
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-13-2013

Dynamic Network Topologies
Heather A. Lingg

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Digital Communications and Networking Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Lingg, Heather A., "Dynamic Network Topologies" (2013). Theses and Dissertations. 883.
https://scholar.afit.edu/etd/883

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277528683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/883?utm_source=scholar.afit.edu%2Fetd%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


DYNAMIC NETWORK TOPOLOGIES

THESIS

Heather A. Lingg, GG-12, DAF

AFIT-ENG-13-J-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISTRIBUTION STATEMENT A



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States



AFIT-ENG-13-J-04

DYNAMIC NETWORK TOPOLOGIES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Insitute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in CyberSpace Operations

Heather A. Lingg, B.S.C.S.

GG-12, DAF

June 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISTRIBUTION STATEMENT A



AFIT-ENG-13-J-04 

DYNAMIC NETWORK TOPOLOGIES 

Heather A. Lingg, B.S.C.S. 
GG-12, DAF 

• 

Approved: 

Kenneth Hopkinson, PhD (Chairman) 

Maj Mark Silvius, PhD (Committee Member) 

~eeMember) 

J I May -2 o 1? 

Date 

3) ~ l-ot_:3 
Date 

Date 



Abstract

Demand for effective network defense capabilities continues to increase as cyber

attacks occur more and more frequently and gain more and more prominence in the

media. Current security practices stop after data encryption and network address filtering.

Security at the lowest level of network infrastructure allows for greater control of how the

network traffic flows around the network. This research details two methods for extending

security practices to the physical layer of a network by modifying the network

infrastructure. The first method adapts the Advanced Encryption Standard while the

second method uses a Steiner tree. After the network connections are updated, the traffic

is re-routed using an approximation algorithm to solve the resulting multicommodity flow

problem. The results show that modifying the network connections provides additional

security to the information. Additionally, this research extends on previous research by

addressing enterprise-size networks; networks between 5 and 1000 nodes with 1 through 5

interfaces are tested. While the final configuration depends greatly on the starting network

infrastructure, the speed of the execution time enables administrators to make

infrastructure adjustments in response to active cyber attacks.

iv



To my husband for .... well, everything.

v



Acknowledgments

I would first like to thank my advisor, Dr. Kenneth Hopkinson, for his advice,

guidance, and patience. This document is a long time coming; I hope my performance was

worth the wait.

I would also like to thank Nicholas Kerner for his programming and troubleshooting

assistance.

I also thank my supervisors, branch chiefs, and chain of command for their flexibility

and understanding in my undertaking of this endeavor.

Finally, I thank my family and friends for their never-ending support and

encouragement. In particular, my husband’s love, advice, support, proofreading, and

troubleshooting were invaluable. I could never have done this without the support of

everyone. Thank you!

Heather A. Lingg

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Cryptology and the Advanced Encryption Standard . . . . . . . . . . . . . 5
2.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Multicommodity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Steiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Network Traffic Routing . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 AES Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Network Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Network Differences . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Steiner Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Network Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Network Differences . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Figures

Figure Page

2.1 AES encryption process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Original Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Shifted Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 AES total times shows speed improvement over previous methods . . . . . . . 37

4.2 AES generational times do not have large deviations from the mean . . . . . . 38

4.3 AES edge re-configuration occurs with no growth across interfaces . . . . . . . 40

4.4 AES routeing time dwarfs edge re-configuration time exponentially . . . . . . 41

4.5 AES costs vary with traffic demands . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 AES differences vary unpredictably over different configurations . . . . . . . . 45

4.7 Steiner times show improvement over AES times . . . . . . . . . . . . . . . . 48

4.8 Steiner interfaces contribute to overall generation time . . . . . . . . . . . . . 50

4.9 Steiner edge re-configuration times shows great improvement over AES method 51

4.10 Steiner traffic routing contributes most to overall generational time . . . . . . . 52

4.11 Steiner costs are similar to AES costs . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Steiner differences exponentially decrease as interfaces linearly increase . . . . 56

4.13 Complete possible networks only assist differences if generated configuration

is not sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



List of Tables

Table Page

3.1 AES Process in a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(a) Original Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(b) SubBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(c) ShiftRows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(d) ShiftColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

(e) AddRoundKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Standard Deviation for Total Time for 10 Generations, AES, in units of network

flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Standard Deviation for Average Time per Generation, AES, in seconds . . . . . 39

4.3 Standard Deviation for Edge Shift Time per Generation, AES, in seconds . . . 42

4.4 Standard Deviation for Traffic Route Time per Generation, AES, in seconds . . 42

4.5 Standard Deviation for Average Total Cost, AES, by formula 3.2 . . . . . . . . 43

4.6 Ratio of Configuration Cost vs. Total Possible Cost, AES, via formula 3.2 . . . 44

4.7 Standard Deviation for Average Total Topological Differences, AES, in units

of network flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Active Edges in All Generations, AES . . . . . . . . . . . . . . . . . . . . . . 46

4.9 Node Connectiveness, AES . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Standard Deviation for Total Time for 10 Generations, Steiner, in seconds . . . 49

4.11 Standard Deviation for Average Time per Generation, Steiner, in seconds . . . 50

4.12 Standard Deviation for Average Edge Shift Time per Generation, Steiner, in

seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Standard Deviation for Average Traffic Route Time per Generation, Steiner, in

seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.14 Standard Deviation for Average Total Cost, Steiner, via formula 3.2 . . . . . . 54

x



4.15 Ratio of Configuration Cost vs. Total Possible Cost, Steiner, via formula 3.2 . . 55

4.16 Standard Deviation for Topological Differences, Steiner, in units of network flow 57

4.17 Number of Active Edges in All Generations, Steiner . . . . . . . . . . . . . . . 57

4.18 Node Connectiveness, Steiner . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.19 Standard Deviation, Differences in units of network flow . . . . . . . . . . . . 60

4.20 μ − PCI of Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.21 Connectiveness of Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . 60

xi



List of Symbols

Symbol Page

G Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

N Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

E Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

K Commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

n Number of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

m Number of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

f Interface enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

k Commodity enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

i Source node enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

j Destination node enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . 11

e Edge enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ui j f Edge capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

eco Operation edge cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ecc Congestion edge cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xk
i j f Flow percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

P Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

dk Commodity Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xii



List of Abbreviations

Abbreviation Page

DoD Department of Defense . . . . . . . . . . . . . . . . . . . . . . . . . . 1

IC Intelligence Community . . . . . . . . . . . . . . . . . . . . . . . . . . 1

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

IPS Intrusion Protection System . . . . . . . . . . . . . . . . . . . . . . . . 2

AES Advanced Encryption Standard . . . . . . . . . . . . . . . . . . . . . . 5

NIST National Institute of Standards and Technology . . . . . . . . . . . . . . 5

NSA National Security Agency . . . . . . . . . . . . . . . . . . . . . . . . . 5

SHA-2 Secure Hash Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiii



Dynamic Network Topologies

1 Introduction

1.1 Premise

A network is a collection of devices, known as nodes, which exchange information

over a means of communication, known as edges. Network devices are workstations,

servers, routers, switches, and other network equipment. Edges are cables, radio waves,

satellite links, or other methods of transmission. While much information exchanged over

a network may be free and open to access (e.g. public web pages such as Wikipedia),

some information (e.g. private communications or financial transactions) must be

protected and limited to access. In the case of the Department of Defense (DoD) and the

Intelligence Community (IC), networks contain information that is pertinent to national

security. To protect this information, the network must also be protected.

Network defense consists of a series of mechanisms designed to protect information

traveling through a network from any potential adversary that desires that information.

The defense is multi-layered, depending both on application and transmission methods.

Commonly, applications employ their own set of hardening techniques. A common

technique is encryption, which is used to mask the actual content. At the network level,

firewalls and various protocols, such as IPSec, can automatically reject data outright based

on Internet Protocol (IP) address or port number. Still, at the lowest level, data must flow

between devices over the network for the network to be of any use. More importantly, a

valid data flow path from source to destination must be known for data to be properly

received. This data flow across a network establishes the basic topology of the network,

creating a virtual landscape that can be scanned and probed for vulnerabilities.

1



A network topology is the mapping of the interconnections between network nodes.

Typically, enterprise networks are designed to have a certain topology which rarely

changes. Updates and changes are generally time-consuming, costly, and must be

executed in a precisely controlled fashion to avoid impacting network functionality. Other

networks are much more flexible but can be much less reliable, depending on the

transmission medium. The goal of this research is to allow changes at the base level of the

network without incurring large costs and without adversely effecting network

functionality. Most networks employed in commercial and government applications are

statically defined. Data flows from device A to device B over a given static route Z. Once

these networks are successfully scanned, an attacker can move to the act of actual

exploitation on the assumption that the topology and traffic patterns will not change. The

network is then infiltrated and information compromised.

An important key point is that a network topology, though physically stable, is also

virtual. It is a landscape that can be changed at will by activating or deactivating network

edges. Assuming that network traffic is properly re-routed to accommodate those changes,

the nodes continue to operate as if no changes had occurred. Essentially, modifying the

network topology on a regular basis provides an additional layer of defense for the

network without compromising mission capabilities. Regular topology shifts force

attackers to expend resources just to scan and re-scan the network, thus lessening the

probability or severity of an attack. Such topology shifts can also accompany Intrusion

Protection Systems (IPS) to automatically respond to an active attack.

1.2 Goals

Before any network topology changes can take place, the changes must be known.

Possible changes range from simple re-routing of a traffic path to physically disabling a

connection. A new network topology must be generated and routes for network traffic

re-established. The generation process must occur quickly enough to react to dynamic

2



network conditions, with or without human administrative assistance, at an enterprise

level. If generating a new network topology takes days or even hours, the output is

obsolete on arrival.

The new topology must not partition the existing network into multiple networks or

fail to re-route any network traffic. Any inability to contact other users or use a network

service renders the topology useless. Topology generation must also consider operational

network costs and restraints: operation cannot consume excessive resources or use edges

that do not exist. A new topology must also consider the configuration of previous

generations because the entire goal of the process is to substantially modify the network

topology; consistent re-use of a network link or a route simply misses the point. Similarly,

if a solution only trivially changes the network topology as compared to previous

generations, that solution should be rejected.

A final consideration is the security of the entire generation process: an attacker

should be forced to re-scan a network to re-identify targets. If an attacker can perform the

same calculations and arrive at the same solution, the process will quickly be reverse

engineered and defeated. Given that an attacker can observe both the previous and current

configurations, the generation process must execute with additional information.

The goal of this research, then, is to create a dynamic network topology generation

and verification process. Implementation and testing of the output of the process on a

physical network is beyond the scope of this thesis. Previous research in this area

considered many of the factors discussed above, but to be truly useful all factors must be

evaluated [1]. This research is faster and able to consider larger networks than previous

research while maintaining significant confidence that the described constraints are

accounted for appropriately. Additionally, this research provides flexibility to network

administrators by incorporating flexible tolerance levels in the described constraints.

3



Two methods are used to modify the network topology: one based on cryptology

algorithms, and one based on graph theory algorithms. A single method is used to re-route

network traffic through the new configuration of network connections, and is used to

finalize the network configurations for both topology change methods. The two topology

change methods are compared for computational speed, operational cost, and security.

The remainder of this thesis is organized as follows: the second chapter provides

background information and reviews previous research, the third chapter examines the

methodology of this research, and the forth chapter provides the results. Finally, the fifth

chapter offers conclusions and suggestions for further research.

4



2 Background and Previous Research

2.1 Introduction

Several areas provide the background required for this research. These areas include

both cryptology in general and the Advanced Encryption Standard in specific. Graph

theory is also examined, including methods of finding the shortest path between a set of

points. Additionally, linear programming and the multicommodity flow problem are

examined, along with several solution methods for the multicommodity flow problem.

Finally, previous research in the area of dynamic network design is reviewed.

2.2 Cryptology and the Advanced Encryption Standard

This research uses the Advanced Encryption Standard (AES) in the modification of

network topologies. It was accepted as a general standard in November 2001 by the

National Institute of Standards and Technology (NIST) and shortly after by the National

Security Agency (NSA) as the standard for encrypting classified information. The

algorithm requires the plaintext, a substitution table, and a cipher key. The plaintext and

the cipher key are provided by the user of the algorithm while the substitution table is

provided by the algorithm itself. The algorithm follows four base steps in a series of

iterative rounds to produce the ciphertext. The four steps are SubBytes, ShiftRows,

MixColumns, and AddRoundKey. The number of rounds is dependent on key length and

can be 10, 12, or 14 rounds for key lengths 128, 192, and 256 bits, respectively. Data is

initially divided into blocks and each block is processed by the algorithm separately.

Regardless of key length, data is always divided into 16 byte chunks, which are arranged

in a 4x4 byte matrix [2] [3].

The SubBytes step uses a pre-generated table to modify the plaintext. The table is

generated by applying an affine transformation over the multiplicative inverse of the finite

5



field GF(28). The 16x16 byte table is static and is used in all implementations of AES. For

each byte of plaintext data, a substitution is performed. The largest four bits of a given

byte determine the row index of the table while the smallest four bits determine the

column index. The entry at that spot on the table replaces the original data byte [2] [3].

ShiftRows is the second step. The 4x4 matrix of substituted data is grouped by rows

and each row is circularly left shifted based on an offset. Each shift operates on a full byte

of data. The offset starts at zero and increments with each row. This means that the first

row is not shifted; the second is shifted by one, and so on [2].

MixColumns is the third step and re-arranges the columns. Each column of the

shifted data matrix is treated as a polynomial over the finite field GF(28), and is multiplied

by a fixed polynomial, a(x) = (03)x3 + (01)x2 + (01)x + (02), modulo x4 + 1 [2]. This

operation modifies the data in place, using each byte of the column to affect the result of

each final byte in the column. This provides diffusion in the output, adding additional

security to the final ciphertext.

The final step is AddRoundKey. The user enters a password or pass-phrase at the

beginning of the process. This password is used to generate a set of round keys; one round

key is used per round of the process. The number of rounds dictates the required key size,

and the round key generation process differs slightly, depending on these factors. The key

generation process starts by generating a master key, and each round key consists of a set

number of bits from this master key. These keys are generated before the AES algorithm

begins and are used in this step. The AddRoundKey step itself consists of a basic XOR,

using the round key and the mixed data matrix. This produces the final output of the

round [2].

The pseudo-code of the process is shown in Figure 2.1. Note that a round key is

added to the data before rounds begin, and that the columns are not mixed in the final

6



round. This is by design, to account for the accompanying decryption process. That

decryption process is not used in this research.

Figure 2.1: AES encryption process

This research utilizes the AES algorithm to modify the configuration of network

edges. The methodology for this process is discussed in detail in Chapter 3.

2.3 Graph Theory

A graphical description of a network G includes the set of nodes N and the set of

possible edges E. This relationship is described mathematically as G = (N, E). An

undirected graph consists of edges that are bidirectional between nodes while a directed

graph contains edges that may only carry information in a single direction. This research

assumes edges are bidirectional.

7



If the goal is to select edges to connect nodes, a number of shortest-path algorithms

can connect given node-pairs one at a time. These algorithms include Dijkstra’s and

Bellman-Ford [4]. However, the goal is not only to connect a given list of node-pairs, but

also to ensure the network is whole. Additionally, as the number of node-pairs grows, the

time to generate the shortest-path list grows with it. If the selected algorithm connects

pairs in sequence, such as Dijkstra’s, rather than in parallel, this growth is linear.

Edges are described by weights, or costs, that are associated with that edge. For this

research, all costs are assumed to be positive. For this phase, the capacity ue of the edge is

used as the edge weight. However, a higher capacity edge means more cost is associated

with that edge. Practically, these operational costs include the cost of installing and

maintaining the transmission medium as well as any power or administrative demands of

the medium. For example, this would cover the cost to run a fiber line, the installation

technicians, and the network administrators.

A minimum spanning tree aims to connect all nodes for the least amount of cost. By

design, the network is only minimally connected, but the network is whole. However, the

minimum connections may not be enough to carry all of the required network traffic.

Additional edges must then be found to handle the network load using another algorithm,

which defeats the use of a minimum spanning tree as a solution. As with the shortest-path

algorithms, speed of the overall algorithm becomes a constraining factor.

A generalized Steiner tree finds the minimum-cost selection of network edges that

connects all given node pairs. This is done by examining all node-pairs in parallel. The

algorithm examines the connections between the set of source nodes and the neighbors of

the source nodes. If this examination does not connect the node pairs, the process repeats.

The original source node is replaced with the least-costly neighbor, and the algorithm uses

the least-costly neighbor instead. The process continues until all node-pairs are connected,

8



not just the requested set of node-pairs. Additionally, the algorithm will identify a path

between all node-pairs [5].

The generalized Steiner tree problem is essentially an optimization problem; network

cost must be minimized. Linear programming is an established technique for solving such

problems. Linear programming consists of an objective function and a set of constraints.

Frequently, the objective function is a minimization or maximization problem. If a linear

program is required by the constraints to have an integer solution, it is known as an integer

program. A mixed integer linear program contains some constraints that are required to be

an integer while other constraints are not under that restriction. A formal linear program is

defined in the format [6]:

min cx (2.1)

Subject to:

Ax = b

x ≥ 0

The first line defines the objective function. The matrix A contains the coefficients of

the variables used in the model constraints. Similarly, b and c are corresponding vectors

that contain equality information and the coefficients of the objective function,

respectively. In this notation, x is also a vector of the model variables and non-negativity

is imposed on the final solution values. A standard-form linear program is a minimization

problem.

Also important to this research is the concept of dual linear programs. A linear

program that can be inverted is known as a primal problem, whilst the inverse is known as

the dual problem. For example, the primal minimization problem often has a

corresponding dual maximization problem, and vice versa.

9



The Steiner tree algorithm is described as a dual linear program in [5]:

min
∑

e∈E

ue ye (2.2)

∀n ⊆ N : n ∈ S
∑

e∈δ(S )

∀e ∈ E : ye ≥ 0

max
∑

n⊆N:∃i,n∈ni

xS (2.3)

∀e ∈ E :
∑

N:e∈δ(S )

ye ≤ ue

∀n ∈ S xS ≥ 0

The primal minimization problem focuses on minimizing the total cost of all edges

added to the network. Here, n refers to a given specific node, e to a given specific edge,

and S to the set of edges comprising of the path. The variable ye indicates if a network

connection is present in the configuration, or not. The dual maximization problem

increases the amount of flow, xS on a given path until the capacity of the edge is reached.

At that point, the path is added to the network. Use of the linear programming approach

means the Steiner tree problem does not suffer from linear growth dependent on the length

of the list of node-pairs as in the shortest-path approach. Instead, the growth is entirely

dependent on the total number of nodes and increases exponentially. Since the linear

problem considers the node-pairs in parallel, it also does not suffer from requiring

additional edges later in the algorithm, as in the minimum spanning tree.

Typically, the generalized Steiner tree problem includes a phase to delete any

extraneous edges. This phase is skipped in this research because the generalized Steiner

10



tree is only used to identify network edges, not paths for the network traffic. Removing

edges at this step of the research limits the path selection later.

2.4 Multicommodity Flow

A transportation network is a network that carries goods or services over a set of

edges where each edge has both a capacity and a congestion level. When multiple types of

goods or services share the same infrastructure, it is known as a multicommodity flow

network. Examples include airline route scheduling, fluids in pipes, and computer

networks. A multicommodity flow problem takes a set of source and destination nodes, a

set of edges between the nodes, and a set of network traffic demands to generate a set of

paths for the network traffic. Without a path, the network information (or goods or

services) cannot flow between the source and the destination. In the case of computer

networks, demands include email traffic, streaming audio/video traffic, cloud applications,

etc.. These demands are also known as commodities.

Even within computer networking, the applications of the multicommodity flow

problem vary from basic network design to dynamic network topologies. A maximum

concurrent flow problem is a set of commodities K that must all be routed through a

network. The problem lies in defining the set of paths between every source and

destination node pairs to carry the commodities so that no network edge is over its

capacity.

Due to the variety of applications, a common set of terminology and symbology is

required. A network is defined as a graph G with a set of nodes N and a set of node edges

E. This relationship is described mathematically as G = (N, E). The total number of nodes

is n and edges is m. Network devices may be connected with multiple interfaces,

enumerated by f .

Commodities are enumerated by k, a source node by i, and a destination node by j.

For each edge e ∈ E, edge capacity, ui j f , and cost information are known. Cost

11



information includes both the operational cost of including any given edge in the set of

paths, eco, and the congestion cost, ecc, of using an edge e for another unit of flow from a

commodity. Practically, these operational costs include the cost of installing and

maintaining the transmission medium as well as any power or administrative demands of

the medium. For this research, edge capacity and operational cost are fixed values. Edges

are bi-directional and the costs and capacities may be different for each direction. The

value xk
i j f shows the percentage of flow over a given edge in path P for commodity k

between source i and destination j over interface f . The demand that each commodity

requires for transmission is also known, and is represented by dk.

The multicommodity flow problem is an optimization problem; flow must be

maximized or costs minimized. As a linear program, the concurrent multicommodity flow

problem is formulated as:

min
∑

e∈E

⎛⎜⎜⎜⎜⎜⎝
∑

k∈K

ccc

⎞⎟⎟⎟⎟⎟⎠ + ce (2.4)

∀e ∈ E :
∑

k∈K

xk
i j f ≤ ui j f

∀k ∈ K : 0 ≤ xk
i j f ≤ ui j f

∀k ∈ K : xk = dk

The formulation calls for the minimization of network costs while fully routing all

commodities and not exceeding any edge capacity. Specifically, the objective function

considers all commodity and edge costs. The first constraint ensures that the flow over an

edge does not exceed the capacity of an edge. The second constraint ensures that

commodities are not dropped, and the last constraint ensures that commodity demand is

fully routed. The addition of constraining the flow to an integer would make this an

integer program.

12



A number of properties are associated with linear programs. Most important to this

research is the strong duality theorem. The strong duality theorem, given by [6], describes

the optimality of a given pair of linear programs.

Strong Duality Theorem If any one of the pair of primal and dual problems has a finite

optimal solution, so does the other one and both have the same objective function

values.

Once a solution is found, optimality must be considered since a feasible solution does

not guarantee an optimal solution. Optimality is important for both the general

multicommodity flow problem and the dynamic network topology problem to ensure that

all commodities are routed in the most efficient way possible. A dual linear program is

created, so optimality is verified via the strong duality theorem. In this case, the dual to

the minimum cost problem is the maximum flow problem.

However, finding the optimal solution often requires an unacceptable time to

generate. The solution for the concurrent multicommodity flow problem is dependent on

the number of nodes and number of commodities. Additionally, several paths may exist

for a given source-destination-commodity combination. Approximation algorithms are

required to find near-optimal solutions, guaranteed within a given margin of acceptability.

This margin adds an error parameter ε > 0 to the problem. The parameter works with the

network flow to provide a solution that is within (1 − ε) of the optimal minimal cost.

Dantzig’s simplex method given in [6] executes a series of operations, retaining a

feasible solution to the problem after each step. The ellipsoid method in [5] improves on

the simplex method and runs in polynomial time. The ellipsoid method allows for

constraint violation during intermediate steps of the algorithm, but the final result is a

feasible solution. The Ford-Fulkerson algorithm from [7] divides the network into two

sets to find the maximum flow between two given nodes. However, these solutions all

13



assume a single commodity per network, and are inadequate for the maximum concurrent

multicommodity flow problem.

This research’s solution begins with randomized rounding to create an approximate

solution. A network and its demands are first described as an integer program and relaxed

to a linear program by removal of the integer constraints. The new linear program is

solved, and the solution is rounded to obtain the integer solution. The rounding process is

known as randomized rounding [5]. Young’s work extends this by dropping the

requirement of solving the linear program in favor of conditional probability operators that

are independent of the optimal solution [8]. For the maximum concurrent multicommodity

flow problem, the shortest path between a given pair of nodes is used as the independent

operator. Garg and Konemann [9] extend Young’s work further by routing additional units

of flow per iteration of the algorithm. This allows the algorithm to run in (2k log k) C2 Tsp

time, where k ≥ m
n , Tsp is the time to compute the shortest path, and C2 =

1
ε

log1+ε
m

1−ε .

Fleischer further improves [9] when the number of commodities is large by selecting

the ε-approximately shortest path instead of the shortest path [10]. Fleisher first describes

a linear program to maximize network flow:

max x (2.5)

∀e :
∑

P:e∈P

xi j f ≤ ui j f

∀k :
∑

p∈Pk xi j f

≥ xdk

∀P : xi j f ≥ 0

(2.5) focuses on maximizing the number of commodities routed, regardless of the

network cost. However, the problem formulation is still bounded both by the capacity of

each network link, and the commodity demands. The problem also demands that each

14



path chosen for a commodity has some flow over that collection of edges. The dual of this

maximization problem is the minimization of the network costs:

min
∑

e∈E

ui j f ecc (2.6)

∀k,∀e ∈ Pk :
∑

e∈P

ecc ≥ zk

∑

k∈K

dkzk ≥ 1

∀e ∈ E : ecc ≥ 0

∀k ∈ K : zk ≥ 0

The dual introduces a new variable. Commodities are given weights, zk, that control

the shortest path between two nodes. Weights represent the cost of not routing the

remainder of the commodity demand. The shortest path must be at least the weight of a

commodity; that is, the commodity must be fully routed. Fleischer’s work describes an

approximation algorithm that solves the dual problem in O ∗ (ε−2n(n + k)) time [10].

Starting with a null solution, Fleischer’s algorithm iterates until a proper solution is

found. Each commodity is examined to route at least dk units by performing a series of

steps. The first step examines the shortest path as defined by the cost function l(e), which

will have some bottleneck ui j f . Here, l(e) = eoc + ecc. The next step routes min(dk, ui j)

along the path. The cost function is then multiplied by
(
1 + ε min(dk ,u)

max(e)

)
to accommodate the

change in the network that the routing imposes as well as the error parameter. When
∑

e∈E max(e) l(e) ≥ 1 and all commodities are examined, the solution is considered proper

and the algorithm stops. It is shown in [10] that the algorithm runs in O(ε−2e(e + k)) time.

In this way, the primal and the dual programs are solved together, and the dual solution is

used to verify the approximate optimality of the primal.

15



The algorithm is upperly bounded by the total flow of the sum of the commodities.

That is, once the traffic has been routed, the algorithm is guaranteed to stop [10]. The

algorithm is lowerly bounded by the total flow divided by the number of commodities,

which is at least one. The lower bound also serves to scale the optimal solution, if the

algorithm fails to halt in the guaranteed time. The optimal solution and the lower bound

are inversely proportional, and by manipulating the demands of the commodities, the

algorithm retains the guaranteed run time [10] [9]. Further, Fleischer [10] proves:

Fleischer Theorem An ε-approximate solution to the maximum multicommodity flow

problem can be obtained in O ∗ (ε−2m(k + m)) time.

This research uses Fleischer’s algorithm for maximum concurrent multicommodity

flow once the configuration of the network has been modified. By re-routing the network

flow, this research ensures that the network remains mission-ready.

2.5 Previous Research

The dynamic network topology area builds from survivable network design, network

load balancing and virtual network reconfiguration, and wireless communications.

Williamson and Shmoys define survivable network design as “low-cost networks that

can survive failures of the edges” [5]. In a survivable network, traffic routes are adapted to

compensate for the loss of an edge. Ho and Cheung present a generalized survivable

network that is survivable independent of dynamic traffic [11]. Agarwal focuses on a

survivable network with fixed capcities, and utilizes multi-commodity flows to create

minimum-cost survivable networks [12]. This means that networks designed to be

survivable are networks that can be effectively re-configured to generate multiple feasible

topologies.

Network load balancing ensures that a given network edge is not over-congested.

Traffic that congests an edge is dynamically re-routed to improve performance of the

16



network. In [13], fiber-optic networks are examined to iteratively distribute load among

different light paths between nodes. Further, [14] examines the logical network topology

to add and remove light paths to accommodate dynamic traffic demands. Tran, Casucci,

and Timm-Giel examine a series of virtual networks sharing a physical network

infrastructure. As virtual networks appear and disappear, they must be re-distributed to

effectively utilize the physical infrastructure as efficiently as possible [15].

Communicating over a wireless network, by design, offers various strategies and

protocols for adapting to networks whose nodes and edges can appear and disappear.

Specifically, Erwin [16] and Compton [1] investigate mobile ad-hoc networks. Mixed

integer linear programming is used to solve survivable network design problems, and both

Erwin and Compton use mixed integer linear programming in their works [1, 16–18].

In both Erwin and Compton’s work, the following assumptions are made:

• There are a fixed number of nodes.

• Multiple commodities are routed on the network.

• Each commodity has a single source and destination node, for a unique

source-destination-commodity tuple.

• Edges have fixed capacities.

• Nodes may have many interfaces.

• Two nodes are limited to one connection per interface.

• Nodes cannot connect to themselves.

• A node cannot possess more edges than interfaces.

The given assumptions also hold for this research. Compton additionally assumes

that edges are bi-directional and have equal capacity in both directions. While this

17



additional assumption is convenient for his research, it is later shown that bi-directional

equal-capacity edges are not a requirement for establishing a solution. From these

assumptions, the following mixed integer linear program is developed by Erwin and

expanded by Compton:

min
∑

(i, j, f )∈E

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

(vk
i j f + bk

i j f )x
k
i j f

⎞⎟⎟⎟⎟⎟⎠ +
∑

(i, j, f )∈E

ci j f yi j f +

K∑

k=1

1000rkmk (2.7)

subject to:

yi j f = 0 or 1 ∀(i, j, f ) ∈ E

yi j f ≤ a′

i j f ∀(i, j, f ) ∈ E

yi j f = y ji f ∀(i, j, f ) ∈ E

xk
i j f ≤ yi j f ∀(i, j, f ) ∈ E, 1 ≤ k ≤ K

xk
i j f ≥ 0 ∀(i, j, f ) ∈ E, 1 ≤ k ≤ K

K∑

k=1

rkxk
i j f ≤ capi j f ∀(i, j, f ) ∈ E

∑

j∈N

yi j f ≤ ui f ∀i ∈ N, 1 ≤ f ≤ F

mk = 0 or 1 ∀1 ≤ k ≤ K

∑

j, f :(i, j, f )∈E

xk
i j f −

∑

j, f :(i, j, f )∈E

xk
ji f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − mk if i = sk

mk − 1 if i = dk ∀i ∈ N, i ≤ k ≤ K

0 else

The objective function separately sums the usage and congestion costs for the

network. The final term is added as a penalty for dropping commodities; any dropped

commodity increases the final solution by a factor of 1000. The constraints restrict the

solution to active edges of a network, restrict the variables to integer values, and ensure

that capacities are not exceeded and that demands are fully routed. The final constraint,

18



added by Compton, restricts against simple loops. That is, a route traveling from node A

to node B and back to node A is prohibited.

Erwin’s network data contains up to 39 nodes, and each unique pair of nodes requires

a commodity. Additionally, Erwin does not assume the network has enough capacity to

route all commodity demands. A commodity-priority system is built into his algorithm to

selectively drop commodities as needed. He begins by establishing a network backbone

by use of a degree-constraining minimum spanning tree, and then expands the backbone

into a full mesh network by use of several methods. The degree-constraining minimum

spanning tree connects each node to no more than a given number of other nodes. A mesh

network connects nodes in such a way so that each node can serve as an intermediate point

between another pair of nodes. These methods include two link-adding heuristic

approaches and solving the mixed integer linear program. The two heuristic approaches

generate solutions significantly faster, but overall drop more commodities than the mixed

integer approach. However, Erwin is unable to find a mixed integer solution for networks

with more than 15 nodes within 30 minutes. Scalability of the mixed integer approach is a

concern [16].

Compton expands Erwin’s work by adding a metric to track significant differences in

the generated network and a mechanism to periodically re-generate a solution. Compton’s

difference metric is used in this research to compare differences in generations of a

particular network model. Additionally, Compton modified Erwin’s objective function to

include the term bk
i j f as a penalty term for re-using edges. By penalizing edge re-use, the

generated topology is more likely to route a commodity over a different route, thus

increasing the differences between network configurations. This term is tracked by

commodity so that a second commodity is not unjustly penalized for using a path another

commodity previously used.

19



While Compton included Erwin’s penalty term for dropping commodities, this

research drops the term. If a network previously routed a set of commodities,

modifications to the network configuration must not drop any commodities. Otherwise,

the potential for significant mission impacts is present. Any modifications to the

underlying network structure should not change existing network functionality.

Compton tests a number of network configurations after his modifications to Erwin’s

approach. Nodes number from 5 to 40, in 5-node increments, while interfaces are limited

to a maximum of five. Nodes are the source of up to 3 commodities. Compton found that

the number of nodes and interfaces contributed more to the generation time than the

number of commodities [1]. Due to the long running times, several network

configurations were not completed. For example, the slowest solution of the 30 node 4

interface 3 commodity configuration took 47 days to generate. However, network

configurations with a high number of nodes and interfaces were found to contain edges

that were not active across all generations. This ensures that an attacker listening on a

particular network edge does not receive 100% of the traffic over that link. Compton’s

results show the security of adapting the network configuration, but the generation time

and limited network size is unacceptable for operational use.

2.6 Summary

This chapter discussed the underlying concepts and theory behind this research. The

cryptology algorithm examined one approach to the broader dynamic network topology

problem while the Steiner tree algorithm examined the second approach. Fleisher’s

multicommodity flow algorithm allows the re-routing of network traffic. Erwin and

Compton’s work serve as a baseline for comparisons. The next chapter will discuss the

development of the methodology in detail.

20



3 Methodology

3.1 Problem

The physical network layer deals in circuits, transmission modes, and the design of

transmission media; not in security. However, the raw bits of a packet must still pass over

a physical connection. If a network edge is compromised, the most secure solution that

preserves network operational status is to shut the edge off and reroute any traffic through

the rest of the network. It is safest to keep even heavily encrypted data away from an

attacker; while the field of cryptology steadily improves so does the field of

crypto-analysis.

The more network edges that are compromised, the more difficult it is to keep

network traffic from transmitting over a compromised edge. It is better to reconfigure the

network so traffic is evenly balanced over secure network edges while maintaining

network functionality. The reconfiguration must be generated and implemented quickly to

minimize the amount of data sent over the compromised network connection. It must also

take network and operational costs and constraints into account to maintain both network

functionality, quality of service, and mission needs. Finally, the solution must apply

enough change to the network topology relative to both current and past configurations

such that an attacker must re-scan the network.

Speed is a vital factor, and directly ties to solution scalability. Ideally, the solution is

fast enough to generate, verify, and implement a topology change during an active attack.

The solution should also be fast enough to reconfigure the network at regularly scheduled

intervals. However, operational networks range in size from small standalone networks

servicing a specific mission need to large enterprise networks servicing entire agencies.

As the network size and interconnectivity grows, the scale of the problem grows

exponentially.

21



Operational costs and constraints include maintenance costs, connectivity

requirements, service requirements, and service demands. Costs are both financial and

man-power related, and also includes the cost of routers, switches, and other networking

equipment. Connectivity requirements dictate which network nodes directly connect to

other nodes. It may be impossible to directly connect two nodes due to distance or other

limiting factors. Additionally, any given connection may be the compromised connection

that administrators wish to avoid. Network services cannot be impacted by the change in

network connections; each service requires a path between any two given nodes and

consumes an amount of bandwidth over the edges in that path. For example, an email

server has different network requirements than a streaming media server and both servers

must be accommodated appropriately. Traffic must be carefully balanced to avoid

over-saturating any given network edge.

Finally, the solution must force an attacker to expend resources and re-scan the

network. The current and previous network configurations are considered when

generating a new configuration to ensure the network is changed in a non-trivial manner.

Insignificant changes allow an attacker to either ignore the changes or recall a previous

configuration. Additionally, the solution algorithm itself requires a certain amount of

security to ensure an attacker cannot perform the same calculations and arrive at the same

set of network changes. This would allow an attacker to anticipate any changes and alter

the attack accordingly.

This research assumes the network possesses redundant paths between network

nodes. Any mission critical network where impacts to availability cause severe damage

will contain redundant measures by DoD and NIST regulations to maintain approval to

operate the network.

22



3.2 Algorithm

There are two main phases to the dynamic network topology algorithm presented

here: the network edge shift phase, performed either by the AES cryptology algorithm or

the Steiner tree algorithm, and the network routing phase, solved as a maximum

concurrent multicommodity flow problem.

3.2.1 AES. The AES algorithm is used to ’encrypt’ the network topology. Crucial

to the security of the AES algorithm is the secret key. This is perhaps even more crucial in

this application due to the difference in the outputted ’ciphertext’. In standard cryptology,

the resulting ciphertext is nonsense data that is generally useless without access to either

the key or the plaintext. In this application, it must be presumed that an attacker scans

both the original ’plaintext’ network topology as well as the re-configured ’ciphertext’

network. Without proper key handling, reversing the process becomes trivial and an

attacker will be able to anticipate network shifts. Each new network topology modification

uses a secure hash chain to generate a new set of keys. The keys are used only once to

prevent any mathematical analysis on the algorithm using the ’plaintext’ and ’ciphertext’

network topology information.

The hash begins with a user-generated pass phrase. The pass phrase is hashed using

the Secure Hash Algorithm 2 (SHA-2) with a 512 bit block size. The resulting hash is

chained 5000 times for additional security. The final result is used to generate the AES

round keys.

The network topology itself is represented as a dynamic two dimensional array, with

an optional third dimension to represent multiple network interfaces. Array indexes

represent nodes while the value at that index represents the on/off status of the connection

between each set of nodes. A one represents an active edge between nodes; a zero

represents an inactive edge. Allowing for multiple network interfaces allows for the

representation of routers, switches, and other network equipment that makes multiple

23



connections. Workstations and servers can have multiple interfaces if multiple network

cards are available. Complete network information is stored in each half of the array; the

status of the connection between nodes A and B is the same as status of the connection

between nodes B and A. Connections between a node and itself are off by default.

Symmetry is maintained between the halves to show bidirectional connections. While

maintaining symmetry is convenient for this research, it is unnecessary for the general

algorithm. A second network array is maintained to represent the availability of the

connection between each set of nodes that are possible to connect. This adjacency matrix

is checked before any network connection is modified to ensure that any network change

is feasible. For example, a node may not connect to itself.

The AES algorithm is slightly modified for use in this research: the algorithm round

computations are modified to account for three-dimensional space. The modification

repeats the row shift step for the array slice containing the network interface information.

This extra step is only performed when the input network contains multiple interfaces. It

is not enough to perform the AES algorithm separately on each interface, as in typical

two-dimensional cryptological functions. If the algorithm is performed separately on each

interface, network connections would only shift along the same interface. Allowing

connections to shift between network interfaces increases the number of possible network

configurations.

It is important to address the impacts this modification has to the cryptanalysis of

AES. In [19], the creators address differential and linear cryptanalysis through the

propagation of bit patterns over the algorithm steps. Daemen and Rijmen state the

ShiftRow has the properties:

• The column weight of a pattern at its output is lower bounded by the maximum of

the byte weights of the columns of the pattern at its input.

24



• The column weight of a pattern at its input is lower bounded by the maximum of the

byte weights of the columns of the pattern at its output.

• Byte weight is invariant as there is no inter-byte interaction.

This research copies the ShiftRow step to create the ShiftInterface step and the same

properties hold. In Daemen and Rijmen’s analysis, the bit patterns and column weights

before and after the ShiftRow and MixColumn steps are examined. The additional step

changes output patterns and weights to include the ShiftInterfaces step. The weights

determine effectiveness of differential and linear cryptanalysis. The ShiftInterfaces step

provides further diffusion of the bit pattern, since the step moves bits of one layer into

another. The weight impact on each layer is nominal and the analysis provided by

Daemen and Rijmen holds.

The algorithm is performed across the entire network array. One half of the network

array is designated as the primary half; as modifications are made to the primary half, the

secondary half is updated to reflect the primary half. This maintains the bi-directionality

of the network connections. Bi-directionality is not a strict requirement; if edges are not

bi-directional, the entire network array is required for the complete network configuration.

Table 3.1 shows how the AES algorithm is applied to the network array. Figures 3.1

and 3.2 show the input and output of the algorithm in graphical form. The substitution,

shift row and modified mix column steps are applied to the network array. If required, the

additional shift interfaces step is applied after the mix columns step. Finally, the round

key step is applied. The number of rounds is dependent on network size.

Two verification steps check to ensure the network remains a single network with all

nodes connected. The first verification checks to ensure all nodes are connected to a

network by examining the values in the network array. If a node is found without any

connections, an edge is added to the network array to establish a connection. The check

25



then searches for the node with the most connections, and a connection is removed from

that node. This maintains a constant number of active network edges.

The second verification checks to ensure the network remains a single network

instead of multiple independent networks. A breadth first search begins with any node and

checks connectivity to all other nodes. If any node cannot be reached from the chosen root

node, a sub-network is found. These sub-networks are connected to the root network by

adding the appropriate edges to the network array. Again, edges are removed from the

most connected nodes to maintain the number of active network edges. Both verification

steps must pass for the network topology to be valid, and any corrections are re-verified to

assure no additional topology issues are introduced.

The number of active links is maintained to control the verification steps, which must

add links to fix any inconsistencies the network AES reconfiguration process. While a

single network containing all nodes is required, a network topology with every network

edge active is undesirable. The fully connected network does not allow further

reconfigurations without removing network connections, and removal does not occur

automatically. To preserve the general network state during the verification stage, it is best

to remove links in equal number to those added. Otherwise, the configuration must begin

again to find a valid network configuration.

Ten generations are performed per execution. This allows for the method to use the

output from one generation as the input to the next; which in turn allows for the tracking

of differences between generations.

3.2.2 Steiner. The second approach follows the Steiner tree approach and is

implemented in a similar way to the AES approach. Two additional matrices are needed;

one to store the distance between node pairs and one to store the next step in the path

between node pairs. Only the ’next step’ is required; at each step in the path, there exists

the path between the ’next step’ node and the destination node.

26



A B C D

A 0 0 1 1

B 0 0 0 1

C 1 0 0 0

D 1 1 0 0

(a) Original Network

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

(b) SubBytes

A B C D

A 0 0 1 1

B 0 0 0 1

C 1 0 0 1

D 1 1 1 0

(c) ShiftRows

A B C D

A 0 0 1 1

B 1 0 0 1

C 0 0 0 1

D 1 1 1 0

(d) ShiftColumns

A B C D

A 0 0 0 1

B 0 0 1 0

C 0 1 0 1

D 1 0 1 0

(e) AddRoundKey

Table 3.1: AES Process in a Network

Figure 3.1: Original Network

27



Figure 3.2: Shifted Network

The approach begins by hashing a user-provided pass phrase using the SHA-512 hash

algorithm. The hash is hashed again creating a hash chain until enough bits to populate the

network matrix have been generated. These bits are assigned to the network matrix to

create a starting set of edges. If the hash produces a whole network, the algorithm moves

immediately to re-routing the network traffic. The distance matrix is initialized to infinity,

represented by a sufficiently large integer, and the next-step matrix is initialized to null.

The distance matrix initialization depends on the presence of an edge in the adjacency

matrix. If an edge exists, the distance is set to the activation cost. Otherwise, the distance

is infinity.

Otherwise, the node pairs are ordered by priority, determined by the total demand. A

higher priority is granted to a node pair with a larger demand. The Floyd-Warshall

shortest-path algorithm is used to generate the set of shortest paths, using the set of

possible edges as a reference. If a pair of nodes is not already connected, edges are added

to the network as determined by the path found by Floyd-Warshall.

28



The same verification steps performed in the AES verification process are used here.

If a node is in the network, but not part of the randomly-generated node pairs, it may or

may not be included in the final network. The verification steps ensure that every node is

connected and the network is whole. In practice, each node will be part of a node-pair and

will be accounted for by the Steiner-based part of the algorithm. However, the verification

steps remain a best practice.

Similar to the AES approach, ten generations are performed per execution. After

each generation the distance matrix is re-initialized, based on the final configuration of the

previous generation. Any included edge is initialized to 1000 instead of infinity. The value

of 1000 was chosen as a sufficiently large number greater than any possible network

demand. This weights the edge and discourages it from use in the next generation.

Edges unused in the generation are re-set to either the activation cost of the edge or

infinity, dependent on the adjacency matrix. The next step matrix is re-initialized to null.

This mirrors the original initialization. Each generation uses a new hash value. This sets

the initial set of edges based on the user’s pass phrase, with the phase serving as a ’secret

key’. As with the AES approach, this protects the results of the algorithm while allowing

the algorithm itself to be open.

3.2.3 Network Traffic Routing. The second phase re-routes the network traffic over

the re-configured network topology. Network traffic, like the network topology, is

represented as a dynamic three column array. The three columns represent the source of

the traffic, the destination, and the required bandwidth. The length of the array is

determined by the number of unique source-destination pairs. Multiple commodities

between the same source and destination are grouped together. The required bandwidth

for a commodity is based on the type of traffic between the source and destination. Traffic

types can be text, video, audio, etc.. This information, combined with the network

29



topology and network connection capacity information, defines the maximum concurrent

multicommodity flow problem used in this research.

This research follows Fleischer’s algorithm, detailed in Chapter 2 [10]. The network

is initialized with a null solution and loops until the objective function value is at least

one. The algorithm then examines each commodity to see if the demand has been met. If

the commodity has not yet been routed, Dijkstra’s algorithm is employed to find the

shortest available path between the source and the destination. Note that the shortest

available path may not be the shortest path; the algorithm considers path feasibility and

will not route over edges that are not available or are overly congested. From there, the

bottleneck capacity is determined and routed. The bottleneck capacity is defined as the

minimum value between the available capacity on the edge and the commodity demand.

Finally, the objective function value is updated.

The paths generated from Fleischer’s algorithm are then examined and a set is

selected to cover all network commodities. This function starts by examining each

commodity’s source node, and the edges leading from the source node to a path to the sink

node for that commodity. The flow of the commodity is randomly split between

appropriate paths. It is possible for half the packets from a commodity routed through one

path and the other half routed through another path. All packets arrive at the destination

node. Commodity splitting depends on the current capacity of an edge and the demand of

the commodity. A commodity cannot be dropped for convenience; it must be routed. The

loop moves to the next node in the path and routes the commodity from there, stopping

when the next node is the destination. Once all commodities have chosen final paths, the

output is checked for both exceeding edge capacities and for failing to route commodity

demands, or dropping a commodity.

30



Paths are not weighted between generations. The paths chosen for one generation

have equal opportunity to be re-chosen for the next, providing a similar set of edges is

available.

The result is a set of paths and flow for all commodities through the modified

network configuration.

3.3 Testing

To test the described methods, sample networks are generated. Each method

reconfigures the sample network, and a set of metrics are measured.

3.3.1 Experiments. Each network is described by the network size, number of

interfaces, and maximum edge capacity. Network size is the number of nodes that are in a

given network while number of interfaces determines the maximum number of physical

network connections a given node can make. Every network contains at least one network

interface to connect the network together; for example, a four-port switch is capable of

four network interfaces. For this research, network sizes of 5, 10, 15, 30, 50, 100, and

1000 nodes are tested with 1, 2, 3, 4, or 5 interfaces.

The Network Simulator software is used to generate adjacency matrixes for each

combination of network size and number of interfaces. For statistical significance, each

combination is tested 5 times. The actual starting configuration of each method is

generated via a hashed user pass phrase.

At minimum, each network node can be expected to communicate with at least one

other node. Practically, each node will communicate with many other nodes. Minimum

communication covers only a single standard network service, such as e-mail or file

sharing. For this research, it is assumed that each node will communicate with one other

node in the network. The source and destination nodes are randomly paired and pass a

randomly generated amount of network traffic between the source and destination. The

31



amount of network traffic does not exceed the given maximum edge capacities. Demands

of different types of traffic, such as text or video traffic are not considered individually.

Rather, all traffic traveling from a source to a destination is grouped into a single

commodity. A source node can share both a low and high demand traffic type with the

destination; the generated amount of network traffic between the nodes is the total

communication between the nodes.

In practical use, the possible network edges, the base network description, and the

traffic requirements will be known from physical network configurations and customer

demands. These values can be directly inputted into each method.

The accuracy of the network routing portion can also be varied, ranging from 0 to 1.

However, the more accurate the selection of best paths, the slower the algorithm runs. For

each combination with 100 or fewer nodes, the accuracy level is set at .3. For each

combination with 1000 nodes, the accuracy level is loosened to .5 to accommodate the

increase in nodes and routing requirements.

All experiments run on the same hardware. While the methods may perform faster

with faster hardware, the hardware speed is not part of this research. The hardware

contains an Intel i7 2.67 GHz quad-core processor with 6 GB of random access memory.

Each processor contains two virtual processors for additional parallel processing. The

operating system is Ubuntu version 12.04, 64-bit.

3.3.2 Metrics. A primary concern of this research is the minimizing the cost of a

network topology generation while maintaining a valid output. To that end, several

metrics are considered. The network topology generation process is tested for speed and

scalability while the generated network topologies are examined for topological

difference, security and cost. It is not enough to evaluate the generation process alone; the

generation algorithm can produce and fast results for large networks without producing a

usable operational solution. All metrics must be considered in validating the algorithm.

32



Speed and scalability are linked. The AES method runs in O((i2n3) + (ε−2e(e + n)))

time while the Steiner method runs in O((n3) + (ε−2e(e + n))) time. The second term in the

notation represents the running time of the network routing phase, where ε represents the

accuracy level of the routing. The terms are separated because each phase runs in

sequence and not in parallel; the network routing phase is dependent on the completion of

the re-configuration phase. Each phase of algorithm execution measures run time of that

phase, and the total run time of the method is captured.

Each step in each method affects the overall running time. Each step in the AES

method runs in O(i2n3) time, for each of the three steps: ShiftRows, ShiftColumns, and

ShiftInterfaces. The remaining steps, SubBytes and AddRoundKey, perform in O(in) and

O(n) time, respectively. The three Shift steps are individually complex, requiring O(in)

time per action for O(in2) worth of data. By contrast, the Steiner method runs in O(n3)

time, but each action is only O(1).

A formula for measuring topological difference is developed by Compton [1].

Essentially, each edge in a commodity’s path is examined to determine the amount of

difference for each edge-commodity pair between the original and updated topologies.

The formula is weighted based on the bandwidth requirements for each commodity and

the network size; changes to a high-bandwidth commodity in a small network are more

significant than changes to a low-bandwidth commodity in a large network. The amount

of change in the route for a given commodity is found by summing the absolute values of

the differences in each edge within the route. Absolute values are used to account for both

positive and negative changes over a particular network edge.

Here, the binary variable yi j f represents the inclusion of the i j f path in the set of

edges within a network. The different network configurations, ω, are measured at different

times, t1 and t2.

33



Δ
(
ωt1 , ωt2

)
=
Σk

k=1

[
rkΣi, jεNΣ

F
f=1|x

k
i j f (t2) − xk

i j f (t1) |
]

[
ΣK

k=1dk
] [
Σi, jεNΣ

F
f=1

yi j f (t2)+yi j f (t1)
2

] (3.1)

Security of the network is difficult to quantifiably measure. However, the goal of the

network reconfiguration is to move the paths over which data flows, thus preventing the

ease at which an attacker may gain access. To that end, security is measured through the

difference in the network topologies. Over a series of generations of a given configuration,

the amount of time any given edge is active is measured. Generational topological

differences are also compared using (3.1). It is essential that each generation’s topological

difference is compared not only to the immediately previous generation, but to a set of

previous generations. If the original and third network topologies are similar to each other,

and it is known that a network shifts topologies every hour, an attacker simply has to wait

three hours before re-attempting the attack.

Network node connectivity is measured to provide a framework for evaluating

topological differences. Configurations with high network connectivity have many options

for routing network traffic through the nodes and may display high topographical

differences. Similarly, a configuration with low connectivity has fewer routing options and

may display lower topographical differences. Basaras, Katsaros, and Tassiulas describe

the μ − PCI metric for calculating connectivity in [20].

The μ − PCI metric is found by first finding the node degree values. From there, each

node is compared to other nodes that are directly connected to it. The μ − PCI value of a

node is equal to the number of directly connected nodes with at least that amount of

degrees. For example, a node with a degree of 5 and neighbors with degrees of 3, 1, 4, 2,

and 5 would be assigned the μ − PCI value of 3 because there are 3 directly connected

nodes with degrees of at least 3. In this way, the metric looks at both centralness and

vitalness of a node; a bottleneck node that connects two highly-connected nodes receives a

34



high μ − PCI value while a central hub node connecting lowly-connected nodes receives a

lower value.

By comparison, network cost is remarkably easy to measure. The cost is calculated

using (3.2) and displayed as output for the network administrator’s evaluation.

ωcost =
[
Σk

k=1

[
dkΣi, jεNΣ

F
f=1xk

i j f e
i j f ,k
oc

]
+ Σi, jεNΣ

F
f=1e

i j f ,k
cc

]
(3.2)

Essentially, the costs of the network traffic demands are weighed with the number of

active edges in a given configuration. A configuration with high demands and a high

amount of connectivity will cost more than a network with low demands and low

connectivity. For comparison, the total possible cost with complete connectivity is

provided.

3.4 Summary

The methodology and evaluation approach is defined in this chapter. The AES and

Steiner methods are detailed along with all required parameters. Of those parameters, only

network size and network interfaces are varied. These two factors are sufficient to gather

the metrics necessary for determining the effectiveness of the reconfiguration process.

These metrics include CPU time, generational topographical differences, and network

costs. Results and analysis of the factors and metrics are presented in the next chapter.

35



4 Results and Analysis

This chapter details the results of the experiments discussed in Chapter 3. Results

include run times for each phase of the algorithm, topographical differences, and network

cost. The AES and Steiner methods are compared to establish which method performs

with better results. Additionally, the two methods are both compared to previous research.

4.1 AES Results

4.1.1 Execution Time. As predicted by the algorithm run time,

O((i2n3) + (ε−2e(e + n))), the speed of the AES method is dependent on both the number of

nodes and the number of interfaces. The dependency on number of interfaces is most

acutely seen with the 1000 node test network. The method was able to execute on a

network with 1000 nodes and 1 interface, but failed to execute on a 1000 node, 2 interface

network within an acceptable time frame. For this reason, the AES approach only includes

the 1000 node case with one interface.

The 1000 node, 2 interface case performed a single re-configuration; the execution

time was 12.5 days. As discussed during the goals of this research, a configuration that

takes days to generate is obsolete upon arrival. The 1000 node, 2 interface case fails to

execute in an acceptable amount of time. No analysis of other factors is required is

performed on this case. The remainder of the results for the AES method omits the 1000

node case where the number of interfaces is greater than one.

Figure 4.1 shows the total average run time for all 10 generations across the number

of performed experiments. Table 4.1 contains the standard deviation of the execution

times. Following the 1000 node, 2 interface case, the most significant spike in execution

time is between networks with one and two interfaces. This is due to the additional

computation time required to handle multiple interfaces; this is the point where the

matrices containing network information become three-dimensional. The added

36



complexity of shifting interfaces as well as rows and columns corresponds to the most

drastic increase in total execution time. After the ShiftInterface step is introduced, the

additional time to compute 3, 4, and 5 interfaces is exponential, as predicted by the O()

characterization.

Results shown as 0 seconds executed in sub-millisecond time.

1 1.5 2 2.5 3 3.5 4 4.5 5

10−1

100

101

102

103

104

105

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Total Time for 10 Generations, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.1: AES total times shows speed improvement over previous methods

Figure 4.2 shows the total average time per configuration, across all 50

configurations. Each experiment is performed 5 times, with 10 generations each

experiment, giving a total of 50 configurations. Again, it is shown the most drastic

increase in execution time for each generation is between one and two interfaces, no

matter how many nodes are in the network.

37



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.0089 0.0089 0.0089 0.0110 0.0110

10 Nodes 0.0110 0.0179 0.0167 0.0167 0.0363

15 Nodes 0 0.0110 0.0228 0.0110 0.1774

30 Nodes 0.0607 0.2338 0.1479 0.8065 1.4231

50 Nodes 0.3338 2.3441 6.7026 6.1676 24.0309

100 Nodes 2.5602 23.7758 7.7009 55.6639 117.5725

1000 Nodes 1563.014 NA NA NA NA

Table 4.1: Standard Deviation for Total Time for 10 Generations, AES, in units of network

flow

1 1.5 2 2.5 3 3.5 4 4.5 5
10−4

10−3

10−2

10−1

100

101

102

103

104

105

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Average Time per Generation, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.2: AES generational times do not have large deviations from the mean

38



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.00168654 0.00386436 0.00193218 0.00337309 0.00429987

10 Nodes 0.00210818 0.00432049 0.00590291 0.00269979 0.00337309

15 Nodes 0.00559364 0.00597773 0.00571936 0.0078768 0.01736407

30 Nodes 0.00469515 0.01655160 0.0460260 0.05475602 0.12518856

50 Nodes 0.03198888 0.18894090 0.27712973 0.36084862 0.46111767

100 Nodes 0.13874100 1.49313718 1.57110967 2.77089367 14.7630

1000 Nodes 48.34405 NA NA NA NA

Table 4.2: Standard Deviation for Average Time per Generation, AES, in seconds

Figures 4.3 and 4.4 show the average time per generation for both the edge

re-configuration and traffic routing phases of the algorithm, both edge re-configuration

and traffic routing. In figure 4.3, values shown as 10−10 represent a sub-millisecond time.

The figures show that the two phases represent approximately half of the total run time for

a generation when the number of interfaces is low, but the time to route the network traffic

exponentially increases as the number of interfaces increases. This is due to the routing

phase finding paths through the network for all of the traffic. The AES re-configuration

only guarantees that the network is whole; it does not establish paths between the source

and destination nodes. The routing phase finds all possible paths before routing the traffic;

this enumeration and selection of routes takes time and slows the total speed of the

algorithm exponentially.

4.1.2 Network Costs. Network cost is calculated via Equation 3.2 and shown in

Figure 4.5. Both the dynamic routing costs and the static edge costs are considered for the

network. The total costs for each network are high, even for small networks. This is

mainly due to high traffic demands; a streaming video service consumes greater power and

resources than an e-mail service. If these high-demanding traffic sources are eliminated by

39



1 1.5 2 2.5 3 3.5 4 4.5 5
10−10

10−8

10−6

10−4

10−2

100

102

104

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)
Average Edge Shift Time per Generation, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.3: AES edge re-configuration occurs with no growth across interfaces

business policy, as is the case with many firms, including the DoD, these costs would drop.

The figure shows that traffic demands are more significant than the number of network

nodes and interfaces; networks with lower nodes and interfaces are shown to have higher

costs than larger networks. This is most drastic in the case of 30 nodes, where the costs are

higher than both the 50 and 100 node cases when the three networks have one interface.

Examination of the network traffic demands show that a higher overall demand of the

network in the 30 node, 3 interface case than in the 50 and 100 node 3 interface cases.

Ideally, the traffic costs of a particular configuration should not exceed the total cost

as generated by the adjacency matrix and the list of traffic requirements. However,

40



1 1.5 2 2.5 3 3.5 4 4.5 5
10−4

10−3

10−2

10−1

100

101

102

103

104

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)
Average Traffic Route Time per Generation, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.4: AES routeing time dwarfs edge re-configuration time exponentially

because the routing paths are not guaranteed to have the shortest path for a particular pair

of nodes, the cost of a configuration is frequently higher than the expected cost. The total

possible cost is calculated via:

41



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0 0 0 0.001686548 0

10 Nodes 0.00126491 0.00168654 0.00413118 0.00388730 0.00413118

15 Nodes 0.00193218 0.00397771 0.00432049 0.00505964 0.00379473

30 Nodes 0.00326598 0.0035023 0.0049170 0.00976160 0.00888444

50 Nodes 0.0070047 0.14755850 0.18955104 0.1327621 0.33203052

100 Nodes 0.01053248 0.99405378 1.4596769 1.84599337 2.04530482

1000 Nodes 6.8710018 NA NA NA NA

Table 4.3: Standard Deviation for Edge Shift Time per Generation, AES, in seconds

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.00168654 0.00386436 0.00193218 0.00505964 0.00429987

10 Nodes 0.00337309 0.00600704 0.01003410 0.00658709 0.00750427

15 Nodes 0.00752583 0.00995545 0.01003985 0.01293647 0.02115880

30 Nodes 0.00796113 0.02005398 0.0509431 0.06451762 0.13407301

50 Nodes 0.03899364 0.33649940 0.46668078 0.49361073 0.79314819

100 Nodes 0.14927349 2.48719097 3.03078659 4.6168870 16.8083448

1000 Nodes 55.21505 NA NA NA NA

Table 4.4: Standard Deviation for Traffic Route Time per Generation, AES, in seconds

ωpossible cost =
[
Σk

k=1d
k + Σi, jεNΣ

F
f=1e

i j f
cc

]
(4.1)

This equation is run against the adjacency matrix to find all possible edge costs, to

account for usable edges that are not included in a given configuration. The ratio between

42



1 1.5 2 2.5 3 3.5 4 4.5 5
101

102

103

104

Interfaces

C
os

ts
 (v

ia
 fo

rm
ul

a 
3.

2)

Average Total Cost, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.5: AES costs vary with traffic demands

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.0084 0.0054 0.0018 0.0056 0.0060

10 Nodes 0.0138 0.0117 0.0137 0.0086 0.0279

15 Nodes 0.0367 0.0312 0.0276 0.0260 0.0380

30 Nodes 0.1178 0.0889 0.0831 0.0967 0.1216

50 Nodes 0.1880 0.1656 0.1488 0.2657 0.2999

100 Nodes 0.2723 0.3610 0.4339 0.4831 0.6948

1000 Nodes 4.3306 NA NA NA NA

Table 4.5: Standard Deviation for Average Total Cost, AES, by formula 3.2

43



the average calculated configuration cost and the total possible cost is given in Table 4.6.

The table shows that as the network size increases, either by increasing the number of

nodes or the number of interfaces, the relative cost of the network at each configuration

decreases as compared to the possible cost of the network.

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 18.778 4.9462 6.1031 6.8300 6.6291

10 Nodes 6.0404 14.8884 11.4425 7.3501 8.0124

15 Nodes 12.4686 10.1856 4.8587 6.3072 7.9257

30 Nodes 16.7472 9.0119 4.7109 5.2706 5.3081

50 Nodes 5.3305 4.2630 2.7469 3.3010 2.7337

100 Nodes 1.1037 1.0770 .8624 .6313 .6746

1000 Nodes .3916 NA NA NA NA

Table 4.6: Ratio of Configuration Cost vs. Total Possible Cost, AES, via formula 3.2

4.1.3 Network Differences. Generational topographical differences are calculated

against all 50 configurations of a given combination of nodes and interfaces via Equation

3.1. Figure 4.6 shows the results of the equation. Networks with 3 interfaces are shown to

have the most consistent differences, compared to the other possible network

configurations. Figure 4.6 also shows that the cases of 5 nodes with 1 and 5 interfaces

along with the 10 node and 15 node 1 interface cases to show no differences between each

generation.

Examinations of the final network configurations of each generation for those four

cases show that the network configuration does not deviate. The calculated configuration

44



1 1.5 2 2.5 3 3.5 4 4.5 5
10−10

10−8

10−6

10−4

10−2

100

Interfaces

D
iff

er
en

ce
s

Average Differences, AES

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.6: AES differences vary unpredictably over different configurations

is a subset of the total available edges as given by the adjacency matrix for each case, but

the configurations do not change between generations as expected.

This is most likely due to the verification steps. Examinations of the network

configurations of these cases before the verification steps do show differences in the

overall configuration. However, the configurations were missing nodes or contained

multiple sub-networks instead of a single network. The verification steps address these

issues in a straightforward manner, and the resulting final configuration is the same in

each case, no matter the starting configuration before the verification. Similarly, the

routing phase selects paths in a programmatic way; given the same input of possible

edges, the same paths are repeatedly selected because the algorithm does not weight paths.

45



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0 0.0663 0.0566 0.0830 0

10 Nodes 0 0.0335 0.0249 0.0112 0.0078

15 Nodes 0 0.0215 0.0172 0.0080 0.0039

30 Nodes 0.0151 0.0051 0.0016 0.0007 0.0005

50 Nodes 0.0030 0.0018 0.0004 0.0002 0.0003

100 Nodes 0.0018 0.0001 0.0001 0.0000 0.0000

1000 Nodes 0.0000 NA NA NA NA

Table 4.7: Standard Deviation for Average Total Topological Differences, AES, in units of

network flow

Differences in topology can also be described by the percentage of edges that are

active across all generations. That is, the more edges that are less active over all time, the

greater the differences. Table 4.8 shows the number of edges that are active across every

generation.

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 8 10 14 10 14

10 Nodes 20 8 4 18 34

15 Nodes 28 4 8 14 24

30 Nodes 56 44 58 42 18

50 Nodes 78 18 2 6 350

100 Nodes 28 72 484 20 10

1000 Nodes 148 NA NA NA NA

Table 4.8: Active Edges in All Generations, AES

46



In the cases of 10 and 15 nodes with 1 interface, the table shows that all generations

have every possible edge active. This situation does not allow for further configuration

changes; once a generation adds all possible edges, no edges are removed via the

verifications steps. The shifting phase still executes but no visible changes are made if all

the possible edges are already active.

In the other cases, the differences of the network are shown to decrease as the number

of interfaces increases. Logically, the differences should increase, given additional

dimensions to affect change. The connectiveness of a node affects the differences. If many

nodes are minimally connected, changing a given node’s connections may not have a great

effect on the network as a whole. Table 4.9 shows the average μ − PCI values. The

μ − PCI value shows that as the number of interfaces increase, the amount of overall

connectiveness of a node actually decreases. Here, a node that connects to another node

over three different interfaces is less connective than if it connects to three different nodes

over the same interfaces. The average node connectiveness corresponds with the decrease

in topographic differences as interfaces increase; the fewer connections a node has, the

harder it is to make significant changes.

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 1 1 1 1 1

10 Nodes 3 1 1 1 1

15 Nodes 1 1 1 1 1

30 Nodes 7 3 1 1 1

50 Nodes 6 1 1 1 1

100 Nodes 1 1 1 1 1

1000 Nodes 8 NA NA NA NA

Table 4.9: Node Connectiveness, AES

47



4.2 Steiner Results

4.2.1 Execution Time. Unlike the AES method, the Steiner method is not

dependent on the number of interfaces and runs in O((n3) + (ε−2e(e + n))) time. For that

reason the Steiner method executed on the 1000 node case with all tested numbers of

interfaces, providing a more complete analysis of the method. Figure 4.7 shows the total

time for 10 generations utilizing the Steiner method.

1 1.5 2 2.5 3 3.5 4 4.5 5
10−1

100

101

102

103

104

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Total Time for 10 Generations, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.7: Steiner times show improvement over AES times

Like the AES method, the 1000 node cases require an order of magnitude of

additional time to execute to completion. However, there is less of a pronounced difference

in networks with multiple interfaces as compared to networks with one interface. Notably,

48



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.02683281 0.038987177 0.036331804 0.03286335 0.02683281

10 Nodes 0.02449489 0.03577708 0.068410526 0.0558569 0.14071247

15 Nodes 0.04 0.041472883 0.05761944 0.07874007 0.1104536

30 Nodes 0.09230384 0.25242820 0.272249885 0.24190907 2.01148701

50 Nodes 0.17663521 0.66819158 1.320348439 0.614068 0.7501199

100 Nodes 1.00365332 3.08821631 3.266355768 2.09654954 3.05486497

1000 Nodes 42.7001171 22.57653649 21.77154106 34.1203751 24.1909073

Table 4.10: Standard Deviation for Total Time for 10 Generations, Steiner, in seconds

the time required for the 100 node cases remained similar across all tested interfaces while

the time required for the 50 and 30 node cases increased exponentially. This may lead to

the conclusion that the random generation of the starting configuration of this method

affects the running time of each generation. If the starting hash sequence does not produce

a connected network, additional time is required to connect the set of node pairs.

However, if the hash sequence produces a connected network, the overall time

requirement is greatly reduced. This assumption is validated but the running times shown

in Figure 4.7, but it is later shown that this assumption is not the case.

Figure 4.8 shows the total average time per configuration, across all 50

configurations. This figure mirrors Figure 4.7. This means that the execution time of each

generation is approximately equal; meaning that no one generation causes a great effect to

the total time.

Figures 4.9 and 4.10 show the average time per generation for the edge

re-configuration and traffic routing phases of the algorithm, respectively. Figure 4.9 shows

that the network re-configuration time of each generation is minimal in all but the 1000

node cases. This shows that the edge selection phase of the algorithm has little effect on

49



1 1.5 2 2.5 3 3.5 4 4.5 5
10−2

10−1

100

101

102

103

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Average Time per Generation, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.8: Steiner interfaces contribute to overall generation time

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.00367574 0.00567254 0.00559364 0.00478887 0.00597773

10 Nodes 0.00339934 0.00597773 0.00631048 0.00337309 0.0156005

15 Nodes 0.00541602 0.00647731 0.00413118 0.00326598 0.01897366

30 Nodes 0.00731512 0.01347260 0.03216899 0.06871001 0.17851187

50 Nodes 0.02868681 0.02614149 0.16677063 0.14956470 0.19563639

100 Nodes 5.29456324 5.13688621 5.04285633 7.17275400 7.71494653

1000 Nodes 5.29456324 5.13688621 5.04285633 7.17275400 7.71494653

Table 4.11: Standard Deviation for Average Time per Generation, Steiner, in seconds

the overall running time of the generation of the new configuration. Figure 4.10 reflects

Figures 4.8 and 4.7. This shows that the total time is more affected by the routing time

50



than the edge selection time. As in figure 4.7, the 100 node case performs faster than the

50 node case at 3 interfaces, and faster than the 30 node case at 5 interfaces. This means

the previous conclusion of the affect of the starting configuration on the run time is faulty;

this difference is better explained by the complexity of the network and the number of

possible paths for each commodity. The total computational time is increased by the

number of possible paths because more flexibility is available. Greater flexibility requires

more iterations for Fleisher’s approximation algorithm to produce a result within the

desired error limit. This shows the previous conclusion that the random starting

configuration affecting the execution time is incorrect.

1 1.5 2 2.5 3 3.5 4 4.5 5
10−2

10−1

100

101

102

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Average Edge Shift Time per Generation, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.9: Steiner edge re-configuration times shows great improvement over AES method

51



1 1.5 2 2.5 3 3.5 4 4.5 5
10−3

10−2

10−1

100

101

102

Interfaces

Ti
m

e 
(S

ec
on

ds
, L

og
 S

ca
le

)

Average Traffic Route Time per Generation, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.10: Steiner traffic routing contributes most to overall generational time

4.2.2 Network Costs. Similar to the AES method, the total cost of the networks

generated by the Steiner method are high, even for small networks. The reasoning is the

same; traffic sources with higher requirements cost more to operate than traffic sources

with low demands. The costs are averaged over all iterations of experiments; that is, the

total cost shown in Figure 4.11, is the average cost over all 5 experiments for a given

node/interface combination.

52



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.0049170 0.00565685 0.004237 0.00463800 0.00498887

10 Nodes 0.00432049 0.0049170 0.00498887 0.00282842 0.00326598

15 Nodes 0.00266666 0.00461880 0.00227058 0.00279682 0.00500666

30 Nodes 0.00386436 0.00478887 0.00461880 0.00526624 0.00478887

50 Nodes 0.00461880 0.00579655 0.00379473 0.00337309 0.00500666

100 Nodes 0.01018931 0.01320605 0.01930342 0.03224627 0.04689278

1000 Nodes 1.09969692 2.66999791 4.05566818 4.69231049 5.47089267

Table 4.12: Standard Deviation for Average Edge Shift Time per Generation, Steiner, in

seconds

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.00859283 0.011329 0.009831047 0.00942688 0.01096661

10 Nodes 0.0077198 0.01089482 0.01129936 0.00620152 0.01886655

15 Nodes 0.00808269 0.01109611 0.00640176 0.0060628 0.023980328

30 Nodes 0.01117949 0.01826148 0.036787 0.07397626 0.18330074

50 Nodes 0.03330561 0.03193804 0.17056536 0.15293779 0.2006430

100 Nodes 0.11784225 0.15853878 0.21614289 0.15474253 0.23125764

1000 Nodes 6.394260177 7.80688413 9.09852452 11.865064 13.1858392

Table 4.13: Standard Deviation for Average Traffic Route Time per Generation, Steiner, in

seconds

The figure shows minimal differences between the costs over the number of

interfaces in a given network. The greatest differences in the cost come from adding

additional nodes to the network. The anomalies are the 50 and 100 node cases, which are

53



1 1.5 2 2.5 3 3.5 4 4.5 5
101

102

103

104

Interfaces

C
os

ts
 (v

ia
 fo

rm
ul

a 
3.

2)

Total Time for 10 Generations, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.11: Steiner costs are similar to AES costs

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 68.06964 183.2627 196.1926 1072.750 1131.2941

10 Nodes 3997.59901 23682.4348 46.735432 135.1845 357.3613

15 Nodes 800.30723 1027.8742 4108.57842 23411.093 65.0724

30 Nodes 82.65524 167.2656 436.03921 1546.4331 2995.3226

50 Nodes 23379.1335 59.7165 139.23153 371.9814 414.4486

100 Nodes 1553.0178 4741.2014 22581.06839 46.84479 155.3167

1000 Nodes 138.5919 1025.84670 1706.11418 2447.7096 23459.6333

Table 4.14: Standard Deviation for Average Total Cost, Steiner, via formula 3.2

54



shown to be less costly than the 30 node cases. While the 50 and 100 node cases have

more commodities to route, examination of the generated commodity demands show that

many commodities for the 50 and 100 node cases are low demand. Further examination of

the 30 node cases shows high-demand commodities.

The same cost ratio analysis as in the AES analysis is performed. Table 4.15 shows

similar results as the AES method: as the number of interfaces or nodes increases, the

proportion of actual cost to theoretical cost decreases.

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 8.8456 6.3846 5.8761 7.0731 6.2837

10 Nodes 11.5772 4.5893 5.4021 5.8269 7.1074

15 Nodes 17.1274 9.4009 11.8164 8.7333 7.4068

30 Nodes 19.9478 11.5733 7.5770 10.1409 4.5425

50 Nodes 3.21015 1.8424 1.7222 1.1705 .9451

100 Nodes 1.7287 1.1961 .5553 .6291 .1976

1000 Nodes .2142 .0812 .0812 .0350 .0257

Table 4.15: Ratio of Configuration Cost vs. Total Possible Cost, Steiner, via formula 3.2

4.2.3 Network Differences. Generational topographical differences are calculated

against all 50 configurations of a given combination of nodes and interfaces via Equation

3.1. Figure 4.12 shows the resulting network differences of the equation. Smaller

networks are shown to have less overall differences than larger networks, with the

exception of the 50 node cases after 3 interfaces.

These results follow logical reasoning: Smaller networks are more sensitive to

change, and show the biggest differences for the smallest amount of overall changes. As

the number of network nodes and interfaces increase, the amount of change at the network

level decreases. For example, take the 100 node case and examine only the edge

55



1 1.5 2 2.5 3 3.5 4 4.5 5
10−4

10−3

10−2

10−1

100

Interfaces

D
iff

er
en

ce
s

Average Differences, Steiner

5 Nodes
10 Nodes
15 Nodes
30 Nodes
50 Nodes
100 Nodes
1000 Nodes

Figure 4.12: Steiner differences exponentially decrease as interfaces linearly increase

re-configuration phase. Modifying 10 edges over one interface results in a 10% change.

However, modifying 15 edges over two interfaces only results in a 7.5% change, despite

the fact that more changes occurred. Consistent change is shown across interfaces in the 5,

100, and 1000 node cases while in the other cases greater differences are shown with a

fewer number of interfaces.

The average number of active edges and the connectivity of the network correspond

with the variations in the topographical differences. Table 4.17 shows the percentage of

active edges in a given network with respect to the adjacency matrix. Table 4.18 shows the

connectiveness of the nodes.

56



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0.1148 0.0741 0.0490 0.0678 0.0637

10 Nodes 0.0362 0.0275 0.0162 0.0088 0.0058

15 Nodes 0.0218 0.0157 0.0068 0.0032 0.0015

30 Nodes 0.0048 0.0017 0.0010 0.0005 0.0005

50 Nodes 0.0023 0.0007 0.0002 0.0003 0.0003

100 Nodes 0.0003 0.0004 0.0003 0.0003 0.0003

1000 Nodes 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.16: Standard Deviation for Topological Differences, Steiner, in units of network

flow

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 0 0 0 0 0

10 Nodes 0 0 0 0 0

15 Nodes 0 0 0 0 0

30 Nodes 0 0 0 0 0

50 Nodes 0 0 0 0 0

100 Nodes 0 0 0 0 0

1000 Nodes 0 0 0 0 0

Table 4.17: Number of Active Edges in All Generations, Steiner

The sparse network reflects the lack of differences shown in Figure 4.12. A fully

connected network is required; if a node has few neighbors, there are few options to

modify the connection.

57



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

5 Nodes 2 1 1 1 1

10 Nodes 3 1 1 1 1

15 Nodes 2 2 1 1 1

30 Nodes 4 2 1 1 1

50 Nodes 3 1 1 1 1

100 Nodes 4 1 1 1 1

1000 Nodes 60 30 7 9 3

Table 4.18: Node Connectiveness, Steiner

4.3 Comparisons

The AES and Steiner methods presented in this research are evaluated under the same

metrics. Comparisons between the methods are accomplished via a t-test.

The Steiner method provides greater topological differences in all but the 50 node 2

interface case at a 95% confidence level. Expanding the comparison to the 90%

confidence level does not prove the Steiner method provides greater topographical

differences in those cases.

Comparing the costs of the generated networks shows the methods are more equal.

The AES method produces cheaper networks for the 5 node cases with all interfaces; the

10 node 5 interface case; the 15 node 2 and 5 interface cases; the 30 node 1, 2, and 5

interface cases; and the 100 node 2 and 4 interface cases at the 95% confidence level. The

Steiner method; however, provides cheaper networks for randomly generated commodities

at the 5 node 1 interface case and the 30 node 1 interface case at the 90% confidence level.

Each generation of networks is sparse. This is almost by design; examination of the

starting adjacency matrices shows the set of possible network edges are also sparse

58



networks. To test the methods of creating network differences on a complete network,

additional experiments are generated with the 50 node case. The adjacency matrixes are

modified to include every edge; each generation still contains a subset these possible

edges.

Figure 4.13 shows the amount of network differences for each method, on both a

complete and sparse set of possible network edges for the 50 node cases. Each line shown

represents the amount of differences for that case as a result of the topological difference

formula given by formula 3.1. The figure shows that a fully connected network generates

fewer differences than the sparse networks. Again, this is due to the availability of

additional edges. When more edges are available, more changes are required to show a

significant difference at the network level.

1 1.5 2 2.5 3 3.5 4 4.5 5
10−4

10−3

10−2

10−1

Interfaces

D
iff

er
en

ce
s

Differences with 50 Nodes in Sparse and Complete Networks

Complete AES
Complete Steiner
Sparse AES
Sparse Steiner

Figure 4.13: Complete possible networks only assist differences if generated configuration

is not sparse

59



1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

AES, 10−4 0.706 0.3495 0.2252 0.1387 0.1331

Steiner, 10−3 0.1921 0.1911 0.2311 0.1574 0.1229

Table 4.19: Standard Deviation, Differences in units of network flow

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

AES 1 1 1 1 1

Steiner 6 1 1 1 1

Table 4.20: μ − PCI of Complete Graphs

1 Interface 2 Interfaces 3 Interfaces 4 Interfaces 5 Interfaces

AES 10 8 0 40 110

Steiner 0 0 0 0 0

Table 4.21: Connectiveness of Complete Graphs

Tables 4.20 and 4.21 show that despite the relaxed adjacency matrix, the generated

networks remain sparse. Comparing the table information to the Figure 4.13, the sparsity

of the generated networks explains the lack of differences between generations. However,

examining the number of active edges present in all generations decreased from the

networks generated from the sparse adjacency matrixes. This means that while the

calculated differences are small, the original goal is still partially achieved. The number of

edges active 100% of the time over a group of generations is perhaps a better

measurement of network differences; however, further experiments are required.

60



The Steiner method continues to perform better than the AES method, however. At a

95% confidence level, the Steiner method generated networks with greater differences

than the AES method across all interfaces.

Both methods are compared against Compton’s work in regards to network

differences for the 5, 10, and 15 node cases at the 1, 2, 3, and 4 interface level as well as

the 30 node case at the 1 and 2 interface level. In both methods, no significant differences

are observed in the differences between generated network topologies at the 90%

confidence level using a t-test [1].

4.4 Summary

The results presented here detail the effectiveness of the AES and Steiner methods

with Fleisher’s routing method. The results show that topographic differences are

dependent on the network infrastructure; the more options a node has to connect to the

network, the greater the amount of differences can be made. Additionally, the greater the

amount of redundancy, the easier it becomes for network administrators to make changes

without network downtime.

The overall speed of the Steiner method allows for quick changes in the face of an

active attack. This is important because attacks such as distributed denial of service

attacks ramp up quickly. The ability to modify the network configuration as well as block

the appropriate incoming address may serve to continue to allow legitimate traffic while

the attack is ongoing. Not only would the attackers have to modify the incoming

addresses, they would have to take the time to modify the attack vector to account for the

shifting topology.

61



5 Conclusions and Future Work

Demand for effective network defense capabilities continues to increase as cyber

attacks occur more and more frequently and gain more and more prominence in the

media. Many defense strategies exist, but more are needed to meet the challenge of

increasingly sophisticated attacks. This research addresses dynamic network topologies as

a means of network defense in response to both ongoing cyber attacks or the threat of

potential cyber attacks. The prototype application developed dynamically shifts the

network topology and re-routes network traffic accordingly. This network shift, in theory,

expends the resources of an attacker, as the network requires continually re-scanning to

determine appropriate attack vectors.

The goal of this research is to provide another layer of defense for use by network

administrators. An algorithm was successfully developed using two different

methodologies. The first methodology utilized the Advanced Encryption Standard as a

means to encrypt a network topology. The second methodology uses graph theory and

Steiner trees to generate a network configuration from the basic network information.

Both methods use the Fleisher routing algorithm to ensure the network traffic is routed

properly through the new network configuration.

This research improved on previous research by addressing a greater number of

nodes and network commodities. The results for networks with nodes 50, 100, and 1000

have not been addressed previously, and the number of commodities was previously

limited to 3 commodities per network. The sample networks used in this research are

closer in scale and scope to operational networks currently in use.

However, improvements can be made to this research before it is used in operational

environments. Additional steps can be added to the algorithm to group nodes together for

networks larger than 1000 nodes. This would also assist in modifying an extensive

enterprise network such as the DoD’s networks. Each base or other installation would

62



have the ability to modify the local network without affecting the connections between

installations. Enterprise administrators can then independently modify those connections.

This scales in the opposite way as well – an installation can independently modify the

networks of various tenants, then on the structure of the greater installation infrastructure.

The scalability allows for isolation of the changes, if required; it is needless to potentially

disturb the entire network when only a certain location is targeted.

The algorithm itself can be improved in a number of ways. The execution runtime

can be shortened if the algorithm were to execute in a parallel manner, instead of in a

serialized way. Currently, both phases and methods of the algorithm execute iteratively,

but each step is not dependent on the surrounding steps. The only dependency is that the

network edges must be modified before the network routing takes place. Additionally, this

algorithm focuses mainly on network infrastructure devices with multiple network

interfaces. General workstations only possess one connection to a single infrastructure

device. While this case can be addressed via the set of possible edges, separation of the

infrastructure devices and workstations may produce better results.

This research also assumed the network edges are bi-directional. In an operational

sense, this is not always a safe assumption. Read-only connections are occasionally

required for security of other purposes. Additionally, measures to weight the network

paths in the route phase of the algorithm can be improved upon. Currently, no preference

is given to routes that were not used in previous generations, if the same edges are still

present. Additional topographical differences can be achieved with various routing paths.

Network traffic demands can also be prioritized; it may be more important to guarantee

e-mail and message traffic flow before streaming video, depending on the needs of the

network and the mission.

The work presented here also assumes that the network is clean; that is, there is no

malware present on the network. Potentially, malware already operating on the network

63



can automatically adapt to any network changes made by way of sending updated

information back to the attacker. Examination of packets after network modifications may

serve to identify infected machines. This functionality would jointly serve with an IPS as

an enhancement to the IPS network sensors.

Adding security measures to the physical layer of the network adds to the overall

security package of a network. Current security practices stop after data encryption and

network address filtering. Security at the lowest level of network infrastructure allows for

greater control of how the network traffic flows around the network. Greater control over

the network means more options are available for defense when the network is attacked.

64



Bibliography

[1] M. Compton, “Improving the quality of service and security of military networks
with a network tasking order process,” Ph.D. dissertation, AFIT, 2010.

[2] “Specification for the advanced encryption standard (aes),” National Institute of
Standards and Technology, FIPS PUBS 197, November 2001.

[3] L. C. W. Wade Trappe, Introduction to Cryptography with Coding Theory, 2nd ed.
Pearson Prentice Hall, 2006.

[4] R. R. C. S. T. Cormen, C. Leiserson, Introduction to Alogorithms, 2nd ed., M. Press,
Ed. McGraw-Hill, 2001.

[5] D. P. Shmoys, David B. Williamson, The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, P. Janzow, Ed. Prentice Hall, 1993.

[7] E. Kleinberb, Jon. Tardos, Algorithm Design, C. Leyba, Ed. Pearson Education,
Inc, 2006.

[8] N. E. Young, “Randomized rounding without solving the linear program,” CoRR,
vol. cs.DS/0205036, 2002.

[9] N. Garg and J. Koenemann, “Faster and simpler algorithms for multicommodity flow
and other fractional packing problems,” SIAM Journal on Computing, vol. 37, no. 2,
pp. 630–652, 2007.

[10] L. K. Fleischer, “Approximating fractional multicommodity flow independent of the
number of commodities,” SIAM J. Discrete Math, vol. 13, 2000.

[11] K. S. Ho and K. W. Cheung, “Generalized survivable network,” Networking,
IEEE/ACM Transactions on, vol. 15, no. 4, pp. 750–760, 2007.

[12] Y. Agarwal, “Survivable network design using polyhedral approaches,” in
Communication Systems and Networks (COMSNETS), 2011 Third International
Conference on, 2011, pp. 1–6.

[13] A. Narula-Tam and E. Modiano, “Dynamic load balancing in wdm packet networks
with and without wavelength constraints,” Selected Areas in Communications, IEEE
Journal on, vol. 18, no. 10, pp. 1972–1979, 2000.

[14] P. Tran and U. Killat, “Dynamic reconfiguration of logical topology for wdm
networks under traffic changes,” in Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE, 2008, pp. 279–286.

65



[15] P. N. Tran, L. Casucci, and A. Timm-Giel, “Optimal mapping of virtual networks
considering reactive reconfiguration,” in Cloud Networking (CLOUDNET), 2012
IEEE 1st International Conference on, 2012, pp. 35–40.

[16] M. C. Erwin, “Combining quality of service and topology control indirectional
hybrid wireless networks,” Master’s thesis, Air Force Institute of Technology, 2006.

[17] M. Dzida, M. Zagozdzon, M. Pioro, T. Sliwinski, and W. Ogryczak, “Path
generation for a class of survivable network design problems,” in Conference on
Next Generation Internet Networks, 2008.

[18] A. K. Todimala and B. Ramamurthy, “Approximation algorithms for survivable
multicommodity flow problems with applications to network design,” in IEEE
INFOCOM, 2006, pp. 1–12.

[19] V. Daemen, Joan; Rijmen, “Aes proposal: Rijndael,” September 1999. [Online].
Available: http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf#page=1

[20] P. Basaras, D. Katsaros, and L. Tassiulas, “Detecting influential spreaders in
complex, dynamic networks,” Computer, vol. 46, no. 4, pp. 24–29, 2013.

66



REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
13-06-2013 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From — To) 
Jan 2010 – 13 June 2013 

4. TITLE AND SUBTITLE  
Dynamic Network Topologies 

5a. CONTRACT NUMBER  

5b. GRANT NUMBER  

5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
Lingg, Heather A, Ms. 
 

5d. PROJECT NUMBER  
13G192H 
5e. TASK NUMBER  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/ENY) 
2950 Hobson Way  
WPAFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
AFIT-ENG-13-J-04 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
 
Dr. Robert J. Bonneau 
875 N Randolph St, Ste 325, Rm 3112, 
Arlington, VA 22203 
(703) 696-9545 (DSN: 426-9545) 
Email: robert.bonneau@afosr.af.mil 
 

10. SPONSOR/MONITOR’S ACRONYM(S)  
AFOSR/RTC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  
 

12. DISTRIBUTION / AVAILABILITY STATEMENT  
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED  

13. SUPPLEMENTARY NOTES      This material is declared a work of the U.S. Government and is not subject to 
copyright protection in the United States. 
14. ABSTRACT  
Demand for effective network defense capabilities continues to increase as cyber 
attacks occur more and more frequently and gain more and more prominence in the 
media. Current security practices stop after data encryption and network address filtering. 
Security at the lowest level of network infrastructure allows for greater control of how the 
network traffic flows around the network. This research details two methods for extending 
security practices to the physical layer of a network by modifying the network 
infrastructure. The first method adapts the Advanced Encryption Standard while the 
second method uses a Steiner tree. After the network connections are updated, the traffic 
is re-routed using an approximation algorithm to solve the resulting multicommodity flow 
problem. The results show that modifying the network connections provides additional 
security to the information. Additionally, this research extends on previous research by 
addressing enterprise-size networks; networks between 5 and 1000 nodes with 1 through 5 
interfaces are tested. While the final configuration depends greatly on the starting network 
infrastructure, the speed of the execution time enables administrators to make 
infrastructure adjustments in response to active cyber attacks. 
15. SUBJECT TERMS 
Dynamic network topology, cryptology, graph theory 

16. SECURITY CLASSIFICATION OF:  17. LIMITATION 
OF ABSTRACT  
 
UU  
 

18. NUMBER 
OF PAGES  
 
80 
 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Kenneth Hopkinson, AFIT/ENG 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

19b. TELEPHONE NUMBER (Include Area Code) 
(937)255-3636, ext 4579   kenneth.hopkinson@afit.edu 
 

Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  


	Air Force Institute of Technology
	AFIT Scholar
	6-13-2013

	Dynamic Network Topologies
	Heather A. Lingg
	Recommended Citation


	LinggThesis1
	SignedThesis
	LinggThesis2

