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Abstract

In cyberspace, attackers commonly infect computer systems with malware to gain

capabilities such as remote access, keylogging, and stealth. Many malware samples include

rootkit functionality to hide attacker activities on the target system. After detection, users

can remove the rootkit and associated malware from the system with commercial tools.

This research describes, implements, and evaluates a clean boot method using two

partitions to detect rootkits on a system. One partition is potentially infected with a rootkit

while the other is clean. The method obtains directory listings of the potentially infected

operating system from each partition and compares the lists to find hidden files. While the

clean boot method is similar to other cross-view detection techniques, this method is unique

because it uses a clean partition of the same system as the clean operating system, rather

than external media. The method produces a 0% false positive rate and a 40.625% true

positive rate. In operation, the true positive rate should increase because the experiment

produces limitations that prevent many rootkits from working properly.

Limitations such as incorrect rootkit setup and rootkits that detect VMware prevent the

method from detecting rootkit behavior in this experiment. Vulnerabilities of the method

include the assumption that the system restore folder is clean and the assumption that the

clean partition is clean. This thesis provides recommendations for more effective rootkit

detection.
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ROOTKIT DETECTION USING A CROSS-VIEW

CLEAN BOOT METHOD

I. Introduction

Computer systems are vulnerable to attack. Users, administrators, and policy makers

must take defensive measures to prevent attacks. Such defensive measures include using

AntiVirus (AV) software, implementing firewalls, and practicing safe Internet browsing

habits. Sometimes attacks get through those measures, though, and insert malicious code

onto the user’s system. When the code hides from the user, the threat is often difficult to

find and remove. The method presented in this thesis assists in finding rootkits, the stealth

mechanism for many of these threats.

1.1 Problem Definition

In cyberspace, attackers often hide their presence by intercepting data before the user

sees it [13]. Rootkits function as the stealth capability for an attacker’s malicious code.

If a user does not detect a rootkit, the malware the rootkit hides can negatively impact

the computer system’s confidentiality, availability, and integrity. The malware can steal

information and send it to an attacker, destroy files and software on the system, or modify

the users’ data without their knowledge. Immediate rootkit detection is necessary to remove

the threat before the protected malware causes extensive damage.

Because rootkits hide their presence, detecting them is difficult. The information

presented to the user about the contents of a system may be filtered by a rootkit, potentially

deceiving the user. Detection methods implement various techniques to assist human

operators in discovering rootkits. These techniques, described fully in Section 2.3, range

1



from searching for specific byte patterns in potential malware to using external hardware

to monitor system activities. Cross-view detection is a technique that compares two views

of an operating system, noting unexpected differences as indications of a rootkit.

The rootkit detection method presented in this thesis implements the cross-view

detection technique. The method compares the directory listing from the potentially

infected operating system (OS) to an uncompromised, external OS. In this method, the

OSs reside on the same hard disk to provide dual-boot functionality. Configuring a system

for dual-boot eliminates the need for external media, such as a Compact Disk (CD), to run

this cross-view rootkit detection method. The dual-boot environment is simple to maintain

after setup. In this experiment, the disk contains Windows and Linux partitions. This

division provides the user with the ability to execute the method at any time, rather than

only when the external media is available. A user or set of users can use this detection

method operationally if applied in this manner. This setup also allows a user to run the

method on multiple systems simultaneously.

Other researchers have done similar work with cross-view based rootkit detection,

described in detail in Section 2.3.3. While some of those methods detect hidden processes,

this method detects hidden files [21, 22, 27]. Other methods detect hidden files but use

different media for the clean view of the system [7, 9, 34]. This method is a self-contained

clean boot detection system that works on Windows XP, where the clean OS already resides

on another partition on the computer. The experiment uses Windows XP as the tainted

OS because more working rootkit samples exist for Windows XP than Windows Vista or

Windows 7.

In this implementation, the user initially sets up the system with a Windows partition

and an Ubuntu partition. The system only accesses the Ubuntu partition for rootkit

detection. The method obtains a directory listing of the Windows partition from the

Windows partition, reboots into the Ubuntu partition, obtains a directory listing of the

2



Windows partition from the Ubuntu partition, and compares the lists. Differences in the

lists, other than certain expected differences described in Section 4.3, indicate rootkit

activity.

1.2 Research Goals and Hypothesis

The goals of this research are to:

• determine the effectiveness of the clean boot rootkit detection method,

• identify the types of rootkits the method detects,

• determine the characteristics of undetected rootkits, and

• find the time required to detect a rootkit using this method.

The hypothesis is that the clean boot method will detect more rootkits than other methods,

but will take longer to detect them.

1.3 Contributions

The significant contributions this thesis makes are that it:

• summarizes previous rootkit detection research, based on detection category (§2.4,

Table 2.1),

• presents an operational implementation of the clean boot detection method, described

in Chapter 3, and its results (§4.1),

• details the limitations of the method to indicate potential problems and areas for

improvement (§4.2),

• provides recommendations for defensive measures to protect a system from rootkits

(§4.4), and

3



• tests the method against a larger number of samples than previous research tests, with

the full list of test rootkits and their hashes available in Appendix C.

1.4 Thesis Organization

This document contains five chapters. Chapter II is a literature review, which discusses

the background of rootkits, rootkit stealth techniques, and rootkit detection techniques.

This chapter summarizes the previous research done in rootkit detection and categorizes

those into the five rootkit detection techniques.

Chapter III is the experiment methodology for evaluating the clean boot method

presented in this thesis. This chapter describes the process used to implement and test the

method. The chapter provides instructions for the system setup and rootkit setup required

to reproduce the experiments.

Chapter IV presents the results of the method, interprets the experimental results,

explains failures, and provides timing results for the method. The chapter also explains

limitations of the method, vulnerabilities an attacker can exploit, and recommendations for

protecting the system.

Chapter V concludes the thesis, summarizing the findings and contributions. This

chapter also summarizes the limitations of the method, describes ways to operationalize

the method, and presents areas of future work for investigation.

4



II. Literature Review

This chapter covers the background of rootkits, rootkit stealth techniques, and current

research on rootkit detection techniques. Section 2.1 discusses the definition of the term

“rootkit,” the modes in which rootkits run, and the difference between persistent and

memory-based rootkits. Three common stealth techniques exist that rootkits use to hide

their presence, described in Section 2.2. Section 2.3 summarizes the five major rootkit

detection categories and the previous research completed in each area.

2.1 Rootkits

A rootkit is a set of tools that enable an attacker to maintain administrative access on

a system without detection [13]. The term “rootkit” comes from the terms “root,” the most

powerful user on a UNIX system, and “kit,” a set of programs and code. The identifying

quality of rootkits is that they hide their presence on an infected system. Rootkits are not

malicious by nature, but become so when executed with malicious intent. For example,

rootkits often hide malware. The term “malware” is a compound of “malicious software,”

and describes code that modifies the behavior of a system without the user’s knowledge or

consent [30].

2.1.1 Types of Rootkits.

Five classifications for rootkits exist in academia [14]. The location in the operating

system where the rootkit operates determines these classifications and the capabilities of

the rootkit. In order from least privileged to most privileged, the classifications are user

mode rootkit, kernel mode rootkit, bootkit, hypervisor rootkit, and firmware rootkit.

The term “user mode” refers to the Windows privilege mode system [1]. The privilege

modes correspond to the access control rings of an Intel x86 processor, shown in Figure 2.1

[4]. Ring 0 is the most privileged of the rings, and Ring 3 is the least privileged. Software
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programs assigned to a certain ring cannot access lower numbered rings, except through OS

constructs. User mode programs and rootkits execute in Ring 3. Many user mode rootkits

hide in running applications through the use of import address table hooking, described in

Section 2.2.1. User mode rootkits can also run as a separate application.

Figure 2.1: Privilege rings [1]

“Kernel mode” refers to programs and rootkits that run in Ring 0 [1]. Everything

running in kernel mode has access to all processor instructions and memory. A common

method of implementing kernel mode rootkits is to make the rootkit a loadable kernel

module [19]. The malicious module replaces a legitimate module by taking its place

in the system call table or modifying the pointer to the legitimate module so it points

to the malicious one. The malicious module often implements the functions of the

legitimate module so the system still runs correctly, but any information returned to the

user passes through the rootkit first. The rootkit checks the information sent to the user and

removes anything that indicates the rootkit’s presence. Another method of implementing

kernel mode rootkits is to insert the rootkit code directly into a legitimate module. This
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method produces similar results to the method of replacing the module completely, but the

modification is more likely to survive a kernel reboot. The modification is vulnerable to

detection by integrity checkers [19] (described in Section 2.3.4). Kernel rootkits can use

System Service Descriptor Table (SSDT) hooking and Interrupt Descriptor Table (IDT)

hooking (described in Section 2.2.1). These rootkits are much more difficult to detect, but

behavior based detection techniques (explained in Section 2.3.2) can often identify them.

The most evasive kernel mode rootkits implement Direct Kernel Object Manipulation

(DKOM) to modify data structures in the kernel [35] (described in Section 2.2.3).

Bootkits are kernel mode rootkits, but they specifically modify the boot sequence [14].

Bootkits can replace the boot loader with a compromised version or modify the Master

Boot Record (MBR). Stoned Bootkit replaces the boot loader so the Basic Input/Output

System (BIOS) loads the bootkit upon startup [18]. Stoned then inserts itself into memory

through OS hooks and patches. Stoned is a bootkit base, giving developers a platform

to write the boot software specific to their needs. VBootkit demonstrates the capability of

using a custom boot sector to execute bootkit code on Windows Vista [20]. VBootkit hooks

the interrupt for disk reads (INT 13), reads the MBR to find the signature for bootmgr.exe,

and patches bootmgr.exe while the boot sector loads. VBootkit disables full volume

encryption and patches Multilingual User Interface (MUI) resources. eEye BootRoot is

a bootkit that patches OS files as they load and reserves a place in memory for its own

code [32]. Like VBootkit, eEye BootRoot hooks the disk read interrupt and scans for code

signatures to find the OS loader. Alureon is different from other bootkits because it modifies

the MBR and works on 64-bit Windows 7 [10]. Alureon bypasses Windows 7’s driver

signing requirement by lowering the boot setting value of LoadIntegrityCheckPolicy.

Hypervisor rootkits and virtual machine-based rootkits strive to run the rootkit as

a separate OS from the target [31]. Figure 2.2 shows that in software virtualization,

the rootkit runs the target OS as a Virtual Machine (VM), with the rootkit running the
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Virtual Machine Monitor (VMM). In hardware virtualization, the rootkit and the target OS

both reside in hardware, with the rootkit running a hypervisor. Virtualization allows the

rootkit to intercept all hardware calls that the system makes. Proof-of-concept prototype

rootkits demonstrate these techniques [14]. One virtual machine-based rootkit is SubVirt,

developed by Microsoft and the University of Michigan. SubVirt modifies the boot

sequence and installs a VMM on the host hardware of the victim, underneath the target

OS. SubVirt then runs the target OS as a VM. Only low-level and offline scans detect this

type of rootkit because the target OS is unaware that it is in a VM [17]. Blue Pill, created

by Rutkowska, is a hypervisor rootkit that does not modify the BIOS or system files as

SubVirt does [31]. Blue Pill installs by inserting a driver into the kernel that enables AMD-

V’s Secure Virtual Machine (SVM). The driver then sets up the hypervisor and loads the

hypervisor into memory, allowing the rootkit to intercept hardware calls to and from the

target OS.

Figure 2.2: Software and hardware virtualization [31]
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Firmware rootkits hide in hardware and firmware, such as the system BIOS

or a network card. Heasman presents two firmware rootkits that persist in the

Advanced Configuration and Power Interface (ACPI) BIOS and the Peripheral Component

Interconnect (PCI) bus [11, 12]. The ACPI rootkit survives reboots, re-installation of the

same OS, and installation of a new OS [12]. The ACPI rootkit is difficult to detect and

remove because the rootkit code is within the BIOS. The PCI rootkit hides on the PCI bus

and executes while the system BIOS is initializing Read-only Memory (ROM) [11]. The

rootkit must maintain control throughout the OS start up to run on the system. Firmware

rootkits survive reboots of the system because they reside on hardware.

2.1.2 Persistence.

A rootkit’s ability to survive a reboot of the system determines its persistence [6].

Two classifications for persistence exist: memory-based rootkits and persistent rootkits.

Persistent rootkits survive a reboot by storing their code somewhere permanent on the

system. The code must be accessible after the reboot. The rootkit must also hook the

boot sequence so its code loads into memory and executes after the reboot. Memory-based

rootkits do not survive a reboot. The code resides in memory, making it more difficult to

detect. Some systems, like servers, remain online for extended periods of time, so memory-

based rootkits can still have damaging effects on these systems.

2.2 Rootkit Stealth Techniques

Rootkits hide their presence in many ways. The three most common are hooking,

patching, and DKOM [13]. Section 2.2.1 explains hooking and describes hooking

techniques in “userland” and kernel space. Section 2.2.2 describes the implementation

and uses of patches. Section 2.2.3 discusses DKOM and methods to accomplish it.

2.2.1 Hooking.

Rootkits commonly use hooking as a stealth technique [13]. In user mode, rootkits

utilize two types of hooks: Import Address Table (IAT) hooks and inline function hooks.
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In kernel mode, rootkits utilize IDT hooks and SSDT hooks. Figure 2.3 follows a function

call from the application to the hardware. The figure shows the different places in the

function where a rootkit could hook its code.

Figure 2.3: Windows potential hook locations [26]
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IAT hooks take advantage of function calls in applications [13]. When an application

makes a function call to another binary, it looks up the address of the function in an IAT.

The rootkit parses through the application to find a function to hook and replaces the

function’s address in the IAT with the rootkit’s address. The rootkit jumps to the address of

the original function after running the rootkit code, as shown in Figure 2.4. At runtime, the

application executes the rootkit code before executing the actual function. The user does

not detect the rootkit’s execution because the real function still runs as expected.

Figure 2.4: Normal execution path vs. hooked execution path for an IAT hook [13]

Inline function hooks are more powerful than IAT hooks because they overwrite the

code of the target function [13]. Overwriting the function’s code guarantees that the

rootkit code will run, even if the system modifies the IAT. The first five bytes of most

32-bit Windows functions, called the preamble, are the same. An unconditional jump

also takes five bytes. A rootkit using inline function hooks replaces five bytes, often the

preamble, with an unconditional jump to the rootkit code. The five bytes can be anywhere

in the function, but must replace full instructions to allow the function to execute without

crashing. In Figure 2.5, the detour function represents the rootkit code. The rootkit saves

the five bytes it replaces in the previous step as the trampoline function. The detour function
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calls the trampoline function after running the rootkit code. The trampoline runs the five

bytes the rootkit replaced and jumps to the target function. The target function returns the

results to the detour function, allowing the rootkit to alter the results before returning them

to the source function.

Figure 2.5: Inline function hook [13]

IDT hooks manipulate the call from the IDT to the SSDT [13]. As shown in Figure

2.6, the system calls the IDT when an interrupt occurs in an application. Certain interrupts,

such as 0x2E, require the IDT to call the SSDT. The rootkit intercepts the call to the

SSDT before it reaches KiSystemService. IDT hooks cannot filter the data that the SSDT

returns because the rootkit does not regain control after calling the SSDT, but the hooks

can still block requests from certain software applications like firewalls.

The SSDT hook works similarly to the IDT hook. The SSDT contains the addresses

of the system services in Windows [13]. When a user-mode application requires a kernel

service, KiSystemService calls the SSDT to obtain the address of the service. The

SSDT calls the function at that address and returns the information from the function to

the application. A rootkit using an SSDT hook modifies one or more of the entries in the

SSDT to point to the rootkit function instead of the intended function, as shown in Figure

2.7. The rootkit can return false information to the application rather than the information

the real function would provide. For example, if the real function returns a list of running

12



Figure 2.6: IDT hook [16]

processes, the rootkit can return that list after removing the rootkit’s processes, effectively

hiding its presence.

2.2.2 Patching.

Patching is similar to hooking because both add the rootkit code into running

applications [13]. Patching does not modify the call tables like hooking does, making

patching less vulnerable to detection methods that look for changes in the call tables.

Patching overwrites software to change the way the software performs. Developers use

several patching methods.

The first patching method is to change the source code, recompile it, and run the

software again [13]. To accomplish this, the attacker must obtain the source code, which is

difficult with most software because developers do not want others modifying the software.

If the attacker can obtain the source code, he can modify the program in any way.
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Figure 2.7: SSDT hook [16]

The second patching method is to change the bytes in the binary using a hexadecimal

editor or other software [13]. Attackers can change the destination of jumps or turn off

security bits to remove software protection. Figure 2.8 demonstrates detour patching,

which modifies the control flow around a function. At the point of branch modification,

the attacker modifies the bytes of the function to jump to the rootkit code. When the rootkit

code completes, it jumps back to the end of the function. The part of the function that is

between the jump and the end never executes because the rootkit replaces it.

The last patching method is to change the values of data in memory at runtime [13].

These patches require an attacker to know the structure of the program’s memory and where

the data resides. Modifying the data values can change program logic and how the program

behaves. Attackers often use this technique to alter data in games, such as the number of

lives the user maintains.
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Patches can overwrite code entirely, as shown in Figure 2.8, or overwrite the existing

code to jump to a new location, run the rootkit and original code, and jump back to the

branch in the function. Legitimate uses of patches, such as fixing security problems,

hinder the user from determining if a patch is malicious or not. To determine if a patch

is malicious, users can run AV software or upload the patch to VirusTotal [33].

Figure 2.8: Modification of control flow with a patch [13]

2.2.3 Direct Kernel Object Manipulation (DKOM).

While hooking is an effective way to hide a rootkit, it is well known and easily

detectable, though it is difficult to differentiate between a benign hook and a malicious

one [13]. DKOM is more difficult to detect than hooking because DKOM bypasses the

kernel’s object manager, skipping any access checks that the kernel should do. DKOM

only affects objects in memory, so it cannot hide files, but it can hide processes, ports, and

device drivers.
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Figure 2.9 shows how DKOM can hide processes. In the kernel object structure, the

EPROCESS block contains information about processes running on the system [16]. The

top set of EPROCESS blocks in the figure shows the typical setup of those processes.

Each process has a forward link (FLINK) that points to the next process and a backward

link (BLINK) that points to the previous process [1]. To hide the process in the middle,

the rootkit changes the forward link for the previous process to point to the next process

relative to the hidden process. The rootkit also modifies the backward link for the next

process to point to the previous process relative to the hidden process. Lastly, the rootkit

removes the hidden process’s forward and backward links. The bottom set of EPROCESS

blocks shows that after making these modifications, the middle process is hidden because

no processes link to it.

Figure 2.9: DKOM [1]
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2.3 Rootkit Detection Techniques

Five categories of rootkit detection techniques exist: signature, behavior, cross-view,

integrity, and hardware [5]. The following sections describe each of these techniques and

common rootkit detection tools utilizing those techniques.

2.3.1 Signature-based Detection.

Signature-based detection is the most common method for detecting rootkits [8].

When AV authors obtain a piece of malware, they identify a “signature” that is unique to

the byte pattern of the malware and place those patterns in a signature database. Detection

software compares the signatures in the database to the byte pattern of potential malware on

the system [1]. If there is a match, the database identifies the malware. The disadvantage

of signature-based detection is that it only works for known malware. Detection software

will not identify any malware that does not match a signature in the database. Another

disadvantage is that an attacker could disable the security software before installing the

rootkit. A distinct advantage of signature based detection is that it works well for detecting

known rootkits that hide in memory [26]. The other detection methods do not detect

rootkits in memory as well as signature-based techniques.

2.3.2 Behavior-based Detection.

Behavior-based rootkit detection often detects new rootkits that do not yet have known

signatures [8]. This detection method determines what behavior is normal for a given

system, then looks for anomalies. Those anomalies can be indicative of malware on a

system.

2.3.2.1 VICE.

VICE is a rootkit detection tool that detects hooks and patches [3]. VICE looks for

anomalies in the SSDT in kernel mode and the address space of each application in user

mode. Those anomalies indicate potentially malicious behavior, even from new rootkits.

However, legitimate uses for hooks exist, such as DLL forwarding [5]. VICE produces
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a large number of false positives because the method cannot determine the difference

between a benign hook and a malicious one.

2.3.2.2 Patchfinder.

Patchfinder is a proof-of-concept rootkit detection tool that analyzes the behavior of a

rootkit while it is running. Patchfinder compares the number of instructions that common

services should execute to the number of instructions those services are executing [5].

Patchfinder creates a baseline for those services when the system boots, determining what

the instruction count should be. The x86 processor runs in “single step” mode to count

the instructions, which halts execution after each instruction completes, calls an interrupt

service routine, and updates the instruction count. If the instruction count is thousands

higher than the baseline during runtime, that indicates a rootkit’s presence [28]. Patchfinder

cannot detect rootkits that use DKOM because it only looks for hooks that add more

instructions to a service’s execution. Patchfinder only works when the system is clean

at startup.

2.3.2.3 Proactive Detection.

Bravo et al. present a method for detecting rootkits that hook the SSDT [2]. The

method hooks the page fault handler in the IDT and hides the page where the SSDT resides

by setting the memory pages to “not-present.” When a rootkit modifies the SSDT, the

method detects the write access and identifies which module made the modification by

analyzing the stack. Identifying the module that made the modification allows the user to

determine if the hook is benign or malicious.

2.3.2.4 Binary Analysis.

Kruegel et al. present a rootkit detection method that observes a module at load time to

determine if the module’s behavior resembles the behavior of a rootkit [19]. If the module

writes to a memory area where legitimate modules do not write or if the module calculates

an address in kernel space using a “forbidden kernel symbol reference” [19] and writes
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to that address, the method identifies that module as a rootkit. When tested, the method

produced a 0% false positive rate for legitimate modules and a 0% false negative rate for

rootkit modules.

2.3.3 Cross-view-based Detection.

Cross-view rootkit detection obtains two different views of the system and compares

them to find anomalies [1]. The technique obtains a high level view of the system from an

area that is susceptible to manipulation by malware. The high level view will not report

anything that the rootkit hides. The other view can be from an uncontaminated external

operating system or low level of the infected system. The method accepts the external view

as the true view of the system because it shows what is actually on the system rather than

assuming what the system reports is true.

2.3.3.1 Strider GhostBuster.

Strider GhostBuster is a tool that contains an in-the-box and out-of-the-box solution

for cross-view rootkit detection [34]. The in-the-box solution performs a high level and

low level scan of files and processes. The low level scan obtains its information from

the Master File Table, Raw Hive Files, and Kernel Process List. A disadvantage of this

method is that rootkits running with sufficient privileges could interfere with the low level

scan. The out-of-the-box solution obtains file listings and registry entries from within the

infected machine, then scans the infected OS from a clean OS, specifically the Windows

Preinstallation Environment CD. Because the rootkit is not running when the clean OS is

performing the scan, the rootkit cannot hide its presence or interfere with the scan. The

disadvantage to this method is that out-of-the-box detection is less convenient than the

inside-the-box solution.

2.3.3.2 RootkitRevealer.

RootkitRevealer is a Windows Sysinternals tool that works on Windows XP and

Windows Server 2003 [7]. RootkitRevealer uses a high level and a low level scan to detect
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differences in the file listings. The high level scan is of the Windows API and the low level

scan is of the registry hive or the file system volume’s raw data. RootkitRevealer detects

any rootkits that manipulate the Windows API. RootkitRevealer does not detect rootkits

like Fu that do not hide their files.

2.3.3.3 Klister.

Klister is a tool that detects rootkits that exploit DKOM [5]. Klister achieves this

by comparing the processes running to the list of threads running on the system. Klister

obtains the list of threads through the dispatcher database, then determines to which process

each thread belongs [27]. Matching the threads to processes creates a true list of processes

running in the system, which Klister compares to the list of processes reported by the

system. Differences in the lists indicate that a rootkit may be present.

2.3.3.4 Kernel Rootkit Trojan Detector (KeRTD).

KeRTD is an online cross-view detection tool that detects hidden processes [21].

KeRTD compares the Access Control List to a KeRTD Process and Driver List on the

potentially infected system. KeRTD creates and updates the Process and Driver List every

time the system creates or deletes a process or loads a driver file into the kernel. The

Process and Driver List is the trusted list, while the Access Control List may be modified

by a rootkit. KeRTD blocks the hidden processes and drivers to limit further rootkit activity.

2.3.3.5 Detection Using the PspCidTable.

Nanavati et al. present a rootkit detection method using the PspCidTable to detect

hidden processes on a Windows OS [22]. The method obtains a trusted view of the

processes on the system from the PspCidTable and other kernel structures. The method

uses ZwSystemDebugControl to read the virtual memory and obtain the list of processes.

The method obtains the tainted view of the system by calling Windows API functions

such as ZwQuerySystemInformation and listing the processes the function returns. To
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effectively hide from this detection method, a rootkit must remove itself from all kernel

structures while remaining on the lists for scheduling.

2.3.3.6 Clean Booting.

Clean booting follows the concept that the best way to find stealth malware is to

prevent the malware from hiding itself [9]. If the OS is not running, the malware is not

running, so it cannot hide files or processes from an outside source. For Windows 9x

systems, the clean boot method boots the system into DOS mode from the boot menu and

examines the file system. For Windows ME, clean booting requires external tools to boot

the system into DOS mode. For NT systems, malware can infect low level drivers, so the

external view must be from a different partition or disk.

2.3.4 Integrity-based Detection.

Integrity-based detection compares a trusted baseline, obtained when the system was

clean, to the current view of memory or the file system [5]. Any differences can indicate a

rootkit’s presence on the machine. This technique is often unable to determine the source

of the malicious activity.

2.3.4.1 Tripwire.

Tripwire is an integrity checker for UNIX systems released in 1992 to aid in intrusion

detection. Tripwire creates a baseline database containing file information at system

initialization, while the system is clean. After initialization, Tripwire can create a new

database at any time and compare it to the one obtained at initialization. Differences in

the databases indicate system changes. The method analyzes these system changes to

determine if Tripwire should generate a report. Users can update the baseline database

if the file information legitimately changes [15].

2.3.4.2 System Virginity Verifier.

System Virginity Verifier (SVV) is a detection tool that looks for code integrity [29].

SVV compares the code sections of a system Dynamic Link Library (DLL) or driver in
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memory to the Portable Executable (PE) files associated with that code on disk. Many

programs do not modify their code, so if they do it indicates an anomaly. SVV analyzes

the anomalies and classifies them based on the type of code added.

2.3.5 Hardware-based Detection.

Hardware-based rootkit detection originated from the idea that external hardware

would not compete with the rootkit for resources like software-based detection does [8].

External hardware can monitor system activities at a lower level than most software can.

Hardware-based detection has the advantage that most rootkits are unable to modify what

the hardware sees because the hardware utilizes an external OS.

2.3.5.1 Copilot.

Copilot is a separate PCI card that a user installs on a computer to monitor the kernel

and operating system [26]. It runs on a live system and accesses memory using Direct

Memory Access, which allows Copilot to search for rootkit code in memory [23]. Copilot

is effective because it does not rely on the compromised OS.

2.3.5.2 Capturing Random Access Memory (RAM).

Tribble, created by Grand Idea Studios, is a PCI expansion card that captures the RAM

on a running system for analysis [8]. BBN Technologies created a similar hardware device

that copies the RAM of a live workstation or server. The user can analyze these images

after capture.

2.4 Summary

This chapter defines the term rootkit and describes a rootkit’s basic functionality.

The five different types of rootkits and levels of rootkit persistence provide background

information related to the problem. Rootkits use stealth technologies such as hooking,

patching, and DKOM. The five categories of rootkit detection techniques are signature,

behavior, cross-view, integrity, and hardware based detection. Previous research in each

category provides a starting point for this research.
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The clean boot method described in this thesis is a cross-view technique, marked

with an asterisk in Table 2.1. The method differs from other cross-view detection work

in many ways. Klister, KeRTD, and the PspCidTable method use cross-view detection

to find hidden processes, while this method finds hidden files. RootkitRevealer takes

two file system views from inside the infected machine and compares them, while this

method compares one internal and one external view of the file system. The clean boot

technique presented by Erdélyi is for earlier versions of Windows, while this method works

on Windows XP. Strider GhostBuster uses the clean boot technique on Windows XP with

external media as the clean operating system, while this method is self-contained. Table

2.1 classifies each paper referenced by the detection technique the paper presents.

Table 2.1: Reference by detection technique

Detection Technique Academic Research Other References *

Signature-based [1] [8, 26]

Behavior-based [2, 3, 19] [5, 28]

Cross-view-based [9, 21, 22, 27, 34] [7] *

Integrity-based [15, 29] [5]

Hardware-based [23] [8, 26]
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III. Methodology

This chapter presents the methodology for implementing and testing the clean boot

rootkit detection method. Section 3.1 defines the goals, hypothesis, and approach to

solving the problem, while Section 3.2 describes the boundaries of the system. If the

system produces false positives or false negatives, as Section 3.3 describes, the system

fails. Section 3.4 describes the workload of the system. The experiment measures two

metrics of performance, which Section 3.5 defines. Four system parameters, explained in

Section 3.6, may affect the results. The experiment varies the two factors that Section 3.7

describes. Section 3.8 explains the evaluation techniques of the method. The statistical

design, rootkit setup, and system setup required for the experiment, as Section 3.9 details,

allow researchers to repeat the experiment. Section 3.10 summarizes the chapter.

3.1 Problem Definition

Rootkits pose a threat to computer systems because of their stealth. Early rootkit

detection assists users in identifying and removing malicious code from the system. This

experiment analyzes the effectiveness of a clean boot technique as the rootkit detection

method.

3.1.1 Goals and Hypothesis.

The main goal of this effort is to determine the effectiveness of offline rootkit detection

using a clean boot method. The effectiveness of the method is the percentage of rootkits the

method can detect. Another goal is to identify the types of rootkits that the method detects,

specifically user mode, kernel mode, or boot mode. Through analysis of the experimental

data, the user determines and documents the characteristics of undetected rootkits. An

additional goal of the research is to determine the detection process time required by the

clean boot method.
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The clean boot method should detect more rootkits than other detection methods

because many of those detection methods are susceptible to manipulation by the rootkits

and may only see what the rootkits report. Alternatively, rootkits cannot manipulate

the data when the system is offline, so the method can analyze the rootkits in a trusted

environment. The method will not detect rootkits that do not hide any files because this

method observes anomalies in the file system. The offline rootkit detection method should

take longer than other methods because the method gathers the information on the infected

partition, then copies the directory listing to a different partition for analysis.

3.1.2 Approach.

Each test installs a rootkit on an identical system in VMware. The experiment runs

the clean boot rootkit detection method on each test. This experimental setup satisfies the

goals of detecting malware quickly and efficiently, as well as determining the effectiveness

of the offline rootkit detection method. The comparison also tests the hypothesis that the

clean boot method requires more time to detect rootkits than other methods.

The implementation requires an initial computer system setup, as described in Section

3.9.3. In this experiment, the setup creates two partitions: a Windows partition and an

Ubuntu partition. The user operates in the Windows partition for everything other than

rootkit detection. The method uses the Ubuntu partition as the clean operating system.

After the user sets up the implementation of the method, anyone can execute the method at

any time from within the Windows partition. When executed, the implementation obtains

a directory listing of the C: drive on the Windows file system, reboots the computer into

the Ubuntu partition, mounts the Windows partition, and obtains a second directory listing

of the Windows file system. The directory listings come from each OS running its “dir”

command recursively over the filesystem. The method then compares the two file system

listings and records the differences in a file on an external device to facilitate timing data

collection. Figure 3.1 visually represents this process. Because Windows adds files to
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certain folders during shutdown, the implementation expects these differences and ignores

them. Any other hidden files or directories indicate that a rootkit is on the system.

Figure 3.1: Implementation of rootkit detection method

3.2 System Boundaries

The System Under Test (SUT) is the rootkit detection system. The components in

the system are the detection method and the disk that contains the two partitions. These

partitions are the tainted partition, which a rootkit may modify, and the detection partition,

which produces the offline data. The detection partition must have access to the tainted

partition’s files, and the user must encrypt or otherwise protect the detection partition so

the tainted partition cannot affect it. During system setup, the Ubuntu installer presents an

option to encrypt the partition. The detection method is the Component Under Test (CUT).

Figure 3.2 presents the SUT.

3.3 System Services

The service this system provides is the detection of rootkits and presentation of

associated timing data. Two possible outcomes of this service exist. The first is success,

where the method completes and returns correct detection and timing results. The second

is failure, where the system produces false positives or false negatives. A false positive in

this experiment is when the method detects a rootkit but no rootkits reside on the system. A

false negative in this experiment is when the method does not detect a rootkit but a rootkit

resides on the system.
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Figure 3.2: Rootkit detection system

3.4 Workload

The primary workload components of the system are the rootkits placed on the tainted

operating system. Each rootkit changes different parts of the computer system, which

influences the method detection rate. The size of the rootkit and its CPU utilization

are part of the workload and affect the time the system takes to detect the rootkit. The

size of the hard drive is another component of the workload. The method copies the

file system on the computer, so it takes longer to detect a rootkit on a larger hard drive.

For this experiment, the size of the hard drive remains constant to prevent that workload

from affecting the timing data for different rootkits. The final part of the workload is

the computer’s background CPU utilization. The detection method runs when no other

27



programs are running on the computer to minimize the variation in background CPU

utilization.

3.5 Performance Metrics

This system has two metrics of performance. The primary metric is the accuracy of

detecting rootkits, calculated as

Accuracy =
# Rootkits Tested - # False Positives - # False Negatives

# Rootkits Tested
(3.1)

The accuracy is the measure of the effectiveness of the method. The secondary metric

for the system is the time, in seconds, required to detect a rootkit. The starting point for

the time metric is when the VM powers on. The restart time is when the GRUB boot

menu appears after the tainted partition completes shutdown procedures. The stopping

point is when the VM completes shutdown procedures. The time metric provides baseline

information on timing characteristics for the method. The VMware log file associated with

the VM provides the timing information. Table 3.1 lists the timing commands from the

log file. The GRUB boot menu delays the reboot by 10s, which the experiment subtracts

from the final timing results. The delay is 10s because that gives the user adequate time to

choose an OS, but the delay could be any length of time.

Table 3.1: Timing commands

Timing Point Command in VMware log

Start PowerOn

Restart cpu reset: soft (mode 1)

Shutdown FileTrack Exit: done
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3.6 System Parameters

Table 3.2 describes the four system parameters that could affect the responses: the

tainted OS, detection OS, Central Processing Unit (CPU) speed, and platform. Section 3.4

describes the workload parameters.

Table 3.2: System parameters

System Parameter Description

Tainted OS The type of OS the tainted partition runs. The experiment
runs tests on two OSs: 32-bit Windows XP Service Pack 3
and 32-bit Windows 7.

Detection OS The type of OS the detection partition runs. The detection
OS remains constant as Ubuntu version 12.04.

CPU Speed The CPU speed remains constant at 2.8 GHz throughout the
experiments to minimize effects on timing data.

Platform The VM runs on VMware Workstation 9.0. The host runs 64-
bit Windows 7. The platform remains constant throughout
the experiments.

3.7 Factors

The factors of the experiment are the two parameters that the tests vary: the tainted

OS and the rootkit on the system. The tainted OS factor has two levels, one for each OS

tested. The rootkit factor has 39 levels, one for each rootkit not in the validation set. Table

3.3 describes these factors and their levels.

3.8 Evaluation Technique

This experiment uses measurement as its evaluation technique. The method runs on a

Windows XP VM set up as a host machine would be for detection. The virtual disk contains

two partitions. The detection partition is able to access the tainted partition and obtain its

29



Table 3.3: Factors

Factor Levels Description

Tainted OS Windows XP SP3

Windows 7

The tainted OS. The method should produce the same results
for accuracy on both OSs because the method is not specific
to an OS and should be usable on all OS types. The timing
results should also remain the same on both OSs because
they have the same CPU speed.

Rootkit 1 of 39 rootkits This research tests the offline rootkit detection method
against the 42 rootkits listed in Appendix C. The experiment
runs a test with no rootkit prior to each test with a rootkit,
testing the system without a rootkit 42 times. However,
the test with no rootkit is deterministic and provides no
additional information. The validation set consists of 3 of the
42 rootkits, so this factor has 39 levels. The experiment tests
42 rootkits because other research tests this method against
three to five rootkits.

file structure after mounting the tainted partition. The experiment runs the main tests on

Windows XP because Windows XP has more known rootkit samples than later versions of

Windows.

The experiment validates the results through measurement on a Windows 7 VM. The

Windows 7 tests use the same system setup as in the Windows XP VM and follow the same

procedures. The method should detect the same rootkits on Windows 7 as on Windows XP.

The experiment collects timing data for the Windows 7 tests and compares that data to the

timing data from the Windows XP tests of the same rootkits.

3.9 Experimental Design

This section describes the experiment’s statistical design, rootkit setup, and system

setup. The experiment’s statistical design determines the number of tests run to ensure

accurate results. The rootkit setup describes the procedure for installing the rootkits. The
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system setup configures the computer for dual-boot and allows the detection partition to

access the tainted partition.

3.9.1 Statistical Design.

This experiment follows a partial factorial design. All 39 levels of the rootkit factor

and the 3 validation tests run the detection method in a Windows XP VM. The 3 validation

tests are the rootkits Vanquish, AFX, and TDL2. Before each test with a rootkit, the

experiment runs a test without a rootkit to determine what results the method presents when

the system is clean, producing another 42 tests. Prior to running each test, the experimenter

reverts to a clean snapshot of the VM. On the Windows 7 VM, the method runs 16 times

without a rootkit and against the 16 working Windows XP rootkits. This produces a total

of 116 tests in the experiment.

This experiment is deterministic because the method either detects the rootkit or does

not detect the rootkit. If the method detects a rootkit when a rootkit resides on the machine,

the test result is a true positive. If the method fails to detect the installed rootkit, the

test result is a false negative. Conversely, a true negative result occurs when the method

correctly detects that no rootkits reside on the computer. A false positive occurs when the

method falsely detects a rootkit when no rootkits reside on the computer.

3.9.2 Rootkit Setup.

The website kernelmode.info provides the rootkits that this experiment tests [24].

The sample rootkits utilized in the experiment include the dropper for the sample. A

dropper is an executable that installs the rootkit. The dropper sets up the environment

necessary for the rootkit to run as designed. VirusTotal validates which rootkit each dropper

installs [33]. At least 30 AV vendors must detect the rootkit for the experiment to use that

rootkit as a test. On a Linux OS, the experiment validates that the dropper is a 32-bit

Portable Executable (PE32) through the “file” command.
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Certain common rootkits, such as AFX and Vanquish, have setup instructions

available. The following sections summarize those instructions. However, given the

malicious nature of the samples, many rootkits do not include setup instructions. Setup for

rootkits without instructions consists of running the executable dropper via the command

line. Some samples give additional instructions during execution, which the installer

follows when available.

3.9.2.1 AFX.

An administrator must turn off Data Execution Prevention (DEP) before running the

command to execute AFX. To install AFX, the attacker places the root.exe executable

and src folder in the folder that should be hidden. The src folder contains files

that the rootkit needs to function properly. The attacker places all files and folders that

he intends to hide in the folder containing root.exe. The attacker runs the command

“root.exe /i” on the command line to hide the folder and its contents. After installing

the rootkit, the folder hides until reboot. When the system reboots, the folder appears in

directory listings until startup completes. The folder hides again after the user refreshes its

location.

3.9.2.2 Vanquish.

Vanquish includes two executables, two setup command scripts, and a DLL. All files

must be present for Vanquish to function properly. A readme file accompanies Vanquish.

Only an administrator can set up Vanquish, as defined in the readme. The attacker executes

the command “setup do install” on the command line in the folder containing all

Vanquish files. This hides all files and folders that have “vanquish” in the name.

3.9.3 System Setup.

The experimenter must set up the system properly for the implementation to work.

The base system is a Windows XP Service Pack 3 VM in VMware. Windows XP is the

tainted OS because many available rootkits run on Windows XP. The experimenter installs
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Ubuntu 12.04 alongside Windows XP as a separate partition on the same virtual disk.

After installing Ubuntu, the user mounts the Windows partition as “/windows” in Ubuntu

using the command “sudo mount /dev/sda1 /windows”. After mounting the partition,

Ubuntu can access all files on the Windows partition. When the Windows partition runs,

Windows cannot access the files on the Ubuntu partition because the experimenter encrypts

the Ubuntu partition. Ubuntu is the default OS on the GRUB boot loader menu. The

experimenter must disable all network connections before installing any rootkits to prevent

unintentional infection of other computers on the network.

To provide accurate timing results, the user should automate the implementation. The

steps to automate the method are:

1. In Windows, the user places a shortcut to the batch file running the implementation

code in the startup folder. Appendices D and E contain the file and implementation code.

2. The user includes a command to restart the computer in the batch file after the code

is run, booting the system into the Ubuntu partition.

3. In Ubuntu, the user adds the implementation code to “Startup Applications

Preferences.” In order to shut down the system, the application must run as root. To

run the code as root automatically, the user adds the line “user ALL=(ALL) NOPASSWD:

ALL” to the end of the sudoers file.

4. In order to access the difference files and maintain timing integrity, the

implementation copies the files to an external USB drive. The user formats this drive to a

32-bit File Allocation Table (FAT32) system to prevent malware from moving to the host

via alternate data streams (ADSs). FAT32 is a file system that contains an index table of

file information separate from the data in the files. Because the index table only specifies

one location for each file, FAT32 does not support ADSs.

Running sample tests ensures correct system setup. First, three tests run without a

rootkit on the tainted OS. In all three tests, no differences exist between the directory
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listings after filtering out the expected differences (described in Section 4.3). Then a test

runs after installing Vanquish and hides files by naming them “vanquish.” All files that

contain “vanquish” in the name hide from the user, and the method detects the hidden files.

This validates that the system is set up correctly.

3.10 Summary

This research supports the strategic goal of detecting malware on computer systems.

The primary contribution accomplishes the tactical goal of determining the effectiveness

of the offline rootkit detection method. The SUT is the rootkit detection system, with

components of the hard drive, tainted partition, detection partition, and method, where the

CUT is the method. The service that this system provides is the detection of rootkits with

timing data. The workload given to the system consists of the rootkit, with the size and

CPU utilization of the rootkit, the size of the hard drive, and the system’s CPU utilization.

The performance metrics are rootkit detection accuracy and detection time. The

system parameters are the tainted OS, detection OS, CPU speed, and the platform. The

factors in this experiment are the tainted OS and the rootkit. The evaluation technique is

measurement of the Windows XP experiments, validated by the Windows 7 experiments.

The experimental design runs the experiment on all 42 rootkits on Windows XP and on 16

rootkits on Windows 7 as a partial factorial design, with a “no rootkit” test prior to installing

each rootkit. When the experiment completes all tests, analysis begins by finding the rootkit

detection accuracy. This analysis fulfills the goal of determining the effectiveness of this

detection method. Timing analysis provides baseline data for the detection time of this

rootkit detection method.
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IV. Results and Analysis

This chapter describes the results of the experiment and implications of those

results. Section 4.1 presents the results of the experiments and discusses the results.

Many limitations, as Section 4.2 describes, prevent the method from working as

expected. The research makes several assumptions in developing the implementation, and

Section 4.3 describes potential ways to exploit those assumptions. Section 4.4 provides

recommendations for employing this method of protection from rootkits. A company could

operationalize the method on a larger scale, as Section 4.5 describes.

4.1 Results and Discussion

The experiment produces results for the tests on the Windows XP and Windows 7

VMs. Section 4.1.1 discusses these results and explains the false negative test results.

Section 4.1.2 discusses the timing results for the tests.

4.1.1 Experimental Results.

The experiment tests the clean boot method of rootkit detection on Windows XP

against 42 rootkits, reverting to the VM’s snapshot after each test. Prior to each rootkit’s

installation, the method runs against the clean system. As shown in Table 4.1, the method

does not generate any false positives (0% false positive rate, 100% true negative rate),

assuming the clean system install is still clean.

Table 4.1: Confusion matrix of rootkit detection tests

Predicted

- +

Actual
- 42 0

+ 26 13
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Of the 39 rootkits not in the validation set, the method detects 13 of them and does

not detect 26 of them. This produces a 33.3% true positive rate and a 66.7% false negative

rate. Given that the method detects all rootkits in the validation set, the false negatives

are due to improper rootkit setup. Section 4.2 describes the limitations of rootkit setup.

Outside of this test environment, an attacker knows how to correctly install each rootkit he

uses. Therefore, in operation, the false negative rate should decrease because the method

detects correctly installed rootkits that provide file system protection. Table 4.2 outlines

the hidden files for the 13 detected rootkits (above the double lines), and for the validation

set (below the double lines). Some of these rootkits hide specific files, while others hide

all files in a certain directory. Four of them hide all files and folders that have a certain

string in the path. VirusTotal analyzes each rootkit before testing, providing the rootkit’s

technical name from Symantec, Kaspersky, and other AV vendors [33]. The information

obtained from these AV vendors determines the rootkit’s operating mode. Table 4.3 lists

the mode in which each rootkit runs, with the validation set below the double lines.

Three of the rootkits tested (Vanquish, AFX, and TDL2) contain instructions and

descriptions of what the rootkit hides. Vanquish validates that the system setup is correct, as

described in Section 3.9.3. When set up using the instructions in Section 3.9.2.2, Vanquish

hides all files that contain the word “vanquish” in the path. To validate this, the experiment

places files in a folder labeled “vanquish” on the desktop, then sets up the rootkit. The

user and OS cannot see any of files in that folder and the files created by Vanquish. The

method detects all of these hidden files. AFX and TDL2 constitute the validation set,

ensuring that the method works correctly. When set up using the instructions in Section

3.9.2.1, AFX hides all files and folders placed in the same folder as root.exe. To test this,

the experiment places root.exe in a folder with other files and folders. After setup, that

folder and all of its contents hide from the user, which the method correctly detects. This

variant of TDL2 creates files throughout the file system, placing the string “ytasfw” in the
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name of all. Anything with a path containing the string “ytasfw”, including user-created

files, hides from the user. The method detects all of these hidden files.

Table 4.2: Files hidden by rootkit

Rootkit Hidden Files

Haxdoor WINDOWS/system32/p81eskse.sys, WINDOWS/system32/pasksa.dll

Conga WINDOWS/system32/ntio256.sys, WINDOWS/system32/protector.exe

Srizbi WINDOWS/system32/drivers/Myp59.sys

Nailuj WINDOWS/system32/VideoAti0.dll,
WINDOWS/system32/VideoAti0.exe,
WINDOWS/system32/drivers/VideoAti0.sys

Pandex WINDOWS/system32/drivers/runtime2.sys

Crot WINDOWS/$hf mig$/29F8DDC1-9487-49b8-B27E-3E0C3C1298FF

Cosmu WINDOWS/system32/4DW4R3MisosPHmTD.dll,
WINDOWS/system32/4DW4R3bPvBdbpquk.sys

Blakken WINDOWS/system32/drivers/mgleznrnvlwoxtd.sys,
WINDOWS/system32/drivers/str.sys

Scar WINDOWS/system32/drivers/eohbbpyewnni.sys,
WINDOWS/system32/drivers/str.sys

Crisis everything in
“Documents and Settings/Administrator/Local
Settings/UbY5xEcD/”

Alureon any path containing the string “kbiwkm”

TDSS any path containing the string “seneka”

ZeroAccess WINDOWS/$BtYbubstakkJV7569$

Vanquish any path containing the string “vanquish”

TDL2 any path containing the string “ytasfw”

AFX everything in the folder where “root.exe” was run
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Table 4.3: Rootkit mode of 16 detected rootkits

Test # Rootkit User Mode Kernel Mode Bootkit

13 Haxdoor X

14 Conga X

15 Srizbi X

16 Nailuj X

17 Pandex X

19 Crot X

20 Cosmu X

22 Blakken X

23 Scar X

24 Crisis X

33 Alureon X

35 TDSS X

38 ZeroAccess X

5 Vanquish X

11 TDL2 X

39 AFX X

4.1.1.1 False Negatives.

The tests produce 26 false negatives, falsely reporting that no rootkits reside on the

system during each test. When the rootkits run, ProcessHacker logs the processes created

and terminated in the background. Appendix A describes the results of the logs and

observations of the system after the execution of each rootkit. The rootkit numbers match

the hash table in Appendix C.
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4.1.1.2 Windows 7 Results.

Windows XP has more available rootkits than Windows 7, so Windows XP is the

primary platform for these tests. However, Windows 7 is currently the most commonly

used operating system [25]. The experiment tests a small number of rootkits on Windows 7

to determine the method’s effectiveness on Windows 7. The experiment tests each of the 16

rootkits that the method detected in Windows XP on Windows 7, but none of them install

correctly. All rootkit tests run on an unprivileged user account and on an administrator

account. The tests on the unprivileged user account demonstrate the benefits of Windows

7’s protection mechanisms, such as User Account Control (UAC). The experiment installs

the rootkits with the UAC on and off, as well as compatibility mode for Windows XP SP3

on and off, producing four tests for each rootkit. The administrator account obtains the

directory listing. Appendix B describes each rootkit installation attempt.

4.1.1.3 Results After Removing Invalid Tests.

Some false negatives described in Section 4.1.1.1 are due to failures in the system after

rootkit installation. The method could not run against tests 8 and 18 because the system

failed to restart correctly after rootkit installation. The tests conducted of the method in this

experiment are ineffective against rootkits 2, 3, and 30 because the rootkit applications do

not run on Windows XP. The method may detect these rootkits on the appropriate platform,

but this experiment does not test them due to platform dependencies. The method is also

ineffective against tests 9 and 25 because those rootkits require network connectivity to

function and the test environment prohibits this capability. These seven tests skew the

detection results because the rootkits do not run, so they do not provide anything for the

method to detect. Table 4.4 shows the results of the experiment after removing these tests

and the validation set from the data set. The false negative rate reduces to 59.375% and the

true positive rate increases to 40.625%.
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Table 4.4: Confusion matrix after removing invalid tests

Predicted

- +

Actual
- 42 0

+ 19 13

4.1.2 Timing Data.

The tests capture timing data from the time the Windows partition powers on until

the time the Ubuntu partition completes shutdown. The clean results range in time from

164 seconds to 182 seconds, with an average of 172 seconds. The infected results range in

time from 150 seconds to 169 seconds, with an average of 156 seconds. A separate VM

performs the analysis of the results, with an average of 30 seconds to connect the USB

drive and obtain the difference file. The method’s detection time is more consistent than

the 120 to 600 second range that Strider GhostBuster reports, rejecting the hypothesis that

the clean boot method using partitions would require more time to complete than other

methods [34]. Figure 4.1 shows the timing data for the 16 true positive results. The lower

portion of each column is the time the system runs in Windows, and the upper portion is

the time the system runs in Ubuntu.

4.2 Limitations

By definition, rootkits hide their presence on an infected system. While rootkits use

many techniques to remain undetected, not all rootkits employ all stealth techniques. This

method only detects rootkits that hide files and directories. Some rootkits, such as Fu,

FuTo, and associated variants, do not hide files or directories from the user.

Rootkit setup is the most difficult and variable portion of testing. As explained in

Chapter 3, if no instructions accompany the rootkit, the experimenter installs the rootkit
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Figure 4.1: Rootkit detection time for true positive results

by running the dropper executable in a command prompt. In many cases, running the

executable does not install the rootkit correctly. If the rootkit does install correctly by

running the executable, it may not hide files from the user unless the attacker specifies

those files. Instructions on how to specify those files do not accompany the rootkits.

To maintain host integrity and simplify test case transition, the experiment runs all

tests in VMware. Running the tests in VMware introduces a limitation because advanced

malware can detect a virtual environment and then terminate itself. These tests do not

detect such malware, but that kind of malware would run on a host machine, operationally

decreasing the false negative rate for the method.
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Some rootkits reside in volatile memory and are not persistent. The detection method

restarts the system, removing all evidence of the rootkit. The method does not detect the

rootkit in that case because the detection method inadvertently removes the rootkit.

Windows 7 has default protection mechanisms to prevent infection. Fewer rootkit

samples exist that successfully install on Windows 7 than Windows XP because of these

mechanisms, making it difficult to find working samples. Windows XP is older than

Windows 7, so more rootkits and rootkit variants exist for Windows XP. Many of the

malware samples that currently infect systems have not been distributed to researchers

because the systems are not protected against them. The samples are distributed after

patches have been created.

4.3 Vulnerabilities

When Windows XP shuts down, it modifies and adds files to two folders: “System

Volume Information\ restore{#-#-#-#}” and “Windows\Temp\Perflib Perfdata ”.

Because those folders still change after the method obtains the Windows directory listing,

the method assumes any changes in those folders are legitimate. An attacker could design

the rootkit to place the hidden files in one of those folders and the rootkit would evade this

particular implementation of the method.

The Ubuntu partition is the clean partition in this experiment. To avoid detection, an

attacker could potentially compromise the clean partition before the user runs the detection

method. The attacker would then be able to modify the detection implementation code in

Ubuntu to falsely report that no differences in the directory listings exist. To prevent an

attacker from compromising the clean partition, the user must disable network connections

before booting into Ubuntu and scan removable media before connecting it to the clean

partition. In this experiment, Windows is the primary OS and the user only runs Ubuntu

for rootkit detection.
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4.4 Recommendations

Many rootkits hide malware on Windows XP. The user should keep DEP on for all

programs to prevent some rootkits from executing. The use of AV software can potentially

help a user detect and remove rootkits as they install. However, a rootkit that is already on

the machine when the user installs an AV may be able to hide itself from the AV. The clean

boot method presented can help determine if a rootkit that hides files or folders resides on

the system before installing AV software.

Windows 7 has better protection mechanisms than Windows XP, so users should

run Windows 7 if possible. Windows 7 utilizes UACs, which require a user to input an

administrator password when programs try to make changes to the system. Users should

keep UAC on to ask the user for permission before potential malware modifies the system.

A user should only allow programs verified by a reliable source to make changes. In

addition to UAC, users should run an AV program to detect and remove rootkits. AVs

use other techniques to detect rootkits, such as signature-based detection.

4.5 Potential Operational Uses

Many organizations can employ the clean boot detection method to detect rootkits on

their systems. Large enterprises could benefit from running the method on all computers

daily. On average, the method takes less than three minutes to run, so a company could run

the method after employees leave without negatively impacting the organization’s work.

Running the method every night allows an administrator to observe the differences in

hidden files each day. The administrator can set up the method to report only new hidden

files, making it manageable for the administrator to determine the origin of each hidden

file. If the method detects a hidden file on a user’s computer that was not there previously,

the administrator knows that a rootkit or other program hid the file between the last two

reports. That time frame can help determine what program hid the file.
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Some benign applications may legitimately hide files. The administrators can filter

those files out of the results if they trust the programs that hid the files. The administrator

can use this method to determine which user accounts contain hidden files. These accounts

can be isolated to minimize the potential for the infection to spread. Early rootkit detection

is necessary because in a short time the number of malware infections across a network can

increase exponentially after the initial infection. The method presents the location of the

hidden files to the administrator, giving an indication of where the rootkit resides and what

information the rootkit hides.

4.6 Summary

This chapter presents the results of the experiment testing the clean boot method. The

results document the hidden files that the method detects, characterize the attributes of the

rootkits that hid those files and detail why the tests of other samples do not produce the

expected results. Limitations of the experimental setup prevent the method from working

properly in some tests. This chapter documents the vulnerabilities of the method and its

implementation, describes how an attacker could exploit those vulnerabilities, and provides

recommendations for protecting a system against malware samples that utilize rootkit

functionality.
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V. Conclusions

The clean boot rootkit detection method evaluated in this thesis provides distinct

advantages over other detection methods. While behavioral rootkit detection methods

produce many false positives, the clean boot method produces no false positives in these

tests. The method can detect unknown rootkits if they hide files, unlike signature-based

methods. The clean boot method is less expensive than hardware-based detection methods.

Like integrity checkers, the method obtains an initial baseline to determine what differences

exist while both the target and clean OSs are clean. However, the clean boot method

primarily focuses on the differences in the directory listings and only refers to the baseline

when those differences exist.

The setup of this method is different from other cross-view detection methods because

it utilizes a second OS partition on the disk. A user can run the method immediately

because both views of the system are available at all times. Rootkit detection methods that

utilize a low-level scan as the trusted view while running on the compromised system are

vulnerable to manipulation by some Windows rootkits. To modify the trusted view in the

clean boot method, a rootkit must modify both OSs, which is more difficult.

5.1 Results and Limitations

In addition to maintaining a 0% false positive rate, the clean boot method correctly

detects 40.625% of the rootkits tested on Windows XP. Limitations such as improper rootkit

installation, rootkits that do not hide files, and rootkits that detect VMware contribute

to the high false negative rate. In operation, the false negative rate should be lower

because attackers will install the rootkits correctly on host systems. The rootkits that install

correctly on Windows XP do not install correctly on Windows 7. While Windows 7 rootkits

exist, the ones available on kernelmode.info crash with this system setup.
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5.2 Operational Uses

The experiment runs with a 100% true negative rate, only reporting hidden files when

a rootkit is present. Enterprise networks could benefit from running an implementation of

the method similar to the one in this thesis routinely. The method would report a limited

number of hidden files to an administrator, which the administrator could investigate.

Companies could detect and contain malware infections before they spread to the entire

network by routinely running this method.

5.3 Contributions

This thesis presents operational data, potential uses, and results for the clean boot

methodology. The experiments demonstrate the effectiveness of using a second partition as

the clean operating system. The second partition makes the implementation self-contained

while doing an offline scan. This thesis provides a succinct tabular summary of previous

rootkit detection research and provides results for a larger set of rootkits than other research

tests. Lastly, the thesis describes the limitations of the method and explains defensive

measures to protect the system from rootkits.

5.4 Future Work

Possible future work is to show that a similar clean boot method detects Windows 7

rootkits. The experiments on Windows 7 rootkits may require host-based tests to eliminate

the problems with rootkits that detect VMware. Another modification to the clean boot

method would utilize a network boot into a clean OS, eliminating the need for a clean

partition. The method collects the directory listings from each computer on the network,

then reboots into a centralized clean OS that obtains a directory listing for each system and

compares the lists.

Other future work includes modifying the method to minimize the vulnerabilities

presented in Section 4.3. The method currently assumes that all changes in the “restore”
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and “temp” folders are legitimate. Removing that assumption requires the method to report

all hidden files in those folders. The method can maintain a baseline of legitimately hidden

files in those folders, minimizing the number of files an administrator would view as hidden.

The administrator can add the new, benign files to the baseline after each run of the method

and investigate unexpected hidden files. The method would not be able to report detection

of a rootkit until an administrator views this file list.

5.5 Thesis Summary

Chapter 1 of this thesis introduces the problems created by rootkits and the malware

they hide. Information about rootkits, stealth techniques, and current detection methods

constitutes Chapter 2. Chapter 3 describes a process to implement and evaluate the clean

boot detection method. The research tests the clean boot method and analyzes the results,

determining the limitations and vulnerabilities of the system, as Chapter 4 describes.

Finally, Chapter 5 provides recommendations for protection from malware and future work

in rootkit detection.

47



Appendix A: False Negatives

1. Hxdef - does not show signs of execution.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

2. RtKit - the text on the command line says “The Ntrootkit can only be run in

Window2000!!!” Because the test runs on Windows XP, this rootkit does not run.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

3. ZeroAccess - the text on the command line says “Application cannot be run in

Win32 mode,” indicating that this sample is not suitable to run in this environment.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

4. Rustock

Processes created: rustock.exe

Processes terminated: rustock.exe

Services created: none
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Services terminated: none

Executable visible to user: no

6. FuTo - gives the user the option to hide processes. FuTo and Fu do not hide files.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

7. Nuclear Rootkit - the user must open the editor and create a file to hide. The editor

creates an executable called rootkit.exe, which the user runs. The instructions on how

to properly set up the rootkit are unclear, because the file that should hide never exists on

the directory system. An attacker would better understand how to set up this rootkit before

using it.

Processes created: explorer.exe

Processes terminated: explorer.exe

Services created: none

Services terminated: none

Executable visible to user: yes

8. RtKit - the system crashes, displays a Stop Error, and restarts the computer. After

restart, it displays the Stop Error again. The rootkit modifies the system in a way that causes

the system to fail. The test cannot run the detection method in this case because the system

does not reboot correctly.

Processes created: none

Processes terminated: none

Services created: none
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Services terminated: none

Executable visible to user: N/A

9. RtKit2 - a message indicates that the rootkit requires an Internet connection to run.

Given the nature of the malware, all tests run without network connectivity.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

10. Ascesso

Processes created: ascesso.exe

Processes terminated: ascesso.exe

Services created: none

Services terminated: none

Executable visible to user: yes

12. Rustock

Processes created: none

Processes terminated: none

Services created: pe386

Services terminated: pe386

Executable visible to user: no

18. Sinowal - upon shutdown, VMware provides the message, “A fault has occurred

causing a virtual CPI to enter the shutdown state.” After restarting the VM, the same

message appears and shuts it down again. The test of the detection method cannot run

on this system because it cannot restart.

Processes created: sinowal.exe, svchost.exe, 1.tmp, 3.tmp

50



Processes terminated: sinowal.exe, svchost.exe

Services created: service1, service2

Services terminated: service3

Executable visible to user: N/A

21. Smiscer

Processes created: Smiscer.exe

Processes terminated: Smiscer.exe

Services created: none

Services terminated: none

Executable visible to user: no

25. Zbot -a message indicates that this rootkit requires an Internet connection to

function properly. Because of the nature of the malware, tests run without network

connectivity, so this rootkit does not function properly.

Processes created: uk.exe, zecic.exe

Processes terminated: uk.exe, zecic.exe

Services created: none

Services terminated: none

Executable visible to user: no

26. Kryptik - does not show signs of execution.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

27. Sirefef

Processes created: maxroot.exe
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Processes terminated: maxroot.exe

Services created: none

Services terminated: none

Executable visible to user: no

28. Sirefef

Processes created: trol.exe, cmd.exe

Processes terminated: trol.exe, cmd.exe

Services created: none

Services terminated: none

Executable visible to user: no

29. Zaccess

Processes created: dropped.exe, cmd.exe, explorer.exe

Processes terminated: dropped.exe, cmd.exe, explorer.exe

Services created: none

Services terminated: none

Executable visible to user: no

30. Duqu - the text on the command line says “Application cannot be run in Win32

mode,” indicating that this sample is not suitable to run in this environment.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

31. Alureon - a license agreement box appears to install the program UNICCode.

After following the installation procedures, the UNICCode application is available to the

user. UNICCode does not appear to hide any files.
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Processes created: UNICCodec.exe

Processes terminated: UNICCodec.exe

Services created: none

Services terminated: none

Executable visible to user: no

32. Sinowal

Processes created: backdoor.exe, regsvr32.exe, svchost.exe

Processes terminated: backdoor.exe

Services created: service1, service2, service3

Services terminated: none

Executable visible to user: yes

34. Alureon - a license agreement box appears to install the program AccessMV.

After following the installation procedures, the AccessMV application is available to the

user. AccessMV does not appear to hide any files.

Processes created: bootmatrix.exe, msqp.exe

Processes terminated: bootmatrix.exe

Services created: none

Services terminated: none

Executable visible to user: yes

36. Podnuha

Processes created: podnuha.exe

Processes terminated: podnuha.exe

Services created: none

Services terminated: none

Executable visible to user: yes
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38. Zaccess

Processes created: firework.mp3.exe

Processes terminated: firework.mp3.exe

Services created: none

Services terminated: none

Executable visible to user: yes

40. Buzus - does not show signs of execution.

Processes created: none

Processes terminated: none

Services created: none

Services terminated: none

Executable visible to user: yes

41. Hijack - a message appears that DEP has terminated the program. After disabling

DEP, the executable does not create or terminate any processes when it runs.

Processes created: loader.exe, dumprep.exe

Processes terminated: dumprep.exe

Services created: none

Services terminated: none

Executable visible to user: yes

42. Delphi

Processes created: delphi.exe

Processes terminated: delphi.exe

Services created: Browser

Services terminated: none

Executable visible to user: yes
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Appendix B: Windows 7 Results

5. Vanquish cannot install under the user account. With UAC off and compatibility

mode on, the files are visible. When running a command window as an administrator, the

files do not hide. Even after running the Vanquish setup commands from an administrator

account, the files are visible to the user.

11. TDL2 runs and the UAC asks if the user wants to run the executable as an

administrator. After the user chooses “yes,” the message “TDL2.exe has stopped working”

appears whether the user enables or disables compatibility mode. The rootkit does not work

because TDL2 is only for Windows XP. TDL4 is the variant that should work on Windows

7. Kernelmode.info provides a sample of TDL4. When executed, the dropper disappears,

but the system immediately crashes with an error screen and restarts. The system does not

recover after the restart.

13. Haxdoor does not run until the user disables UAC. The Windows 7 Action

Center detects it as “potentially harmful software” and suggests that the user removes the

executable. Even after allowing the program to run through the Action Center, the rootkit

does not work.

14. Conga crashes during each installation on Windows 7, even with UAC off and

compatibility mode on.

15. Srizbi crashes during each installation on Windows 7, even with UAC off and

compatibility mode on.

16. Nailuj does not add any files when run in a command prompt with or without

administrator privileges, even with compatibility mode on.

17. Pandex disappears when the executable runs with UAC on and compatibility

mode off. The clean partition’s directory listing does not include the file, indicating that the

program deleted the file. The same is true when UAC is off and compatibility mode is on.
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19. Crot runs and a license agreement for “Setup FLV” appears. After agreeing

and installing the program, the system reports “Access Denied.” When Crot runs as

an administrator, the message “Application has stopped working” appears, even with

compatibility mode on.

20. Cosmu requests administrative privileges to run. After Cosmu attains those

privileges, the message “potentially harmful software detected” appears in the Action

Center and asks the user to allow or remove the software. After allowing the software

to run, the directory listings are the same. Running Cosmu as an administrator with

compatibility mode on produces the same results.

22. Blakken runs and the message “potentially harmful software detected” appears

in the Action Center. After allowing the software, the message “BlackEnergy2.exe

has stopped working” appears. The rootkit crashes as an unprivileged user and as an

administrator, with and without compatibility mode on.

23. Scar disappears when the executable runs. A compatibility screen appears

instructing the user to reinstall Scar with compatibility settings. After reinstalling Scar

with those settings and running as an administrator, no files hide.

24. Crisis does not show signs of execution. When Crisis runs as an administrator in

compatibility mode, no files hide.

33. Alureon runs and the UAC asks the user to run the program as an administrator.

When running as an administrator, the message “potentially harmful software detected”

appears. After allowing the software to run, the directory listings are the same. Turning

compatibility mode on and off does not produce different results.

35. TDSS runs and the UAC asks the user to run the program as an administrator. The

message “Microsoft Windows Operating System has stopped working” appears, followed

by “potentially harmful software detected.” When running in compatibility mode as an

administrator, no files hide.
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38. Zeroaccess runs and the executable disappears. The message “potentially harmful

software detected” appears. After allowing the software to run, no files hide. When the

program runs in compatibility mode as an administrator, the executable disappears, but no

files hide.

39. AFX runs according to the instructions provided, but does not hide the folder or

files. Even when run as an administrator in compatibility mode, AFX does not hide the

folder. The clean boot method confirms that no hidden files exist.
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Appendix C: Rootkit Hashes

# Rootkit Hash
Type

Hash

1 Hacker

Defender

SHA256
SHA1
MD5

32bb981821fba79619f99f6cd9fb1347c4cb58ec26313c50665b80218a8f0832
8ecbfa20c5860f59a15fb227b4d1b7c715911850
39a9e5c05ffbda925da0d2ec9b4f512a

2

Rtkit

SHA256
SHA1
MD5

efd3c87f91c6ea312d567f9f9f16f6a544227bce8cbe67b47353f947bb5ccfd0
a84d214052141ea5654489d19ec9f41da8072d2c
520202b659a1c4eea89106707db95195

3 Zero-

Access

SHA256
SHA1
MD5

95d34a83d4b959f947642a01b0252f298c6dcc2d64a1969110dfd030a3aad3aa
4ce897833aebdc5ea3ebf04813538e74f990d99e
b1fbc5330389c497be8ea2f77c15bb9c

4 Rustock/

Costrat

SHA256
SHA1
MD5

fdcc5e0d7ae74de827985e28a18ed96b2d406b0d1fe8225eff80a04b654faa12
38914e0b553af580e52477b7cc48d0e27eb42a99
6a921240152622183e0f3a298fd19082

5

Vanquish

SHA256
SHA1
MD5

121fe1da64247710626edcac7c1804b62b70d79c27c90e16a26d5bdae596f72d
33a57fe4b8f61aec79602b3e5ebf0464c3cad66e
2dcb9055785a2ee01567f52b5a62b071

6

Fuzen

SHA256
SHA1
MD5

9dc8dcb9f9000ca5c64d4d10d880829e93940a390a92c5cbc2b351dd7d43fad1
ecd2d513b8f225eba924fced2745e245c52780f3
981db22a76aa871c93859a115236e0eb

7 Nuclear

Rootkit

SHA256
SHA1
MD5

a33c7c78cf8e7fc6b41f60538182a9adbe3f723bd09a04a82518a819b7df7c14
d9d2ecd560a72ce8ca4d183b9f7ac6f8dc773bb1
6f443dba50d578fc452b90c447744e79

8 NT-

Rootkit

SHA256
SHA1
MD5

ee05a285517489776fd274e01c277c5222a100bd1fd6202ee082b50e590082fe
07a3525aee0bbc1aec3264f9869c620a6072cdf5
b2b5c1e65715fff168d912a5cd247689

9

Rtkit

SHA256
SHA1
MD5

61811d88430ccab862639cd2b203a5ab3a27a6fa6969059b39d4d6e92f534200
53b11b7de84f72c29b6d8b540176ff2510fa713e
7eb01222e4a56bca2fbf5b7018c171db

10

Saturn

SHA256
SHA1
MD5

cb2c0af219e27f417454a5a022b9a2e55f2edb135a8984b952996ef2f6b3aaae
481e9f6d2c297bb4ffff8aeb348af3eb13a72d71
8ccbcce8a778dc04dfee67008ee6a905

11

TDL2

SHA256
SHA1
MD5

ff24fd9b8fc8a11380ece0ae7f51bb1a4a2442b6dce31a5afc6419bc916e4819
5cd26f0ba8ca90cf6d47f8dfeef5d06755e28edb
7c205ef7013b2c69ea4ed6fe8c8ab48f

12 Rustock/

Costrat

SHA256
SHA1
MD5

6236eb59427021659ff0031d85e25cf8966ed91f33d868b9f578b2ed1c702dce
65115c405f71aea1d8c0a69d088435890f404825
b67c2117c39846ac1380c84f229b9a9e
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# Rootkit Hash
Type

Hash

13

Haxdoor

SHA256
SHA1
MD5

2c0cff6e0f5a6dc1a6439692d6fd875753be4d63815cea76ee9d7f5ec3a0087f
7999ddc886bde5a5afe02f4a55bce6525f1d0a13
0b16a6e8bbd677e502b0c676c0f6e326

14 Small/

Conga

SHA256
SHA1
MD5

6273a133153e6382d2eabdd277b7b799a60b59cbd69ee4077e1c128e87193bd2
967b5348bfb4fddbd4de56e42265ba6bd475ec84
00d0bc1d6a14daead3878f5bdcc1b887

15

Srizbi

SHA256
SHA1
MD5

22ef05544e8e9efae2e82313f8bf748f6f3c85cfeae3206e03c956682fed3761
3795d752acf70e0b318427565b5a76a2308ce35e
75aad8061507fd09c44a3fa199f4264d

16

Nailuj

SHA256
SHA1
MD5

5009530b7f884848d4feb906179a4335b033abc9b784e777daf21be145bf0b4a
f8ef36a193135b170967002a456a5dbb43aab0fb
d380a8c045f0fdbe0d5a4657572f6e57

17

Pandex

SHA256
SHA1
MD5

453d364e4c14717a1ee9ea29e322c87d459f4a6bba6138887c57d60fb837abc8
6329053d8722512157e84bc810c6d3744075060e
ef0364c26faf02129624ba5ee9c4bd25

18

Sinowal

SHA256
SHA1
MD5

4fd2bce7983325b9d753eda7e0b297cd1cbc6004c3e805a376fa3931ddb9ccf6
772f1c95f34d863979539d36db8ac24d3a4d28c8
58d33c8ffbe7da79cd85e47ef70de6e7

19

Crot

SHA256
SHA1
MD5

4ede1c2598192cf90bd5899613a120ae5589ae5d1183dfd4439e8e67bdcfe50f
db1796db69ebcc139461b50c085e74f3de446670
d00d6ca20861ceb41e1186305c8096e7

20

Cosmu

SHA256
SHA1
MD5

92c5f64059e9219783125ec3338e1e65fd46de6b0e79e07953cef98d7e1f96a7
0a4f6a6798187f30c60f580d9cfe5b482e824c49
f039715e00a4279cfe9c6c224a70c09e

21

Smiscer

SHA256
SHA1
MD5

d22425d964751152471cca7e8166cc9e03c1a4a2e8846f18b665bb3d350873db
d0b7cd496387883b265d649e811641f743502c41
d8f6566c5f9caa795204a40b3aaaafa2

22

Blakken

SHA256
SHA1
MD5

5af3fd53aea5e008d8725c720ea0290e2e0cd485d8a953053ccf02e5e81a94a0
181e59600d057dc6b31a3b19d7f4f75301a3425e
9219e2cfcc64ccde2d8de507538b9991

23

Scar

SHA256
SHA1
MD5

a288da956e6131a994fb9bd95e99736eef124a1c0c400e0d02601c0dffd757d8
e35a63b6d4be8ad8f9aab572aced77b0923a0fa9
317dea854c1d4b8e61e7c375421b6708

24

Crisis

SHA256
SHA1
MD5

277cae7c249cb22ae43a605fbe901a0dc03f11e006b02d53426a6d11ad241a74
d0b7eb61e3a37d7aa9117443bc4192a06d96246f
1738f7ac746a720f8589421840aa3aa6

25

Zbot

SHA256
SHA1
MD5

0878aae0e81ce2f31b7fe83dea57dafe882283ff356c8c3783655cc24e9393fc
4a1d3cf1d75762fa87b9e861d60b54f44eede9a8
ad2d6c5cbe4a2b1839b780e916e42945
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# Rootkit Hash
Type

Hash

26

Kryptik

SHA256
SHA1
MD5

ddd75ef2b2b60956bf200707fa4e55c72a96a2d3e8f59edfc8fda935f0b537d2
6439a49539a1453e284aba0b0ecfd86203e976ff

3865096302f59a1960ab876068fa1f1e

27

Sirefef

SHA256
SHA1
MD5

24a0f04756da15a2f93618c1be2cf4bef437061d402b007794488f56e77fea53
65136d6a4cbafad0741c35e892ab07d0910b33f0
392ddf0d2ee5049da11afa4668e9c98f

28

Sirefef

SHA256
SHA1
MD5

f68d959b733eefc82a6ddb8161da3cd4fc6977b90f990c22f52fa2fd71aca687
1f4b715d66912dbaf2affc3ba959b504ab3e2422
e96f7a3fdbafdc5945f5a84320509469

29

Zaccess

SHA256
SHA1
MD5

2ec172f8ef9b6d4d719071c7b14bb81e1caf47926a7e6c7bdc6f2d26d7ee539f
543c4bdb7e3d5fac9fd3be7d801f11dc58483df1
b5df22df1502ba325eeed9cf7b232574

30

Duqu

SHA256
SHA1
MD5

9d88425e266b3a74045186837fbd71de657b47d11efefcf8b3cd185a884b5306
b3074b26b346cb76605171ba19616baf821acf66
c9a31ea148232b201fe7cb7db5c75f5e

31

Alureon

SHA256
SHA1
MD5

ff32c8cc9ed96553f52ccd8e184c741b8761757f98826b072832f7c7cc52c4ea
9806f96d3fc1b784ea51430caddcde95c68f1b9a
d8f03e7d476481d5922265e73362b316

32

Sinowal

SHA256
SHA1
MD5

e450b74f7a713013a685b4c8a1cb3cadc86cd28d8336694e7592ba91667d44d2
4b29a4ae9ed09143e5576e7dca739887d012d069
0a211ac6b398f49f8ce982bb0b07bd4a

33

Alureon

SHA256
SHA1
MD5

4eac4a815148be32d59b9882722d76825db2eae2b23c9df530461d581cbc8905
871a28f76e66da3129c1a6f362152369fa10da00
2443fd7af22f6fe726b1f7e579aa57d9

34

Alureon

SHA256
SHA1
MD5

32a86957795002a98cc1db49f16ebaf8b4d534c7ef721480d3bf8d16789dfc00
d3f73f639ce7fa1e90821e62ddde15008489fb8c
bd24f49446aef4cb77b7a40bae07d705

35

TDSS

SHA256
SHA1
MD5

e9a185d130140662d370b0a3144bf9396264c2c603fa5b36d889205eb5ac148d
6f59f9d28670b26237722811e35ea662045caced
fbd379b7f107d3180cbbca702dc72c99

36

Podnuha

SHA256
SHA1
MD5

7dbeda9095bb759543c461384c36d4194e5fa17ffeaee58f7cb08eaabfce19d9
2c2fcdd4acb2e2702856a037e18b25dc52c1f47c
526d3aa0940eab964eb179892d7f56c6

37 Zero-

Access

SHA256
SHA1
MD5

49d4e98397e8824ab775fab82c896738c9b86f5d8b09ed0790c73d0b5fbfcd40
498431818e215bb0d0242ad744a6ab187281f7cb
9ac50c5125de30c50fe622a9ef53906f

38

Zaccess

SHA256
SHA1
MD5

cf6f42fb59583f3066dd4e46f92bafdeeaaef891b7cfa90c443ca570f688e452
f2cdc48166ee6c90bb92cb99a69896b68bab2477
fbc9b864e48e6ff4d00c3cb243a20f6f
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# Rootkit Hash
Type

Hash

39

AFX

SHA256
SHA1
MD5

74c8e0c2dfd071fb18b11a83dfaf7d76aa3d7edcb8ec2738276b1cf418fe78ea
cd77469e9a7a63e7b5abec3486226665e347169a
092cc5ed71dfee729a993f17abcb8afa

40

Buzus

SHA256
SHA1
MD5

89364b1484476423c56238769b0e7dbc11fdb1f20740cb904d52983607f63301
b187e8cc6d0c069c869911b1d9acff661715a418
eff5e85b1e0d7f892acac99475b1c324

41

Hijack

SHA256
SHA1
MD5

ec7790e20a54c6d1fcd19fdb70e8026ca2a04375f9e7927f7559d081603012d5
52c453ac1c7c67cdcf526d19f51b2fcff2da5b47
0e5919926cab5b92a9a222ddea10a1a8

42

Delphi

SHA256
SHA1
MD5

2b3f2c28fd16a685429a2e3f19fbf10289bb9b1dd0779c96e464c64210489447
c64f2fb68abe80a20f77f582097aa4463837c4db
f36e923898161fa7be50810288e2f48a
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Appendix D: Windows Source Code

Windows Batch File

@echo o f f
py thon walk . py
pause
shutdown − r − t 0

Walk.py in Windows

# ! / u s r / b i n / env p y t ho n
import os
from os . p a t h import j o i n , g e t s i z e

i f os . name == ’ p o s i x ’ :
ba se = ’ / windows / ’

e l s e :
b a se = ’ / ’

a l l f i l e s = l i s t ( )
f o r r o o t , d i r s , f i l e s in os . walk ( base ) :

f o r f in f i l e s :
a l l f i l e s . append ( ( os . p a t h . j o i n ( r o o t , f ) [ l e n (

base ) : ] + ’ \n ’ ) . r e p l a c e ( ’ \\ ’ , ’ / ’ ) )

n e w f i l e = open ( ’ n e w f i l e ’ , ’w’ )
n e w f i l e . w r i t e l i n e s ( s o r t e d ( a l l f i l e s ) )
n e w f i l e . c l o s e ( )
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Appendix E: Ubuntu Source Code

# ! / u s r / b i n / env p y t ho n
import os
import s u b p r o c e s s
import s h u t i l
from os . p a t h import j o i n , g e t s i z e

i f os . name == ’ p o s i x ’ :
ba se = ’ / windows / ’

e l s e :
b a se = ’ / ’

a l l f i l e s = l i s t ( )
f o r r o o t , d i r s , f i l e s in os . walk ( base ) :

f o r f in f i l e s :
a l l f i l e s . append ( ( os . p a t h . j o i n ( r o o t , f ) [ l e n ( ba se ) : ] +

’ \n ’ ) . r e p l a c e ( ’ \\ ’ , ’ / ’ ) )

l i n u x f i l e = open ( ’ l i n u x f i l e . t x t ’ , ’wb ’ )
l i n u x f i l e . w r i t e l i n e s ( s o r t e d ( a l l f i l e s ) )
l i n u x f i l e . c l o s e ( )

p = s u b p r o c e s s . Popen ( [ ” d i f f ” , ”−w” , ” l i n u x f i l e . t x t ” , ” /

windows / n e w f i l e ” ] , s t d o u t = s u b p r o c e s s . PIPE )
( p i p e o u t p u t , p i p e e r r ) = p . communicate ( )
d i f f f i l e = open ( ’ d i f f p y t h o n . t x t ’ , ’wb ’ )
d i f f f i l e . w r i t e ( p i p e o u t p u t )
d i f f f i l e . c l o s e ( )

d i f f f i l e = open ( ’ d i f f p y t h o n . t x t ’ , ’ r ’ )
l i n e = d i f f f i l e . r e a d l i n e ( )
e x p e c t e d = open ( ’ e x p e c t e d . t x t ’ , ’wb ’ )
e x p e c t e d . w r i t e ( l i n e )
e x p e c t e d . c l o s e ( )
u n e x p e c t e d = open ( ’ u n e x p e c t e d . t x t ’ , ’wb ’ )
u n e x p e c t e d . w r i t e ( l i n e )
u n e x p e c t e d . c l o s e ( )
whi le l i n e :

i f l i n e [ 0 ] != ’< ’ and l i n e [ 0 ] != ’> ’ :
e x p e c t e d = open ( ’ e x p e c t e d . t x t ’ , ’ a ’ )
e x p e c t e d . w r i t e ( l i n e )
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e x p e c t e d . c l o s e ( )
e l i f ( ’ System Volume I n f o r m a t i o n / r e s t o r e {311 F706D−679B
−42DE−B9D1−4E16B3078E79 } ’ ) in l i n e or ( ’WINDOWS/ Temp /

P e r f l i b P e r f d a t a ’ ) in l i n e :
e x p e c t e d = open ( ’ e x p e c t e d . t x t ’ , ’ a ’ )
e x p e c t e d . w r i t e ( l i n e )
e x p e c t e d . c l o s e ( )

e l s e :
u n e x p e c t e d = open ( ’ u n e x p e c t e d . t x t ’ , ’ a ’ )
u n e x p e c t e d . w r i t e ( l i n e )
u n e x p e c t e d . c l o s e ( )

l i n e = d i f f f i l e . r e a d l i n e ( )

l i n e 2 = ’ \n ’
d i f f f i l e 2 = open ( ’ d i f f p y t h o n 2 . t x t ’ , ’wb ’ )
d i f f f i l e 2 . w r i t e ( l i n e 2 )
d i f f f i l e 2 . c l o s e ( )
f i l e s o u t = open ( ’ f i l e r e s u l t s . t x t ’ , ’wb ’ )
f i l e s o u t . c l o s e ( )
d i f 2 = open ( ’ u n e x p e c t e d . t x t ’ , ’ r ’ )

whi le l i n e 2 :
d i f e x p e c t = 0
d i f 3 = open ( ’ f i l e s t o compare . t x t ’ , ’ r ’ )
l i n e 3 = d i f 3 . r e a d l i n e ( )
whi le l i n e 3 :

i f l i n e 2 . s t r i p ( ) in l i n e 3 . s t r i p ( ) :
d i f e x p e c t = 1

e l i f l i n e 2 [ 0 ] != ’< ’ and l i n e 2 [ 0 ] != ’> ’ :
d i f e x p e c t = 1

l i n e 3 = d i f 3 . r e a d l i n e ( )
i f d i f e x p e c t == 0 :

d i f f f i l e 2 = open ( ’ d i f f p y t h o n 2 . t x t ’ , ’ a ’ )
d i f f f i l e 2 . w r i t e ( l i n e 2 )
d i f f f i l e 2 . c l o s e ( )
i f l i n e 2 [ 0 ] == ’< ’ :

l i n e 2 s h o r t = ’ / windows / ’ + l i n e 2 [ 2 : −1 ]
p = s u b p r o c e s s . Popen ( [ ” f i l e ” , l i n e 2 s h o r t ] ,

s t d o u t = s u b p r o c e s s . PIPE )
( p i p e o u t p u t , p i p e e r r ) = p . communicate ( )
f i l e s o u t = open ( ’ f i l e r e s u l t s . t x t ’ , ’ a ’ )
f i l e s o u t . w r i t e ( p i p e o u t p u t )
f i l e s o u t . c l o s e ( )
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l i n e 2 = d i f 2 . r e a d l i n e ( )

s h u t i l . c o p y f i l e ( ’ l i n u x f i l e . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

l i n u x f i l e . t x t ’ )
s h u t i l . c o p y f i l e ( ’ d i f f p y t h o n . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

d i f f p y t h o n . t x t ’ )
s h u t i l . c o p y f i l e ( ’ e x p e c t e d . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

e x p e c t e d . t x t ’ )
s h u t i l . c o p y f i l e ( ’ u n e x p e c t e d . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

u n e x p e c t e d . t x t ’ )
s h u t i l . c o p y f i l e ( ’ d i f f p y t h o n 2 . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

d i f f p y t h o n 2 . t x t ’ )
s h u t i l . c o p y f i l e ( ’ f i l e r e s u l t s . t x t ’ , ’ / media / f l a t w a r e / t e s t 3 /

f i l e r e s u l t s . t x t ’ )

os . sys tem ( ” sudo shutdown −h now” )
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