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Abstract 

United States Air Force (USAF) aircraft parts forecasting techniques have 

remained archaic despite new advancements in data analysis. This approach resulted in a 

57% accuracy rate in fiscal year 2016 for USAF managed items. Those errors combine 

for $5.5 billion worth of inventory that could have been spent on other critical spare 

parts. This research effort explores advancements in condition based maintenance (CBM) 

and its application in the realm of forecasting. It then evaluates the applicability of CBM 

forecast methods within current USAF data structures. This study found large gaps in 

data availability that would be necessary in a robust CBM system. The Physics-Based 

Model was used to demonstrate a CBM like forecasting approach on B-1 spare parts, and 

forecast error results were compared to USAF status quo techniques. Results showed the 

Physics-Based Model underperformed USAF methods overall, however it outperformed 

USAF methods when forecasting parts with a smooth or lumpy demand pattern. Finally, 

it was determined that the Physics-Based Model could reduce forecasting error by 2.46% 

or $12.6 million worth of parts in those categories alone for the B-1 aircraft. 
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A CONDITION BASED MAINTENANCE APPROACH TO 

FORECASTING B-1 AIRCRAFT PARTS 

 

 

I. Introduction 

Background 

As technology advances, it should follow that forecasting techniques will advance 

as well. However, aircraft parts forecasting practices for the United States Air Force 

(USAF) have remained archaic, resulting in a 57% accuracy rate in fiscal year 2016 for 

USAF managed items. The error from this approach inhibited $5.5 billion worth of 

inventory from being repurposed toward other USAF priorities. This research effort 

explores advancements in condition based maintenance (CBM) research, and specifically 

its application in the realm of forecasting. Then it will evaluate the applicability of those 

forecast methods within current USAF data structures. The Physics-Based Model will be 

used to demonstrate a CBM-like forecasting approach, and error results will be compared 

to USAF baseline procedures. 

CBM is not a new concept for the USAF. In 2002, the Deputy Under Secretary of 

Defense for Logistics and Material Readiness directed the military to develop and 

implement Condition Based Maintenance Plus (CBM+). This directive defined CBM as 

“a set of maintenance processes and capabilities derived from real-time assessment of 

weapon system condition obtained from embedded sensors and/or external test and 

measurements using portable equipment” (Smith, 2003). The annotation of “CBM+” that 

is unique to the military services is signaling the integration of technologies and 

processes, with the aim of improving system effectiveness (Under Secretary of Defense 
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for Acquisition Technology and Logistics, 2012). CBM+ could be further explained as 

CBM that is enhanced by reliability analysis and prognostic capabilities. However, it 

should be noted that other sources include this aspect as an inherent aspect of CBM, as 

will be discussed later (Jardine, Lin, & Banjevic, 2006).  

Furthermore, the CBM+ initiative was an integral part of the Expeditionary 

Logistics for the 21st Century (eLog21) campaign. This movement sought to implement 

the systems and processes in place that would enable Agile Combat Support, one of the 

six core competencies of the USAF (Navarra, Lawton, McCusker, & Hearrell, 2007). The 

main goal behind moving toward CBM+ was to improve maintenance agility and 

responsiveness, to increase operational availability, and to reduce lifecycle total 

ownership costs (Navarra et al., 2007). In order to do this, it was recognized that 

Information Technology (IT) systems and processes would need to be redesigned around 

this new concept. A future state model of the IT system that a CBM+ program would 

necessitate is shown in Figure 1.  

 

Figure 1: CBM+ Future State (Navarra et al., 2007) 
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The Expeditionary Combat Support System was the program undertaking this immense 

responsibility. However, when that program was discontinued in 2012, CBM+ in the 

USAF essentially died as well.  

USAF methodology for maintenance and supply support is based on engineering 

and decades of refined practice. Traditional USAF maintenance practices are founded on 

technical order instructions, which specify when and how to perform maintenance 

actions. This methodology fits under preventative maintenance practices (L. Swanson, 

2001). Generally speaking, maintenance actions are completed on fixed time or use 

intervals, precluding hard part failures. This method is imprecise and frequently results in 

disposing parts long before reaching the end of their useful life (Ellis, 2008). The USAF’s 

demand forecasting techniques have evolved over the years, however still primarily rely 

on historic demand (Bachman, 2007).   

The USAF uses a variety of forecasting techniques, however the primary method 

used is an eight quarter moving average. This method is used in over 80% of occurrences. 

Details of this as well as other USAF techniques will be elaborated on in Chapter II. 

While these practices have been adequate for the USAF, the Chief of Staff, General 

Goldfein stressed in a recent newsletter that "Air and Space superiority are not American 

birthrights" (Goldfein, 2017). He went on to describe that the USAF is at a pivotal 

moment where its superiority gap over other nation’s air forces is diminishing, and in 

some cases has already closed. Readiness is a term frequently used to describe the 

USAF’s state of preparedness to engage in warfare. Often readiness is measured by the 

rate of aircraft availability. The only component of aircraft availability that pertains to 

spare parts is the Total Non-Mission Capable for Supply (TNMCS). A snapshot taken of 
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December 2016’s supply performance shows that 18 of 39 (46%) weapon systems did not 

meet their TNMCS standard for the month (Appendix A: Weapon Systems Dash Board). 

This metric tells us that the USAF supply chain does not deliver the supply support it is 

programmed to provide. It is the hope that by studying new demand forecasting 

techniques that the USAF can improve its supply performance and thereby reduce the 

amount of aircraft not meeting their respective TNMCS standards. 

The need for better processes is clear to see within the USAF. As CBM is still a 

relatively new maintenance philosophy, the pressing challenge is to unlock the benefit 

from behind what conditional data can provide.  According to Greitzer et al. (1999), 

CBM is still in a research and development phase, because many challenges exist before 

having refined prognostics techniques and logistics models that fully leverage the new 

technology of censor data. This research is aimed at making the USAF aware of CBM 

methods, and recommending which techniques to consider for implementation. 

Problem Statement 

The USAF relies on scheduled maintenance practices which do not maximize the 

useful life of parts. The USAF primarily uses an eight quarter moving average of 

historical aircraft parts demand to predict future demand. These imprecise methods often 

result in buying and stocking the wrong parts, resulting in failing to meet established 

supply support goals, and costing the USAF billions in misappropriated funds. Further, as 

IT system capabilities expand, it is critical for the USAF to have an awareness of 

established maintenance and forecasting methods that could be leveraged with new 
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technology. CBM is a promising practice that deserves to be evaluated for advancing 

processes the USAF critically relies on. 

Investigative Questions 

Given the above problem, this research will seek to highlight common CBM 

forecasting methods that are well established and evaluate its suitability with current 

USAF data collection and prognostic methods. One such method will be evaluated in 

detail and its accuracy will be compared to the USAF’s forecast techniques to measure 

the effectiveness of this new method. In order to address the objectives of this thesis, four 

investigative questions (IQs) were posed: 

IQ1. What established prognostic CBM methods produce a demand forecast? 

IQ2. What data does the USAF currently collect that fits under CBM? 

IQ3. What CBM forecast methods can be used by the USAF with current IT 

systems? 

IQ4. How well does a CBM forecast compare to the USAF’s current forecast 

method? 

Research Focus 

This study evaluates prognostic CBM practices by identifying relationships 

between flying event data and parts failures to increase forecast accuracy. There were two 

research sponsors, AF/A4P (Deputy Director of Resource Integration and Logistics Chief 

Information Officer) and AFMC/A4D (Depot Operations Division). This research will 

center on finding relationships between how the B-1 aircraft is used and aircraft parts 

demand. The analyst will apply known CBM prognostic methods that build forecasts on 

predictor variables. The scope of this research will be limited to assessing USAF 

managed aircraft parts demand at base-level. The formal term the USAF uses to identify 

this class of demand is Operational and Intermediate Maintenance. Assessing demand at 
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the base-level allows for a more refined look at correlation between flying operations and 

the demand signal. It was necessary to exclude depot level demand, as the demand signal 

becomes much more complex with the addition of aircraft overhauls that are scheduled 

years in advance, regardless of current flying activities. Finally, this analysis will not 

include Defense Logistics Agency managed parts. The Defense Logistics Agency uses 

entirely separate forecasting methods from the USAF, and therefore no evaluation of 

their forecast accuracy will be made in this research. 

Methodology 

The Physics-Based Model (PBM) is a reliable CBM-like method that can be used 

to forecast total aircraft removals per year (Wallace, Houser, & Lee, 2000). In this 

research the PBM will be evaluated for its effectiveness to forecast parts demand at the 

national item identification number (NIIN) level per quarter. Comparisons will be made 

based on NIIN category such as mechanical, electronic, hydraulic, etc. Another 

comparison will be tested to provide evidence for the PBMs accuracy by demand pattern. 

The demand forecast accuracy of each group will be compared between the PBM forecast 

and the USAF’s baseline eight quarter and four quarter moving average methods.   

Assumptions and Limitations 

There are three main assumptions of this research. The first is that any data 

obtained from USAF databases is correct and is an accurate reflection of failure events 

and flying operations. Some of the data used in this study is entered by hand into a 

system of record such as mission type, and therefore is susceptible to human error. The 

second assumption is that the NIINs evaluated within each group fail in a homogeneous 
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manor that is representative of the population of NIINs in each category. It would be 

unrealistic and unbeneficial from a management perspective to evaluate each individual 

NIIN. Therefore, a method has been chosen that will evaluate the PBM’s applicability to 

forecasting similar items. The final assumption in this research relies on using the actual 

flying profile (ratio between combat sorties and training sorties) in a forecast period as if 

it were a known value, and not an additional forecast parameter. This logic will be 

explained further in the Methods chapter. 

Significance of Research 

This research challenges the status quo parts forecasting method that the USAF 

uses, and postulates that CBM offers new comprehensive techniques that the USAF can 

and should take advantage of. Moreover, this work aims at stepping towards what some 

call the ‘holy grail’ of inventory management, which is a system that no longer predicts 

demand, but rather tracks degradation processes and can use high velocity transportation 

to deliver parts to the customer exactly at the moment of failure. Without CBM 

forecasting, that dream would remain a mythology. It is realistic to presume that the 

USAF can implement the results of this research immediately, and begin leveraging its 

accuracy. Additionally, this research should stand as a foundation for future researchers 

to leverage, as it identifies the gaps in practice between USAF data collection and CBM 

forecasting and inventory management techniques.  

What to Expect 

This thesis is laid out in the following order: Chapter II, the literature review, will 

illustrate forecasting methods the USAF currently uses as well as established CBM 
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forecasting methods. Chapter III will focus on the methodology conducted in this 

research. Chapter IV will present the results and statistical analysis of the data collected, 

and will elaborate on how they answer the research questions. Finally, Chapter V will 

bring attention to the main points and conclude with recommendations.  
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to provide a CBM definition and to review the 

history of CBM both in the military and in the civilian sector. Additionally, there will be 

a thorough discussion of aircraft parts forecasting techniques to provide a foundational 

background to the application of this research. Finally, a literature review of other 

pertinent topics will be presented to paint a picture of contiguous research areas that 

affect how the USAF performs parts forecasting. 

USAF Forecasting 

The central guidance for the USAF’s demand forecasting machine is Air Force 

Materiel Command Manual 23-1, Requirements for Secondary Items. This text delineates 

every responsibility and calculation for forecasting USAF managed parts. Secondary 

items is the term used for parts installed in a higher assembly such as an aircraft, a 

vehicle, a piece of equipment, or another recoverable secondary item (Air Force Materiel 

Command, 2011). Further, this manual explains the behind the scenes processing 

completed by the IT system used to manage the forecasting process for both consumable 

and reparable assets, designated D200A. It is important to specify that this process is 

completely separate from the process used for Defense Logistics Agency managed items 

and frequently different from forecasting demand for parts governed by performance 

based logistics contracts.  

From a top level perspective, the USAF forecast process should be thought of as a 

compilation of many separate requirement forecasts across multiple timelines 
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simultaneously. For brevity, this overview will focus on requirements directly related to 

this research effort. Forecasts are made at a subgroup master NIIN level, and will be 

referenced simply as NIIN from here on in this report. A subgroup master is a primary 

identification used for any set of substitute items. This allows the system to compute a 

forecast for a group of substitute items. There are 16 separate computations for each 

NIIN that determine its total requirement. These are broken into three categories. First, 

the focus of this research, is Organizational and Intermediate Maintenance (OIM). This 

can be thought of as base-level demand and maintenance. Its specific categories are: 

 Total OIM Demand Rate 

 OIM Base Repair Rate 

 OIM Depot Demand Rate 

 Base Not Repaired This Station Percent 

 Base Processed Percent 

 Base Condemnation Percent 

The next two categories of demand are the Management of Items Subject to Repair 

(MISTR) and Depot Level Maintenance which do not pertain to this study. The 

computations above are completed for several time horizons, ranging from 9.5 years to 

one quarter in order to provide forecasts for immediate operational needs and baseline 

fiscal year budgeting. However, this research effort will only use an annual forecast 

horizon (aggregating four quarters of forecasts). A new iteration of total requirements is 

completed on a quarterly cycle.  

D200A uses factors as a percentage demand rate tie between past demand drivers 

and future demand drivers. Typically flight hours is the usage driver, however according 

to the AFSC/LGPS office that performs forecasting analysis, the number of sorties is 

sometimes used. The determining aspect is based on what driver is more correlated with 
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failure patterns. Separate factors are established for each failure, replacement, and 

condemnation requirement. D200A allows forecasters to use five methods for computing 

requirements. The first character of the three digit factor indicator code designates the 

particular forecast method used for OIM factor computation, and is categorized as 

follows: 

 A - 8 Quarter Average 

 C - 4 Quarter Average 

 K - Exponential Smoothing 

 B, D, F, H, J, L - Estimates (human input; if estimate not present the 

system will default to another method according to code value) 

 E, G, I - Predictive Logistics (12 quarter regression estimate; available for 

Total OIM Demand Rate only; system defaults to 8/4 quarter average or 

exponential smoothing for other estimates) 

 M - Estimate only (human input) 

 Q - Best Fit (computer selects best fit of A, C, or K) 

 

 

Figure 2: USAF OIM Forecast Method 
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Looking at Figure 2, it is easy to see that the USAF primarily uses an eight 

quarter and a four quarter moving average that is proportional to the number of flying 

hours flown. These are nearly 80% and 15% respectively, of the total base-level forecast 

methods used. There are many instances where this method, often called the proportional 

model, works very well. The main explanation is because of the fact that the calculation 

incorporates a robust amount of data. To elaborate, consider a lumpy demand cycle. The 

eight quarter average has the ability to slowly trend upwards or downwards depending on 

the tendency. As each data point is weighted equally, no one point is overly influential, 

making the computation more resilient to sporadic change. Additionally, several studies 

agree that as long as the aircraft continues to fly relatively similar operations, the 

proportional flying hour method with an eight quarter moving average are typically 

adequate forecasting methods (Slay & Sherbrooke, 1998; Wallace et al., 2000). 

USAF Forecast Accuracy 

There is a long history of U.S. Government Accountability Office (GAO) 

investigations into DoD spare parts practices. The first was in a 1984 report, when the 

GAO estimated that the USAF overstated $31.1 million in needs for aircraft being phased 

down or phased out, while simultaneously under estimating $28.8 million need for new 

aircraft needs (U.S. General Accounting Office, 1984). Furthermore, the GAO felt the 

issues were a result of miscalculations driven from the very same flying hour 

proportional model used today. After an estimated $30 billion in excess parts was 

discovered, inventory management was consequently added to the High Risk List (U.S. 

General Accounting Office, 1990). In 2013, another GAO study was completed and 

estimated spare parts excess inventories at $9.2 billion (U.S. Government Accountability 
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Office, 2013). While marginal steps were taken to eliminate waste, there was still more 

work to be done. The 2013 report stated that with regard to inventory management, there 

were nine key areas needing improvement, one of which was demand forecasting. It was 

specifically noted that the DoD was in the early stages of implementing numerous actions 

to improve demand forecasting. Finally, as recently as 2015, inventory management was 

cited again as still lacking “demonstrated progress” in order to be removed from the GAO 

High Risk List (U.S. Government Accountability Office, 2015). 

Lowas, an independent researcher, performed a very rigorous analysis of the 

USAF’s forecasting methods. First, to get an overall sense of accuracy, he utilized the 

USAF’s web based Forecast Analysis Comparison Tool Plus (FACT+). He limited his 

analysis to airframe (structural) components, noting that previous studies showed this 

category of parts to have the highest forecast accuracy. Here he found that the aggregate 

forecast accuracy for airframe NIINs was approximately 50% over the 2010-2011 period 

(Lowas III, 2015). He then further refined his purview by filtering out NIINs with 

intermittent and sporadic demand, as well as NIINs with small sample sizes. This left him 

only with items that displayed smooth demand. Table 1 shows the forecast accuracy of 

the most common forecasting methods used by the USAF (excluding Hotl’s). Even with 

isolating what should be definitively the most predictable parts, the USAF’s best result is 

narrowly better than a 30% forecast error with an eight quarter moving average. 

Additionally, when analyzing lumpy demand patterns, errors rose well over 40%. Lowas’ 

final judgment was that “it is apparent that current common forecasting methods are 

inadequate for aircraft spare parts forecasting” (Lowas III, 2015). 
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Table 1: Smooth Structural NIINs and Associated Forecasting Accuracies (Lowas III, 2015) 

 

Demand Forecast Accuracy 

There are multiple ways to measure forecast error or accuracy. Demand Forecast 

Accuracy, the method the USAF uses, is calculated as (FACT+ User Manual, 2016):  

𝐷𝐹𝐴 = 1 −
∑ |𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝐷𝑒𝑚𝑎𝑛𝑑|𝑛
𝑖=1

∑ 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑𝑛
𝑖=1

             (1) 

where n is the number of periods aggregated in the forecast horizon. Note that this 

calculation is really a calculation of one minus the forecast error, which results in an 

accuracy measurement. In instances where actual demand is zero, to avoid an undefined 

result the FACT+ tool defines these results as -999% or non-applicable (FACT+ User 

Manual, 2016). This practice has large issues, particularly on parts with intermittent or 

lumpy demand patters which frequently have periods with no demand.  

A more commonly accepted forecast error measurement is mean absolute percent 

error. This calculation has the benefit of being scale independent, and therefore can 

compare error across multiple series of forecasts (Hyndman, 2006). The main difference 
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between demand forecast accuracy and mean absolute percent error is that the latter 

divides both the numerator and denominator by n, and leaves the expression in terms of 

error, instead of subtracting from one.  

Hyndman (2006) shows how mean absolute percent error, and subsequently 

demand forecast accuracy, frequently result in biased distributions when actual demand is 

close to zero. Again, actual demand values that are close to zero are common for 

intermittent and lumpy demand items. Additionally, this calculation puts a heavier 

penalty on positive errors than on negative errors, which adds to the biased result 

(Hyndman, 2006). Because of this, analysts should be strongly cautioned from using 

these measurements as valid forecast error tools in which accuracy measurements will be 

evaluated on. In light of this knowledge, Hyndman (2006) recommends a new calculation 

called mean absolute scaled error. This calculation has been shown to be non-biased and 

more applicable for intermittent demand patterns. For these reasons, mean absolute 

scaled error will be the error measurement used in this study. A detailed description of 

this calculation is denoted in the Chapter III. 

Replacement Parts Forecasting 

This next section will discuss common parts forecasting methods used in spare 

parts forecasting. Tibben-lembke and Amato (2001) reference a number of surveys that 

have shown that the most common replacement parts forecasting methods are weighted 

moving averages, straight-line projections, and exponential smoothing. This corroborates 

common understanding that simpler methods are often implemented because of ease of 

use. A hierarchy diagram lists the most common forecast methods in Figure 3. 
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Figure 3: Hierarchy of Forecasting Methods (Lowas III, 2015) 

Tibben-lembke and Amato go on to elaborate on the value information can add to 

forecasting methods. They estimate failure using an exponential distribution. The benefit 

of the exponential distribution over the Weibull is that it only has one distribution 

parameter that can be estimated easily as mean time between failures. Their analysis 

showed this method to be more precise than exponential smoothing and weighted moving 

average (Tibben-lembke & Amato, 2001). A connection here should be made to a similar 

premise to this thesis research, in that additional information is being used to form a new 

forecast method with explanatory variables in lieu of a purely historic forecasting 

technique.  

In reliability theory, the Weibull distribution is commonly used to model the 

failure of spare parts (Lowas & Ciarallo, 2016). Lumpy or sporadic demand are very 

common issues among aircraft parts forecasting, making it very difficult to be accurate. 

However, the root cause of this pattern had never fully been vetted (Lowas & Ciarallo, 
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2016). Boylan (2005) provided a rule of thumb for sporadic demand parts as having at 

least 20% of time periods with zero demand. Lowas and Ciarallo (2016) explored the use 

of the Weibull distribution in order to find fleet-wide variables that may cause lumpy 

demand patterns. They used a Monte Carlo simulation to measure fleet-wide demand 

characteristics by comparing ranges of fleet sizes, buy period lengths, time to failure 

lengths, as well as varying Weibull distribution parameters. Results of the Monte Carlo 

simulation show that the variable that increased lumpy demand the most was aircraft fleet 

size. The second largest variable accounting for lumpiness was the buy period. The 

observation was that a longer buy period increased demand variability (Lowas & 

Ciarallo, 2016).  

Several other researchers have addressed the issue of sporadic demand for the 

USAF. In 2007, Bachman formulated a Peak inventory policy that reduced wholesale 

wait-time and backorders by establishing a new reorder point based on exponential 

smoothing of an item’s peak demand pattern. In 2013, he established a new inventory 

policy that assessed item cost, procurement and repair lead times, and overall demand 

patterns to build a cost versus aircraft availability tradeoff curve (Bachman, 2013). This 

method is used today throughout the USAF, and is known as Readiness Based Sparing. 

Gehret (2015) looked at a stockage policy based on how likely a specific location is to 

have a demand, given the population’s demand and that location’s time since its last 

demand. The takeaway from the above three studies is that in lieu of a strong demand 

signal, inventory policies are the method used to provide a high level of supportability in-

place of demand forecasting techniques. The benefit of CBM is that it does not rely solely 
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on a demand signal. Instead, it offers the ability to use conditional data as will be 

discussed later in this chapter. 

Alternative USAF Forecasting Models 

Work done by Oliver (2001) used linear regression to correlate F-16 mission 

capability rates with numerous explanatory variables. Oliver’s work had a very broad 

aperture of variables considered. A few examples were maintenance manning, 

maintenance skill levels, maintenance retention, aircraft break rates, aircraft fix rates, 

flying operations tempos, and spare parts issues among many other variables including 

spare parts funding. His results showed that a predictive mission capability model 

included the number of sorties, flying hours, average aircraft inventory, total maintenance 

personnel assigned, and controlling for interactions between total maintenance personnel 

and average aircraft inventory. The significance of this research pinpointed controllable 

inputs that decision makers could use to improve MC rates. In 2013, Theiss performed a 

similar investigation by evaluating which variables would characterize C-17 mission 

reliability. His analysis concluded that mission type, operating organization type, 

departure theater, aircraft age, as well as other variables are significant. Such research 

like these will serve as fodder for explanatory variables used in this research. Even 

though not all of these variables will be used in this work, the premise of using event data 

to explain parts failure is of a similar line of reasoning.  

To this point, the appropriateness of the proportional flying hour failure model 

has only been subtlety questioned. However, there are several studies which directly 

uncover the fallacies with its use. Before looking at other research efforts, let us first 
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discuss what a similar proportional cost model assumes. Van Dyk (2008) defines the 

model as a proportional relationship between costs and flying hours such that: 

1. When no hours are flown costs are zero. 

2. A 1% increase in flying hours will increase costs by 1%. 

The spare parts proportional model definition is presumably the same for demand 

forecasting; as total costs are merely a function of the number of parts demanded.  

One organization who has performed several research efforts on the proportional 

model is the Logistics Management Institute (LMI). A 1995 study performed by LMI on 

war time demands showed that a pure flying hour approach would overstate demands, 

while a pure sortie-based approach would understate demands as shown in Figure 4 

(Slay, 1995).  

 

Figure 4: Proportional Flying Hour Model Vs. Sortie Model (Slay, 1995) 

A more rigorous study was then completed by LMI two years later showing that after 

analyzing 250,000 sorties, a 2-hour fighter sortie caused only 10% more parts to break 

than a 1-hour sortie did (Slay & Sherbrooke, 1998). This refutes the second principle of 
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Van Dyke’s (2008) definition because a 2-hour sortie should have produced a 100% 

increase in broken parts over a 1-hour sortie under the proportional model. This concept 

led the analysts to look at the problem through another lens; one that shifted toward 

incorporating what stressors were placed on the aircraft. For example, they analyzed F-15 

parts demand based on what mission type the aircraft flew. Table 2 from LMI’s analysis 

shows that cross-country missions produce fewer demands than training missions. In light 

of this analysis LMI recommended a “decelerated” forecast model which is a 10% 

demand rate per sortie hour after accounting for a baseline intercept of per sortie demand 

(Slay & Sherbrooke, 1998). 

Table 2: Mission Type Impact on Langley F-15C/D Parts Demand (Slay & Sherbrooke, 1997) 

 

Another pivotal LMI study that will serve as the foundation methodology in this 

research effort was called, “A Physics-Based Alternative to Cost-Per-Flying-Hour 

Model.” In this research Wallace et al. (2000) argued that the proportional model was 

significantly less adequate when used to predict demand from combat sorties. Note that in 

their research they used the number of part removals from an aircraft as a surrogate for 

actual spare parts demand due to accessibility of data. A C-5 Operation Desert Storm 

analysis corroborated much of what the previous LMI studies had shown. As Figure 5 

from that study illustrates, prior to Operation Desert Storm the proportional forecast 
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model worked adequately. Under the proportional model, when flying operations 

increased under Operation Desert Storm, then removals should subsequently increase as 

well. However, the actual number of removals stayed relatively the same regardless of 

the increase in flying hours per month. 

 

Figure 5: Operation Desert Storm C-5 Analysis (Wallace et al., 2000) 

On the back of this research and previous studies, this LMI team decided to 

segregate forecast parameters based on combat sorties and training sorties. From this they 

established the Physics-Based Model (PBM), which incorporates predictor variables that 

were driven by the physical behavior of the aircraft such as the number of landings, the 

number of sorties, and the number of hours on the ground in addition to flying hours 

(Wallace et al., 2000). In order to test their model’s accuracy relative to the proportional 

model, they compared four separate time series data sets for the C-5, the C-17, the KC-
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135, and the F-16. The PBM had a lower forecast error in each of the 16 cases analyzed 

(Wallace et al., 2000). 

CBM Philosophy 

A simple description of a Condition Based Maintenance (CBM) system was 

postulated by Jardine, et al. (2006), stating that every CBM system has three steps. First, 

is data acquisition. This step is centered on obtaining data on the health of the system. 

Second, is data processing; which is analyzing the signals from step one. The final step is 

maintenance decision-making, which revolves around making policies that drive 

maintenance actions based on the analysis from step two. 

CBM is a maintenance strategy that bases decisions on information collected 

through condition monitoring (Ellis, 2008). Prajapati, Bechtel, and Ganesan (2012) 

postulate that CBM is a subset of reliability centered maintenance, which is made up of a 

mix between CBM and scheduled (preventative) maintenance. The primary goal of CBM 

aims at avoiding unnecessary maintenance tasks until there is significant evidence of 

need (Jardine et al., 2006). Maintenance actions based on this premise can lead to 

remaining useful life improvements, resulting in lower maintenance costs (Tracht, Goch, 

Schuh, Sorg, & Westerkamp, 2013). This notion contrasts that of scheduled maintenance 

which relies on fixing or replacing a part based on a designated time (or use) interval 

regardless of the actual condition of the part. 

Diagnostics/Prognostics 

Diagnostics is defined as the process of finding a fault after or during the process 

of the fault occurring in the system (Prajapati et al., 2012). This analysis is performing 
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fault detection, isolation or identification with posterior event data (Jardine et al., 2006). 

The following section will elaborate on the aspects of this type of analysis. Prognostics in 

the realm of machine data analysis is defined as the process of predicting the future 

failure of any system, by analyzing current and previous history of operating conditions 

(Prajapati et al., 2012). This application is different from diagnostic in that it explicitly 

performs prior event analysis so it can predict or forecast a failure event (Jardine et al., 

2006). 

Event Data 

Event data are descriptors of the physical history of a particular machine. 

Examples could include installation, breakdown, overhaul, preventative maintenance 

action, oil change, number of uses, etc. (Jardine et al., 2006). These data are typically 

entered into a database by hand, making them prone to errors. 

Condition Monitoring Data 

Condition monitoring data are typically collected through sensors. Depending on 

equipment being monitored, the sensors may be measuring vibrations, acoustics, oil 

analysis results, temperature, pressure, moisture, humidity, weather or environmental 

factors, etc. (Jardine et al., 2006). These types of data, sometimes called covariates, can 

identify deterioration, resulting in time to failure (TTF) models. Common descriptive 

data analysis tools such as clustering or multivariate analysis can be used to assess which 

variables will be useful to detect part failures.  Murray, et al. compare multiple fault 

detection algorithms including support vector machines, rank-sum, and recommend their 

own naïve Bayesian classifier called the multiple-instance naïve Bayes (mi-NB) 

algorithm. Their study specifically assessed the varying method’s ability to detect fault 
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from a multiple-instance learning environment (many simultaneous condition indicators). 

This is useful in cases involving multiple sensors on one part; each with their own limits 

set to trigger a fault indicator (Murray, Hughes, & Kreutz-Delgado, 2005). Results of 

their study show that support vector machines achieved the highest accuracy, however 

computationally took longer than other methods. Their proposed method, mi-NB, serves 

as a good model that balances both accuracy and speed (Murray et al., 2005). 

CBM+ in DoD 

As mentioned earlier, CBM first came into the DoD’s lexicon in 2002.  The DoD 

established the term Condition Based Maintenance Plus (CBM+), which refers to 

integrating technologies for the purpose of enhanced prognostic capabilities. The USAF’s 

journey establishing a CBM+ program began in 2003, where the Air Force Logistics 

Management Agency completed a concept analysis, and provided recommendations for 

implementing CBM+ (T. Smith, 2003). In 2007, the USAF had a central office 

orchestrating the future state picture of reliability prognostics that lasted for nearly a 

decade. This organization was charged with orchestrating a common system 

infrastructure and accompanying services for integrating all combat support IT systems 

(Navarra et al., 2007). More specifically, they set their sights on improving maintenance 

agility and responsiveness in order to increase operational availability, and to reduce 

lifecycle total ownership costs.  

In order to assemble this IT infrastructure, the USAF contracted with a database 

management company named Teradata who built a proprietary high-performance 

distributed computing architecture, complete with data bus that enables integrated 
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throughput between multiple computing nodes (Navarra et al., 2007). The result is now 

referred to as the Logistics, Installation, and Mission Support–Enterprise View (LIMS-

EV), and is made up for multiple suites to access data universes. The backbone of this 

system is the Global Combat Support System-Data Services which stands as the central 

data warehouse for most of the USAF’s logistics IT systems. In addition to the IT 

infrastructure, the USAF’s CBM+ office established the Enterprise Predictive Analysis 

Environment. The thought was that this node would act as a central hub for building 

prognostic algorithms that could leverage data sets across all logistics IT systems from 

the LIMS-EV package. Figure 1 (in chapter 1) shows a system diagram of how the 

Global Combat Support System-Data Services and the Enterprise Predictive Analysis 

Environment components fit into the CBM+ proposed model. There were three 

capabilities the USAF wanted to obtain from this structure (Navarra et al., 2007): 

 To predict any weapon system’s mission capability 

 To proactively maintain readiness 

 To design for integrated system life cycle management and intrinsic 

reliability 

 

Many organizations have identified difficulties implementing CBM programs 

(Jardine et al., 2006). Similarly, the USAF struggled with implementing these practices as 

well. According to Navarra et al. (2007), the premise was to have operational data 

captured during flight and post-flight inspections automatically downloaded into LIMS-

EV. Raw data would come from sensors on the aircraft or from maintainers on the flight 

line. These data, along with event data, could be analyzed by the Enterprise Predictive 

Analysis Environment, whom would build predictive algorithms resulting in a remaining 

useful life estimate for major components on the airframe. However, the major problem 
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was integrating pedigree data directly from sensors into the Global Combat Support 

System-Data Services data warehouse (Navarra et al., 2007). As such, analysts were 

forced to resort to using small samples for statistical estimates or simulation data for 

prognostics.  

Previous USAF researchers have also identified issues with regard to reliability 

failure data in USAF systems. Hogge (2012) attempted to calculate failure distributions 

of USAF end items, yet stated in his research that the only time to failure data the USAF 

collected was mean time between failures. He goes on to discuss the issue with mean 

time between failure being that this calculation is both left and right censored. 

Furthermore, the mean time between failure calculation is not a depiction of a part’s 

entire useful life. Without that information, a reliability distribution cannot be computed. 

Further, he illustrates that the USAF tracks usage hours for equipment, usually aircraft or 

engines, however there is no usage tracking mechanism for most subsystems.  

Current CBM+ USAF guidance is extremely sparse. The central document 

describing today’s CBM+ efforts is a two page fact sheet which provides a general 

description of CBM and CBM+. It states that CBM+ is a meaningful shift away from a 

reactive, unscheduled maintenance approach to an evidence of need before failures 

approach (U.S. Air Force, n.d.). Additionally, the fact sheet provides a few examples of 

how CBM+ can and is used throughout the USAF. Of note, the source alludes to the 

USAF currently using sensors that monitor and record equipment operating parameters to 

facilitate remote analysis. Specifically the sheet references the CBM+ application to the 

F-35 because of its unique Automated Logistics Information System. However, even as 

recent as 2016, this automated logistics system is not yet fully operational (GAO, 2016). 
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Therefore, this system was not currently a viable resource option for collecting data. 

Subsequently, it became a priority to identify where other similar CBM+ analysis was 

occurring throughout the USAF. A 2014 study on the impacts of CBM in the military was 

completed by the Australian military. This land centric analysis showed that there are 

three main impacts (Gallash, Ivanova, Rajesh, & Manning, 2014): 

 CBM will extend equipment’s useful life while reducing the total cost  

 CBM will increase fleet operational availability and mission effectiveness 

 CBM will reduce the maintenance burden 

It is reasonable to extrapolate these same benefits within an aviation context. Ellis (2008) 

believed that CBM should only be applied where condition monitoring techniques are 

available in a cost-effective means. Prajapati et al. (2012) asserted aviation as being a 

cost-effective CBM area both because of the value the aviation community places on 

safety, the capital intensiveness of aircraft, and the value to be gained from extending the 

life of the system. The USAF followed that business model by stipulating that the F-35 

have condition monitoring capability from the beginning of its design, therefore making 

it more cost effective than adding sensors later (U.S. Air Force, n.d.). Further, Swanson 

(2001) corroborates the benefit to fleet operational availability, as equipment would then 

only taken out of service when direct evidence necessitates maintenance. 

Evidence of what Gallash, et al. (2014) postulated was exemplified all the way 

back in a 1980s U.S. Coast Guard contract, specifying engine condition monitoring 

requirements for the HH-65A. This contract delineated each of the condition monitoring 

sensors already on the helicopter’s engine that could be used for analysis, and spelled out 

the type of data analysis they were going to be able to use based on the condition 

monitoring signals (Aerospatiale Helicopter Corporation, 1980). At that time engine 
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sensors would allow experts to perform CBM analysis on engine torque, gearbox 

temperature, oil pressure, oil filter impending bypass quantity, gas temperature, and 

generator speed.  

The Army also recognized the need to move away from a scheduled maintenance, 

but knew it did not have the IT system in-place to do so. An effort was made in 2005 to 

canonize the IT requirements that would allow Army analysts to perform CBM 

diagnostics and prognostics (Figure 6). First, they identified the fundamental data 

needs—a comprehensive and synchronized view of a component’s lifecycle (Henderson 

& Kwinn, 2005). From this, their analysts could aggregate trends of problem occurrences 

within major systems. Then these trends could be juxtaposed to an individual 

component’s life history where reliability forecasts could be stipulated based on a 

component’s current condition. One of the major issues their report noted was a disparity 

between maintenance and supply codes. Specifically they recognized the importance of 

having a link between work unit code (which is primarily used in the maintenance 

community) and national stock numbers (used by the supply community) (Henderson & 

Kwinn, 2005). Without this link, analysts would lack the ability to pinpoint which aircraft 

system a specific component belongs to, thereby limiting the ability to drill down to 

analyze multiple layers of a weapon system. Further, another critical shortcoming the 

Army’s legacy systems lacked was a unique part identification.  They describe this as a 

requisite capability in order to track a specific item through its lifecycle. Without a 

unique identification, they stipulate that “CBM implementation will be limited” 

(Henderson & Kwinn, 2005). 
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Figure 6: Affinity Diagram of CBM Data Warehouse Components (Henderson & Kwinn, 2005) 

The U.S. Navy’s pursuit of a CBM strategy led them to use the Integrated 

Mechanical Diagnostic-Health Usage Management System (IMD-HUMS). This system 

enabled Reeder to perform CBM analysis on phase inspection maintenance on the MH-

60S helicopter. The background of his study was similar to this thesis, in that the U.S. 

Navy had been working to implement CBM methods for over two decades, however still 

primarily relied upon inspection cycles (Reeder, 2014). This notion led him to study the 

effects of an evidence based inspection cycle relative to the baseline phase inspection 

cycle by comparing data already collected in IMD-HUMS. A gap analysis between the 
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baseline and the CBM alternative method led to the conclusion that the alternative was 

superior in multiple areas. The first area assessed showed that the added flight hours 

available per labor hour during phase inspections rose from 0.35 flight hours per phase 

labor hour, to 1.07 flight hours per phase labor hour (Reeder, 2014). The second area 

showed a reduction in post-phase vibration analysis thru evidence based inspections of 

engine and drive train systems. Results showed available flight hours increased by 3.24% 

(Reeder, 2014). The availability gain came from eliminating post-phase scheduled 

inspections. Further, maintenance labor hours decreased by an average 1,270 hours per 

phase cycle. Lastly, there might be a hesitance to move away from what had been the 

status-quo schedule inspection cycle, so Reeder included a safety analysis. His 

investigation showed that 60% of all mechanical failures from the preceding five years 

came from human error. Therefore, by reducing the number of human occurrences to 

perform maintenance, you reduce the amount of potential human error. He concluded that 

there was no evidence to show that his alternative need-based phase model would 

compromise safety in a meaningful way. 

CBM Forecast Methods 

A time-dependent proportional hazards model (PHM) is a common method used 

in survival analysis, and can be used to assess both event data and condition monitoring 

data together (Jardine et al., 2006). The PHM is calculated as:  

ℎ(𝑡) =  ℎ0(𝑡)exp (𝛾1𝑥1(𝑡) + ⋯+ 𝛾𝑝𝑥𝑝(𝑡))          (2) 

where ℎ0(𝑡) is a baseline hazard function, 𝑥1(𝑡), … , 𝑥𝑝(𝑡) are covariates from condition 

variables, that are a function of time, and 𝛾1, … , 𝛾𝑝 are coefficients. Then, a maximum 
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likelihood estimator method can be used to find the 𝛾𝑖 coefficients for the PHM from 

event data and condition monitoring data (Jardine, Anderson, & Mann, 1987). The 

necessary inputs for this method are a hazard function, and condition indicator covariates. 

The PHM produces a hazard distribution that is descriptive of the item being assessed. 

Another common method that uses both event data and condition monitoring data 

is a hidden Markov model (HMM). A significant contribution was made by Wang in 

developing a model for combining both continuous and categorical state descriptors into 

one HMM. His model is based on a two-stage approach separating a component’s life 

into a normal working zone and a potential failure zone (Wang, 2007). Further, he shows 

analytically how continuous and categorical descriptors can be combined in a maximum 

likelihood estimator to model which state a component is in, and the probabilistic time to 

failure (Wang, 2007). This research is influential because of its ability to model the TTF 

distribution from practical state descriptors. 

Moubray (1997) formed a method known as the P-F interval method, which uses 

condition monitoring data to predict the failure probability of a component. In this 

method, a P-F interval is the time between a potential failure (P) and a functional failure 

(F). This method was enhanced by Goode et al. by combining reliability data  with 

condition monitoring data, to predict the time to failure of steel mill plant machinery 

(Goode, Moore, & Roylance, 2000). They did this by separating condition monitoring 

observations into two regions a stable zone and a failure zone, where two distinct failure 

distributions can be observed. Based upon these observations, a component’s remaining 

useful life can be predicted by a reliability-based model for parts in the stable zone, a 
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combination of a condition monitoring indicator, and a reliability model for components 

in the failure zone (Goode et al., 2000).  

Several researchers have established a Bayesian approach that can be updated by 

conditional monitoring information. Gebraeel, et al. laid the foundation for this area of 

study with a technique called the Bayesian Degradation Signal Model. Their approach 

had two key elements. The first was to use population parameters to form a prior failure 

distribution. This would predict when and how many bearings would fail. The second 

element was real-time condition monitoring data, which showed the degradation of an 

individual bearing (Gebraeel, Lawley, Li, & Ryan, 2005). Their research demonstrated 

that if the population’s failure was properly modeled, real-time condition monitoring 

could then be used to compute a residual-life distribution for that particular bearing. 

Tracht, et al., (3013) were able to formulate a forecasting approach using a 

supervisory control and data acquisition (SCADA) program that predicted spare parts 

demand. Their method, noted as an “enhanced forecast model,” was a PHM capable of 

incorporating time dependent covariates, as well as temperature and age conditions. The 

significance of this work was showing how SCADA software could be used to formulate 

an accurate binomial PHM distribution.  

Kalman filters can also be applied to condition based prognostic models. One 

example was demonstrated by Swanson, who used Kalman filtering to track the changes 

in condition monitoring data across a time horizon (D. Swanson, 2001). With this, 

Swanson was able to both detect fault and make useful life predictions. He postulates that 

when fault characteristics are accelerating away from a stable operating condition, there 

is a probable chance of imminent failure which can serve as an indicator (D. Swanson, 
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2001). Furthermore, tracking the rate of change of a part’s condition allows the ability to 

make a prediction.  

A summary the CBM forecasting methods can be found in Appendix B: 

Diagnostic and Prognostic CBM Summary. 

Summary 

This chapter examined spare parts forecasting both in the USAF and at large. 

Several alternative USAF demand forecasting methods were presented that illustrate how 

alternative variables than flying hours can be predictive of parts demand. Further, a 

history of CBM+ in the DoD was discussed to illustrate what the original goal was, and 

where the program is currently. An academic view of CBM prognostic techniques was 

discussed to show what types of data and analyses the DoD could implement when the 

proper data is available. Lastly, several forecast error calculations were presented to 

explain why mean absolute scaled error is more suitable for spare parts forecasting.  
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III. Methodology 

Chapter Overview 

This chapter will explain how the PBM works, and how it will be applied in this 

research. It will start by identifying the explanatory variables and the model’s 

assumptions. Then, the statistical background of how to calibrate the model’s parameters 

will be explained. Following this, a detailed effort will be made to delineate the data 

cleaning and filtering steps taken to narrow down to a select list of NIINs used in this 

study. Finally, calculations for forecast accuracy will be presented along with a 

discussion on multivariate statistics that will be applied to evaluate the suitability of one 

forecast method over another. 

PBM Basics 

A majority of the methodology used in this research effort was leveraged from a 

research effort completed by Wallace and Lee (2000), which first tried to consider how 

physical stressors on an aircraft reflect in maintenance removal actions. The approach 

taken in this research will apply a similar tactic looking at NIIN level demand patterns. 

LMI’s model originally included four independent variables:  

Flying Hours (FH) 

The LMI model treated flying hour-induced removals as a discrete Poisson 

distribution, where the number of flight-induced removals produced in time 𝑡𝑓 has 

parameter 𝜆𝑓𝑡𝑓 . A normal approximation to the Poisson distribution can then be used to 
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calculate the number of removals with mean and variance of fling-hour-induced removals 

both equal to 𝜆𝑓𝑡𝑓 (Wallace et al., 2000).  

Cold Cycles (CC) 

A cold cycle was the approach taken to account for removals induced from a 

sortie. The term cycle is used to frame the effects of both the take-off and the landing 

inherent to each sortie, regardless of what is done during the course of that sortie. The 

number of cold cycles will equal the number of sorties in a given time period. This aspect 

was modeled as a normal approximation to a binomial distribution where 𝑁𝑐𝑐is the 

number of cold cycles and 𝑃𝑐𝑐 is the probability of a removal per cold cycle. This means 

that this process can be modeled with mean 𝑁𝑐𝑐𝑃𝑐𝑐 , and variance 𝑁𝑐𝑐𝑃𝑐𝑐(1 − 𝑃𝑐𝑐) 

(Wallace et al., 2000).  

Warm Cycles (WC) 

It could be assumed that the effects of a touch and go landing are different than 

the stress from a cold cycle, which includes starting up the jet and shutting it down with 

each sortie. Therefore, this variable will equal the number of landings minus the number 

of sorties in a given time period. This aspect will also be modeled as a normal 

approximation to a binomial distribution where 𝑁𝑤𝑐is the number of warm cycles and 𝑃𝑤𝑐 

is the probability of a removal per warm cycle. This process is therefore modeled with 

mean 𝑁𝑤𝑐𝑃𝑤𝑐 , and variance 𝑁𝑤𝑐𝑃𝑤𝑐(1 − 𝑃𝑤𝑐) (Wallace et al., 2000).  

Ground Cycles (GC) 

This aspect of the LMI model describes strain on an aircraft that would come 

from the ground environment, mostly being environmental influences such as 

temperature, humidity, or precipitation. This variable is computed as possessed hours 
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minus flying hours in a given time period, divided by 24 hours to convert hours into a 

daily cycle. Similarly to cold and warm cycles, ground cycles are also modeled as a 

normal approximation to a binomial distribution. Mean and variance are then calculated 

as 𝑁𝑔𝑐𝑃𝑔𝑐 and 𝑁𝑔𝑐𝑃𝑔𝑐(1 − 𝑃𝑔𝑐) , respectively (Wallace et al., 2000).  

Model Mean and Variance 

The methodology taken in this effort utilizes the same four independent variables, 

however assess the effects on a different dependent variable, aircraft parts demand. 

Therefore, the same variable computations will be used and aggregated as:  

𝜇𝑖 = 𝜆𝑓𝑡𝑓 + 𝑁𝑐𝑐𝑃𝑐𝑐 + 𝑁𝑤𝑐𝑃𝑤𝑐 + 𝑁𝑔𝑐𝑃𝑔𝑐       (3) 

𝜎𝑖
2 = 𝜆𝑓𝑡𝑓 + 𝑁𝑐𝑐𝑃𝑐𝑐(1 − 𝑃𝑐𝑐) + 𝑁𝑤𝑐𝑃𝑤𝑐(1 − 𝑃𝑤𝑐) + 𝑁𝑔𝑐𝑃𝑔𝑐(1 − 𝑃𝑔𝑐)    (4) 

where 𝑖 is the index indicating each time period (Wallace et al., 2000).  

Model Assumptions 

The PBM has two main assumptions. The first assumption is that the four 

explanatory variables are independent from one another. If any two independent variables 

are collinear, then one should be removed as to not over influence the model. This will be 

evaluated by a pairwise regression to tell if each pair of variables has a strong correlation.  

The second assumption is that spare parts failure can be attributed to the four 

independent variables in high enough quantities to be approximated as a normal 

distribution. This assumption reduces the computational complexity behind estimating 

the number of failures in a time period. Wallace and Lee (2000) use this assumption in 

their research, and results were found to be very accurate.  
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=∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 

𝑙 =∑ln [𝑓(

𝑛

𝑖=1

𝑥𝑖|𝜃)] 

Model Calibration: Maximum Likelihood Estimation 

In order to use the PBM forecast, the parameters from the four independent 

variables must be fine-tuned to the appropriate failure probability. Due to 

homoscedasticity in demand, a simpler method such as linear regression is not possible. 

Therefore, a maximum likelihood estimation will be used to calibrate the respective 

probability parameters. Maximum likelihood estimation is a well-established method that 

uses conditional probability to determine a distribution’s parameter value, given that a set 

of data came from that particular distribution. For example, consider the likelihood 

equation:  

𝐿(𝜃) = 𝑓(𝑥1, 𝑥2, 𝑥3…𝑥𝑛; 𝜃)           (5) 

This is the joint probability of a distinct set of outcomes 𝑥1, 𝑥2, 𝑥3…𝑥𝑛 . From the rules 

of conditional probability given that each outcome is independent, the likelihood 

probability of outcomes becomes: 

𝐿(𝜃|𝑥𝑖) = 𝑓(𝑥1|𝜃)  ∙  𝑓(𝑥2|𝜃) ∙  𝑓(𝑥3|𝜃) ∙ … ∙  𝑓(𝑥𝑛|𝜃)  

(6) 

 

Then by taking the natural logarithm of the equation, the function becomes additive, 

which is much easier for computational purposes as shown in Equation 7: 

(7) 

If solving this problem numerically, the next step would be to find where this function is 

maximized by finding its derivative with respect to 𝜃, and then setting it equal to zero. 

The value where the maximum likelihood occurs will be the optimal value of 𝜃 for the 
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given dataset. However, this operation is easily performed in Microsoft Excel (version 

2013) by using the Solver function to solve this as an optimization problem. In this 

instance, because there are four parameters to be calibrated, the optimization problem 

becomes: 

𝑀𝑎𝑥:∑ ln [𝑁(𝑑𝑒𝑚𝑎𝑛𝑑𝑖|𝜇𝑖, 𝜎𝑖)]
𝑛
𝑖=1     (8) 

where n is the number of periods in the calibration horizon, and 𝑁(𝑑𝑒𝑚𝑎𝑛𝑑𝑖|𝜇𝑖, 𝜎𝑖) 

assumes a normal approximation with parameters  and i from Equation 3 and Equation 

4. The change variables will be  𝜆𝑓 , 𝑃𝑐𝑐 , 𝑃𝑤𝑐, 𝑃𝑔𝑐 .  

Sliding Scale 

The concept of a sliding scale was not in LMI’s original PBM study. However, it 

was developed out of necessity to be able to forecast into the future when a different 

flying profile would be used. To elaborate, consider the original premise behind the PBM 

model. It was to show that parts failure is driven by what physical stresses are induced on 

the aircraft. Their research uncovered how a large increase in combat flying hours did not 

keep the proportional relationship with demand. From this, they postulated that the 

effects on parts failure are noticeably different on training missions than on combat 

missions. Their later research used an approach that allowed an analyst to forecast a 

future periods’ demand, by choosing a new proportion of combat missions to training 

missions (Silver & Cincotta, 2008). The basic premise is that the model uses the actual 

flying profile to determine the average sortie duration for peacetime missions and combat 

missions separately. Similarly, it also calculates the average landing per sortie for 

peacetime missions and combat missions, respectively.  
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A major assumption in this research will rely on using the actual flying profile in 

a forecasted period as if it were as forecast parameter. In a real application of the PBM 

method, the flying profile would be another forecast parameter similar to total flying 

hours. However, in order to isolate this model’s forecast potential, it will be assumed that 

the forecasted flying profile was what was actually flown for each time period predicted 

into the future. 

Next, the respective average sortie duration and landings per sortie values could 

be used to linearly extrapolate a future time period’s number of sorties and number of 

touch-and-go landings, again broken out for peacetime and wartime. Subsequently, there 

needs to be a similar methodology of calculating ground cycles. Since the original model 

does not assume a difference between ground cycles in training versus in combat, this 

single parameter only needs to be adjusted for the forecast period’s number of flying 

hours. This can easily be done by assuming the number of unit possessed hours as the 

prior period which was known, subtracting the forecast period’s number of flying hours, 

and then dividing by 24. The next step would be to sum the total number of sorties and 

“touch-and-go’s” that could then be used as forecast inputs against the failure rate 

parameters calibrated by the maximum likelihood estimator. A list of equations used in 

this process is delineated in Appendix C: Sliding Scale Equations. 

Data  

Sources 

Two primary data sources would be used to collect data, with the first being the 

parts failure data maintained in D200A. With the help of the Requirements Integration 
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Process Improvement Team, AFSC/LGPS, a filter of B-1 only NIINs was used to select 

quarterly OIM data for B-1 NIINs. Using Microsoft Access (version 2013), a query was 

then built to aggregate base-level demand, and to select file maintained data (manual 

override corrections) when applicable over original data inputs. Base-level demand (more 

accurately defined as Total OIM Demand) is computed as the number of parts Repaired 

This Station (RTS) plus the number of parts Not Repaired This Station (NRTS) plus the 

number of Condemnations as shown in Equation 9: (Air Force Materiel Command, 2011) 

𝑇𝑜𝑡𝑎𝑙 𝑂𝐼𝑀 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑅𝑇𝑆 + 𝑁𝑅𝑇𝑆 + 𝐶𝑜𝑛𝑑𝑒𝑚𝑛𝑎𝑡𝑖𝑜𝑛𝑠        (9) 

The other primary data source was LIMS-EV. The suite Weapon System View 

provided the amount of ground hours by month from 2012-2016. The suite Business 

Objects (also known as GCSS-Data Services) was used to query the flying hours, the 

number of landings, the number of sorties, and the mission profile of each sortie, again by 

month from 2012-2016. This data was aggregated into quarters, then separated by 

mission profile of training sorties and combat sorties. Landings, flying hours, and sorties 

were ignored from test flights and demos, as they were less than 6% of total flying hours 

and the logic in this methodology would be difficult to validate the correlation to parts 

failure due to the exploratory nature of test sorties. 

Data Cleaning and Filtering Selected NIINs 

Researching demand impacts by Federal Supply Class (FSC) is a classification 

method that was not found in any similar research effort. This could be because without 

assessing FSC with respect to a physical use aspect, it simply would not have been a 

logical argument. However, with the methodology used in this research, it now becomes 

possible to evaluate the potential correlation between the category a part is, and its 
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demand pattern with relation to how an aircraft is used. In order to select FSCs for 

research, a method of highest demand was used. The first step was to use Microsoft Excel 

2013’s Pivot Table to aggregate total demand from 2012-2016 by FSC. From there, a 

Pareto chart was made to order those FSCs from highest percentage of total demand to 

lowest. The top FSCs that accounted for 90% of B-1 demand were selected for evaluation 

under the assumption that these parts accounted for the vast majority of B-1 demands.  

To further purify the demand signal, it was necessary to exclude all common use 

items from the analysis. A common use item is a NIIN that is used on multiple aircraft. 

As the purpose in this research is to tie B-1 flying operations to B-1 demand, it is 

necessary to ensure demand from other aircraft are not being included in the demand 

pattern. The D200A system does not partition what demand comes from which aircraft. 

With that, the only way to partition out only B-1 demand would be by creating a query in 

GCSS-Data Services from the supply system universe by counting supply transactions. 

However, by writing a new query without regard to similar business rules that D200A 

uses to count demands it leaves multiple opportunities for miscounting B-1 demand that 

would not line up with how D200A counts base-level demand. Therefore, it was 

determined best to exclude common use NIINs from this research. Out of 5,164 B-1 

NIINs, 166 NIINs were identified as common use items, and therefore will not be 

considered for further analysis. This leaves 4998 NIINs in the study. 

After filtering and selecting the NIINs for analysis, it was important to confirm no 

errors occurred during this process. The primary application the USAF’s forecasting unit 

uses for analysis is the Forecast Analysis Comparison Plus (FACT+). A preformatted 

report based on D200 business rules was pulled and matched against filtered NIINs 



 

42 

discussed above, to confirm no demand data had been disorganized during cleaning. By 

corroborating that the filtered demand data matches the FACT+ data, it enables later 

comparative analysis from the FACT+ system, which contains the actual USAF forecasts. 

Now, a measurement of accuracy can be compared between the USAF’s actual forecast 

accuracy and the PBM method. 

The next step will be to have a B-1 expert confirm which FSCs can be categorized 

by one specific type of part. Beginning with the NIINs under the top FSCs that account 

for 90% of B-1 demand, the data was further refined by selecting only the top three 

NIINs of each FSC by total demand. From there, this list of parts can be categorized by a 

B-1 maintainer into categories that can be compared. Category examples included 

mechanical, electronic, pneumatic, hydraulic, etc.  Category comparisons were then made 

to test the forecast accuracy of each separate group.  

Demand Patterns 

Another categorical framework that was used to test the accuracy of the PBM 

were demand patterns. There are four demand patterns categorized in spare parts 

literature: smooth, intermittent, erratic, and lumpy (Lowas III, 2015). These categories 

can be determined based on a two parameter matrix shown in Figure 7. 

 

Figure 7: Demand Pattern Matrix (Lowas III, 2015) 

 



 

43 

There are two easy calculations in this process. The first is average demand interval 

(ADI), which represents how frequently at least one demand will be observed. As shown 

in Equation 10, this is calculated as: 

𝐴𝐷𝐼 =  
# 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

# 𝑜𝑓 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
                          (10) 

The second factor is the coefficient of variation (CV), and is a measure of variability 

relative to a sample’s mean. This is shown in Equation 11: 

 

𝐶𝑉 =  
𝜎

𝜇
      (11) 

where 𝜎 is the standard deviation and 𝜇 is the mean. The cutoff limits separating each 

category are ADI = 1.32, and CV= 0.7. Once categories have been identified for each 

NIIN, then a random sample can be taken from each category to select five NIINs to 

compare one demand pattern category to another.  

Slow Trends 

As with many forecasting techniques such as time series regression or some 

exponential smoothing methods, it is a common practice to account for trends in response 

variables. A common phenomenon in spare parts is called the bathtub effect where across 

a systems’ lifecycle it may observe a heightened amount of failures in the beginning, 

which may eventually level off, followed by another interval of increased failures. A 

downfall of both the proportional model and the PBM is that they do not have a 

mechanism to correct for a trend when forecasting multiple periods into the future. 

Therefore, a shear transformation on the demand data, when trends are present, will 

compensate for slow developing trends (Wallace et al., 2000). A simple graph of demand 

across time will provide a sufficient method of evaluating trends that warrant this action. 
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There are five steps to perform this transformation. The first is to fit a trend line to the 

data. This can be done by adding the trend line equation when charting the demand in 

Microsoft Excel. The second step is to perform the shear transformation on the original 

data using Equation 12: 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟′𝑖 = 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑖 

𝐷𝑒𝑚𝑎𝑛𝑑𝑖
′ = 𝐷𝑒𝑚𝑎𝑛𝑑𝑖 − (𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑖 − 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑐)𝑚    (12) 

where Quarteri is the time period, Quarterc is the mid-point in the calibration time 

interval, and m is the slope from the trend line. Next, run the maximum likelihood 

estimator to calibrate the model failure parameters based on the transformed failure data. 

The fourth step is to then compute the predicted removals. Finally, transform the 

predicted removals a second time using Equation 13: 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟′′𝑖 = 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑖 

𝐷𝑒𝑚𝑎𝑛𝑑𝑖
′′ = 𝐷𝑒𝑚𝑎𝑛𝑑𝑖 + (𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑖 − 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑐)𝑚    (13) 

USAF Forecast Method 

Previously, there was a discussion on how the USAF uses an eight quarter moving 

average as the primary means by which it forecasts spare parts. This section will cover 

the calculation used in such a case. To be more exact, the USAF uses what it calls a 

factor method. This method has the effect of calculating the average demand per flying 

hour over eight quarters as shown in Equation 14: 

8𝑄 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒: 𝐹𝑎𝑐𝑡𝑜𝑟𝑇+𝜏 =
∑ # 𝑑𝑒𝑚𝑎𝑛𝑑𝑠 𝑖𝑛 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑖
𝑇
𝑖=𝑇−8

∑ # 𝑓𝑙𝑦𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑖
𝑇
𝑖=𝑇−8

  (14) 
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where T is the last time period where demand was observed, and 𝜏 is the index for the 

time period being forecasted for in the future. The four quarter moving average also uses 

the above method, however it only uses four periods of observations to calculate the 

factor. This rate is what they call a factor. This new rate is then multiplied by the 

forecasted number of flying hours in the period of which the forecast is being made. This 

concept is also frequently referred to as a proportional method because the factor is 

merely the proportional number of demands to flying hours. The next step in the 

proportional method is to forecast the number of demands. This is done by multiplying 

the factor by the predicted flying hours in a future period. 

Experiments 

Test #1. Mechanical versus Electrical Forecasting Accuracy 

There will be two tests performed in this research. The first is going to be a 

comparison of PBM forecast accuracy between each part category. Each FSC is 

categorized into labels such as mechanical, electronic, pneumatic, hydraulic, etc. These 

FSCs categories are verified by a B-1 maintenance expert NIIN by NIIN to form a 

homogenous FSC category. This enables the analyst to group like items together and 

compare forecast accuracy between them. Additionally, this test includes comparisons 

with the USAF’s standard eight quarter and four quarter moving average methods. This 

aspect allows a direct comparison between the PBM and the status quo forecast methods, 

leading to a finite conclusion of the PBMs potential forecasting benefit. 
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Test #2. Demand Pattern Comparison 

The second test is a comparison of forecast accuracy by demand pattern. In a 

similar method as the first test, this analysis allows the analyst to determine the suitability 

of the PBM method across a variety of demand signals. This test again includes 

comparisons between the PBM method and the USAF’s eight quarter and four quarter 

moving averages.  

Forecast Error 

In the literature review there was a discussion covering the differences between 

the USAF’s demand forecast accuracy measurement, mean absolute percent error, and 

mean absolute scaled error (MASE). Additionally, it was explained why MASE was the 

chosen measurement for forecast accuracy in this study. Equation 15 shows the formal 

calculation for MASE:  

𝑆𝑐𝑎𝑙𝑒𝑑 𝐸𝑟𝑟𝑜𝑟: 𝑞𝑡 =
𝑒𝑡

1
𝑛 − 1

∑ |𝑌𝑖 − 𝑌𝑖−1|
𝑛
𝑖=2

 

  𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑡|)     (15) 

where 𝑒𝑡 is the error at time t, and the denominator of the scaled error is the mean 

absolute error of a naïve forecast method (uses previous time period’s demand as next 

period’s forecast) from the training set. A benefit of using MASE not mentioned in the 

literature review is that because it is a scale-free calculation, the MASE of multiple parts 

can be averaged to compare one group to another (Hyndman, 2006). 

Comparative Statistics 

After deriving a CBM forecast it became important to test if there is a significant 

difference in forecast accuracy between the CBM forecast method and a baseline method. 
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The MASE is the measure of comparison between the three forecast methods for each 

NIIN. The mean MASE with sample size n was compared; where n, is the number of 

NIINs in each aggregated forecast comparison method. More specifically, when 

comparing mechanical and electrical components, n equals three, because there are three 

mechanical NIINs that are being compared with three electrical NIINs. When comparing 

the four demand patterns (smooth, intermittent, erratic, and lumpy) n equals ten as there 

will be ten NIINs in each demand category. 

In order to test the difference in sample means, multivariate statistics were 

completed between the CBM forecast and an eight quarter moving average forecast. 

Further, hypothesis tests were conducted to show the evidence supporting the null 

hypothesis that there is no difference between forecast methods.  

 The first step of testing for differences between means of small samples is to test 

for equal variances. This test uses the null hypothesis that both population variances are 

equal. Then the test statistic is calculated by dividing the larger of the two sample 

variances by the smaller sample variance. This test statistic is then compared against an 

𝛼 = 0.05 from the F-distribution. If the test concludes that the two population variances 

are equal, then when calculating sample variance in the next step, a pooled variance 

calculation can be used.  

 The second step is to calculate a confidence interval around the difference 

between the two sample means. This is calculated with Equation 16: 

�̅�1 − �̅�2 ± 𝑡𝑑.𝑓.,𝛼/2√𝑠𝑝2(
1

𝑛1
+
1

𝑛2
)           (16) 

where 
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𝑠𝑝
2 =
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 

and d.f. is 𝑛1 + 𝑛2 − 2. When the confidence interval does not contain zero, then the null 

hypothesis is rejected, and the conclusion is that the two populations are not equal. This 

test is conducted at the 95% significance level. The conclusion of this test is the apex of 

this study, because it provides a scientific method upon which to show how significantly 

these three forecast methods either are or are not different from one another.  

Conclusion 

The methodology chapter explained in detail the background of the PBM and the 

mathematical formulations that drive its forecasts. A discussion was also presented on 

how to evaluate demand forecast patterns, and explained the industry standard used to 

categorize them. Further, a detailed description of data sources along with the method 

used to filter and select individual NIINs for further study was offered. A summary of 

how the USAF calculates its forecasts, its forecast accuracy, and the marginal benefit of 

forecasts methods relative to the baseline were discussed. Finally, multivariate analysis 

methods were discussed which will support a conclusion made about which forecast 

method is more accurate.  
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IV. Analysis and Results 

Chapter Overview 

This chapter will focus on answering the four investigative questions presented in 

the introduction. The first will address known CBM forecasting methods. The next 

question seeks to bring to light data that could be used in a CBM method. The third 

investigative question will pair the answers from questions one and two together, and 

result in a way to test CBM forecasting using USAF spare parts data. The last question 

will use two tests as a means to determine the forecast accuracy of a particular CBM 

method against the USAF’s existing methods. 

Investigative Question 1 

Investigative question one was primarily explored in the CBM Forecast Methods 

section of the literature review. To summarize the results, there were six primary methods 

that have been shown to produce a demand forecast. More specifically, what is most 

beneficial about these methods is that they produce either a time to failure distribution or 

remaining life distribution. From these distributions, analysts can apply general statistics 

to evaluate the probability of a failure given a particular part has survived up to a given 

time period. 

Of these six CBM forecast methods, two stand out as more practical to use due to 

their simplicity. The first was developed by Jardine et al., (1987), which used a standard 

hazard function that is updated based on a part’s condition indicator values. The second 

notable method is from Gebraeel et al., (2005). This technique specifically allows for the 
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use of real-time sensors to depict the condition of a part. This information can then 

periodically update the remaining life curve.  

Investigative Question 2 

The second investigative question assessed known data sources within the USAF 

to explore what could be used in a CBM methodology, with the expressed intent on 

leveraging the USAF’s data warehouse--Global Combat Support System-Data Services. 

The literature review underscored several USAF forecasting methods that assessed parts 

demand correlating with the number of sorties, landings, mission type, and aircraft age. 

These aspects are event data (with the exception of age), and all are relatively easy to 

obtain from the data warehouse. It was this researcher’s prerogative to explore additional 

data silos for more potential use. After additional data universes within the data 

warehouse were explored, a limited set of options remained that were thought to have 

potential correlation to spare parts demand. Of note were data elements from the 

maintenance transaction universe that is rooted in Technical Order 00-20-2, the technical 

manual for maintenance data documentation. As a novice, some components initially 

explored were: 

 Maintenance Transaction Type Codes 

 Action Taken Codes 

 How Malfunction Codes 

 When Discovered Codes 

 Type Maintenance Designator Codes 

 Time Compliance Technical Order Codes 

After receiving corroborating notions from multiple maintainers in the field, it was 

determined that these codes all have questionable accuracy aspects. It is predominantly 

thought that this type of data is manually entered, leaving many possibilities for errors. 
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Also, there is potential for users to enter commonly used codes that will expedite their 

task completion, versus entering accurate codes that may require more supporting 

documentation resulting in a more laborious task. These elements together left all experts 

questioning the soundness of the data.  

 It should be recognized that there is a significant lack of conditional data available 

within the USAF’s data warehouse. The analyst found no data that was comparable to the 

condition indicators noted in the literature review section. In order to fully achieve the 

benefits from CBM, it is imperative to have a data source that can measure the condition 

a particular part is in at any given time.  

Investigative Question 3 

The third investigative question in this research sought to identify CBM forecast 

methods that could use the data elements found in investigative question two. The results 

of the previous analysis left this research primarily with event data. Unfortunately, the 

lack of condition indicators eliminated the CBM forecasting methods that were identified 

in investigative question one. As a result of this, it became a new ambition to determine if 

event data alone could be applied in a CBM-like format. The method selected was the 

PBM model based on LMI’s previous research, because it still incorporated predictive 

capability based on what the aircraft executed.  

Investigative Question 4 

This final question unpacks the quantitative analysis in this research. The 

subsequent narrative will systematically present the results of the two tests performed 
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using the PBM method as a forecasting tool, and compare its results against an eight 

quarter moving average. 

Summary Statistics 

After the common use items were eliminated, 4998 B-1 NIINs were left for 

analysis. Next, each NIIN was categorized according to its demand pattern in accordance 

with Figure 7. Figure 8 shows the frequency among these demand patterns.  

 

Figure 8: B-1 Demand Pattern Frequency 

The next step was to select 10 NIINs at random from each category as a representation of 

that sub-population on which to perform the forecast method on. Appendix D: Demand 

Pattern Demand Data shows the demand for each of these parts. 

Assumptions 

The next step in this analysis is to test the validity of the three assumptions. The 

first assumption was that the four explanatory variables are independent, and not 
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correlated. This was tested using a pair-wise comparison. Figure 9 shows that of the four 

variables, sorties is highly correlated with both flying hours and ground cycles. The 

model included undue influence by keeping sorties in the model, therefore, this variable 

was excluded from predicting parts failures. 

 

Figure 9: Multicollinearity Test 

The second assumption was that part failures can be approximated with a normal 

distribution. The underlying thought is that the higher the number of demands that a part 

has, the better a normal approximation will be appropriate for estimating that part’s 

failure parameters in the maximum likelihood estimator. While some parts assessed in 

this study have relatively few demands, this assumption will be carried throughout 

because of the mathematical simplicity it affords. 

Test #1. Mechanical versus Electrical Forecasting Accuracy 

The purpose behind investigating the forecast accuracy of various part 

classifications was to determine if the stresses on an aircraft affect different part groups in 

a heterogeneous manner. If true, this would allow for a general precedence that would 

show how part failures in each category are correlated with different stresses placed on an 

aircraft. When the top FSCs accumulating 90% of total B-1 demand were verified by the 

B-1 expert, the resulting categories were less diverse than initially presumed. There were 

only two categories of parts: mechanical and electrical. Additionally, the B-1 expert 
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recognized issues with the presented list of NIINs grouped by FSC. The fundamental 

flaw in trying to categorize parts by one classification is that some parts may primarily fit 

into one category, yet are actuated in another way. Dive Flap (013145809) is an example 

of this. This part is primarily mechanical, however is actuated hydraulically, making it 

heterogeneous with other mechanical parts. Therefore, Table 3 should be regarded as an 

over simplification of true classifications. In an effort to keep to the intent of this 

research, the list of NIINs was narrowed to parts that could be categorized as purely 

mechanical or electrical. The next filtering criteria was to select parts based on demand 

pattern in order to hold that aspect constant across the two samples. The smooth pattern 

was the most common pattern amongst the already few mechanical parts left, resulting in 

scoping the analysis down to only assessing smooth demand items. This left three 

mechanical parts. Finally, for comparison, three smooth demand NIINs from the 

electrical category were chosen randomly. Demand history for these parts can be located 

in Appendix E: Mechanical and Electrical Demand Data. 

Table 3: FSC Classifications 

FSC Classification  FSC Classification 

1630 Mechanical  5895 Electrical 

1650 Electrical  5955 Electrical 

1660 Mechanical  5985 Electrical 

1680 Electrical  5996 Electrical 

2840 Mechanical  5998 Electrical 

2915 Electrical  6110 Electrical 

2995 Electrical  6130 Electrical 

4810 Electrical  6150 Electrical 

5821 Electrical  6605 Electrical 

5826 Electrical  6610 Electrical 

5841 Electrical  6615 Electrical 

5865 Electrical  6620 Electrical 
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The results in Table 4 show that a non-transformed four quarter moving average 

method was the most accurate among the six overall. Results also show that in the first 

two items where there is a very strong negative slope, the transformed forecasts perform 

better relative to their non-transformed counterparts, with the exception of the four 

quarter moving average. This is to be expected since the benefit of a smaller average 

horizon is that it by nature accounts for the most recent trend. In the case of a negative 

trend, the eight quarter horizon will typically have larger observations in the beginning 

that pull the average higher than what will be accounted for in the trending forecast 

period. This aspect is exacerbated in the non-transformed PBM model which is calibrated 

based on a 16 quarter time horizon. This serves as an excellent example of when there is 

as strong trend, how the shear-transformation application can substantially improve the 

forecast accuracy of the PBM method.  

Table 4: Test #1 Forecast Error Results 

 

This next section will discuss the comparison of forecast accuracy by part 

category. Table 5 shows the results of all six forecast methods aggregated by part 

category.  

Category NIIN PBM 8QMA 4QMA PBM 8QMA 4QMA Slope

Mechanical 015780463 2.29 0.71 0.62 0.90 0.78 0.78 -8.72

Mechanical 013145809 2.52 1.21 0.60 1.34 0.34 0.15 -7.91

Mechanical 011659072 0.88 1.19 0.96 2.21 2.20 2.47 -1.74

Electrical 011491452 1.60 2.84 3.17 1.54 2.80 1.35 0.01

Electrical 015489586 0.68 0.67 0.65 0.81 1.02 1.18 -0.87

Electrical 014395852 0.62 0.83 0.48 1.34 0.55 0.91 1.55

Average MASE 1.43 1.24 1.08 1.36 1.28 1.14

Non-Transformed Transformed
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Table 5: Aggregate MASE by Part Category 

 

A comparison of means test was performed on this data. First, an F-test was 

completed to validate the assumption that these two populations have equal variances 

(Table 6). Based on a 𝛼 of 0.05, it is concluded that these variances are equal, and 

therefore can be pooled. Next, a confidence interval is calculated on these two population 

means (Table 7). Since this confidence interval does not include zero at the 95% 

confidence interval, it is concluded that these two population means are not equal. 

Furthermore, from this test it can be stated that electrical components have a higher 

forecast error associated with all six forecast methods than mechanical parts do. The 

complication with this result is that though statistically significant, the methodology used 

to arrive at the selected NIINs proved a less than ideal application of this model, and 

therefore would make it difficult to extrapolate these results into future forecasting 

applications.  

Table 6: F-Test for Equal Variances 

 

Table 7: Test for Equal Means 

 

PBM 8QMA 4QMA PBM 8QMA 4QMA Avg. MASE

Mechanical 1.90 1.04 0.73 1.48 1.11 1.14 1.23

Electrical 0.96 1.45 1.44 1.23 1.45 1.14 1.28

Non-Transformed Transformed

F-Test Statistic 0.08

0.05𝛼

1.23

1.28

d.f. 10 Upper Lower

0.10 -0.06 -0.04

t-dist. 0.06

Confidence Interval

�̅� 𝑒𝑐ℎ.
�̅� 𝑙𝑒𝑐.

𝑠𝑝
2



 

57 

Test #2. Demand Pattern Comparison 

This second test was used to evaluate the ability of the PBM method across 

various demand patterns. As discussed previously in the literature review, an item’s 

demand pattern plays a vital role in forecast accuracy. Therefore, this aspect will show 

the robustness of the PBM method by testing its accuracy across a range of categories. 

Additionally, it should be noted that the main measure of forecast accuracy improvement 

or diminishment will be the non-transformed eight quarter moving average. As discussed 

in the literature review, the eight quarter moving average is the USAF’s primary method 

of forecasting base-level demand; being used over 80% of the time. 

Smooth 

Table 8 displays the results of the first set of forecasts in this test. A breakout of 

non-transformed and shear transformed forecasts are displayed along with the slope of 

the historical demand used to calibrate the model. For smooth demand items, the non-

transformed PBM model performed the most accurate, with the transformed PBM also 

performing better than the status quo methods. Specifically, the non-transformed PBM 

showed a 4.43% decrease in forecast error over the eight quarter moving average, while 

the transformed PBM realized a 2.05% decrease. When comparing non-transformed 

forecasts against the transformed methods it is evident that the transformed methods did 

not perform as well. This is likely because in the sample used here the parts all show a 

very weak to negligible trend.  
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Table 8: Smooth Demand Forecasts 

 

Lumpy 

The next demand pattern analyzed was the lumpy demand signal. The test results 

in Table 9 show the transformed eight quarter moving average to be the most accurate 

method--11% more accurate than non-transformed eight quarter moving average. 

However, the transformed PBM produced a narrowly less accurate result. Furthermore, in 

this sample the status quo, non-transformed eight quarter moving average, performed the 

least accurate of all six models. It is possible in this sample that NIIN 015824217 is an 

outlier and therefore influencing the averages of each category more heavily than those of 

the rest of the sample. Though the historical data for this part met the lumpy criteria, it is 

evident once reviewing its actual demand during the forecast period that the part’s pattern 

became very irregular. To elaborate, from 2012-2015 this item had 11 periods with zero 

demands, 3 periods with less than 10 demands, and two periods with a demand greater 

than 60. This prompted the shear-transformed models to calibrate based on a very recent 

NIIN PBM 8QMA 4QMA PBM 8QMA 4QMA Slope

012630536 1.29 1.00 0.95 0.72 1.62 1.66 -0.70

011433525 0.90 0.69 0.62 0.59 0.28 0.28 0.20

015097158 1.32 1.93 1.80 2.10 2.46 2.31 -0.15

012704772 0.53 0.73 0.85 1.25 1.23 1.23 -0.25

011491452 1.75 2.84 3.17 1.54 2.80 3.13 0.01

011478410 2.35 1.01 0.86 2.52 1.23 0.99 0.10

012398983 1.17 2.06 1.82 1.10 1.95 1.72 0.06

013194674 0.72 0.75 0.72 0.56 0.80 0.77 -0.20

013751527 0.41 0.36 0.40 0.44 0.39 0.44 0.04

011829763 0.91 0.50 0.68 0.81 0.43 0.54 0.05

Avg. MASE 1.13 1.19 1.19 1.16 1.32 1.31

Non-Transformed Transformed
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upward trend. Then when actual demand history averaged 68 demands per period during 

the forecasting horizon, the transformed forecasts were already accounting for this recent 

change in demand pattern. This resulted in the transformed models performing 

significantly more accurate than the non-transformed models.  

Table 9: Lumpy Demand Forecasts  

 

Intermittent 

Next, the intermittent demand forecasts were assessed (Table 10). In this test the 

results show both PBM models as having performed 33% - 34% less accurate than the 

proportional model. The model that performed the best was the non-transformed four 

quarter moving average, while the non-transformed eight quarter moving average 

performing the second best. These results are logical because one would expect that when 

demands are sparse then using a slope as a future predictor is less reliable. Additionally, 

as these results show, the intermittent demand signal simply is not a good calibration 

mechanism for the PBM method. 

NIIN PBM 8QMA 4QMA PBM 8QMA 4QMA Slope

013994172 1.02 0.66 0.69 1.26 0.94 0.96 0.03

015499544 2.45 2.21 2.53 2.74 2.62 2.85 0.04

011730600 2.30 2.40 2.40 2.30 2.39 2.39 0.00

013023453 2.39 1.24 1.23 1.13 1.06 1.08 -0.01

015548051 2.82 2.70 2.71 2.91 2.86 2.88 0.03

011642197 0.42 0.28 0.29 0.61 0.30 0.25 0.02

015824217 4.41 6.36 4.93 1.52 2.75 2.14 3.88

015824221 0.24 0.36 0.55 1.92 1.34 1.94 0.72

011505162 0.41 0.43 0.58 0.52 0.56 0.76 0.03

012321676 0.57 0.53 0.42 0.42 0.42 0.35 -0.03

Avg. MASE 1.70 1.72 1.63 1.53 1.52 1.56

Non-Transformed Transformed
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Table 10: Intermittent Demand Forecasts 

 

Erratic 

The final demand pattern to analyze is the erratic pattern. The non-transformed 

eight quarter moving average was decisively the most accurate forecast method for parts 

with erratic demand as shown in Table 11. The PBM models forecasted at least 85% 

worse than the status quo. However, it should be noted that all forecast models showed a 

significantly smaller forecast error than in other demand patterns.  

 

NIIN PBM 8QMA 4QMA PBM 8QMA 4QMA Slope

016525025 1.95 2.58 2.66 3.34 2.84 2.34 0.23

011862809 6.06 4.35 4.92 5.93 5.69 6.07 0.02

016175632 1.17 1.82 0.87 2.09 1.15 1.68 0.28

012110135 0.51 0.75 0.61 1.91 1.49 1.16 0.06

012137727 1.02 1.08 1.08 1.30 0.99 0.97 0.11

015626911 0.65 1.09 0.55 1.79 1.26 1.35 0.56

016525309 2.04 1.65 1.66 2.51 2.21 2.27 0.21

011862810 2.71 1.88 1.88 1.95 1.88 1.88 -0.01

011433521 0.31 0.28 0.29 0.54 0.55 0.53 0.08

012112088 6.22 1.57 1.57 1.45 1.51 1.49 0.02

Avg. MASE 2.26 1.70 1.61 2.28 1.96 1.97

Non-Transformed Transformed
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Table 11: Erratic Demand Forecasts 

 

Overall Demand Pattern Comparison 

When comparing the accuracy between models, Table 12 shows intermittent 

patterns with the worst accuracy, and erratic patterns with the best. Additionally, it is 

worth highlighting that the non-transformed four quarter moving average outperformed 

the status quo, non-transformed eight quarter moving average method by 2%. This 

evidence points to the significance of using multiple methods. Finally, the two PBM 

models performed the worst overall, with the transformed model performing slightly 

better than the non-performed model. 

NIIN PBM 8QMA 4QMA PBM 8QMA 4QMA Slope

012058322 0.67 0.94 0.90 0.72 1.08 1.02 -0.06

013731249 1.53 1.17 1.19 2.83 2.12 2.00 1.44

015006333 0.50 0.38 0.46 0.35 0.54 0.57 -0.08

011491450 0.16 0.17 0.14 0.45 0.48 0.30 -0.45

011838951 2.70 0.38 0.36 0.49 0.40 0.40 -0.25

015452484 0.64 0.76 1.07 1.52 0.91 0.79 0.62

012664261 0.41 0.13 0.28 0.47 0.55 0.56 -0.49

011982203 0.71 0.20 0.46 0.89 0.26 0.34 0.10

011807465 1.33 0.17 0.17 0.24 0.31 0.26 -0.29

011933136 1.98 0.61 0.59 1.13 0.81 0.79 -0.09

Avg. MASE 1.06 0.49 0.56 0.91 0.74 0.70

Non-Transformed Transformed
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Table 12: Demand Pattern Comparison 

 

Now that two PBM forecast methods have been identified as outperforming the 

status quo, this next section will test for significance and present a relative comparison. 

The first comparison will be testing for a significant difference between the non-

transformed PBM forecast accuracy and the non-transformed eight quarter moving 

average method in the smooth demand category. Similar to the approach taken to test for 

significance between the mechanical and electrical MASE results, this analysis will also 

begin with a test for equal variances. As shown in Table 13, these two samples do not 

show evidence to reject the null hypothesis, leading to the conclusion that they do have 

equal variances. Finally, the confidence interval shown in Table 14 shows that these are 

indeed significantly different in populations.  

Table 13: Smooth Demand F-Test for Equal Variances 

 

Table 14: Smooth Demand Test for Equal Means 

 

Pattern PBM 8QMA 4QMA PBM 8QMA 4QMA Avg. MASE

Smooth 1.13 1.19 1.19 1.16 1.32 1.31 1.22

Lumpy 1.70 1.72 1.63 1.53 1.52 1.56 1.61

Intermittent 2.26 1.70 1.61 2.28 1.96 1.97 1.96

Erratic 1.06 0.49 0.56 0.91 0.74 0.70 0.75

Avg. MASE 1.54 1.27 1.25 1.47 1.39 1.39 1.38

Non-Transformed Transformed

F-Test Statistic 0.17

0.05𝛼

1.13

1.19

d.f. 18 Upper Lower

0.50 -0.07 -0.03

t-dist. 0.06

Confidence Interval

𝑠𝑝
2
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The second test for significance is on lumpy demand patterns between the 

transformed PBM forecast method and the non-transformed eight quarter moving average 

method. As before, this analysis begins with a test for equal variance. Again, as shown in 

Table 15, this test concludes that these populations do have equal variances. 

Subsequently, the confidence interval shown in Table 16 supports the conclusion that the 

transformed PBM method is significantly more accurate than the status quo method. 

Table 15: Lumpy Demand F-Test for Equal Variances 

 

Table 16: Lumpy Demand Test for Equal Means 

 

Another way to explain the PBM model’s forecast accuracy relative to the eight 

quarter moving average is by determining the percent change in forecast accuracy 

between the two. Figure 10 illustrates this well. It can be seen that overall the PBM (both 

non-transformed and transformed) performed significantly worse than the baseline. 

However, for smooth and lumpy demand patterns there was a significant improvement in 

accuracy. Finally, Figure 10 clearly shows that for intermittent and erratic patterns the 

PBM well under performs the status quo method.  

F-Test Statistic 0.19

0.05𝛼

1.53

1.72

d.f. 18 Upper Lower

2.71 -0.23 -0.14

t-dist. 0.06

Confidence Interval

𝑠𝑝
2
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Figure 10: PBM Forecast Error Relative to Non-Transformed 8QMA 

The last area in this analysis explored for possible extrapolation potential was the 

potential benefit of using the shear-transformation forecasts over non-transformed 

forecasts methods. When aggregating forecast accuracy across all demand patterns Figure 

11 shows that while not a significant difference, there is a slight benefit to the non-

transformed forecasts over transformed forecasts.  

 

Figure 11: Non-Transformed Versus Transformed Forecast Accuracy 
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However, in the case of lumpy demand patterns there was a significant difference as 

shown in Figure 12. The explanation for this was not transparent, however, this result 

was likely influenced by the potential outlier (NIIN 015824217), which as discussed 

earlier saw a large error reduction by accounting for the trend in the transformed 

methods.  

 

Figure 12: Lumpy Forecast Error 

An effort was made to separate all parts with a significant slope versus those will 

an insignificant slope to determine if there were additional cases where a trend greatly 

influenced the forecast accuracy. Out of the 40 NIINs in this study, only six showed a 

positive or negative slope greater than 0.5 demands per period. When looking at those six 

NIINs together, the MASE results still showed the non-transformed forecasts with a five 

percent better accuracy measure.  

Summary 

This chapter answered the four investigative questions posed in the introduction. 

The first question used the literature review as the substantive evidence that defined the 
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common CBM forecasting methods in academic literature today. Question two sought to 

identify data in the USAF’s central data warehouse in an effort to find both event and 

condition indicator data. After finding only event data it was recognized that a substantial 

loss of CBM capability would be missed without the better quality data. Question three 

assessed what could be done with the data obtained, and funneled efforts toward the 

PBM. The final investigative question was answered through two separate tests. The first 

test looked at evaluating forecast accuracy based on component make-up. It was found 

that B-1 parts primarily fell into two categories, mechanical or electrical. This made the 

test results less practical than originally thought. The second test established overall 

forecast accuracy comparisons between the PBM and an eight quarter moving average. 

Then this test addressed differences in accuracy by demand pattern. 
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V. Conclusions and Recommendations 

Chapter Overview 

The objective of this chapter is to tie together large scale conclusions from this 

research effort. Additionally, it quantifies the significance of this research, and frames the 

implications of the potential impacts of this research. Then a list of recommended actions 

are presented to persuade stakeholders what further measures could advance the impact 

this research has on benefiting the USAF. Lastly, a discussion of future research suggests 

other follow-on studies. 

Conclusions of Research 

This research effort began with the ambition to explore the art of the possible, by 

capitalizing on the USAF’s data warehouse. A superior competency seemed to divide 

new sophisticated forecast methods based on data analytics with the archaic and simple 

methods the USAF uses for spare parts. It was this notion that made this topic seem ripe 

for improvement.  

The first investigative question identified the major CBM forecast methods that 

could be used in the application of forecasting aircraft parts. Two particular methods 

were recommended as seminal works that should be looked to as baseline models in any 

organization using CBM. The first was developed by Jardine et al., (1987). Their method 

took a standard hazard function, and updated this distribution based on a particular part’s 

condition indicator values. The second method developed by Gebraeel et al., (2005), has 

the added benefit of using real-time sensors to update a remaining life curve. Both 

instances, along with all of the CBM forecast methods discussed in the literature review 
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are predicated on having information on the condition of a particular part. This is where 

the largest set-back in pursuing a true CBM method came. 

Investigative question two focused on using the USAF’s data warehouse, Global 

Combat Support System-Data Services, to find key data frames that could hold potential 

in a CBM format. As thoroughly discussed earlier, a void of condition indicators was 

identified. However, recognizing the ample event data, there was still hope for utility in 

this data source. Question three then sought to compare what CBM methods could be 

applied given the data at hand. A model established by contractors at LMI had proved 

very robust in other applications of research. Because of this, their PBM forecast method 

looked to be a novel pursuit given only event data. 

Question four investigated the statistical evidence comparing the USAF’s primary 

forecasts method against a CBM like technique. It did this through two tests. The first test 

assessed the PBM’s capacity to differentiate forecast accuracy between electrical and 

mechanical components. Though the results of this test proved statistically significant, 

the overall method of identifying purely electrical and purely mechanical components 

was found to be less substantive than originally hoped. The second test focused on 

comparing the PBM against the USAF’s eight quarter and four quarter moving average 

forecasts. The overall test results showed that the PBM well under performed the status 

quo. However, when broken out by smooth demand, the non-transformed PBM out 

performed all other methods. Additionally, for lumpy demand parts, the transformed 

PBM method performed significantly better than the standard eight quarter moving 

average. 



 

69 

Significance of Research 

There are three significant aspects of this research. The first shows that a CBM 

method using solely event data can be effective. A contribution to academic literature is 

that all other CBM forecast methods found required specific beginning and end life cycle 

data to form a reliability distribution. A greatly simplified explanation of why the PBM 

seems to work is that instead of forming a reliability distribution based on a sample of 

failure data, the PBM uses a conditional Bayesian sight-picture to calibrate failure 

parameters that in its own way form the reliability distribution. This is done through the 

use of a maximum likelihood estimator. 

The second significant contribution from this research was found in the second 

test of investigative question four. As stated above, there were two specific instances 

where the PBM method outperformed the USAF’s primary forecasting method. It was 

identified in the introduction that forecast error accounts for $5.5 billion worth of 

inventory across all USAF managed parts. Of the smooth and lumpy demand patterns 

where the PBM was significantly more accurate, the PBM would have reduced the dollar 

value of forecast error on B-1 parts by $12.6 million or effectively 2.46% of error by 

dollar value. If this premise was applied across all weapon systems the result would be a 

substantially larger dollar value.  

The impact of a more accurate forecast method has further implications as well. 

When considering a supply chain as a system, the primary methods used to overcome 

forecast error are increased safety stock and faster order delivery. To the USAF this 

means increased carrying costs, and increased expediting costs. Therefore, the true 
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impact of even minimal forecast improvements would go far beyond accurate 

appropriation of funds. 

Recommendations for Action 

As a result of this research, it is recommended to consider three primary actions. 

First, the forecast accuracy results found on smooth and lumpy demand items should be 

validated with larger samples and across all airframes. It is possible that forecast accuracy 

based on factors of flying hours, number of landings, and number of ground cycles could 

have wide ranges. Additionally, other weapon systems may not show a dependent 

correlation between the number of flying hours and the number of sorties, thus resulting 

in adding the number of sorties as an explanatory variable.  

The second recommend action is to suspend the use of demand forecast accuracy 

as the central measurement of forecast accuracy in the USAF. As discussed in Chapter II, 

there are several critical oversights with this calculation making it unsuitable especially 

for intermittently demanded items. Therefore, it is recommended that the USAF adopt the 

use of MASE as the primary forecast error calculation it its place. The analytical 

performance of this tool is far superior, and should prompt immediate use of MASE. 

The last recommendation is to consider an increased use of a four quarter moving 

average. Though not thoroughly discussed in the results section, it was shown that the 

most accurate forecast method across all demand patterns was the four quarter moving 

average. Currently, the USAF uses this forecast method on only 15% of the items it 

manages. This research suggests there should be a much larger application of this method 

than currently used. 
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Recommendations for Future Research 

There are three recommended future topics at the conclusion of this research: 

Recommendation 1: Potential conditional information sources 

Data use is a widely talked about topic throughout the USAF. Because of this, 

several initiatives are in infancy that may solve the missing link the USAF would need to 

implement true CBM methods. The first is the F-35’s Automated Logistics Information 

System. New processes are improving regularly with the fielding of this technology. This 

system is possibly the greatest opportunity for conditional data due to the substantial 

number of sensors the jet was designed with. Another opportunity to obtain USAF 

conditional data comes from a flight operations data collection system referred to as 

Military Flight Operations Quality Assurance (Megatroika, Galinium, Mahendra, & 

Ruseno, 2015). At one point in this research effort it seemed possible to obtain raw 

sensor data from the government contractor who maintained this system for the B-1 

aircraft. However, a substantive wait led to a need to put aside that pursuit. If a researcher 

were to pursue this course early and with the right sponsor, then this path may prove 

fruitful.  

A future project allegedly in work by the Air Force Research Laboratory is a 

“Digital Thread Digital Twin” program, however, recent updates on this project were 

hard to uncover (Kobryn, 2014). The basic idea is that there is a data surrogate for every 

materiel system. This digital twin allows analyst to perform simulated tests or large scale 

data analytics such as CBM forecasting. 
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Recommendation 2: CBM Inventory Policy 

The second recommendation falls under a very sparsely researched topic. As new 

and as limited of an application as CBM is throughout maintenance organizations today, 

a notion of a spare parts inventory model based on CBM inputs is even rarer. Picture a 

system that would place an order for a part two weeks before a part would fail based on 

sensors on a part that would tell the system its diminishment. To some, this would be the 

holy grail of inventory management by effectively eliminating the need for safety stock 

inventory all together. A novel approach was an age-dependent supply replenishment 

policy developed by the U.S. Coast Guard in 2006. When compared to the non-age 

dependent policy, the age-dependent policy reduced average total cost by 22% 

(Deshpande, Iyer, & Cho, 2006). It should be noted that the Coast Guard’s IT systems 

specifically track end items by serial number and by usage, thus allowing such a practice.  

Recommendation 3: PBM Sliding Scale Analysis 

The final recommended research area is to explore the reliance of the PBM’s 

dependence on the sliding scale forecast parameter. As explained in the third chapter of 

this report, the PBM scale requires an analyst to forecast both flying hours and a flying 

profile ratio between training sorties and combat sorties. The aspect of sliding scale 

forecast error was not assessed in this research. Rather, it was assumed that each 

forecasted time period’s actual flying profile (known only in hind-sight) was what was 

actually predicted. By making this assumption it eliminated variance due to forecasting a 

different flying profile than what was executed.  
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Summary 

It is the belief of this researcher that CBM has a wide and influential application 

throughout the USAF, and should be considered a high priority in the maintenance and 

the logistics fields to seek more applications. This research has explored what CBM is 

defined as, and how academia views it. Also, this research has addressed previous 

initiatives the DoD has engaged in an effort to establish a robust CBM program. After 

identifying data collection gaps between where the USAF currently is and where 

academia suggests, a novel event data approach to CBM forecast was explored. The 

results of this analysis show a limited yet still influential application of the PBM 

forecasting method. Finally, the precluding detailed discussion on recommended actions 

and recommended future research serve as new opportunities to continually advance the 

application of CBM throughout the DoD.  
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Appendix A: Weapon Systems Dash Board 

  

Figure 13: December 2016 Operations Summary Snapshot 
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Appendix B: Diagnostic and Prognostic CBM Summary 

  

Author Article Name Inputs Outputs Technique Significance 

Jardine, A., Anderson, P., 

& Mann, D. (1987) 

Application of the Weibull 

Proportional Hazards Model 

to Aircraft and Marine 

Engine Failure Data 

- Age-dependent baseline 
hazard function 
- Condition indicators PHM distribution PHM 

Used MLE to find the 
parameters of Weibull 
PHM distribution 

Moubray, J. (1997) 

Reliability-Centered 

Maintenance (ed 2) 

- Condition indicators 
- "On-Condition Task" 
interval P-F Interval P-F Interval 

Established framework 
to estimate TTF 

Goode, K., Moore, J., & 

Roylance, B. (2000) 

Plant machinery working life 

prediction method utilizing 

reliability and condition-

monitoring data 

- Condition Indicators 
- Weibull parameter 
estimates TTF distribution P-F Interval 

Enhanced Moubray's P-F 
Interval with a Weibull 
distribution 

Swanson, D. (2000) 

A General Prognostic 

Tracking Algorithm for 

Predictive Maintenance - Condition Indicators Hazard distribution Kalman Filters 

Used Kalman Filters to 
detect changes in 
indicators 

Murray, J., Hughes, G., 

& Kreutz-Delgado, K. 

(2005) 

Machine Learning Methods 

for Predicting Failures in 

Hard Drives: A Multiple-

Instance Application 

-Self-Monitoring and 
Reporting Technology (ie. 
many simultaneous 
condition indicators) 

Fault detection 
classification 

Compared support 
vector machines, rank-
sum, mi-BM (among 
others) 

Proposed 
efficient/accurate 
multiple-instance 
learning algorithm for 
fault detection 

Gebraeel, N., Lawley, 

M., Li, R., & Ryan, J. 

(2005) 

Residual-Life Distributions 

From Component 

Degradation Signals: A 

Bayesian Approach 

- Population reliability 
distribution parameters 
- Condition Indicators 

Residual-life 
distribution 

Bayesian Degradation 
Signal Model 

Real-time sensor based 
failure model 

Wang, W. (2007) 

A Two-Stage Prognosis 

Model in Condition Based 

Maintenance 

- Categorical & continuous 
condition indicators TTF distribution 

Discrete/Continuous 
Hidden Markov Model 

Combined continuous 
and categorical data into 
state descriptor variable 

Tracht, K., Goch, G., 

Schuh, P., Sorg, M., & 

Westerkamp, J. (2013) 

Failure probability prediction 

based on condition 

monitoring data of wind 

energy systems for spare 

parts supply 

- SCADA condition 
Indicators PHM distribution Enhanced PHM 

Used SCADA data as 
covariates in binomial 
PHM distribution 
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Appendix C: Sliding Scale Equations 

Peacetime Average Sortie Duration (ASDPT) =
# 𝑃𝑒𝑎𝑐𝑒𝑡𝑖𝑚𝑒 𝑆𝑜𝑟𝑡𝑖𝑒𝑠

# 𝑃𝑒𝑎𝑐𝑒𝑡𝑖𝑚𝑒 𝐹𝑙𝑦𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠
 

 

Wartime Average Sortie Duration (ASDWT) =
# 𝑊𝑎𝑟𝑡𝑖𝑚𝑒 𝑆𝑜𝑟𝑡𝑖𝑒𝑠

# 𝑊𝑎𝑟𝑡𝑖𝑚𝑒 𝐹𝑙𝑦𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠
 

 

Peacetime Average Landings Per Sortie (LPSPT) = 
# 𝑃𝑒𝑎𝑐𝑒𝑡𝑖𝑚𝑒 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑠

# 𝑃𝑒𝑎𝑐𝑒𝑡𝑖𝑚𝑒 𝑆𝑜𝑟𝑡𝑖𝑒𝑠
 

 

Wartime Average Landings Per Sortie (LPSWT) = 
# 𝑊𝑎𝑟𝑡𝑖𝑚𝑒 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑠

# 𝑊𝑎𝑟𝑡𝑖𝑚𝑒 𝑆𝑜𝑟𝑡𝑖𝑒𝑠
 

 

Predicted Peacetime Flying Hours (PTFH^) 
= 𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑′𝑠 𝑃𝑒𝑎𝑐𝑒𝑡𝑖𝑚𝑒 𝐹𝑙𝑦𝑖𝑛𝑔 %

∗ 𝐹𝑢𝑡𝑢𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑′𝑠 𝐹𝑙𝑦𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠 
 

Predicted Wartime Flying Hours (WTFH^) 
= 𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑′𝑠 𝑊𝑎𝑟𝑡𝑖𝑚𝑒 𝐹𝑙𝑦𝑖𝑛𝑔 %

∗ 𝐹𝑢𝑡𝑢𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑′𝑠 𝐹𝑙𝑦𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠 
 

Predicted Peacetime Cold Cycles (PTCC^) =
(𝑃𝑇𝐹𝐻^)

(𝐴𝑆𝐷𝑃𝑇)
  

 

Predicted Wartime Cold Cycles (WTCC^) =
(𝑊𝑇𝐹𝐻^)

(𝐴𝑆𝐷𝑊𝑇)
 

 

Predicted Cold Cycles (CC^) = 𝑃𝑇𝐶𝐶^ +𝑊𝑇𝐶𝐶^ 

 

Predicted Peacetime Warm Cycles (PTWC^) = (𝐿𝑃𝑆𝑃𝑇 − 1) ∗ 𝑃𝑇𝐶𝐶^ 

 

Predicted Wartime Warm Cycles (WTWC^) = (𝐿𝑃𝑆𝑊𝑇 − 1) ∗𝑊𝑇𝐶𝐶^ 

 

Warm Cycles (WC^) = 𝑃𝑇𝑊𝐶^ +𝑊𝑇𝑊𝐶^ 

 

Ground Cycles (GC^) = (𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐻𝑟𝑠𝑡−1 − 𝐹𝑙𝑦𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠𝑡)/24 

 

*Note, this research assumes the user knows the forecast year’s flying profile mix of 

PTFH and WTFH. Also, Possessed Hours is assumed to remain constant from last known 

year in order to forecast into future years. 
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Appendix D: Demand Pattern Demand Data 

 

Demand 

Pattern NIIN-SGM Noun.

2012

Q1

2012

Q2

2012

Q3

2012

Q4

2013

Q1

2013

Q2

2013

Q3

2013

Q4

2014

Q1

2014

Q2

2014

Q3

2014

Q4

2015

Q1

2015

Q2

2015

Q3

2015

Q4

2016

Q1

2016

Q2

2016

Q3

2016

Q4

Smooth 012630536 COMPUTER,F 39 21 27 20 13 13 15 22 19 21 20 18 10 10 21 20 9 8 17 12

Smooth 011433525 CONTROL BO 1 4 8 6 4 2 5 10 1 4 6 9 4 4 9 7 6 4 5 7

Smooth 015097158 ACTUATOR,E 8 6 7 4 4 4 3 4 2 4 2 1 6 5 4 5 2 3 7 6

Smooth 012704772 PCA #3 157 2 8 6 5 8 4 3 1 0 2 8 2 2 2 1 3 3 2 5 3

Smooth 011491452 PUMP,SUBME 9 6 10 7 9 8 8 2 10 13 11 7 6 6 9 9 12 11 14 14

Smooth 011478410 CYLINDER A 3 8 10 8 9 15 8 14 12 15 10 7 9 8 11 7 3 5 1 0

Smooth 012398983 FREQUENCY 13 13 5 10 5 16 13 10 3 6 8 15 16 17 11 5 18 16 10 17

Smooth 013194674 COUPLER,AN 4 3 8 4 4 6 5 3 6 1 6 4 4 1 4 0 1 4 4 0

Smooth 013751527 COMPUTER,F 16 10 20 5 12 3 7 8 9 8 23 5 15 18 6 13 5 2 5 5

Smooth 011829763 INDICATOR, 1 4 4 2 4 5 3 7 5 2 4 6 3 1 1 7 6 2 3 2

Lumpy 013994172 PCA 2  9-S 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0

Lumpy 015499544 ACTUATOR,E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2

Lumpy 011730600 AMPLIFIER, 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 4 1

Lumpy 013023453 CIRCUIT CA 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

Lumpy 015548051 POWER SUPP 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 1 0 0

Lumpy 011642197 CONTROL,IN 1 0 3 2 1 2 0 2 1 3 3 1 5 2 0 0 0 1 1 1

Lumpy 015824217 WHEEL,LAND 0 0 0 0 0 0 0 0 0 0 1 8 0 7 64 111 72 44 76 79

Lumpy 015824221 BRAKE,MULT 0 0 0 0 0 0 0 0 0 0 0 1 1 26 12 2 5 4 3 5

Lumpy 011505162 VALVE,HYDR 1 1 2 2 2 0 1 0 0 1 2 0 1 0 3 3 1 1 0 0

Lumpy 012321676 CONTROL UN 2 0 0 1 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 1

Intermittent 016525025 DRIVE UNIT 0 0 0 0 0 0 0 0 3 3 3 2 2 1 2 4 0 3 2 2

Intermittent 011862809 TANK,HYDRA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Intermittent 016175632 POWER CONT 0 0 0 0 0 0 0 0 0 2 1 0 0 3 3 7 3 2 2 3

Intermittent 012110135 VALVE,SOLE 0 0 0 0 0 0 2 0 1 1 2 2 2 0 0 0 1 0 0 0

Intermittent 012137727 SWITCH,RAD 0 0 2 2 0 0 0 2 2 1 3 1 0 3 2 2 1 3 0 2

Intermittent 015626911 COMPUTER,F 0 0 0 0 0 1 7 3 2 3 3 5 8 8 3 10 8 5 4 4

Intermittent 016525309 DRIVE UNIT 0 0 0 0 0 0 0 0 2 3 2 2 3 1 2 3 3 3 1 0

Intermittent 011862810 TANK,HYDRA 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Intermittent 011433521 TURBINE,AI 0 0 3 0 1 0 1 0 0 0 4 1 1 2 2 1 1 1 1 0

Intermittent 012112088 VALVE,OXYG 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1

Erratic 012058322 VALVE,SHUT 3 5 0 1 10 1 3 6 0 2 3 3 1 4 1 4 8 2 5 3

Erratic 013731249 EXTINGUISH 0 10 7 9 25 6 18 20 38 27 4 32 40 34 22 11 3 0 1 0

Erratic 015006333 PCA 11  BL 1 3 1 3 1 0 3 5 2 2 0 2 1 0 1 1 1 2 1 0

Erratic 011491450 PUMP,SUBME 13 3 30 22 5 4 7 14 4 6 2 6 8 4 16 10 8 4 2 5

Erratic 011838951 ANTI-ICE M 6 6 2 3 4 4 15 7 5 5 1 1 2 0 3 4 1 2 2 0

Erratic 015452484 PROCESSOR, 1 2 1 2 2 3 8 8 11 6 7 21 10 3 10 6 15 5 7 7

Erratic 012664261 OSCILLATIN 11 7 9 8 2 2 7 7 1 3 11 1 4 0 2 1 3 2 2 1

Erratic 011982203 CIRCUIT CA 12 3 2 3 5 4 0 0 6 13 15 12 18 0 1 1 8 5 3 3

Erratic 011807465 ELECTRONIC 2 3 8 5 9 3 8 4 3 2 0 2 2 1 2 2 1 1 0 1

Erratic 011933136 CIRCUIT CA 2 4 1 1 4 4 3 4 0 0 3 2 2 1 1 2 3 0 1 1
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Appendix E: Mechanical and Electrical Demand Data 

 

  

Part 

Category NIIN-SGM Noun.

2012

Q1

2012

Q2

2012

Q3

2012

Q4

2013

Q1

2013

Q2

2013

Q3

2013

Q4

2014

Q1

2014

Q2

2014

Q3

2014

Q4

2015

Q1

2015

Q2

2015

Q3

2015

Q4

2016

Q1

2016

Q2

2016

Q3

2016

Q4

Mechanical 015780463 FLAP,INLET 294 293 218 218 226 247 176 297 125 183 215 165 131 118 156 192 92 98 55 16

Mechanical 013145809 FLAP, DIVE 226 243 191 157 154 166 139 196 165 430 152 161 124 166 58 11 27 11 0 4

Mechanical 011659072 NOSE WHEEL 78 41 29 40 42 23 29 28 16 12 33 16 23 33 31 28 26 20 29 33

Electrical 011491452 PUMP,SUBME 9 6 10 7 9 8 8 2 10 13 11 7 6 6 9 9 12 11 14 14

Electrical 015489586 CIRCUIT CA 34 26 31 26 21 12 3 7 17 23 12 18 7 16 21 18 12 15 2 12

Electrical 014395852 GENERATOR 11 3 11 18 9 11 15 17 20 13 15 23 36 45 12 30 27 22 24 13
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Appendix F: Quad Chart 
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