013. Table 7 shows the TC

maximum intensity from the NHC best track data. No Tropical Depressions (TDs)

are shown as all TCs in the best track archive developed to at least a Tropical Storm

(TS) intensity. Also shown in this table are the number of TCs that had aircraft

reconnaissance missions. For the three years covered by this study, approximately

half of the Atlantic basin TCs had aircraft reconnaissance missions. 2013 was a

relatively quiet season for TC formation with only 14 TCs, and consequently aircraft

reconnaissance missions were also few; only five TCs had aircraft reconnaissance

bulletins.

39



Table 7. Number of TCs (Tropical Storms (TS) and Hurricanes (HU)) per season and
TCs with aircraft reconnaissance

TC Season 2011 2012 2013 Total

Number of TCs
19 TCs 19 TCs 14 TCs

52 TCs
7 HU, 12 TS 10 HU, 9 TS 2 HU, 12 TS

TC w/ Aircraft Recon
14 TCs 9 TCs 5 TCs

28 TCs
6 HU, 8 TS 5 HU, 4 TS 1 HU, 4 TS

Only the satellite files at times that matched an aircraft reconnaissance vortex

bulletin were interrogated. Every TC file that had a vortex bulletin issued within

± 3 hours of the satellite overpass was kept for this study. Table 8 shows the distri-

bution of satellite and reconnaissance matches by year. A total of 817 file matches

were found in the three year study period.

Table 8. Satellite and aircraft reconnaissance matches

2011 2012 2013 Total

57 TD 62 TD 39 TD 158 TD

154 TS 174 TS 65 TS 393 TS

114 HU 140 HU 12 HU 266 HU

325 376 116 817

The matched files were divided into three data sets: testing, training, and vali-

dation. The three sets contain approximately equal numbers of TDs, TS, and HUs

from all three seasons. Table 9 shows the contents of each data set. The majority of

the matched files is composed of TS files, followed by HU, this is due to the recon-
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naissance aircraft mission prioritization dictated by the NHC operations plan (U.S.

Department of Commerce 2014).

Table 9. Data set division

Testing Training Validation Total

53 TD 53 TD 52 TD 158 TD

131 TS 131 TS 131 TS 393 TS

89 HU 89 HU 88 HU 266 HU

273 273 271 817

3.3.3 TC Passive Microwave Imagery

TC images derived from SDRs or Level-1B data files offer valuable information

on the structure and dynamics of the storm. The collection of geolocated passive

microwave brightness temperature pixels from a TC provide insightful information

on the maturity, physical processes, and strength of such storms based on absorp-

tion, scattering, or transmission of passive microwave radiation emitted from the TC.

These signatures are enhanced when there is a uniform background with a contrasting

brightness temperature like the ocean surface due to its low emissivity.
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AMSU and ATMS cross-track scan strategy pose a disadvantage at the edge of the

scanline. A TC that is located on the edge of an AMSU or ATMS scanline appears

different than a TC at nadir because of the increased absorption along an oblique

path compared to nadir. For instance AMSU’s channel 7 weighting function peaks

at approximately 200 mb at nadir but at the edge of the scanline the brightness

temperatures sensed are from higher in the atmosphere, 150-100 mb or even higher

depending on the latitude of the storm. To correct for this effect, limb-corrected

brightness temperatures are used.

Brightness temperatures are limb-corrected using a statistical algorithm that ex-

ploits adjacent channels brightness temperatures (Goldberg et al. 2000). Using linear

regressions, channel predictor coefficients are calculated based on the off nadir bright-

ness temperatures correlation to the nadir brightness temperatures of corresponding

adjacent channels. A weight is then calculated and applied to the channel’s brightness

temperatures to correct the limb biased temperatures. In this process, the channels

acquire some noise at the expense of the calculated weight, but the resultant limb

corrected brightness temperatures are worth this small cost (Goldberg et al. 2000;

Liu and Weng 2007). Figure 17 shows AMSU’s channel 7 brightness temperature vs

the corresponding limb corrected brightness temperature. The correction brings out

the TC warm core, but some noise is left behind after the correction.

SSMI/S brightness temperatures do not suffer from limb biases as a result of its

conical scan strategy. Therefore, no correction algorithms are required for SSMI/S

derived imagery. Any further use of the term brightness temperature will also be used

to reference the AMSU and ATMS limb-corrected brightness temperatures.
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Figure 17. TC Sandy, 25 Oct 2012. Left: Limb corrected AMSU-A brightness tem-
perature. Right: AMSU-A raw brightness temperatures. Limb-correction brightness
temperature algorithm is used to correct the channel’s off nadir weighting functions
for the AMSU and ATMS.

3.3.4 TC Radial Temperature Profiles

Radial Temperature profiles are computed using evenly spaced concentric count

bins from the center of the storm to an outer radius of 750 km radius. The bin sizes

were determined by the instrument FOV size; 12 km, 16 km and 48 km are used for

the SSMI/S, ATMS, and AMSU, respectively. The average brightness temperature

inside each radial bin is calculated and plotted against the radial distance, resulting

in the average radial temperature profile.

These TC average radial brightness temperature profiles provide different infor-

mation depending on the channel being analyzed. Important storm thermodynamic

and structure information can be inferred based on the TC warm core brightness

temperature and its corresponding radial average brightness temperature profile.

Passive microwave radiation sensed from the low frequency channels is more sus-

ceptible to water vapor and liquid water absorption. Areas of higher relative humidity
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and/or where precipitation corresponding to TC feeder-bands are present will appear

warmer than low humidity or no-precipitation scenes due to absorption. The result

is a temperature profile that is on average warmer than the environmental brightness

temperature of the ocean background.

Higher frequency microwave signatures are more susceptible to scattering by ice

particles and larger water drops (Kidder and Vonder-Haar 1995). These hydrome-

teors can be found in the upper troposphere where strong convective updrafts are

responsible for their formation. Generally, stronger convection will be found in the

eye wall regions, within a few hundred kilometers of the core. The upwelling radiance

from the surface is scattered by the ice particles and replaced by reflected cold space

radiance, resulting in much colder brightness temperatures in relation to the ocean

and precipitation brightness temperature. The end result is a radial temperature

profile that is on average colder in areas of strong convection than the environmental

brightness temperature.

To avoid any land surface contamination in these TC radial brightness temper-

ature profiles, the land surface pixels were omitted. Only brightness temperature

pixels over the ocean are plotted. Figure 18 shows the SSMI/S radial temperature

profiles for TC Irene, from 2023 UTC, 24 Aug 2011.

The sounding channels’ radial temperature profiles are used to identify and mea-

sure TC warm core anomalies. Warm anomalies correlate to high latent heat con-

centration in the core of the TC. The stronger the warm anomaly, the more intense

the TC (Demuth et al. 2006, 2003; Kidder et al. 2000; Brueske and Velden 2003).

The resulting radial temperature profile will be on average warmer at the center of

the storm and gradually cool down to the environmental temperature outside the

influence of storm.
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3.3.5 Intensity Predictors

Current TC intensity estimates mainly use the warm core brightness temperature

anomaly sensed at approximately 200 mb by the 55 GHz channel; AMSU channel 7,

ATMS channel 8, and SSMI/S LAS channel 4. The warm core anomaly is defined by

the difference between the maximum TC core brightness temperature and the average

of the surrounding environment brightness temperature. The environmental average

brightness temperature is defined as the brightness temperature in a ring outside

any influence of the TC. Linear regressions were calculated between the warm core

anomaly and the MSLP at different inner core and surrounding environmental radii.

Table 10 shows the warm core anomaly correlation coefficients against different

surrounding environment radial distances. The ring with an inner radius of 700 km

and outer radius of 750 km provided the best results and was selected as the optimal

radial distance to use. The results also show a slight increase of the correlation

coefficient at 1200 km but this radial distance is too large compared to the instrument

swath. Other atmospheric phenomena can also affect the environmental brightness

temperature at these ranges and results would be affected by them.

Table 10. Warm core anomaly correlation coefficients (r) vs radial distances for AMSU
channel 7, ATMS channel 8 and SSMI/S LAS channel 4.

Radius [km] 300 400 500 600 700 800 900 1000 1100 1200

AMSU (r) -.80 -.83 -.84 -.85 -.85 -.85 -.86 -.85 -.85 -.86

ATMS (r) -.77 -.78 -.79 -.79 -.82 -.79 -.77 -.75 -.74 -.74

SSMI/S (r) -.71 -.74 -.75 -.75 -.75 -.75 -.75 -.75 -.74 -.75
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These correlation coefficients used an inner TC core with a radius of 120 km. In

order to also optimize the size of the TC core, various inner core radii were also tested

using the environmental brightness temperature at the outer ring previously found.

Table 11 shows the different TC warm core radii distances used to find an optimal

warm core size.

Table 11. Warm core anomaly vs TC core radii correlation coefficients (r) for AMSU
channel 7, ATMS channel 8 and SSMI/S LAS channel 4.

Radius [km] 50 100 150 200 250 300 350 400 450 500

AMSU (r) -.79 -.85 -.86 -.85 -.86 -.86 -.85 -.85 -.85 -.85

ATMS (r) -.81 -.81 -.81 -.81 -.82 -.82 -.82 -.82 -.82 -.82

SSMI/S (r) -.80 -.76 -.75 -.74 -.73 -.73 -.73 -.73 -.73 -.73

Because we only care about the warmest brightness temperature pixel within the

TC core FOVs, the core size might be considered trivial, but the results showed oth-

erwise. The correlation coefficients are different for the three instruments at different

radii, and decrease with radius for r > 250 km for all of the instruments. The smaller

radius (50 km) does not represent the warm core size appropriately for the AMSU

resolution of 57 km. In order to provide the algorithm with more than one pixel from

which to find the warmest pixel, 250 km radius was chosen as the optimal warm core

radius for all three instruments.

The objective of this study is to find passive microwave intensity predictors that

can predict TC MSLP using the broad range of frequencies these microwave instru-

ments offer. In addition to using the classical warm core anomaly, this study will also

employ the following predictors:
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• Temperature integrated radial area for both low and high frequency channels

• Temperature spread between low frequency and high frequency channels

• Maximum and minimum brightness temperature for low and high frequency

channels

• Scattering corrected warm core anomaly

• TC latitude

A correction for FOV size growth at off nadir angles is also included for the ATMS

and AMSU instruments as a predictor. Adding the above predictors and corrections

to the stand-alone warm core anomaly method already in use is expected to improve

previous results with correlation coefficients in the ≈ 0.90 range found by Kidder

et al. (1978), Velden and Smith (1982) Kidder et al. (2000), and Brueske and Velden

(2003). The low and high frequency channels’ response to precipitation is expected

to respond to physical processes involved in the TC structure and thermodynamic

development.

3.3.6 Temperature Integrated Radial Area

The temperature integrated radial area predictor is designed to measure the ab-

sorption and/or scattering of the upwelling passive microwave radiation by the TC in

the low and high frequency channels, respectively. Figure 19 shows two TC Florence

images derived from low and high frequency channels. Their corresponding radial

brightness temperature profiles are also included. Note the overall warmer radial

brightness temperature profile in the low frequency channel and the overall cooler

brightness temperature profile in the high frequency channel compared to their re-

spective average environmental brightness temperatures at 750 km.
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TC rain bands and high humidity values are represented by relatively warm tem-

perature pixels in the scene at low frequencies. To measure the overall warming in the

radial brightness temperature profile from the TC, the average temperature profile

was normalized to the average environmental brightness temperature. The normal-

ized low frequency brightness temperature profile is such that any positive values

represent the warming associated with the absorption and any negative areas can be

correlated to dry conditions where the ocean surface is exposed.

For the case of high frequency channels, the scattering signatures are due to ice

particles and larger water drops. The TC radial brightness temperature profile is

also normalized to the average environmental brightness temperature. Any portion

of the curve that lies below the 0 K normalized temperature line is representative of

the scattered radiation. Positive values can be neglected for this case because they

represent non-scattering FOVs. Figure 20 shows radial profiles of both low and high

frequency channels for TC Karen at 2229 UTC on 05 Oct 2013. The bottom row

contains the normalized radial temperature profiles. Note the difference between the

temperature gain in the low frequency channel vs the temperature depression in the

high frequency channel at various radii out to 750 km.

The area under or above the 0 K is calculated using a trapezoidal method. For the

case of the low frequencies, only the area above the 0 K was interrogated, while only

the area below the 0 K line was used for the high frequency channels. To account for

the increasing area of the concentric rings the radial distance is multiply by a factor

of 2πr. Figure 21 show the positive and negative area shaded for both the low and

high frequency channels for the TC Karen radial profiles.
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Positive Brightness Temperature Integrated Areas (BTIA) and negative BTIAs

are calculated for the SSMI/S, ATMS, and AMSU low and high frequency channels.

The resultant values are used as predictors to derive linear regressions with the MSLP.

3.3.7 Temperature Spread Between Low Frequency and High Fre-

quency Channels

This predictor is also based on the radial brightness temperature profiles. The

temperature spread is the magnitude of the difference between the peak absorption

brightness temperature at low frequencies and the minimum scattering brightness

temperature at high frequencies. The underlying principle of this predictor is that,

as the TC increases in strength, the gap between the low and high frequency radial

brightness temperature profiles increases. In most cases heavy precipitation will occur

in areas with vigorous convection where ice particles are present, but not in all cases.

In order to avoid situations where the TC’s radial brightness temperature maximum

and minimum are not co-located at the same radial distance or where the profile is not

ideal, the normalized brightness temperature profiles are used. The maximum bright-

ness temperature from anywhere in the low frequency radial brightness temperature

profile and the minimum brightness temperature from anywhere in the high frequency

radial profile is used. The two magnitudes are then added to derive the brightness

temperature spread predictor. Figure 22 shows the average brightness temperature

profile for TS Debby at 1450 UTC on 24 June 2012; both the peak brightness tem-

perature and minimum brightness temperature occurred at the same radial distance

from the storm center at the time of this satellite overpass.
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3.3.9 Scattering and Limb Corrected Warm Core Anomaly

The warm anomaly intensity predictor is the most common TC intensity predictor

using passive microwave sounding frequencies. Previous research has found strong

correlations between the warm core anomaly at 54-55 GHz and the MSLP. For this

study, we also expect the warm core anomaly to be the leading predictor, as it has been

validated and extensively studied by Kidder et al. (1978, 2000), Velden and Smith

(1982), Demuth et al. (2003, 2006) and Brueske and Velden (2003). To maximize

the quality of the sounding channel data, two corrections are made: limb correction

and scattering correction. Limb correction was applied to all AMSU and ATMS

channels as discussed previously. The scattering correction is used to attempt to

reduce contamination of the warm core signature caused by hydrometeors scattering.

Sounding channels are susceptible to both absorption and scattering by hydrome-

teors, but the sounding channels of interest have weighting functions that peak in the

upper troposphere where ice particles are mostly present, so the scattering effect is

more pronounced in the sounding channels. Since liquid precipitation mainly occurs

in the lower troposphere, the sounding channels are less susceptible to absorption

effects. The two AMSU and ATMS low frequency window channels, 23.8 GHz and

31.4 GHz, are both susceptible to liquid water precipitation but a weak water vapor

continuum absorption band residing around 22 GHz affects the 23.8 GHz channel’s

absorption by making it opaque more rapidly than the 31.4 GHz channel in a high

relative humidity scene (Wacker 2005).

The algorithm used to correct the ATMS and AMSU temperature sounding chan-

nels uses an empirical model that utilizes the low frequency channels 1 and 2 (23.8

GHz and 31.4 GHz) versus high frequency channel (89.0 GHz) brightness tempera-

tures. In order to isolate FOVs with scattering signatures, a theoretical no-scattering

line was computed and fit to a scatter plot of the 89.0 GHz brightness temperature
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vs a low frequency brightness temperature. Figure 23 shows these brightness temper-

ature scatter plots for the entire training data set, one for the 89 GHz vs 23.8 GHz

(left) and one for 89 GHz vs 31.4 GHz (right). The blue line was fit to the data and

represents the expected brightness temperature relationship with no scattering.

Figure 23. AMSU Low and High Frequency Brightness Temperature Scatter Plots.
High frequency vs low frequency channels are plotted to visualize a non-scattering vs
scattering line. The statistical fitted line provides a threshold for scattered FOVs. The
residuals (Temperature Depressions) from the FOVs below the line are computed and
use to correct the channels for scattering.

In Figure 23 land surface pixels are omitted and only pixels with ocean back-

ground are plotted. The y-axis shows all the FOVs from the 89 GHz channel; the

low ocean surface emissivity for the horizontal polarized frequencies makes the clear

ocean background appear as cold brightness temperatures. As clouds start to appear

in the scene the 89 GHz brightness temperature warms up rapidly due to water vapor

continuum absorption. Ice particles and large water drops are considered to be negli-

gible or almost transparent in the low frequency channels, but this is not the case for

the high frequency channels where these water particles are strong scatterers. Strong

updrafts inside convective cells provide the dynamics for ice particle formation. Large

water drops form via coalescence and are lofted into the upper troposphere. The up-

welling microwave radiation is scattered by these particles and 89 GHz brightness

temperatures will appear colder as a result. Figure 23 shows this scattering signature
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as the 89 GHz brightness temperatures falling well below the fitted line.

Once scattering-affected pixels have been identified, the temperature depression

between the fitted line and the pixels is obtained. This 89 GHz brightness tempera-

tures depression is then correlated with sounding channels brightness temperatures.

Figure 24 shows scatter plots of the sounding channels vs the 89 GHz brightness tem-

perature depression. A least squares line is fit to the plot (blue) and the resultant

regression coefficients are used to correct the sounding channels.

Figure 24. AMSU Temperature Depression vs Sounding Channels Scatter Plots. A
regression is computed between these channels to derive a regression equation to cor-
rect the sounding channels. The derived coefficients are applied to the corresponding
channels to correct the scattering effects.

The same process is repeated for the SSMI/S and ATMS sounding channels. The

process for the SSMI/S takes an extra step because of the different spatial resolution

between sets of SSMI/S channels. The environmental and imaging channels first have

to be averaged to the LAS channel spatial resolution.

The SSMI/S environmental and the imaging channels are used as low and high

frequency channels to correct for scattering effects. Environmental channels have a
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Figure 26. Scattering Correction Sequence. The raw brightness temperatures (top left)
are corrected using a statistical algorithm to find the correlation between the scattering
signatures (top right) and their influence on the sounding channels. A brightness
temperature depression is derived to compensate for scattering (bottom right), and
applied to the sounding channel (bottom left). The end result is a slightly warmer TC
core with slightly more noise

Figure 26 shows the scattering correction process. The raw sounding brightness

temperatures (top left) and the time matched high frequency imager channel (top

right) that is highly susceptible to scattering are compared and analyze for scattering

signatures. The algorithm derives the brightness temperature correction (bottom

right) to apply on the sounding channel. The end result is a scattering corrected

sounding channel (bottom left). The TC core in this image appears warmer as the
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scattering affecting the raw sounding channel is reduced, effectively increasing the

contrast between the warm anomaly and the environmental brightness temperature.

The scattering corrected sounding channels are next used to derive the scattering

corrected warm core anomaly predictor. The warmest pixel in the warm core is found

and then the surrounding environmental average brightness temperature is subtracted

to obtain the scattering corrected warm core anomaly. Using a linear regression

with the MSLP, a correlation coefficient is derived for each sounding channel of each

instrument.

3.3.10 FOV Size Correction at Edge of Scan

The scan angle dependency of the FOV resolution introduces another necessary

correction for the AMSU and ATMS instruments. The FOV toward the edge of the

scanline for these two cross-track scanning instruments. Table 12 shows the difference

in size of the sample area at nadir and at the edge of the scanline. This increase in

area affects the brightness temperature sensed as the features in the off-nadir FOVs

are averaged with more surrounding features the larger FOV area.

Table 12. ATMS and AMSU FOV size at nadir and edge of scan.

Channel Nadir Resolution[km] Outermost FOV size [km]

ATMS AMSU ATMS AMSU ATMS AMSU ATMS AMSU

Cross-track Along-track

1-2 1-2 74.8 48.6 323.1 155.2 141.8 85.6

3-16 3-15 31.6 48.6 136.7 155.2 60 85.6

17-22 15.8 68.4 30.0

59



A 50 km diameter warm core in the outermost ATMS FOV would be averaged

with the background in a 323.1 x 141.8 km area and would appear considerably cooler

than the same warm core sensed at nadir at a resolution of 74.8 km. To compensate

for any potential bias this introduces, a predictor was derived by subtracting 15.5

(AMSU) or 48.5 (ATMS) from the FOV position of the TC. The absolute value of

this predictor and its square were both tested for correlation with the MSLP along

with the other predictors.

3.3.11 TC Intensity Dependence on Latitude

Typically TCs form and begin their development at low latitudes and turn pole-

ward near the end of their lives at near-peak intensity. This is not always the case but

it can help explain TC intensity variations with latitude changes (DeMaria and Pickle

1988). TC development depends on both relative and planetary vorticity. Planetary

vorticity or Coriolis effect increases with latitude and provides the storm with an ex-

tra rotation term that can enhance TC rotation and help trap the latent heat needed

for further intensification. Although latitude does not directly control TC intensity,

there may be some residual error in MSLP estimates that correlate with latitude. Fig-

ure 27 shows the 2011 NHC tracks for all storms; note the slight bias toward weaker

intensity storms at lower latitudes and higher intensity storms at higher latitudes,

(NHC accessed 2014a).

The TC intensity predictor analyses performed and explained in this section were

designed in a way to derive predictors that compensate for each other. A predictor

that does not correlate directly with the MSLP may at least explain the residual from

a different predictor’s correlation. That is the bases of the multivariate regression

analysis. The next section explains how each predictor is used within a multivariate

regression intensity estimation scheme.
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Figure 27. NOAA NHC 2011 TC Season Tracks. Stronger storms take time to develop
and get organized. Notice that stronger storms take longer time to develop. All TC
have a poleward movement. NHC (accessed 2014b).
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3.4 Statistical Methods

This section discusses the statistical methods used to analyze the predictors dis-

cussed in the previous subsections. A brief overview is presented of multivariate linear

regression, Root Mean Square Error (RMSE), and the cross-validation technique used

to obtain the results.

3.4.1 Multivariate Linear Regression

The analysis portion of this research is driven by previous research that obtained

positive results using the warm core anomaly as a predictor for TC MSLP. The low

and high frequency channel predictors are included in this study to investigate possible

correlations between passive microwave absorption and scattering signatures and TC

MSLP.

For each of the predictors discussed in Section 3.3.5 simple linear regressions were

computed. The linear regression estimate ŷ is obtained by fitting (in this case) a

least-square line to a scatter plot of the predicted variable. The slope of the line,

b, represents the correlation between the predictor and the predictand (MSLP). The

residuals (e) are computed for each point in the scatter plot and represent the distance

from the fitted regression line to the predicted data points:

ŷ = bo + bx (18)

ei = yi − ŷ(xi) (19)

Combining equations 18 and 19 yields the regression equation which expresses the

true value of the predictand as the sum of the predicted values (18) and the residuals

(19):

yi = ŷi + ei = bo + bxi + ei (20)
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Multivariate linear regression is an extension to simple linear regression. Instead

of using a single predictor, an entire set of predictors can be used to find a regression

equation that best fits all the data. Quadratic terms can be applied to each regression

coefficient to tighten up the residuals. In this analysis the square of some predictors

is used and proved to be better predictors than the linear predictors.

ŷ = bo + b1x1 + b2x2 + ...+ bKxK (21)

ŷ = bo + b1x1 + b2x
2
1 + bKxK + bKx

2
K (22)

In matrix form:

y = Xb+ e (23)

ŷ =



ŷ1

ŷ2

·

·

ŷn


X =



1 x11 x12 · x1n

1 x21 x22 · x2n

1 · · · ·

1 · · · ·

1 xn1 xn2 · xnn


b =



bo

b1

·

·

bn


and e =



e1

e2

·

·

en


(24)

b̂ = (X ′X)−1X ′y (25)

ŷ = Xb̂ (26)

Equation 22 represents the best fit line to each of the predictors (x), where each

predictor has a respective regression coefficient and squared predictor. Fitting the

data with all the predictors is not necessarily the best way to achieve the best cor-
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relation coefficient. A careful selection of the predictors can increase the correlation

coefficient and decrease the residuals. The order in which the predictors are used is

important as well and is taken into account in the model presented next (Von Storch

and Zwiers 1999), Wilks (2006).

3.4.2 Forward Selection Model

In order to optimize the results, careful analysis of the predictors must be ac-

complished. Forward selection is performed to analyze and derive the multivariate

linear regression coefficients in the training data set. For this procedure four steps

are performed:

• Compute simple linear regressions for each predictor. The predictor with the

greatest regression coefficient is used as initial predictor in the model.

• Among the remaining predictors, find the one best correlated with the residuals

from the initial predictor.

• Test the hypothesis that the inclusion of the second predictor does not signifi-

cantly reduce the correlation coefficient.

• Repeat steps two and three if the inclusion of the second best predictor does in-

creases the correlation coefficient significantly. Stop if the regression coefficient

does not significantly improve.

The resultant regression coefficients are used to compute the RMSE between the

predictand and the observations in the validation data set.

3.4.3 Root Mean Square Error

RMSE computes the average distance between the predicted MSLP and the ob-

served MSLP in the data set. The distance computed represents the error between
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the regression line and the actual observation. The RMSE provides a measure of

confidence for the regression and evaluates the significance of the model by using a

single average of the aggregate error which represents the predictive ability of the

model. RMSE is computed using the following expression:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (27)

For each of the instruments the RMSE is computed using the validation data set,

then the RMSEs are objectively compared against each other. Lower RMSE values

indicate higher accuracy.

3.5 Validation

This study employed a cross-validation method: All the predictors were carefully

chosen and tested in the testing data set. The computation of the linear regression

coefficients took place in the training data set. The validation set was used to apply

the regression coefficients and compute the RMSE for each of the instruments.

By performing a cross validation, any dependence of the regression coefficient on

the training data is minimized. The results are flexible enough to work on other

data samples and yield reliable results representative of a diverse data sample (Wilks

2006).
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IV. Analysis and Results

4.1 Chapter Overview

The analysis portion of this study consisted of evaluating the different predictors

chosen and deriving their regression coefficients. The step wise regression equations

derived for each instrument and its specific coefficients are presented and analyzed.

Finally, the RMSE results are compared and discussed.

4.2 Intensity Predictor Analysis

Different intensity predictors are tested to evaluate and predict TC intensity using

linear regressions vs the MSLP. These predictors were derived based on analysis of

the testing data set. The most promising predictors were selected for use in the

training data set based on their success in the testing data set, how they physically

relate to TC intensity estimation, and instrument specifications. Selected predictors

are used to derive the regression equations in the training data set using a stepwise

multiple regression. Table 13 shows the number of predictors used in the multivariate

regression algorithm for each of the instruments.

Table 13. Number of predictors per satellite

Instrument Predictors Analyzed

AMSU 48

ATMS 52

SSMI/S 94

The reason for the larger number of predictors analyzed in the SSMI/S case is its

large number of low frequency channels and its dual polarized imaging channels.
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The regression equations derived for each instrument are presented next. Different

numbers of predictors were used for each instrument determined by the incremental

performance improvement provided by each predictor. The regression equations were

derived using the training data set, then the validation data set was used to compare

the performance of each instrument in terms of the RMSE of their MSLP estimates.

4.2.1 AMSU Analysis

AMSU’s regression algorithm chose a sounding channel warm anomaly and FOV

size predictor for the first and second iteration, while the third predictor takes into

account precipitation and ice particle scattering. The three predictors chosen comple-

ment each other, and their sequence allows for an increase in the correlation coefficient

after each iteration. The RMSE also decreases after each iteration but not at the same

rate that the correlation coefficient increased. Figure 28 shows the regression line with

the correlation coefficients and the RMSEs for each of the regression iterations.

Equation 28 shows the regression coefficients derived for the AMSU instrument.

The predictors chosen are listed in Table 14, along with the relative contribution

of each to the AMSU estimates. These relative contributions were computed by

multiplying the regression coefficients by the standard deviation of each predictor.

MSLP = 1017.4mb+ (−12.610mb/K · Predictor1)+

(−0.0322mb · Predictor2) + (−0.1462mb/K · Predictor3)

(28)
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The remaining predictors chosen by the algorithm are determined by their cor-

relation with the residuals of the prior iteration. Predictor2 for AMSU is the FOV

off-nadir distance squared. What this shows is that most of the residual error of the

first iteration can be attributed to the scan angle dependency of the instrument, the

main disadvantage for a cross-track scanning instrument. The AMSU FOV resolution

increases from 48 km at nadir to 85.6 km at the edge of the scanline. This increase in

FOV area reduces the sensor fidelity at the off nadir position. For the same TC warm

core, the brightness temperature sensed would be cooler in an off-nadir FOV than

it would be at nadir. Predictor2 correlates with this error and effectively reduces

the residuals from Predictor1, increasing the correlation coefficient and reducing the

RMSE in the algorithm. With the addition of Predictor2 the algorithm decreases the

errors at off-nadir angles and together, Predictor1 and Predictor2 provide a more

accurate MSLP prediction, as seen in Figure 28 by the increase in the correlation

coefficient and decrease in the RMSE after two iterations. Table 14 shows the con-

tribution by each of the predictors. As expected predictor1 contributes the most,

followed by Predictor2.

The third predictor chosen by the algorithm was the brightness temperature

spread between AMSU channel 1 (23.8 GHz) and channel 15 (89 GHz). This pre-

dictor represents the combined effects of absorption and the upwelling radiation by

precipitation and scattering of radiation by ice particles and large water drops. The

predictor by itself does not correlate well with MSLP, yielding a regression coefficient

of 0.35, but when used as the third predictor it reduces the RMSE by 5% and increases

the correlation coefficient of the multivariate algorithm. This predictor reduced the

residuals of the prior two iterations by taking into account the correlation of strong

precipitation with TC intensity.

The AMSU algorithm used a sounding channel, the instrument FOV off-nadir
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distance, and a composite predictor that combines precipitation effects on low and

high frequency channels to derive the most accurate multivariate regression equation

to predict TC intensity. Including additional predictors may increased the correlation

coefficient with the training data, but further iterations could result in overfitting.

4.2.2 ATMS Analysis

Before starting the analysis of the ATMS regression equation and its predictors,

It should be noted that the ATMS data set is considerably smaller than the AMSU

and SSMI/S data sets, with less than three years operationally active and only one

instrument flying; only two TC seasons were collected for this research. The analysis

can be strongly biased toward outliers in the data sets due to the small sample size.

The ATMS regression equation contains interesting results. Figure 30 shows the

results of each statistical algorithm iteration. Of high interest is the strong correlation

coefficient and low RMSEs obtained. Equation 29 shows the regression equation

and its coefficients after four iterations. Table 15 shows the predictors selected by

algorithm and the contributions of each to the predictand.

MSLP = 1023.5mb+ (−11.3280mb/K · Predictor1)+

(−5.1015× 10−7mb/K · km · Predictor2) + (−8.3678× 10−2mb/K2 · Predictor3)+

(−0.1509mb/K2 · Predictor4)

(29)
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radial-average brightness temperature elevation from the surrounding environment,

weighted by the area of the concentric ring represented by each bin. This predictor

considerably increases the correlation coefficient in the second iteration and reduces

the RMSE by almost 2 mb. A possible explanation for this predictor being number

2 is that the radial and azimuthal extent of heavy precipitation has a relatively good

correlation with TC intensity. It is interesting to note that the FOV correction does

not play a role for the ATMS which, like AMSU uses a cross-track scan strategy. A

possible explanation is the higher resolution of ATMS compared to that of AMSU,

which enable ATMS to resolve TC features better than the AMSU at off-nadir angles.

The third predictor chosen by the algorithm (Predictor3) is the scattering-corrected

warm anomaly squared for channel 5 (52.8GHz). The weighting function for this chan-

nel peaks in the lower troposphere, effectively sensing a lower level warm anomaly.

Generally, lower warm anomalies are overshadowed by water vapor and precipitation

absorption or scattering. Interestingly, this predictor was chosen following a predictor

measuring precipitation absorption. This scattering corrected warm anomaly predic-

tor appears to have some fidelity in sensing the warm anomaly at a lower altitude,

and correct the residuals from the warm anomaly at 54.94 GHz and the brightness

temperature integrated area.

Predictor4 is the scattering-corrected warm anomaly squared for channel 6 (53.59

GHz). Similar to Predictor3, this sounding channel’s weighting function peaks lower

in the troposphere. When used as a predictor by itself against MSLP, Predictor4’s

correlation coefficient is a respectable -0.89. However, since the algorithm does not

select it until the fourth iteration its contribution to the model’s correlation coefficient

is relatively small, as can also be seen in Table 15.
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4.2.3 SSMI/S Analysis

The previous two instruments, AMSU and ATMS, both have cross-track scan

geometry and very similar frequencies. The SSMI/S instrument is different, with a

conical scan geometry, and different resolution, and both horizontal and vertically

polarized channels. The conical scanning allows the FOVs to maintain a constant

resolution and uniform polarization along the scanline. The weighting functions of

SSMI/S sounding channels peak at higher levels than the corresponding channels

because of the 45◦ conical scanning angle.

The SSMI/S regression equation (30) provides interesting and unexpected results.

The first two predictors selected by the algorithm are consistent with those of the

ATMS, which has a similar resolution to the SSMI/S. Just as the AMSU and ATMS

algorithm chose the 54.94 GHz warm anomaly as Predictor1, the SSMI/S algorithm

chose the 54.4 GHz warm anomaly. Figure 32 shows the results for each iteration and

Table 16 lists the predictors chosen with the contribution to the predicted MSLP of

each predictor.

MSLP = 1026.7mb+ (−1.2673mb/K · Predictor1) + (−0.4225mb/K · Predictor2)+

(−2.9690mb/K · Predictor3) + (−12.3240mb/K · Predictor4)+

(−5.9713× 10−3mb/K2 · Predictor5)

(30)
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Predictor1 is the warm anomaly from the LAS channel 4 (54.4 GHz). With the

45◦ scan angle of the SSMI/S, one might have expected a lower frequency to better

sense the warm anomaly in the upper troposphere because of the higher altitude

peaks of the SSMI/S weighting function. Nevertheless, the fact that the channel 4

is the main predictor validates that SSMI/S can be used to estimate TC MSLP in a

manner similar to AMSU and ATMS.

The second iteration improves the correlation coefficient significantly and drops

the RMSE by almost 1 mb. Predictor2 is environmental channel 2 (19 GHz V) peak

absorption, providing an intensity proxy based on precipitation absorption. This

predictor, as seen in Table 16, provides interestingly the second largest contribution

to the predicted MSLP. The vertically polarized brightness temperature of the ocean

surface is almost 20% warmer at an incidence angle of 45◦ than that of the horizontally

polarized 19 GHz channel. Since precipitation absorption should make a more notable

difference in the horizontally polarized channel brightness temperature, one might

expect the 19 GHz H absorption to be a better intensity predictor than 19 GHz

V. However, the correlation difference between the two channels is indicating that

polarization is relatively unimportant.

Predictor3 is the SSMI/S LAS channel 2 (52 GHz) warm anomaly. This channel’s

weighting function peaks lower in the atmosphere than the channel 4 weighting func-

tion. After five iterations Predictor3 actually becomes the third highest contributor

after Predictor4, another warm anomaly predictor. The algorithm ultimately chose

three different warm anomaly predictors that sense a spread of the atmospheric levels.

As noted earlier, Predictor4 makes the largest contributions to the SSMI/S TC

intensity estimation algorithm. Channel 5 (55GHz) and Channel 4 both have similar

weighting functions, but channel 5 peaks higher in the troposphere or lower strato-

sphere. Figure 33 shows the correlation coefficients for each SSMI/S sounding channel
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4.3 Analysis Review

The main predictor for all three instruments is the warm anomaly at the 54.94 GHz

channel for ATMS and AMSU, and the 55 GHz channel for the SSMI/S. Subsequent

iterations increased the model’s correlation coefficient and lowered the RMSE for

each of the instruments. The addition of imager channels predictors increased the

correlation coefficient and decreased the RMSE for all three instruments.

Sounding channel results were presented for all three instruments as their cor-

relation coefficients were considerably higher than any other predictor on the first

iteration. This result confirms the strong correlation between the classical warm

anomaly (or scattering-corrected warm anomaly) in the upper troposphere and TC

MSLP. The next section focuses on the RMSE results obtained after applying the

regression coefficients derived in the training data set to the validation data set.

4.4 Validation Results

The regression coefficients from equations (28), (29) and (30) were all applied to

predictors from the validation data set. A correlation coefficient and RMSE were

obtained for each instrument. We expect RMSE results for the validation data set

not to be as good as for the training data results due to possible overfitting of the

regression relation to the training data.

Each instrument’s results are presented with both a regression plot and a nor-

malized residual plot. The scatter plot helps to visualize the multiple regression’s

ability to fit the data. The normalized residual scatter plot in the lower portion of

the figure has vertical dividing lines indicating the different TC intensity categories.

The RMSE is represented by dashed horizontal red lines and the normalized fitted

line is blue. Both plots can be used together to assess how well the regression relation

fits the observed TC intensities.

79



4.4.1 SSMI/S

The SSMI/S showed a correlation coefficient of 0.93 and 6.5 mb RMSE in the

training data using 5 predictors. This equation, when used with the validation data

set, yielded a correlation coefficient of 0.89 and RMSE of 7.7 mb. Figure 34 depicts

the scatter plot of estimated MSLP vs observed MSLP. The normalized regression

equation and its residuals are shown at the bottom of the figure. The data set is

heavily influenced by the higher number TD and TS. The number of strong storms is

relatively low. This observation is important to note because of the chosen predictors

for the SSMI/S instrument and their specific response to TC dynamics. A strong

warm anomaly is not expected to develop until after the transition from TS to HU,

based on results from Velden and Smith (1982), but precipitation scenes are abundant

during TD and TS. Thus the abundance of TD and TS cases in the training data set

may have biased the set of predictors chosen toward the absorption channels.

The fraction of storms within the RMSE is higher in the TS and HU phase than

in the TD phase. There are two possible explanations for this observation. The first

is the higher number of TS relative to TDs or HUs, which may bias the algorithm

toward predictors that perform best in that category. The second explanation is the

maturity of the warm anomaly. A more pronounced warm anomaly may lower the

RMSE and provide a more accurate MSLP estimate for strong storms. Both explana-

tions may contribute to the overall result, but the fact that the warm anomaly is the

number one predictor likely explains the better performance of the SSMI/S algorithm

for TS and HU. The second best predictor was the 19 GHz precipitation absorption.

This predictor considerably increased the correlation coefficient and potentially helps

explain the higher confidence of the algorithm for TS. At this stage of the TC, precip-

itation occurs in most of the instrument FOVs near storm center. Absorption is more

prevalent, while scattering effects are not well established yet. Thus the low frequency
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4.4.2 ATMS

The ATMS is the newest of the three instruments and its limited sample size

impacted the validation results. The training set regression results were good, with

a correlation coefficient of 0.98 and RMSE of 3.2 mb. However, predictors from

the validation data set with the regression equation from the training data set, a

noticeable decrease in the correlation coefficient takes place. The validation data set

yields a correlation of 0.73 and RMSE of 12.8 mb. Figure 35 shows the scatter plot

and the residual plot for the ATMS. The first thing to note is the poor result for HU

intensity TCs and small data set.

The ATMS results are somewhat consistent with the SSMI/S for weak TCs; most

of these storms (TD and TS) fall within the RMSE values. Given the better results

obtained in the training data set, possible explanations for the poor validation results

are overfitting the training data or corrupted files which yield strong outliers. Re-

gardless, the small sample of cases available from the ATMS negatively affected the

results.

4.4.3 AMSU

The AMSU training data set produced a correlation coefficient of 0.86 and an

RMSE of 8.8 mb, which are consistent with previous results of Kidder et al. (1978)

and Velden and Smith (1982) where correlation coefficients in the 0.90 range and

RMSEs as low as 6.0 mb were found. The validation set in this study resulted in a

correlation coefficient of 0.86 and RMSE of 9.3 mb. Regression and residual plots are

shown in Figure 36.

The correlation coefficient obtained in this study does not improve on previous

results, but does shows consistent intensity estimation quality across all TC stages.

Even though the results did not improve, this study was able to demonstrate corre-
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4.5 Results Review

The SSMI/S estimated TC intensity with the best RMSE, 7.7 mb. AMSU and

ATMS followed with 9.3 mb and 12.8 mb, respectively. The analysis of the regression

plots and corresponding residual plots for all three instruments showed instrument

tendencies at different TC categories. The SSMI/S showed more prediction con-

sistency throughout all stages of TC development, while the other two instruments

showed large residuals for high intensity TCs. In general, the SSMI/S provided better

results for TC intensity estimation using this algorithm.

The results are somewhat surprising in light of the fact that two of the three

SSMI/S instruments on orbit are producing degraded data due to sensor problems.

The ATMS results are considerably affected by the limited data sample, which is

believed to have affected its regression coefficient and RMSE in the validation. Strong

outliers in the HU category need further investigation to provide an explanation for

the large difference between the training and validation data set.
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V. Conclusion

5.1 Chapter Overview

This chapter presents a summary of this research and recommendations for future

work. Section 5.2 summarizes the conclusions of the analysis. Section 5.3 provides

recommendations for further research on this topic.

5.2 Summary

Two important considerations affected the SSMI/S and ATMS results. First,

DMSP F16 and F17 are both experiencing operational issues with their SSMI/S mi-

crowave radiometers and second, the sample size for the ATMS was limited. Both

DMSP F16 and F17 are currently experiencing SSMI/S problems that affect their

brightness temperatures. The brightness temperature deviation from the actual

brightness temperature is believe to be consistent across the channels and scanlines,

so in an attempt to correct for this error, a brightness temperature correction is added

to bad channels, essentially correcting the error. The ATMS has been operational for

a little over three years, with only 2 full TC seasons completed. The small sample

size of ATMS observations affected the results negatively by under-fitting the model,

creating a strong bias toward the regression equation’s native data sample.

5.2.1 Predictor Analysis

The intensity predictors used were selected based on passive microwave frequency

response to TC physical properties. In addition to using the classical warm anomaly at

the 55 GHz, as has been used since the emergence of the MSU by Kidder et al. (1978),

other predictors were tested, analyzed, and derived using the entire spectrum of the

instruments microwave channels. The response of a given channel to water vapor
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absorption, precipitation absorption, and scattering associated with ice particles or

larger water drops, all were taken into account to derive over 200 individual predictors

to estimate TC intensity. Instruments field of view geometry effects were included

as predictors as well. Also, atmospheric contributions (ice particles) added noise to

sounding channels via scattering, and using a precipitation correction technique used

by Wacker (2005), these channels were corrected.

The AMSU, SSMI/S, and ATMS predictors derived from low and high frequency

channels helped to improve the correlation coefficient and RMSE achieved using only

the upper tropospheric warm anomaly. The SSMI/S and ATMS instruments bene-

fited the most from these predictors as their second regression predictors were the

low frequency absorption and the integrated absorption, respectively. In the case of

the AMSU, the second predictor was the FOV correction squared, followed by the

brightness temperature spread between the absorption and scattering signatures.

Even though the best performing predictor for each instrument was the upper

troposphere sounding channel, the addition of the low and high frequency channels

improve the estimate accuracy. The results show higher accuracy for TD and TS

either because of dynamic or structure difference in weaker storms or because there

is a smaller range of MSLP in these categories.

Not all the predictors performed as the theory suggested or provided useful infor-

mation to estimate TC intensity. However, the statistical algorithm used is designed

to test all the predictors and utilize the predictors that increase the accuracy of the

regression equation by iterating to minimize the residuals and decrease the RMSE.

5.2.2 Statistical Algorithm

The statistical method used is multivariate regression using a stepwise forward

model. The multivariate regression allowed the usage of all the predictors found

87



and fitted a regression equation on the data to estimate a predictand, in this case

the MSLP. The stepwise forward model finds the best predictor, then reduces the

regression’s residuals by iteratively finding predictors with the highest correlation to

the residuals.

The algorithm confirmed previous research by selecting the 55 GHz warm anomaly

as the best predictor for all three instruments on the first iteration. These channels’

weighting functions peak at approximately 200 mb and most accurately measure

the UTWA that is known to be highly correlated with TC MSLP. The rest of the

predictors selected by the algorithm in subsequent iterations effectively increased the

correlation coefficients for all three instruments. The addition of the low frequency

and high frequency derived predictors proved to increase the accuracy of the regression

equation by decreasing the RMSE. This Algorithm does not consider any physical

relation in the sequence of predictors; predictors are chosen based on correlation and

do not provide a physical reason for their rank within the algorithm. This does

not necessarily negate the physical background behind the predictors since iterations

converge rapidly to the best few predictors.

Since regression is susceptible to overfitting to the training data set, the corre-

lation coefficients and RMSE found for the training data sets were better than the

results found during validation on a different data set using the training regression

coefficients. When comparing values from training results (Figures 28, 30, and 32)

with their respective validation results (Figures 34, 35 and 36), one can see the lower

RMSE and higher correlation coefficients on the training results. The ATMS in-

strument was the most affected by the cross-validation with possible explanations

attributed to outlier storms and the small sample size.
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5.2.3 Comparison of Results

TC intensity estimates derived from the SSMI/S and the ATMS have shown to

be comparable to AMSU derived estimates. The addition of predictors derived from

low and high frequency channels and instruments FOV geometry increase intensity

estimation accuracy by 10% for the SSMI/S, 3% for the AMSU and 4% for the ATMS,

based on a first iteration using only the classical warm anomaly as a predictor. Despite

the uncertainties in the SSMI/S instruments regarding the sensor issues and the small

sample size of the ATMS, their results are promising and are valid candidates for

further research in this topic.

5.3 Recommended Future Work

This study has shown interesting results using passive microwave radiometers

and exploiting low and high frequency channels to characterize TC intensity. As

previously mentioned, more work in this topic can further the research and better

the results. The ATMS is a fairly new instrument and its results were affected by the

small sample data size. Adding additional TC seasons to the ATMS data set would

increase confidence in its regression equation and minimize the strong bias towards

the training data set. The work does not have to be limited to the Atlantic ocean

basin. The addition of the other ocean basins would increased the sample data size,

not only of the ATMS, but for the AMSU and SSMI/S as well. A case by case study

of the outliers affecting the regression equations, especially in the AMSU and ATMS

cases which showed large residuals in TCs with low MSLPs, would help explained the

large errors. Further research can also be done to evaluate an absorption/scattering-

only technique for conical-scanning imaging instruments like the Advanced Microwave

Scanning Radiometer (AMSR-2). Finally, automating the algorithm and operational

implementation would be the desired end-state of this research.
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