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Abstract

System identification has long been used as a tool for flight test engineers to char-

acterize systems under test; however, the inputs to these characterization activities

have previously been limited to wind tunnel and flight test data. There has been

a recent effort to incorporate computational fluid dynamics (CFD) into the system

identification process. An integral piece of the process is the simulation of training

maneuvers utilizing CFD. Up until now, the suitability of particular training ma-

neuvers has been assessed by comparing the reduced model to known results. This

research strives to recommend a set of parameters to be used in determining a priori

whether a training maneuver will be suitable under a particular set of flow conditions.

As part of this study, regressor space parameters (RSPs) were proposed and evalu-

ated for several maneuvers. Then, multivariate polynomial models for coefficient of

lift, coefficient of drag and pitch moment coefficient were generated from the results

of the training maneuvers simulated via CREATE-AV’s flow solver, Kestrel. The

resulting model-predicted coefficient values were then compared to CFD simulations

of carefully selected comparison maneuvers, as measured by a set of suitable statis-

tical metrics. Using the statistical analysis tool JMPr, the set of proposed RSPs

were then analyzed in order to evaluate their utility in assessing the suitability of

the training maneuvers. This research showed the reliability of certain RSPs to char-

acterize training maneuver performance. Finally, lessons learned from this research

were applied to improve upon current best practice training maneuvers.
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TRAINING MANEUVER EVALUATION FOR REDUCED ORDER MODELING

OF STABILITY & CONTROL PROPERTIES USING COMPUTATIONAL

FLUID DYNAMICS

I. Introduction

1.1 General Issue

Design changes late in the development cycle are a problem that have plagued mil-

itary fighter aircraft for decades [15]. While analytical and numerical techniques can

provide some insight into stability and control (S&C) characteristics at benign flight

conditions, advanced flight conditions that include non-linearities are not easily cal-

culated. Running the whole spectrum of dynamic maneuvers using a fully-turbulent

Navier-Stokes solver in order to discover possible problems in the S&C characteristics

is too costly.

Specific examples of costly late design changes are numerous. Consider the F-

4, at high α (angle of attack); the aircraft lost directional stability. Over 200 F-4s

were lost before a solution was found [14]. The 737NG had undesirable flaps-up stall

characteristics; the aircraft experienced stick lightening during stall [14]. Northrop

Grumman observed yaw departures and post stall lateral and directional instability

with the F-5 which resulted in the loss of a flight test aircraft and large cost overruns

and schedule delays [14].

There is a Department of Defense (DoD) and Air Force (AF) need to find and

mitigate these risks earlier in the design cycle in order to save time, money and

possibly human life.
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1.2 Background

There are several avenues for obtaining the stability characteristics for an aircraft:

analytical calculations, wind-tunnel testing, flight testing, and full computational

simulations. System identification SID has been offered as methodology for utilizing

computational simulations in order to produce simpler numerical calculations via

reduced order models (ROMs) to calculate S&C characteristics. The paragraphs

below will briefly discuss the benefits, challenges and limitations for each method.

Analytical results are useful in that the engineer can begin as early as desired

in the design cycle. To some degree, analytical results guide aircraft designers early

in the design; however, there is a limit to how much realism analytical techniques

are able to incorporate. Non-linearities and complex configurations make analytical

techniques an impractical choice.

Wind tunnel testing has the advantage of being able to produce a wide variety of

aerodynamic results as soon as a configuration is determined. Unfortunately, there

are also limitations to the results wind tunnel testing can obtain. A wind tunnel’s

testing parameters are unlikely to span the entire operational envelope of a fighter

aircraft. Coefficients such as coefficient of lift (CL) and coefficient of drag (CD) are

easy to obtain for static flight conditions; the ability to evaluate these coefficients

for dynamic maneuvers is limited. This difficultly reduces the applicability of wind

tunnel testing to obtaining derivatives such as CNα̇ which is the partial derivative of

CN , to α̇.

The benefits to flight testing are numerous. While the data provided by flight

testing are absolutely invaluable, the downside is that a fully functional prototype

must be used, and the prototype will likely only be available very near the end of

the design process. At that point, considerable time, effort and money have been

invested in the project. Major design changes at a late stage are detrimental to
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the project, particularly on modern aircraft, where stealth characteristics are highly

dependent on aircraft geometry. If sudden instabilities are found during the test, it

can be dangerous for the aircraft as well as the pilot. Additionally, flight test has the

downside of being the most expensive of all the methods.

Computational results also have the benefit of yielding results once a geometry is

decided upon–after the necessary grid generation, grid refinement study and solution

time. However, there are limitations to computational fluid dynamics (CFD) that

need to be understood and taken into account in order to gain useful results. The

quality of the outputs is heavily dependent upon the quality of the inputs. Grid and

geometry need to be suitable; otherwise, no matter how highly accurate the solver

may be, the results will be inaccurate or misleading. Also, while CFD has come a

long way in the recent past, there is still no “perfect solution.” Any computational

simulation is going to include a variety of assumptions, the biggest of which will be

the model used to simplify the turbulent structures in the flow. One benefit is that

CFD has the capability to provide insight into aircraft behavior much earlier in the

design cycle. Finally, there is also the benefit of having data everywhere in the flow,

as opposed to a few select areas with sensors as in the case of wind tunnel and flight

testing.

Put simply, SID is a process by which, using known inputs and measured outputs,

a complex system is reduced to a simplified model. In this work, the known inputs are

parameters such as α and Q. The measured outputs will be the stability coefficients:

CL, CD and CM . Previously, system identification had been considered a useful

process only for flight test and wind tunnel testing data. From System Identification,

Theory and Practice: “There are also analytic methods to find the aerodynamic

function dependencies, such as computational fluid dynamics (CFD)...although these

methods work well in some cases, typically for low angles of attack and low rotational
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rates, the best aerodynamic predictions are obtained using experimental methods.”

[20] However, there has been a recent effort to incorporate the usefulness of the

reduced order models obtained from the system identification process utilizing the

early availability of solutions gained from high fidelity-CFD.

1.3 Research Objectives

This project seeks to further the current understanding of using CFD in the system

identification process in order to gain S&C insight earlier in the design process and to

refine the methods to do so. In order for CFD to be used in the system identification

process, one must simulate an appropriate training maneuver. First, it is necessary

to determine what makes a good training maneuver. Furthermore, is there a way to

evaluate the suitability of a training maneuver a priori?

The focus of this project is to determine a set of parameters that will indicate if a

training maneuver is suitable prior to simulating the maneuver. Previous research by

Butler [5], has been conducted in order to find parameters to be used prior to running

a maneuver. However, the parameters were not throughly evaluated. The objective

of this research is to refine and create parameters in order to estimate future model

prediction accuracy.

The path ahead for this project consists of several stages. The first stage is to

take the proposed parameters from Butler [5] and use them to assess the suitability of

benchmark maneuvers. The next stage is to simulate the different training maneuvers

using CFD and create ROMs from the outputs using SID software. The next step is

to conduct CFD simulations of the comparison maneuvers and compare the model-

predicted coefficients to the CFD coefficients using selected metrics. Once that is

completed, the next step is to evaluate how effectively the regressor space parameters

(RSPs) measured the prediction capability of the models. If necessary, optimize
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and generate new parameters to improve the prediction capability of the models.

Once satisfied with the parameters, the final step is to create an ideal maneuver that

optimizes those RSPs.

1.4 Road Map

Chapter I discussed a brief overview of the background and objectives to this re-

search. Chapter II will discuss in more detail the background information for this

research. Topics will include the governing equations, turbulence theory, turbulence

modeling, stability & control, system identification, previous research and Kestrel.

Chapter III will discuss the overall methodology used in the research. Topics in

Chapter III include the grid convergence study method, initial regressor space pa-

rameters, training maneuvers, comparison maneuvers, reduced order model genera-

tion and analysis. Chapter IV will discuss the results of the methods employed in

Chapter III, to include the grid convergence study, the regressor space parameters.

Chapter IV will detail the comparison of the reduced order model predictions vs the

CFD simulated results, and how those results motivated the design of two additional

training maneuvers. Chapter V will tie all the results together to make conclusions.
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II. Background

This chapter will present a discussion of necessary background material for this

research. Computational fluid dynamics is a major component of this research, and

as such, the background includes a discussion on the governing equations for CFD as

well as turbulence modeling and the expected flow features to be modeled. Also, this

chapter will include a discussion on system identification and the process by which a

reduced order model is created. Finally, previous research in this area of study will

be examined, and its application to this research will be discussed.

2.1 Computational Fluid Dynamics

Computational fluid dynamics is the combination of physics, numerical calcula-

tions, and computer science with the goal of simulating fluid flows. In its infancy,

CFD was used to solve the 2-D Euler equations. With the increase in computing

power and technology, the simulations have become more and more advanced. Us-

ing multigrid, multiblock, implicit time integration and unstructured grids, CFD has

evolved to simulate highly unsteady, viscous flows around complex geometries. The

following discussion will focus on the finite volume discretization of the Navier-Stokes

equations with turbulence modeling, as that is the focus of this research.

2.1.1 Governing Equations

There are three governing relations for general CFD computations, which are

further simplified depending on the fidelity of the solution. The three relations, as

shown in Blazek [4], are the conservation of mass, conservation of momentum, and

conservation of energy equations. In finite volume methods, the domain is discretized

as cells, and the amount of the conserved quantities crossing the boundaries is known
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as the flux. Taking the three conservation relations in integral form and combining

them results in the integral form of the Navier-Stokes equations

d

dt

∫
~W dΩ +

∮
( ~Fc − ~Fv) dS =

∫
Ω

~QdΩ, (2.1.1)

where ~W is a vector of conserved variables, ~Fc is a vector of convective fluxes, ~Fv is a

vector of viscous fluxes, ~Q is a collection of source terms, dΩ is the differential volume

and dS is the differential surface.

The conservative variables are given in the vector

~W =



ρ

ρu

ρv

ρw

ρE


. (2.1.2)

where ρ is the flow density, u is the x-direction velocity, v is the y-direction velocity, w

is the z-direction velocity and E is the energy. The convective fluxes are represented

by the vector

~Fc =



ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV


, (2.1.3)
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where V = ~U · n̂ and is the contravariant velocity. The viscous fluxes are given by

~Fv =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxθx + nyθy + nzθz


, (2.1.4)

where

θx = uτxx + vτxy + wτxz + k
dT

dx

θy = uτyx + vτyy + wτyz + k
dT

dy
. (2.1.5)

θz = uτzx + vτzy + wτzz + k
dT

dz

where τij is the sheer stress tensor. Lastly, the source terms are given by

~Q =



0

ρfe,x

ρfe,y

ρfe,z

ρ~fe · ~v + q̇h


. (2.1.6)

2.1.2 Turbulence Theory and Modeling

A rigorous definition of turbulence is hard to give; however, there are some distinct

characteristics to help identify turbulent flow. Unsteady, irregular, and apparently

random fluctuations are three distinct characteristics. Flow is likely to make the

switch to turbulence when small perturbations are amplified. The sources of these
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small perturbations can be free stream turbulence, surface roughness and vibrations.

The transition to turbulence depends on the Reynolds number. At low Reynolds

number, the viscous forces damp out the instabilities caused by turbulence. At high

Reynolds numbers, inertial disturbances are sufficiently damped and none are ampli-

fied. Another characteristic of turbulent flow is the large range of length and time

scales. This is due to the energy cascade in turbulence. At the largest scales, the

inertial effects dominate the flow behavior, but then large scale vortices are stretched

by the flow gradients which transfers energy to smaller scales. When the smallest

scale is reached, the energy is dissipated as heat due to viscosity-dominated eddies.

Kolmogorov assumed that the smallest scales are universal throughout different flows

and that the equilibrium between energy states from the large turbulence scales can

be modeled as

ε = −dk
dt
, (2.1.7)

where ε is the TKE dissipative rate and k is the turbulent kinetic energy. The

Kolmogorov length scale is expressed as

ηk =

(
ν3

ε

)1/4

. (2.1.8)

Close to the wall, the viscous effects dominate and u+ = y+, this relation is the law

of the wall. While y+ < 5 that region is known as the viscous sublayer. Then there

is the log layer which is shown by equation (2.1.9).

The log law states that the average velocity of the flow is proportional to the log

of the distance from the wall. The log wall is given by

u+ =
1

κ
log(y+) + β. (2.1.9)
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where κ is the Karman constant and β is another constant. The various sublayers

are shown in Figure 1.

Figure 1. Mean velocity distribution across a turbulent boundary layer [6]

There are several different ways to model turbulence. Within these turbulence

models there are several levels of approximation. The highest fidelity is direct numer-

ical simulation (DNS). In decreasing order of fidelity, there are large eddy simulation

(LES) methods, and there are Reynolds averaged Navier-Stokes (RANS) methods.

Bridging the gap between RANS and LES are hybrid methods, the most popular

being delayed detached eddy simulation (DDES). The range of turbulence modeling

techniques is shown in Figure 2

DNS is the most accurate of all types of turbulence models, as it resolves all of

the turbulent length scales. This direct simulation of the smallest turbulence scales

requires that the grid must be able to resolve down to the Kolmogorov length scale
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Figure 2. Turbulence modeling approaches [9]

shown in Equation (2.1.8) [4]. The small grid spacing that results translates to an

extremely large computational cost, which causes DNS to be unpractical for most

uses. [9]

In LES, the flow is split into two categories, small and large length scales. LES

will model the small scales, or subgrid-scales, while simulating the large length scales.

Since LES does not simulate the small length scales, it does not have the same com-

putational costs as DNS. However, in order to accurately resolve the boundary layer,

the grid spacing must be small. The grid scales must be so small that it currently

drives the computational costs of LES solutions out of general engineering use. [9]

RANS models substitute an average and a fluctuating value into the N-S equations

and then make some qualifying assumptions. An example of the decomposed values

for incompressible flow is

ui = ūi + u′. (2.1.10)

After the substitution is made, the resulting equations are simplified. The Reynolds
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stresses are the terms that arise in the Navier-Stokes equations when Reynolds-

averaging the momentum equations. The term is given by τReij = ρ̄u′iu
′
j. The Reynolds

stresses add six new unknowns into the equations that represent the transfer of mo-

mentum due to turbulent fluctuation.

Within the scope of RANS turbulence models there are several different methods.

The least complex model is known as a 0-equation model. It is an algebraic model

that calculates µ based solely on local flow conditions. A 1/2-equation model solves an

ODE only in space to model the transport of turbulence. A 1-equation model solves

one partial differential equation (PDE) of the transport of turbulence. The Spalart-

Allmaras (SA) is an example of a 1-equation model. Two-equation models use two

turbulence quantities which are modeled by two conservation equations. Examples of

2-equation models are k − ε and k − ω.

The Boussinesq gradient transport hypothesis, also known as the eddy-viscosity

hypothesis, is an example of a 0-equation model. The hypothesis assumes that the

fluxes due to the turbulent fluctuations could be solved in a similar manner to molecu-

lar transport [4]. It assumes that turbulent shear stress depends linearly on the mean

rate of strain. These transport laws can then be defined by analogy from kinetic

principles. By applying this hypothesis to the Reynolds-averaged stresses, the vis-

cosity term is replaced by a sum of the laminar viscosity and the turbulent viscosity.

Eddy-viscosity is not valid in flows with sudden change of mean strain rate, signifi-

cant streamline curvature, rotation and stratification, ducts and turbomachinary and

flows with boundary layer separation and reattachment.

The SA model solves the Reynolds-averaged Navier-Stokes equations and a trans-

port equation for the turbulence model. The SA model has the benefit of being local,

numerically forgiving, and rapid convergence to steady state [29]. Reynolds-averaged

equations are the most simplified case for solving turbulence models, if not the most
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widely used. The comparatively low computational cost make RANS methods appli-

cable to engineering applications; however, RANS models have difficulty predicting

transition to turbulence. [9]

A discussion on turbulence modeling would be incomplete without addressing

DDES [28]. Detached eddy-simulation (DES) and its latest form, DDES (Delayed

Detached eddy-simulation) are a hybrid of RANS and LES. DES and DDES depend

upon a defined distance to the wall. Near the wall the models act as a RANS model.

When the distance is larger than a predefined distance, the model acts as an LES

model. DDES has modifications to ensure that RANS turbulence modeling methods

are utilized in the boundary even in situations with thick boundary layers as well as

areas of shallow separation. The need for DDES is motivated by the grids in Figure

3, where the bottom grids would initiate a switch to LES methods before the edge of

the boundary layer.

2.1.3 Expected Flow Features

It is important to determine what type of flow will result in the simulation. If the

expected flow regime is nearly inviscid, it is prudent and responsible to run an Euler

solver rather than a turbulent Navier-Stokes solver in order to save computation time,

effort and resources. Flight conditions play an important role, as around Mach 0.8

the aircraft or airfoil will enter into the transonic regime. Likewise, at very high Mach

numbers there is also the possibility for additional thermophysical considerations.

The angle of attack will play a large factor in the expected results. In high angle

of attack (AoA) flows, highly separated turbulent flow is to be expected. In the case

of this research, the SID process has risen out of the need to model the highly non-

linear, separated flow regime. Therefore, highly separated flow is expected in this

research.
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Fig. 1 Grids in a boundary layer. Top Type I, natural DES; left Type II, ambiguous spacing; right Type III, LES. Dotted lines
mean velocity. δ is the boundary-layer thickness. Assume �z ≈ �x ≈ �‖

1 Introduction

Detached-eddy simulation (DES) [1–4] and similar hybrid Reynolds-averaged Navier-Stokes–large-eddy sim-
ulation (RANS–LES) approaches are considered promising in high-Reynolds number separated flows by a
sizeable community. The use of these techniques is widening, and there have been a wide range of generally
successful applications. Predictably, there are also now visible and repeatable imperfections in these studies
and it is opportune to examine whether these are structural, or can be traced to inappropriate user actions.
Structural issues may be caused by the realities of turbulence physics and therefore permanent (unless DNS
is possible), or may be remediable by improvements in the strategy, as is attempted here. Inappropriate user
decisions can be slowly limited by user education, primarily via adequate publications and users’ manuals [5].
They can be of the type of using much too little computing effort, poor resolution balance between various
directions and time, or of attempting a case that is out of reach for fundamental reasons. As an example of
the first type, a recurrent mis-conception has been that DES should be applied with a somewhat coarser grid
than LES in massive-separation regions and other free shear flows. There is no reason for this, and it is not
implied in the core DES papers. DES is not simply “a coarser-grid version of LES.” DES differs from LES
only in boundary layers, with the model in RANS mode, and then the difference in the required resolutions
is very wide, as will be shown shortly. Unfortunately, this unexpected idea has led to several inappropriate
comparisons between LES and DES [6,7].

Detached-eddy simulation(DES) as originally proposed is designed to treat the entire boundary layer using
a RANS model and to apply an LES treatment to separated regions. This constitutes the “natural” use of the
method and another objective here is to classify the imperfections mentioned above between those which affect
DES in its intended, natural, mode of operation, and those which appear only in derivative uses of the DES
equations or in extensions of the initial “vision.” The latter are deferred to Sect.4. For natural DES, the issues
can be loosely attributed to the existence of a “grey area” between the RANS and LES regions, announced
from the outset in 1997 [1], but left for future thinking. We now have 8 years of experience and critiques from
numerous groups. The new version of DES – DDES – addresses precisely these natural applications.

To motivate DDES, Fig. 1 displays three grid densities in a boundary layer. For ease in explanation, recall
the basic formulas of DES when based on the Spalart–Allmaras (S–A, [8]) model for the length scale d̃ that
enters the turbulence model and controls the eddy viscosity: d̃ ≡ min(d, CDES�), where d is the wall distance,
CDES is of order 1, and � ≡ max(�x,�y,�z) is the chosen measure of grid spacing (the preference between
this measure and others such as (�x�y�z)1/3 is a separate issue, present in any LES [9]).

In a Type I grid, typical of RANS and of DES with a thin boundary layer, the wall-parallel spacings �x
and �z set � via the max formula and exceed δ, so that the DES length scale is on the “RANS branch” (i.e.,
d̃ = d) throughout the boundary layer. The model functions as intended, since DES was created precisely to
by-pass LES in large areas of thin boundary layer.

Figure 3. Grids in a boundary layer. Top natural DES; left ambiguous spacing; right
LES. Dotted lines mean velocity. δ is the boundary-layer thickness [27]
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Vorticity is a measure of the rotation that exists within a flow. One source for

this rotation is viscosity. In the Navier-Stokes equations, viscous effects arise from

the viscous stresses, given by Equation (2.1.4). It is viscosity that creates the flow

phenomena necessary for flight, such as boundary layers. Viscosity also introduces

simulation challenges such as turbulence and separation. For a high fidelity simula-

tion, solving for viscous effects are very important.

Separation occurs as the boundary layer which forms on an airfoil can no longer

remain attached and then separates from the airfoil. The point at which separation

occurs is dependent on several factors, including angle of attack, Mach number and

Reynolds number.

2.2 Stability and Control

Stability and control are fundamental to the successful flight of all aircraft. As this

project aims to determine these important parameters, a brief introduction regarding

the factors to be used will be presented here.

To say that an aircraft is stable in part means to say that the aircraft is statically

stable. It is important that when an aircraft is perturbed, it returns to a trim position.

This is shown in Figure 4. When the aircraft is trimmed, the static stability is

measured in what the initial reaction of the system is to a perturbation. If there is

a change in α, such as a gust, and there is no aerodynamic moment, it is said to be

neutrally stable. If the aircraft returns to trim, it is said to be stable. If the aircraft

diverges from the trim conditions it is said to be unstable.

While static stability is the initial tendency of a system to respond to a pertur-

bation, dynamic stability is how the system responds to the perturbation over time.

Dynamic stability is shown in Figure 5. Case A is positive static stability as it initially

tends towards the pre-displacement state. Case A is also dynamically stable as over
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Figure 4. Stability conditions [31]

time it returns to the equilibrium state. Case B has neutral dynamic stability as over

time it does not tend towards equilibrium nor does it diverge. Case C has negative

dynamic stability because it diverges from the equilibrium state.

Insight into the static stability of an aircraft can be gained through the stability

coefficients that are common to aeronautical engineering practices. The most com-

monly sought are the coefficient of lift (CL), coefficient of drag (CD), and the pitch

moment coefficient (CM). These coefficients are given by equation (2.2.1)

CL =
L

1
2
ρU2
∞S

,

CD =
D

1
2
ρU2
∞S

,

CM =
M

1
2
ρU2
∞SLref

.

(2.2.1)

2.3 System Identification

System Identification is one of three main problems dealt with in aircraft dynamics

and control. Referencing Figure 6, the three problems are [20]:
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Figure 5. Dynamic stability [3]

1) Simulation: given input u and the system S, find the output y

2) Control: given the system S and the output y, find the input u

3) System Identification: given the input u and output y, find the system S

The methods used to determine the system are referred to as regression methods.

Regression methods are a statistical technique for modeling the relationships between

variables. For example, for this research a potential model could be

CL = c1 + c2α + c3αQ+ c4α
2Q (2.3.1)

where cn refers to a constant coefficient.

Multivariate orthogonal functions are used to decorrelate the modeling functions.

Multivariate orthogonal functions are preferred over ordinary least-squares linear

regression techniques as it is difficult to identify the difference between correlated
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Figure 6. Aircraft dynamics and control [20]

polynomials obtained through ordinary least-squares. Once the regressors have been

orthogonalized, the model output can be defined as [20]

~z = P~a+ ~ν (2.3.2)

where ~z is a vector of model output, ~a is a vector of unknown parameters, P is a

matrix of orthogonal regressors and ~ν is a vector of measurement errors.

Put simply, SID is a process by which using known inputs and measured outputs,

a complex system is reduced to simplified model. In this work, the known inputs

are parameters such as α and Q. The measured outputs (~z) will be the stability

coefficients, CL, CD, and CM . System identification is a method by which to cre-

ate a mathematical model of a system using input data. This method with CFD

incorporated is outlined in Figure 7.

There are three main steps of system identification: model training, model vali-

dation and model prediction. Model training is the act of creating the mathematical

model in which a CFD simulation known as a training maneuver is conducted. A

training maneuver is a dynamic computational run that spans a desired portion of the

regressor space. The dynamic motion of the training maneuver is tailored such that
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Figure 7. The system identification process [18]

the aircraft will experience a useful range of regressors (α, α̇, Q, Q̇, etc) values that

the system is likely to experience in the comparison or virtual flight test maneuver

stage.

After the dynamic computational run is conducted, the reduced order mathemat-

ical model is fashioned to the resulting data. This mathematical model is created by

examining the stability characteristics calculated during the training maneuver. The

model will predict the stability characteristics that are observed in a real-world flight

test maneuver. There are several different methods that can be used to create the

reduced order mathematical model. Two of these are multivariate polynomial and ra-

dial basis functions. Multivariate polynomial (MVP) models take the regressors and

raise them to various powers along with coefficients for each regressor which must be

uniquely determined for a given system. Radial basis functions (RBFs) are based on
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the radius from an origin or center and generally take the form [25]

y(x) =
n∑
i=1

wiφ(||x− xi||) (2.3.3)

where y(x) is the approximate function, wi is a weighted coefficient and xi is a moving

center.

Once the model is created, the SID process moves to Step 2, model validation.

Model validation involves demonstrating that the reduced mathematical model gives

the correct coefficient values. The reduced model is applied to a validation maneuver

and compared against known data or comparison data such as validated CFD results.

If the model passes Step 2, it moves on to Step 3, model prediction. The model is

then used to predict what will happen to an aircraft in a variety of maneuvers. This

point in the process is also known as “virtual flight testing”, as the model can be

used to “fly” an aircraft. Using the developed model, time and money will be saved

by reducing the amount of actual flight testing. Virtual flight testing can indicate to

engineers which test points could be trouble for an aircraft and which ones will not

be an issue.

In the past, wind tunnel testing and flight testing have been the sole inputs to

system identification methods. A variety of tools have been developed based of this

type of input, such as NASA’s System Identification Programs for Aircraft (SIDPAC)

[23]. These tools focus on the creation of the reduced model and generation of the

resulting data, whereas the input data is up to the user. It is only recently that CFD

has been explored as an approach for system identification.
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2.4 Previous Research

This section will look into the research that has previously been conducted in this

field and will consider the potential shortcomings of that research.

2.4.1 Computational Methods for Stability and Control and Early At-

tempts

The various problems discussed in Section 1.1 were taken from a NASA-sponsored

symposium of S&C and CFD engineers known as Computational Methods for Stabil-

ity and Control (COMSAC). The purpose of COMSAC was to foster the discussion

between CFD and S&C engineers, fields that have traditionally has been considered

two separate domains. The conclusions drawn from the symposium include [14]:

• The inaccurate prediction of aerodynamic S&C parameters have negative ef-

fects on the life-cycle costs of all types of aircraft. Generally, the inaccurate

predictions lead developers to resort to “fly-and-try” fixes.

• Improved prediction of the impact of separated flow on the aircraft as well as

the character of the separated flow should be a priority.

• There is an attitude of skepticism in using CFD for aircraft S&C issues in both

the S&C and CFD communities.

• The success of advanced CFD methods will depend on the demonstration of

success for generic as well as specific aircraft configurations.

• CFD shortfalls need to be high priority targets in encouraging the use of CFD

for aircraft S&C tasks.

• There was immense value in sharing the experiences of CFD specialists and

S&C specialists at the symposium.
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• NASA Ames suggested that a “brute force” method be utilized [15] to fill a S&C

database. However, it was determined to require “30 different angles-of-attack,

20 different Mach numbers, and 5 different side-slip angles, each for a number of

different geometry configurations or control surface deflections [7]”. Due to the

large computational cost, this technique would need to rely on Euler solutions

which was deemed undesirable.

2.4.2 Training Maneuvers

The training maneuver is the maneuver which will provide the model with the

known inputs and the measured system outputs. In this case, the system is the math-

ematical model of the physical system utilized in the CFD solver. It is very important

that the training maneuver be able to accurately excite the desired phenomena and

be general enough to be accurate over a wide range of scenarios. Previous research

has been conducted at Air Force Institute of Technology (AFIT) [5], United States

Air Force Academy (USAFA) [19] [16], the Air Force Seek Eagle Office (AFSEO) [21]

[12] [13], and by collaboration [15] [17].

McDaniel, et al. [15], examined a wide variety of training maneuvers and discussed

how well the resulting SID models compared. The first maneuver examined was a

pulse plunge. A pulse plunge is a maneuver designed to isolate the effects of α

and α̇ by having the aircraft vertically drop in the flow. This maneuver highlights

one of the benefits of using CFD as a training maneuver, the ability to simulate

maneuvers that are un-flyable, meaning pilots in actual aircraft cannot command

these maneuvers. Using an MVP model, the results were reasonably accurate to the

validation maneuver. The next maneuver is the Schroeder sweep plunge maneuver,

which is based off of the excitation of a specified bandwidth through the summation

of discrete frequencies. Validated against a DC chirp maneuver, the Schroeder sweep
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plunge ROM compared accurately. The model was also validated against a pitch

plunge maneuver where the model less accurately followed the validation maneuver;

however, it was noted to model unsteady behavior well. Then, the authors trained a

model using the DC chirp maneuver previously run and compared it against sinusoidal

pitch motions. The resulting models were comparable for a maneuver on the frequency

of 2.0 Hz, but did not compare as well for 1.0 Hz or for 0.5 Hz. The conclusion was

that using the DC chirp input the MVP model could model the system response.

However, the predictive capability was limited by the range of phenomena excited by

the training maneuver.

Dean, et al. [13], expanded the work done in McDaniel, et al. [15], above by

then comparing the results against solutions obtained by Lockheed Martin’s 6DOF

simulator, ATLAS. Using the DC chirp maneuver as the input, the SID model was

compared to a sinusoidal pitching maneuver at varying frequencies. At 1 Hz, the

model had trouble predicting CL but was accurate at predicting CM . As the frequency

was increased to 2 Hz and 3 Hz the model was able to better predict CL. However,

it was not able to correctly predict the shape of the hysteresis curve. It should be

noted that the authors did state that the SID models take seconds to compute after

the CFD training maneuver is complete and are able to offer a general idea of the

flight characteristics, whereas ATLAS data is only available after significant testing.

Dean, et al. [12], again expanded upon previous work by comparing SID models

created from CFD against a flight test maneuver conducted by a F-16C aircraft. The

maneuver was a 2.5-g wind-up turn to the right. The authors used a pitch chirp

maneuver to train the SID model. Lift was accurately predicted, while drag was

observed to be inaccurate at low angles of attack. The cause was determined to be

a lack inadequate training data with low Q. A combined training maneuver with
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rotational and translational motion to cover the whole regressor space was devised.

The results for drag were much better after using the combined training maneuver.

Some work has also been done by Lillian, et al. [21], to use proper orthogonal

decomposition to recreate the pressure distribution on a wing which could then extract

the stability coefficients.

Jeans, et al. [17], examined the ability of DDES simulations to predict a known

non-linear aerodynamic effect on a generic fighter geometry. Then the group used

SID techniques to created ROMs and noted how well the dynamic maneuvers and

the ROMs compared. The DDES simulations could reliably predict the instability

within a given frequency range and the SID models were able to reproduce constant

frequency maneuvers. The SID techniques were also found to have worked better with

higher frequency maneuvers. The authors then examined how the SID models faired

using the chirp maneuver as the training maneuver. The group found that, using

the SID model created from the chirp motion, it would be reasonable to extract the

rolling moment for a dynamic roll maneuver with frequencies between 1.43 and 5.86

Hz. It was also found that the SID models indicate unwanted aerodynamic behavior

at low frequencies which would alert an S&C engineer to investigate further.

Dean, et al. [11], used a multitude of chirp maneuvers on the F-22 and compared

them to the Lockheed Martin AVTEST data. The training maneuver utilizes a chirp

in three directions. The created models were then compared against a variety of

maneuvers such as static data, wind-up turn to the right, and a pitch-up stall ma-

neuver. On the whole, the reduced order models were shown to compare well with

the validation data.

Jirasek, et al. [19], looked again to study which types of training maneuvers pro-

duced desirable results—specifically, the chirp, DC chirp, spiral, DC spiral, piecewise

linear spirals, DC piecewise linear spirals, Schroeder, plunging, Fresnel integral, inte-
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grated DC chirp, integrated spiral, integrated DC spiral, integrated piecewise linear

spiral, integrated DC piecewise linear spiral, and integrated Schroeder maneuvers.

The authors found that the spiral- and chirp-based maneuvers saw better lift and

pitching moment predictions. Schroeder-based models resulted in favorable predic-

tions at lower frequencies and unfavorable predictions at higher frequencies. For static

data, the spiral maneuver gave the best results. Spiral-based models were unable to

accurately predict sinusoidal motion while the chirp and Schroeder maneuvers were

better suited to that task. The authors state that aside from static and very low

frequency data, the chirp maneuvers resulted in the most robust and reliable models.

2.4.3 Model Generation

There has also been research into which type of models to use, as well as which

regressors are important. Two models considered are MVP and RBF.

In addition to the training maneuvers discussed above, McDaniel, et al. [15],

looked at several type of models, specifically multivariate polynomial, linear regres-

sion, and stepwise regression models. The results showed that a multivariate polyno-

mial equation better compared with the CFD results using the pitch plunge maneuver.

Researchers at the United States Air Force Academy compared MVP models

created from SIDPAC software and radial basis function models to wind tunnel data

collected on site on the X-31 [18]. The conclusion of the authors was that the SIDPAC

and RBF models were equally as good at predicting the static and dynamic pitching

coefficients.

Dean, et al. [11], examined the use of Kestrel as a computational resource com-

pared to Cobalt. The study also compared MVP and RBF models created using

Kestrel as a input compared against Lockheed Martin performance data. CL and

CD were found to compare well for both models, while CM was found to be highly

25



inaccurate. Minor differences between the models can be seen in the results, however,

the differences did not lead the authors to make a claim as to which model is more

accurate.

2.4.4 Reduced Order Modeling of Fighter Aircraft

Butler [5] began to look into the objective of optimizing training maneuvers based

upon a series of what he called ”grid metrics.” Another objective was to improve upon

the chirp maneuver such that it was better suited for zero Q situations. The study

was conducted using a full-scale F-16 grid. Two problems were encountered which did

not enable him to reach any conclusions regarding the training maneuver parameters.

First, the time required to run a full-scale F-16 grid in a dynamic maneuver is large,

and requires a vast amount of computational resources. Running several maneuvers

only compounds this problem. Thus, the work of Butler was only brought to partial

completion. Second, the comparison and training maneuvers did not test the limits

of the aircraft. The non-linear coefficients were not extremely complicated, making

it hard for there to be much of a difference between the different models. Also, it

was speculated in this study that the comparison maneuvers were too similar to the

training maneuvers and that his training maneuvers were too long, giving the model

more than ample amount of data.

Butler’s work was invaluable to the author in the pursuit of this research and

several scripts created as a result of that work were either used or adopted for the

author’s use. Also, the initial RSPs used in the present study were initially proposed

as ‘grid metrics’ in Butler’s work.
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2.5 Kestrel

The CFD software chosen for use in this research is the product of the Compu-

tational Research and Engineering Acquisition Tools and Environments (CREATE)

program known as Kestrel. Kestrel began as an initiative from the Department of

Defense High Performance Computing Modernization Program (DoD HPCMP) [24].

The air vehicles portion of the CREATE program is known as CREATE-AV. The

job of the CREATE-AV team was to determine where HPC can positively affect the

acquisition process. It was determined that Kestrel, a virtual fixed wing aircraft

simulation tool, could accomplish this goal.

Kestrel is a modular program, with the three most noteworthy modules or com-

ponents being the Kestrel Infrastructure Executive (KIE), the Kestrel User Interface

(KUI), and the flow solver, kAVUS, a derivative of the Air Vehicles Unstructured

Solver (AVUS).

KIE is the executive component of Kestrel. It is the job of KIE to push data

from one component to the next. KIE however does not ever actually utilize the

data calculated from the other components. KIE is event based, and with each event,

pushes the correct data pointer to the component. The tasks of KIE are outlined

below [8].

a) Read the XML input file and parse the data out to each component

b) Initiate all of the components.

c) Connect all data consumers with producers.

d) Handle the publication and subscription of all events.

e) Handle all component exceptions.

f) Shut down all components.
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The simplified architecture for Kestrel is shown in Figure 8.
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Another important CREATE software design philosophy is modularity. A common architecture in CREATE-
AV is a Python based infrastructure and executive and either C or Fortran 90/95 components. This allows a build up 
approach to adding capability and multi-disciplinary physics. It also allows a factored approach to the software, 
aiding in code maintenance and supportability. This approach also allows all of CREATE to share components 
among software products to reduce the cost of development.  

One of the most important CREATE design philosophies is to follow a professional software development 
process incorporating configuration management, automatic unit, integration, and system testing, and user support. 
To have the desired impact on the DoD acquisition processes, the software has to be maintainable through the life of 
the program. The typical CFD solver developed by a researcher or PhD student and then modified for 10 years by a 
host of researchers will not have the desired impact on the acquisition community and will not be adopted by the 
acquisition members that must rely on the software for multi-million dollar decisions. For this reason all CREATE-
AV products have strict version control and configuration management through a Subversion (SVN) repository and 
continuous integration through nightly unit, integration, and system testing of current versions. User support will 
have both internet issue tracking and multi-layer live customer support.  

The following sections present the design and implementation schedule of the Kestrel fixed wing virtual aircraft 
product.      

 
Figure 4: Kestrel Architectural Design. 

II. Kestrel Software Architecture 
The Kestrel architecture is a blend of the CREATE design philosophies discussed above. It is a modular 

approach factoring traditional monolithic solvers into the Kestrel Infrastructure and Executive (KIE) piece, 
components to perform fluid dynamic, structures, kinematics and kinetics and other analysis, and the Kestrel User 
Interface (KUI).  Figure 4 depicts a notional view of the Kestrel software architecture.  The infrastructure and 
executive is an event-driven Python infrastructure that is component unaware. The components themselves can 
produce or respond to events and subscribe to or publish data. This allows the infrastructure and executive to be 
coded once and the eXtensible Markup Language (XML) input file to specify the use case and contributing 
components. The inputs to KIE are read in from an XML file generated by the KUI. Efficient data handling by KIE 
is accomplished by passing pointers to “heavy-weight” data or scalars. The resulting overhead was measured at less 
than 1% compared to a monolithic solver.   

In Figure 4 there are two dashed boxes surrounding the components. The left-hand box denotes those 
components that are shared objects with the KIE and maintained by the Kestrel development team. The right-hand 
box represents executables from outside sources that will exchange data via an executable-to-executable 
communication path. This feature will be implemented in later versions of Kestrel and is intended to allow industry 
or commodity software to work with Kestrel without significant rewrites of their software. An example use of this 
feature is to allow a commodity CFD solver to be used with all of the other components in Kestrel. Another example 
use would be to incorporate a “blackbox” autopilot from another contractor into the simulation.   

The following sections give a more detailed description of the KIE, components available in the first release, 
and the KUI.   
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Figure 8. Kestrel architecture [24]

KUI is the interface utilized by the user for several functions. As of Kestrel v3.0,

KUI has 6 modes including job input, boundary condition, mesh manipulation, post

processing and preferences. The most utilized is the job input mode. Here the user

can clearly see all the different ‘knobs’ that are used to set up a CFD simulation and

does not have to interpret the meanings of various entries from a cryptic job file.

The most important component for this work is kAVUS, which is fundamentally

a finite-volume, cell-centered, first-order in space and time, mesh-aligned exact Rie-

mann solver of Godunov. kAVUS is modified to achieve second-order accuracy in

time and space. Second-order accuracy in space is patterned after van Leers MUSCL

scheme where the flow state is assumed to vary linearly within each cell [8]. First-

and second- order temporal accuracy is achieved via the unconditionally stable point-

implicit scheme as implemented by Tomaro et al [30]. Also, second-order accurate

viscous terms are added such that kAVUS is a Navier-Stokes solver. For turbulence
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modeling, kAVUS provides the following options: SA, SA + DDES, SARC, SARC +

DDES, Mentor, Mentor + SST and Mentor + SST + DDES [8].
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III. Methodology

3.1 Overview

The methodology of this thesis is organized into distinct stages. First, the grid

to be used for the remainder of the research was created and validated. The initial

RSPs were utilized from previous research conducted by Jed Butler [5]. These RSPs

will be assessed against a known robust training maneuver and known low quality

training maneuvers in order to determine which RSPs provide insight into the training

maneuver development process. The analysis will be conducted according to the

overarching process depicted in Figure 9.
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Figure 9. Methodology flow chart

First, the training maneuvers will be created and measured using the regressor

space parameters. Then, the training maneuver will be simulated. The resulting co-
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efficients will be used to generate the reduced order models. The process is repeated

for each training maneuver; then, the comparison maneuvers are generated. The mo-

tion of the comparison maneuvers is fed into the ROMs to predict the comparison

maneuver coefficients. That prediction is compared against the actual comparison

maneuver CFD coefficients. The metrics R2 and normalized root mean squared devi-

ation (NRMSD) are then used to gage the accuracy of the predictions. The statistical

analysis program JMPris then used to examine the relationship between the metrics

and the RSPs. All computation runs will be conducted at Mach 0.5 at 10,000 ft.

3.2 Computational Resources and Hours

This research was conducted using two computational resources. The first is the

Nordic cluster on-site at AFIT. Nordic is a 12-node system comprised of 16 processors

per node with two of the processors having 32 processors. The processors are 2.4

GHz Opteron with 64 (or 128) GB of RAM per node [1]. Jobs are submitted via the

Portable Batch System (PBS).

The second computational resource, Raptor, is a cluster available through the U.S.

Air Force Research Laboratory (AFRL) DSRC. Raptor has 2732 nodes with 32 cores

per node. Each core is an AMD Opteron 64-bit running at 2.5 GHz with 64 GB of

memory [2].

Table 1. Computational hours

Cluster Total CPU-Hours Grid Study

Raptor 402919 0
Nordic 14500 14500

Table 1 shows the number of computational hours used on each cluster.
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3.3 Time Step and Grid Density Study

The geometry chosen for this project is a NACA 64A010 airfoil. The decision

to utilize a 2-D case was made in order to reduce computational time and to allow

for greater simplicity in the grid generation by removing difficulties associated with

complex geometries. A C-Grid topology was chosen for ease of generation which

allowed for a simple way to modify the grid refinement. The downside of a C-Grid

topology is that there are very refined cells where there is no need for them. However,

due to the already low computational expense of a 2-D airfoil case, the additional

computational expense of these ‘extra’ cells is not a significant consideration. The

coarse grid can be seen in Figure 10. The approach taken to conduct the time-step

and grid density study is discussed in Cummings et al [10].

Figure 10. Coarse C-grid

The process above involves creating multiple grids of varying refinement. Likewise,
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several time steps are also chosen using varied level of temporal refinement. The rule

of thumb of ∆t∗ = 0.01 is a convenient medium or fine level of refinement, where

∆t∗ =
∆tU∞
L

. (3.3.1)

Then, the multiple grids are run in a systematic way using the different time steps.

From the resulting data, a spectral analysis is conducted. Using the normal force

coefficient, a single-sided amplitude spectrum is calculated from the frequencies ob-

served in the simulation results. The dominant frequency is pulled from this analysis,

and the Strouhal number is calculated by

St =
fL

U∞
, (3.3.2)

where f is the frequency, L is a characteristic length and U∞ is the flow velocity. In

this study, L is taken as the chord length of 1 ft. The wave number is assumed to

be the inverse of the Strouhal number and is plotted versus the time step. Ideally, a

plot like Figure 11 will result.

Looking at Figure 11, it can be seen that the fine grid and the medium grid con-

verge upon the same Strouhal number at a time step of 2.5e-05 seconds. It would be

reasonable then to run either of the grids at this time step, however for computational

expense considerations, it would be wise to run with the lower grid density. The main

takeaway from this graph, however, is the combined effect that grid density and time

step had on the solution. If time step were only varied for a single grid density, one

may find a converging Strouhal number, but in the case of the coarse grid in Figure

11, the convergence behavior would be inconsistent with a fine grid. If one were to

vary grid density for a set time step, one may observe convergence, again for an in-

correct value as is seen by the second largest time step in Figure 11. The coarse and
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Author's personal copy

Dt*�Dt UN/c ¼ 0.01325, 0.00662, 003312, 0.001656,
0.000828, and 0.000414, respectively. These values were
initially chosen based on our ‘‘rule of thumb’’ for
aerodynamic flows, such as those described in Table 1,
which are usually modelled with a non-dimensional time
step of Dt*E0.01 (shown on Fig. 6). This non-dimensional
time step meets the Nyquist sampling rate requirement
mentioned earlier and usually aids the researcher in
performing a reasonable time-step study.

Each solution was run for the same amount of physical
time in second-order accurate mode, in this case t ¼ 0.4 s,
which means that for Dt ¼ 0.00040 s cases the solution was
run for 1000 iterations in time, for Dt ¼ 0.00020 s cases the
solution was run for 2000 iterations, etc. Three Newton
sub-iterations were used for all cases, and the damping
levels were set to default values (damping levels will be
discussed later). The simulations had been initiated with
500 iterations of first-order accurate simulations (in order
to reach a converged flow field), and then each case was run
from the same steady flow solution. Once the solutions
were obtained, time-accurate normal force variations were
used to perform a power spectrum density (PSD) analysis,
which resulted in the wave numbers shown in Fig. 6.

Notice that each of the grids shows a reduction in the
wave number (assumed here to be the inverse of the
Strouhal number), as the time step is reduced enough (say
to Dt ¼ 0.00010s for the coarse grid). As the grid is refined,
the time step must be reduced further in order to reach
time-step convergence, until two grids converge to the same
wave number, in this case when the medium and fine grids
reach a wave number of approximately 0.6. Note that this
wave number corresponds to a Strouhal number of
StE1.67, which corresponds to the experimental value
for vortex shedding. In this case the results show that either
the medium grid (at Dt ¼ 0.000025 s) or the fine grid

(at Dt ¼ 0.000050 s) can simulate a reasonably accurate
vortex shedding from the airfoil, and the user would decide
between them based on computer resources or possibly
other accuracy considerations. Another note of caution can
be found in these results: each grid required a different time
step to obtain time independence, a fact that should make
those who do not perform a joint time-step/grid density
study wary.

4.3. Impact of temporal damping

Another important factor in the accurate prediction of
time-dependent flows is the numerical damping that is
often added to the time-integration schemes. Damping is
often required in order to maintain temporal stability, but
too much damping can degrade the accuracy of the
simulation. As with the time-step study, it is important to
determine the appropriate levels of temporal damping
being used, and to use the least amount of damping
feasible.
An example of such a temporal damping study is shown

in Fig. 7 for the NACA 6512 airfoil. In this case, the
medium grid was used with a time step of Dt ¼ 0.000050 s
(a case that gave good results for the time-step study shown
in Fig. 6) and three Newton sub-iterations; all solutions
were started from the same converged time-accurate
computation and run for 8000 iterations. The advection
damping coefficient (which damps the inviscid fluxes) was
varied from 0.050 to 0.005 while holding the diffusion
damping coefficient (which damps the viscous fluxes)
constant at 0.01. At the largest value of advection damping
coefficient (0.050) the results showed the expected high-
frequency oscillations, but a lower frequency was also
evident (note the decrease in the normal force as a function
of time). As the temporal damping was decreased (say from
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Figure 11. Time-step and grid convergence study for NACA 6512 airfoil [10]

Table 2. Grids used for NACA 64A010 airfoil

Grid Density No. of Points No. of Cells No. of Faces on Surface

Coarse 124,125 123,504 248
Medium 298,850 297,804 498
Fine 802,575 801,054 498

medium grid converge on a Strouhal number, and a researcher may decide to run at

that larger time step on the coarse grid which we can clearly see is insufficient, as

proven by the data.

Table 2 shows summary data for the three grids created for the grid density study.

Table 3 shows the different time steps and corresponding ∆t∗ and required number of

iterations for 0.4 seconds of simulation time, solutions were obtained on each of the

three grid densities from Table 3 to the required number of iterations for 0.4 seconds

of runtime. Then, a spectral analysis was calculated from the resulting data in order

to find the dominant frequency in the flow.

The spectral analysis was conducted using a fast Fourier transform on the fluctu-
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Table 3. Time steps used for NACA 64A010 airfoil

Time Step (s) ∆t∗ Number of Iterations for 0.4 sec

5.0e-5 0.0260 8,000
2.5e-5 0.0134 16,000
1.25e-5 0.0060 32,000
6.25e-6 0.0030 64,000

ation of the coefficient of normal force from the time-averaged coefficient of normal

force. The Matlabrcode used for the analysis has been placed in Appendix A.1 for

the reader’s reference

The results of the time step and grid density study are discussed in Section 4.1.

3.4 Initial Regressor Space Parameters

The basis for this research started with the “metrics” provided in Butler [5] which

have been re-designated as regressor space parameters (RSPs) in this work. The

RSPs are presented below and are calculated using the Matlabrscript contained in

Appendix A.3.

The goal of the RSPs is to quantify how the training maneuver covers the regressor

space. For this research the regressor space is considered to be the Q values between

±75 (deg/s) and AoA values between -5 and 20 degrees.

The RSPs require that the regressor space be discretized for the calculations. For

some of the RSPs, the discretization refinement could have a large effect on the results.

The question is how fine to discretize the regressor space. While pinpointing an exact

number is not imperative (at the appropriate range the same trends should be seen

in the data) finding the appropriate range is important. A large discretization of Q

would result in inflated low or zero Q metrics. However, too small a discretization

would exclude values from zero Q calculations that are practically zero. A value of

35



Q and AoA discretization of 0.1 was recommended by Jed Butler [5] and is used in

the present work as well. The first RSP is an overall look at how well the maneuver

covers the desired regressor space.

RSP1 =
# of cells with data points

Total # of cells
(3.4.1)

The second metric looks to measure the extent to which the extrema of the regressor

space are captured by the maneuver.

RSP2 =
# of cells on boundary with data points

Total # of cells on boundary
(3.4.2)

The first two RSPs examine how many points total the TM covers. However, it

could be important to know how well the data is spread throughout the regressor

space. This is intended to be captured by Equation (3.4.3). In this RSP, each column

of discretized AoA values is counted and then normalized by the column with the

maximum number of points in it. Then, the standard deviation is taken across all

the columns. In an evenly spaced training maneuver, the standard deviation would

be large, as all columns would have the same number of points. The column and row

descriptors refer to the format presented later on.

RSP3 = std





# cells with data points
Total # of cells

|AoA column1

# cells with data points
Total # of cells

|AoA column2

...

# cells with data points
Total # of cells

|last AoA column


÷max value


(3.4.3)
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A similar measure of evenness is calculated using the rows of Q values instead of

columns of AoA values. This is shown in Equation (3.4.4).

RSP4 = std





# cells with data points
Total # of cells

|Q row1

# cells with data points
Total # of cells

|Q row2

...

# cells with data points
Total # of cells

|last Q row


÷max value


(3.4.4)

The next three RSPs focus on the region where there is zero pitch rate. The first

metric shown in Equation (3.4.5) simply takes the percentage of AoA cells with zero

Q rate.

RSP5 =
# of cells at 0Q with data points

Total # of cells at 0Q
× 100 (3.4.5)

The next RSP shown in Equation (3.4.6) attempts to give more weight to training

maneuvers having more data points in zero Q states. This hopes to allow the solution a

chance to dampen out dynamic effects and gives a more accurate steady state solution.

However, it is possible to inflate this number by providing a large amount of zero Q

data that does not add any more accuracy to the model. This RSP is also influenced

by the timestep of the simulation.

RSP6 =
Total # of data points at 0Q

Total # of cells at 0Q
(3.4.6)

Similar to the standard deviation RSPs above, this next RSP, shown in Equation

(3.4.7), takes the standard deviation but only for AoA values with zero Q.

RSP7 = std

(
cell1, cell2, cell3, ...last cell

Max V alue

)
@ 0Q

(3.4.7)

The next set of three RSPs looks to capture the amount of low Q data. Low Q
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data can be defined in many ways. In previous research, Bulter [5] looked at how

different definitions affected the output of these RSPs. From his research, common

results were seen when the cutoff was 5 deg/s, 10 deg/s and 20 deg/s whereas 50

deg/s seemed to show slightly different results. Based on that trend, the cutoff for

this research will be 20 deg/s. The RSP for unique cells with low Q is shown in

Equation (3.4.8).

RSP8 =
# of cells at low (not 0)Q with data points

Total # of cells at low (not 0)Q
× 100 (3.4.8)

The RSP that takes into account all the data points at low Q is shown in Equation

(3.4.9)

RSP9 =
Total # of data points at low (not 0)Q

Total # of cells at low (not 0)Q
(3.4.9)

The last of the low Q RSPs looks at the standard deviation in a similar fashion

to the equations prior. This RSP is shown in Equation (3.4.10).

RSP10 = std

(
cell1, cell2, cell3, ...last cell

Max V alue

)
@ low (not 0)Q

(3.4.10)

The last set of the initial RSPs look at the opposite side of the 20 deg/s cutoff,

and are considered ‘high’ Q. These RSPs are computed using the same process as the

last three RSPs, but using the high Q instead of the low Q values. These three RSPs

are shown in Equations (3.4.11) - (3.4.13).

RSP11 =
# of cells at high Q with data points

Total # of cells at high Q
× 100 (3.4.11)

RSP12 =
Total # of data points at high Q

Total # of cells at high Q
(3.4.12)
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RSP13 = std

(
cell1, cell2, cell3, ...last cell

Max V alue

)
@ high Q

(3.4.13)

3.5 Training Maneuvers

Unlike the previous research [5], the aim of this project is not to test out new train-

ing maneuvers. The focus of this work is the RSPs; therefore, the training maneuvers

created for this work are simpler and fewer in number. The standard practice ‘best’

training maneuver, a DC chirp [19], was selected to be the baseline maneuver. Two

other training maneuvers were created to be the ‘bad’ training maneuvers, designed

to highlight the weak points in the initial RSPs and also the strong points.

Maneuvers that are sinusoidal in nature can be created using the same formula

as the Kestrel software, and then can be input into Kestrel as arbitrary motion files.

For the purposes of this discussion, the terms will be left in the form used by Kestrel.

‘S’ is given as either the roll, pitch or yaw angle, depending on the axis of prescribed

sinusoidal motion.

S(t) = s̃(t̂)cos
[
2π(βf t̂

1+λf + f1t̂+ Φ/360)
]

(3.5.1)

where

s̃(t̂) = βat̂
1+λa (3.5.2)

βa =
a2 − a1

(tmax − t0)λa
(3.5.3)

t̂ = (t− t0) (3.5.4)

βf =
f2 − f1

(tmax − t0)λf
(3.5.5)

where the variable t is actual time, tmax is the maximum time of the motion, t0 is the
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initial time of the motion, a2 and f2 are the final amplitude and frequency, whereas

a1 and f1 are the initial values. λf and λa are the shift parameters that define how

the motion will be computed from the initial to the final values. A value of one in

either λ parameter represents a linear change. Φ is the phase shift given in degrees

[8].

Using Matlabr, these equations can be calculated locally, and then the RSPs

discussed in Section 3.4 can be calculated. From there the maneuver is transferred

into an arbitrary motion file as described by the Kestrel User Guide [8]. The user

guide specifies that there must be eight header lines followed by 13 columns. The

first column is time. The next three columns are the rotated basis vector nx, followed

by the next three columns of ny and three columns of nz. The last three columns are

the location of the center of rotation.

Three sinusoidal training maneuvers were created using Equations (3.5.1) - (3.5.5).

The inputs for these training maneuvers can be seen in Table 4. It was quickly

noticed that using an arbitrary motion file rather than the Kestrel inputs significantly

increased the computational time per iteration. training maneuver 2, comparison

maneuver 1a, comparison maneuver 3 and comparison maneuver 4 were computed

using an arbitrary motion file, the rest of the maneuvers were run using the inputs in

KUI. For the sinusoidal maneuvers such as training maneuver 1, training maneuver

3 and comparison maneuver 2, these inputs are identical. comparison maneuver 1b

and comparison maneuver 1c required use of the constant rate pitch-and-hold motion

in Kestrel. Comparison maneuver 6 used a series of constant rate pitch and hold

maneuvers. Comparison maneuver 2 uses multiple sinusoidal inputs

The first maneuver is the best practice maneuver, it is known as a DC Chirp

maneuver. The goal is to cover a large range of the regressor space. While the DC

chirp produces the most robust models, it is known to have inaccuracies in the low
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Table 4. Training maneuver input parameters

Input TM1 TM2 TM3

λa 1 1 1
λf 1.9 1 1
a1 14.7 12.5 10
a2 0 12.5 10
f1 0.75 1 0.75
f2 1.6 1 0.5

Φ(degrees) -90 -90 -90
AoAi(degrees) 6.5 7.5 7.5

Time(s) 4 1 3

and zero Q ranges. The first training maneuver (TM) is shown in Figure 12. By

covering a greater portion of the regressor space, it is desired that the model will be

more accurate with a greater understanding of the varying flow physics.

This training maneuver aims to span a large amount of the regressor space. To

accomplish that task, the frequency is varied as is the amplitude of the wave. The

result is seen in Figure 13.

Figure 14 shows a 3-D plot of the regressor space. Cells with greater spikes are cells

that have data points more often in that particular cell. For visualization purposes,

the cells for the 3-D plots are considered to be 1 (deg and deg/s) as smaller cells make

the 3-D plots impossible to see. As can be seen with Figure 14, while the number of

points centers around the initial AoA, as would be expected, the maneuver covers a

variety of points and does not center on one particular region.

TM2 and TM3 are the maneuvers designed to produce less than optimal results.

TM2 is a simple single oscillation sinusoid, as can be seen in Figure 15.

TM2 reaches the boundary of the regressor space during the maneuver, hitting

the maximum and minimum Q and AoA. However, it does not make any effort to

cover the large range of the regressor space as can be seen in Figure 16.
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Figure 12. Training maneuver 1: AoA and Q vs time
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Figure 13. Training maneuver 1: Q vs AoA
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Figure 14. Training maneuver 1: discretized regressor space
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Figure 15. Training maneuver 2: AoA and Q vs time
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Figure 16. Training maneuver 2: Q vs AoA

The last plot shown in Figure 17 shows the amount of hits in the regressor space.

As would be expected, there are many hits along the outskirts of the regressor space,

however there are space the middle of the regressor space has no data points. The

number of data points overall is less than seen in Figure 14 for TM1. The lower of

points results from the shorter time period for TM2 (1 second) vs the time period for

TM1 (4 seconds).

The last maneuver, TM3, attempts to cover slightly more of the regressor space

while also covering more low Q data. However, it is also an aim of this training

maneuver to miss the boundaries of the regressor space entirely as can be seen in

Figure 18.

The emphasis around the low Q threshold of 20 deg/s can be seen in Figure 18

and Figure 19. The amount of hits in the regressor space can be seen in Figure 20.

While TM3 shows a greater spread than TM2, it still does not cover as large a range

as TM1.
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Figure 17. Training maneuver 2: discretized regressor space
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Figure 18. Training maneuver 3: AoA and Q vs time

45



−5 0 5 10 15 20
−100

−75

−50

−25

0

25

50

75

100

AoA (deg)

P
it

ch
 R

at
e 

(Q
)

Figure 19. Training maneuver 3: Q vs AoA
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Figure 20. Training maneuver 3: discretized regressor space
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Both TM2 and TM3 are distinguishable from TM1 in that the 3-D plots are much

more sharply divided than the 3-D plot for TM1. The sharp contrast for TM2 and

TM3 are because of the single sweep of the data regime. TM2 and TM3 make one

pass and there is not much overlap in the points.

3.6 Comparison Maneuvers

The purpose of the comparison maneuvers is to provide the reduced order mod-

els generated from the training maneuvers a set of comparison data. That is, the

comparison maneuvers are simulated using Kestrel. Instead of creating reduced order

models from these maneuvers, the results of the comparison maneuver simulations

are used as a basis of comparison for the ROMs.

The first comparison maneuver, abbreviated as COM1, is simple. COM1 is a

linear sweep across the AoA regime. The goal of these maneuvers is to easily see

how well the models can recreate the entire α range at a set Q value. Therefore,

COM1 actually consists of three different maneuvers: COM1a, COM1b and COM1c.

COM1a is set to a Q value of 25 deg/s, COM1b has a Q value of 10 deg/s and COM1c

has a Q value of 50 deg/s. α and Q for the 3 maneuvers can be seen in Figures 21 -

23.

The goal of COM1 is to see if the ROMs can produce accurate CL vs α curve

and CD and CM curves. These are important curves which are the basis of much of

aircraft design.

The next maneuver known as COM2 is more complicated. This maneuver at-

tempts to cover a very large range of the regressor space and can be seen in Figure

24. While going through the oscillations shown in Figure 24, the maneuver also covers

a large range of Q values, which can be seen in Figures 25 and 26.

The next two maneuvers strive to go through the AoA region for a range of Q
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Figure 21. Comparison maneuver 1a (25 deg/s): AoA and Q vs time
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Figure 22. Comparison maneuver 1b (10 deg/s): AoA and Q vs time
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Figure 23. Comparison maneuver 1c (50 deg/s): AoA and Q vs time
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Figure 24. Comparison maneuver 2: AoA vs time
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Figure 25. Comparison maneuver 2: AoA and Q vs time
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Figure 26. Comparison maneuver 2: Q vs AoA
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values. COM3 uses an exponential change in angle of attack in order to provide a

range of AoA and Q values. COM3 can be seen in Figure 27 and 28.
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Figure 27. Comparison maneuver 3: AoA and Q vs time

While COM3 covers the range of positive Q-values, COM4 covers the negative

Q-values and can be seen in Figures 29 and 30.

The final maneuver, known as COM5, is a series of constant rate pitch and hold

maneuvers. The goal for COM3 is to show the weakness of the maneuvers at 0 Q

values at several angles of attack. The maneuver can be seen in Figure 31.

3.7 Creating the Reduced Order Models

The reduced order models are created using methods discussed in 2.3. The soft-

ware used to conduct this analysis is the System Identification Programs for Aircraft

(SIDPAC) produced by NASA Langley. For the purposes of this research, it was de-

cided to not use the built-in post-processing system identification tools implemented
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Figure 28. Comparison maneuver 3: Q vs AoA
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Figure 29. Comparison maneuver 4: AoA and Q vs time
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Figure 30. Comparison maneuver 4: Q vs AoA
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Figure 31. Comparison maneuver 5: AoA vs time
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by Kestrel. This was done to ensure greater control and understanding of model cre-

ation. The SIDPAC software is a collection of Matlabrfunctions, and the usefulness

of each one is dependent upon the need of the user. For this research the code mof.m

will be used. This file will map a multivariate polynomial model to the input data.

The file does require some input from the user. The script used to call mof.m and

input the necessary parameters is shown in Appendix A.2.

The first input is the variable nord, which is described as a vector of maximum

independent variable orders. Each input variable, α and Q, is given a nord value.

This value refers to maximum order of each independent variable in the final reduced

order model. If a 4 is entered for α, the largest exponent on α is 4 in the ROM.

However another term maxord restricts the total number of exponents for a given

term. If maxord is defined to be 5, there could be a term with α4Q but not α4Q2 as

4+2=6 which is greater than 5. The final option is maxopt which sets the maximum

number of terms in the final polynomial model.

For this work, the maxord is selected to be 5, as additional terms were seen to

increase computational time significantly while not improving the ROM. The pro-

gram orders the terms by significance to the model and ends where there is limited

additional benefit to the model based on R2 and predicted square error (PSE). From

experience in this research, the maximum value was seen to be around 14 in most

cases. However, the maximum number of terms was not limited by user input in this

research. An example of the mof.m output is shown in Figure 32. The red dot in

the figure represents the programs final choice for the number of terms in the model.

This example is the output fit for TM1 CL data. The R2 value in this chart is the

R2 for the model fit to the raw CFD data. It is lower than the R2 values shown in

Chapter IV due to the fluctuations in the flow.

For each training maneuver, each regressor will have a nord value of 5, and maxord

54



2 4 6 8 10 12 14
0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

P
re

di
ct

io
n 

E
rr

or

2 4 6 8 10 12 14
84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

89.5

R
 S

qu
ar

ed

Number of Orthogonal Functions

Figure 32. Model termination determination by SIDPAC software
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will be defined as 5. Then a model will be generated using the mof.m program. The

program will calculate the best model given the input data and input parameters.

That reduced order model will then be used going forward.

In the highly constrained circumstances of CFD flow, α̇ is assumed to be equal

to Q, as any other motion will not be introduced. However Q̇ could also be a factor

for the model. In order to provide Q̇ as a regressor, the deriv.m function of SIDPAC

will be used. This function calculates a locally smoothed numerical time derivative.

However, Q̇ was not selected as a regressor in any of the final reduced order models.

3.8 Analysis of Results

Once the reduced order models have been created, they will be compared to full

CFD predictions of the comparison maneuver coefficients CL, CD and CM . Because

of the unsteady nature of the flow, a moving average is computed for the coefficients.

The metrics for each ROM, as compared to the comparison maneuver moving-average

coefficients, are calculated using the following relations:

z̄ = mean(Obs) (3.8.1)

SSR =
∑

(Model − z̄)2 (3.8.2)

SSE =
∑

(Obs−Model)2 (3.8.3)

SST = SSR + SSE (3.8.4)

R2 =
SSR

SST
(3.8.5)

where R2 is the coefficient of determination, z̄ is the mean of the observed (CFD

coefficient) data, Model refers to the ROM predicted coefficient, SSR is the regression
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sum of squares, SSE is sum of squares of residuals and SST is total sum of squares.

NRMSD =

√∑
(Obs−Model)2

# of observations

max(Obs)−min(Obs)
(3.8.6)

NRMSD is the normalized root mean squared deviation. Each ROM, as derived

from the various TMs, will have these two metrics associated with them for each

comparison maneuver.

Two approaches will be used to analyze the results. The first is a more visual

approach. An examination of the RSPs and the output metrics for each maneuver

will be compared along with plots of the predicted and simulated coefficients to get a

sense of which RSPs show a trend in the final data. The second approach, to add more

scientific rigor, will incorporate the statistical program JMPrto investigate which

inputs (RSPs) have an effect on the outputs (R2 and NRMSD) for each coefficient

using “contrasting” methods. It is important to note the combined effectiveness

gained by using these two methods. While JMPrwill be able to provide insight

into the generic trend of the data, it will be the onus of the author to correlate

trends within the data subsets such as low Q maneuvers or even low Q sections of

maneuvers.
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IV. Results

4.1 Time Step and Grid Density Study

Using the methodology discussed in Section 3.3, the time step and grid density

study was conducted, Figure 33 shows the wave number converges between the fine

and the medium grid at a time step of 2.5× 10−5 seconds. However, at this point the

two grids are still decreasing in wave number with respect to decreasing time step.

At a time step of 1.25× 10−5 seconds, both grids are stationary with respect to wave

number and, are therefore, considered to be converged with respect to time. At this

point, it can be said that the solution is grid and time step independent. ∆t∗ = 0.01

for these flow conditions is plotted for reference. It is desirable to run on the smallest

grid possible to reduce computation expense; therefore, the medium grid at a time

step of 1.25 × 10−5 seconds was chosen. Figure 34 is a graph of the time-averaged

value for normal force coefficient. While not a great indicator of grid convergence,

it does serve as a sanity check. The medium grid and the fine grid nearly converge

upon a solution at the 1.25× 10−5 second time step.

However, after the medium grid was selected and the training maneuver simula-

tions began, the grid required additional refinement. Additional cells were needed

approximately 0.1 ft above and below the trailing edge. The final grid can be seen in

Figure 35 and the final grid statistics are given in Table 5.

Table 5. Final grid used for NACA 64A010 airfoil

Grid Number of Points Number of Cells Number of Faces on Surface
Final 629,378 628,008 498
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Figure 33. Grid sensitivity study results: wave number
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Figure 34. Grid sensitivity study results: time-averaged normal force
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Figure 35. Final computational grid

4.2 Initial RSPs

The initial RSPs were computed for the three training maneuvers and the results

are shown in Table 6 and Table 7. The first thing to note is the addition of a TM4. It

was observed early on that it would help the statistical analysis if there was another

point of comparison for the RSPs. Since the COM2 CFD results were readily available

and COM2 was very similar in behavior to a training maneuver, the results of COM2

were used to create additional models and labeled as TM4. However, TM4 is not

compared to COM2 as that would confound the results.

Looking at the RSPs can be useful for the purpose of gaining a better idea of

what the maneuver is doing before looking at the output metrics. From the first

seven RSPs it can be seen that TM4 and TM1 cover a larger amount of the regressor

space, while TM2 and TM3 do not. This is to be expected, as these maneuvers were
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Table 6. First seven RSPs

TM
Percent Std on 0 Q Data

Whole Boundary α Q Percent Per cell Std

TM1 3.6691 4.7483 0.1951 0.2444 5.20 0.9720 0.1000
TM2 0.8851 11.556 0.1074 0.1532 0.80 0.1280 0.0892
TM3 0.6880 0.0000 0.1188 0.1105 0.80 0.9889 0.0671
TM4 5.0029 15.103 0.1605 0.1862 4.80 0.8320 0.1404

Table 7. Last six RSPs with 20 deg/s as cutoff

TM
Below 20 deg/s Above 20 deg/s

Percent Per cell std Percent Per cell std

TM1 4.9990 0.9586 0.1226 3.1866 0.8152 0.1053
TM2 0.8120 0.1311 0.0891 0.9115 0.1874 0.0903
TM3 1.3050 1.3431 0.0757 0.4650 0.3845 0.0336
TM4 4.2240 0.8766 0.1472 5.2843 1.1357 0.1404

not created to cover a wide range. With these high values it would be expected that

TM1 and TM4 would correlate to an overall robust model.

The next RSP is the percent of the boundary. TM2 and TM4 both have large

values for this RSP. This result may correlate to favorable results for coefficients that

are more linear in nature.

The third and fourth RSPs are the standard deviation in AoA and Q. A high stan-

dard deviation would imply that the results are more evenly distributed throughout

the regressor space. A small standard deviation would imply that a majority of the

data set is located near the mean. TM1 provides the largest standard deviation in

AoA and Q.

The next three RSPs focus on the zero Q data. The same thoughts above for the

general case carry down into this data subset. TM1 hits the largest percent of the

dataset as well as the largest per cell count and one of the largest standard deviations.

Therefore, it is expected to produce the best results in a zero Q scenario.
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The next set looks at the low Q data points. Looking at these RSPs, TM1 again

returns the best values. However, for the high Q RSPs, TM4 returns the best values.

Based on these values it would be expected that TM1 models will return the best low

Q data while TM4 models will return the best high Q data.

4.3 Model Results

This section discusses the results gained from comparing the reduced order models

to the results gained from the full CFD simulation of the comparison maneuvers.

Again, TM4 is not compared against COM2 as that would just be a measure of how

well the model fit the data and not a measure of the predictive capability of the

model.

4.3.1 Coefficient of Lift

The results for CL can be seen in Table 8. Looking at the table there are some

surprising results. From the RSPs and the way the training maneuvers were designed,

TM2 and TM3 were not expected to produce very good results. However it is clear

from the metrics, and the results that this is not the case for coefficient of lift. To

refresh the memory of the reader, COM1a is the medium Q maneuver at 25 deg/s,

COM1b is the low Q maneuver at 10 deg/s and COM1c is the high Q maneuver at

50 deg/s.

First, reference Figure 36, it can be seen that the models all follow the trend of

the comparison data well. At first glance, it would appear that all the models are a

good prediction, with TM4 being the only model distinguishable from the rest of the

data. Table 8 confirms that idea. The surprising result is that TM2 has the highest

R2 and the lowest NRMSD. Following that the best model is TM3. Linking back

to the RSPs in Tables 6 and 7, TM2 is middle of the pack on everything but the
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Table 8. R2 and NRMSD for all CL models vs a moving average

COM
TM1 TM2 TM3 TM4

R2 NRMSD R2 NRMSD R2 NRMSD R2 NRMSD

COM1a 0.9920 0.0254 0.9941 0.0211 0.9936 0.0216 0.9891 0.0271
COM1b 0.9926 0.0237 0.9939 0.0211 0.9918 0.0256 0.9860 0.0305
COM1c 0.9919 0.0227 0.9905 0.0245 0.6674 0.1068 0.9917 0.0219
COM2 0.9774 0.0376 0.9826 0.0329 0.8064 0.1034 - -
COM3 0.9950 0.0197 0.9941 0.0212 0.6487 0.1707 0.9947 0.0407
COM4 0.9619 0.0407 0.9809 0.0300 0.7761 0.0912 0.9823 0.0283
COM5 0.9901 0.0245 0.9904 0.0244 0.9852 0.0318 0.9822 0.0318

zero/low Q parameters in which it is the lowest, therefore there is no clear link from

the metrics to the RSPs from this maneuver.

Next, reference Figure 37. The results for this case are very similar to the results

for COM1a. Looking at the results in Figure 37 it is hard to distinguish the results

and all the models agree well. Looking at the metrics in Table 8 it can be seen that

TM2 has the largest R2 and lowest NRMSD. Surprisingly, despite having a greater

concentration in the low Q area, TM3 has worse values than TM1 if only by a small

margin. Because of this, there is again no clear link between the output metrics and

the RSPs.

The last constant-Q α sweep results are shown in Figure 38. This high Q case is

where we start to see some separation between the models. For this maneuver it is

easily seen that TM3 is wildly off point. The error is due to the fact that TM3 does

not have a large amount of high Q data. The low amount of data is reflected in the

high Q RSPs. TM2 also has low high Q RSP values, and in a switch from the previous

lower Q maneuvers, TM2 now displays worse metrics than TM1 and TM4, both of

which have better high Q RSPs. The better RSPs would suggest a link between the

high Q metrics and performance of the maneuver at high Q.

Figure 39 shows the model results for COM2. Note that TM3 is omitted. The
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Figure 36. Model results COM1a CL
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Figure 37. Model results COM1b CL
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Figure 38. Model results COM1c CL

omission is due to the highly inaccurate curve that TM3 produced which distracted

from the rest of the results. Also consider that curve TM4 is essentially showing the

fit of the model to the input data, rather than prediction data. TM1 and TM2 are

both accurate throughout the maneuver; however, TM2 comes through as being more

accurate in the metrics. This is surprising as the only RSP in which TM2 is better

than TM1 is percent of points on the boundary. The success of TM2 would suggest

that for at least CL, hitting the boundaries is very important.

For the positive Q exponential maneuver, COM3, shown in Figure 40, all of the

TMs provided good results through the course of the maneuver. However, this is the

first instance where there is a display of error at the edge of the regressor space. This

error by TM3 occurs because that portion of the regressor space tested by COM3

is outside the bounds of TM3. This error will be discussed in full further in the

document. Fitting with the pattern from the previous maneuvers, TM2 returned the
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Figure 39. Model results COM2 CL

best values while TM1 returned the second best values as shown in Table 8. These

results do not immediately point to any link between the metrics and RSPs.

The results for COM4 shown in Figure 41 are similar to those from the previous

maneuver. The models all line up well in the linear portion, but there is a small spread

in the results in the unstable regime. Since this maneuver spends a longer time in

the unsteady regime, the metrics are lower overall than the previous maneuver. From

the results it can be seen that TM3 is close but not accurate in the high alpha low

Q portion of the maneuver, while every other result is fairly accurate. TM3 also had

the lowest standard deviation value for the low Q metric cells. This could indicate

a focus point of not having a well spread data. Looking at the tabular results, TM4

has better metrics than TM2 for the most accurate maneuver.

For the several step pitch and hold maneuver, COM5, all the models seem to

predict the zero Q values to a relatively high degree of accuracy. The accuracy of the

models is reflected in the metrics; however, TM1 and TM2 beat the other maneuvers
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Figure 40. Model results COM3 CL
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Figure 41. Model results COM4 CL
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for the best values and TM2 returns better values than TM1. It is worth noting that

TM3 loses some value at the end of the maneuver, where AoA is 20 degrees, likely

due the fact that maximum AoA for that training maneuver is around 18 degrees.

Despite the large difference in zero Q RSP values, there does not seem to be a link

to the metrics.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

Time (s)

C
L

 

 
TM1
TM2
TM3
TM4
Moving Average

Figure 42. Model results COM5 CL

4.3.2 Coefficient of Drag

The results for CD can be seen in Table 9. On the whole, the results for CD were

less accurate than the results seen for CL. There is also a larger distinction between

the different training maneuvers than was seen for the previous coefficient.

Looking at the results displayed on Figure 43, it is easily seen that TM1 and TM4

best represent the data. It would seem that now that the data is not as well organized

as lift was, the ‘bad’ models are now having a hard time accurately predicting the

output. TM4 resulted in the largest R2 and lowest NRMSD as shown in Table 9.
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Table 9. R2 and NRMSD for all CD models vs a moving average

COM
TM1 TM2 TM3 TM4

R2 NRMSD R2 NRMSD R2 NRMSD R2 NRMSD

COM1a 0.9869 0.0349 0.9152 0.1133 0.8671 0.0993 0.9905 0.0267
COM1b 0.9884 0.0343 0.8975 0.1413 0.9239 0.0950 0.9861 0.0351
COM1c 0.9742 0.0417 0.9533 0.0633 0.7549 0.2264 0.9750 0.0398
COM2 0.9809 0.0430 0.9115 0.1146 0.6048 0.5714 - -
COM3 0.7732 0.0787 0.8569 0.0866 0.7705 0.0973 0.9629 0.0324
COM4 0.9668 0.0621 0.8475 0.1567 0.5973 0.8259 0.9836 0.0414
COM5 0.9850 0.0410 0.9103 0.1313 0.9179 0.1056 0.9825 0.0429

TM4 has the largest values in RSP1 and RSP2 which could suggest these factors are

important for CD models.

At the low-Q AoA sweep, it was expected that TM3 would still do well, but that

proved to not be the case as seen in Figure 44. Both TM3 and TM2 seem to have

a problem predicting the linear stage, whereas in the unsteady stage they are much

closer. The inability of these two maneuvers to predict the two different stages could

be due to lack of a variety in the training maneuvers themselves. From the metrics

in Table 9, TM1 returns better values than TM4 in both R2 and NRMSD. TM1 has

better low Q RSP values, and since this is low Q maneuver, it suggests that the low

Q values have an impact on the metrics.

As expected for the high Q sweep, TM3 does not produce very good results as

seen in Figure 45. The inaccuracy makes the model pretty much useless in these

conditions. TM1 and TM4 again display good values throughout the majority of the

maneuver, only beginning to separate from the comparison coefficient at the high-

alpha values. This could be due to there being no input data at the max alpha, at

a positive Q value. In the training maneuvers at the max alpha the maneuvers are

generally at a near-zero or negative Q to resulting in a decrease in AoA. TM4 returns

the best values for this comparison maneuver. TM4 also has the best high Q RSPs.

69



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

C
D

 

 
TM1
TM2
TM3
TM4
Moving Average

Figure 43. Model results COM1a CD
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Figure 44. Model results COM1b CD
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Figure 45. Model results COM1c CD

For the COM2 maneuver shown in Figure 46, TM3 again was so inaccurate that

the results are not shown. These inaccuracies likely due to the high Q nature of

this maneuver that TM3 simply does not have the data for. The inaccuracy of TM3

should help to solidify the importance of covering the boundaries of the regressor

space. TM4 also is not taken into account for this maneuver, although it is displayed

on the figure. From Figure 46 and Table 9 it is shown that TM1 is the most accurate.

TM1 does have better high Q values than TM2 and TM3, but it is hard to suggest

that these factors alone are why it does better for this maneuver.

In the COM3 maneuver shown in Figure 47, there is a large spread in the results.

TM2 and TM3 have problems in the low alpha and low Q sections of the maneuver.

TM2 continues to display inaccuracy at the high alpha and high Q portion of the ma-

neuver. TM1 and TM4 display good results throughout the course of the maneuver.

By the tabular results, TM1 has a smaller NRMSD but TM4 has a larger R2 value.

The results are very close in magnitude. TM1 and TM4 have better low Q and high
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Figure 46. Model results COM2 CD

Q RSP values than TM2 and TM3, but TM3 still manages to do well for a bit of the

maneuver at high Q. There is no clear link between the RSPs and metrics for this

maneuver.

For the COM4 maneuver shown in Figure 48, at the high alpha, low Q section

of the maneuver both TM2 and TM3 were inaccurate. TM3 retains some precision

during the ramp up Q; however, it again becomes inaccurate at the higher Q portion

of the maneuver. TM1 and TM4 both retain a good degree of accuracy throughout

the course of the maneuver. The only lack of precision being the very minor changes

in drag at low angles of attack. According to Table 9, TM4 has the best values for

R2 and NRMSD. As with the previous maneuver, it is hard to base conclusions on

the RSPs from this result.

For the last comparison maneuver, which is the step maneuver COM5, the results

are similar to the previous maneuvers. TM2 and TM3 have trouble at the lower

alpha values. TM2 continues to stay inaccurate while TM3 is relatively accurate at
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Figure 47. Model results COM3 CD
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Figure 48. Model results COM4 CD
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15 degrees AoA. TM1 and TM4 show relative accuracy throughout the duration of

the maneuver. Table 9 shows that TM1 was the most accurate maneuver. TM1 does

have the best zero Q RSP results for percent and per cell but TM4 has a better

standard deviation number.
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Figure 49. Model results COM5 CD

4.3.3 Moment Coefficient

The results for the moment coefficient models can be seen in Table 10. The

prediction of results for the moment coefficient fluctuated for the models. Overall,

the values for R2 and NRMSD are lower than the values seen for CD and CL. TM1

and TM4 have the best RSP1 and RSP2 values.

For the first alpha sweep, COM1a, TM3 was wildly off course for most of the

maneuver, whereas TM1, TM2 and TM4 were relatively accurate. TM1 is a bit

inaccurate at the higher AoAs. Per the metrics, TM1 has the largest R2 while TM4

has the lowest NRMSD.

74



Table 10. R2 and NRMSD for all CM models vs a moving average

COM
TM1 TM2 TM3 TM4

R2 NRMSD R2 NRMSD R2 NRMSD R2 NRMSD

COM1a 0.9487 0.0556 0.9096 0.0624 0.4612 0.4436 0.9434 0.0504
COM1b 0.9366 0.0871 0.8642 0.1073 0.6078 0.5391 0.9182 0.0902
COM1c 0.7634 0.1351 0.9106 0.0854 0.4263 1.4006 0.8825 0.0879
COM2 0.9138 0.0762 0.8862 0.0716 0.5020 0.2786 - -
COM3 0.4243 0.2198 0.9252 0.0589 0.4668 2.1220 0.8438 0.0641
COM4 0.8286 0.1194 0.8679 0.0880 0.5548 1.0631 0.9050 0.0777
COM5 0.9118 0.1015 0.8960 0.0954 0.6196 0.5177 0.8851 0.1108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

C
M

 

 

TM1

TM2

TM3

TM4

Moving Average

Figure 50. Model results COM1a CM
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For the next alpha sweep, COM1b, TM3 is again not very accurate. TM1 and

TM4 show the same trend as seen in the previous maneuver, and TM2 also seems to

follow the same line as before. According to Table 10, for this maneuver TM1 has

the best metrics. As seen in the previous coefficient, TM1 has the best metrics and

also has the better low Q RSPs. Also note the sharp decrease in moment coefficient.

This would appear to correspond to separation. While there is a discussion to be had

on the ability of CFD to accurately predict separation, the MVP models are not able

to capture the phenomena that is predicted by the CFD.
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Figure 51. Model results COM1b CM

For the final alpha sweep, COM1c, it is not surprising that TM3 is even more

inaccurate, as it was expected to be for the high Q maneuvers. Because of TM3s in-

accuracy it is removed from Figure 52 as it was distracting from the other maneuvers.

As it can be seen, both TM4 and TM1 have a sharp rise at the high AoA values. Per

Table 10, TM2 has the best output metrics. Much of the inaccuracy for TM1 and

TM4 seems to happen in the last 0.1 seconds of the maneuver; without this section
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TM1 and TM4 would likely result in a better prediction. Between TM1 and TM4,

TM4 presents the better metrics and has better RSP values at high Q.
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Figure 52. Model results COM1c CM

For COM2, TM4 should not be considered for comparison although it is displayed

in Figure 53. It can be seen that TM1 and TM2 both overestimate some peaks in the

unsteady regime while overestimating oscillations in the linear regime. According to

Table 10, TM1 is the most accurate maneuver. TM1 does have better high Q values

than TM2 and TM3, but it is hard to suggest that these factors alone are why it does

better for this maneuver.

For COM3, the exponential maneuver shown in Figure 54, TM3 is not shown

due to gross inaccuracy. TM1 and TM4 seem to capture the linear regime better;

however, TM2 seems to capture the non-linear regime better. In the metrics, TM4

is the most accurate maneuver. There is no obvious link between RSPs and output

metrics from this maneuver.

For the negative exponential maneuver, COM4, shown in Figure 55, TM3 is accu-
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Figure 53. Model results COM2 CM
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Figure 54. Model results COM3 CM
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rate in the low Q and high alpha region. However, once the Q value increases, TM3

is inaccurate. TM1 and TM4 are again closely linked, while TM2 is on track but

seems to follow the trend of the data less closely. In Table 10, TM4 has the largest

R2 while NRMSD has the lowest NRMSD. Once again, this maneuver provides no

obvious insight into the link between RSPs and the metrics.
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Figure 55. Model results COM4 CM

The pitch and hold maneuver shown in Figure 56 does not display TM3. The

results of TM3 were so inaccurate that it was difficult to distinguish between the

other results. With TM3 removed, it can be seen that TM4 and TM1 do well at

the low angles of attack, have trouble around 10 degrees, but then are strangely are

better at 15 and 20 degrees. TM2 is inaccurate for the low AoAs but does well at

larger angles. Referencing Table 10, TM1 has the best metrics for this maneuver, and

as before, has the best zero Q RSP values.
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Figure 56. Model results COM5 CM

4.4 Statistical Analysis of Initially Proposed RSPs

The results of this section and the results of Section 4.5.1 are colored using the

same scale; however, each coefficient is colored using a different scale. The differ-

ent coloring is due to the large discrepancy between the correlation values for each

coefficient. The discrepancy is likely due to the scale of differences between R2 and

NRMSD values when examining coefficients. For CL, most of the models returned a

R2 value around 0.99, while for CM a high R2 value was approximately 0.90, while a

low value was approximately 0.5. The correlation values are then smaller for CL as

opposed to CM as the change in each RSP reflects only a minor at best difference in

R2 and NRMSD values. Table 11 shows the coloring for the correlation values based

on coefficient.

Table 12 shows the colored correlation value chart. The most obvious conclusion is

that the RSPs are not consistently correlated. Despite the differing ranges to provide
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Table 11. Correlation value coloring

Color
Correlation Value (Absolute Value)
CL CD CM

red x < 0.5 x < 0.4 x < 0.6
yellow 0.5 < x < 0.6 0.4 < x < 0.55 0.6 < x < 0.8
green x > 0.6 x > 0.55 x > 0.8

adequate contrast, the correlation values are not consistent across coefficients. That

is, a good RSP for one coefficient does not necessarily lead to being a good RSP for

another coefficient. Another condition of note is that the standard deviation values

seem to have one of the largest impacts across most the coefficients. Looking at RSP3

and RSP4, it appears that Q is a larger factor than AoA. Therefore, for the regressor

space subsets (low Q and high Q) it may be beneficial to split the standard deviation

calculation into AoA and Q standard deviation as is done with the whole regressor

space in previous RSPs.

Table 12. Initial RSP correlations for all comparison maneuvers

RSP Description
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

RSP1 % Whole 0.3872 -0.3738 0.6027 -0.4702 0.4762 -0.4220
RSP2 % Boundary 0.5279 -0.5248 0.5370 -0.4268 0.7129 -0.5682
RSP3 α std 0.2821 -0.2630 0.4636 -0.3824 0.2873 -0.3037
RSP4 Q std 0.4913 -0.4694 0.5860 -0.5006 0.5471 -0.5230
RSP5 0Q % 0.3739 -0.3562 0.5742 -0.4619 0.4271 -0.4045
RSP6 0Q per cell -0.3010 0.3044 -0.0785 0.0906 -0.4105 0.3144
RSP7 0Q std 0.4713 -0.4625 0.6321 -0.4902 0.6168 -0.5123
RSP8 LQ % 0.3135 -0.2957 0.5190 -0.4180 0.3435 -0.3396
RSP9 LQ per cell -0.4685 0.4655 -0.2803 0.2598 -0.6040 0.4934
RSP10 LQ std 0.4519 -0.4386 0.6445 -0.5063 0.5641 -0.4906
RSP11 HQ % 0.3966 -0.3852 0.6065 -0.4685 0.5025 -0.4330
RSP12 HQ per cell 0.2440 -0.2334 0.4931 -0.3707 0.3020 -0.2710
RSP13 HQ std 0.5960 -0.5828 0.7018 -0.5661 0.7524 -0.6414

The most surprising fact is that none of the values for CL or CM are very strong.

While there are some values that are larger than others, when the scale is held con-
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sistent between the two sections (Section 4.4 and 4.5.1), there are no green cells for

those two coefficients. CL is easy to predict, causing the changes in RSPs for the

different training maneuvers to have little effect on metrics. CM is difficult for all the

models to accurately predict. This leads to the impression for reformulation of the

RSPs.

The first reformulation deals with how these standard deviations are calculated.

For the initial RSPs, the distribution is filled with a count of which cells are hit. A

different approach is to use the total number of points in a cell, rather than binary 1

or 0 method.

Since measuring the shape of the distribution seems to be important, additional

means to measure the distribution might provide more favorable results.

4.5 Proposed RSPs

After the analysis conducted in Section 4.4, new RSPs were created and existing

RSPs were modified. There were also several changes to the implementation of the

programming, which in some cases caused a small difference in RSP values for RSPs

that were otherwise not changed.

RSP1 is unchanged from Equation (3.4.1) and RSP2 is unchanged from Equation

(3.4.2). RSP3 no longer uses the maximum value as a standardization and takes into

account how many times a value is hit. This is in order to conform more with a
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standard statistical cumulative distribution function. The revised RSP3 is shown in

Equation (4.5.1).

RSP3 = std





# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


÷# of AoA columns


(4.5.1)

RSP4 makes the same changes in regards to Q as RSP3 did in regards to AoA.

The revised RSP4 is given in Equation (4.5.2).

RSP4 = std





# of hits at first Q

# of hits at second Q

...

# of hits at last Q


÷# of Q rows


(4.5.2)

RSP5 is unchanged from how it is presented in Equation (3.4.5) and RSP6 is

unchanged from how it is presented in Equation (3.4.6).

RSP7, as with the previous standard deviation RSPs, divides by the number of

AoA columns as shown in Equation (4.5.3).

RSP7 = std

(
cell1, cell2, cell3, ...last cell

# AoA columns

)
@ 0Q

(4.5.3)

RSP8 is unchanged from how it is presented in Equation (3.4.8), and RSP9 is

unchanged from its presentation in Equation (3.4.9). However RSP10, is where the

RSPs begin to lose numbering from the previous iteration of RSPs. RSP10 is now

broken up into two RSPs, which collapse the low Q data into AoA and Q cumulative

distribution functions much like done for the new RSP3 and RSP4 above. The new
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RSP10 is given by Equation (4.5.4), and the new RSP11 is given by Equation (4.5.5).

RSP10 = std





# of hits at first α

# of hits at second α

...

# of hits at last α


÷# of α columns


@ low (not 0)Q

(4.5.4)

RSP11 = std





# of hits at first Q

# of hits at second Q

...

# of hits at last Q


÷# of Q rows


@ low (not 0)Q

(4.5.5)

The high Q RSPs are set up the same as the new low Q RSPs; however, the

numbering from the previous iteration of RSPs no longer lines up. The new RSP12 is

equivalent to Equation (3.4.11) and the new RSP13 is equivalent to Equation (3.4.12).

As with low Q, the standard deviation is now split into two different standard devi-

ations, given in Equations (4.5.6) and (4.5.7).

RSP14 = std





# of hits at first α

# of hits at second α

...

# of hits at last α


÷# of α columns


@ high Q

(4.5.6)

RSP15 = std





# of hits at first Q

# of hits at second Q

...

# of hits at last Q


÷# of Q rows


@ high Q

(4.5.7)

All further RSPs presented are completely unrelated to any previous RSPs pre-
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sented. RSP16 is an attempt to measure how closely and completely the training

maneuver approaches the boundary. For the RSP calculations, points that are out-

side of bounds (± 75 deg/s Q and -5 to 20 deg α) are not considered. Since, the

maneuver may go outside the bounds, and RSP16 aims to capture how many points

are “wasted”. RSP16 is shown in Equation (4.5.8).

RSP16 =
# of data points used

Total # of points
(4.5.8)

The next two RSPs aim to quantify how efficiently a maneuver captures the data.

This maneuver takes into account how much of the regressor space was covered and

the length of the maneuver. RSP17 is given by Equation (4.5.9) and RSP18 is given

by Equation (4.5.10). RSP18 is an attempt to normalize the values depending on the

time step used during simulation of the TMs.

RSP17 =
RSP1

Length of Maneuver
(4.5.9)

RSP18 =
RSP1 ∗ dt

Length of Maneuver
(4.5.10)

The next three RSPs are similar to the previous two RSPs, but these three look

to the how much of each subset is covered per the total duration (length) of the

maneuver as shown in Equations (4.5.11) - (4.5.13).

RSP19 =
RSP5

Length of Maneuver
(4.5.11)

RSP20 =
RSP8

Length of Maneuver
(4.5.12)

RSP21 =
RSP12

Length of Maneuver
(4.5.13)

The remaining RSPs are different from the previous RSPs in that they are gener-
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ally considered higher order descriptions of data. Three different higher order statis-

tics will be looked at; kurtosis, skewness and Pearson product-moment correlation

coefficient.

Kurtosis is a measure of the “peakness” of a data set. A normal distribution

returns a kurtosis value of 3. Kurtosis is defined in Equation (4.5.14) and the equation

used to calculate kurtosis from a data set is shown in Equation (4.5.15). [22]

k =
E(x− µ)4

σ4
(4.5.14)

k =

1
n

n∑
i=1

(xi − x̄)4(
1
n

n∑
i=1

(xi − x̄)2

)2 (4.5.15)

where x is the independent variable, x̄ is the sample mean, µ is the population mean,

n is the number of data points, and σ is the standard deviation.

Skewness is a measure of the asymmetry of the data around the mean. A positive

skewness represents data that is spread out more to the right of the mean. Skewness

is defined by Equation (4.5.16) and is calculated in Equation (4.5.17).

s =
E(x− µ)3

σ3
(4.5.16)

s =

1
n

n∑
i=1

(xi − x̄)3(√
1
n

n∑
i=1

(xi − x̄)2

)3 (4.5.17)

The Pearson product-moment correlation coefficient (Pearson r) is a measure of

linearity between two data sets. A value of 1 means positively correlated and a value
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of -1 means negatively correlated. The equation to calculate the Pearson r is given

in Equation (4.5.18). [26]

r =

n∑
i=1

((xi − x̄)(yi − ȳ))√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

(4.5.18)

Using the above statistics, the data was analyzed in the various subsets as was done

previously. The data is organized into two different distribution curves, one for AoA

and one for Q. Those distributions are also partitioned into four different intervals:

whole, 0 Q, low (non-0) Q and high Q. RSP22 and RSP23 look at the kurtosis of the

entire regressor space in Equation (4.5.19) and Equation (4.5.20).

RSP22 = Kurtosis



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


(4.5.19)

RSP23 = Kurtosis



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


(4.5.20)

The next two RSPs look at the skewness of the entire regressor space and are

shown in Equation (4.5.21) and Equation (4.5.22).

RSP24 = Skewness



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


(4.5.21)
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RSP25 = Skewness



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


(4.5.22)

The next RSP is the Pearson r between AoA and Q for the maneuver and is shown

by Equation (4.5.23).

RSP26 = r =

n∑
i=1

((AoAi − AoA)(Qi −Q))√
n∑
i=1

(AoAi − AoA)2
n∑
i=1

(Qi −Q)2

(4.5.23)

The next set of RSPs looks at the kurtosis and skewness at 0 Q. The kurtosis RSP

is given by Equation (4.5.24) and the skewness RSP is given by Equation (4.5.25).

RSP27 = Kurtosis



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ 0Q

(4.5.24)

RSP28 = Skewness



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ 0Q

(4.5.25)

The next set of equations looks at the kurtosis and skewness for Q and AoA at

low but not 0 Q. Kurtosis for AoA is given in Equation (4.5.26), and Q is given in
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Equation (4.5.27). Skewness for AoA is given in Equation (4.5.28), and Q is given in

Equation (4.5.29).

RSP29 = Kurtosis



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ low (not 0)Q

(4.5.26)

RSP30 = Kurtosis



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


@ low (not 0)Q

(4.5.27)

RSP31 = Skewness



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ low (not 0)Q

(4.5.28)

RSP32 = Skewness



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


@ low (not 0)Q

(4.5.29)

The next set of RSPs measures the kurtosis and skewness of the high Q data.

Equation (4.5.30) measures the kurtosis of AoA and Equation (4.5.31) measures the
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kurtosis of Q. Equation (4.5.32) measures the skewness of AoA and Equation (4.5.33)

measures the skewness of Q.

RSP33 = Kurtosis



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ high Q

(4.5.30)

RSP34 = Kurtosis



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


@ high Q

(4.5.31)

RSP35 = Skewness



# of hits at first AoA

# of hits at second AoA

...

# of hits at last AoA


@ high Q

(4.5.32)

RSP36 = Skewness



# of hits at first Q

# of hits at second Q

...

# of hits at last Q


@ high Q

(4.5.33)

RSP36 concludes the RSPs considered for this research. The Matlabrfunction

created for the calculation of these RSPs is given in Appendix A.4 for the reader’s

reference.
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4.5.1 Proposed RSP Results

Following the discussion in Section 4.5, the additional RSPs were calculated in

two groups. First, the ‘first order’ statistics are given in Table 13. The first thing to

note is the different standard deviation values. While it was expected for the values

to change as the normalization was changed, the change in switching to total hits

instead of cells has changed the trend of the data. The change is most evident in

RSPs 3, 4 and 7. In Table 6, TM1 has the largest AoA standard deviation, while in

Table 13 it has the third largest. The implications of these different results may be

seen later on with the correlation results.

Table 13. First set of revised RSP values

RSP Description TM1 TM2 TM3 TM4

RSP1 % Whole 3.6573 0.8851 0.6880 5.0024
RSP2 % Boundary 3.4897 11.556 0.0000 15.046
RSP3 α std 3.6625 1.3754 4.3837 4.9181
RSP4 Q std 0.0861 0.0098 0.2083 0.0935
RSP5 0Q % 4.8000 0.8000 0.8000 4.4000
RSP6 0Q per cell 0.8720 0.1280 0.9880 0.7640
RSP7 0Q std 0.0178 0.0057 0.0488 0.0160
RSP8 LQ % 4.9560 0.8120 1.3050 4.2230
RSP9 LQ per cell 0.9473 0.1311 1.3432 0.8761
RSP10 LQ α std 2.9953 1.3198 4.4692 4.4361
RSP11 LQ Q std 0.2047 0.0024 1.1168 0.0158
RSP12 HQ % 3.1866 0.9115 0.4650 5.2843
RSP13 HQ per cell 0.8153 0.1874 0.3845 1.1357
RSP14 HQ α std 1.9957 0.6853 1.1915 2.6407
RSP15 HQ Q std 0.1285 0.0142 0.1935 0.1456
RSP16 Effectiveness 0.9964 0.8082 1.0000 0.9999
RSP17 Time1 0.9143 0.8851 0.2293 1.0005
RSP18 Time2 1.142e-05 1.106e-05 2.866e-06 1.251e-05
RSP19 Time Eff 0Q 1.2000 0.8000 0.2667 0.8800
RSP20 Time Eff LQ 1.2390 0.8120 0.4350 0.8446
RSP21 Time Eff HQ 0.7966 0.9115 0.1550 1.0569

Another note is the switch from one standard deviation value for the low Q and
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high Q ranges to one for AoA and one for Q. In Table 13, it can be seen that there

are different trends in AoA and Q.

A final note concerns the trends seen in RSPs 19, 20 and 21, these RSPs are far

different than the percentage RSPs (RSPs 5,8 and 12) that form the basis. The result

of this can be seen in the magnitude of the correlation values.

Table 14 shows the correlation values for the ‘first order’ statistics. The positive

outlook is now we can see green start to cover more of the table. Some statistics are

starting to reveal themselves as more useful than others.

Table 14. First set of revised RSPs - correlation values

RSP Description
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

RSP1 % Whole 0.3838 -0.3648 0.6001 -0.4666 0.4626 -0.4166
RSP2 % Boundary 0.4889 -0.4827 0.4920 -0.3862 0.6644 -0.5253
RSP3 α std -0.2577 0.2610 -0.0015 0.0502 -0.3242 0.2649
RSP4 Q std -0.6034 0.5936 -0.4752 0.4207 -0.7563 0.6386
RSP5 0Q % 0.3716 -0.3503 0.5721 -0.4595 0.4181 -0.4009
RSP6 0Q per cell -0.3660 0.3686 -0.1534 0.1538 -0.4923 0.3845
RSP7 0Q std -0.6474 0.6346 -0.5691 0.4901 -0.8098 0.6874
RSP8 LQ % 0.3117 -0.2910 0.5189 -0.4166 0.3370 -0.3369
RSP9 LQ per cell -0.4728 0.4707 -0.2851 0.2641 -0.6141 0.4985
RSP10 LQ α std -0.3760 0.3740 -0.1462 0.1717 -0.4591 0.3912
RSP11 LQ Q std -0.6634 0.6484 -0.6405 0.5384 -0.8311 0.7068
RSP12 HQ % 0.3930 -0.3754 0.6036 -0.4648 0.4872 -0.4271
RSP13 HQ per cell 0.2405 -0.2241 0.4903 -0.3672 0.2863 -0.2653
RSP14 HQ α std 0.2069 -0.1911 0.4622 -0.3427 0.2441 -0.2297
RSP15 HQ Q std -0.4483 0.4463 -0.2409 0.2357 -0.5731 0.4708
RSP16 Effectiveness -0.2523 0.2584 -0.0067 0.0397 -0.3457 0.2615
RSP17 Time1 0.6652 -0.6472 0.6883 -0.5745 0.8218 -0.7096
RSP18 Time2 0.6652 -0.6472 0.6883 -0.5745 0.8218 -0.7096
RSP19 Time Eff 0Q -0.3520 0.3310 -0.5577 0.4466 -0.3932 0.3802
RSP20 Time Eff LQ -0.6577 0.6435 -0.5909 0.5094 -0.8153 0.6983
RSP21 Time Eff HQ -0.2936 0.2731 -0.5024 0.4032 -0.3128 0.3175

The first statistic in this group is the time statistics. For this research a constant

time step, ∆t was used, hence, RSP17 and RSP18 have the same correlation values.
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It is interesting that these RSPs would be more significant than RSP1, which they

are based on.

The zero Q standard deviation has become much more useful due to the restruc-

turing of calculation. The thought behind the zero Q data was that it might be

important how long a maneuver spends in each cell, hence the creation of RSP6.

However, by calculating the standard deviation based on the amount of the points at

that AoA as opposed to by a cell count, that ‘length of hover’ is now incorporated

into the statistic as well as the spread across the AoA regime.

The separation of AoA and Q for the standard deviation calculations and the

overall switch to number of total hits versus number of cell hits, seems to have done

well for the low Q metrics. With the revised setup, low-Q standard deviation of Q

has been shown to be a significant factor, whereas low Q AoA standard deviation as

been shown as insignificant. This implies Q is a greater consideration than AoA for

the investigated conditions

While the next system seemed to work well for the low Q values, the high Q values

do not seem to have improved. Neither the AoA or the Q standard deviation has an

improved correlation to the old system of calculation.

The second set of RSPs is shown in Table 15. One interesting statistic is that

RSP26 is nearly zero for all cases. Another interesting, or at least promising trend,

is that for each subsection there is a difference in the values. This should insure that

there are some different correlations.

The correlation values for the second set of RSPs is shown in Table 16. The first

thing to notice is the chart has much more yellow and green correlations than red.

The change in coloring shows the revised RSPs have been determined to be more

useful when compared to the previous set of RSPs. Kurtosis for AoA, LQ skewness
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Table 15. Second set of final RSP values

RSP Description TM1 TM2 TM3 TM4

RSP22 Kurtosis α 8.8673 45.752 44.091 12.483
RSP23 Kurtosis Q 27.190 7.1970 108.31 29.246
RSP24 Skewness α 2.0055 5.4952 4.9727 2.6874
RSP25 Skewness Q 3.0550 2.0665 8.4767 3.7456
RSP26 Pearson 0.0000 0.0000 0.0000 0.0458
RSP27 Kurtosis 0Q 56.051 123.01 197.99 34.044
RSP28 Skewness 0Q 6.6218 11.046 13.700 5.5731
RSP29 Kurtosis LQ α 9.0705 70.075 48.588 17.429
RSP30 Kurtosis LQ Q 39.463 1.2336 68.916 3.4526
RSP31 Skewness LQ α 2.3732 7.8303 5.6304 3.7178
RSP32 Skewness LQ Q 4.9504 0.4401 7.5377 -0.2166
RSP33 Kurtosis HQ α 2.4077 2.8856 1.6763 4.1160
RSP34 Kurtosis HQ Q 24.574 5.7243 120.328 21.999
RSP35 Skewness HQ α 0.3376 0.4104 -0.4953 1.0433
RSP36 Skewness HQ Q 2.9407 1.7515 8.0510 3.1100

of AoA, high Q kurtosis of AoA and high Q skewness of Q are all determined to be

significant for each coefficient.

The task now remains to reduce the list of 36 RSPs to an easier to manage list

of RSPs from which to motivate a maneuver. From Section 4.3 it was determined

the zero Q, low Q and high Q results trended towards more accurate maneuvers in

those areas. Thus, it tracks that at least one RSP to be maximized for the ‘ideal’

maneuver. RSP17 has some of the highest correlation values across the board and

is a measure of how fast that space is covered. Therefore, it is fitting RSP17 is the

primary RSP to use in designing a maneuver.

The next step is to determine which low Q RSP to use. RSP31 and RSP11 return

very high correlation values, and seem to be strong measures of maneuver effective-

ness. However, RSP11 has slightly higher correlation values for most of the metrics,

and is therefore selected to go forward.

For the high Q RSP selection, the choice is equally as tough. RSP33 and RSP36
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Table 16. Second set of revised RSPs - correlation values

RSP Description
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

RSP22 Kurtosis α -0.6548 0.6401 -0.5826 0.5065 -0.8051 0.6946
RSP23 Kurtosis Q 0.2123 -0.2055 0.3994 -0.2758 0.3126 -0.2371
RSP24 Skewness α -0.5723 0.5513 -0.7033 0.5715 -0.6936 0.6140
RSP25 Skewness Q -0.5180 0.4968 -0.6794 0.5476 -0.6214 0.5569
RSP26 Pearson -0.1751 0.1569 -0.4088 0.3189 -0.1676 0.1923
RSP27 Kurtosis 0Q -0.5696 0.5617 -0.5189 0.4261 -0.7496 0.6081
RSP28 Skewness 0Q -0.1207 0.1032 -0.3461 0.2717 -0.0918 0.1334
RSP29 Kurtosis LQ α -0.5328 0.5260 -0.5038 0.4054 -0.7123 0.5704
RSP30 Kurtosis LQ Q 0.4829 -0.4724 0.5739 -0.4429 0.6448 -0.5215
RSP31 Skewness LQ α -0.6650 0.6500 -0.6170 0.5272 -0.8250 0.7069
RSP32 Skewness LQ Q 0.5852 -0.5700 0.6665 -0.5326 0.7494 -0.6286
RSP33 Kurtosis HQ α -0.6585 0.6441 -0.5930 0.5113 -0.8155 0.6992
RSP34 Kurtosis HQ Q 0.5959 -0.5743 0.6383 -0.5480 0.6930 -0.6335
RSP35 Skewness HQ α 0.5375 -0.5160 0.5792 -0.5045 0.6072 -0.5703
RSP36 Skewness HQ Q 0.6499 -0.6345 0.6655 -0.5491 0.8202 -0.6943

correlated to the metrics better than any of the other high Q RSPs. RSP36 has larger

correlation values than RSP33, so it was chosen to be optimized.

The next step is to look at which zero Q RSP to optimize. RSP7 returned the

highest correlation values by a good margin, so it was selected to be optimized.

Finally, it must be decided which RSP will be most important. There are a lot

of parameters to vary and it seems unlikely there is one maneuver that will have the

best values for all these parameters. RSP17 has very high correlation values and is a

measure of the entire maneuver it is the most important. However, since low Q values

are more difficult to predict, RSP11 is selected as the next parameter. High Q values

are a very large subset of the total regressor space so RSP36 is next. Finally, since

zero Q data is the smallest subset of the regressor space, it is the least important.

95



4.6 RSP Motivated Training Maneuver

Following the discussion in Section 4.5.1, RSPs 17, 11, 36, and 7 were decided to

be used to motivate a training maneuver. The training maneuver was first attempted

as an expansion of the “chirp” maneuver. However, it was found to be difficult to

improve the RSPs using a “chip” type maneuver. Therefore, a training maneuver

similar to TM4 was adopted. TM4 is the training maneuver adopted from COM2

in order to provide another set of RSPs for the statistical analysis. The simularity

can be seen in Figure 57. In order to increase RSP17, the length of the maneuver

was shortened. While TM5 looks similar to TM4, is it quite different. The difference

can be seen most clearly in Figure 58. TM4 utilizes changes in both amplitude and

frequency for both sinusoids, whereas TM4 has constant amplitude and frequency

for both sinusoid functions. Lastly note the large spread of data across the regressor

space shown in Figure 59. It was also quickly determined that finding a maneuver

which has the best value for each of the selected RSPs is extremely difficult.

The selected RSPs are calculated for each training maneuver and shown in Table

17. The table also shows whether the RSP should be maximized or minimized. From

the table, it can be seen that TM5 ranks the best RSP17, the third best RSP11, the

second best RSP36 and the second best RSP7. If the RSPs are truely and indication

of future training maneuver performance, these RSP values would point to TM5

producing accurate results.

Table 17. RSP motivated TM and RSP values

RSP Description Max or Min TM1 TM2 TM3 TM4 TM5

RSP17 Time Max 0.9143 0.8851 0.2293 1.0005 1.2660
RSP11 LQ Q std Min 0.2047 0.0024 1.1168 0.0158 0.0234
RSP36 Skewness HQ Q Min 2.9407 1.7515 8.0510 3.1100 2.3560
RSP7 0Q std Min 0.0178 0.0057 0.0488 0.0160 0.0116
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Figure 57. Training maneuver 5: AoA and Q vs time
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Figure 58. Training maneuver 5: Q vs AoA
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Figure 59. Training maneuver 5: discretized regressor space

4.6.1 RSP Motivated Maneuver Results

In an effort to reduce presentation of redundant information, the metrics for TM5

are not presented next to the metric information for the other training maneuvers.

Instead the data will be presented for all comparison maneuvers and all coefficients

for just TM5. The chart is color-coded podium style, with gold symbolizing the ‘best’

comparison metrics when compared to the other four models, silver second and bronze

third. This data is represented in Table 18.

In another effort to reduce the amount of redundant information presented, only

charts deemed important to the understanding of TM5 model performance will be

presented here. However, the charts for each coefficient and comparison maneuver

with TM5 plotted are included in Appendix B.

As can be seen from Table 18, TM5 does very well for some maneuvers, accurate

for some others and then comparably for the rest. There are no points at which TM5
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Table 18. TM5 model metrics

COM
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

COM1a 0.9875 0.0292 0.9878 0.0301 0.9182 0.0592
COM1b 0.9843 0.0325 0.9785 0.0435 0.8674 0.1145
COM1c 0.9873 0.0264 0.9640 0.0456 0.8088 0.1050
COM2 0.9862 0.0279 0.9869 0.0337 0.9236 0.0778
COM3 0.9950 0.0185 0.8927 0.0516 0.5881 0.1123
COM4 0.9824 0.0280 0.9865 0.0370 0.9200 0.0658
COM5 0.9784 0.0354 0.9755 0.0512 0.8371 0.1364

is a terrible maneuver. Looking at the cells that are not colored at all, we see that

the R2 values are large and NRMSD values are small, indicating that all models were

extremely accurate for those maneuvers, and the difference among all the models is

slight. Just because TM5 did not get the best values in those cases does not mean it

is an unsuitable TM.

The results for COM1b for CL are shown in Figure 60. While TM5 did not place

in the top three results, it produces highly accurate results throughout the range

AoAs.

Figure 61 shows the high accuracy of the TM5 model. While most of the other

models had trouble resolving the low AoA high Q aspect of COM4, TM5 was able to

retain its fidelity. This ability seems to suggest the favorable value of RSP36 leads to

good high Q results.

The one area of concern, which is a consistent area of concern for all the models, is

COM3 for CM . TM5 returns a R2 value of 0.5881. The model is shown in Figure 62.

The reason for the low R2 value is the high Q, high alpha portion of COM3. While the

model has high Q and high alpha data points, it does not have a good representation

of both of them. Thinking back to the regressor space figures in Section 4.6, there is

very little, or no data, in the corners of the regressor space. When the model is then
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Figure 60. Model results COM1b CL with TM5
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Figure 61. Model results COM4 CD with TM5
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mapped to the resulting data of the training maneuver, this subset of data is outside

the bounds of the training maneuver, and the polynomial functions fall off.
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Figure 62. Model results COM3 CM with TM5

At this point, it has been shown using statistical measures to gain greater insight

into actions of a training maneuver, the maneuver can be better tailored to a partic-

ular need. However, with there being some time left an additional maneuver may be

able to solidify or expand the knowledge of these RSPs and the output metrics. From

the experience gained over the course of this research, the author has decided a series

of actions that can help with the system identification process. First, the results from

TM5 should be appended to the statistical analysis to better determine which RSPs

are important. Applying the results of TM5 to the data set and recalculating the

correlation values gives the chart shown in Table 19.

Comparing the results, most of the important RSPs from before are decidedly

still useful to predicting TM accuracy. However, the values of the correlations have

changed. From the results, RSP11 now has stronger correlation values than RSP17,
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Table 19. Correlation values with TM5 included

RSP Description
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

RSP1 % Whole 0.4002 -0.3740 0.6153 -0.4891 0.4223 -0.4358
RSP2 % Boundary 0.4520 -0.4498 0.4240 -0.3421 0.6487 -0.4841
RSP3 α std -0.2534 0.2572 -0.0006 0.0483 -0.3217 0.2619
RSP4 Q std -0.6166 0.6043 -0.4994 0.4466 -0.7492 0.6547
RSP5 0Q % 0.3917 -0.3637 0.5955 -0.4846 0.3756 -0.4247
RSP6 0Q per cell -0.3532 0.3574 -0.1347 0.1412 -0.4980 0.3716
RSP7 0Q std -0.6595 0.6431 -0.5970 0.5199 -0.7927 0.7025
RSP8 LQ % 0.3418 -0.3139 0.5499 -0.4464 0.3067 -0.3715
RSP9 LQ per cell -0.4775 0.4748 -0.2917 0.2738 -0.6228 0.5049
RSP10 LQ α std -0.3948 0.3901 -0.1860 0.2035 -0.4614 0.4141
RSP11 LQ Q std -0.6741 0.6553 -0.6636 0.5660 -0.8099 0.7199
RSP12 HQ % 0.4113 -0.3863 0.6232 -0.4919 0.4539 -0.4480
RSP13 HQ per cell 0.2858 -0.2634 0.5378 -0.4154 0.2952 -0.3141
RSP14 HQ α std 0.2627 -0.2394 0.5174 -0.3976 0.2603 -0.2901
RSP15 HQ Q std -0.4595 0.4561 -0.2621 0.2556 -0.5813 0.4849
RSP16 Effectiveness -0.2433 0.2504 0.0018 0.0323 -0.3562 0.2532
RSP17 Time1 0.6244 -0.5995 0.6867 -0.5767 0.7121 -0.6700
RSP18 Time2 0.6244 -0.5995 0.6867 -0.5767 0.7121 -0.6700
RSP19 Time Eff 0Q 0.5737 -0.5459 0.6512 -0.5586 0.5956 -0.6140
RSP20 Time Eff LQ 0.5070 -0.4789 0.5922 -0.5099 0.4987 -0.5430
RSP21 Time Eff HQ 0.6284 -0.6060 0.6793 -0.5662 0.7439 -0.6746
RSP22 Kurtosis α -0.3828 0.3553 -0.5933 0.4824 -0.3648 0.4149
RSP23 Kurtosis Q -0.6688 0.6508 -0.6183 0.5389 -0.7915 0.7124
RSP24 Skewness α -0.3270 0.2992 -0.5355 0.4343 -0.2869 0.3558
RSP25 Skewness Q -0.6669 0.6491 -0.6062 0.5332 -0.7818 0.7094
RSP26 Spearman 0.2083 -0.2021 0.3790 -0.2683 0.3263 -0.2311
RSP27 Kurtosis 0Q -0.5685 0.5416 -0.7127 0.5876 -0.6289 0.6121
RSP28 Skewness 0Q -0.5106 0.4830 -0.6817 0.5573 -0.5488 0.5513
RSP29 Kurtosis LQ α -0.2312 0.2064 -0.4709 0.3753 -0.1734 0.2534
RSP30 Kurtosis LQ Q -0.5811 0.5671 -0.5622 0.4675 -0.7416 0.6232
RSP31 Skewness LQ α -0.1844 0.1601 -0.4187 0.3350 -0.1050 0.2028
RSP32 Skewness LQ Q -0.5473 0.5340 -0.5497 0.4494 -0.7111 0.5884
RSP33 Kurtosis HQ α 0.4410 -0.4349 0.4935 -0.3908 0.6148 -0.4741
RSP34 Kurtosis HQ Q -0.6757 0.6570 -0.6419 0.5554 -0.8005 0.7204
RSP35 Skewness HQ α 0.5812 -0.5668 0.6424 -0.5262 0.7374 -0.6233
RSP36 Skewness HQ Q -0.6699 0.6519 -0.6193 0.5400 -0.7923 0.7135
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and shifting from previous results, RSP34 has a greater correlation than RSP36.

Therefore, the decided new order of RSP importance is RSP11, RSP17, RSP34 and

RSP7.

Second, the phenomena discussed above were observed for many models. Figure

63 illustrates the corners of the regressor space are not covered. It is not just that

there are not data points there. At 10 deg AoA and 25 deg/s pitch rate, there are not

data points either, but there is not a huge inaccuracy in the comparison maneuvers at

that value. The predictions are still accurate because of the data points that bound

it. It would make sense then in order to ensure the entire regressor space is covered,

the training maneuver should encompass the regressor space. While it seems to be

common practice in the literature [15] to constrain the training maneuver within

the same regressor space as the model prediction space, there is no reason why the

training maneuver can not be extended beyond that.
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Figure 63. Edge problem shown in TM4 regressor space
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4.7 Lessons Learned Maneuver

In consideration of the results from Section 4.6.1, a decidedly different approach

was taken for the final maneuver. Most of the previous research has pointed towards

completing training maneuvers within specified regressor space bounds. At the very

least, the literature [17] [15] makes the claim to stay within the ranges of the training

maneuver, which could be taken to mean that staying within max/min Q and AoA

would be sufficient. Unfortunately, it is entirely possible, as this research can show,

that it is possible to fill the regressor space and still overextend the models within the

chosen regressor space. By extending the training maneuver outside of the regressor

space ‘box’, there is a much better opportunity to ensure model accuracy in the

entirety of the regressor space

The addition of a single sine oscillation to the beginning of the maneuver will allow

for a guaranteed inclusion of the entire regressor space by the training maneuver. A

single sine oscillation at constant amplitude and frequency forms a circle on the Q

vs AoA regressor map. Hitting the four corners of the regressor space ensures there

will be data points constraining the fit in the entire regressor space. Then, the “best

practice” DC chirp maneuver is used to fill the space to desirable levels. Figures 64

and 65 illustrate TM6.

4.7.1 Lessons Learned Maneuver Results

The RSP values for TM6 versus the other maneuvers are shown in Table 20. While

TM6 does not return the best values when compared against the other maneuvers, it

does have values in the same range as the other ‘good’ maneuvers. As was discovered

with TM5, it is hard to individually manipulate a single RSP. A best effort has to

be made to observe changes with changing inputs. The results from the sixth
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Figure 64. Training maneuver 6: AoA and Q vs time

Figure 65. Training maneuver 6: Q vs AoA
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Table 20. RSP values for all TMs

RSP Description Max or Min TM1 TM2 TM3 TM4 TM5 TM6

RSP11 LQ Q std Min 0.2047 0.0024 1.1168 0.0158 0.0234 0.1842
RSP17 Time Max 0.9143 0.8851 0.2293 1.0005 1.2660 0.9670
RSP34 Kurtosis HQ Q Min 24.574 5.7243 120.33 21.999 12.396 37.5211
RSP7 0Q std Min 0.0178 0.0057 0.0488 0.0160 0.0116 0.0128

training maneuver are shown in Table 21, which shows the raw TM6 results color

coded ’podium style.’

Table 21. TM6 model metrics

COM
CL CD CM

R2 NRMSD R2 NRMSD R2 NRMSD

COM1a 0.9823 0.0334 0.9748 0.0430 0.8716 0.0755
COM1b 0.9721 0.0419 0.9624 0.0562 0.8198 0.1328
COM1c 0.9880 0.0247 0.9812 0.0351 0.8817 0.0890
COM2 0.9740 0.0371 0.9729 0.0484 0.8722 0.1038
COM3 0.9911 0.0244 0.9735 0.0284 0.9074 0.0568
COM4 0.9328 0.0525 0.9871 0.0377 0.9349 0.0699
COM5 0.9594 0.0466 0.9682 0.0590 0.8250 0.1452

From the table, it can be seen that TM6 did very well at the high Q values.

However, TM6 seemed to struggle with the low Q maneuvers. The reason for this

can be seen in Figure 66. The fit to the data is good in the high Q range; however,

the fit drops off, by the end of the maneuver which is in the middle of the regressor

space.

The Kestrel MVP in Figure 67 was constructed using the same SIDPAC software

as used in this research. However, due to the organized fashion of the coefficient results

when an entire aircraft is taken into consideration, compared to a 1 ft chord airfoil, the

constructed model is much more accurate to the training data. The difference is likely

the major contributor to the error seen by TM6. The choice of the desired regressor

space may have been too ambitious for an airfoil from the start of the current research.
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At the very large AoAs and Qs generated in the sixth maneuver, the difference in flow

phenomena could be too large for the model to be able to fit the entire maneuver.

It would be interesting to contrast the use of a RBF (radial basis function) model in

this situation. RBF models have the characteristic of exactly matching the training

data. However, the theory behind the generation of TM6 should still stand, if applied

to a more applicable problem.
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Figure 66. Fit problem shown in TM4 regressor space

Despite TM6 not performing as well as hoped, there is a lesson learned. Referenc-

ing Figure 68, it can clearly be seen the edge of the regressor space error is removed.

TM6 is very accurate in that region, where the other models are inaccurate. How-

ever, TM6 has problems predicting the low Q, low AoA region at the beginning of

the comparison maneuver.
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Figure 5.  F-16C SID training model fit with Kestrel CFD training maneuver data (for a configuration without tip 

AIM-9s) for CL, CD, and Cm, Mach 0.6. 

Figure 6 shows the CL, CD and Cm curves for an alpha sweep for a configuration including tip AIM-9 missiles.  
The training maneuver configuration, however, was without tip AIM-9s.  Static Kestrel CFD results and SID 
model predictions are plotted against and match LM performance data (in blue) for CL and CD.  However, Cm does 
not match well using either MVP or RBF. 

 

Figure 6.  F-16C SID model static prediction vs. LM Performance Data (for a configuration with tip AIM-9s) for CL, 
CD, and Cm, Mach 0.6. 

F-16C Static Longitudinal and Lateral-Directional Analysis: Air-to-Air / REVERT-TO 

Full-scale, static, time-accurate analyses of an F-16C with the BRU-61 rack system, centerline tank, targeting pod 
and air-to-air missiles (Figure 7) have also been performed using Kestrel and Cobalt.  Longitudinal results of an 
alpha sweep from 0 to 26 degrees at Mach 1.2 and Mach 1.6 are shown in Figure 8 and Figure 9, respectively.  
Plots of CL, CD, and Cm are depicted from left to right.  Wind Tunnel data for the same loading is shown for 
comparison.  CL, CD, and Cm results for both the Mach 1.2 and Mach 1.6 cases are very encouraging. 

 
 
 
 
 
 
 

Figure 7.  F-16C configured with BRU-61 rack, missiles, tank and targeting pod. 

Figure 67. Fit for an F-16 training maneuver completed by AFSEO [11]
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Figure 68. Model results COM3 CD with TM6
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V. Conclusions and Future Work

5.1 Overview

Identification of stability issues early during the design process is an immediate

need for the Air Force. The inability to detect these issues has led to costly overruns

and late design changes for several aircrafts. Late design changes lead to ad hoc fixes

that are not ideal for the aircraft function. CFD has been proposed as a tool for

engineers to get high-fidelity static and dynamic results. CFD has a large computa-

tional cost associated with it, and for CFD to identify these trouble areas, requires

an immense amount of simulations in a variety of conditions. System identification

has recently been introduced as a method to bring CFD and S&C together by reduc-

ing the computational cost. The CFD SID process hinges upon the decision of an

appropriate training maneuver. The results of this research allow engineers to make

smarter decisions in the training maneuver development.

This research includes a variety of topics including: CFD, system identification,

S&C and statistics. The methods and actions required to solve the Navier-Stokes

equations with turbulence models to get high-fidelity solutions was discussed. The

need for accurate stability and control parameters has been demonstrated. Previous

research was considered, and the lessons herein were presented and applied to the

current work.

A C-Grid topology was applied to a NACA 64A010 airfoil, and a method for

determining grid and time step independence was presented and completed. The grid

was determined to be time and grid density independent, and the resulting grid and

timestep were selected to move forward. When dynamic maneuvers were simulated,

the grid was in need of further refinement to eliminate stability issues.

Several different training and comparison maneuvers were created and simulated
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using CREATE-AV’s flow solver Kestrel and were evaluated using regressor space

parameters. Multivariate polynomial models were created from the training maneu-

ver data. The coefficient predictions made by these models were compared against

coefficients obtained from the full CFD simulation of comparison maneuvers and suit-

able metrics were calculated. Those metrics and the regressor space parameters were

fed into the statistical analysis program JMPrand correlation values were calcu-

lated. Those correlation values were used to refine the regressor space parameters

and shape an additional training maneuver. Lessons learned from conducting the

above evaluation led to the creation of a six training maneuver.

5.2 Conclusions

The goal of this research was to investigate methods by which to measure training

maneuvers before the full CFD computational simulation and to link the results of

this evaluation process to future performance. Fulfilling this goal would create a

greater understanding of how to devise and create training maneuvers. While the

results from this research do not point to a definitive rules for creating a accurate

training maneuver, the results are suggestive of techniques. Using visual methods,

there is a noticeable difference between training maneuvers with better high Q RSPs

and high Q performance, as was the case with TM1 and TM4 for CL in the high Q

comparison maneuver COM1c. For the low Q maneuver, this link was demonstrated

with TM1 providing the best results for CD.

Correlation values between the metrics and RSPs were calculated to determine

which RSPs were most predictive of favorable TM performance. The analysis showed

that the way in which the points were distributed, as measured by standard deviation,

was important. The results of this analysis led to the creation of a total of 36 RSPs.

A large number of those set up to measure how the points are distributed in the
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regressor space. RSP17, RSP11, RSP36 and RSP7 were determined to provide insight

into future maneuver performance. RSP17 is a measure of the rate at which the

training maneuver covers unique area of the regressor space. RSP11 is a measure of

the low pitch rate standard deviation in pitch rate. RSP36 is a measure of skewness in

high pitch rate in pitch rate. RSP7 is a measure of zero pitch rate standard deviation.

Using the selected regressor space parameters, a fifth training maneuver (TM5)

was created with specific RSPs in mind. The creation of this maneuver proved that

it is hard to modify all these RSPs via one maneuver. For many of the RSPs it

is abstract to think how modifying the training maneuver motion will result in the

desired changes in the RSPs. TM5 was generated such that the selected RSPs indi-

cated favorable results. The results TM5 were favorable, with TM5 producing the

best comparison metrics for several comparison maneuvers and coefficients; however,

it did not return the best metrics for every coefficient and every maneuver. A type

of error due to the edge of the regressor space was observed even for TM5.

Lessons learned over the course of this research provided the needed insight for the

creation of TM6. Rather than restrict the training maneuver to the confines of the

defined regressor space, providing data to bound the extremes of the box was decided

to be an avenue worth pursuing. TM6 did not return the best overall model; however,

it does shed light on the limitations of MVP models. The choice of a regressor space

for this project may have been overly ambitious, with much of the regressor space

being highly unsteady. Extending that range of AoA and Q experienced by the airfoil

even further may have resulted in the poor fit to the training data shown in Chapter

IV.

From this research it has been shown that RSPs are important. Using selected

RSPs as a guide, an additional maneuver (TM5) was created that was able to out-

perform maneuvers generated without the RSPs in a variety of comparison scenarios.
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This research has shown it is important how the the data is distributed in the regres-

sor space through RSPs that measure distribution of data as opposed to quantity of

data. This research has also shown that pitch rates, such as Q are as important, if

not more than the angles such as angle of attack through the RSPs.

5.3 Future Work

While much ground has been covered in this work, there are always more avenues

that could be explored. The first possible avenue is to apply the higher order statistics

using the previous system of calculating distribution RSPs, using cells instead of

number of hits. While the author tried to use a variety of methods and statistics

for quantifying the training maneuvers, it was not an exhaustive effort. Continued

research into methods and statistics could be fruitful. Further, utilizing RBF models

particularly in regions where MVP models have trouble fitting the training data, as

in TM6, could produce more accurate results.

A further area of research could be implementing a optimization routine to the

RSPs. The first step would be to identify a cost function. Time would be an ap-

propriate choice. Then the RSPs would need to be set up as constraints. The best

choice would likely to be determine an ‘acceptable’ level for the RSPs and set append

the RSPs as inequality constraints. Additional constraints would be angle and rate

constrictions. Second derivative constraints may be necessary to ensure a continu-

ous path. The challenging piece would be including abstract concepts like standard

deviation and skewness into the mix.

The next step then is to progress into 3 dimensions. The lessons learned from this

research should be applied for the lateral directional coefficients as well. Further, the

results need to be extended for other flow conditions. This research was run at Mach
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0.5 at 10,000 ft. What may be important for model prediction accuracy could depend

on the flow conditions.

Grid generation is a topic that is brought up often in the CFD community and is

acknowledged by practitioners to be exceedingly challenging. There are methods in

the literature for producing a static grid; however, prescribed motion problems require

a different process. While the technology for computing more advanced problems

improves, methods for generating grids for those problems needs to keep pace.

The newest version of Kestrel, Version 3.1.1, offers the ability to use control sur-

faces in the flow solution. This offers an interesting opportunity to further integrate

S&C and CFD. While it is possible to gain insight into stability and control using

non-deflecting grids and problems, it would be an immense value to the S&C field

to incorporate derivatives such as Cmδe which is change in pitch rate due to elevator

deflection. Furthering CFD and SID interaction to include moving control surfaces is

a very exciting prospect for future research.

This research has shown that there is merit to quantifying the pertinent charac-

teristics of potential training maneuvers in order to allow for better informed training

maneuver generation. While adopting a best practice maneuver may produce ade-

quate results, by researching and defining what characteristics are needed for a train-

ing maneuver, this work represents a step forward toward introducing a standardized

process.
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TRAINING MANEUVER EVALUATION FOR REDUCED ORDER MODELING

OF STABILITY & CONTROL PROPERTIES USING COMPUTATIONAL

FLUID DYNAMICS

A. MatlabrPre and Post processing Files

A.1 Spectral Analysis M-file

1 %2LT Craig C Porter

%Frequency Analysis MATLAB File in Support of ROM Thesis Work

%Derived from M-file provided by Dr. Keith Bergeron

clear

6 clc

close

%...

**********************************************************************%...

%Factors that need to be changed

11
file_name1 = ’CGRID3T1.coeff ’;

cd ../ Data/St %Change depending on location of data

data1 = dlmread(file_name1 ,’’ ,20,0);

Iteration=data1 (:,1);

16 Time=data1 (:,2);

AOA=data1 (:,3);

BETA=data1 (:,4);

CAXIAL =data1 (:,5);

CNORMAL =data1 (:,6);

21 CLIFT =data1 (:,7);

CDRAG =data1 (:,8);

CSIDE =data1 (:,9);

CPITCH =data1 (: ,10);

CROLL =data1 (: ,11);

26 CYAW=data1 (:,12);

N=max(Iteration);

cutoff = 2000; %if desired removes startup iterations

del_time = Time(N)-Time(N-1); %assumes constant delT

%L2 = 2048; % Length of signal (truncated to a ...

power of 2, i.e., 2048) THIS IS WHAT YOU NEED TO CHANGE

31
%Default is CNORMAL for FFT , change below if neccesary
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%...

**********************************************************************&...

% Beware line below is correct , i.e., L2 = a power of 2!

i=1;

36 while (N-cutoff) >2^i

i=i+1;

end

L2=2^(i-1);

41 for i= 1:N-cutoff

amplitude1(i)=CNORMAL(i+cutoff);

end

amp_average1 = mean(amplitude1);

46
for i = 1:N-cutoff

y2(i) = amplitude1(i)-amp_average1;

end

51
for i = 1:N-cutoff

time(i) = (i-1)*del_time;

end

56 figure (1)

plot(time , y2, ’color’ ,[0 1 1],’Marker ’,’square ’,’LineWidth ’...

,.5)

hold on

xlabel(’Time (s)’)

ylabel(’Amplitude ’)

61 title(’Normal Force’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FFT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66 Fs2 = 1/ del_time; % Sampling frequency

NFFT2 = 2^ nextpow2(L2); % Next power of 2 from ...

length of y

n2 = NFFT2;

yfft2 = fft(y2,NFFT2)/L2;

f2 = Fs2 /2* linspace (0,1,NFFT2 /2+1);

71 power2 = 2*abs(yfft2);

% Plot single -sided amplitude spectrum.

figure (2)

plot(f2 ,2* abs(yfft2 (1: NFFT2 /2+1)))

76 title(’Single -Sided Amplitude Spectrum of Normal Force ’)

xlabel(’Frequency (Hz)’)

ylabel(’Magnitude of Normal Force’)

axis ([0 500 0 1])

axis ’auto y’
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81
% Identify dominant frequency

temp2 (1) = 0.0;

temp2 (2) = 0.0;

temp_j2 = 1;

86 temp_power2 = power2;

max_pwr2 (1:n2/2) = 0.0;

max_freq2 (1:n2/2) = 0.0;

for i = 1:n2/2

for j = 1:n2/2

91 if (temp_power2(j) > temp2 (1))

temp2 (1) = temp_power2(j);

temp2 (2) = f2(j);

temp_j2 = j;

end;

96 max_pwr2(i) = temp2 (1);

max_freq2(i) = temp2 (2);

end;

temp2 (1) = 0.0;

temp2 (2) = 0.0;

101 temp_power2(temp_j2)=0.0;

end

%Print top 6 frequency ’s to screen

106 for i = 1: 6;

i, Amplitude = max_pwr2(i), Frequency = max_freq2(i)

end

disp(’’)

disp(’Average Ampltidue ’)

111 disp(amp_average1)
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A.2 Model Generation Script

%Craig Porter TM Model Creation Scipt

%% Load Data

3 clc

clear all

close all

File=’TM6’;

8 file_name1 = strcat(File , ’.coeff ’);

%file_name2 = strcat(File , ’.flow ’);

file_name3 = strcat(File , ’.motion ’);

cd /home/afiten1/gae13m/cporter/Thesis/TM/TM6b/ %Change depending ...

on location of data

13 % %If using v2

% data1 = dlmread(file_name1 ,’’,5519,0);

% %data2 = dlmread(file_name2 ,’’,5519,0);

% data3 = dlmread(file_name3 ,’’,5519,0);

18 %If using 3.1.1

data1 = dlmread(file_name1 ,’’ ,5520,0);

data3 = dlmread(file_name3 ,’’ ,5522,0);

TIME=data1 (:,2);

23
%For 3.1.1 Runs , refernce frame screwup Q is actually -R

Q=-data3 (: ,13);

% %For v2 runs

28 % Q=data3 (: ,12);

AOA=data1 (:,3);

CLIFT=data1 (:,7);

CDRAG=data1 (:,8);

33 CPITCH =data1 (: ,10);

ITERATION=data1 (:,1);

dt =1.25e-5;

QDOT=deriv(Q,dt);

AOADOT=deriv(AOA ,dt);

38
clear data1 data3

%% Create Model

43 close all

clc

x(:,1)=AOA; %ALPHA

x(:,2)=Q; %Q

48 x(:,3)=QDOT;

z=CLIFT;
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NORD =5;

nord=[NORD NORD NORD];

maxord =5;

53 sig2 =0;

auto =1;

Iplot =1;

ivar =0;

bvar =0;

58 maxopt =0;

[y,p,ip,crb ,pse ,xp,a,ia,psi]=mof(x,z,nord ,maxord ,sig2 ,auto ,Iplot ,...

ivar ,bvar ,maxopt);

[xr,xlab]= polygen(x,ip);

63 figure (2)

plot(TIME ,z,TIME ,y)

xlabel(’Time (s)’)

ylabel(’Coefficent of Lift’)

legend(’CFD’,’Model’)
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A.3 Initial RSP M-file[5]

function [metric metrica metricq as qs z]= Metric ...

2 (pos2 ,rate2 ,bounds ,steps ,metricsteps ,maxN0 ,pm0)

%extract AoA and Q bounds of regressor space

aextrema=bounds (1,:);qextrema=bounds (2,:);

%extract step sizes for AoA and Q for regressor space ...

discretization

7 astep=steps (1);qstep=steps (2);

%Debugging variables

ametstep=metricsteps (1);qmetstep=metricsteps (2);

12 %All AoA values

arange=aextrema (1):astep:aextrema (2);

%All Q values

qrange=qextrema (1):qstep:qextrema (2);

17
%Create 2D Mesh for discretized regressor space

[as,qs]= meshgrid (...

mean(arange (1:2)):astep:mean(arange(length(arange) -1:length(...

arange))) ,...

mean(qrange (1:2)):qstep:mean(qrange(length(qrange) -1:length(...

qrange))));

22
%Z-axis of 3D plot of regressor map (number of data points per ...

cell)

z=zeros(size(as));

%Make AoA ’s (pos variables) and Q values same length

27 pos3=zeros(1,length(pos2) -1);

for i=2: length(pos2)

pos3(i-1)=mean(pos2(i-1:i));

end

32 %Loop through AoA ’s to mark which cell each point lies

for i=1: length(rate2)

if rate2(i)>qextrema (1) && rate2(i)<qextrema (2);

%Find which AoA cell

for j=1: length(arange)-1

37 apos=j;

if pos3(i)<=arange(j+1)

break

end

end

42 %Find which Q cell

for j=1: length(qrange)-1

qpos=j;

if rate2(i) <=qrange(j+1)

break
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47 end

end

%Increment "number of data points per cell" counter

z(qpos ,apos)=z(qpos ,apos)+1;

end

52 end

asteps=size(z,2)/ametstep;

%Examine the evenness of the data in AoA

counta=zeros(asteps ,1);

57 totala=zeros(asteps ,1);

totala (1)=size(z,1)*ametstep;

for i=1: size(z,1)

k=1;

for j=1: size(z,2)

62 if z(i,j)~=0

counta(k)=counta(k)+1;

end

if mod(j,ametstep)==0

totala(k)=totala (1);

67 k=k+1;

end

end

end

metrica=counta ./ totala;

72
%Examine the evenness of the data in Q

qsteps=size(z,1)/qmetstep;

countq=zeros(qsteps ,1);

totalq=zeros(qsteps ,1);

77 totalq (1)=size(z,2)*qmetstep;

for i=1: size(z,2)

k=1;

for j=1: size(z,1)

if z(j,i)~=0

82 countq(k)=countq(k)+1;

end

if mod(j,qmetstep)==0

totalq(k)=totalq (1);

k=k+1;

87 end

end

end

metricq=countq ./ totalq;

%***** Metric 1 - total percentage of cells with data points *****

92 metric (1) =100* sum(countq)/sum(totalq);

%Examine the data points on the boundaries

count =0;

total =0;

97 j=size(z,2);

for i=1: size(z,1)
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if z(i,1) ~=0

count=count +1;

end

102 total=total +1;

if z(i,j)~=0

count=count +1;

end

total=total +1;

107 end

j=size(z,1);

for i=2: size(z,2) -1

if z(1,i)~=0

count=count +1;

112 end

total=total +1;

if z(j,i)~=0

count=count +1;

end

117 total=total +1;

end

%Find the location of zero pitch rate

for i=1: length(qrange)-1

122 zeroqpos=i;

if 0<=qrange(i+1)

break

end

end

127 %***** Metric 2 - total percentage of boundary cells with data ...

points *****

metric (2) =100* count/total;

%***** Metrics 3 & 4 - Evenness of data in AoA and Q respectively ...

*****

metric (3:4) =[std(metrica/max(metrica)) std(metricq/max(metricq))];

132
%Isolate the data points at 0 Q

zsteps=size(z,2)/qmetstep;

countz=zeros(zsteps ,1);

k=1;

137 i=zeroqpos;

for j=1: size(z,2)

if z(i,j)~=0

countz(k)=countz(k)+z(i,j);

end

142 if mod(j,qmetstep)==0

k=k+1;

end

end

%Cap max number of data points in a given cell (if desired)

147 countz12 =0;

for i=1: length(countz)
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if countz(i)>maxN0

countz(i)=maxN0;

end

152 if countz(i)>0

countz12=countz12 +1;

end

end

%***** Metric 5 - total percentage of 0 Q cells with data points ...

*****

157 metric (5) =100* countz12/length(countz);

%***** Metric 6 - Avg # data points per cell at 0 Q *****

metric (6)=mean(countz);

162 %***** Metric 7 - evenness of data at 0 Q *****

metric (7)=std(countz/max(countz));

%Now isolate region of "low" Q (excluding region of 0Q)

countz22 =0;

167 for mi=1: length(pm0)

countz2 =[z(zeroqpos -pm0(mi):zeroqpos -1,:);z(zeroqpos +1:...

zeroqpos+pm0(mi) ,:)];

%Cap max number of data points per cell (if desired)

for i=1: size(countz2 ,1)

for j=1: size(countz2 ,2)

172 if countz2(i,j)>maxN0

countz2(i,j)=maxN0;

end

if countz2(i,j)>0

countz22=countz22 +1;

177 end

end

end

%***** Metric 8 - total percentage of "low" Q cells with data ...

points *****

metric (6+2*mi)=100* countz22 /(size(countz2 ,1)*size(countz2 ,2));

182
%***** Metric 9 - Avg # data points per cell at "low" Q *****

metric (7+2*mi)=mean(mean(countz2));

%There may be NaN ’s in metric calculation after normalization ...

- change

187 %these to 0

for i=1: size(countz2 ,1)

met8(i)=std(countz2(i,:)/max(countz2(i,:)));

end

j=1;

192 for i=1: length(met8)

if isnan(met8(i))

met82(i)=0;

else

met82(i)=met8(i);
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197 end

end

%***** Metric 10 - evenness of data at "low" Q *****

metric (8+2*mi)=mean(met82);

end

202
%Isolate region of "high" Q

mll =9+2*mi;

countz3 =[z(1: zeroqpos -pm0(mi) ,:);z(zeroqpos+pm0(mi):size(z,1) ,:)];

countz32 =0;

207 for i=1: size(countz3 ,1)

for j=1: size(countz3 ,2)

if countz3(i,j)>0

countz32=countz32 +1;

end

212 end

end

%***** Metric 11 - total percentage of "high" Q cells with data ...

points ****

metric(mll)=100* countz32 /(size(countz3 ,1)*size(countz3 ,2));

217 %***** Metric 12 - Avg # data points per cell at "high" Q *****

metric(mll +1)=mean(mean(countz3));

%There may be NaN ’s in metric calculation after normalization - ...

change

%these to 0

222
for i=1: size(countz3 ,1)

met10(i)=std(countz3(i,:)/max(countz3(i,:)));

end

j=1;

227 for i=1: length(met10)

if isnan(met10(i))

met102(i)=0;

else

met102(i)=met10(i);

232 end

end

%***** Metric 13 - evenness of data at "high" Q *****

metric(mll +2)=mean(met102);

237 end
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A.4 Final RSP calculation M-file

function [rsp ,as,qs,z]=RSP(pos2 ,rate2 ,that ,dt,bounds ,steps ,maxN0 ,...

pm0)

3 %extract AoA and Q bounds of regressor space

aextrema=bounds (1,:);

qextrema=bounds (2,:);

%extract step sizes for AoA and Q for regressor space ...

discretization

8 astep=steps (1);

qstep=steps (2);

%All AoA values

arange=aextrema (1):astep:aextrema (2);

13
%All Q values

qrange=qextrema (1):qstep:qextrema (2);

%Create 2D Mesh for discretized regressor space

18 [as,qs]= meshgrid (...

mean(arange (1:2)):astep:mean(arange(length(arange) -1:length(...

arange))) ,...

mean(qrange (1:2)):qstep:mean(qrange(length(qrange) -1:length(...

qrange))));

%Z-axis of 3D plot of regressor map (number of data points per ...

cell)

23 z=zeros(size(as));

NOBS =0;

%Make AoA ’s (pos variables) and Q values same length

pos3=zeros(1,length(pos2) -1);

28
for i=2: length(pos2)

pos3(i-1)=mean(pos2(i-1:i));

end

33 %Loop through AoA ’s to mark which cell each point lies

for i=1: length(rate2)

if rate2(i)>=qextrema (1) && rate2(i)<=qextrema (2);

if pos3(i)>=aextrema (1) && pos3(i)<=aextrema (2);

38 %Find which AoA cell it is in

for j=1: length(arange)-1

if pos3(i)<=arange(j+1)

apos=j;

break

43 end

end

%Find which Q cell
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for j=1: length(qrange)-1

if rate2(i) <=qrange(j+1)

48 qpos=j;

break

end

end

%Increment "number of data points per cell" counter

53 z(qpos ,apos)=z(qpos ,apos)+1;

NOBS=NOBS +1;

end

end

end

58
asteps=size(z,2);

qsteps=size(z,1);

%Examine the evenness of the data in AoA and Q and count

63 rspa=zeros(asteps ,1);

rspq=zeros(qsteps ,1);

counth =0;

for i=1: asteps

for j=1: qsteps

68 %For every loop sum the number of hits for each AoA

rspa(i)=rspa(i)+z(j,i);

%Every loop sum the number of hits for each Q

rspq(j)=rspq(j)+z(j,i);

%Keeping track of how many cells are hit

73 if z(j,i) >0

counth=counth +1;

end

end

end

78
%Examine the data points on the boundaries

countb =0;

total =0;

j=asteps;

83
%Left and right boundaries

for i=1: qsteps

if z(i,1) ~=0

countb=countb +1;

88 end

total=total +1;

if z(i,j)~=0

countb=countb +1;

end

93 total=total +1;

end

j=qsteps;
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%Top and bottom boundaries , making sure to not double count the ...

corners

98 for i=2: asteps -1

if z(1,i)~=0

countb=countb +1;

end

total=total +1;

103 if z(j,i)~=0

countb=countb +1;

end

total=total +1;

end

108
%Find the location of zero pitch rate

for i=1: qsteps

if 0<=qrange(i+1)

zeroqpos=i;

113 break

end

end

%Count the total number of data points at 0 Q

118 countz=zeros(asteps ,1);

j=zeroqpos;

for i=1: asteps

countz(i)=z(j,i);

end

123
%Cap max number of data points in a given cell (if desired)

countz12 =0;

for i=1: asteps

if countz(i)>maxN0

128 countz(i)=maxN0;

end

if countz(i)>0

countz12=countz12 +1;

end

133 end

%Isolate region of "low" Q (excluding region of 0Q)

countlq =0;

countlq2 =[z(zeroqpos -pm0:zeroqpos -1,:);z(zeroqpos +1: zeroqpos+...

pm0 ,:)];

138 %Cap max number of data points per cell (if desired)

for i=1: size(countlq2 ,2)

for j=1: size(countlq2 ,1)

if countlq2(j,i)>maxN0

countlq2(j,i)=maxN0;

143 end

if countlq2(j,i)>0

countlq=countlq +1;

end
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end

148 end

sizelq=size(countlq2 ,1)*size(countlq2 ,2);

%Isolate region of "high" Q

counthq2 =[z(1: zeroqpos -pm0 ,:);z(zeroqpos+pm0:size(z,1) ,:)];

153 counthq =0;

for i=1: size(counthq2 ,2)

for j=1: size(counthq2 ,1)

if counthq2(j,i)>maxN0

counthq2(j,i)=maxN0;

158 end

if counthq2(j,i)>0

counthq=counthq +1;

end

end

163 end

sizehq=size(counthq2 ,1)*size(counthq2 ,2);

%RSP calcs

rspalq=zeros(size(countlq2 ,2) ,1);

168 rspqlq=zeros(size(countlq2 ,1) ,1);

rspahq=zeros(size(counthq2 ,2) ,1);

rspqhq=zeros(size(counthq2 ,1) ,1);

for j=1: size(countlq2 ,1)

for i=1: size(countlq2 ,2)

173 rspalq(i)=rspalq(i)+countlq2(j,i);

%Every loop is summing the number of hits for each Q

rspqlq(j)=rspqlq(j)+countlq2(j,i);

end

end

178 for j=1: size(counthq2 ,1)

for i=1: size(counthq2 ,2)

rspahq(i)=rspahq(i)+counthq2(j,i);

%Every loop is summing the number of hits for each Q

rspqhq(j)=rspqhq(j)+counthq2(j,i);

183 end

end

%Pearson Calc

rho1=zeros(length(pos3) ,1);

188 rho2=zeros(length(pos3) ,1);

rho3=zeros(length(pos3) ,1);

mean3=mean(pos3);

mean2=mean(rate2);

for i=1: length(pos3)

193 rho1(i)=(pos3(i)-mean3)*( rate2(i)-mean2);

rho2(i)=(pos3(i)-mean3)^2;

rho3(i)=(rate2(i)-mean2)^2;

end

198 %***** RSP 1 - total percentage of cells with data points *****
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rsp (1) =100* counth /( asteps*qsteps);

%***** RSP 2 - total percentage of boundary cells with data points...

*****

rsp (2) =100* countb/total;

203
%***** RSP 3 & 4 - Evenness of data in AoA and Q respectively ...

*****

rsp (3:4)=[std(rspa/( asteps)) std(rspq/( qsteps))];

%***** RSP 5 - total percentage of 0 Q cells with data points ...

*****

208 rsp (5) =100* countz12/asteps;

%***** RSP 6 - Avg # data points per cell at 0 Q *****

rsp (6)=mean(countz);

213 %***** RSP 7 - evenness of data at 0 Q *****

rsp (7)=std(countz/asteps);

%***** RSP 8 - total percentage of "low" Q cells with data points ...

*****

rsp (8) =100* countlq /( sizelq);

218
%***** RSP 9 - Avg # data points per cell at "low" Q *****

rsp (9)=mean(mean(countlq2));

%***** RSP 10 & 11 - evenness of data at "low" Q *****

223 rsp (10:11) =[std(rspalq/size(countlq2 ,2)) std(rspqlq/size(countlq2 ...

,1))];

%***** RSP 12 - total percentage of "high" Q cells with data ...

points *****

rsp (12) =100* counthq /( sizehq);

228 %***** RSP 13 - Avg # data points per cell at "high" Q *****

rsp (13)=mean(mean(counthq2));

%***** RSP 14 & 15 - evenness of data at "high" Q *****

rsp (14:15) =[std(rspahq/size(counthq2 ,2)) std(rspqhq/size(counthq2 ...

,1))];

233
%***** RSP 16 - Training Maneuver Effectiveness *****

rsp (16)=NOBS/length(rate2);

%***** RSP 17 - Time Effectiveness1 *****

238 rsp (17)=rsp (1)/max(that);

%***** RSP 18 - Time Effectiveness2 *****

rsp (18)=rsp (1)*dt/max(that);

243 %***** RSP 19 & 20 & 21 Time Eff 0Q, LQ, HQ ****
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rsp (19:21) =[rsp (5)/max(that) rsp(8)/max(that) rsp (12)/max(that)];

%***** RSP 22 & 23 - Kurtosis Alpha & Q *****

rsp (22:23) =[ kurtosis(rspa) kurtosis(rspq)];

248
%***** RSP 24 & 25 - Skewness Alpha & Q *****

rsp (24:25) =[ skewness(rspa) skewness(rspq)];

%***** RSP 26 - Pearson product -moment correlation coefficient

253 rsp (26)=sum(rho1)/sqrt(sum(rho2)*sum(rho3));

%***** RSP 27 & 28 Kurtosis and Skewness 0Q *****

rsp (27:28) =[ kurtosis(countz) skewness(countz)];

258 %***** RSP 29 & 30 Kurtosis LQ AoA / Q ****

rsp (29:30) =[ kurtosis(rspalq) kurtosis(rspqlq)];

%***** RSP 31 & 32 Skewness LQ AoA / Q ****

rsp (31:32) =[ skewness(rspalq) skewness(rspqlq)];

263
%***** RSP 33 & 34 Kurtosis HQ AoA / Q ****

rsp (33:34) =[ kurtosis(rspahq) kurtosis(rspqhq)];

%***** RSP 35 & 36 Skewness HQ AoA / Q ****

268 rsp (35:36) =[ skewness(rspahq) skewness(rspqhq)];

end
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B. Figures with TM5 included
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Figure 69. Model Results COM1a CL
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Figure 70. Model Results COM1a CD
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Figure 71. Model Results COM1a CM
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Figure 72. Model Results COM1b CL
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Figure 73. Model Results COM1b CD
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Figure 74. Model Results COM1b CM
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Figure 75. Model Results COM1c CL
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Figure 76. Model Results COM1c CD
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Figure 77. Model Results COM1c CM
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Figure 78. Model Results COM2 CL
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Figure 79. Model Results COM2 CD
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Figure 80. Model Results COM2 CM
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Figure 81. Model Results COM3 CL

137



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

C
D

 

 
TM1
TM2
TM4
TM5
Moving Average

Figure 82. Model Results COM3 CD
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Figure 83. Model Results COM3 CM
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Figure 84. Model Results COM4 CL

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

C
D

 

 
TM1
TM2
TM4
TM5
Moving Average

Figure 85. Model Results COM4 CD
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Figure 86. Model Results COM4 CM
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Figure 87. Model Results COM5 CL
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Figure 88. Model Results COM5 CD
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Figure 89. Model Results COM5 CM

141



Bibliography

[1] “DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS DEPART-
MENT BROCHURE”. Wright-Patterson Air Force Base, Ohio, 2012.

[2] AFRL. “Cray XE6 (Raptor) User Guide”. Online, October 2012.

[3] Army, US. “Fixed-Wing Aerodynamics and Performance”. Online.

[4] Blazek, Jiri. Computational Fluid Dyanmics: Principles and Applications. Else-
vier, second edition, 2005.

[5] Butler, Jedediah H. Accurate Modeling of Stability & Control Properties for
Fighter Aircraft from CFD. Master’s thesis, Graduate School of Engineering,
Air Force Institute of Technology (AETC), Wright-Patterson AFB OH, March
2012. AFIT/GAE/ENY/12-M04.

[6] Cebeci, T. and A.M.O Smith. “Analysis of Turbulent Boundary Layers”.

[7] Chaderjian, N. M., S. Pandya J. Ahmad, and S. Murman. “Progress Toward
Generation of a Navier-Stokes Database for a Harrier in Ground Effect”. AIAA,
2002.

[8] CREATE-AV. Kestrel User’s Guide Version 3.0. Department of Defense High
Performance Computating Modernization Program, 2012.

[9] Cummings, R.M., S.A. Morton, D.R. McDaniel, J.R. Forsythe, and D.C. Blake.
“Compuational Fluid Dynamics”. Course Notes for AE 342, Department of
Aeronautics, United States Air Force Academy.

[10] Cummings, Russell M., Scott A. Morton, and David R. McDaniel. “Experiences
in accurately predicting time-dependent flows”. Progress in Aerospace Sciences,
44(4):241–257, May 2008.

[11] Dean, John P., James D. Clifton, David J. Bodkin, and C. Justin Ratcliff.
“High Resolution CFD Simulations of Maneuvering Aircraft Using the CREATE-
AV/Kestrel Solver”. 49th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. American Institution of Aeronautics
and Astronautics, Orlando, Florida, January 2011. CD Proceedings.

[12] Dean, John P., Scott A. Morton, James D. Clifton, and David J. Bodkin. “Air-
craft Stability and Control Characteristics Determined by System Identification
of CFD Simulations”. AIAA Atmospheric Flight Mechanics Conference and Ex-
hibit. American Institution of Aeronautics and Astronautics, Honolulu, Hawaii,
August 2008. CD Proceedings.

142



[13] Dean, John P., Scott A. Morton, David R. McDaniel, and Stefan Gø̈rtz. “Ef-
ficient High Resolution Modeling of Fighter Aircraft with Stores for Stability
and Control Clearance”. U.S. Air Force T&E Days. American Institution of
Aeronautics and Astronautics, Destin, Florida, February 2007. CD Proceedings.

[14] Fremaux, Michael C. and Robert M. Hal. “COMSAC: Computational Meth-
ods for Stability and Control”. NASA/CP-2004-213028/PT1. NASA, Hampton,
Virginia, April 2004. CD Proceedings.

[15] Gø̈rtz, Stephan, David R. McDaniel, and Scott A. Morton. “Towards an Efficient
Aircraft Stability and Control Analysis Capability using High-Fidelity CFD”.
45th AIAA Aerospace Sciences Meeting and Exhibit. American Institution of
Aeronautics and Astronautics, Reno, Nevada, January 2007. CD Proceedings.

[16] Jeans, Tiger L., Adam Jirasek, David R. McDaniel, Keith Bergeron, and Rus-
sell M. Cummings. “Modeling the Nonlinear Dynamic Roll of a Generic Fighter
Using Delayed Detached-Eddy Simulation”. Journal of Aircraft, 49(2), 2012.

[17] Jeans, Tiger L., David R. McDaniel, Russell M. Cummings, and Keith Bergeron.
“Lower-Order Aerodynamic Loads Modeling of a Maneuvering Generic Fighter
Using DDES Simulations”. 47th AIAA Aerospace Sciences Meeting Including
The New Horizons Forum and Aerospace Exposition. American Institution of
Aeronautics and Astronautics, Orlando, Florida, January 2009. CD Proceedings.

[18] Jirasek, Adam and Russell M. Cummings. “Reduced Order Modeling of X-31
Wind Tunnel Model Aerodyanmic Loads”. 28th AIAA Applied Aerodynamics
Conference. AIAA, Chicago, Illinois, July 2010. CD Proceedings.

[19] Jirasek, Adam, Tiger L. Jeans, Matthew Martenson, Russell M. Cummings, and
Keith Bergeron. “Improved Methodologies for Maneuver Design of Aircraft Sta-
bility and Control Simulations”. 48th AIAA Aerospace Sciences Meeting Includ-
ing the New Horizons Forum and Aerospace Exposition. American Institution of
Aeronautics and Astronautics, Orlando, Florida, January 2010. CD Proceedings.

[20] Klein, Vladislav and Eugene A. Morelli. Aircraft System Identification: Theory
and Practice. AIAA, Reston, VA, 2006.

[21] Lillian, Chad S, Scott A. Morton, and David R. McDaniel. “Aircraft Loads Char-
acteristics Determined by System Identification and Proper Orthogonal Decom-
position of CFD Simulations”. 28th AIAA Applied Aerodyanmics Conference.
American Institution of Aeronautics and Astronautics, Chicago, Illinois, July
2010. CD Proceedings.

[22] Mathworksr, Natick, MA. Statistics ToolboxTM Users Guide R2012b, 2012.

143



[23] Morelli, Eugene A. “SYSTEM IDENTIFICATION PROGRAMS FOR AIR-
CRAFT (SIDPAC)”. AIAA Atmospheric Flight Mechanics Conference and Ex-
hibit. American Institution of Aeronautics and Astronautics, Montery, California,
August 2002. CD Proceedings.

[24] Morton, Scott A., David R. McDaniel, David R. Spears, Brett Tillman, and
Todd R. Tuckey. “Kestrel - A Fixed Wing Virtual Aircraft Product of the
CREATE Program”. 47th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. American Institution of Aeronautics
and Astronautics, Orlando, Florida, January 2009. CD Proceedings.

[25] Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes. Cambridge University Press, third edition, 2007.

[26] SAS Institute Inc. JMPr 10 Modeling and Multivariate Methods. SAS Institute
Inc, Cary, NC, 2012.

[27] Spalart, P. R., S. Deck, M. L. Shur, K. D. Squires, M. Kh. Strelets, and A. Travin.
“A new version of detached-eddy simulation, resistant to ambiguous grid densi-
ties”. Theor. Comput. Fluid Dyn, 20:181–195, 2006.

[28] Spalart, Philippe R. Young-Person’s Guide to Detached-Eddy Simulation Grids.
Contractor Report NASA/CR-2001-211032, NASA, Boeing Commercial Air-
planes, Seattle, Washington, July 2001.

[29] Spalart, P.R. and S.R. Allmaras. “A One-Equation Turbulence Model for Aero-
dynamic Flows”. 30th AIAA Aerospace Sciences Meeting & Exhibit. American
Institution of Aeronautics and Astronautics, Reno, NV, 1992. CD Proceedings.

[30] Tomaro, R., W. Strang, and L.N. Sankar. “An Implicit Algorithm for Solv-
ing Time Dependent Flows on Unstructured Grids”. 35th Aerospace Sciences
Meeting and Exhibit. Reno, NV, 1997.

[31] Yechout, Thomas R., Steven L. Morris, David E. Bossert, and Wayne F. Hall-
gren. Introduction to Aircraft Flight Mechanics: Performance, Static Stability,
Dynamic Stability, and Classical Feedback Control. AIAA, 2003.

144



Vita

Second Lieutenant Craig Porter was born in Reston, Virginia and grew up in Men-

don, New York. After graduating from Honeoye Falls-Lima High School, he studied

aeronautical engineering at the United States Air Force Academy (USAFA). He grad-

uated with his Bachelor’s degree in Aeronautical Engineering and was commissioned

into the United States Air Force in May of 2011. Following USAFA, he entered grad-

uate school at the Air Force Institute of Technology (AFIT) in August of 2011 and

he is currently completing his Master’s degree. His anticipated follow-on assignment

is with the 773d Test Squadron at Edwards AFB.

145



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2013 Master’s Thesis Aug 2011 — Mar 2013

Training Maneuver Evaluation for Reduced Order Modeling of Stability
& Control Properties Using Computational Fluid Dynamics

Porter, Craig C., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-13-M-28

(intentionally left blank)

DISTRIBUTION A.: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

System identification has long been used as a tool for flight test engineers to characterize systems under test. There has
been a recent effort to incorporate computational fluid dynamics (CFD) into the system identification process. An
integral piece of the process is the simulation of training maneuvers utilizing CFD. This research strives to recommend a
set of parameters to be used in determining whether a training maneuver will be suitable under a particular set of flow
conditions. Regressor space parameters (RSPs) were proposed and evaluated for several maneuvers. Model-predicted
coefficient values were compared to CFD simulations of comparison maneuvers, measured by a set of suitable statistical
metrics. Using statistical analysis, the set of proposed RSPs were then analyzed in order to evaluate their utility in
assessing the suitability of the training maneuvers. This research showed the reliable capability of certain RSPs to
characterize training maneuver performance. Finally, lessons learned from this research were applied to improve on
current best practice training maneuvers.

System Identification, Reduced Order Modeling, Computational Fluid Dynamics

U U U U 162

Capt Christopher L. Martin

(937) 785-3636, x4403 937-255-3636 x 4403 


	Air Force Institute of Technology
	AFIT Scholar
	3-21-2013

	Training Maneuver Evaluation for Reduced Order Modeling of Stability & Control Properties Using Computational Fluid Dynamics
	Craig C. Porter
	Recommended Citation


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	General Issue
	Background
	Research Objectives
	Road Map

	Background
	Computational Fluid Dynamics
	Governing Equations
	Turbulence Theory and Modeling
	Expected Flow Features

	Stability and Control
	System Identification
	Previous Research
	Computational Methods for Stability and Control and Early Attempts
	Training Maneuvers
	Model Generation
	Reduced Order Modeling of Fighter Aircraft

	Kestrel

	Methodology
	Overview
	Computational Resources and Hours
	Time Step and Grid Density Study
	Initial Regressor Space Parameters
	Training Maneuvers
	Comparison Maneuvers
	Creating the Reduced Order Models
	Analysis of Results 

	Results
	Time Step and Grid Density Study
	Initial RSPs
	Model Results
	Coefficient of Lift
	Coefficient of Drag
	Moment Coefficient

	Statistical Analysis of Initially Proposed RSPs
	Proposed RSPs
	Proposed RSP Results

	RSP Motivated Training Maneuver
	RSP Motivated Maneuver Results

	Lessons Learned Maneuver
	Lessons Learned Maneuver Results


	Conclusions and Future Work
	Overview
	Conclusions
	Future Work

	Appendix Matlab"472Pre and Post processing Files
	Spectral Analysis M-file
	Model Generation Script
	Initial RSP M-fileButler 
	Final RSP calculation M-file

	Appendix Figures with TM5 included
	Bibliography
	Vita

