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Abstract

Chromotomographic imaging (CTI) offers advantages in remote sensing by resolving

intensity distribution spatially, spectrally, and temporally. The Chromotomography

Experiment (CTEx) at the Air Force Institute of Technology (AFIT) explores the

application of CTI as a space-based observer. Previous work in instrument development

has revealed many of the intricacies of component fabrication and how they impact the

resolving of image data. The proposed CTEx instrument has as its chromatic dispersion

element a direct-vision prism (DVP) that is made to rotate in order to achieve multiple

projection angles. The inability to reconstruct a fast-transient scene has been largely

attributed to the fabrication and alignment imperfections in the DVP and so inspire

improvement of the techniques for realizing a spinning DVP optical element. The research

herein presents an investigation into precise characterization of a DVP and a proposed

mechanical design of the DVP hardware. The findings of this investigation provide the

tools to specify fabrication tolerances for the DVP and advance the research effort.
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to my grandfather

“Everything is an obvious extension of mechanical engineering.”

-GFG
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OPTO-MECHANICAL DESIGN OF A CHROMOTOMOGRAPHIC

IMAGER DIRECT-VISION PRISM ELEMENT

1. Introduction

This thesis presents a mechanical engineering perspective on the investigation into

the fabrication and alignment of a direct-vision prism (DVP) which is a component of the

Air Force Institute of Technology (AFIT) Chromotomography Experiment (CTEx). The

work herein investigates mechanical limitations in fabricating and aligning a DVP

assembly by utilizing optical diagnostic tools to drive systematic mechanical design.

CTEx is a long-running AFIT research effort to promote space-based chromotomographic

imaging (CTI) technology utilizing a rotating prism as the dispersive element in the

optical system [17, 21, 22, 30] [36–38].

1.1 Motivation

CTEx is motivated by the spectroscopic capabilities of spinning-prism CTI

technology above the industry-leading imaging Fourier transform spectroscopy (imaging

FTIR) approaches. The most significant advantages are presented in [13] by Bostick and

Perram whose claim is that “chromotomography offers several advantages over FTIR

approaches, including: (1) simple design with less sensitivity to vibration, (2) easy

integration with standard imaging sensors, and (3) the use of event phenomenology in the

CT transform for increased temporal response” [13, p. 519]. CTEx achieves CTI by

utilizing a rotating DVP dispersive element. An alternative approach to achieving CTI is

to use a non-rotating dispersive element and large optical detector arrays [18]. While each

method of achieving CTI offer advantages, the objective of CTEx includes a spectral
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resolution of transient events that is not obtained by non-rotating designs. Further detail

on the advantages of CTI is presented in Section 1.2.5.

Previous CTI experiments conducted at AFIT used prisms characterized by direct

angle observations implemented to detail a wavelength-dependent dispersion profile.

However, with the completion and operation of recent CTI instruments by AFIT, the

limitations imposed on CTI efficacy by the misalignment of the optical system were

highlighted [48] [12]. The inability to reconstruct a fast-transient scene has been largely

attributed to the fabrication and alignment imperfections in the DVP and so inspire

improvement of the techniques for realizing a spinning DVP optical element [24]. As is

demonstrated by Bostick [12], the fabrication and installation alignment of the DVP

assembly has significant impact on the spatial and spectral information that can be

obtained by the CTI system. With new understanding as a result of AFIT research efforts

gone before, the need is established for a thorough investigation set on achieving an

understanding of the practical limitations in precision installation alignment and

fabrication of a DVP.

1.2 Hyperspectral Remote Sensing

The CTEx instrument is a proposed space-based hyperspectral remote sensor. An

introduction to hyperspectral remote sensing is offered here beginning with a description

of remote sensing in general.

1.2.1 Remote Sensing.

Remote sensing is the science of deriving information about an object from

measurements made at a distance from the object, i.e., without actually

coming into contact with it. The quantity most frequently measured in

present-day remote sensing systems is the electromagnetic energy emanating
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from the objects of interest... (D. A. Landgebe, quoted in Swain and Davis,

1978, p. 1) [15]

The electromagnetic (EM) energy spectrum, in general, is the broad range of

electromagnetic radiation defined by the frequency at which the energy oscillates

perpendicular to the path it dominantly traverses. A spectral band, or spectrum, refers to a

specified range of frequencies (or wavelengths) at which electromagnetic waves exist. As

the total electromagnetic spectrum is continuous, the approximate extent of these ranges is

often defined by common physical boundaries. For example, the visible spectrum is

defined by the approximate range of electromagnetic radiation that is detectable by the

human eye [25]. The ranges are illustrated in Figure 1.1 and detailed in Table 1.1,

however, the range of each spectrum is specified differently by various references as each

range is intractable due to a lack of universally-recognizable constraints. Throughout this

work, where the wavelength of energy is used to classify a spectrum, the assumed medium

is a vacuum because, overall, the frequency of electromagnetic energy remains constant,

but the wavelength changes relative to the medium in which it travels according to

Equation (1.1) [25].

Figure 1.1. Illustration of electromagnetic spectrums with the visible spectrum high-
lighted [4].
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Table 1.1. Principle Divisions of the EM Spectrum

Division Limits

Gamma Rays less than 0.03 nm

X-Rays 0.03 - 300 nm

Ultraviolet Radiation 0.30 - 0.38 µm

Visible Light 0.38 - 0.72 µm

Infrared Radiation 0.72 - 1000 µm

• Near infrared 0.72 - 1.30 µm

•Mid infrared 1.30 - 3.00 µm

• Far infrared 7.00 - 1000 µm

Microwave Radiation 1 - 300 mm

Radio Waves greater than 30 cm

λ =
ν

f
(1.1)

λ ≡ wavelength in a medium

ν ≡ speed of EM wave in a given medium

f ≡ frequency of the EM wave

1.2.2 Spectroscopy. Spectroscopy is the study of electromagnetic waves separated

by energy level, i.e. wavelength [29]. Spectroscopy enables the identification of chemical

elements, in many cases, by direct, passive observation of electromagnetic waves as

certain elements emit energy at sharply-defined wavelengths when chemical reactions

occur or reflect only some wavelengths. Figure 1.2 displays the amplitude of the energy

released across the visible spectrum by current conducting through a mercury vapor
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lamp [44]. The response profile is unique and, therefore, valuable, as there is no other

event that emits energy with the exact same spectral profile. As such, this general event of

current conducting through mercury vapor is positively identified by observation of its

distinct emission. The unique wavelength profiles of emission or reflection for a material

or event are known as spectral signatures [8].

Figure 1.2. Spectral Signature of a mercury vapor lamp. The specific profile of power vs.
wavelength shown is unique to the mercury vapor lamp [44].

1.2.3 Hyperspectral Remote Sensing. Hyperspectral remote sensing refers to the

use of spectroscopy for observation of electromagnetic radiation within a

uniquely-prescribed spectral band. To be considered hyperspectral, the energy observed

must radiate at 0.4 to 14 µm wavelength (20 to 750 THz frequency) [48] which

encompasses the entire visible spectrum as well as parts of the shortwave infrared (SWIR)

and the ultraviolet spectrums. The propensity for earth-imaging spectrometers to observe

in the hyperspectral bandwidth is attributed to the assiduous tendency of the Sun to

illuminate the Earth. The significance of solar illumination is evident in Figure 1.3
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showing that the energy detected by an Earth-observing satellite is largely the Sun’s

reflected radiation. Figure 1.4 shows that the greatest magnitude of received solar

radiation occurs inside the hyperspectral bandwidth. Because the earth is illuminated by

the hyperspectral bandwidth, it also reflects significantly in the hyperspectral bandwidth

supplying ample signal for remote-sensing instruments. Furthermore, hyperspectral

imagers are distinguished from other imagers by boasting a significantly higher spectral

resolution than do other earth-sensing spectrometers [47]. Greater spectral resolution is

defined by more numerous and more narrow bandwidths within the designated spectrum.

Higher spectral resolution allows for more precise definition of the signal received.

Figure 1.5 illustrates the spectral information inherent to an observed scene.

Figure 1.3. The radiation detected by an Earth-observing satellite has a significant
contribution from solar emission [10].

.

1.2.4 The Hypercube. A hyperspectral imager extracts from a signal the intensity

of numerous finite spectral bandwidths at discrete points within the field of view. To
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Figure 1.4. The solar emission spectrum indicates that most of the solar radiation reaching
earth is in the low-end of the hyperspectral region of 0.4 to 14 µm [2].

visualize these datasets, the hypercube is often presented as shown in Figure 1.6, which is

ground image data collected by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS). Each horizontal slice through the XY-plane of the hypercube

displays the intensity of a particular bandwidth as it varies with location in the

two-dimensional field-of-view (FOV). The ideal hypercube presents a two-dimensional

spatial distribution of signal intensity at each infinitesimal wavelength along the

Z-direction, or a continuous variation in the spectrum.

1.2.5 Hyperspectral Imager Temporal Resolution. The performance measure of

temporal resolution is not often discussed in relation to spectroscopy. However, it is an

important aspect of hyperspectral imaging as many interesting targets evolve quickly both

spectrally and spatially. To illustrate the relationship between spatial, spectral, and

temporal resolution, examples are mapped onto a resolution triangle in Figure 1.7. A

hypercube is shown on the left and represents a spectrally- and spatially-resolved,

two-dimensional static scene with low temporal resolution as the whole image is not
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Figure 1.5. Spectral signature inherent to the scene at various points sensed by a
hyperspectral imager [45].

associated with any one instant in time. An explosion is shown on the right and represents

a spatially- and temporally-resolved event with no spectral-resolution beyond the color

bands of the detector array. A chart of spectral change over time at the bottom is resolved

for a finite area and offers no spatial resolution over the area. Because most imagers

naturally exclude one element of the resolution triangle, some information is inherently

lost. For hyperspectral imagers, the temporal aspect is most often traded for the
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Figure 1.6. Hypercube taken from AVIRIS platform over Moffet Field, CA. Each
cross section parallel to the XY-plane is the two-dimensional spatially-resolved emission
intensity over the field of view at an infinitesimal spectral band. The wavelength of the
energy varies continuously in the Z-direction [26]

.

information in the spatially- and spectrally-resolved hypercube. A closer look at

hyperspectral imager instrumentation operation reveals the natural temporal exclusion.

As discussed in Section 2.1, there have been and currently exist a number of

space-based, earth-observing hyperspectral imagers. These imagers, by definition,

generate highly-resolved intensity distributions as a function of spatial and spectral

dimensions visualized by the hypercube of Figure 1.6. The limitation of these and most

spectrometers is that the time to collect the data to generate a spatially- and
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Figure 1.7. The resolution triangle illustrates the natural trades in image system resolution.
Although not limited by general theory, realized imaging systems tend to achieve high
resolution in only one or two of the three resolution types. CTI technology transcends this
limitation [3, 36]

.

spectrally-resolved hypercube for a large FOV is long enough that rapidly-changing

events are not resolved temporally. Consider an imager such as EO-1 Satellite’s Hyperion

Imaging Spectrometer. This instrument operates as a push-broom spectrometer able to

spectrally resolve a one-dimensional landscape as shown in Figure 1.8. Because Hyperion

and other push-broom spectrometers must resolve only individual thin slices of the FOV at

one time, the hypercube for the entire FOV takes considerable time to integrate. If an
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explosion occurred within some segment of a two-dimensional area, Hyperion would

either miss the event or only collect incongruous spectral information along one spatial

line.

The solution to this temporal lapse is CTI. The rapidly-rotating dispersion element

projects the spectral information onto a spatial dimension and records, in multiple images,

resolved spectral and spatial information for the hypercube many times per second. With

implementation of CTI, a space-based observer has the ability to survey a large ground

swath area continuously and resolve spatial and spectral changes with time at any point

within the FOV. Thus, CTI reaches all three corners of the resolution triangle in

Figure 1.7.

Figure 1.8. A push-broom spectrometer resolves one narrow strip within the field of view
at each integration [26]

.

1.2.6 CTI Disadvantages. Though CTI offers resolution capabilities not achieved

by other technologies, the advantages are not easily attained. As evidenced by the

hard-earned advancement of the technology, CTI hardware and theory is wrought with

many intricacies and is highly-sensitive to numerous subtleties in instrument design and
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image processing. Pertinent to the research presented herein, it is shown that small

imperfections and uncertainties in DVP fabrication result in highly degraded results. CTI

relies on the alignment of optical components to sub-wavelength precision. While this is

obviously accomplished in countless optical systems, few must maintain these tolerances

while combating the disturbances of the DVP rotating at high speed.

1.3 Research Goals

The main goal for the research presented is an investigation into the DVP optical

element to further the CTEx research effort at AFIT. With several successful displays of

rotating-prism CTI, the technology is ready to support a laboratory-based working system

which integrates components having the exact optical properties of the proposed

space-based CTEx. The nominal optical design of a four-piece DVP has been completed,

but it remains to be determined how well a fabricated DVP is able to match the

mechanical design and how well the as-built configuration is able to be characterized. The

first step in qualifying the fabrication is to develop measurement techniques which define

the geometry of the prism assembly to sub-wavelength precision. The specific goals are

listed below.

• Investigate measurement techniques for a direct-vision prism assembly

• Establish a diagnostic method to characterize a direct-vision prism assembly

• Develop a method for specifying direct-vision prism fabrication tolerances

• Propose a prism sleeve design for the direct-vision prism and motor interface

1.4 Organization

Chapter 2 reviews the history of CTI and the experiments conducted by industry as

well as at AFIT. Chapter 2 also details the history that has developed the need for this

investigation into DVP fabrication and characterization. Chapter 3 reviews the physics and

methodology pertinent to the development and results of the experiments performed.
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Chapter 4 applies the theory to the performed experiments and reveals the results of the

experiments for DVP characterization. Chapter 4 also presents a design for the CTEx

DVP holder and the methodology of its design. Chapter 5 draws conclusions from the

results and observation of experiments and proposes future work able to utilize and build

upon the conclusions drawn from research herein.
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2. Background

In this chapter is presented the applicable history of chromotomographic

imaging (CTI) research conducted at AFIT as well as research conducted in industry as it

impacts the work detailed herein. CTI is a technology built significantly as an extension of

the theory developed for medical-based tomography where it is used extensively with

admired success. This chapter first presents the current field of space-based hyperspectral

imaging by identification of recent, advanced orbiting hyperspectral imager instruments

and their missions. Secondly, the theory and instrumentation of tomography as applied in

the medical field is presented as the basis for CTI theory and hardware design. Thirdly,

industry CTI research efforts are reviewed to illustrate possibilities and set the foundation

for the development efforts at AFIT. Finally, by reviewing the results of previous

experiments conducted at AFIT, the need is established for the inquiry and investigation

into characterization and fabrication of a direct-vision prism.

2.1 Space-Based, Earth-Observing Hyperspectral Imagers

2.1.1 GOSAT. GOSAT, launched in January 2009 is equipped with Fourier

Transform Spectrometer (FTS) and Cloud and Aerosol Imager (CAI) with the mission to

monitor CO2 and CH4 levels in Earth’s atmosphere. FTS is able to detect the spectral

signature of CO2 and CH4. CAI monitors the cloud coverage over the field-of-view that

FTS observes. Correcting for the cloud coverage, the volume of gas species is quantified

as the column abundance “expressed as the number of the gas molecules in a column

above a unit surface area” [5]. CAI only observes very narrow bands, but FTS is capable

of wide-band observation with a spectral resolution of 5 cm and spatial resolution of over

a 10 km diameter FOV.
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(a) (b)

Figure 2.1. (a) An artist rendition of the GOSAT satellite and (b) table of FTS
specifications [5] [6].

2.1.2 Landsat. The Landsat program is an ongoing effort to capture satellite

imagery of Earth since the launch of its first satellite in 1972 [7]. The joint National

Aeronautics and Space Administration (NASA) and United States Geological

Survey (USGS) program successfully launched the eighth satellite of its forty-year history

in February of 2013. Just as its predecessors, Landsat 8 has onboard a multispectral

remote-sensing instrument. This generation of instrument is known as the Operational

Land Imager (OLI) and senses in nine wide spectral bands over the spectral range of 0.433

to 1390 µm. Though this spectrum is defined in Section 1.2.3 as the hyperspectral

bandwidth, the imager is considered multispectral because the spectral resolution is low.

As a trade for low spectral resolution, Landsat 8 is able to generate high-spatial-resolution

images with minimal integration time. The objective of Landsat 8 is the observation and

recording of Earth’s surface and atmosphere over an extended period of time. As such,

those events that exhibit significant changes at a rate less than the Landsat 8 earth

coverage period of 16 days are not to be resolved continuously.
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2.2 Medical Tomography to Chromotomography

State-of-the-art imaging technology is paramount to many recent advancements in

medicine and is applied in a variety of medical devices on a daily basis. Especially

well-known is the Computed Axial Tomography (CAT) scanner which is responsible for

saving and improving countless lives by providing medical doctors with images of internal

body structure. This and other tomographic imagers are capable of generating

two-dimensional images at a particular cross-section of a three-dimensional object as

shown in Figure 2.2. By constructing two-dimensional images at small increments along

the z-direction, a resolved three-dimensional image representation is be constructed.

Figure 2.2 illustrates how one distinct cross-section of an object is imaged.

Figure 2.2. Circular tomography creates resolved images of 3D object cross sections by
convolving multiple images at various projection angles each focused on the tomographic
plane, P0 [12].

16



The medical tomography discussed is an example of CTI theory applied to physical

structure with three spatial dimensions and is the intuitive application of the technology.

For a spectrometer, the observation target is spectrally-diverse electromagnetic energy in a

two-dimensional field of view and the projected images are less intuitive. This abstracted

scenario is explained with the hypercube of Figure 1.6 which represents the spectral

information as a spatial dimension. Relating this representation to medical tomography,

instead of a source and film rotating opposite each other to create multiple projection

angles as shown in Figure 2.2, electromagnetic waves are passed through a DVP to

separate, angularly, the energy as a function of wavelength as shown in Figure 2.3. The

image formed by one distinct bandwidth is positioned radially offset from the image

formed by a different bandwidth on the same detector plane as shown in Figure 2.4. Each

slice of the hypercube, representing the intensity distribution of a finite bandwidth (range

of wavelengths) over the FOV, is displaced along an angled path to the detector plane

arriving at some distance normal to the prism orientation. As the DVP rotates, the image

at each finite bandwidth maintains orientation, but is translated circularly at a constant

radial offset as shown in Figure 2.5.

Figure 2.3. Rotating-prism CTI System Layout [48]

.
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Figure 2.4. Hypercube projections through a direct-vision prism [48].

2.3 Tomographic Data Reconstruction

Computer reconstruction algorithms are able to convolve the images collected at

various projection angles using image processing theory. The details of the reconstruction

are not provided here, but the interested reader is referred to publications by Mooney et

al. [31] [35] [33] [34] [32], Sandia Labs [20], Gustke [22], Bostick [12], and Su’e [48] for

more information. Nevertheless, a conceptual introduction to the reconstruction methods

is presented here. Figure 2.5 provides useful visualization of simulated images taken

through a DVP at multiple rotation angles. Three infinitesimal wavelengths are simulated

in each of the subfigures depicting the focal plane where an image is formed by each

wavelength. The spectral distinctions of the images are observed as a spatial displacement

and are easily identified by the false color added for this demonstration. Four simulations

are shown, each distinguished from the others by the rotation angle of the DVP about the

optical axis. Figure 2.5(a) is the projected image formed when the DVP is at the angle as

seen in Figure 2.3 and is defined as the zero-degree angle. In each of the subfigures, the

three images at distinct wavelengths overlap each other and cause the spatial features to be
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CassegrainSALSO_CTIM.zmx

Configuration 19 of 37

Image Simulation: Geometric Aberrations

2/1/2013
Object height is 0.0735 degrees.
Field position: 0.0000, 0.0000 (deg)
Center: chief ray
Image size is 3.1284 W x 2.3463 H (Millimeters)

(a)

CassegrainSALSO_CTIM.zmx

Configuration 10 of 37

Image Simulation: Geometric Aberrations

2/1/2013
Object height is 0.0735 degrees.
Field position: 0.0000, 0.0000 (deg)
Center: chief ray
Image size is 3.1284 W x 2.3463 H (Millimeters)

(b)

CassegrainSALSO_CTIM.zmx

Configuration 1 of 37

Image Simulation: Geometric Aberrations

2/1/2013
Object height is 0.0735 degrees.
Field position: 0.0000, 0.0000 (deg)
Center: chief ray
Image size is 3.1284 W x 2.3463 H (Millimeters)

(c)

CassegrainSALSO_CTIM.zmx

Configuration 28 of 37

Image Simulation: Geometric Aberrations

2/1/2013
Object height is 0.0735 degrees.
Field position: 0.0000, 0.0000 (deg)
Center: chief ray
Image size is 3.1284 W x 2.3463 H (Millimeters)

(d)

Figure 2.5. Simulated images through a direct-vision prism showing three distinct
wavelengths, 0.606, 0.535, and 0.465 µm as red, green, and blue, respectively. Each
subsequent image differs by a rotation of the direct-vision prism of 90 degrees about the
optical axis. (a) 0◦, (b) 90◦ (c) 180◦, (d) 270◦

less discernible. The blurring due to overlap is even more profound without artificial

coloring and for the case of a spectrally-continuous scene. This is analogous to the

blurring of a single projection in medical x-ray imaging where the physical cross sections

of a bone or other object overlap on the film. The methods to reconstruct the image at a

particular wavelength require convolving multiple images such that the spatial scene at

one infinitesimal spectral band constructively interferes. Constructive interference in

convolution is accomplished by first translating the total image such that the image at the

spectrum of interest is at the same location in each total image. For example, align the

blue wavelength in each projection image of Figure 2.5 by shifting Subfigure 2.5(a) down
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by the offset distance to center the blue image. In the same way, shift Subfigure 2.5(b) to

the left by the offset distance, Subfigure 2.5(c) up by the offset distance, and

Subfigure 2.5(d) to the right by the offset distance. Convolving the shifted images, the

blue image constructively interferes at the center while the red and green images

arbitrarily interfere. As the number of projections at distinct angles increases, the image at

the blue wavelength increases contrast while images at other wavelengths start to appear

as noise in the background. In this same way, the two-dimensional image of any

wavelength on the detector plane is able to be extracted from the data. In practice,

reconstruction is accomplished in Fourier space and is theoretically limited by what is

known as the cone of missing information [43] [32].

The advantages that tomography affords hyperspectral imaging is compendiously

stated in the 2005 Sandia National Laboratories Report [20] by the excerpt below. Details

of the data collection methods and reconstruction algorithms which prove these claims are

not presented here. The interested reader is directed to the Sandia Report [20] for a

thorough investigation of the claim.

While staring sensors lend themselves toward wide-field monitoring,

detection and identification of transient events, they are not easily adapted to

hyperspectral imaging. Multiple spectral filters are used to add moderate

spectral information; however, the need for high temporal rates requires that

these filters operate with broad spectral bandwidths. For staring sensors one

must consider unconventional methods to move from low to high spectral

(i.e., multispectral to hyperspectral) resolution. Chromotomographic systems

offer significant advantages of more conventional systems (filter wheels,

AOTF, LCTF).1,2 Most notably, due to their integration of signal at each pixel,

hyperspectral data is be collected with higher temporal and spectral

resolutions and higher signal to noise ratios (SNR).
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2.4 Chromotomography Research and Experimentation in Industry

One of the first significant developments of CTI instrumentation and theory is in the

research of Mooney et al. [31] [35]. This instrument design has been the basis for most

subsequent work in developing the technology as is the CTEx project at AFIT. Mooney et

al. showed successful operation of CTI utilizing a rotating DVP and also showed the

limitation of data reconstruction as a consequence of angled projections whereby spatial

and spectral information at certain frequencies are unresolved. This limitation is known as

the cone of missing information as the lost information is visualized as an empty cone in

Fourier space. To rectify this limitation and fill in the inherent gaps, Brodzik and Mooney

later developed the method of Projection Onto Convex Sets (POCS) for estimating the lost

information inside of the missing cone [34].

Sandia National Laboratories performed a study which established quality metrics to

assess the applicability of a “non-conventional spectral imaging systems to missions

associated with space-based optical sensors” [20]. The instrument design and

reconstruction method used was based on Mooney’s work. As such, their analysis was

also subject to the cone of missing information. The Sandia study utilized POCS in order

to extract the most information possible from the collected imagery.

The general design of a spinning-prism CTI instrument is based on the work of

Mooney et al. and the components are illustrated in Figure 2.3. Referring to Figure 2.3,

the elements starting from the object on the left are described. The object itself is a

spectrally-diverse, two-dimensional scene at a far distance from the instrument. The first

lens, L1, focuses the light to an image point where the field stop, F.S., limits the field of

view and, therefore, the utilization of the detector plane. Lens two, L2 collimates the

diverging rays before the signal passes through the spinning DVP which disperses the light

radially and translates the image circularly. The third lens, L3, focuses the collimated light
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at multiple angles to form images on the detector plane which are radially offset from each

other. The collection and processing of the spatially-spread data is outlined in Section 2.2.

2.5 AFIT Chromotomography Research

Over the last few years, significant CTI research and development has been

performed at AFIT, resulting in several generations of instrumentation. The first successes

in CTI development at AFIT were through the dissertation work of Bostick, before the

space-based concept of CTEx. Many lessons have been learned with regard to critical

components such as the front-end telescope, the prism motor, fast-speed camera

technology, and the DVP. The focus of this research is on understanding design and

integration subtleties of the DVP and the AFIT research applicable to this goal is reviewed

here.

2.5.1 Bostick. Experiments conducted by Bostick were performed with a

two-glass prism assembly depicted in Figure 2.6 [12]. Bostick points out that the radial

displacement of the image on the detector plane r(λ), shown in Figure 2.6(a) is the

parameter which defines the spectral performance of the system. Bostick derives the

equation of the radial displacement as Equation (2.1), a function of the deviation angle

which varies with wavelength. The paramount conclusion to be made from these

relationships is that the angular dispersion must be known for all wavelengths of interest

in order to identify extracted spectral information.

r(λ) = D6tan(φ(λ)) (2.1)

The reconstruction algorithms which generate hypercube data sets require the

wavelength-dependent radial displacement function, r(λ). A prism is designed to a

specification that determines the radial displacement to an exact profile. However,
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Figure 2.6. (a) The Bostick system layout and (b) the Bostick direct-vision prism [12].

unavoidable fabrication and alignment imperfections result in tangible hardware which

deviates from the equipment specification, though controlled to within a required

tolerance. As a result, the actual radial offset differs from the design. In addition, other

unplanned displacements as a result of fabrication and integration alignment

imperfections exist in other hardware. Bostick presents a method for diagnosing and

correcting for these unplanned displacements, referring to them as systematic errors [11].

Bostick explores five types of systematic error and determines, analytically, the effect each

error has on displacement as seen by the detector plane [12]. With an analytical

representation, Bostick determines the error kernels correcting for each systematic error

and applies the error kernels to the reconstruction algorithm in Fourier space. These error

kernels, shown with a depiction of their respective errors in Figure 2.7, are used to

determine the tolerances imposed on prism fabrication, mounting, and characterization.
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Figure 2.7. Systematic errors and their respective error kernels [12]

.

2.5.2 Linear Ground System (GCTEx). In the development of the most recent

CTEx ground instrument, Niederhauser describes the method implemented to characterize

the Bostick DVP assembly deviation angle [36]. The method utilized a known emission

spectrum masked by a pinhole to simulate a point source. The point source was then

imaged through the ground-based chromotomographic experiment (GCTEx) instrument

while changing only the DVP rotation angle about the prism motor axis. Tracing the path

followed by several wavelengths of light as the prism rotated, the center of rotation, as

well as the displacement of each spectral line was calculated as a function of prism motor

rotation angle 2.8. When the results of the deviation measurements were compared with
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the deviation angle vs. wavelength curve produced from a Zemax model of the DVP,

Niederhauser found up to a 1% difference at the wavelength tested. The deviation angle is

calculated with respect to the undeviated wavelength defined as that infinitesimal spectral

band which remains fixed on the focal plane array (FPA) as the prism rotates.

Niederhauser also identified an offset in the transverse direction (normal to the dispersion

direction) at the detector plane as a result of DVP fabrication error. This transverse offset

is shown in Figure 2.8.

Figure 2.8. Illustration of the transverse offset. As the prism rotated, the wavelength
of interest traced the path shown by the dotted line. The path traced by the undeviated
wavelength is shown by the center solid line. The undeviated wavelength is closer to the
optical axis marked by the dot at every prism angle and the radius of its trace is defined as
the transverse offset. Using trigonometry, the radial dispersion distance is calculated. [36].

Completion and utilization of the latest GCTEx system was accomplished by

Su’e [48]. Su’e describes the effect that the transverse offset has on the reconstruction if

unaccounted for. He also details a method of correcting for the measured transverse offset

and demonstrated the successful application of this correction applied to the
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reconstruction algorithm as seen in Figure 2.9. It is clear from comparison of this data that

a transverse offset of this magnitude is significant and must be accounted for.

(a) (b)

Figure 2.9. Reconstructed Air Force bar chart (a) without transverse offset correction
and (b) the same data set reconstructed with the transverse offset correction applied. The
original image was illuminated by a monochromatic source [48].

2.6 Background Analysis

Previous work in CTI development has been revisited. Furthering the capabilities of

the CTEx instrument requires building on the work already done. From the operation of

the GCTEx system, it was seen that there is a significant detrimental impact on the quality

of data reconstruction as a result of prism misalignments. To address the error, Bostick

makes available the quantification of prism misalignments relative to the impact they have

on the reconstruction algorithm. It is left, then, to transfer this quantification to acceptable

deviations from perfect models and compare these with limits imposed on available

fabrication methods.
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Assuming that the claimed 1% difference in the measured deviation angle was with

respect to the range of angular spread of approximately 4◦ seen in Figure 3.4, the angular

error in the measurement is as much as 2.4 minutes of arc. Implementing Equation (2.1),

the on-axis radial error on the detector plane is then approximated as 80 µm assuming a

lens three focal length (Figure 2.3) of 115 mm. Imaged onto a detector plane having a

pixel pitch of 20 µm, the possible error in signal position knowledge is four pixels in the

radial direction. To understand the effects of four-pixel ambiguity, review Bostick’s

analysis of instrumental error causing a two-pixel uncertainty in the radial dispersion for a

predicted wavelength. Bostick concluded that when the reconstructed algorithm designed

for a ten-pixel offset is applied to an eight-pixel offset, monochromatic image, the result is

a reduction in the spatial resolution of the reconstructed image by more than 50%. For a

spectrally-diverse, continuous image, the result would instead be an error in the bandwidth

for which the image is reconstructed [12]. Adjusting for a two-pixel uncertainty at one

bandwidth in the radial direction is a trivial task. However, the calibration of the

instrument for an uncertain radial dispersion as it varies with wavelength in both

dimensions on the focal plane is prohibitively complex. Even if accomplished, the

identification of the spectral band related to a particular dispersion vector requires another

convoluted calibration. It is evident, therefore, that a seemingly-small uncertainty in prism

dispersion has a profound impact on CTI results, thereby justifying the need for a viable

and precise characterization of the prism assembly.

2.7 Background Conclusion

The CTEx project at AFIT has led to the development of the linear GCTEx system

capable of imaging a monochromatic FOV with spatial and spectral resolution. In the

process, the DVP component has, necessarily, been a key consideration. Much work has

been done to design DVPs under conflicting performance criteria and characterize

fabricated assemblies to enable hypercube reconstruction. The continuation of CTI
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research necessarily focuses on demonstrating the temporal resolution capabilities of CTI.

Following attempted imaging of rapid-transient events, the prism and the error caused by

prism misalignments become the subject of the next stage of development. An

investigation into controlling the uncertainty of DVP geometry as well as characterizing

the DVP is required. Also, with the finalization of a DVP design and realized DVP motor

hardware, it is necessary to design the mechanical interface for the two components. In

addition to maintaining precise optical alignment, the integration design must address

mechanical, and environmental and logistical concerns. The investigation presented here

develops DVP characterization techniques to be used for DVP tolerance specification, for

precise alignment of DVP components, and the precise and accurate characterization of

the as-built DVP.
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3. Applicable Theory

In the previous chapter, it was established that the performance of spinning-prism

chromotomographic imaging (CTI) is severely and negatively impacted by misalignment

and misidentification of a direct-vision prism (DVP) used as the dispersive element. The

methods reviewed in Section 2.5.2 used prior to this research to characterize the prism by

direct measurement of detector plane displacements have resulted in inadequate precision

and degraded resolution. The investigation presented in Chapter 4 addresses this shortfall

by seeking a means to characterize the DVP assembly through accurate and precise

definition of each DVP assembly surface orientation. To define these orientations,

precision optical measurement tools are used to make reasonable observations. These

observations are the outputs of the DVP system and the inputs are then defined as the

surface orientations. Implementing a linear approximation of the DVP system, the

properties of a nominal prism assembly are used to solve for the combination of surface

orientation vectors which produce the measured output. The desired outcome is a method

of applying mathematical techniques to measurable quantities for the determination of

lens surface orientation with arc second precision relative to a fixed structural coordinate

system. A review of the theory and design methodology applicable to these research

objectives is presented in this chapter.

3.1 Propagation of Light

Light is propagating electromagnetic energy made up of electric and magnetic waves

which oscillate sinusoidally in-phase and orthogonal to each other, each displacing

tangent to the direction of propagation as shown in Figure 3.1. This energy requires no

medium to travel, but material properties of a medium significantly impact the

propagation of an electromagnetic wave. As an electromagnetic wave traverses through a

medium, photons contact atoms at some rate proportional to the optical density of the
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medium and the wavelength. Though these contacts occur and tend to deviate the path of

the light, they cancel each other in all but the direction of initial momentum and the wave

direction persists in a homogenous medium [25]. Eventually, the wave encounters a new

medium with different electromagnetic properties. At this point, the wave is subject to

change as described by the law of conservation of energy in Equation (3.1) [25].

Figure 3.1. An electromagnetic wave is comprised of orthogonal electric and magnet waves
with amplitudes oscillating in-phase [39].

εtotal = εre f lected + εtransmitted + εabsorbed (3.1)

ε ≡ energy

3.1.1 Reflection. At the interface where two mediums of differing density meet, an

electromagnetic wave collides with a layer of unpaired atomic oscillators about λ/2

thick [25, p. 96]. The layer of unpaired atomic oscillators is responsible for the partial

reflection. Partial reflection occurs whether the transition is into a material of higher
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density, called external reflection, or into a material of lower density, called internal

reflection. For an air-to-glass or glass-to-air interface, the reflected energy is about 4% for

a wave incident perpendicular to the surface. The vectorial form of the conservation of

momentum dictates the direction of the reflected wave and is summarized by the law of

reflection, Equation (3.2), from which it is stated that the angle of incidence is equal to the

angle of reflection in the plane of incidence shown in Figure 3.2 [25].

φi = φs (3.2)

φi ≡ angle of incidence

φs ≡ angle of reflection

φi φs

REFLECTION SURFACE

Figure 3.2. Illustration of the plane of incidence for a reflected ray.

3.2 Refraction

In addition to the possibility of reflection, some or all of the photons colliding with a

new medium are transmitted through. The optical density of the medium is quantified as
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the index of refraction, n, which is defined in Equation (3.3). The effect on an

electromagnetic wave entering an abrupt new medium is known as refraction and

described by Snell’s Law in the plane of incidence, Equation (3.4), and is represented

graphically in Figure 3.3(a). Figure 3.3(b) illustrates the common scenario in which some

of the light is reflected and some is refracted.

n = c/v (3.3)

n ≡ index of refraction

c ≡ speed of light in vacuum (3×108 m
s )

v ≡ speed of light in the medium

ni sin (φi) = nr sin (φr) (3.4)

ni ≡ incident ray medium index of refraction

φi ≡ angle of incidence

nr ≡ refracted ray medium index of refraction

φr ≡ angle of refraction

3.2.1 Absorption. Absorption is the attenuation of an electromagnetic wave due to

the transfer of to the medium. The effects of absorption are not considered in this research

except to realize that the amount of electromagnetic energy that is transmitted through a

prism is affected by the prism glass material which must be selected for the design spectral

range [25, pp. 67-68].
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φi

ni

φr

nr

(a)

φi

ni

φs

φr

nr

(b)

Figure 3.3. (a) Illustration of Snell’s Law and (b) reflection and refraction shown at the
same interface viewed in the plane of incidence.

3.2.2 The Critical Angle. The critical angle is the maximum angular difference

between the surface normal, N̂, and the incident ray direction vector, î, for which

refraction occurs across a surface. For any angle, φi, greater than the critical angle, the

incident photons are reflected by the surface [25]

3.3 Direct-Vision Prism Theory

Prisms are refractive elements of planar geometry that utilize the frequency

dependence of the refractive index to separate the different frequency components of the

incident light. The interested reader is referred to [25] for a thorough treatment of

dispersion and the frequency dependence of the index of refraction. For the research

presented here, it is necessary only to consider that the deviation angle is a nonlinear

function of wavelength as shown in Figure 3.4.
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Figure 3.4. Plot of the deviation angle as a function of vacuum wavelength for the Bostick
direct-vision prism reveals the nonlinear relationship [36].

A DVP, or Amici prism [23], is an assembly of prisms designed as a chromatic

dispersion element. A DVP is unique in that it disperses a spectral range about the optical

axis as shown in Figure 2.3. A defining design parameter of a DVP is its undeviated

wavelength, the wavelength of light that passes through the DVP as if the DVP were not

there. As seen in Figure 3.4, the undeviated wavelength (λ � 550 nm) is not in the center

of the spectral range of interest due to the nonlinearity of the dispersion.

A DVP, in general, is a precisely-designed assembly of prisms having varied profiles

of dispersion as a function of wavelength. As the visible light passes through one prism,

the angular chromatic separation is in one direction normal to the original light path. The

dispersed light then passes through the second prism which rotates the light back towards

its original path, but at a different angle because of geometry and a different index of

refraction. The resultant beam retains a wavelength-dependent angular spread, but now

about one wavelength, the undeviated wavelength, which assumes the direction of the

original light path [19] [14].
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3.4 Vectorial Ray-Tracing

Ray-tracing is a means by which any ray is traced through an optical system, defining

the exact light path and is a procedure by which to model the optical performance of a

system. The results are as accurate and precise as the specifications of the optical system

elements [25]. The procedure is simply a step-by-step process of tracing the rays (being

straight lines) between surfaces and computing the effects on each ray at each surface by

applying the laws of reflection and refraction. Ray-tracing is, in general, a nonlinear

process and calculations must be applied sequentially. It is noted that, because the

ray-tracing considers the light to be a ray, the wave properties of light (i.e. diffraction) and

their impact on the propagation are assumed negligible for the analysis presented [25].

3.4.1 Ray-Tracing Through Refractive Surfaces. Generalized ray-tracing in

three-dimensional vector space with refractive surfaces is accomplished by application of

the vectorial form of Snell’s Law, called the refraction equation. The refraction equation is

obtained from Snell’s Law in the incident plane, Equation (3.4), by taking the directions to

be vectors of unitary magnitude and expressing the modulus of the vector cross product as

Equation (3.5) [27]. Because the vectors are unitary vectors, the modulus of their cross

product reduces to sin(φi), which substitutes into Snell’s Law to form the refraction

equation, Equation (3.6).

|~i × ~N| = |~i||~N| sin(φi) (3.5)

Given an incident three-dimensional unitary incident ray direction vector, Equation

(3.6) is applied at the intersection point of the incident ray and a refractive surface,

resulting in an exact expression for the direction vector of the refracted ray. Knowing the

unitary incident ray direction vector and the unitary surface normal vector at each

35



ni|î × N̂| = nr|r̂ × N̂ | (3.6)

ni ≡ incident ray medium index of refraction

î ≡ incident ray unitary direction vector

N̂ ≡ surface unitary normal vector

nr ≡ refracted ray medium index of refraction

r̂ ≡ refracted ray unitary direction vector

intersection point enables the designer to trace the light path through a series of optical

refractive surfaces.

3.5 Perturbation Theory

In essence, a perturbation procedure consists of constructing the solution for a

problem involving a small parameter ε... ...when the solution for the limiting

case ε = 0 is known. The main mathematical tool used is asymptotic

expansion with respect to a suitable asymptotic sequence of functions of ε. In

a regular perturbation problem a straightforward procedure leads to an

approximate representation of the solution. The accuracy of this

approximation does not depend on the value of the independent variable and

gets better for smaller values of ε [28].

3.5.1 Perturbation Theory Applied to Optics. The description above is a summary

of perturbation theory. The goal is to apply perturbation theory to develop a linear set of

equations that describes the ray-trace through the optical system. As such, the small

parameter, ε, is a small deviation (or perturbation) in position or orientation of a ray or

optical interface. The solution of the nominal case, ε = 0, is found by exact ray-tracing in

the standard application of Snell’s Law, Equation (3.4). The asymptotic sequence is the
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Taylor Series expansion of the sine of the perturbation angle shown in Equation (3.7)

and (3.8) [1]. For a linear approximation optical ray-trace, only the first term is retained

and, together with the expression of Snell’s Law, becomes Equation (3.9), often referred to

as the small-angle approximation of Snell’s Law. As the name implies, the small-angle

approximation is increasingly more accurate for small angles and is consistent with the

perturbation theory description above. Equation (3.9) approximates the perturbation of the

refracted ray direction as a function of the perturbation of the incident ray direction as

shown in Figure 3.5. The limit imposed on the small angle approximation is illustrated in

Figure 3.6(a) where it is shown that the approximation contributes less than 1% error up

through a 0. 30 radian (17◦) angle. the maximum allowable perturbation angle is dictated

by the accuracy requirement of the analysis. As shown in Figures 3.6(a) through 3.6(b),

the accuracy of the approximation is degraded with larger nominal incident angles, φi.

sin(φ) =

∞∑
k=0

(−1)kx1+2k

(1 + 2k)!
(3.7)

sin(φ) = φ −
φ3

3!
+
φ5

5!
+ · · · (3.8)

dφ2 =
n1

n2
dφ1 (3.9)

3.6 JPL Perturbation Methodology

The linearization method reviewed in this section is entirely the work of Jet

Propulsion Laboratory (JPL) and its affiliates as named in the cited references and is

simply summarized here, in part. In preparation for the recent generation of large,

space-based telescopes, JPL in Pasadena, California has developed a simplified

mathematical model for analysis and control of the most sensitive aspects of complex
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φi

ni

dφi

φr

nr

dφr

Figure 3.5. Change in the angle of the refracted ray as a result of a perturbation of the
incident ray direction.

telescope arrays. The goal of the method is a linear mathematical model accurate enough

to be used for state estimation as well as real-time control and optimization. The resulting

method is, in its entirety, applicable to a broad range of analysis and has been successfully

implemented in the alignment and testing of the NASA James Webb Space Telescope.

The pieces of JPL comprehensive modeling methods which have been implemented in this

research are reviewed in this section. The modeling methodology developed and

implemented by JPL is primarily focused on reflective optics and the extrapolation to

refractive systems is somewhat anecdotal, but is used in a similar fashion and with the

same level of utility. The refractive linearization methodology is applied to an assembly of

prisms with flat surfaces assumed.
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Figure 3.6. The small-angle approximation applied to Snell’s Law to calculate the refracted
ray angle perturbation, dφr, is less accurate with larger incident ray perturbation angles, dφi,
and larger nominal incident ray angles, φi.

The model-linearization methodology is based on perturbation theory as presented

generally in Section 3.5. The first step in modeling perturbations is to establish the

nominal case, that for which the error is zero (ε = 0).

3.6.1 Defining the Nominal Case. When modeling reflective and refractive

systems alike, three separate ray parameters are required in order to fully define the
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incident ray as it traverses a refractive surface, Figure 3.7. The first is the

three-dimensional unitary direction vector of the incident ray, î j = r̂ j−1, which, as a unitary

vector, is defined by the three direction cosines with respect to an arbitrary coordinate

system. Next, a three-dimensional vector, the beamwalk α j, is defined as the transverse

offset of the incident ray normal to the chief ray. The third and final parameter defining a

ray is the scalar optical path length of the vector through each segment of the ray-trace, Li.

To begin a nominal ray-trace, each of these parameters must be defined for the starting

incident ray within a reference frame. The ray parameters are expressed relative to the

surfaces by referencing the known vertex of the first surface. The incident ray is defined

relative to the vertex by a vector from the vertex to the point of origin, ~p j, and one to the

point of termination, ~ρ j. Many of the terms in Figure 3.7 are not necessary for the

ray-trace through a prism assembly with assumed-flat surfaces.
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L

f

Figure 3.7. Illustration of the terms necessary to completely define the incident ray for the
linearization of the ray-trace through a generic conic section refractive surface [42].

f ≡ focal length of the conic section

î ≡ incident ray unitary direction vector (r̂ j−1)

r̂ ≡ reflected or refracted ray unitary direction vector(r̂ j)

N̂ ≡ surface unitary normal at the ray intersection

ψ̂ ≡ principle axis unitary direction vector

L ≡ scalar optical path length

~p ≡ vector from the vertex to the point of origin

~ρ ≡ vector from the vertex to the point of intersection

~α ≡ beamwalk

To completely define the system, the surface is identified by the principle axis unitary

direction vector, ψ̂ and the normal vector. For fixed, flat surfaces, the normal vector does

not vary with position, thus, N̂ = ψ̂. For surfaces defined by a conic-section-of-revolution,

an expression for the normal vector as a function of the position on the surface is defined

using conic-section parameters.

For the analysis of prisms with assumed-flat surfaces, the identification of beamwalk,

α j, and optical path length, Li, are not necessary. A complete linear model of the system
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with the given assumptions is achieved with only the incident ray direction, î j = r̂ j−1.

Likewise, the effect of surface translation offers no additional information and only the

effect of surface rotations are considered as described in Section 3.6.2.

The nominal case for a refractive optical system is defined by exact ray-trace analysis

using the vectorial form of the refraction equation, Equation (3.6). It is advantageous to

develop the model in coordinate-free notation such that the vectorial refraction equation

defines the refracted ray direction vector as a function of the incident ray direction vector

and both are able to be represented in any arbitrary coordinate frame. The exact refracted

ray unitary direction vector is given as a function of the incident ray direction vector by

Equation (3.10) as derived by Redding and Breckenridge [42]. Applying Equation (3.10)

at each surface in sequence provides an exact trace of a ray through the refractive system

given the starting incident ray direction, the material indices, and the normal vector at

each ray-surface intersection. The unitary direction vector of each refracted ray must be

recorded to be used in the calculation of sensitivities.

r̂ = µî −
(1 − µ2)√

1 − µ2 + µ2(N̂ ◦ î)2 − µ(N̂ ◦ î)
N̂ (3.10)

r̂ ≡ refracted ray direction vector

î ≡ incident ray direction vector

N̂ ≡ surface unitary normal vector

µ ≡ ratio of the indices of refraction
(
µ = ni

nr

)
◦ ≡ dot product operator

3.6.2 The Perturbation Terms. The perturbation terms are those small errors in the

incident ray parameters and surface geometry parameters that deviate the model away
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from the nominal case described by Equation (3.10). The possible perturbations at a

single, flat, refractive surface interface are a change of the incident ray direction, dîact,

seen in Figure 3.8 or a rotation of the surface normal vector, ~θ, seen in Figure 3.9.

Recalling that the goal is the linearization of the ray-trace definition, the observation is

made of the small-angle approximation, Equation (3.9), that the angle describing the

change in the incident ray with respect to the normal vector, dφi, is no longer within a sine

function. The equivalent approximation applied vectorially is achieved by assuming the

deviations of unitary direction vectors are tangent to the nominal direction vectors.

Mathematically, this equates to using the tangent as an approximation for the sine of an

angle. The approximation is summarized by Figure 3.8 and Equation (3.11) where the

error is the difference between the actual rotation perturbation, dîact, and the approximate

rotation perturbation, dîapprox. The approximation is the same whether changing the angle

of the incident ray or the angle of the surface normal. The approximation of the perturbed

ray angle is exact at the nominal case and degrades with higher perturbation angles.

|înom × îpert| = |înom||îpert| sin(dφi) (3.11a)

dîapprox = înom · tan(dφi) (3.11b)

îpert = înom + dîact (3.11c)

îpert ≈ înom + dîapprox (3.11d)

The angle describing the rotation perturbation, ~θ, of a surface is the cross product of

the nominal surface normal vector with the perturbed surface normal vector,

Equation (3.12). The rotation perturbation is then a vector normal to the plane of rotation

and has a magnitude equal to the modulus of the sine of the perturbation angle. This is

exactly the case of an eigenaxis rotation [49], in which the unitary vector normal to the

plane of rotation is the eigenaxis and the angle of rotation is the eigenangle. With

43



error

dφi

Figure 3.8. Illustration of the change in the direction of the nominal incident ray, dînom, and
the vector used to approximate the change, dîapprox. The direction of the perturbed incident
ray, îpert, is approximated directly from înom and dîapprox assumed normal to înom.

Figure 3.9. Illustration of the change in the nominal direction of a refracted ray as a result
of surface rotation perturbation.
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eigenangle and eigenaxis notation, the exact euler angles and euler rotation order is

determined for input into Zemax without loss of accuracy.

|N̂nom × N̂pert| = |N̂nom||N̂pert| sin(|~θ|) (3.12)

3.6.3 Refracted Ray Sensitivities. The sensitivities are derivative cross-dyadics

expressing the change in the refracted ray as a result of a change in the incident ray or

surface geometry at the nominal ray-trace, thus, the sensitivities are exact in the limit as

error decreases to zero. The result from multiplication of the partial derivatives by the

perturbation terms is a vector which is perpendicular to the nominal refracted ray

expressing the perturbation of the refracted ray. As stated before, this approximation is

equivalent to the small-angle approximation of Snell’s Law in the incident Plane. Because

only flat refractive surfaces are considered, only the incident ray direction perturbations

and surface rotation perturbations affect the refracted ray direction (i.e. the incident ray

angle does not change with intersection point). The sensitivity to incident ray angle

perturbations is expressed in Equation (3.13) [42]. Notice that the sensitivity term of

Equation (3.13) is specified as for perturbations in the angle of approach (AOA) only. The

angle of the incident ray affects the refracted ray angle in the general case also by

intersecting a point on the surface with a different normal vector, but for the assumed flat

surfaces, the normal vector is constant for all intersection points. The sensitivity,
(
∂r̂
∂î

)
AOA

,

Equation (3.13) is given by Equation (3.14a) [42].
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dr̂ =

(
∂r̂
∂î

)
AOA

dî (3.13)

dî ≡ change in incident ray direction vector

dr̂ ≡ change in refracted ray direction vector

AOA ≡ angle of arrival

(
∂r̂
∂î

)
AOA

= µ

[
I3x3 +

µ

cos(φb)
N̂îT

]
· ~PN (3.14a)

cos(φb) =

√
1 − µ2î ◦ (~PN · î) (3.14b)

~PN = −N̂× · N̂× (3.14c)

µ ≡ ratio of the indices of refraction
(
µ = ni

nr

)
I3x3 ≡ identity matrix

dr̂ ≡ change in refracted ray direction vector

N̂ ≡ surface normal unitary direction vector

~PN ≡ projection dyadic onto the surface normal

N̂× ≡ skew-symmetric matrix of the normal vector

◦ ≡ dot product operator

· ≡ matrix multiplication

The surface is subject to perturbations of rotation or translation, but only rotations

impact parameters of the refracted ray through a flat surface. Similar to the refracted ray

sensitivity to incident ray angle perturbations, the refracted ray sensitivity to surface
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rotation perturbations is given in Equation (3.15). Note that, for a surface rotation

perturbation, there must be specified a point of rotation. If the point of rotation is not at

the intersection point of the ray under consideration and the surface, then the rotation

perturbation also causes a translation perturbation, but has no impact with the flat surface

assumption. The sensitivity,
∂r̂
∂θ̃

, Equation (3.15) is given by Equations (3.16a), (3.16b),

and (3.16c) [42].

dr̂ =

(
∂r̂

∂~θ

)
~θ (3.15)

~θ ≡ rotation perturbation

∂r̂

∂~θ
=
∂r̂
∂N̂
·
∂N̂

∂~θ
(3.16a)

∂r̂
∂N̂

= −

 (1 − µ2)√
1 − µ2 + µ2(N̂ · î)2 − µ(N̂ · î)


(
I3x3 +

µ

cos(φb)
N̂îT

)
(3.16b)

∂N̂

∂~θ
= −N̂× (3.16c)

3.6.4 Sensitivities and the Linear System. Combining the perturbations of both

sensitivities above, a linear system of equations describing the change in refraction angle

of a single refracted ray direction vector, dr̂, through a single surface is, in matrix form,

Equation (3.17) [42]. dr̂ is used along with the refracted ray direction from the nominal

case to express the approximation of the perturbed refracted ray as Equation (3.18) [42].

{dr̂}3x1 =

[
∂r̂
∂î
,
∂r̂

∂~θ

]
3x6


dî

~θ


6x1

(3.17)
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r̂pert = r̂nom + dr̂ (3.18)

r̂pert ≡ perturbed refracted ray unitary direction vector

r̂nom ≡ nominal refracted ray unitary direction vector

dr̂ ≡ refracted ray unitary direction vector perturbation vector

3.6.5 Multiple-Element Optical System Linearization. Equation (3.17) describes

the perturbation of the output ray direction resulting from small perturbations of the

incident ray as well as the angle of the single refractive surface. Normally, a lens system

has more than one optical surface, so the system of equations must be expanded to include

the sensitivity of the output ray direction to small perturbations of each surface angle as

well as the sensitivity to original incident ray direction perturbations. It is noted that the

perturbations in a system have a cascading effect whereby the perturbation of the original

incident ray or a surface is propagated through each subsequent surface to the output ray.

This cascade effect is represented by the calculation of the sensitivity to the original input

ray direction in Equation (3.19a), composed of Equation (3.14a) applied at each surface,

and the sensitivity to a rotation vector describing the perturbation of surface j in

Equation (3.19b), composed of Equations (3.14a) and (3.16a). In matrix form, the

linearized multi-element beam train system of a prism assembly is expressed as

Equation (3.20) [42].
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∂r̂n

∂r̂0
=

∂r̂n

∂r̂n−1
· · ·

∂r̂1

∂r̂0
(3.19a)

∂r̂n

∂~θ j

=
∂r̂n

∂r̂n−1
· · ·

∂r̂ j+1

∂r̂ j

∂r̂ j

∂~θ j

(3.19b)

r̂n ≡ unitary direction vector of refracted ray from last surface

r̂0 ≡ direction vector of incident ray to first surface

~θ j ≡ rotation vector describing perturbation of surface j

 dr̂n


3x1

=


∂r̂n

∂r̂0

∂r̂n

∂~θn

∂r̂n

∂~θn−1

· · ·
∂r̂n

∂~θ1


3x(3+3n)



dr̂0

~θn

~θn−1

...

~θ1


(3+3n)x1

(3.20)

3.7 Principles of Autocollimation

Autocollimators are optical instruments used to measure the relative angle of light

with high precision. The utility of an autocollimator is shown in Figure 3.10, where it is

clear that the light returned from the tilted surface focuses to a point that is shifted away

from the center of the detecting surface where the beam reflected perpendicular to the

detector surface focuses to a point. The shift dimension is a function of the return beam

direction and is defined by Equation (3.21), similar to Equation (2.1).
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Figure 3.10. Diagram of an autocollimator [41].

rx = f sin θx (3.21a)

ry = f sin θy (3.21b)

rx ≡ x-direction transverse displacement at the detector

ry ≡ y-direction transverse displacement at the detector

f ≡ focal length of the objective lens

θx ≡ angle of incoming light measured in the xz-plane

θy ≡ angle of incoming light measured in the yz-plane

3.8 Interferometry

The use of interferometry is proposed in this research as a means of precisely

measuring the output angle of the light ray exiting the prism assembly. Interferometry is

capable of measuring the shape a beam wavefront to within small fractions of the

reference wavelength [54].
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3.8.1 The Interferometer. An interferometer measures the interference pattern of

two intersecting beams of light. One of the beams is known precisely and used for the

reference wavefront. The interference pattern enables the precise definition of the

wavefront of the second beam.

3.8.2 Zernike Standard Polynomials. The Zernike polynomials are an orthogonal

basis which describes the shape of a circular beam wavefront. Though there are an infinite

number of Zernike polynomials, the standard set of Zernike polynomials describing

wavefront error comprises the first 37 independent terms. For this research, only the

second and third polynomials (the first-order polynomials) are relevant as they completely

describe the wavefront changes through a prism assembly with assumed-flat surfaces. The

second and third Zernike polynomials are listed in Table 3.1. The radius, ρ, and the angle,

θ, are as shown in Figure 3.11. The wavefront described by each of these tilt terms is

shown in Figure 3.12. It is possible to represent any wavefront with a linear combination

of the first-order Zernike standard polynomials.

Table 3.1. The first-order Zernike standard polynomials used to represent the X- and Y-tilt
of the wavefront. For the ideal prism assembly, only the first-order Zernikes are necessary
to describe the shape of the wavefront [48, 52, 53]

Term # Polynomial Description

1 41/2ρ cos(θ) X-tilt

2 41/2ρ sin(θ) Y-tilt

3.9 Zemax, MATLAB, and DDE

Zemax is an optical design software package, enabling computer models of a lens

system to be built geometrically and intuitively. Zemax implements ray-trace analysis

methods to generate comprehensive simulations which are be used to predict optical
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θ

ρ

Y

X

Figure 3.11. Vector representation of the Zernike standard polynomial variables necessary
to define the shape of a circular wavefront. ρ is the radius normalized to the max value of
one at the edge of the pupil.

responses and performance measures. For this research, Zemax simulations are

considered as the reference in qualifying results, quantifying performance, and verifying

the linearized optical models.

Zemax makes use of an interface tool known as Dynamic Data Exchange (DDE).

DDE enables Windows programs to command the Zemax software to make changes to

user-defined settings and extract Zemax analysis results. Computer code utilizing DDE is

then able to automate Zemax simulations from a Windows environment, thereby allowing

many operations to be carried-out quickly without real-time user interaction. MATLAB is

able to establish a DDE link with Zemax and access most of the Zemax DDE functions

using a library of MATLAB functions known as MZDDE available through Mathworks.
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Y

Figure 3.12. Illustration of (a) X-Tilt and (b) Y-Tilt of a beam wavefront defined by Zernike
standard polynomials 1 and 2, respectively.

The functions in the MZDDE library are called to perform basic user tasks such as to enter

new values for the lens diameter in the Zemax Lens Data Editor. Using the MZDDE

library of functions, large amounts of tedious simulation data is be extracted from Zemax

models quickly, allowing for analysis of results that is based on large data sets obtained in

a short amount of time.

3.10 Fabrication Tolerancing

Fabrication tolerancing is the link closing the gap between mechanical design and

physical hardware. A nominal mechanical design specifies exact dimensions which cannot

be achieved in fabrication. Regardless of the precision of a machine or process,
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fabrication requires that a range of acceptable values be specified for any dimension. It is

possible to realize hardware within a prescribed range defined as the tolerance of a

dimension. Dimension tolerances are specified in a number of ways, each not necessarily

being equivalent. The specification of mechanical design geometry is a broad and

easily-confused topic and considerable ongoing effort is made to standardize the language

and practices of geometric dimensioning and tolerancing geometric dimensioning and

tolerancing (GD&T). GD&T is a language currently based on the standard of ASME

Y14.5-2009, published by ASME, founded as the American Society of Mechanical

Engineers [9]. GD&T is a vast and detailed discipline, the details of which will not be

reviewed here.

GD&T is of paramount importance to the design of hardware. Design tolerances

drive important factor such as cost, schedule, and feasibility in manufacturing [46].

Tolerance specifications which are excessively small drive the cost and schedule higher at

exponential rates, causing new practices to be implemented, new equipment to be

purchased, or even the determination that the specification cannot be achieved. It is for

these reasons that the engineer seeks a design that allows for a larger tolerance to be

specified. However, tolerancing is required to specify the bounds for which a fabricated

part remains functional. By specifying tolerances that are too loose, the possibility exists

for hardware that is within specifications to be incapable of performing in its intended

application. GD&T is the tool by which the determination and attainment of a balanced

design is achieved.

The difficulty in fabricating the DVP for CTEx is an example of the importance of

GD&T. In Chapter 4, the optical design of a DVP for CTEx is presented. Though an

optical design exists, the mechanical design has not yet been specified for fabrication. The

reason for the work stoppage is that fabrication tolerances have yet to be defined which
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meet the optical performance requirements and are within shop capabilities. One goal of

this research is to develop a method to specify DVP tolerancing to enable fabrication.

3.11 Theory Conclusion

The theory presented in Chapter 3 is utilized in Chapter 4 for the investigation and

analysis of prism assemblies. The theory of light propagation offers the equations

necessary for a mathematical representation of the ray-trace through an optical system.

Optical measurement devices and the measurement data offer input into the mathematical

representation for real-system analysis.
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4. Direct-Vision Prism Design, Analysis, and Test

The conclusions of Section 2.7 established the need for a more accurate

characterization of the direct-vision prism (DVP) than has been achieved to date. This

chapter presents an investigation into precise characterization of a DVP and a proposed

mechanical design of the DVP hardware.

The investigation into precise characterization of a DVP assembly is presented in

four phases. First, analysis of prism assembly misalignments was performed using Zemax

models to verify the extent to which selected measurements produce a unique set of data.

Second, the precision of measurement capabilities was investigated which also provided

insight into the optical sensitivity of the prism assembly hardware. Third, a linear system

approximation was constructed and its accuracy established by analysis. Lastly, a method

of system identification utilizing the linear system was analyzed for its accuracy in

determining the orientation of the surfaces in a prism assembly.

Also in this chapter is an overview of the proposed hardware design for a DVP and

mechanical sleeve assembly. Geometric dimensioning and tolerance specifications were

explored drawing on the results of the foregoing investigation and tools previously

developed.

4.1 Zemax Misalignment Uniqueness Investigation

As a means of precisely diagnosing the orientation of the DVP assembly surfaces, it

is proposed that interferometric measuring methods be utilized. To evaluate the utility of

interferometric measurement data in this application, a simplified assembly was analyzed

in Zemax to both validate the application and qualify the predicted data. The simplified

assembly was a two-prism system in which both prisms were Thorlabs PS814-A round

wedge prisms aligned as shown in Figure 4.1.

56



It was expected that the prism assembly would not be bonded exactly as shown, so to

simulate the scope of measurement data from the misaligned two-prism assembly, the

simulation added small rotation perturbations to the second prism orientation. As

reviewed in Section 3.8, an interferometer measures the relative shape of a wavefront and

in the two-prism simulation, the shape of the wavefront exiting the second prism was

measured relative to a flat input wave. The data was extracted as the tip and tilt Zernike

coefficients as reviewed in Section 3.8.2. The surfaces were assumed to be without

aberrations described by higher-order Zernike polynomials as described in [52]. The

interferometric measurements were made of the interference pattern between the input

field to the first prism and the output field from the last prism of the two-prism system.
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Y

Z
C.S.

X Z

Y

C.S.

Y

Z X

(a)

C.S.

X

Y

Z
C.S.

X Z

Y

C.S.

Y

Z X

(b)

Figure 4.1. The nominal alignment of identical round wedge prisms in the two-prism test
setup from the third-angle (a) right and (b) isometric views. The optical axis is parallel to
the Z-axis shown

Because the effects of various prism misalignments on the output were not intuitive,

the data from of the two-prism simulation was investigated for the uniqueness of the

output ray angle changes caused by deviations from the nominal case. The significant
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misalignments of the two-prism system were defined as those changes which caused an

angular separation between any two surfaces which was different from the nominal case.

In the simulation model, the first prism remained fixed and the front and back surfaces of

each prism maintained the nominal angle of separation. The significant misalignments of

the second prism were modeled by independent rotation about the X, Y, or Z axis or a

rotation about the axis normal to the second prism’s angled surface as illustrated in

Figure 4.2 and referred to here as normal rotation. Pure translation was not considered as

it only has the effect of constricting the entrance pupil in this ideal scenario. While the size

of the entrance pupil does affect the value of the Zernike coefficients, it has no effect on

the angle of the ray. It for this reason that care must be taken to assure the entrance pupil

remains the same for all prism rotation angles when comparing output ray directions.

MATLAB and DDE was used to extract and record Zernike standard coefficients

resulting from small, forced misalignments in Zemax simulation. Execution of the

MATLAB code automatically updated the prism orientation, ran the simulation, and

extracted the Zernike coefficients for a great number of misalignments. Because the

Zernike standard polynomials form an orthogonal basis set, a unique linear combination

of the first-order Zernike standard polynomials describes a unique output ray angle. For

the simple, flat-surface prisms with no modeled optical imperfections, the wavefront

varies only in angle as it traverses the refractive surfaces. With a flat wavefront described

completely by the ray angle, only the coefficients of the first-order Zernike terms are

nonzero. The first-order Zernike terms denote the wavefront tip and tilt as described in

Section 3.8.2. The results of independent rotations are presented in Figures 4.3

through 4.6. Examining the plots, it is evident that the tip and tilt combination is unique

for any misalignment angle about any one of the axes. The output angle is, therefore, also

unique for any misalignment angle about any one of the axes.
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(a)

(b)

(c)

Figure 4.2. Illustration of the second prism rotation about the normal axis of its angled
surface. The two-prism alignment is shown with the second prism (a) in the nominal
orientation, (b) rotated 90◦ about the normal, and (c) rotated 180◦ about the normal.

Presenting output for independent rotations is straightforward, however, actual

uncertainties and perturbations of prism surfaces are defined by multiple independent

rotations and produce one output angle with multiple perturbation combinations.

Evidence of this is revealed in the comparison of Figure 4.5(b) and Figure 4.6(b), in which

the combinations of Zernike standard coefficients are nearly identical. The data sets to

show repeated output angles are prohibitively large and have limited application. As such,

a more robust and deterministic approach to system characterization is required.
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Figure 4.3. Simulated standard Zernikes coefficients through the one-inch diagnostic
assembly at 0.635 µm as they change with a rotation of the second prism about the X-
axis. (a) Medium X-Rotation (b) Small X-Rotation. The combination of standard Zernike
coefficients is unique for the isolated rotation.
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Figure 4.4. Simulated standard Zernikes coefficients through the one-inch diagnostic
assembly at 0.635 µm as they change with a rotation of the second prism about the Y-
axis. (a) Medium Y-Rotation (b) Small Y-Rotation. The combination of standard Zernike
coefficients is unique for the isolated rotation.
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Figure 4.5. Simulated standard Zernikes coefficients through the one-inch diagnostic
assembly at 0.635 µm as they change with a rotation of the second prism about the Z-
axis. (a) Large Z-Rotation (b) Small Z-Rotation. The combination of standard Zernike
coefficients is unique for the isolated rotation.

62



-180 -135 -90 -45 0 45 90 135 180

-2000

-1500

-1000

-500

0

500

1000

1500

Prism 2 Normal Rotation Angle (degrees)

Z
er

n
ik

e 
S

ta
n

d
ar

d
 C

o
ef

fi
ci

en
ts

 (
-)

 

 

Tip

Tilt

(a)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

-8

-6

-4

-2

0

2

4

6

8

10

Prism 2 Normal Rotation Angle (arcminutes)

Z
er

n
ik

e 
S

ta
n

d
ar

d
 C

o
ef

fi
ci

en
ts

 (
-)

 

 

Tip

Tilt

(b)

Figure 4.6. Simulated standard Zernikes coefficients through the one-inch diagnostic
assembly at 0.635 µm as they change with a rotation of the second prism about the axis
normal to the angled surfaces. (a) Large Normal Rotation (b) Small Normal Rotation. The
combination of standard Zernike coefficients is unique for the isolated rotation. Similarity
of (b) to Figure 4.5(b) indicates that the Zernike standard coefficients are not unique for
any given combination of prism rotations.
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4.2 Autocollimator Diagnostics Investigation

The current optical design for the CTEx prism is the assembly of four prisms shown

in Figure 4.7, the two outer prisms are H-LAK12 glass and two inner prisms are ZF10

glass. For the autocollimator diagnostics investigation, two uncoated 25 mm H-ZF10 test

pieces were oriented as shown in Figure 4.1. Recall that optical interfaces affect the light

path by both reflection and refraction as discussed in Section 3.1 and though the light is

predominantly refracted through a given prism surface, a small amount is reflected and

detectable by an autocollimator under certain conditions. Especially important to the ratio

of reflection to transmission is the use of antireflective coatings. For an uncoated surface,

as was the case with the 25 mm H-ZF10 prism surfaces, the reflected energy is

approximately 4% of the incident energy [25]. The observability of the reflection is tested

in Section 4.2.3.

Hawks.CDGM.zmx

Configuration 1 of 1

3D Layout

3/3/2013

X

Y

Z

Figure 4.7. The Hawks four-prism DVP optical design. The outer two prisms are CDGM
H-LAK12 glass and the inner two prisms are CDGM ZF10 glass. The number of prisms,
symmetry of prisms, prism wedge angle, and prism material are set by the optical design.
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4.2.1 The 1-Inch-Prism Diagnostic Assembly. The 1-inch-prism diagnostic

assembly is shown in Figure 4.8 and consists of two Thorlabs PRM1Z8 rotation stages

aligned with the optical axis, a CR1-Z7 rotation stage to rotate the second prism about the

nominal Y-direction, a PR01 rotation stage for coarse adjustment. The rotation stages are

positioned using coarse translation stages and height-adjustable posts. The PRM1Z8 and

CR1-Z7 rotation stages are motorized and controlled manually with servo-controller

buttons, or through a computer interface. Using MATLAB and ActiveX Control, the

rotation adjustments were automated. The PRM1Z8 rotation stages are capable of 360◦

rotation with a minimum step size of 25 arc seconds [50]. The CR1-Z7 rotation stages are

capable of 360◦ rotation and a minimum step size of 2.19 arc seconds [51].

PRM1Z8 Rotation Stage (2ea)

SM1P1 Optic Mount (2ea)

CR1-Z7 Rotation Stage

PR01 Rotation Stage

SM1P1 Optic Mount (2ea)

Figure 4.8. 1-inch-diagnostic assembly test setup.

4.2.2 The Davidson Optronics D-275 Autocollimator. Operation of the D-275 is

similar to the general operation of an autocollimator described in Section 3.7 with the
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addition of lens and reticle components for the illumination source as well as the

eyepiece [40]. For testing purposes, a charge coupled device (CCD) camera was placed at

the eyepiece of the D-275, as shown in Figure 4.11, to display the results on a monitor as

well as record image data for analysis. To measure the angle of the incoming light, a

reticle is placed at the focal point of the illumination source (the object reticle) as shown

in Figure 4.9 creating the pattern as shown in Figure 4.10. The concentric rings in the

object reticle are precisely spaced so that the projected rays from each ring are separated

by increments of exactly two arc minutes, measuring a one arc minute angle deviation

from normal of a reflective surface. The angular field-of-view (FOV) observed at the

eyepiece reticle forms an image at the detector plane. An off-axis field angle focuses on a

different portion of the eyepiece reticle. The translated concentric rings are viewed along

with fixed crosshairs identifying the center of the on-axis light ray. By observing which

concentric ring of the eyepiece reticle pattern the center of the crosshairs points to, the

field angle relative to the optical axis is obtained. The absolute orientation of this field

angle is not resolved using the eyepiece reticle pattern, only the angle of separation

between the incoming rays and the optical axis of the outgoing beam. It is noted that the

documentation for the D-275 autocollimator verifies that an incoming field angle of zero

degrees is measured with an accuracy of two arc seconds if the eyepiece reticle pattern is

aligned with the center dot at the intersection of the reference cross hairs [16].
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Figure 4.9. The Davidson Optronics D-275 autocollimator operation [40]. The object and
eyepiece reticle patterns, shown in Figure 4.10, allow for pictorial observation of input field
angle.

Figure 4.10. The Davidson Optronics D-275 autocollimator object and eyepiece reticle
pattern as seen by the CCD camera through the eyepiece and displayed on a CRT monitor.
The object reticle obscuration creates the transmitted concentric ring pattern and the
eyepiece reticle obscuration makes the cross hairs pattern. Each concentric ring measures
the angle of a flat, reflective surface at intervals of one arc minute (two arc minute input
field angle). With the crosshairs centered on the dot, the light into the scope is parallel to
the optical axis within two arc seconds [16].
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Figure 4.11. The Davidson Optronics D-275 autocollimator (left) operation utilizing a
CCD camera (right) to view results through the eyepiece.

4.2.3 Prism Reflection Investigation Test #1. The arrangement of the optical

components for the first investigation test is shown in Figure 4.12. The first reflection

investigation test determined the observability of the prism front-face reflection with the

D-275. When aligning the optical axis of the D-275 perpendicular to the front surface of

the prism, it was shown that the simultaneous alignment of the optical axis with the axis of

rotation of the prism rotation stage (the P1Z stage) was possible. This was accomplished

by aligning the D-275 with the surface normal and then rotating the P1Z stage. If the

image seen in the D-275 did not change, then the axis of rotation and the normal of the

front surface of the prism were parallel with the optical axis of the D-275. If the pattern of

the D-275 traced a circular path as the P1Z stage rotated, then the prism surface normal

was misaligned with respect to the P1Z stage axis of rotation by an angle measured by the

radius of the path traced out as the prism rotated. The incoming light need not be collinear

with the optical axis to measure its angle relative to the optical axis. To be observed, it is
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only required that a sufficient amount of light enter the autocollimator at an angle that is

within the measurable limits.

D-275 Autocollimator

Rotation Stage with 

25 mm Prism

Figure 4.12. Autocollimator test #1, front face reflection test. The equipment included
one PRM1Z8 rotation stage, one SM1P1, one 25 mm H-ZF10 prism, and one D-275
autocollimator.

The setup for the first test verified that a reflection of a prism surface was resolved by

the D-275 and that normal alignment of the front surface was achieved to within two arc

seconds. Recalling from Section 3.1.1 that light is reflected from any material interface

even if the ratio of the indices of refraction is less than unity, it was necessary to check

that the reflection observed was not the reflection from the back surface of the prism. It

was first verified that the D-275 was aligned with the normal of the first surface by visual

inspection. Next, a Zemax model simulated the ray-trace reflected off of the back prism

surface as shown in Figure 4.13. The model verifies that an on-axis light source reflected

off of the back surface of the 25 mm H-ZF10 prism returns at an angle which is outside of

the autocollimator FOV of 30 arc minutes [16].
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25mm_H-ZF10_TwoPrisms_S2_Reflection.ZMX

Configuration 1 of 5

3D Layout
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Figure 4.13. Zemax model of light reflected off of the second surface of the front prism for
a 0◦ input field angle. The return rays are at an angle outside of the autocollimator FOV. It is
evident, therefore, that the reflected image seen in Figure 4.10 is not from the back surface
of the prism. As the SE version of Zemax did not support non-sequential ray tracing at
the time, the model was built by adding a mirror at the surface under consideration, then
rebuilding each surface on the return through the system. The light is cut off by the front
surface because the angle of incidence of the return rays at the front surface is greater than
the critical angle as discussed in Section 3.2.2.

4.2.4 Prism Reflection Investigation Test #2. For the second reflection

investigation test, one additional 25 mm H-ZF10 prism was added to the assembly shown

in Figure 4.14. The second prism had a Z-axis rotation stage (P2Z) as well as a Y-axis

rotation Stage (P2Y) shown in Figure 4.8. It is noted that an offset of the rotation axis

away from the center of a surface causes a small amount of translation affecting only the

entrance pupil size minimally and need only be addressed when measurements depend on

the entrance pupil size as do Zernike coefficients. When the two prisms were aligned

sufficiently close to the nominal orientation shown in Figure 4.1, a second reflection was

visible with the D-275 as shown in Figure 4.15. It is shown in Figure 4.15 that the object

reticle pattern formed by the first prism front surface reflection is centered on the

crosshairs and the object reticle pattern formed by the second prism back surface
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reflection is offset by approximately eight arc seconds, determined by counting the rings

of the object reticle pattern. To verify the origin of the secondary reflection, a Zemax

model was built for ray-trace simulation as in Test #1. In the first autocollimator test, it

was determined that the back surface of the first prism did not reflect light back to the

D-275 and the same was true for the second test. It was also assumed, in the second test,

that any double reflections would result in a degradation of signal intensity so as to

become unobservable. For the second autocollimator test, it was then only possible that

the secondary reflection observed came from the front or back surface of the second

prism. Figure 4.16 shows the ray-trace for the reflected signal off of the front surface of

the second prism. The reflected rays diverge away from the optical axis even before they

intersect the front surface of the first prism and are clearly not the source of the secondary

reflection observed. The ray-trace for reflection off of the back surface of the second prism

is shown in Figure 4.17 with an input field angle of 10 arc minutes to illustrate that the

reflected rays return to the D-275. It was concluded, therefore, that the second reflection

observed was from light reflected off of the back surface of the second prism.

The autocollimator diagnostics investigation showed that sub-arc-minute alignment

of the front and back surfaces was achieved with the D-275 autocollimator. However, it is

noted that, even though the back surface was observed in the D-275, its alignment was

contingent upon the two angled surfaces being exactly parallel. Though the reflection

from two surfaces is identifiable, the determination of the system affecting the angle of the

second reflection still requires a nonlinear ray-trace. Instead of evaluating the nonlinear

system, the use of a linear approximation of the system is proposed. The following section

evaluates the accuracy of the JPL linear approximation method applied to model the

two-prism system.
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D-275 Autocollimator

Rotation Stages with 

25 mm Prisms (2ea)

Figure 4.14. Autocollimator test #2, secondary reflection test. The equipment included the
1-inch-prism diagnostic assembly shown in Figure 4.8, two 25 mm H-ZF10 prisms, and
one D-275 autocollimator.

4.3 Linearized Approximation of the Two-Prism Assembly

As discussed in Section 2.6, the performance of a CTI system is strongly correlated

with the knowledge of the prism dispersion characteristics. Direct measurement of the

prism output has been used previously at AFIT to characterize the prism dispersion, but

the results of these methods were proven inadequate as discussed in Section 2.6.

Completely defining the each prism assembly surface orientation to an established

accuracy was proposed as a means to accurately characterize the prism assembly output

dispersion angle. For this linearization investigation, the two-prism H-ZF10 assembly was

analyzed. The precision of the orientation specification for each optical surface was

assumed to be limited by the surface flatness tolerances specified as 100 nm RMS which

is close to the surface flatness specification of the 25 mm H-ZF10 test pieces (λ/4).

Considering a 25 mm diameter prism with assumed-flat surfaces, the goal for absolute
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Figure 4.15. Picture taken through the eyepiece of the D-275 autocollimator. The
object reticle pattern reflected by the first prism front surface reflection is centered on the
crosshairs and the object reticle pattern reflected by the second prism back surface reflection
is offset by approximately eight arc seconds, determined by counting the rings of the object
reticle pattern.

surface orientation knowledge was then the angle causing a 100 nm difference across a flat

surface, about one arc second.

The approach to extract surface orientation knowledge was developed by first

considering the two-prism assembly as a linear input/output system. The mathematics

necessary for system analysis is greatly simplified when working with a linear system,

thereby promoting the identification of surface orientation system parameters in this case.

To approximate the inherently-nonlinear, two-prism optical system to a linear system, the

JPL perturbation method outlined in Section 3.6 was applied. The linear system math

model was built using MATLAB.
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Figure 4.16. Zemax model of light reflected off of the front surface of the second prism.

25mm_H-ZF10_TwoPrisms_S4_Reflection.zmx

Configuration 1 of 5

3D Layout

2/15/2013

X

Y

Z

Figure 4.17. Zemax model of light reflected off of the back surface of the second prism
with input field angle of 10 arc minutes to show the reflected ray.

4.3.1 Linearized Perturbation Model. The first step in developing the linearized

perturbation model was to define the nominal beam train as an exact ray-trace through the

prism assembly as shown in blue in Figure 4.18. The coordinate-free vectorial refraction

equation, Equation (3.10), was applied sequentially at each surface of the 25 mm H-ZF10

prism assembly in the nominal configuration of Figure 4.1. The input field angle, which
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was somewhat arbitrary, was considered to be parallel with the optical axis. The output

ray direction vector was then defined by the surface geometry and material properties. The

refracted ray direction vector after each surface was recorded for use in calculating the

sensitivities.

Figure 4.18. The first step in developing the linearized perturbation model was to define
the nominal beam train as an exact ray-trace through the prism assembly. The coordinate-
free vectorial refraction equation, Equation (3.10), was applied sequentially at each surface
of the 25 mm H-ZF10 prism assembly in the nominal configuration to define the nominal
beam train shown in two dimensions.

After the nominal ray-trace was completed, the second step was to compute the

sensitivity terms for each surface. This was accomplished by application of

Equations (3.13) and (3.15) at each surface using the refracted ray unitary direction

vectors calculated in the first step. A sensitivity term was required for each possible

perturbation shown in red in Figure 4.18 and corresponding to the state vector of

Equation (4.1).

The final step in defining the linearized perturbation model was to build the system

model using the sensitivities and the perturbations. The result was the linear system of
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Equation (4.1) with the output as the direction perturbation vector of the refracted ray

leaving the back surface of the second prism. An example illustration of the application of

Equation (4.1) is shown in Figure 4.19 where, for a rotation perturbation of surface one

only, the change in the fourth refracted ray unitary direction vector is approximated.

Notice that the perturbation effect is cascaded through each subsequent surface.

 dr̂4


3x1

=


[
∂r̂4

∂r̂0

] [
∂r̂4

∂~θ1

] [
∂r̂4

∂~θ2

] [
∂r̂4

∂~θ3

] [
∂r̂4

∂~θ4

] 
3x15



dr̂0

~θ1

~θ2

~θ3

~θ4


15x1

(4.1)

dr̂4 ≡ output ray direction perturbation vector

dr̂0 ≡ input ray direction perturbation vector

~θ j ≡ angular perturbation of surface j[
∂r̂4

∂X

]
≡ output ray perturbation vector sensitivity to perturbation X

4.3.2 Analysis of the Linear model. The linear perturbation model of

Equation (4.1) was an approximation of the true, nonlinear system and only valid for

small perturbations from the exact ray-trace of the nominal case. Therefore, evaluation

was necessary to determine the range of validity of the linear approximation. To perform

this evaluation, the output unitary direction vector calculated by the linear model was

compared with that from a simulated ray-race through the perturbed model in Zemax.

Simply comparing to an exact ray-trace of the perturbed system accomplishes the same

task, but allows error from equations common to both the linear model and the exact
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Figure 4.19. An example illustration of the application of Equation (4.1) where, for a
rotation perturbation of surface one only, the change in the fourth refracted ray unitary
direction vector is approximated. Notice that the perturbation effect is cascaded through
each subsequent surface.

ray-trace procedure to be overlooked. Because the goal was to define the orientation of

each surface to within one arc second, the threshold of the linear estimation error was also

one arc second and dictated the maximum perturbation state. To determine the maximum

perturbation state, a significant perturbation was simulated as shown in Figure 4.20. The

error of the linear approximation of the output angle perturbation, dr̂4, was plotted against

the perturbation angle, ~θ2 = −~θ3, as shown in Figure 4.21. The error was defined as the

angular difference between the linear model approximation and the nonlinear Zemax

calculation of the output ray direction vector. Figure 4.21 reveals that an increase in

perturbation angle causes an increase in the error of the prediction made by the linear

model. For the perturbation modeled, the linear approximation maintained an accuracy

less than one arc second for perturbation angles less than six arc minutes.

For a fixed system, the perturbation angle is analogous to an uncertainty in surface

orientation. Based on simulation data and an assumed worst-case scenario, it was

77



S1 S2
Y

S3
S4

Z

Figure 4.20. The linear model approximation was tested by perturbing the second and third
surfaces as shown to simulate a perturbation combination that would have a significant
effect on the output ray angle. Comparing the error in the linear approximation vs the
perturbation angle indicates the range for which the linear approximation is valid.

concluded that the linear model predicted the prism surface orientations to within one arc

second for all surface orientation uncertainties less than five arc minutes. From the results

of the autocollimator tests in Section 4.2, prism surface angles were observed to

sub-arc-minute precision with commercial optical diagnostic equipment, well below the

assumed threshold of five arc minutes.

It is important to note that the valid range for the approximation as described above is

sensitive to the nominal orientations of the surfaces. Recalling the analysis of the

small-angle approximation in Section 3.5.1, as the nominal orientation of the refractive

surface increases, the accuracy of the approximation decreases. As the nominal

orientations were fixed for this investigation, no further verification was necessary.

4.4 System Identification

The preceding section reviewed the development of a linear system model to

approximate the output ray unitary direction perturbation vector, dr̂4. The forward

calculation of dr̂4 does not assist in defining the orientation of each surface. However, the
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Angular Error: Linearized Angle Estimate vs Zemax Output Angle
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Figure 4.21. Valid range of perturbation model for independent rotation of surface two
about the positive X-axis and surface three about the negative X-axis. The plot shows that
estimation was accurate to within one arc second for perturbation angles less than 6 arc
minutes. The error is the difference between the linearized perturbation approximation and
the exact ray-trace through the perturbed system.

linear system verified by forward calculation is also valid for system identification. For

system identificaton, the perturbation angle of each surface orientation is instead the

uncertainty in surface orientation. It was shown that the input ray direction vector and the

output ray direction vector are able to be measured in Section 4.2.3 and Section 4.1,

respectively, the linear systems theory applied to Equation (4.1) thus allowing for the

determination of the orientation of each surface.

4.4.1 Model Reduction. To simplify the system of equations, the number of

unknowns in the linear model was reduced by applying careful assumptions and

observations. By considering only an input field parallel to the optic axis, perturbations of

the input ray unitary direction perturbation vector, dr̂0, were not considered and, thus,

eliminated. In Section 4.2, the orientation of the first prism’s front surface was measured
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by observing the reflection off of the surface and was aligned perpendicular to the optic

axis, which eliminated θ1 and reduced the number of unknown surface orientations to

three. It was assumed that the angle between the front and back surfaces of the prism were

known and because the prism is a rigid structure, the only degree of freedom for the back

surface of the first prism was the rotation about the optical axis, {θ2}Z. Lastly, because the

second prism is also a rigid structure, the rotation perturbation angle of the front surface of

the second prism is the same as that for the back surface of the second prism,

Equation (4.2). Applying these as constraints on the system, terms of the linear system

model were eliminated, resulting in the reduced linear model of Equation (4.3). This

system is underdetermined as there are four variables and three equations. To identify the

surface orientations, the number of equations and unknowns should be the same. To

remedy this imbalance an independent measurement is added to the system.

~θ34 = ~θ3 = ~θ4 (4.2)

 dr̂4


3x1

=


{
∂r̂4

∂~θ2

}
3

[
∂r̂4

∂~θ3

+
∂r̂4

∂~θ4

] 
3x4


θZ2{
~θ34

}


4x1

(4.3)

4.4.2 The Second Reflection Applied. In Section 4.2.4, it was revealed that a

reflection from the back surface of the second prism could be observed. The angle of this

reflection is an extrapolation of the refracted ray leaving the third surface of the prism as

shown in Figure 4.17. This is true because no additional information is added to the

system for the reflected ray-trace and the solution vector remains the same. This

relationship allowed for the simplification of the verification analysis presented here by

assuming that the direction vector of the refracted ray leaving the third surface could be
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measured. This provided another set of linear equations with the same solution vector as

Equation (4.4).

[dr̂3]3x1 =

[ {
∂r̂3

∂~θ2

}
3

[
∂r̂3

∂~θ3

] ]
3x4


θZ2{
~θ34

}


4x1

(4.4)

Combining Equations (4.3) and (4.4) results in Equation (4.5). Because the state

vector is the same, the additional measurement of the third surface refracted ray direction

vector adds three equations and no more unknowns to the system. With this addition, the

system is overdetermined as has more equations than variables.


dr̂3

dr̂4


6x1
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∂r̂3
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}
3
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∂~θ3

+
∂r̂4
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θZ2

{
~θ34

}


4x1

(4.5)

4.5 Direct-Vision Prism Hardware Design Methodology

The current prism motor design in the CTEx system is shown in Figure 4.22. The

motor design is such that the optical axis, aligned with the rotation axis, runs through an

open space to be occupied by the prism. Given the cylindrical nature of shafts, it is

reasonable to assume a cylindrical design for the DVP assembly as shown in Figure 4.23.

To position the DVP inside of the smooth-bore motor shaft, an intermediate prism sleeve

is added as identified in Figure 4.24.

4.5.1 Direct-Vision Prism Assembly Design Methodology. The DVP nominal

optical design is considered to be established for this research. The trade space of optical

properties for the DVP is controlled mainly by the material and the wedge angle selection

Beyond these relatively minor geometric definitions, the mechanical design of the DVP
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Figure 4.22. Model of the prism motor assembly. The shaft has a cylindrical opening
aligned with the axis of rotation where the DVP is to be inserted and then aligned with the
system optical axis.

Figure 4.23. The physical Hawks DVP assembly mechanical design is 72 mm in diameter.

for CTEx is predominantly dictated by the mechanical design of the motor intended to

spin the prism during operation.
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Figure 4.24. The design for a prism sleeve assembly.

4.5.2 Direct-Vision Prism Sleeve Assembly Design Methodology. The preliminary

engineering drawing of the prism sleeve assembly is supplied in Appendix section B.1.

An intermediate prism sleeve offers the advantage of making the DVP removable without

requiring removal of the motor shaft from the motor. A critical aspect of the DVP is the

precision of the optical surfaces and the diameter of the clear aperture. As indicated by

optical fabrication contractors, the feasibility of a clear aperture of 50 mm increases with

DVP diameter for the range of interest. It is, therefore advantageous to design the prism

sleeve with a small cylinder wall thickness dimension to allow for a larger diameter DVP.

To mount the DVP in the sleeve, a combination of a mechanical alignment assembly

and a chemical adhesive procedure are proposed. It is desired that the prism be

permanently bonded in the DVP sleeve using adhesive. Before permanently adhering the
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DVP to the sleeve, the design allows for the prism to be mechanically secured in the

sleeve. To the right of the DVP in Figure 4.24, the wave-spring rests against the retaining

ring with a washer to distribute the force evenly on the face of the DVP. To the left of the

DVP, a centering tool is pressed against the DVP with a pressure plate tightened with

machine screws through the threads shown. With the DVP held in place, the alignment of

the DVP is verified in the complete assembly. If the prism is misaligned, the pressure plate

is removed to make adjustments as necessary. After the DVP is aligned within specified

tolerances, an adhesive is applied to permanently fix the prism in place.

4.6 Sensitivity Investigation of the Hawks DVP

To investigate the effects of small misalignments of the Hawks DVP, Zemax

simulation was used. Figure 4.25 shows the Hawks DVP in the nominal configuration.

Figure 4.26 shows the spot diagram at the detector plane for the nominal alignment of the

Hawks DVP and the spot diagram at the detector plane for the Hawks DVP when the first

prism is rotated 0.1◦ about the Y-axis. The effect is a transverse offset that is

wavelength-dependent. Assuming a lens three focal length in the CTEx system

(Figure 2.3) of 115 mm and a pixel pitch of 20 µm, the approximately 120 µm transverse

offset equates to a planar offset of six pixels at the detector plane. As referred to in

Section 2.6, Bostick showed that a two-pixel offset error degrades the reconstruction

significantly [12]. The simulation establishes that a relatively small misalignment of even

one of the prisms in the Hawks DVP has detrimental impact on system performance.
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Figure 4.25. Optical model of the Hawks DVP assembly.

(a) (b)

Figure 4.26. Spot diagrams of wavelengths 0.40 µm, 0.55 µm, and 0.70 µm at the image
plane for (a) the nominal alignment of the Hawks DVP and (b) the Hawks DVP with the first
prism rotated 0.1◦ about the Y-axis as shown. The angle of the output ray is significantly
affected by small misalignments of the DVP and the change is wavelength-dependent.

4.7 Conclusion

The investigation into the characterization and design of a DVP resulted in the

mathematics and observations necessary to precisely define a DVP after it is fabricated

and possibly to aide in the alignment of the prism components.
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5. Conclusions and Recommendations

The Air Force Institute of Technology (AFIT) Chromotomography

Experiment (CTEx) is an effort to demonstrate chromotomographic imaging (CTI)

technology on a space-based platform. The proposed CTEx instrument has as its

chromatic dispersion element a direct-vision prism (DVP) that is made to rotate in order to

achieve multiple projection angles. The primary advantage of CTI over alternative

imaging technologies is its capability for spectroscopy over a wide and diverse

field-of-view (FOV) with high temporal resolution. Successful demonstration of CTI

using prototype CTEx instruments has extracted spatially- and spectrally-resolved image

data in the visible spectrum. The prototype CTEx instruments have yet been unable to

demonstrate the CTI capability for temporal resolution, though attempts have been made.

It was determined by analysis that the main obstacle prohibiting successful demonstration

of temporal capabilities is the degradation in optical performance as a result of mechanical

misalignments. It was confirmed by analysis in Section 4.6, that small mechanical

misalignments of the DVP assembly contribute debilitating error to the reconstructed

images. Past efforts in DVP characterization implementing modified mechanical

measurement techniques have proven incapable of DVP characterization to a precision

that enables the reconstruction algorithm to reliably reconstruct spectrally-continuous

image data. Demonstrating reconstruction of a spectrally-continuous scene is the next step

in achieving the desired temporal resolution.

The research reported by this thesis was motivated by the need to build a better DVP

and characterize the as-built configuration of an assembled DVP. Given this objective, the

natural inclination was to begin testing fabrication methods and establish techniques to

produce precise alignment. It was soon realized that to establish tolerances for alignment

fixtures and quantify the performance of new fabrication techniques, a method for precise
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characterization of a prism assembly had to be established. As a result of the investigation,

methods for DVP characterization were developed.

5.1 DVP Characterization Investigation Conclusions

The DVP characterization investigation incorporated analysis and testing to propose

and validate measurement methods and data processing algorithms. The specific

investigations are reviewed in this section and reveal a natural progression of conclusions.

5.1.1 Misalignment Uniqueness Investigation Results. In Section 4.1 the

uniqueness of the output ray angles resulting from prism misalignments was investigated.

Zemax was used to simulate the effects of prism misalignments in a two-prism system and

the output ray angles were represented by the Zernike coefficients extracted from the

simulation. It was shown in Section 3.8.2 that a unique combination of Zernike

coefficients indicated a unique output ray angle. By inspection of Figures 4.3 through 4.6

it is evident that the same pair of coefficient values does not occur twice within the range

of rotation angles considered for each misalignment. However, the data was obtained for

independent rotations only. Data sets for all possible misalignments considering arbitrary

rotations are prohibitively large and there are multiple solutions for any given combination

of Zernike coefficients. As a complete Zernike coefficients data set had limited application

and usefulness, it was concluded that a more deterministic approach to DVP misalignment

characterization was required.

5.1.2 Autocollimator Diagnostics Investigation Results. In Section 4.2 approaches

to prism system alignment techniques were investigated. Though the D-275

autocollimator did not have the capability to completely define the alignment, it allowed

for a more tangible investigation than did an interferometer. Testing with the

autocollimator achieved partial alignment by observing reflected light from the prism
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surfaces and thereby established the reflection observation as a viable diagnostic tool for

the partial alignment and characterization of a prism assembly.

5.1.3 Linearized Approximation Results. In Section 4.3, the output ray angle to a

given input perturbation calculated using the linear approximation model was compared to

Zemax simulation results of the same perturbed state. It was concluded that the linear

approximation of the 25 mm H-ZF10 prisms with 25◦ wedge angles were accurate to

within one arc second as long as the perturbation of each surface less than five arc

minutes. A linear system model with a verified accuracy range allows for prism

characterization utilizing the tools of linear analysis.

5.1.4 System Identification. In Section 4.4, identification of the two-prism system

surface orientations using linear analysis of the perturbation model was investigated. The

linear system model of Section 4.3 was verified as accurate to within one arc second for

all surface angular perturbation less than five arc minutes. From the perspective of system

identification, this is equivalent to an accurate definition of angular orientation to within

one arc second for a starting uncertainty of less than five arc minutes.

After performing system reduction by applying observations and assumptions as

constraints to the two-prism system, the system of equations was undetermined with only

a measurement of the output angle, Equation (4.3). Adding to the system a measurement

of the input angle resulted in the overdetermined model of Equation (4.5). More

investigation is required to complete a method for system identification. With the verified

linear system, it is assumed that this is possible.

5.2 Tolerance Specification

In Section 4.3, a linear approximation of a two-prism assembly was developed and

validated. In Section 4.4, a reduced model for the linear approximation was presented in

preparation for system identification. Based on these findings, it is assumed that the
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orientation of each surface of DVP is able to be measured to within one arc second. With

this supported assumption, the fabrication tolerances of the DVP are not constrained by

characterization capabilities. The tolerance specifications are only dependent upon the

effect that deviations from the nominal design have on performance parameters. For

example, a deviation of a surface angle may cause the dispersion angle to be less than the

design, thereby reducing the spectral resolution of the system. The impact of deviations

from the nominal design simulated in Zemax determine the acceptable limits. It is

assumed that the acceptable limits imposed by performance parameters are within

readily-achieved fabrication tolerances.

5.3 Future Work

A new method of prism characterization has been proposed, but the method of

system identification is not fully defined. Further investigation into the accuracy of the

pseudoinverse applied to the reduced system model of Equation (4.5) needs to be

analyzed. New approaches and additional measurements may be proposed as necessary.

Additionally the investigation should consider iterating with system identification to

enhance the robustness of the application.

To make use of a method for system identification, it is necessary to enhance the

linear model, Equation (4.5), to incorporate real interferometric measurements. The exact

method is determined by the measurement techniques. If the measurements of reflections

through the prism are to be utilized, then the reflection perturbations from [42] must be

used and the ray traced back through each surface.

The method of system characterization proposed allows for the tolerances of the

Hawks DVP to be specified. To do this, measures of performance must be specified for the

Hawks DVP which promote system requirements of CTEx. Worst-case scenario

performance is associated with fabrication tolerances by modeling misalignments of the

four prisms in Zemax. These tolerances incorporated into drawings enable fabrication of a
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DVP. If the tolerances are not reasonable for current industrial capabilities, then

investigation into alignment and bonding techniques must be investigated.
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Appendix A. Matlab Code

A.1 Zernike Simulation

1 clear all; close all; clc;
2 global ZemaxDDEChannel ZemaxDDETimeout
3 % Tip and Tilt as a function of rotations
4 % Initialize Zemax com
5 zDDEInit
6 clear Zern
7 % run the tests
8 RotNormLarge()
9 RotNormSmall()

10 RotXSmall()
11 RotXMed()
12 RotYSmall()
13 RotYMed()
14 RotZSmall()
15 RotZLarge()
16 zDDEClose

1 function [ ] = RotNormLarge( )
2 %ROTNORMLARGE Rotate second prism about the axis normal to the angled surfaces
3 % This function collects zernike polynomials from ZEMAX for prism
4 % misalignment in which the second prism is simply rotated about the
5 % normal axis
6 clear Zern
7 % Get the current zemax model
8 zGetRefresh;
9

10 %% One Full Rotation
11 % Generate the rotation angles of interest
12 angles = linspace(−180,180,60); % one full rotation at 6 deg steps
13 for k = 1:numel(angles)
14 % Set the normal angle
15 zSetSurfaceParameter(8,5,angles(k));
16 % Push data to the zemax model
17 zPushLens(5);
18 % Get the new model from zemax
19 zGetRefresh;
20 % Save the zernike datato the a folder in the current directory
21 current = pwd;
22 iteration = num2str(k);
23 % get and save the Zernike data window
24 saveZernAs = strcat(current,'\ZernikeData\NormRot Zernikes',iteration,'.txt');
25 zGetTextFile(saveZernAs, 'Zst','' , 0);
26 % Read the Zernike data
27 Zern(k,:) = zReadZernikes(saveZernAs);
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28 % get and save the transformation matrix of the front and back surface
29 % of prism #2
30 % saveTM2 = strcat(current,'\Transformation Matrices\NormRot TM3',iteration,'.txt');
31 end
32 zSetSurfaceParameter(8,5,0); % reset to zero
33 zPushLens(5);
34 Zern = Zern';
35

36

37 % Plot the data of interest
38 Xlabel = sprintf('Prism 2 Normal Rotation Angle (degrees)');
39 createfigure LargeRotationZernikes(angles,Zern(2:3,:),Xlabel);
40

41

42 % Set up default figure properties
43 % set(0, 'DefaultAxesFontSize', 16)
44 % set(0,'defaultlinelinewidth',3)
45 % figure(1);
46 % % Here I plot zernikes 2 − 3
47 % plot(angles,Zern(2:3,:)')
48 % legend('Tip','Tilt')
49 % title('Rotation about Normal Axis')
50 % xlabel('Input Angle (degrees)')
51 % axis([−180 180 −2500 1500])
52 % ylabel('Zernike Standard Coefficients')
53

54 end
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A.2 Linear Model Verification

1 % Tim Coon
2 % This script will run an automatic test of the four surface model and
3 % record the results. Both the Zemax and MATLAB model output angles are
4 % calculated and compared. The perturbation for this script is a rotation
5 % of the second surface about the X−axis and a rotation of the third
6 % surface about the −X axis. Comparison of the results from these models
7 % with the results from Zemax models will confirm the range for which this
8 % linear approximation is valid.
9 %

10 % Use only with 25mm H−ZF10 4Surface PertCheck.zmx
11

12 % clear all; close all; clc;
13

14 %% Initialize MZDDE
15

16 zDDEInit
17

18 %% Nominal System Parameters
19

20 % index of refraction for each surface
21 n HZF10 = 1.688930;
22 n0 = 1;
23 n1 = n HZF10;
24 n2 = 1;
25 n3 = n HZF10;
26 n4 = 1;
27 n = [n0 n1 n2 n3 n4];
28

29 % nominal input field angle is specified as a unitary direction vector
30 f angle = 0/60; % 1/60 deg = 1 arcmin
31 Ry = [ cosd(f angle) 0 sind(f angle);
32 0 1 0 ;
33 −sind(f angle) 0 cosd(f angle)];
34

35 rn0 = Ry*[0; 0; 1];
36

37 % nominal surface orientaions defined by the normal vectors
38 w angle = 155; % (deg) nominal orientation angle about x−axis
39 N1 = [0; 0; −1];
40 N2 = [0; sind(w angle); cosd(w angle)];
41 N3 = [0; sind(w angle); cosd(w angle)];
42 N4 = [0; 0; −1];
43 N = [N1 N2 N3 N4];
44

45 %% Four−Surface System Model
46

47 [C4 C4r rn4] = fourSurfModel(n,N,rn0);
48

49 %% Calculate the output ray direction cosines for various perturbations
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50 stepsize = 0.001; % (deg)
51 t = 0:stepsize:0.25;
52 numsteps = length(t);
53 rp4 = zeros(3,numsteps);
54 r4 = rp4;
55

56 for ctr = 1:1:numsteps
57 rotx = (ctr−1)*stepsize; % (deg)
58 dr0 = [0; 0; 0];
59 Th1 = [0; 0; 0];
60 Th2 = [sind(rotx); 0; 0]; % rotate surface 2 about the x−axis
61 Th3 = [sind(−rotx); 0; 0];
62 Th4 = [0; 0; 0];
63 % State Vector
64 x = [dr0; Th1; Th2; Th3; Th4];
65 % Calculate direction cosines of the output ray difference vector
66 dr4 = C4*x;
67 % Calculate the direction cosines of the perturbed output ray
68 rp4(:,ctr) = rn4 + dr4;
69 % Use Zemax with the same input perturbation(s)
70 r4(:,ctr) = RotS2X S3X(rotx, ctr);
71 end
72

73 zDDEClose
74

75 %% Display the results
76

77 % straight direction cosine comparison
78 T1 = sprintf('Direction Cosines for 25%c H−ZF10 Prisms for Surface 2 Perturbation About X−axis',char(176));
79 LZ = sprintf('Zemax Model');
80 LM = sprintf('Linear Model');
81 % figure(1)
82 % suptitle(T1)
83 % subplot(311)
84 % plot(t,r4(1,:),t,rp4(1,:))
85 % ylabel('\alpha')
86 % legend(LZ,LM)
87 % subplot(312)
88 % plot(t,r4(2,:),t,rp4(2,:))
89 % ylabel('\beta')
90 % subplot(313)
91 % plot(t,r4(3,:),t,rp4(3,:))
92 % ylabel('\gamma');xlabel('S2X Perturbation Angle')
93

94 % calculate the angle between the Zemax output of the perturbed ray and the
95 % nominal ray and compare with the angle between the MATLAB output and the
96 % nominal ray.
97

98 % Zemax r4 vs perturbation angle
99 for ctr = 1:1:numsteps

100 alphaZ(ctr) = asind(norm(cross(r4(:,ctr),rn4)));
101 end
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102

103 % MATLAB rp4 vs perturbation angle
104 for ctr = 1:1:numsteps
105 alphaM(ctr) = asind(norm(cross(rp4(:,ctr),rn4)));
106 end
107

108 % T2 = sprintf('Angle Between Nominal Ray and Perturbed Ray Vs Perturbation Angle');
109 % figure(2)
110 % suptitle(T2)
111 % plot(t*60,alphaZ*60,t*60,alphaM*60)
112 % legend(LZ,LM)
113 % ylabel('\Delta\phi (arcmin)');xlabel('S2X Perturbation Angle (arcmin)')
114

115 % calculate the error of the angle predicted by the MATLAB model
116 for ctr = 1:1:numsteps
117 alphaMZ(ctr) = asind(norm(cross(r4(:,ctr),rp4(:,ctr))));
118 Zangle(ctr) = asind(norm(cross(r4(:,ctr),[0 0 1])));
119 Perror(ctr) = alphaMZ(ctr)/Zangle(ctr);
120 end
121

122 % T3 = sprintf('Percent Error of Linearized Angle Estimate Normalized to Zemax Output Angle');
123 % figure(3)
124 % suptitle(T3)
125 % plot(t*60,Perror)
126 % ylabel('Percent Error');xlabel('S2X Perturbation Angle (arcmin)')
127

128 T4 = sprintf('Angular Error: Linearized Angle Estimate vs Zemax Output Angle');
129 figure(4)
130 suptitle(T4)
131 plot(t*60,alphaMZ*3600)
132 ylabel('Angular Error \Delta\phi (arcseconds)');
133 xlabel('S2X & −S3X Perturbation Angle (arcmin)');

1 function [ C4, Cr4, rn4 ] = fourSurfModel( n, N, rn0 )
2 %FOURSURFMODEL Generates the C matrix defining the linear system model
3

4 % Generates the C matrix defining the linear system model for the nominal
5 % case described by the unitary normal vectors of each of the four
6 % surfaces. The unitary vectors are given for the face looking backwards
7 % along the optical axis.
8 % Detailed explanation goes here
9

10 % Tim Coon
11 % perturbation theory applied to ray tracing
12

13 %% System Parameters
14

15 % n HZF10 = 1.688930;
16 % n0 = 1;
17 % n1 = n HZF10;
18 % n2 = 1;
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19 % n3 = n HZF10;
20 % n4 = 1;
21 n0 = n(1);
22 n1 = n(2);
23 n2 = n(3);
24 n3 = n(4);
25 n4 = n(5);
26

27 % rn0 = [0; 0; 1];
28

29 % angle = 155; % (deg) nominal orientation angle along x−axis
30 % N1 = [0; 0; −1];
31 % N2 = [0; sind(angle); cosd(angle)];
32 % N3 = [0; sind(angle); cosd(angle)];
33 % N4 = [0; 0; −1];
34 N1 = N(:,1);
35 N2 = N(:,2);
36 N3 = N(:,3);
37 N4 = N(:,4);
38

39 %% Trace the nominal ray and record the unitary direction vectors
40

41 rn1 = vectorSnell(n0,n1,rn0,N1);
42 rn2 = vectorSnell(n1,n2,rn1,N2);
43 rn3 = vectorSnell(n2,n3,rn2,N3);
44 rn4 = vectorSnell(n3,n4,rn3,N4);
45

46 %% Calculate all of the perturbation sensitivity terms
47

48 [ dr1 dr0, dr1 dTh1 ] = surfaceSensitivities(n0,n1,rn0,N1);
49 [ dr2 dr1, dr2 dTh2 ] = surfaceSensitivities(n1,n2,rn1,N2);
50 [ dr3 dr2, dr3 dTh3 ] = surfaceSensitivities(n2,n3,rn2,N3);
51 [ dr4 dr3, dr4 dTh4 ] = surfaceSensitivities(n3,n4,rn3,N4);
52

53 %% Build the system model
54

55 % state−state sensitivities across all four surfaces
56 dr4 dr0 = dr4 dr3*dr3 dr2*dr2 dr1*dr1 dr0;
57

58 % state−element sensitivities across all surfaces after perturbed surface
59 dr4 dTh1 = dr4 dr3*dr3 dr2*dr2 dr1*dr1 dTh1;
60 dr4 dTh2 = dr4 dr3*dr3 dr2*dr2 dTh2;
61 dr4 dTh3 = dr4 dr3*dr3 dTh3;
62

63 % system linear perturbation model matrix
64 C4 = [dr4 dr0 dr4 dTh1 dr4 dTh2 dr4 dTh3 dr4 dTh4]; % chief ray pert
65

66 % the reduced four surface linear model is accomplished in three steps
67

68 % Step 1 − input ray direction perturbation vector is zero
69 % Step 2 − surface 1 rotation perturbation vector is zero
70 % Step 3 − surface 2 rotation pertubation in X&Y is zero
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71 % Step 4 − surface 3 & 4 have the same rotation perturbation vector
72

73 % the reduced state vector is:
74 % x = [Th2 Z; Th3 X; Th3 Y; Th3 Z];
75

76 % the reduced system matrix is:
77 Cr4 = [dr4 dTh2(:,3) (dr4 dTh3 + dr4 dTh4)];
78

79 end

1 function [ D ] = RotS2X S3X( ThX, k )
2 %ROTS2X S3X Tilt second surface about X−axis and third surface about −X
3 % This program reads direction cosines of output from ZEMAX for surface
4 % misalignment in which the second surface is simply rotated about the
5 % X−axis. Have open 25mm H−ZF10 4Surface PertCheck.zmx
6 % Get the current zemax model
7 zGetRefresh;
8 % Get the nominal surface angle
9 nomS2angle = zGetSurfaceParameter(5,3);

10 % Set the perturbed surface angle
11 zSetSurfaceParameter(5,3,nomS2angle+ThX);
12 zSetSurfaceParameter(8,3,nomS2angle−ThX);
13 % Push data to the zemax model
14 zPushLens(5);
15 % Get the new model from zemax
16 zGetRefresh;
17 % Save the direction cosine data
18 current = pwd;
19 iteration = num2str(k);
20 saveFileAs = strcat(current,'\DirCosData\DirCosDataRotS2X S3X',iteration,'.txt');
21 zGetTextFile(saveFileAs, 'Rtr','' , 0);
22 % Read the direction cosine data
23 D = zReadRayDirCos(saveFileAs,14);
24

25 % move the surface back
26 zSetSurfaceParameter(5,3,nomS2angle);
27 zSetSurfaceParameter(8,3,nomS2angle);
28 % Push data to the zemax model
29 zPushLens(5);
30

31 end

1 function [ r ] = vectorSnell( n0, n1, i, N )
2 %VECTORSNELL traces a direction vector through a refractive interface
3 % Equation 89 from Redding/Breckenridge
4

5 u = n0/n1;
6

7 % nominal raytrace
8 r = u*i−(1−uˆ2)*N/(sqrt(1−uˆ2+uˆ2*dot(N,i)ˆ2)−u*dot(N,i));
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9

10 end

1 function [ dr di, dr dTh ] = surfaceSensitivities( n0, n1, i, N )
2 %SURFACESENSITIVITIES calculates the sensitivities at a surface
3 % Inputs: indices, nom incident direction, nom normal vector
4 % Outputs: sensitivity to incident direction and surface rotation
5

6 u = n0/n1; % (−) ratio of indices
7 Nx = skew(N); % skew−symmetric matrix (super cross)
8 PN = −Nx*Nx; % projection dyadic
9 cos phiB = sqrt(1−uˆ2*dot(PN*i,PN*i)); % equivalent

10 % cos phiB = sqrt(1−uˆ2*i.'*(PN*i)); % equivalent
11

12 % sensitivities
13 dN dTh = −skew(N); % equation (66)
14 dr dN = −((1−uˆ2)/(sqrt(1−uˆ2+uˆ2*dot(N,i)ˆ2)−u*dot(N,i)))*...
15 (eye(3)+(u*N*i.'/cos phiB)); % equation (90)
16 dr di = u*(eye(3)+(u*N*i.'/cos phiB))*PN; % equation (93)
17 dr dTh = dr dN*dN dTh; % equation (103)
18

19 end
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Appendix B. Drawings
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B.1 DVP Sleeve Drawing
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