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Abstract 
 

Water scarcity and contamination are challenges to which the United States 

homeland is not shielded and policies and technologies that support a “Net Zero” water 

use posture will become increasingly critical.  This work examined ultraviolet (UV) light 

emitting diodes (LED) and hydrogen peroxide in an advanced oxidation process in 

support of a USAF net zero water initiative.  A UV LED reactor was used for degradation 

of soluble organic chemicals.  Linear relationships were observed between input drive 

current, optical output power, and apparent first order degradation rate constants. When 

drive current was varied, apparent first order degradation rates depended on chemical 

identities and the drive current. When molar peroxide ratios were varied, kinetic profiles 

revealed peroxide-limited or radical-scavenged phenomena. Accounting for molar 

absorptivity helped explain chemical removal profiles.  Observed degradation kinetics 

were used to compare fit with molecular descriptors from published quantitative structure 

property relationship (QSPR) models.  A new QSPR model was built using zero point 

energy and molar absorptivity as novel predictors.  Finally, a systems architecture was 

used to describe a USAF installation net zero water program and proposed areas where 

UV LED reactors might be integrated. Facility-level wastewater treatment was found to 

be the most feasible near-term application. This research is the first UV LED-based AOP 

study to identify linear power-kinetics relationships, determine optimum molar peroxide 

ratios, and reveal the complexity of molar absorptivity in shaping treatment profiles.   
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DYNAMICS OF CHEMICAL DEGRADATION IN WATER USING 

PHOTOCATALYTIC REACTIONS IN AN ULTRAVIOLET LIGHT EMITTING 

DIODE REACTOR 

 
I.  Introduction 

 

1.1. Motivation 

The United States Air Force (USAF) Energy Strategic Plan identifies water as a 

critical asset and incorporates water into a strategy seeking to balance resource 

consumption, production, and conservation (US Air Force 2013).  It sets a foundation for 

all Airmen to make energy and water conservation a part of operational considerations. 

The USAF generally consumes around 27 billion gallons of water per year at an annual 

cost of $150 million, and energy utilized in water treatment and delivery contributes to an 

overall $9 billion annual energy cost.  The plan establishes energy priorities of improved 

resilience, reduced demand, assured supply, and fosters an energy aware culture.  This 

culture should lead the way toward a future state where the USAF identifies and 

integrates energy and water efficiency throughout business and planning processes, 

promotes integration of new technologies to reduce costs and increase effectiveness, and 

leverages investments in a constrained resource environment.  In the near term, the USAF 

has established a “Net Zero Initiative” where an installation consumes no more energy 

than is generated on the installation, and potable water demand is reduced by capturing 

and reusing, repurposing, or recharging an amount of water that is greater than or equal to 

the volume of water the installation uses.  The initiative is designed to achieve a federal 
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zero net energy goal by 2030 for new facility construction and alterations (US Air Force 

2013).  

 

Furthermore, the US military has been engaged globally since World War I with 

forces deployed worldwide supporting a spectrum of operations from humanitarian crises 

to wartime contingencies.  The reach of the military has continued to grow in recent 

decades with a need for simultaneous peacetime and wartime operations, and it is 

inevitable that the need for global engagement will continue in coming decades.  An 

adequate supply of clean, safe drinking water is critical to the success of US forces 

carrying out missions in support of these operations.  Water is necessary for hydration, 

food preparation, medical treatment, hygiene, construction, decontamination, 

maintenance, and many additional tasks.  Water supply functions enable freedom of 

action, extend operational reach, and prolong operational endurance (US Army 2015).  

Water supply to both large, established bases and forward-deployed personnel is one of 

the largest logistics requirements of the military; however, water is also a limited 

resource that can cause disruptions and instability in numerous regions across the world.   

Conserving energy and water not only results in savings to the USAF, it can also mitigate 

increased competition in water-scarce regions that provoke potential conflicts (US Air 

Force 2013): 

“Optimizing energy and water use not only saves resources and money, but is 

also a force multiplier that allows the Air Force to apply resources and airpower 

more efficiently and effectively.”   
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1.2. Problem 

 In an operational context that seeks to balance fiscal constraint with sustained 

global operations, the USAF needs to consider emerging technologies for water treatment 

that provide necessary water supply while simultaneously reducing energy costs and 

striving for net zero consumption.  Once such technological advancement is recent 

development of energy efficient ultraviolet (UV) light emitting diodes (LED) as a 

replacement for high energy consuming mercury vapor lamps in advanced oxidation 

processes (AOP) utilizing hydrogen peroxide (H2O2).  UV LED based water treatment is 

now possible.  However, little data is available on the use of UV LED/H2O2 for the 

destruction of soluble organics (Duckworth, et al. 2015; Scott, et al. 2016).  There is a 

need to expand understanding of organic chemical destruction work to a greater number 

of chemicals to improve the fundamental understanding of this process. This study seeks 

to expand upon UV LED AOP treatment for the degradation of soluble organic 

compounds.  

There is also a general need to assess tools that can be used to predict chemical 

degradation in UV AOPs in general, and particularly UV LED-based processes. 

Quantitative structure-property relationships (QSPR) can provide such a tool. The 

advantage of the QSPR approach, once an acceptable model is developed, is the ability to 

predict removal relative to baseline conditions strictly on the basis of the compound 

structure without further laboratory testing.  Several previous studies have developed 

QSPRs relating chemical structure to degradability (Sudhakaran, et al. 2012; Chen, et al. 

2007; Kusic, et al. 2009; Lee and von Gunten 2012; Meylan and Howard 2003; 
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Minakata, et al. 2009; Ohura, et al. 2008; Sudhakaran and Amy 2013; Wang, et al. 2009).  

QSPRs have not been evaluated for UV LED-based reactors.  

 1.3. Research Objectives and Scope 

1.3.1. Objectives 

1.3.1.1. The first objective is to determine the effect of key reactor operating 

parameters on the reaction mechanisms associated with the advanced oxidation of soluble 

organic compounds with UV LEDs. The supporting tasks are: 

• Determine the effect of peroxide stoichiometry on typical soluble organic 

chemical degradation profiles  

• Determine the effect of LED output power on soluble organic chemical 

degradation profiles  

• Evaluate optimality of degradation rate/input power/H2O2 combinations 

Hypothesis #1 is that reactions with chemicals involving chain-terminating steps (i.e., 

those that stop the propagation of hydroxyl radicals) are expected to slow down at a faster 

rate as the availability of light and H2O2 is decreased, as compared to chemicals not 

involving chain-terminating steps.  These chain-terminating steps cause peroxide to 

become consumed, which in turn prevents the regeneration of hydroxyl radicals. 

Chemicals that involve chain-terminating steps include tert-butyl alcohol. 

1.3.1.2. The second objective is to evaluate QSPRs for the advanced oxidation of 

soluble organic compounds with UV LEDs. The supporting tasks are: 

• Determine apparent first order degradation rate constants for test chemicals 
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• Determine molecular descriptors for test chemicals 

• Assess apparent first order degradation rate constant fit to molecular descriptors 

used in existing QSPRs in the literature  

• Utilize multivariate methods to develop and test new basic QSPRs 

Hypothesis #2 is that the observed reaction rate can be best predicted using frontier 

electron density (FED).  The rationale for this is as follows.  FED is a part of electronic 

theory, where the reactivity of a chemical can be explained by the distribution of 

electrons in a molecule (Fukui 1981).  FED theory involves determining the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) interaction.  For electrophilic reactions, HOMO densities govern reaction 

pathways, while for nucleophilic reactions, the LUMO densities govern reaction 

pathways.  Additionally, Koopman’s theorem states that ionization energy (or ionization 

potential) of a molecule is equal to the negative of the HOMO energy.  Following this 

hypothesis, the observed reaction rates should be greatest where the HOMO-based FED 

is highest (or conversely, the ionization energy is lowest). 

1.3.1.3. The third objective is to use systems engineering principles to propose 

appropriate applications of UV LED-based reactors in support of specific water quality 

applications. The supporting tasks include: 

• Identify the scope of near term water quality challenges in USAF 

• Identify opportunities to couple AOP with other existing and emerging 

technologies (e.g. microbial fuel cells) 
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• Build a conceptual systems architecture view illustrating areas of potential UV 

LED/H2O2 technology integration within a “Net Zero” water program 

 

Hypothesis #3 is that the most promising near term UV LED applications will involve 

those that leverage existing technologies to treat low flow waste streams to remove 

chemicals that do not include chain terminating steps. 

1.3.2. Scope 

The scope of this research is limited to degradation of six dyes and five 

achromatic chemicals by UV LED/H2O2 AOP.  In this work, achromatic is used 

explicitly to denote the chemicals are without color (e.g. they do not have a visible 

spectrum).  The scope is also constrained to the specific reactor and associated reactor 

parameters utilized in the experiments; however, the results of this study may be more 

broadly applicable to optimizing reactor design and operating parameters.  Degradation 

rate constants derived from an experiment are limited in scope to the conditions under 

which the experiment was conducted (e.g. flow, volume, chemical concentrations, UV 

intensity, etc.).  Additionally, QSPR development is limited to the domain of applicability 

of the test compounds used to develop the model.  Development of a systems architecture 

view is hypothetical in nature and must be customized to specific installation 

requirements.   

1.4. Contributions 

This research effort expands significantly upon prior UV LED AOP studies.  The 

initial emphasis was on creating a reactor platform that allowed for comparative 
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UV/H2O2 AOP degradation analysis of multiple dyes and achromatic chemicals across 

varying H2O2 concentrations and light intensities.  Reactor operating parameters were 

adjusted to assess models of optimal efficiency and gain insight into hydroxyl radical 

production and associated degradation rates.  Molecular descriptors of the dyes and 

achromatic chemicals used were assessed for their predictive capability and molecular 

descriptors used in existing QSPRs were assessed for their fit to the UV LED domain.   

Several specific contributions to the existing body of knowledge come from this 

research: 

1. A comparison of degradation kinetics for six dyes and five achromatic 

chemicals reacted in the same well-mixed, flow through reactor platform under the same 

reaction conditions. 

2. An understanding of any relationships between degradation kinetics and 

molecular descriptors for six dyes and five achromatic chemicals and development of a 

novel QSPR. 

3. An assessment of the adequacy of existing QSPR models relating molecular 

descriptors to apparent first order degradation rate constants. 

4. An understanding of the impact of molar absorptivity of a dye at peak LED 

output wavelength on overall reaction kinetics. 

5. A comparative analysis of the efficiency tradeoffs between optical output 

power, H2O2 concentration, and apparent first order degradation rate constants. 
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1.5. Document Outline 

This dissertation contains five chapters. Chapter I provided the motivation, 

problem statement, research questions, scope, and tasks.  Chapters II-IV are presented in 

scholarly format where each chapter can stand alone and be made ready for publication in 

journals/conference proceedings, although currently their level of detail is designed for 

this dissertation.  Chapter II addresses research objective 1 and presents the results of 

reactor operating parameter effects on degradation kinetics and analyzes comparative 

kinetics of the various test compounds.  Chapter III addresses research objective 2 in 

assessing suitability of molecular descriptors used in existing QSPR models and their fit 

to the UV LED domain.  Chapter III also discusses efforts to build new basic QSPRs 

from the apparent first order degradation rate constants and molecular descriptors 

relevant to the test compounds.  Chapter IV reviews near term water challenges for the 

USAF and introduces a proposed “Net Zero” systems architecture view, integrating UV 

LED AOP with other treatment technologies.  Finally, Chapter V offers concluding 

discussion and suggestions for future work. 
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II. The Effect of Operating Parameters on Kinetics in an UV LED/H2O2 Advanced 
Oxidation Process 

 

Keywords 

Ultraviolet (UV), light emitting diode (LED), advanced oxidation process (AOP), 
hydrogen peroxide (H2O2)  

Abstract 

A bench-scale reactor utilizing UV LEDs as an energy source in a UV/H2O2 advanced 
oxidation process was used for the degradation of 6 dye and 5 achromatic organic 
compounds.  As individual LEDs provide significantly less total output power as 
compared to mercury lamps, it is important to understand parameters that impact the 
production and efficient utilization of the available photons.  There was a linear 
relationship between the input drive current, optical output power, and the apparent first 
order degradation rate constant, consistent with first principles from quantum mechanics. 
When the drive current was systematically varied, the apparent first order degradation 
rate constants depended on the identity of the test compound and the drive current, and 
were between 0.003 min-1 - 1.078 min-1. There was also a linear relationship between the 
drive current and the degradation extent. When the molar peroxide ratio was 
systematically varied, the kinetic profiles revealed either peroxide-limited or radical-
scavenged phenomena, consistent with existing literature. The optimum molar peroxide 
ratios were at or near 500 mole H2O2/mole test compound for most of the dyes, but for 
erythrosine B (EB), the best molar peroxide ratios tested were in the range of 2500-3000 
mole H2O2/mole EB, likely because of its relatively high molar absorptivity ratio. 
Accounting for molar absorptivity also helped to explain the shape of the removal 
profiles associated with EB and tartrazine, as well as the regression coefficients 
associated with the model fitting of experimental data. In contrast, the optimal molar 
peroxide ratios were at or near 100 mole H2O2/mole test compound for achromatic 
chemicals with the lowest molar absorptivity.  This research is the first UV LED-based 
AOP study to identify linear power-kinetics relationships, determine optimum molar 
peroxide ratios, and reveal the complex role of molar absorptivity in shaping the speed 
and extent of treatment. 
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2.1. Introduction 

 Advanced oxidation processes are important to the water treatment community, 

because they can degrade a wide range of toxic chemical compounds (Crittenden et al. 

2012). This study is focused on the UV/H2O2-based AOP and seeks to implement 

UV/H2O2 AOPs with light emitting diodes (LEDs) as an alternative to conventional 

mercury lamps.  Hydroxyl radicals are produced when hydrogen peroxide absorbs UV 

light at a wavelength < 280 nm, resulting in the rapid and non-selective degradation of 

many soluble organic compounds and their byproducts (Minakata, et al. 2009) 

(Andreozzi, et al. 1999).  UV light must be available at an energy level high enough to 

achieve oxygen-to-oxygen bond cleavage in the peroxide molecule, resulting in the 

production of two hydroxyl radicals (Benjamin and Lawler 2013; Luo 2007).  Reactions 

with hydroxyl radicals are among the fastest aqueous phase reactions known (Dorfman 

and Adams 1973).  

UV LEDs exhibit several advantages over mercury lamps including small size, 

light weight, physical durability, and lack of hazardous components (Ibrahim, et al. 

2014).  UV LEDs may also have a comparative disadvantage currently as the output 

power of an individual LED is significantly lower than traditional lamps; however, 

manufacturing improvements are continually increasing the comparative output power of 

LED sources  (Gallucci 2016).  Presently available UV LED models provide optical 

output power in the milliwatt (mW) range, whereas low pressure mercury lamps have 

output of 30-600 watts (W) and medium pressure lamps between 1-12 kilowatts (kW) 

(Atlantium Technologies 2017).  However, given their compact size and point source 

configuration, UV LEDs can be placed more flexibly and can be arranged in multi-LED 
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arrays to achieve increased overall output power.  UV LEDs may have another 

comparative advantage in the ability to select LEDs with specific desired output 

wavelengths, whereas low pressure lamps are limited to a single 254 nm wavelength and 

medium pressure lamps emit a broad spectrum covering 200-320 nm.   

The success of the UV LED/H2O2 AOP depends on the structure of the chemical 

compound, the amount of peroxide in solution, and the LED output power. These factors 

can be systematically tested in an attempt to understand the more general trends that 

impact chemical degradation. The objective of this study is to evaluate the effect of 

reaction stoichiometry, molecular structure, and optical output power on the UV 

LED/H2O2 process. 

 

2.1.1. General Characteristics of the UV/H2O2 Advanced Oxidation Process 

UV-peroxide advanced oxidation processes produce hydroxyl radicals through a 

photocatalytic reaction initiated when H2O2 absorbs UV light at a wavelength (λ) < 280 

nm.  Critical to the initiation of this process is ensuring adequate exposure to UV light at 

an energy high enough to achieve cleavage of the O-O bond in the H2O2 molecule.  This 

cleavage leads to the formation of two hydroxyl radicals (Benjamin and Lawler 2013).  A 

representative published value for the energy required to activate O-O bond dissociation 

is 210.66 ± 0.42 kJ/mol (Luo 2007).  Energy per unit time provided by the UV LEDs and 

residence time of solution within the light distribution will together determine whether 

there is sufficient energy for cleavage to occur.  Compared to medium pressure and low 

pressure mercury UV lamps, individual LEDs produce significantly less optical output 

power making this a critical comparison and design factor. 
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The equations governing the generation, interaction, and termination of hydroxyl 

radicals are well-researched and documented in the literature (Chang, et al. 2010; 

Crittenden, et al. 1999; Edalatmanesh, et al. 2008; Ghafoorim, et al. 2014; Grcic, et al. 

2014; Mariani, et al. 2013; Wols and Hofman-Caris 2012).  When the H2O2 molecule 

absorbs sufficient UV energy at the proper wavelength, the initiated reaction produces 

two hydroxyl radicals as shown below: 

OHhvOH •→+ 222          
 
The hydroxyl radicals further propagate through the following reactions: 

 
OHHOOHOH 2222 +→+ ••          

22222 OOHOHHOOH ++→+ ••          
−•+• +→ 22 OHHO            

 
Radical products are then terminated through the following reactions: 
 

222 OHOH →•            

22222 OOHHO +→•          
  

222 OOHHOOH +→+ ••           

22 OOHOOH +→+ −−••           
 

During this process, the hydroxyl radicals will rapidly and non-selectively react 

with organic compounds they encounter.  Subsequent radical production in the chain can 

continue to attack the organic material until it is mineralized.  As an example in the 

context of this research, the hydroxyl radicals will react with a dye and mineralize it as 

seen below:  

productsdyeOH →+•   
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Hydroxyl radicals can also react with each other.  These fast reactions result in short 

lifetimes of the hydroxyl radicals (Gligorovski, et al. 2015; Benjamin and Lawler 2013).  

Therefore, mixing and proper UV fluence is critical to the effectiveness of hydroxyl 

radicals as oxidants (USEPA 1999).   

Hydroxyl radicals can react with the organic compounds by one of three 

mechanisms: 1) hydrogen abstraction (H removal), 2) hydroxylation (OH addition), or 3) 

oxidation without transfer of atoms (Buxton, et al. 1988).  In general, hydrogen 

abstraction is likely to occur in saturated molecules (those with no double bonds) and 

hydroxylation is likely to occur in unsaturated molecules (those with double bonds); 

however, this is not always the case and oxidation without atom transfer can occur 

(Benjamin and Lawler 2013). 

 

2.1.2. Effect of Reactant Concentrations and Solution pH 

 Prior studies suggest that starting molar ratios of H2O2 to dye must be considered 

to avoid creating a condition that is limited by one of the reactants.  In a study that 

degraded Basic Violet 16 dye with UV/H2O2, varying the starting dye concentration 

while holding H2O2 constant had a pronounced impact on reducing degradation rate as 

dye concentration increased beyond a critical point.  Additionally, increasing 

concentration of H2O2 improved degradation to a critical point, thereafter additional H2O2 

decreased the reaction rate due to H2O2 self-scavenging of hydroxyl radicals (Rahmani, et 

al. 2012).  The first point is supported in other studies related to UV/H2O2 degradation of 

dyes (Chang, et al. 2010; Narayansamy and Murugesan 2014).  The second point is also 

supported elsewhere in literature, indicating that too low a level of H2O2 appears to limit 
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generation of hydroxyl radicals, while too much H2O2 appears to scavenge hydroxyl 

radicals (Sharma 2015; Muruganandham and Swaminathan 2004; Oancea and Meltzer 

2013).   

An additional flaw in selecting incorrect starting quantities of reactants is the 

potential to violate assumptions underlying a pseudo-first order kinetic reaction model.  

In a pseudo-first order model, a fundamental requirement is that one of the reactants is 

available in abundance over the other reactant so that it may be essentially treated as a 

constant.  Violating this assumption with stoichiometric adjustments may create a bias in 

the model (Hartog, et al. 2015).   

A point regarding stoichiometry can also be made with the relationship between 

H2O2, the quantity of hydroxyl radicals produced, and the quantity of hydroxyl radicals 

actually available for reaction.  General chemistry principles indicate the generation of 

two moles of hydroxyl radicals from each mole of hydrogen peroxide.  However, it has 

been found that in aqueous solutions, a solvent “cage effect” can trap up to 50% of the 

hydroxyl radicals, reducing the number available for oxidation (Oppenlander 2003). 

 Another consideration in the AOP process is the effect that the solution’s pH may 

have on the efficiency of hydroxyl radical production.  H2O2 has a pKa of 11.8 and 

dissociation will increase as the solution becomes more basic as shown below: 

 
−+ +↔ 222 HOHOH  

 
There is literature to suggest that changing pH can affect the efficacy of hydroxyl 

radical degradation of dyes when other parameters are held constant.  In one such study, 

the azo dye Reactive Orange 4 was degraded using H2O2/UV.  The effect of varying pH 
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over a range of 2-8 and changing the amount of H2O2 between 5-25 mmol were studied.  

Maximum degradation was achieved at pH = 3 with sharp decline as pH was adjusted 

higher.  Degradation increased along with increasing H2O2 addition from 5-20 mmol and 

then declined when moving from 20-25 mmol, suggesting a hydroxyl radical quenching 

effect (Muruganandham and Swaminathan 2004).  Similar findings were made in 

experiments with tartrazine, where negative correlation was found between degradation 

rate and increasing pH (range 6-9), and pH 6 was found to be most preferable (Stewart 

2016).   

  

2.1.3. Prior UV LED AOP Chemical Degradation Studies 

Prior UV LED reactor experiments have been conducted to investigate the 

degradation of chemical compounds; however, the scope has been limited, including 

three organic dye compounds: methylene blue, Brilliant Blue FCF, and tartrazine.  

Experiments with methylene blue were conducted in a flow through stainless steel reactor 

with seven 240 nm UV LEDs operating with 20 mA drive current. The primary goal of 

that research was to evaluate the effect of continuous or pulsed current operating modes 

on resultant degradation.  Results indicated that both operating modes were successful in 

generating hydroxyl radicals, but continuous drive current was more effective.  

Degradation rates were found to increase exponentially with increased duty cycle.  An 

anomaly was also noted in which a cationic/anionic interaction between the dye and 

quartz lens of the LED caused staining of the lens and reduced optical output power over 

time. (K. Duckworth 2014) 
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In a second study utilizing the same stainless steel reactor and LED parameters, 

Brilliant Blue FCF was utilized as a witness dye.   Similar to the earlier study, effects of 

varied UV LED duty cycles on degradation rates were studied.  Experiments showed that 

Brilliant Blue FCF worked well as an indicator dye in the AOP and did not exhibit the 

lens sorbance issues experienced with methylene blue.  Additionally, experiments 

showed that when degradation rate constants were normalized to duty cycle, lower duty 

cycles were more efficient and optimal efficiency was reached at the lowest duty cycle of 

5%. (R. W. Scott 2015) 

A third study using the same stainless steel reactor design with seven 240 nm UV 

LEDs explored tartrazine as a witness dye.  Pulsed drive current was again used to test 

the effect of duty cycle on degradation rate constants.  Results showed that tartrazine was 

relatively resistant to AOP degradation, achieving only 18% removal after a 300 minute 

detention time.   Comparatively, the Brilliant Blue FCF study reported more rapid 

degradation with apparent first order degradation rate constants eight to fifteen times 

greater (R. W. Scott 2015); however, upon further analysis, it must be noted that starting 

molar concentrations of tartrazine were 5 times greater than those of Brilliant Blue FCF, 

which likely accounted for some of the difference.  Positive correlation was found with 

the first order rate constants, but negative correlation was observed with the normalized 

rate constants accounting for duty cycle.  (Mudimbi 2015)  

An additional study was conducted with tartrazine utilizing the same stainless 

steel reactor setup in which the effects of solution pH on degradation rate constants was 

assessed.  Starting pH values were adjusted between 6 and 9 at varying LED duty cycles.  

Degradation rate constants were positively correlated with duty cycle and negatively 
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correlated with pH, with greatest degradation rates typically observed at pH 6.  

Byproduct analysis indicated that hydrogen abstraction, OH addition, and electron 

transfer without molecule transfer were all plausible reaction mechanisms.  Six 

byproducts were identified and two were potentially novel, indicating the tartrazine 

molecule may have been cleaved. (Stewart 2016) 

A final study utilizing tartrazine in a new, smaller flow through reactor design 

investigated the effects of construction material and LED output power on degradation 

rate constants.  Two low power, one diode UV LEDs were compared to two higher 

power, seven diode UV LEDs with reactor walls constructed of either stainless steel or 

Teflon with one of three wall thicknesses.  Teflon of medium thickness was found to 

have a statistically significant higher rate constant than the other reactor wall thicknesses 

when utilizing low power UV LEDs.  Experiments with high power UV LEDs produced 

rate constants ten times higher than experiments with low power UV LEDs, but showed 

no significant difference with regard to reactor construction materials. (Gallucci 2016) 

 

2.1.4 Additional UV/H2O2 Advanced Oxidation Processes with Chemicals 

A vast number of studies involving degradation of chemicals in UV/H2O2 AOPs 

are available in the literature.   In one such study, AOPs were investigated for the 

removal of organophosphorus pesticides in wastewater by selecting and optimizing 

oxidation processes (Fenton reaction, UV/H2O2, and photo-Fenton process) and adjusting 

parameters (starting pH, chemical oxygen demand/H2O2 ratios, and Fe(II)/H2O2 ratios.  

Effects of parameter adjustments were observed and optimums were identified, finding 

the photo-Fenton reaction to be the most effective and economic treatment process under 
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acidic conditions (Badawy, et al. 2006).  Similarly, degradation of salicylic acid in 

simulated wastewater was assessed by UV alone, UV/ H2O2, UV/Ozone, and photo-

Fenton processes. The experiments were carried out in a batch reactor, and operating 

variables (pH, ratio of H2O2/chemical oxygen demand, varying concentrations) were 

compared with degradation rate achieved.  UV/ H2O2 oxidation achieved greater 

degradation than UV light alone (Mandavgane and Yenkie 2011).  Additional approaches 

have sought to compare the effect of different UV LED wavelengths (255, 265 and 280 

nm) on the degradation of phenol (Vilhunen and Sillanpaa 2009), along with the effect of 

adjusting starting H2O2 and contaminant concentrations on the degradation of 2,4-

dichlorophenoxiacetic acid (Murcia, et al. 2015).  

Studies have also been conducted to assess AOP use in degradation of 

pharmaceutical compounds.  In research utilizing a batch reactor with a low pressure UV 

lamp, comparisons were made between UV photolysis alone, peroxide alone, and 

UV/H2O2 oxidation of 14 pharmaceutical compounds and 2 personal care products. 

Seven compounds were found to have > 96 % removal by ultraviolet photolysis alone.  

For the majority of compounds, H2O2 addition to UV photolysis was not beneficial as 

removal did not increase significantly, and large fractions (> 85 %) of the added 

hydrogen peroxide remained.   The authors hypothesized the residual peroxide was due to 

small fluence of the lamp being used, small molar absorption for hydrogen peroxide at 

254 nm, and acidic pH of reaction solution. (Giri, et al. 2011)  However, it is also 

plausible the residual may actually be due to H2O2 regeneration in the reaction chain.   

The experimental design aspects of the previous study may explain why 

additional studies of pharmaceutical and personal care product degradation differ from 
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the above findings.  One found that adding H2O2 during UV treatment could be effective 

in improving degradation in 30 pharmaceutical and personal care products, with >90% 

degradation achieved after 30 mins.  The combination of H2O2 with UV light was noted 

to reduce the overall UV dose required as compared to photodegradation alone.  (Kim, et 

al. 2009). Similarly, Rosario-Ortiz et al. evaluated UV/H2O2 treatment of pharmaceuticals 

in wastewater, observing > 90% removal of several compounds, and concluding that 

UV/H2O2 removal of pharmaceuticals was a function of hydroxyl radical reactivity.  UV 

absorptivity of the treated effluent at 254 nm was found to be a viable method of 

assessing pharmaceutical removal efficiency. (Rosario-Ortiz, et al. 2010)  Additionally, 

Shu et al. investigated the degradation of emerging micropollutants, including 

pharmaceuticals, using a UV/H2O2 AOP catalyzed by a medium pressure UV lamp.  

Pseudo first-order rate constants were found to be dependent on initial compound 

concentrations and H2O2 concentration. UV dose required for 50% and 90% removal was 

measured at varying H2O2 levels and varied significantly across the compounds.  Input 

energy efficiency was measured for each compound by observing the electrical energy (in 

kWh) required to reduce a pollutant concentration by 90%. (Shu, et al. 2013)  

2.2. Materials and Methods 

2.2.1. Apparatus 

Experiments were conducted utilizing six dye and five achromatic chemical 

compounds with diverse molecular structures, with each being tested individually (e.g. no 

mixtures).   
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Table 1 lists the test compounds used along with basic properties and 

manufacturer information.  Previous research indicated that methylene blue dye caused 

staining of the quartz LED lenses due to a cationic/anionic attraction between the dye and 

the quartz (K. Duckworth 2014).  For this research, anionic dyes were selected in order to 

avoid the lens staining effect.  Solutions for each AOP experiment were prepared by 

mixing hydrogen peroxide (30% in water, Fisher Scientific) and one of the test 

compounds in deionized (DI) water.  Each experimental solution was prepared to a well-

mixed concentration of 0.01 millimolar (mM) test compound and 5 mM H2O2 in a 250 

mL volumetric flask.   
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Table 1. Basic information and properties pertaining to dyes and achromatic chemicals used in 
experiments. 

Compound & 
(Abbreviation) 

Manufacturer & Lot Formula Molecular 
Weight 

Structure Dye Peak 
Absorptivity 
Wavelength 

2,4-Dinitrotoluene 
(DNT) 

Sigma Aldrich 
Lot: MKAA0690V 

C7H6N2O4 
or 
CH3C6H3(NO2)2 

182.135 g/mol 

 

N/A 

Bisphenol A 
(BPA) 
 

Sigma Aldrich 
Lot: MBH2096V 

C15H16O2 

or 
(CH3)2C(C6H4OH)
2 

228.291 g/mol 

 

N/A 

Malathion 
(MAL) 

Pfaltz and Bauer 
Lot: 122029-1 

C10H19O6PS2 330.35 g/mol 

 

N/A 

Methyl tert-butyl 
ether 
(MTBE) 

Fisher Scientific 
Lot: 6810PHM90003392 
 

C5H12O 
or 
(CH3)3COCH3 

88.15 g/mol 

 
N/A 

Tert-butyl Alcohol 
(TBA) 

Fluka Chemical 
Lot: FJ456J477 
 

C4H10O 
or 
(CH3)3COH 

74.123 g/mol 

 
N/A 

Brilliant Blue FCF 
(BB) 

Dr. Ehrenstorfer GmbH 
Lot: 41030 

C37H34Na2N2O9S3 792.85 g/mol 

 

630 nm 

Allura Red AC 
(AR) 

TCI America 
Lot: GJ01-AGBL 

C18H14N2Na2O8S2 496.42 g/mol 

 

504 nm 

Fast Green FCF 
(FG) 

Fisher Scientific 
Lot: 162339 

C37H34N2O10S3Na2 808.85 g/mol 

 

625 nm 

Tartrazine 
(TT) 

Sigma Aldrich 
Lot: MKBQ1073V 

C16H9N4Na3O9S2 534.36 g/mol 

 

427 nm 

Sunset Yellow FCF 
(SY) 

TCI America 
Lot: GSAXJ-OD 

C16H10N2Na2O7S2 452.37 g/mol 

 

482 nm 

Erythrosine B 
(EB) 

TCI America 
Lot: TSP5N-LB 

C20H6I4Na2O5 879.86 g/mol 

 

527 nm 
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AOP experiments were conducted by flowing solutions through a cylindrical 

reactor with a central tube constructed of 2 mm thick polytetrafluoroethylene (PTFE) that 

fits securely into end caps of a half-sphere design, also constructed of PTFE.  The central 

cylinder has an internal diameter of 22.1 mm with a length of 80.52 mm, and the internal 

diameter of each of the half-sphere end caps is 22.1 mm.  Overall design of the interior 

reactor volume is capsule-shaped when assembled.  The reactor was oriented horizontally 

with flow entering through the top side wall of one end cap, progressing horizontally 

through the cylinder, and out the top side wall of the opposite end cap.  One LED was 

mounted through the center of each end cap such that the lens of the LED was flush and 

in contact with the test solution.  A copper fin assembly was attached to each end cap in 

thermal contact with the back of the LED to dissipate heat from the LEDs.  Total interior 

volume of the assembled reactor was 36.53 mL.  Figure 1 shows the complete reactor 

assembly.  Figure 2 shows a representative LED mounted in an end cap. 
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Figure 1. Complete UV LED reactor assembly showing pairing of central cylinder and spherical end caps with heat sinks. 
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Figure 2. View of an end cap removed from the reactor showing LED placement. 
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Flow of test solutions through the reactor assembly was controlled by a 

MasterFlex Console Drive 77521-50 peristaltic pump and MasterFlex 14 tubing (Cole 

Parmer, Vernon Hills, Illinois).  Flow rates were set at 2 mL/min for all experiments, 

which resulted in approximately 17.5 mins of residence time in the reactor.  Magnetic stir 

plates and PTFE coated stir bars were used to ensure mixing in the volumetric flask of 

test solution and also within the reactor tube to ensure well mixed model assumptions 

were met during each experiment.  When accounting for the volume displaced by the stir 

bar inside the reactor, useable volume was reduced to approximately 35 mL.  An 

injection tracer test was conducted and results indicated the reactor with stirring produced 

near ideal continuous flow stirred tank reactor (CSTR) behavior.  Two models of UV 

LEDs (UV-TOP and UV-CLEAN) procured from Sensor Electronic Technology 

Incorporated (SETi, Columbia, South Carolina) were utilized throughout this research.  

Both models provide a typical peak output wavelength at approximately 265 nm.  The 

UV-TOP models consist of one diode and were utilized for low power tests with drive 

currents of 20 and 40 mA.  The UV-CLEAN models consist of nine diodes and were 

utilized for high power tests with drive currents of 80, 120, 160, and 200 mA.  LEDs 

were driven by circuit boards consisting of 20mA LUXdrive 4006 series semi-conductor 

resistors (LEDdynamics, Randolph, Vermont).  The circuit boards were powered by a 

KEYSIGHT E3620A digital power supply (Keysight Technologies, Santa Rosa, 

California). 

A Labsphere integrating sphere calibrated with a D2 Deuterium lamp was used to 

measure optical power of the UV LEDs at each drive current of interest.  Output data 

from the integrating sphere was processed in Illumia Pro software (Labsphere, Inc, North 
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Sutton, New Hampshire) to acquire total power and peak wavelength data on each LED 

at all drive current levels evaluated. 

Figure 3 depicts the overall orientation of the reactor setup and flow scheme.  

Figure 4 shows the reactor with one end cap removed to illustrate the orientation of a 

magnetic stir bar and one of the LEDs within the reactor.  
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Figure 3.  Schematic depicting complete experimental setup. 
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Figure 4.  View of reactor endcap removed showing stir bar in middle of tube and LED at distal end. 

 

Stir Bar 
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An Agilent Technologies Cary 60 UV-Vis spectrophotometer (Agilent 

Technologies, Santa Clara, California) was used to measure the change in absorbance of 

dyes over time at a peak wavelength specific to each dye as listed in  

 

Table 1.  For example, the Brilliant Blue FCF dye used in this study has a peak 

wavelength at 630 nm. Over the course of an AOP experiment, reduction in absorbance 

values with time at 630 nm was measured as an indicator of degradation.   

The spectrophotometer was not suitable or practical in the measurement of the 

achromatic chemical compounds that were weaker chromophores than the dyes (dyes are 

designed to be very strong chromophores).  An Agilent Technologies 6130 quadrupole 

high-performance liquid chromatography (HPLC) system was used to analyze BPA via 

fluorescence detector, DNT via diode array detector, and MAL via mass spectrometer.  

An Agilent Technologies 7000C triple quad gas chromatography-mass spectrometry 

(GCMS) system paired with an Agilent Technologies 7697A headspace sampler (Agilent 

Technologies, Santa Clara, California) was used to analyze TBA and MTBE.  In the case 

of HPLC analyses, samples were manually collected in amber vials at predetermined time 

increments during each experiment.  Samples for GCMS headspace analysis were 

collected manually in clear headspace vials, 1 g of sodium chloride (Thermo Fisher 

Scientific, Waltham, Massachusetts) was added to each vial (to “salt out” the analyte 

from solution and force it into the headspace), and the vial was immediately capped. 
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2.2.2. Experimental Procedure 

Initial UV LED/ H2O2 AOP experiments were conducted to assess the 

comparative differences in degradation of the 11 compounds.  The solutions for all 

experiments were prepared to starting concentrations of 5 mM hydrogen peroxide and 

0.01 mM test compound in 250 mL of DI water.  This resulted in solutions with a 500 to 

1 molar ratio of H2O2 to test compound.  Stock solutions were prepared at predetermined 

concentrations in a base of deionized water and stored in appropriate conditions to 

maintain the integrity of the solutions for use over multiple experiments.  Hydrogen 

peroxide procured for this research is certified at 31.9% (w/w) H2O2 content per the 

certificate of analysis and was stored refrigerated at 5oC.  At 5oC, the density of 31.9% 

(w/w) H2O2 in water is expected to be 1.1278 g/mL.  One mL of refrigerated stock H2O2 

was weighed on a microbalance and compared to the certificate of analysis content.  The 

density of the H2O2 was used to determine a pipette volume of 126.2 microliters was 

necessary to achieve the desired 5 mM concentration.   

For each experiment, a precise volume of test compound stock solution was 

pipetted into a 250 mL volumetric flask prefilled halfway with DI water, followed by 

pipetting a precise volume of H2O2 into the flask and approximately one minute of 

mixing on a vortex mixing unit.  The flask was then brought to 250 mL volume with DI 

water and was then capped and mixed by hand for approximately 5 minutes, a magnetic 

stir bar was inserted, and the solution was further mixed on a magnetic stir plate for an 

additional 15 minutes. For dye experiments, the spectrophotometer was zeroed with DI 

water and set to measure absorbance values +/- 5 nm around the peak wavelength for the 
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dye being studied.  Absorbance measurements were taken every one minute over a total 

75 minute time period, equal to just over four reactor bed volumes to reach near steady 

state final concentration.  For achromatic chemicals, 2 mL samples were collected in 

either amber vials or clear headspace vials at 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 45, 

60, and 75 min increments and immediately transferred to the HPLC or GC-MS for 

analysis.  Initial experiments utilized the low power UV-TOP LEDs operating at 40mA to 

initiate the AOP reaction.   

As each experimental solution was mixing, the pump was turned on to allow for 

warm up.  After mixing, the pump was briefly turned off, and a 60 mL Becton Dickenson 

syringe was used to load the reactor with the starting solution, the reactor stir plate was 

started, and the pump was started again to initiate solution flow through the reactor (flow 

was assessed at the beginning and end of each experiment to ensure the desired 2 mL/min 

rate was achieved and maintained).  In the case of dyes, the spectrophotometer data 

collection was started simultaneous to the LED power being activated, and the 

experiment was allowed to progress for 75 minutes.  Five absorbance values representing 

0%, 25%, 50%, 75%, and 100% starting dye concentrations were also obtained for each 

experiment to generate a degradation calibration curve and assess accurate operation of 

the spectrophotometer.  

Subsequent experiments were conducted with various levels of UV LED drive 

current.  Experiments were first repeated with the lower power UV-TOP LEDs operating 

at 20 mA versus the original 40mA.  The higher power UV-CLEAN LEDs were then 

installed in reactor end caps and experiments were repeated at 80 mA, 120 mA, 160 mA, 

and 200 mA drive current.  This portion was designed to assess quantum yield effect on 
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AOP optimization and hydroxyl radical production.  Theoretically, higher drive current 

should result in higher optical output power and, subsequently, increased hydroxyl 

radical production. 

Further experiments were conducted in which the molar ratio of H2O2 to test 

compound was varied.  Starting test compound concentrations remained constant at 0.01 

mM; however, H2O2 concentrations were adjusted above and below the starting 5mM 

value until optimal degradation rate or degradation extent was achieved.  The starting 

concentrations represented a 500:1 H2O2:test compound ratio.  This ratio was then 

adjusted in increments of 100:1 above and below 500:1 (e.g. 100:1, 200:1, 300:1, 400:1, 

600:1, 700:1; 800:1, 900:1) to assess if a point or range of optimality exists.  This was 

designed to identify ratios where the reaction becomes rate limited by either inefficient 

hydroxyl radical production or by potential hydroxyl radical scavenging by H2O2 when 

too much H2O2 is present in solution. 

 Control experiments were conducted with the test compound and H2O2 solutions 

mixed and passed through the reactor for a period of 75 minutes without exposure to UV 

light to assess whether the specific compound is subject to degradation by reaction with 

H2O2 alone.  Similarly, experiments were conducted with test compound solutions 

containing no H2O2 passing through the reactor with UV light exposure for a period of 75 

minutes to assess whether the specific dye is subject to photodegradation by exposure to 

UV light alone.  It was assumed that if a compound did not show degradation at a 200 

mA drive current, then optical output from lower drive currents would not cause 

degradation. 
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Finally, solutions of 0.01 mM concentrations of each test compound in DI water 

with no H2O2 were scanned in the spectrophotometer to determine the absorbance value 

for each at the LED peak output wavelength of 265 nm.  These values were then used to 

calculate molar extinction coefficients and assess any impact that molar absorptivity may 

have on reaction kinetics.  

 

2.2.3. Data Analysis  

 Data was plotted in Microsoft Excel (Microsfot, Redmond, Washington) to show 

the normalized change in effluent concentration (C/C0) of dye or chemical over time as 

measured by the spectrophotometer, HPLC, or GC-MS.  Absorbance values for dyes 

were exported directly from the Cary 60 software, and Agilent Technologies 

ChemStation software was used to integrate peaks of resultant chromatograms from the 

HPLC and GC-MS analyses.  The data was then modeled using the following mass 

balance relationship for a completely mixed reactor with flow (Duckworth et al., 2015): 

𝐶𝐶
𝐶𝐶0

=  𝜏𝜏𝑘𝑘𝑆𝑆𝑒𝑒
−�𝑡𝑡�𝑘𝑘𝑠𝑠+

1
τ
��
+1

𝜏𝜏𝑘𝑘𝑆𝑆+1
  (1) 

Where 
C: concentration of dye at time t 

C0: starting dye concentration at time 0 

τ: residence time of solution in reactor 

ks: apparent first order degradation rate constant 

 

Residence time, τ, was computed by dividing the volume of the reactor (35 mL, 

accounting for volume lost to stir bar) by the flow (2 mL/min), resulting in τ = V/Q = 17.5 
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min.  An apparent degradation rate constant, ks, was calculated for each experiment using 

the Microsoft Excel Solver Add-In to optimize the best overall ks that minimizes the sum 

of square difference between actual and model C/C0 values.  Any deviations from the 

fitted model indicate deviation from CSTR conditions or deviations from first-order 

reaction kinetics.  

With known molar concentrations and known cuvette optical path length, 

Equation 2 below was utilized to calculate the molar extinction coefficient for each 

compound at the peak LED output wavelength (265 nm).    

𝜀𝜀 =  𝐴𝐴
𝑐𝑐𝑐𝑐

  (2) 

Where 
𝜀𝜀: molar extinction coefficient 

A: absorptivity as measured by spectrophotometer 

c: concentration of species in solution 

l: path length of light through solution 

 

2.3. Results and Discussion 

 

2.3.1. The Effect of Drive Current on Power Output 

 Following measurements in the integrating sphere and processing of optical 

output power measurements in the Illumia Pro software, the two UV-TOP LEDs and two 

UV-CLEAN LEDs with the highest total output power measurements were chosen for 

installation in the reactor.  Table 2 shows results of integrating sphere analysis for the 
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LEDs selected.  Figure 5 shows a linear relationship (R2 = 0.9914) between applied drive 

current and total additive output power for LED pairs (e.g. UV-TOP pair and UV-

CLEAN pair).  A slight transition can be seen in the figure between 40 mA and 80 mA 

with the change in LED models.  Peak output wavelengths occurred at 265 nm and total 

output power ranged from 1.31 mW at 20 mA for a UV-TOP model to 12.47 mW at 200 

mA for a UV-CLEAN model.  

 

 

Table 2. Output characteristics of UV LEDs utilized in reactor experiments. 

LED Model Serial # Drive 
Current (mA) 

Total Output 
Power (mW) 

Peak Output 
Wavelength 

(nm) 
UV-TOP P53 20 1.343 265 

UV-TOP R54 20 1.310 265 

UV-TOP P53 40 2.464 265 
UV-TOP R54 40 2.442 265 

UV-CLEAN U9 80 5.702 265 

UV-CLEAN V5 80 5.700 265 
UV-CLEAN U9 120 8.328 265 

UV-CLEAN V5 120 8.340 265 

UV-CLEAN U9 160 10.7 265 

UV-CLEAN V5 160 10.24 265 

UV-CLEAN U9 200 12.26 265 

UV-CLEAN V5 200 12.47 265 
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Figure 5. Comparison of optical output power achieved from input drive current.
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2.3.2. The Effect of Drive Current on the Removal of Organic Compounds 

Figure 6 presents ks versus drive current data in a graphical format for each 

compound and drive current level tested with the molar peroxide ratio at 500 mole 

H2O2/mole test compound.  Some degree of degradation was observed for all dyes and 

achromatic chemicals under all drive current conditions.  Of interest in the figure is a 

linear increase in ks with increase in drive current for each compound.  For example, the 

ks for MAL increased from 0.144 min-1 at 20 mA drive current to 1.078 min-1 at 200 mA 

drive current.  The lowest ks values were associated with EB, but the linear relationship 

was also observed in this case, as the ks increased linearly from 0.003 min-1 at 20 mA 

drive current to 0.255 min-1 at 200 mA drive current.  Exponential relationships were 

observed between the drive current and degradation extent where an initial sharp linear 

phase between 20 – 80 mA begins to taper, and the benefit to overall degradation extent 

begins to flatten between 120 - 200 mA (Figure A1, Appendix A).  If percent removal is 

a priority goal over rate of removal in a real world application, such a relationship 

suggests that there may not be significant added benefit in applying additional energy to 

the system beyond a critical point (e.g. approximately the same percent removal may be 

achieved at 120 mA when compared to 200 mA--in some cases in a comparable 

timeframe).  This may be particularly true of systems that are operating at or near steady 

state conditions.  Summary apparent first order degradation rate constants and percent 

removal for all test compounds tested at all drive current levels with a molar peroxide 

ratio of 500 mole H2O2/mole test compound are provided in Tables A1 and A2 and 

Figures A2 through A5 (Appendix A).  
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Figure 6. Linear relationship between apparent degradation rate constant and drive current.  Three example linear fits are shown. 
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These linear relationships are expected first principles of electromagnetic radiation.  

However, one underlying question is if there are any phenomena occurring in the experimental 

apparatus which would cause a deviation from theory—e.g., non-linear output from the LEDs 

when applied in the reactor, fundamentals of hydroxyl reactions, competitive reactions, etc.  

These are explored in more detail below.  First, it is useful to review the theory: the energy of an 

individual photon can be described by Planck’s equation: 

E = hc/l      (3)     

Where 

E: Energy (J) 

h: Planck’s constant = 6.626 X 10-34 J.s 

c: Speed of light = 3 X 108 m/s 

l: Wavelength of light (m) 

In the case of the 265 nm peak output of the LEDs utilized in this study, this results in an 

energy of 7.5 X 10-19 J (or 4.68 eV) per photon.  We can then use this to determine the number of 

photons produced per unit time by considering the relationship to optical output power in the 

following equation: 

Photon production rate (photons/sec) = P/E     (4) 

Where 

P: Optical Output Power (W) 

E: Energy of a photon from Equation 3 (J) 

Therefore, the optical output power is linearly related to the photon production rate, 

which, in turn, generates a linear increase in hydroxyl radicals because a photon is required for 

production of hydroxyl radicals from hydrogen peroxide (according to the equations on page 12) 
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and, therefore, the apparent first order degradation rate constants.  The linear relationship of such 

a plot can be used to predict degradation rates achievable with varying current levels.  Such an 

approach could be useful in fiscal decisions if implemented at full scale.   

As a Watt is equivalent to a Joule/s, the units on Equation 4 become (J/s)/(J/photon) and 

reduce to photons/second.  Based on Equation 4, Table 3 summarizes the total number of 

photons/second calculated to be produced in the reactor under each drive current level using total 

output powers from Table 2.  The estimated total number of photons/second increases linearly 

with power output.  Note that these absolute values are likely an overestimate given that the 

calculations are assuming the output light is monochromatic at 265 nm.  LEDs do not produce 

truly monochromatic light, and 265 nm is the peak output with other neighboring wavelengths 

contributing to the total output power.  However, for purposes of understanding the linear nature 

of the relationship between photon production rate and LED output power, assuming a single 

wavelength is useful. 

Table 3. Calculated photon production rate for each drive current level. 

 
20mA 40mA 80mA 120mA 160mA 

  
200mA 

Photon 
production 
(s-1) X 1016 

0.354 0.654 1.52 2.22 2.79 3.3 

 

The theoretical linear relationship between drive current and the apparent first order 

degradation rate constant also has two implications for understanding the action of the hydroxyl 

radical when present in a solution containing an organic chemical, H2O2, and other hydroxyl 

radicals. First, hydroxyl radicals are known to react with a wide range of constituents present in 

solution (Buxton, et al. 1988). Reactions with other hydroxyl radicals are most 

thermodynamically favorable because the activation energies (8 kJ/mol, Buxton, et al. 1988) that 
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are required are lower than those associated with hydroxyl-peroxide reactions (14 kJ/mol, 

Buxton, et al. 1988) and common achromatic water pollutants (typically 14 - 20 kJ/mol, Buxton, 

et al. 1988).  As the drive current is increased, more hydroxyl radicals are produced, but this does 

not lead to a disproportionate (nonlinear) proportion of hydroxyl-hydroxyl reactions. The 

energetic favorability of the hydroxyl-hydroxyl radical reaction does not lead to nonlinear 

relationships between power output and the apparent first order degradation rate constants.  The 

second implication of the linear relationships observed here is related to how hydroxyl radicals 

attack organic compounds. The three oxidative modes are 1) hydrogen abstraction (i.e. removing 

a hydrogen atom from a saturated hydrocarbon), 2) hydroxylation (i.e. adding the hydroxyl group 

to an unsaturated hydrocarbon), or 3) oxidation without transfer of atoms. The kinetics 

associated with these mechanisms are different because the shape of the pre-reactive (i.e. 

transition state) complexes are different. The linear power-kinetics relationships observed in this 

study (Figure 6) imply that the relative contribution of these reaction mechanisms does not 

change as a function of the drive current. These two implications merit further study.   

While Equations 3 and 4 relate to the relative contribution to the reaction mechanism, 

they do not directly speak to the specifics of the reaction mechanism and kinetics.  For example, 

Erythrosine B exhibited notable behavior with respect to degradation kinetics (Figure 7). When 

the drive current was 20 or 40 mA, the apparent first order degradation constants were 0.003 and 

0.006 min-1 respectively, and the EB degradation curves exhibited smooth, nonlinear profiles, 

consistent with first order degradation in a CSTR, and showing less than 10% total EB removal.  

However, at 80 mA an interesting transition occurred wherein degradation did not appear to 

reach a steady state, instead tending to continue a linear degradation pattern until the end of the 

run.  At 120 mA, unexpectedly unique kinetics were observed, and an inflection point appeared 
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as EB was approximately 40% degraded. After the inflection point, a secondary degradation 

profile appears to begin, and degradation proceeds at a faster rate until EB is nearly 100% 

degraded.  Inflection points were also observed at 160 mA and 200 mA, but they were reached 

more rapidly.  At 200 mA, the transition at the inflection point is less pronounced as the overall 

degradation proceeds at a faster rate with an apparent first order degradation rate constant of 

0.255 min-1.   

Rather than reflecting a deviation from the theory discussed above, these results could 

suggest the presence of multiple processes relevant to degradation.  Namely, Erythrosine B was 

the only dye to exhibit direct photodegradation from UV light alone.  Exposure at 20, 40 and 200 

mA drive currents over 75 minute UV control runs resulted in 1%, 2.1% and 21 % degradation, 

respectively.  However, photodegradation does not completely explain the results.  The 

photodegradation of EB is related to its structure, but the results in Figure 7 may involve more 

complex mechanisms.  As noted in Table A3 and Figure A4 – A5 (Appendix A), EB has the 

highest molar absorptivity at the 265 nm output wavelength of the LEDs, and it absorbs almost 

5.5 times more strongly than 5 mM H2O2 at that wavelength, perhaps reducing the amount of 

hydroxyl radicals available to oxidatively degrade EB.  Further, there may be a change in the 

relative importance of photodegradation compared to oxidative degradation as the reaction 

proceeds.  Initially, direct photodegradation is breaking down EB molecules, which in turn 

begins to reduce the photon absorbance competition at 265 nm.  Simultaneously, H2O2 molecules 

benefit from this reduction in EB concentration, and hydroxyl radical production increases due to 

increased photon interaction.  It is possible that the inflection point marks a transition where 

enough degradation has occurred and more photon energy is available for hydroxyl radical 

production.  At higher drive current levels, more photons are available to reach and flatten this 
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transition more rapidly.  This finding led to a hypothesis that EB may benefit from greater initial 

H2O2 concentrations in order to give H2O2 a higher likelihood of competing for photons in the 

vicinity of the LED lens.   

The literature is silent on the degradation phenomena evident in Figure 7, and pseudo-

first order kinetics have generally been utilized in different types of UV AOPs.  Bairagi and 

Ameta studied the degradation of EB in a UV/TiO2 reactor.  Degradation values were reported in 

a tabular format; however, when plotted it appears that a subtle inflection point may be present, 

though the authors report pseudo-first order kinetics (Bairagi and Ameta 2016).  Similarly, in a 

study by Apostol et al., EB was degraded via UV/TiO2.  The resultant degradation was presented 

in a graphical format using overlaid spectrophotometer curves.  When the approximate 

absorbance values from these curves is plotted, an inflection point can be seen, though the 

authors did not specifically mention the result (Apostol, et al. 2015).  Though these studies 

utilized TiO2, and not H2O2 as in the present study, the same competition for UV absorbance and 

changes in competition over time would be expected.  TiO2 requires photons to produce hydroxyl 

radicals just as H2O2 does.   As the EB degrades, more photons would become available to the 

TiO2 substrate.
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Figure 7. The effect of drive current on Erythrosine B removal.
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Another deviation from theoretical behavior predicated by Equations 3 and 4 is revealed 

in Figure 8, which shows removal profiles for BB, FG, and TT as a function of drive current.  Of 

particular interest in this figure is the transition that TT makes relative to the other dyes as the 

drive current increases.  Initially at 20 and 40 mA, the order of degradation rates and extents are 

aligned between the dyes where the order of each follows BB > FG > TT.  Overall degradation 

extent for TT lags significantly at these two drive current levels as evidenced by TT degradation 

extent at 40 mA being approximately equal to BB degradation extent with half the drive current 

at 20 mA.  At 80 mA, a transition is observed where TT begins to surpass BB and FG in overall 

degradation extent, though the degradation rate is still slower.  This transition continues at 120, 

160, and 200 mA as TT continues to reach a greater degradation extent than BB and FG and the 

degradation rates continue to move closer to parity.  As with EB, Table A3 and Figure A6 

(Appendix A) show that TT exhibits the second highest molar extinction at 265 nm and absorbs 

3.9 times more strongly than H2O2, though it exhibited no direct photodegradation at its starting 

concentration.  It is likely that this non-destructive UV absorbance by TT competes with H2O2 

for the available photons, and higher drive current levels begin to more rapidly mitigate this 

competition as more photons are made available.  Kinetics indicate that TT degradation starts out 

hampered by absorbance competition resulting in a slower initial observed degradation rate and 

less removal, but ultimately catches up as TT degradation proceeds and the TT absorbance 

competition decreases.  Comparatively, BB and FG have lower molar absorptivity at 265 nm and 

tended to follow first order behavior without shifts.



46 

 

Figure 8. The effect of drive current on the degradation of dyes.

20 mA 

80 mA 

200 mA 
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As compared to degradation shifts observed with TT during dye experiments, degradation 

profiles for chemicals with weaker chromophores generally proceeded as expected with respect 

to first order kinetics and followed the same rank order of degradation rate and extent throughout 

experiments.  DNT was a notable exception, where an immediate removal was observed in the 

first minute of reaction under all drive current conditions.  This was also true of UV control 

experiments where immediate removal occurred in the first minute followed by no additional 

removal over 75 minutes.  Similar removal was observed in the 20 mA experiment with H2O2 

where immediate removal in the first minute is subsequently followed by little removal at a slow 

rate over the remainder of the experiment. Pre and post HPLC control samples ruled out any 

anomalies in analysis.  There appears to be a possible loss to another mechanism such as 

adsorption to a component of the reactor assembly; however, adsorption would not be expected 

to occur so rapidly and adsorption sites would be expected to fill over time.  Experimental design 

and constraints did not allow for identification of the mechanism.   

MAL exhibited similar behavior in a UV control sample where there was immediate 

removal followed by no removal over the remainder of a 75 minute experiment; however, MAL 

exhibits a greater overall degradation rate during the AOP, and this potential loss mechanism is 

masked in the other experiments.  BPA exhibited 26% degradation in a UV control at 200 mA.  

MTBE and TBA did not exhibit direct degradation in UV controls.  TBA is a known hydroxyl 

radical chain terminator and, as initially hypothesized, it was in line with DNT with the lowest 

overall degradation rate and extent.  TBA is also a byproduct of MTBE degradation and prior 

literature suggests that the oxidation pathway of MTBE may result in 10-15% TBA formation 

(Stefan, et al. 2000).  It is plausible that formation and subsequent degradation of TBA during 

MTBE experiments likely resulted in chain termination to a lesser extent there as well.  Lower 
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comparative degradation rates and extents for DNT, TBA, and MTBE agree well with prior 

published work suggesting that smaller molecules (MW < 200), in general, having electron 

withdrawing substituents have lower hydroxyl radical reactivity (Lee and von Gunten 2012).  

Additional supplementary plots of drive current experiments are provided in Appendix A as 

Figures A8 - A30.       

 

2.3.3. The Effect of Molar Peroxide Ratio on the Removal of Organic Compounds 

Results in this section present the comparative degradation of dyes and achromatic 

chemicals at varying molar ratios of H2O2 to test compound.  No direct degradation from 

peroxide alone was observed in control experiments for any dyes.  Representative figures are 

shown to demonstrate ratios where reactions were peroxide limited or where H2O2 scavenging of 

hydroxyl radicals likely occurred.  With one exception, optimal molar peroxide ratios for the dye 

compounds did not deviate from the starting ratio of 500 moles H2O2/mole dye.  There was very 

little discernible difference until extreme points were reached, such as those exhibited in the 

Figure 9 plot showing BB molar peroxide ratios at 100:1, 500:1, and 1000:1, where the apparent 

first order degradation rate constants were 0.187, 0.476, and 0.387 min-1 for each molar peroxide 

ratio, respectively.  Final normalized BB concentrations for 100:1, 500:1, and 1000:1 molar 

peroxide ratio experiments were 0.236, 0.068, and 0.102, respectively.  The figure shows 

peroxide-limited reaction at 100:1 with significantly slower degradation rate and less removal, 

optimality at 500:1 with the fastest rate and largest removal, and slowed degradation rate and less 

removal at 1000:1, perhaps due to radical scavenging.   

Among the most interesting results in peroxide ratio experiments with the dyes are those 

of EB.  As hypothesized following drive current experiments, EB reaction kinetics benefited 
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significantly from increased molar peroxide ratios.  Optimality was achieved at ratios in the 

range of 2500-3000 moles H2O2/mole EB.  Extensive peroxide ratio tests were conducted with 

EB at all drive current levels with the exception of 20 mA.  An especially notable point appears 

in Figure 10, which shows EB molar peroxide ratio tests at 80 mA.  When moving incrementally 

from molar ratios of 500:1 to 3000:1, the inflection point noted during drive current experiments 

gradually starts to appear and transition.  Curves for higher drive currents with higher molar 

peroxide ratios begin to move closer to a first order profile.  Additionally, the 99% EB removal 

at the end of the 3000:1 molar peroxide ratio at 80 mA surpasses the 97% removal achieved at 

500:1 at 160 mA and 200 mA.  The apparent first order degradation rate achieved at 3000:1 

molar peroxide ratio at 80 mA (0.182 min-1) exceeds the degradation rate at 500:1 at 160 mA 

(0.144 min-1) and approaches the rate of 500:1 at 200 mA (0.255 min-1) in Figure 7.  A review of 

the literature found no prior publications that have discovered the pronounced effect of drive 

current and molar peroxide ratio on EB removal kinetics.  

As with the dye compounds, no achromatic chemicals showed direct degradation from 

H2O2 alone in peroxide control experiments.  In general, the achromatic chemical compounds 

exhibited different behavior than the dyes with regard to optimal molar peroxide ratios.  TBA, 

MTBE, and MAL exhibited optimal kinetics around a 100:1 peroxide ratio.  MAL trials were 

conducted as low as 25:1 and 50:1 ratios, and degradation rate and extent were comparable to 

100:1.  Comparatively, DNT and BPA were optimized in the 500:1 range, which might be 

attributable to the molar extinction data exhibited in Table A3 and Figure A6 (Appendix A 

illustrations).  Among the chemical compounds, DNT and BPA have the highest molar 

absorptivity at 265 nm and also require a higher molar peroxide ratio to optimize hydroxyl 

radical production.  In contrast, TBA and MTBE have the lowest molar absorptivity at 265 nm 
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with less competition for photon absorbance and were optimized at much lower peroxide 

concentrations at a 100:1 ratio. 

Another notable result from molar peroxide ratio experiments was observed with TBA.  It 

was initially hypothesized that TBA would benefit from greater peroxide ratios due to the 

expected and documented chain termination mechanism and that higher concentrations of H2O2 

would be required to offset the loss to that process.  However, results in Figure 11 show that 

likely hydroxyl radical scavenging by excess peroxide exceeds any detriment of chain 

termination.  Final normalized concentrations of TBA were 0.194, 0.308, and 0.439 at 100:1, 

500:1, and 1000:1 molar peroxide ratios, respectively.  Apparent first order degradation rates 

achieved under each condition were 0.190, 0.111, and 0.067 min-1, respectively, for the 100:1, 

500:1, and 1000:1 molar peroxide ratio experiments.  The concentration of H2O2 used in the 

100:1 molar peroxide ratio experiments is equivalent to 34 mg/L.  The findings in the current 

work are in agreement with a prior study on modeling and treatment system design for TBA 

removal that utilized 10 – 20 mg/L H2O2 concentrations, and the authors note that at that level, 

the negative effects of hydroxyl radical scavenging by excess H2O2 is not observed (Li et al, 

2008).  It is possible that a point of optimality below the 100:1 molar peroxide ratio used in this 

study may be achievable and would require further investigation.  Additional supplementary 

plots of peroxide ratio experiments are provided in Appendix A as Figures A31-A45. 
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Figure 9. The effect of molar peroxide ratio on Brilliant Blue FCF removal at 200 mA. 



52 

 
Figure 10. The effect of molar peroxide ratio on Erythrosine B removal at 80 mA. 
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Figure 11. The effect of molar peroxide ratio on TBA removal at 120 mA.
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2.3.4. Summary of the Effect of Molar Absorptivity on Chemical Removal 

As alluded to above, molar light absorbance near the 265 nm LED peak output 

wavelength range creates the potential for an organic compound to compete for absorbance with 

H2O2 for the photons available to generate hydroxyl radicals.  This is of particular interest in the 

LED domain as the optical output power and resultant photon production is significantly less 

than mercury lamps, as discussed previously and as shown in Tables 2 and 3.  UV light can 

excite the electrons present in organic chemical compounds.  This is a fundamental reason why 

molar absorptivity is expected to be important in water treatment applications involving UV 

light.  It is therefore necessary to address the role of molar absorptivity in UV LED-based AOPs.   

Previous UV LED-based AOP studies have degraded chemicals with relatively high 

molar extinction coefficients, but to date, there has been no previous effort to account for UV 

absorbance in the interpretation or modeling of the removal profiles (Duckworth, et al. 2015; 

Stewart 2016; Gallucci 2016; Mudimbi 2015; Scott, et al. 2015).  However, in the current work, 

accounting for molar absorptivity has helped explain the presence of inflection points observed 

during EB degradation (Figure 7) and why drive current has a notable effect on the apparent first 

order degradation rate constant and the degradation extent for TT (Figure 8).  There is also 

previously published experimental data that can be better understood by accounting for the molar 

light absorbance of EB (Apostol, et al. 2015; Bairagi and Ameta 2016).   

Figure A7 (Appendix A) shows a full range UV-Visible scan of all dyes (0.01 mM) 

compared to H2O2 at 100:1 (1 mM) and 500:1 (5 mM) ratios.  Figure A6 (Appendix A) isolates 

absorbance values for each dye at the 265 nm wavelength.  The molar extinction coefficient 

values for all dyes and achromatic chemicals are presented in Table A3 (Appendix A) along with 

absorbance ratio (background corrected to DI water) as compared to a 500:1 molar peroxide ratio 
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(e.g. molar absorptivity of test compound at 265 nm divided by molar absorptivity of 5 mM 

H2O2 at 265 nm).  The overall range of absorbance ratios was 0.03 to 5.45.  As expected, the 

dyes had a higher absorbance ratio than the achromatic chemicals.  The only chemical with 

notable absorbance comparable to the lowest absorbing dyes was DNT, followed by BPA.  These 

observations demonstrate the range of molar light absorbance that is associated with the organic 

chemicals in this study. 

 There is also evidence to suggest that molar absorptivity at 265 nm is an important factor 

in explaining deviations from CSTR model fit for individual chemicals.  When plotting model 

versus observed data for dyes, visual fit to the model was good for all compounds at 20 and 

40mA; however, moving to 80 mA and beyond began to produce widening gaps in model fit for 

some dyes.  BB and FG experimental data continued to track the model relatively well, whereas 

TT experimental data would notably proceed initially at a rate slower than the model predictions 

and eventually cross and overshoot the model, finishing with greater than predicted degradation 

extent.  It is hypothesized that the deviations from model fit are again related to the molar 

extinction of the dyes and the effect that the competition for absorbance has on the underlying 

kinetics.  The deviation at 20 and 40 mA is less significant because the reaction is more photon 

limited under those conditions and impact of competing absorbance is less significant than the 

overall lack of photon energy to catalyze the reaction.  Table A4 (Appendix A) shows the 

comparative R2 values between model and experimental data fit to Equation 1 for all dyes and 

drive current levels at 500:1 peroxide ratios.  Deviation from ideal model fit (where R2 = 1) is 

positively correlated with higher molar absorptivity at 265 nm (e.g. model fit R2 is negatively 

correlated with molar absorptivity at 265 nm).  Figure 12 shows a comparison of model fit R2 

versus molar absorptivity for all dyes at each drive current level.  In the figure, molar 



56 

absorptivity values at 0.1, 0.101, 0.158, 0.169, 0.274, and 0.371 represent BB, FG, AR, SY, TT, 

and EB, respectively.  From a qualitative viewpoint, we observe that for 80-200 mA data series, 

there is a relationship where higher R2 values are associated with lower molar absorptivity 

values.  In general, Figure 12 reflects a variety of complex and competing mechanisms that make 

data interpretation challenging, underscoring the value and need for predictive tools.
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Figure 12.  Relationship between CSTR model fit and molar absorptivity.
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2.4. Conclusions 

This research analyzed the impact of input drive current and molar peroxide ratios on the 

kinetics of UV LED-driven AOP at bench scale. There was a linear relationship between the 

input drive current, optical output power, and the apparent first order degradation rate constant 

for the removal of each test compound. When the drive current was 20 mA and the molar 

peroxide ratio was 500 mole H2O2/mole test compound, the apparent first order degradation rate 

constants were between 0.011 - 0.033 min-1 for the dyes and between 0.013 – 0.114 min-1 for 

achromatic chemicals. When the drive current was 200 mA and the molar peroxide ratio was 500 

mole H2O2/mole test compound, the apparent first order degradation rate constants were between 

0.255 - 0.785 min-1 for the dyes and between 0.149 – 1.0748 min-1 for achromatic chemicals. 

There was also a linear relationship between the drive current and the degradation extent. Data 

suggested both peroxide-limited and radical-scavenged kinetics.  The optimum molar peroxide 

ratio for most chemicals exhibiting moderate molar absorptivity at the LED output wavelength 

was at or near 500 moles H2O2/mole chemical.  This observation varied at extremes where 

achromatic chemicals exhibiting lower molar absorptivity were optimized at a molar peroxide 

ratio of 100 moles H2O2/mole chemical and EB, with the strongest molar absorptivity, was 

optimized at a molar peroxide ratio of 2500-3000 moles H2O2/mole EB.  Accounting for molar 

absorptivity and its photodegradation rate successfully helped to explain the molar peroxide 

requirement for EB, the presence of inflection points in EB removal profiles, as well as the 

relationship between drive current and the apparent first order degradation rate constants for TT 

removal. The regression coefficients associated with the CSTR model fitting of data also did not 

correlate well with molar absorptivity. These results are particularly notable because full scale 
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applications would involve the treatment of a variety of chemicals, each with unique light 

absorbing features.    
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III. Quantitative Structure Property Relationship Models for Predicting Degradation 
Kinetics for a Ultraviolet Light Emitting Diode/Peroxide Advanced Oxidation Process  

Keywords 

QSAR, QSPR, Ultraviolet (UV), light emitting diode (LED), advanced oxidation process (AOP), 
hydrogen peroxide (H2O2) 

Abstract 

This study utilized the observed degradation kinetics of 6 dye and 5 achromatic chemical 
compounds in a UV-LED/H2O2 advanced oxidation process to evaluate QSPRs for predicting 
degradation rates.  Prior to this study, QSPRs had not been evaluated for UV LED-based 
reactors, with published QSPRs reported for traditional mercury lamp AOP data, which has 
different spectral characteristics and reactor design.  Overall fit to descriptors used in all of the 
existing QSPR models compared was relatively poor for the complete data set of compounds 
studied with the UV LED AOP reactor.  The resultant R2 values were 0.024, 0.116, 0.157, 0.312, 
0.481, and 0.864; however, several of the descriptors producing the model with the R2 of 0.864 
failed to pass tests of statistical significance.  When breaking the larger data set into smaller 
subsets of dyes and achromatic chemicals, improvement was seen with R2 values between 0.033 
– 0.996, but most models and individual parameters failed tests of statistical significance.  
Statistical robustness was also compromised due to smaller data set sizes compared to numbers 
of predictors included in models.  A new model was constructed for predicting the dye and 
achromatic chemical degradation rates utilizing zero point energy (ZPE) combined with molar 
absorptivity of the chemical compound at the output wavelength of the LEDs (265 nm).  Overall, 
ZPE and molar absorptivity at 265 nm produces a QSPR model with R2 = 0.951.  The model and 
each of the model parameters were statistically significant at a 95% confidence interval.  This 
represents the first known use of ZPE and molar absorptivity in the construction of a QSPR 
model in the UV/H2O2 AOP domain. 
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3.1. Introduction 

Advanced oxidation processes (AOP) using UV/H2O2 reactions have proven to be a 

powerful method of generating hydroxyl radicals, which subsequently react rapidly and non-

selectively with organic compounds at near diffusion controlled rates.  AOPs utilizing UV/H2O2 

have proven to be highly effective at oxidizing many chemical compounds; however, the energy 

requirements for UV/H2O2 AOP treatment using traditional mercury lamps has proven to be 

substantially higher than other AOPs in many cases (Katsoyiannis, Canonica and von Gunten 

2011).  UV LEDs may be a suitable replacement for high energy consuming mercury vapor 

lamps in AOPs utilizing H2O2.  UV LED based water treatment is now possible; however, little 

data has been available on the use of UV LED/H2O2 for the destruction of soluble organic 

compounds that may threaten our water supply.  Recent research at the Air Force Institute of 

Technology has expanded this work to a greater number of soluble organic compounds to 

improve the fundamental understanding of the AOP as it relates to LEDs.  

There is also a general need to assess tools that can be used to predict chemical 

degradation in UV LED-based processes. Quantitative structure-property relationships (QSPR) 

can provide such a tool. The advantage of the QSPR approach, once an acceptable model is 

developed, is the ability to predict removal relative to baseline conditions strictly on the basis of 

the compound structure without further laboratory testing.  Several previous studies have 

developed QSPRs relating chemical structure to degradability (Sudhakaran, et al. 2012; Chen, et 

al. 2007; Kusic, et al. 2009; Lee and von Gunten 2012; Meylan and Howard 2003; Minakata, et 

al. 2009; Ohura, Amagai and Makino 2008; Sudhakaran and Amy 2013; Wang, et al. 2009; Tang 

2004).  QSPRs have not been evaluated for UV LED-based reactors.   
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Many existing QSPRs have been built upon degradation rate constants mined from the 

literature.  This approach is straightforward as there is no time or cost associated with conducting 

experiments; however, there is no control over the quality of the underlying experiments from 

which the kinetic data was derived.  Furthermore, experimental conditions (batch vs CSTR, 

varying reactant concentrations, varying UV light sources, varying retention times, etc) under 

which the rate constants were measured are often very disparate.  There is risk in using large, 

low quality data sets, as they may offer a misleading impression with respect to the relative 

importance of model parameters.  The present study sought to investigate the use of a smaller, 

high quality data set built from degradation experiments of 6 dye and 5 weaker chromophore 

compounds tested in the same bench-scale UV LED reactor under identical operating conditions.  

Apparent first order degradation rate constants for the 11 compounds were used to investigate 

molecular descriptors that are most significant to the UV LED-based AOP by first assessing 

significance of molecular descriptors used in existing QSPRs developed with traditional mercury 

lamp AOP data and then using multiple linear regression (MLR) to assess potential new QSPR 

models. 

 

3.1.1. Overview of QSPR and Molecular Descriptors 

Quantitative structure-property relationship (QSPR) models seek to relate structural 

features of a chemical compound to physicochemical activity (Yee and Wei 2012).  Fundamental 

to the successful development and application of QSPR models is the selection of molecular 

descriptors (MD) that adequately represent the important parameters affecting the observed 

property of interest.  QSPR methods have been used historically in the design of pharmaceuticals 

that target specific diseases or medical conditions; however, use of the methodology for 
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prediction in environmental applications has increased significantly in recent decades (Singh, et 

al. 2014).  MDs are numerous and diverse with various software packages capable of calculating 

anywhere from 200 to over 3000 unique descriptors for a single chemical compound (Hong, et 

al. 2012).  There is an art and a science to selecting the most important subset of MDs relevant to 

the goals and mechanisms of each study.   Doing so can improve prediction accuracy, facilitate 

interpretation of a model, and prevent potential over-fitting of data (Singh and Gupta 2014). 

In general, MDs are classified into five categories: 1) physicochemical (e.g. octanol-

water partition coefficient, Log P, density, melting point, half-life in water/air, persistence time), 

2) constitutional (e.g. numbers of atoms and bonds, molecular weight, hydrogen percent, carbon 

percent, hydrogen bond donors, hydrogen bond acceptors, etc.), 3) geometrical (e.g. maximum 

Z-length, molecule surface area, etc.), 4) topological (e.g. connectivity and valence connectivity 

indexes, etc.), and 5) quantum-chemical (polarizability, electric dipole moment, total energy, 

electron density, etc) (Servien, et al. 2014; Singh, et al. 2013).  Numerous software packages are 

available for the calculation of MDs, with some specializing only in subsets of these categories.  

Options range from freeware to commercial software packages, and capabilities range from 

calculating hundreds of descriptors to several thousand descriptors, depending on the software 

selected.   

3.1.2 Use of QSPR and Molecular Descriptors in AOPs and Similar Domains 

QSPRs have been utilized to predict degradation rates in numerous environmental 

applications including atmospheric reactions, direct UV photolysis in aqueous and non-aqueous 

solutions, and reactions in AOPs used for water treatment.  Methodology and descriptor selection 

varies broadly.   One study focused on developing a QSPR to model the removal of organic 

micropollutants (primarily pharmaceuticals, personal care products, and pesticides) in four 
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different river water sources (Colorado River, Passaic River, Ohio River, and Suwannee 

synthetic water) via ozonation AOP.  QSPR models were built using bench scale data from 

experiments with the source waters.  An initial set of 40 molecular descriptors potentially 

influencing AOP were selected using MLR and ranged from simple atom counts to complex 

quantum-chemical properties. An artificial neural network (ANN) was created with a 

compilation of molecular descriptors of pollutants from the four water sources.  The ANN 

identified the following relevant molecular descriptors for inclusion in QSPR models: LUMO–

HOMO energy difference, electron affinity, number of halogen atoms, number of ring atoms, 

weakly polar component of the solvent accessible surface area, and oxygen to carbon ratio 

(Sudhakaran, et al. 2012).  The same research group used a different approach in developing 

additional QSPRs using ozone and hydroxyl radical degradation rate constants as dependent 

variables.  Molecular descriptors selected were double bond equivalence, ionization potential, 

electron affinity, and weakly-polar component of solvent accessible surface area.  As opposed to 

ANN used to construct the prior QSPR models, MLR was used to build the additional models 

(Sudhakaran and Amy 2013).  In both cases, models were validated with internal and external 

data sets and showed high goodness of fit. 

In another study related to hydroxyl radical reactions in water, a QSPR was built using 

MLR on quantum chemical descriptors to predict degradation rate constants.  The molecular 

descriptors found to be significant were the HOMO energy, average net H atom atomic charges, 

molecular surface area (MSA), and dipole moment. Degradation rate constants were positively 

correlated with increasing HOMO energy and molecular surface area and negatively correlated 

with increasing H atom atomic charge and dipole moment.  Particular emphasis was placed on 

following QSPR development guidelines set forth by the Organization for Economic 
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Cooperation and Development (OECD; http://www.oecd.org/env/ehs/oecdquantitativestructure-

activityrelationshipsprojectqsars.htm), including validation, domain of applicability, and 

mechanistic interpretation. (Wang, et al. 2009) 

A similar methodology was used to develop a QSPR to predict hydroxyl radical 

degradation rate constants for 78 aromatic compounds in water.  A genetic algorithm (heuristic 

method) was used to select relevant descriptors and multiple linear regression was used to build 

the QSPR models.  The DRAGON software package was used to calculate molecular 

descriptors.  A final model consisting of 4 molecular descriptors (HOMO, molecular path count 

of order 8, Geary auto-correlation-2/lag weighted by polarizabilities, leverage weighted 

autocorrelation of lag 7/weighted by atomic polarizabilities) was found to be ideal without 

overfitting and HOMO energy was the main contributor to the resultant degradation rate. (Kusic, 

et al. 2009)  

Jin et al. developed a QSPR model for the prediction of hydroxyl radical degradation 

rates for emerging micro pollutants.  The model building data set included 118 emerging micro 

pollutants, including some from the literature and some experimentally collected.  DRAGON 

was used to calculate 951 descriptors. MLR was used to build and refine a final model which 

includes the mean atomic Sanderson electronegativity, the number of double bonds, the number 

of primary alkyl halide functional groups, number of hydrogen bond acceptors, Moran 

autocorrelation of lag 2 weighted by mass, Balaban V index, and signal 27 weighted by 

polarizability. (Jin, et al. 2015) 

Huang et al. built a QSPR model based on ten sulfonamide compounds (SAs) degraded in 

TiO2 photocatalytic systems.  Partial least squares regression was used to build optimal QSAR 

models.  Degradation of SAs was found to be strongly related to the highest occupied molecular 

http://www.oecd.org/env/ehs/oecdquantitativestructure-activityrelationshipsprojectqsars.htm
http://www.oecd.org/env/ehs/oecdquantitativestructure-activityrelationshipsprojectqsars.htm
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orbital, the maximum values of nucleophilic attack (f(+)x), and the minimum values of the most 

negative partial charge on a main-chain atom (q(C)min).  (Huang, et al. 2015) 

Borhani et al. developed a QSPR for predicting the hydroxyl radical rate constant for a 

dataset of 457 water contaminants spanning 27 chemical classes. A constricted binary particle 

swarm optimization and MLR (BPSO-MLR) technique was used to fit an optimal model with 

eight molecular descriptors including sphericity, R autocorrelation of lag 1/unweighted, Broto-

Moreau autocorrelation of a topological - lag 2/weighted by atomic van der Waals volumes, 

highest eigenvalue of Burden matrix/weighted by atomic Sanderson electronegativities, spectral 

moment 05 from edge adjacent matrix weighted by edge degrees, number of terminal primary C, 

number of aromatic hydroxyls, and number of sulfur atoms. (Borhani, et al. 2016) 

Tang investigated the use of LUMO as a sole descriptor in a predictive model for 

degradation in a UV/H2O2 AOP.  The descriptor produced models with strong R2 values ranging 

from 0.9094 – 0.9876 for separate chemical classes of alkane, benzene, halide, and phenol 

compounds.  Separate models were built for each chemical class with only n=3 compounds 

employed in each model.  Each class resulted in vastly different coefficients and a model with all 

classes combined would have likely resulted in a poor model fit.  LUMO showed less fit to 

individual models built with alkenes, aromatic hydrocarbons, carboxylic acids, and sulfonic acids 

with lower R2 values ranging from 0.06 – 0.77. (Tang 2004) 

Additional QSPR models have been developed for predicting degradation rates for the 

direct photodegradation of compounds in either aqueous or non-aqueous solutions.  One such 

model was built to predict degradation of polybrominated diphenyl ethers in water/methanol or 

methanol solutions.  Partial least squares regression was used to build the model and the 

following descriptors were found to be significant: LUMO–HOMO energy gap, most positive 
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Mulliken atomic charges on a hydrogen atom, log k, molecular weight, average molecular 

polarizability, and average Mulliken atomic charges on bromine atoms (Chen, et al. 2007).  

Other QSPRs have been built to predict photodegradation of compounds on aerosol surfaces 

(Ohura, et al. 2008) and oxidation of compounds in the atmosphere (Meylan and Howard 2003) 

using similar model building techniques. 

A different model building technique employed by Minakata et al. involved the 

development of a group contribution method (GCM) to predict hydroxyl radical degradation rate 

constants by predicting rate constants for individual reaction mechanisms: 1) hydrogen 

abstraction, 2) hydroxyl radical addition to alkenes, 3) hydroxyl radical addition to aromatic 

compounds, and 4) hydroxyl radical interaction with compounds containing sulfur, nitrogen, or 

phosphorus. The GCM is predicated on the idea that the experimental degradation rate constant 

for a given organic compound is the combined rate of all elementary hydroxyl radical reactions.  

A total of 66 group rate constants and 80 group contribution factors are included in the GCM.  

Degradation rate constants were mined from the literature with 310 compounds used for 

calibration and 124 compounds used for prediction.  Genetic algorithms were used to determine 

the group rate constants and contribution factors.  The best results for calibrations and 

predictions were within 0.5-2 times experimental values. (Minakata, et al. 2009)  Though the 

GCM is a robust methodology, it also requires a large data set for proper calibration and 

prediction (Minakata, et al. 2014).   
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3.2. Materials and Methods 

3.2.1 Data Set and Generation of Molecular Descriptors 

A set of experimental data (including observed degradation rate constants, degradation 

extent, and molar absorptivity values) was collected as previously described for 6 dye and 5 

achromatic chemical compounds studied in a UV LED/H2O2 AOP reactor described in Chapter 

2.  The scope of the data set and associated degradation rate constants are constrained to the 

specific reactor and associated reactor parameters utilized in the experiments (e.g. flow, volume, 

chemical concentrations, UV intensity, etc.).  Experimental procedures such as competition 

kinetics were not utilized to link the apparent first order degradation rate constants to second 

order hydroxyl radical rate constants commonly reported in the literature.   

A freeware package from the US Food and Drug Administration called MOLD2 was used 

to generate 777 molecular descriptors for each test compound (US Food and Drug 

Administration 2015).  MOLD2 requires loading of a structure data file (SDF) for each 

compound and performs computations based on parameters contained in the SDF.  The requisite 

SDF for each compound was available and was downloaded from the National Institutes of 

Health PubChem data repository (National Institutes of Health 2016).  Additional chemical 

properties were also selected for each dye and chemical from information published directly on 

the PubChem website (National Institutes of Health 2016).  As MOLD2 does not have quantum 

chemistry capabilities, two additional software packages were used to produce those descriptors, 

MOPAC (Stuart Computational Chemistry 2016) and Spartan ’16 (Wavefunction 2017).   In 

order to use MOPAC, the SDFs from PubChem had to be converted to MOPAC format (.mop).  

This was completed in open source software called Babel (O'Boyle, et al. 2011) that converts 

descriptor input files across multiple computational platforms.  Conversions were completed for 
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all compounds and quantum values were successfully computed in MOPAC.  Spartan software 

also requires input files specifically formatted for the platform; however, it can directly import 

SDF files and convert them internally.  Several of the chemical compound structures were 

available in a Spartan database, whereas dye molecules were imported and manually verified for 

structural accuracy following conversion from 2D to 3D format.  A full listing of MOLD2 and 

PubChem descriptors is provided in Appendix B. 

3.2.2. QSPR Model Development 

 The JMP statistical software package was used to test multivariate QSPR model 

candidates through linear regression by regressing degradation rate constants on one or more 

molecular descriptors.  Regression techniques are among the most popular methods in the 

literature and a basic model takes the form of Equation 5: 

𝑦𝑦𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖       (5) 

Where 

𝑦𝑦𝑖𝑖: property being predicted (degradation rate constant in this case) 

𝛽𝛽0: constant 

𝛽𝛽1, 𝛽𝛽2,⋯ , 𝛽𝛽𝑛𝑛: regression coefficients 

𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, ⋯, 𝑥𝑥𝑖𝑖𝑖𝑖: predictor variables of compound i (molecular descriptors in this case) 

 

Two approaches were taken to QSPR model development.  In the first approach, relevant 

models and their associated descriptors were mined from the literature.  QSPR models from the 

literature predicting hydroxyl radical rate constants cannot be compared directly due to the 

limitations noted in Section 3.2.1; however, the molecular descriptors utilized in building those 

models are certainly relevant for comparison and tests of statistical significance.  Models were 
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built using the same descriptors or comparable descriptors employed in models discussed 

(summarized in Table 4) and standard least squares regression was used to fit the best possible 

model with those descriptors.  In the second approach, MLR was used to build new models from 

the descriptors calculated, as described in Section 3.2.1.  A stepwise procedure was used to 

down-select the descriptors by which variables are added to the model one at a time until the 

descriptor with the best fit (R2) is found.  The procedure then moves forward to find the next 

descriptor that continues to improve the R2 when added to the model.  The p-value threshold 

stopping rule was used with default probability to enter and exit of 0.25 and 0.1, respectively.  

Because the overall data set is small (6 dyes and 5 achromatic chemicals), caution was taken not 

to include more than 1-2 descriptors in final models in order to avoid overfitting.  Assessment of 

model fit was completed by evaluating coefficient of determination (R2), adjusted R2 (R2
adj), root 

mean square error (RMSE), Fisher criterion (F), standard error of the estimate (SE), and p-value 

tests for significance of predictors.  Evaluation of R2
adj is of particular interest as it accounts for 

the inclusion of additional predictors and compares the improvement that inclusion of an 

individual predictor has on model fit to the improvement that would be expected by chance.   
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Table 4.  Molecular descriptors utilized in QSPRs built from traditional mercury lamp AOP data. 

 

QSPR Model/Reference Descriptors Used Parameters/Notes 
1. Wang, et al. 2009 model - EHOMO (HOMO) 

- Avg net atomic charges on H (QH) 
- Molecular surface area (MSA) 
- Dipole Moment (DM) 
 

Domain of applicability for original 
model was phenols, alkanes, and 
alcohols. Unable to obtain QH values 
with MOPAC/Spartan/MOLD2. 

2. Jin, et al 2015 model - Mean atomic Sanderson negativity 
- # double bonds (DB) 
- # primary alkyl halides (nCH2RX) 
- # hydrogen acceptors (HA) 
- # Moran autocorrelation lag 2 
weighted by mass (MATS2m) 
- Balaban V index (BV) 
- Signal 27 weighted by 
polarizability (Mor27p) 

Applied to a large data set of micro 
pollutants.  Unable to obtain Mor27p 
values with MOPAC/Spartan/MOLD2. 

3. Tang 2004 model ELUMO (LUMO) Applied to alkane, benzene, halide, 
and phenol classes 

4. Kusic, et al. 2009 model - HOMO 
- Molecular path count of order 8 
- Geary autocorrelation of lag 
2/weighted by polarizabilities 
- Leverage weighted autocorrelation 
lag 7/weighted by polarizabilities 

Found EHOMO to be the main 
contributor. 

5. Sudhakaran and Amy 
2012 model 

- HOMO-LUMO energy gap 
- Electron affinity (EA) 
- # halogen atoms 
- # ring atoms 
- Weakly polarizable surface 
(WPSA) 
- Oxygen to carbon ratio (OtoC) 

Electron affinity and WPSA not 
available in 
MOPAC/Spartan/MOLD2.  Negative 
of the LUMO approximates electron 
affinity.  

6. Sudhakaran and Amy 
2013 model 

- Double bond equivalence (DBE)  
- Weakly polarizable surface area 
(WPSA) 
- Ionization potential (IP) 
- Electron affinity (EA) 

Electron affinity and WPSA not 
available in 
MOPAC/Spartan/MOLD2.  Negative 
of the LUMO approximates electron 
affinity.  Negative of the HOMO 
approximates ionization potential.   
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3.3. Results and Discussion 

 3.3.1. Assessment of Existing QPSR Models 

Three models were built with each set of descriptors from Table 1 using a combined data 

set of dyes and achromatic chemicals (n=11), a data set of dyes alone (n=6), and a data set of 

achromatic chemicals alone (n=5).  The rationale for this approach is to assess domains of 

applicability as the dye structures in general are much larger, more complex, and contain 

different atoms and functional groups than the achromatic chemicals.  A summary of parameter 

estimates and statistics is provided in Table A5 (Appendix A). 

3.3.1.1. Wang, et al. 2009 Model 

As noted in Table 4, the Wang, et al. model consisted of 4 molecular descriptors.  Three 

of the descriptors (energy of the highest occupied molecular orbital (HOMO), molecular surface 

area (MSA), and dipole moment (DM)) were available in the software packages used in this 

study; however, average net atomic charges on H could not be obtained directly.  When 

evaluating the three available descriptors using MLR and putting in the form of Equation 1, the 

following model was obtained.   

Kpred = 1.4985277 + 0.120925(HOMO) + 0.0009508 (MSA) – 0.023057 (DM) 

Overall, the model is a poor fit to the full n=11 data set as evidenced by weak R2 and 

R2
adj values of 0.157 and -0.204, respectively.  Figure 13 presents a plot of measured versus 

predicted apparent first order degradation rate constants.  The solid line represents ideal fit where 

kpred/kmeas = 1.  Thinner dashed lines demark regions where kpred/kmeas values are less than 0.5 or 

greater than 2.  Similar plots are provided for all remaining model evaluations.  Tests of 

significance fail for the full model and all individual parameters. 
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When looking at the data set of n=6 dyes alone, the fit of the model begins to shift with 

R2 of 0.801; however, the R2
adj value remains low at 0.50, indicating likelihood of chance 

parameter fit (Figure 14).  Lack of statistical significance remains evident in the full model and 

all parameters.  The resultant model is as follows.   

Kpred = -4.029688 - 0.596527(HOMO) - 0.001318 (MSA) + 0.0351431 (DM) 

The data set of n=5 achromatic chemicals shows significant improvement in model fit in 

terms of both R2 and R2
adj and results in the model below.  The overall R2 fit improves to 0.983, 

whereas R2
adj is 0.933 (Figure 15).  However, tests of statistical significance continue to fail for 

the full model and all individual parameters.  

Kpred = 22.060342 + 2.2074904(HOMO) - 0.020181 (MSA) + 0.5241355 (DM) 

Overall results indicate that these three molecular descriptors together may be useful in 

predicting the degradation of the achromatic chemical compounds as evidenced by the high 

adjusted coefficient of determination; however, caution should be taken given the lack of 

statistical significance in conjunction with the small data set size.  The descriptors are also 

predictive to a lesser extent for the dye compounds.  When grouping the dyes and achromatic 

chemicals into a combined data set, it is evident that there are structural diversities that likely 

shift the domain of applicability of the QSPR. 
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Figure 13. Actual versus predicted degradation rate constants utilizing Wang et al. descriptors with the full data set. 
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Figure 14. Actual versus predicted degradation rate constants utilizing Wang et al. descriptors with the dye data set. 
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Figure 15. Actual versus predicted degradation rate constants utilizing Wang et al. descriptors with the achromatic chemical data set.
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3.3.1.2. Jin, et al. 2015 Model 

The Jin, et al. model consists of 7 molecular descriptors, including mean atomic 

Sanderson negativity (MASN), number of double bonds (DB), number of primary alkyl halides 

(CH2RX), number of hydrogen bond acceptors (HBA), Moran autocorrelation lag 2 weighted by 

mass (MAL2m), Balaban V index (BV), and signal 27 weighted by polarizability (Mor27p).  Six 

of the seven descriptors were able to be produced; however, Mor27p was not directly available in 

the software packages utilized.  The model below produced with the full n=11 data set results in 

a weak coefficient of determination of 0.481 and even weaker R2
adj of -0.297 (Figure 16).  The 

full model and all parameters failed tests of statistical significance. 

Kpred = 6.2253693 + 0.2855091(HBA) – 1.433525(BV) – 0.247911(DB) – 
5.817407(MASN) – 0.565174(MAL2m) – 0.076636(CH2RX)  

  

Fitting these parameters to n=6 dyes alone or n=5 achromatic chemicals alone is not 

possible due to degrees of freedom violation and bias in the model caused by the comparatively 

large number of descriptors.  Overfitting is apparent and the resultant R2 is 1 in both cases. Jin et 

al. found that the Balaban V index and the number of hydrogen bond acceptors showed the best 

correlation to the degradation rate constant in their model.  When using only those two 

descriptors, no better model fit can be obtained with the full data set or data subsets.  We can 

conclude that the Jin, et al. descriptors do not fit the dye and chemical data set used in this study.
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Figure 16. Actual versus predicted degradation rate constants utilizing Jin et al. descriptors with the full data set.
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3.3.1.3. Tang 2004 Model 

The Tang model is the least complex of all models evaluated as it consists of only one 

molecular descriptor, energy of the lowest unoccupied molecular orbital (LUMO).  Producing a 

model using LUMO for the full n=11 data set results in extremely poor fit evidenced by an R2 of 

0.02 and poor statistical parameters.  Only the model intercept shows significance as a 

parameter.  Figure 17 illustrates the poor fit with a horizontal trend of the predicted k values, 

indicating no correlation between the measured and predicted k values, which is precisely what 

the R2 value tells us.  The resultant model equation is below.   

Kpred = .54867 - 0.023898(ELUMO) 

 When looking at the data set of n=6 dyes alone, the fit of the model improves (Figure 

18), but is still poor overall with an R2 of 0.39 and an R2
adj of 0.24 and all tests of statistical 

significance fail.  The model produced is as follows. 

Kpred = .4636993 - 0.148431(ELUMO) 

The data set of n=5 achromatic chemicals also returns poor fit with return to a horizontal 

trend and an overall R2 of 0.032 (Figure 19).  Overall analysis across the full data set and two 

subsets indicates that LUMO alone has poor predictive power in this particular data set. 

In the original work produced by Tang, individual models were built for individual 

chemical classes with LUMO as a descriptor.  Each of these models was built with a data set of 

only n=3 compounds and the resultant models for each class of chemicals was vastly different 

from the next.  Producing a model with the full Tang data set would have resulted in a poorly 

parameterized model.  Similarly, the full data set utilized in this study produced poor fit to 

LUMO as a sole descriptor.  Individual sets of n=3 dye or achromatic chemical data points may 
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have produced models of good fit, but such small data sets produce results with poor statistical 

relevance.  
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Figure 17. Actual versus predicted degradation rate constants utilizing Tang descriptors with the full data set. 
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Figure 18. Actual versus predicted degradation rate constants utilizing Tang descriptors with the dye data set. 
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Figure 19. Actual versus predicted degradation rate constants utilizing Tang descriptors with the achromatic chemical data set.
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3.3.1.4. Kusic, et al. 2009 Model 

The Kusic, et al. model consists of 4 molecular descriptors including EHOMO, molecular 

path count of order 8 (PC8), Geary autocorrelation of lag 2/weighted by polarizabilities 

(GACL2wP), and autocorrelation lag 7/weighted by polarizabilities (AL7wP).  All the 

descriptors were reproducible in this study.   The full n=11 data set produces a poor model fit 

with R2 of 0.311 and R2adj of -0.147. 

Kpred = 5.5068128 + 0.4620056(EHOMO) – 0.001947(AL7wP) – 0.760255(GACL2wP) – 
0.009211(PC8) 

 

 When reviewing the plot of actual versus predicted k (Figure 20), the two data points 

representing malathion and Allura Red AC deviate from the trend followed by the remaining 

data points.  In general, it is not good practice to remove data points unless there is sound 

reasoning for why outliers may exist.  In this case, we would review the structures and assess the 

domain of applicability of the two outliers.  In the case of malathion, it is unique in that it is the 

only compound that contains phosphorous.  However, there are no immediate differences that 

can be discerned for Allura Red AC; it is an azo dye just as Sunset Yellow FCF and Tartrazine 

and has a similar molecular structure.  In principle, there is no immediately obvious reason to 

remove Allura Red AC; however, it is interesting to remove both compounds to assess the 

impact on model fit.  With reduction to a data set of n=9, model fit is substantially enhanced 

(Figure 21) to an R2 of 0.985 and R2
adj of 0.971 with the following resultant model.  The full 

model and all parameters are also statistically significant. 

Kpred = 7.3060112 + 0.6488038(EHOMO) – 0.002917(AL7wP) – 0.996798(GACL2wP) – 
0.01186(PC8) 
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The data set of n=6 dyes alone (including return of Allura Red to the set) produces strong 

model fit as observed by R2 of 0.992 and R2
adj of 0.961 (Figure 22); however, in contrast to the 

prior model, the full model and all parameters fail tests of statistical significance.  The resultant 

model is as follows. 

Kpred = 2.7587428 + 0.3297615(EHOMO) – 0.004671(AL7wP) – 2.5296858(GACL2wP) – 
0.0013733(PC8) 

 

The set of n=5 achromatic chemicals cannot produce a model without bias due to number 

of data points versus predictors.  In general, descriptors utilized by Kusic, et al. may be useful in 

predicting the observed degradation rates of dyes; however, we must be cautious of the potential 

for overfitting with the small sample size and lack of statistical significance.  The descriptors 

may also be useful to the overall data set if we have valid reason to exclude one dye and one 

achromatic chemical as outliers, though there is no immediately apparent reason to do so. 
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Figure 20. Actual versus predicted degradation rate constants utilizing Kusic et al. descriptors with the full data set. 
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Figure 21. Actual versus predicted degradation rate constants utilizing Kusic et al. descriptors and omitting malathion and Allura Red AC. 
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Figure 22. Actual versus predicted degradation rate constants utilizing Kusic et al. descriptors with the dye data set.
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3.3.1.5. Sudhakaran and Amy 2012 Model 

The first set of Sudhakaran and Amy descriptors consists of the HOMO-LUMO energy 

gap, electron affinity (EA), number of halogen atoms, number of ring atoms, weakly polarizable 

component of the solvent accessible surface area (WPSA), and oxygen to carbon ratio (OtoC).  

There was no direct method for obtaining WPSA in the software utilized in this study, but the 

remainder were obtained directly or through mathematical manipulation of existing descriptors.  

The descriptors fit to the full n=11 data set results in an R2 of 0.86 and R2
adj of 0.72 (Figure 23).  

Statistical parameters show mixed results.  The overall model is statistically significant; 

however, the individual parameters of “Halogen” and “OtoC” fail to pass the p-value test. 

Kpred = 7.0584708 – 0.57937(EA) + 0.6832793(HOMO-LUMO) – 0.09306(Halogen) - 
0.063115(Ring Atoms) – 0.0192175(OtoC) 

 

 Parameter estimates for subsets of dyes and achromatic chemicals alone cannot be 

obtained due to bias caused by the number of predictors (e.g. more predictors than data points).  

Overall analysis indicates that this model is likely not a good fit to this data set and results in a 

coefficient of determination that is likely due primarily to chance overfitting as evidenced by the 

lower R2
adj.



90 

 

Figure 23. Actual versus predicted degradation rate constants utilizing Sudhakaran and Amy, 2012 descriptors with the full data set.
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3.3.1.6. Sudhakaran and Amy 2013 Model 

The second set of Sudhakaran and Amy descriptors consists of double bond equivalence 

(DBE), weakly polarizable component of the solvent accessible surface area (WPSA), ionization 

potential (IP), and electron affinity (EA).  As before, there was no direct method for obtaining 

WPSA in the software utilized in this study.  Double bond equivalence was calculated from the 

number of rings and double bonds, electron affinity was estimated as the opposite of the LUMO, 

and ionization potential was estimated as the opposite of the HOMO.  The full n=11 data set fit 

to the three descriptors results in a model with no statistical significance and an R2 of 0.116 

(Figure 24).  All parameters also show lack of significance. 

Kpred = 1.7360915 – 0.033767(DBE) + 0.0586533(EA) - 0.117716(IP) 

 

When building a model with the n=6 dyes subset, the R2 improves to 0.568, however 

R2
adj is poor at -0.081, indicating high likelihood of chance improvement (Figure 25).  All 

parameters and the full model also show lack of statistical significance. 

Kpred = -0.769738 – 0.01624(DBE) + 0.1155415(EA) + 0.1923857(IP) 

 

 The final model for the subset of n=5 achromatic chemicals results in a model with an R2 

of 0.995 and an R2
adj of 0.982 (Figure 26); however, all parameters and the full model again 

show lack of statistical significance.  Caution must be taken given the small sample size and lack 

of significance.    

Kpred = 0.6893163 + 0.6937853(DBE) - 0.389132(EA) – 0.23356(IP) 
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Figure 24. Actual versus predicted degradation rate constants utilizing Sudhakaran and Amy, 2013 descriptors with the full data set. 
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Figure 25. Actual versus predicted degradation rate constants utilizing Sudhakaran and Amy, 2013 descriptors with the dye data set. 



94 

 

Figure 26. Actual versus predicted degradation rate constants utilizing Sudhakaran and Amy, 2013 descriptors with the achromatic chemical data set.
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3.3.2. Construction of a New QSPR Model 

The full set of molecular descriptors listed in Appendix B was utilized to conduct forward 

stepwise regression using p-value entry/exit parameters, as previously described.  In general, 

stepwise regression will continue to add terms to a model to seek improvements in R2.  This can 

quickly lead to chance overfitting, especially with small sample sizes.  The initial pass through 

the stepwise procedure produced a list of seven descriptors that are significant in the model.  

However, as noted, seven descriptors as compared to a small sample size can easily over fit the 

data simply due to chance values of the predictors being fit.  Of the seven descriptors, a model 

with zero point energy (ZPE) alone results in a model with R2 = 0.792:  

Kpred = -0.465407 + 0.0016863(ZPE) 

 

 The model excluded Brilliant Blue FCF and Fast Green FCF dyes as they failed to 

converge in Spartan geometry optimization for ZPE calculations following over 300 hours of 

computational time and eventual memory faults.  This is due to the complexity of the molecules 

and the complexity of the basis sets used in the density functional theory calculations.  Overall 

R2 and R2
adj are relatively good at 0.79 and 0.76, respectively (Figure 27).  The overall model 

and all parameters are statistically significant with the exception of the intercept term.  A plot of 

predicted k versus residuals in JMP shows desired randomness.   

To improve the R2 value, the additional six parameters were examined in the forward 

stepwise approach and found not to individually improve R2 meaningfully.  A plot of measured 

versus predicted k was examined.  From this plot, an observation is that Tartrazine and 

Erythrosine B fall the furthest from the ideal fitted line (Figure 27).  As previously reported 
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elsewhere (Chapter 2), those two dyes in particular showed a high molar absorptivity at the 265 

nm wavelength (the peak output wavelength of the LEDs being used in the study), and it was 

hypothesized elsewhere (Chapter 2) that competition with H2O2 for UV absorbance likely 

affected the kinetics of the AOP.  Absorbance at 265 nm was added as a predictor to the model to 

see what effect it may have.  Adding the term tightens the model significantly, resulting in R2 

and R2
adj values of 0.951 and 0.934, respectively, and the full model and all parameters show 

significance (Table 5 and Figure 28).  A predicted k versus residual plot produced in JMP also 

shows randomness with no pattern, as desired.  The resultant model and associated parameters 

are as follows. 

Kpred = -0.404717 + 0.0018182(ZPE) – 1.093331(Abs265) 

 

3.3.3. Physical significance of newly constructed QSPR model 

Parameters in the model show a positive correlation between degradation rate and ZPE 

and a negative correlation between degradation rate and absorbance at 265.  The ZPE is a value 

that comes from thermodynamic calculations in Spartan.  Both of these correlations make 

intuitive sense when considering reaction kinetics.  The theory behind ZPE is that even at 0 

degrees Kelvin, molecules will still have some level of vibrational energy.   

This represents the first known use of ZPE in a QSPR model; however, larger data sets 

should be tested to further assess the utility of this novel parameter.   It was hypothesized in 

Chapter 1 that descriptors related to frontier electron density, particularly HOMO, would be 

significant model parameters.  This was not the case, as models incorporating HOMO, LUMO, 

and HOMO-LUMO performed relatively poorly and ZPE emerged as an important descriptor for 

this data set. 
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Table 5. Parameters and tests of statistical significance for new models built with zero point energy and molar absorptivity. 

 

Model Data Set Rsquare Rsquare Adj RMSE F Ratio Prob > F Parameter Parameter Estimate Prob > t
New Model with ZPE Omit BB and FG (n=9) 0.792 0.762 0.169 26.63 0.0013 Intercept -0.465407 0.0572

ZPE 0.0016863 0.0013

New Model with ZPE and Abs Omit BB and FG (n=9) 0.951 0.935 0.089 58.3 0.0001 Intercept -0.404717 0.0096
ZPE 0.0018182 <0.0001
Abs265 -1.093331 0.0045
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Figure 27. Actual versus predicted degradation rate constants utilizing Zero Point Energy as a descriptor with the full data set. 
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Figure 28. Actual versus predicted degradation rate constants utilizing Zero Point Energy and molar absorptivity as descriptors with the full data set.
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3.4. Conclusions 

This study sought to utilize a small, high quality data set of the observed degradation 

kinetics of 6 dye and 5 achromatic chemical compounds tested in a bench-scale UV LED reactor 

to compare fit with molecular descriptors in published QSPRs developed with traditional 

mercury lamp AOP data and also to use MLR methodology to construct a new QSPR model.  

Prior to this study, QSPRs had not been evaluated for UV LED-based reactors.  Overall fit to 

descriptors used in all the existing QSPR models compared was relatively poor for the overall 

data set of dyes and achromatic chemicals combined.  The resultant R2 values were 0.024, 0.116, 

0.157, 0.312, 0.481, and 0.864; however, several of the descriptors producing the model with the 

highest R2 of 0.864 failed to pass tests of statistical significance. When breaking the larger data 

set into smaller subsets of dyes and achromatic chemicals, improvement was seen with R2 values 

between 0.033 – 0.996, but most models and individual parameters failed tests of statistical 

significance.  Statistical robustness was also compromised due to smaller data set sizes compared 

to numbers of predictors included in models.   

In construction of a new model for predicting the dye and achromatic chemical apparent 

first order degradation rates, ZPE emerged as a statistically significant parameter.  Model fit with 

ZPE was further enhanced by including UV absorbance competition at the peak output 

wavelength of the LEDs.  Overall, ZPE and molar absorptivity at 265 nm result in a QSPR with 

R2 = 0.951 with statistical significance in the model and all parameters at the 95% confidence 

interval.  This represents the first known use of ZPE and molar absorptivity in the construction of 

a QSPR model for the UV/H2O2 AOP in both the traditional mercury lamp and UV LED 

domains.
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IV. UV LED AOP Application in a USAF Net Zero Water Program – A Systems 
Architecture View 

 

Keywords 

Ultraviolet, light emitting diode, advanced oxidation process, net zero water, systems 
architecture 

Abstract 

Water scarcity and contamination are challenges to which the United States homeland is not 
shielded.  With increased demand for water and threats to the existing supply, policies and 
technologies that support a “Net Zero” water use posture will become increasingly critical.  The 
United States Air Force has established its own Net Zero initiative through an Energy Strategic 
Plan that identifies water as a critical asset and seeks potable water demand reduction by 
capturing and reusing, repurposing, or recharging an amount of water that is greater than or equal 
to the volume of water the installation uses.  The present study uses a systems architecture view 
to describe a net zero water program at a hypothetical USAF installation and proposes areas 
within the program where advanced oxidation processes utilizing ultraviolet light emitting diodes 
and hydrogen peroxide might be paired with other technologies to treat water.  Focus is placed 
on delineating treatment operations at the installation level and the facility level.  Facility-level 
treatment for recycling of wastewater was found to be the most feasible application for the near 
term as flow rates and volumes of water treated at decentralized facilities are comparatively 
favorable to the current state of UV LED technology.  An approach is also presented to enable 
comparison of the required apparent first order degradation rate constant to facility size and 
desired recycle ratio.  Required degradation rates for a 55 gallon UV LED/H2O2 AOP reactor at 
0.1-0.9 recycle ratios show desirable overlap with the apparent first order degradation rate 
constants measured for eleven representative compounds tested under quality assured conditions.  
Thus, the apparent first order degradation rate constant can be used as a design criteria in the 
overall design of a UV LED reactor and the associated operating parameters. Furthermore, if 
paired with the predictive capability of the previously developed QSPR model, the design criteria 
can extend to future contaminants as they emerge and impact the USAF. 
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4.1. Introduction 

Water scarcity is becoming a more prevalent global reality to which the United States 

homeland is not shielded.  As populations continue to grow, so does the demand for clean, safe 

drinking water.  At the same time, water supplies once taken for granted are becoming depleted 

in some geographical regions.  One need not look further than the western United States to 

understand the evolving situation that is a real and current crisis in some areas, such as those 

municipalities with water supplies originating in the Colorado River basin and specifically Lake 

Mead and Lake Powell (Rajagopalan, et al. 2009; Gober 2017).  Other areas of the US will likely 

not be immune to this reality as climatic changes, increased demands, and water governance 

policies evolve (Sullivan, et al. 2017).  Additionally, municipalities have been threatened by 

contaminants and forced to seek alternate supply sources, as was the case in Flint, Michigan 

following lead leaching into municipal drinking water distribution lines (Morckel 2017).  The 

USAF is not immune to the reality of water scarcity and the need for conservation, because there 

is a tightly linked, symbiotic relationship between USAF installations and the municipalities they 

neighbor.  Furthermore, the USAF has also been implicated as a source of water contamination 

in some specific cases that have threatened municipal supplies.  With increased demand for 

water and threats to the existing supply, policies and technologies that support a “Net Zero” 

water use posture will become increasingly critical.  The US Environmental Protection Agency 

(USEPA) defines net zero water as “limiting the consumption of water resources and returning it 

back to the same watershed so as not to deplete the resources of that region in quantity or quality 

over the course of the year.” (USEPA 2016)   

The USAF has established its own Net Zero initiative through an Energy Strategic Plan 

that identifies water as a critical asset and seeks a balance of resource consumption, production, 
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and conservation.  An installation is to consume no more energy than is generated on the 

installation, and potable water demand is reduced by capturing and reusing, repurposing, or 

recharging an amount of water that is greater than or equal to the volume of water the installation 

uses.  The strategic plan places priority on reducing demand, integrating energy and water 

efficiency throughout business and planning processes, and promoting integration of new 

technologies in a constrained resource environment.  The initiative is designed to achieve a 

federal zero net energy goal by 2030 for new facility construction and alterations.  The USAF 

generally consumes around 27 billion gallons of water per year at an annual cost of $150 million, 

and energy utilized in water treatment and delivery is closely tied to an overall $9 billion annual 

energy cost (US Air Force 2013).   In an operational context that seeks to balance fiscal 

constraint with sustained global operations, the USAF needs to consider emerging technologies 

for water treatment that provide necessary water supply while simultaneously reducing energy 

costs and striving for net zero consumption. 

4.2. Background 

 Primary water challenges facing the USAF in the near term are twofold, availability and 

quality.  The USAF has installations on three continents, and active, guard, or reserve 

installations are located in all 50 states of the US homeland (US Air Force 2017).  Many of these 

installations are in arid environments, areas with high population density, and areas that have 

faced extensive drought conditions over multiple years (US Geological Survey 2017).  Drought 

conditions in the face of continued water demand has drawn down raw water supply levels 

(Famiglietti 2014) and has forced local municipalities, as well as USAF installations, to 

implement emergency water restrictions either on a temporary basis or, in some cases, enduring 

restrictions which have become pseudo-standard practice.  Additionally, in some coastal areas, 
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freshwater supplies are beginning to see saltwater intrusion due to rising sea levels (Ferguson 

and Gleeson 2013).  One need not look further than examples in California and Florida to 

understand the extent and history of these issues.  The South Florida Water Management District 

issued water emergency declarations as recently as April 2017 (SFWMD 2017).  California was 

under a perpetual drought state of emergency from January 2014 through April 2017, with 

several jurisdictions still affected beyond that time.  These two states alone have 13 USAF 

installations and support activities that are likewise impacted by these types of declarations (US 

Air Force 2017).  Concerns were raised in the US Department of Defense (DoD) 2014 

Quadrennial Defense Review which notes climate change and the associated effect water scarcity 

may have on future missions and undermine capacity of homeland installations to support 

training activities.  The document also underscores a need to increase water security and invest in 

efficiency, new technologies, and renewable energy sources (US DoD 2014).  Those concerns 

were more recently echoed by the National Intelligence Council in a report titled Implications for 

US National Security of Anticipated Climate Change.  In particular, the document notes that 

areas where populations continue to grow in coastal areas, water-stressed regions, and expanding 

cities will be most vulnerable to crises such as water shortages (USODNI 2016).  Traditionally, 

focus has been placed on water security and scarcity in overseas operations; however, it is 

becoming increasingly imperative that focus be placed on preserving stateside water resources as 

well. 

Traditional potable water cycles consist of withdrawing from a ground or surface raw 

water source, treating the water, conveying treated water to users, conveying used water to 

wastewater treatment plants, treating the wastewater, and discharging the treated wastewater.  

The point of treated wastewater discharge is dependent on the locality and availability of options.  
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In some cases, municipalities have practiced indirect potable reuse (either intentionally or 

unintentionally) by discharging treated wastewater back to surface water streams that may be 

used downstream as a raw water source or to environmental buffer areas that will eventually 

filter to and recharge aquifers used as raw water sources.  Retention times in the streams, 

aquifers, or environmental buffer areas allow for further purification through natural processes 

(Rodriguez, et al. 2009).  In some coastal areas, it has been common practice to discharge to 

oceans, breaking the potable reuse cycle as the fresh water is lost to the salt water system.   

Given the aforementioned increases in population and potable water demand contrasted 

with threatened and diminishing supply due to drought and climatic changes, waste in the 

potable water cycle is undesirable and unsustainable.  Net zero water programs that embrace 

reduction, reuse, and repurposing will likely become increasingly necessary and prevalent.  

Some municipalities are beginning to turn to direct potable reuse where highly treated 

wastewater is immediately reintroduced without the benefit of an environmental buffer (Texas 

Water Development Board 2016).  The underlying concepts of water reuse in a net zero construct 

are not new, with some of the earliest examples practiced by municipalities over thirty years ago.  

Initial implementation was primarily limited to areas with insufficient water supply and smaller 

service populations; however, advancements in technology and economics underlying such 

systems are making net zero programs feasible for virtually any municipal system (Englehardt, et 

al. 2016).  In addition to returning wastewater to use as a potable water source, it can also be 

repurposed for non-potable use (potentially with less extensive treatment), as long as the water is 

segregated from potable sources.  There are numerous case studies where this repurposed water 

is conveyed in an easy to identify “purple pipe” system and is used for alternative purposes such 

as landscape irrigation, toilet water supply, or supply to building cooling towers. The savings in 
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such systems is not limited to water, as there is also potential for energy savings in the reduction 

of energy used in water treatment cost and conveyance over long distances.   

USAF installations essentially operate like small municipalities within a protected fence 

line.  The source of potable water and wastewater services to the USAF varies by installation.  

Some operate water treatment and wastewater treatment plants on site (either operated by 

government employees or under contract), whereas others rely on neighboring municipalities to 

provide both services.  With regards to wastewater treatment, a 2012 study conducted for the 

Strategic Environmental Research and Development Program (SERDP)/Environmental Security 

Technology Certification Program (ESTCP) found a strong correlation between the size and 

location of a military installation and whether it treated wastewater onsite or offsite; 

geographically isolated bases and bases with large service populations tended to treat waste on 

site.  Overall, slightly less than 40% of USAF installations were found to have onsite wastewater 

treatment (Barry 2012). 

There are examples of USAF installations that have implemented some degree of water 

reuse and/or recycling programs for several years.  As early as 1997, Luke AFB began 

maintaining a wastewater reclamation permit allowing for reuse of over 500,000 gallons per day 

of wastewater effluent for irrigation.  During the summer months, Luke reclaimed 100% of the 

effluent, making it a “zero discharge” facility; during winter months of less water demand, 

excess was discharged to resupply a neighboring river (Pro-Act 2000).  In 2005, Los Angeles 

AFB won a “Customer of the Year” award from the WateReuse Association for purchasing 

recycled water from a local municipality.  New construction projects and renovations made dual 

piping systems (potable vs recycled) feasible, and over 50% of installation water consumption 

was sourced from the recycled supply (Gillis 2006).  As of 2013, Joint Base San Antonio 
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(JBSA)-Randolph and JBSA-Lackland also practiced similar recycled water purchases from 

local municipalities.  Furthermore, the installations implemented water recycling programs at 

wash racks and captured rainwater and air conditioner condensate for irrigation (Salinas 2013).  

Hurlburt Field in Florida was recognized as a Department of Energy award winner in 2014 for a 

water reuse project that greatly expanded gray water recycling and reuse on the installation.  

Hurlburt added more than 40,000 feet of water reuse pipelines and a 500,000 gallon storage tank. 

The reuse water was directed to irrigation, aircraft/vehicle wash racks, fire training, and facility 

cooling towers.  Excess water beyond Hurlburt’s demand can be returned to the local community 

for reuse.  Hurlburt was able to reduce potable water consumption by 13 million gallons annually 

(US Department of Energy 2015). 

In addition to and closely related to concerns over water availability and the need for 

conservation and reuse is the concern over quality of available raw and recycled water.  This 

topic poses a “double edge sword” for the USAF as both a consumer of water and a potential 

source of pollution to water supplies.  Recent findings and news regarding perfluorinated 

chemicals (PFCs), specifically perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate 

(PFOS), serve as an evolving example.  PFOA and PFOS were added to the USEPA’s Third 

Unregulated Contaminant Monitoring Rule (UCMR 3) in 2012, requiring monitoring for the 

contaminants during 2013-2015.  The UCMR and an associated Contaminant Candidate List 

(CCL, https://www.epa.gov/ccl) from which contaminants are selected are allowed under 1996 

amendments to the Safe Drinking Water Act to monitor for contaminants that are suspected of 

being in drinking water, but for which no current regulation exists.  Following addition to the 

UCMR list in 2012, the USEPA issued a health advisory for PFOS and PFOA in 2016, and a 

non-regulatory concentration limit of 70 parts per trillion was recommended for both 
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compounds.  PFOS and PFOA are constituents of firefighting foams used extensively in the 

USAF beginning in the 1950’s.  The chemicals were released during events such as fire training 

exercises, real world aircraft firefighting events, and inadvertent discharges of aircraft hangar fire 

control systems.  Sampling on and near USAF installations indicates that the compounds 

migrated to some drinking water supply sources and several installations have reported levels 

exceeding the health advisory recommendations and are taking remedial actions, including 

closing wells, installing granular activated carbon filter systems, and providing bottled water (Air 

Force Civil Engineer Center 2017).  Total tangible costs associated with sampling and mitigation 

and intangible costs associated with public relations are yet to be seen.  PFOS and PFOA are 

current news, but not the first news regarding groundwater contamination.  As another example, 

widespread groundwater contamination with trichloroethylene (TCE) has previously been 

reported at USAF installations, followed by many years of remediation efforts (Anderson, 

Anderson and Bower 2012).  These and other examples arise because the USAF is a large, 

industrial complex with an extensive history of chemical use.  Much of the issue surrounding 

contamination events with chemicals such as PFCs and TCE comes from a history of chemical 

use, handling, and disposal that has evolved along with more stringent and informed 

environmental policy.  

  As the USAF looks to the future, focus should be placed on developing best practices to 

stay ahead of environmental policy versus recovering from practices of the past.  Regular review 

of the UCMR and CCL, understanding linkages the USAF has to the chemical compounds 

included in the UCMR and CCL, and maintaining a proactive posture will be a priority focus 

area.  A net zero water construct with emphasis on both centralized and decentralized 

containment and utilization of emerging technologies for water treatment can play a significant 
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role in such a vision.  One such technological advancement is the use of energy efficient 

ultraviolet (UV) light emitting diodes (LED) as a replacement for high energy consuming 

mercury vapor lamps in advanced oxidation processes (AOP) utilizing hydrogen peroxide 

(H2O2).  Mercury lamp-based AOPs are a proven technology in water treatment, but UV LED-

based treatment is now possible as evidenced by results in Chapter 2 and previous work using 

UV LEDs as an energy source in a UV/H2O2 advanced oxidation process (Duckworth, et al. 

2015) (Gallucci 2016) (Mudimbi 2015) (R. W. Scott 2015) (Stewart 2016).  While LEDs require 

less input power, individual LEDs also provide significantly less total output power as compared 

to mercury lamps, and it is important to understand the suitability for implementation at full 

scale.  

 

4.3. Net Zero Water System Model 

  This section utilizes a reference systems architecture representation with hybrid views to 

conceptualize a net zero water system at a hypothetical USAF installation and assess points in 

the system where UV LED-based treatment might be considered in conjunction with other 

technologies in support of specific water quality applications.  All figures were produced using 

Enterprise Architect software (Sparx Systems, Australia).  Figure 1 presents a capability 

taxonomy that the architecture supports.  The underlying capabilities align with those capabilities 

required to enable the goals of the USAF Energy Strategic Plan.  The top level capability of the 

architecture is delivery of a Net Zero Water System.  That overarching capability is supported by 

three subordinate capabilities of Water Capture & Reuse, Water Repurposing, and Water 

Recharge.  Those three capability branches are then further decomposed as can be seen in the 

figure.



110 

 

Figure 29. Capability taxonomy for a USAF installation net zero water program (figure produced in Enterprise Architect). 
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4.3.1. System Context and Boundaries 

 In order to conceptualize the full scope and potential interactions of components in a net 

zero water system, a hybrid services resource flow view is presented in Figure 30.  The figure is 

designed as an all-encompassing view with implicit redundancy.  Where an installation does not 

have access to a component of the architecture (e.g. no municipal water/wastewater treatment 

sources), those components and linkages would be removed.  Within the figure, there are two 

major boundary regions defined at the installation level and the facility level.  The architecture 

presents only one representative facility boundary, but numerous facilities would be connected to 

the system in practice.  An understanding of these boundaries is important to the overall net zero 

water construct.   

The installation level boundary (represented by the outer bold black box) depicts points 

where raw water is consumed/recharged, potable water/recycled water/wastewater services are 

purchased from municipal sources, and recycled water is potentially returned back to municipal 

sources.  All these possible points of entry and exit are critical factors in calculating the total 

balance of water consumption.  The installation boundary also depicts a transition between 

government and private use of water resources and serves as a reminder that containment and 

treatment of contaminants mitigates potential for future public exposure.  The facility boundary 

(shown as an inner bold blue box) represents both a transition to treated water consumption and a 

potential transition point between centralized and decentralized water and wastewater treatment 

as the facility level is where water capture and reuse is most applicable.  Of interest in the figure 

are four areas of potential water treatment where UV LED/H2O2 AOP technology may be 

applicable and merit further discussion.   These areas are shaded purple and include Installation 

Potable Water Treatment, Facility Captured Water Treatment, Facility Recycled Water 
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Treatment, and Installation Wastewater Treatment.  Important linkages occur between these 

areas of treatment that allows for a continual recycling, blending, and reuse where applicable.   

All possible linkages are depicted in the figure; however, as before, those that are not 

applicable to a given installation or facility would be removed.  As an example, the Installation 

Wastewater Treatment node shows up to five potential effluent linkages.  The first is to the 

Municipal Recycled Water Supply node where the USAF may supply highly treated effluent 

water to the local municipality for introduction directly to its own recycled water supply.  The 

second linkage shows return to an Environmental Recharge Buffer node, which subsequently 

recharges the same surface water or groundwater supply source from which the raw water 

originated.  The third linkage shows return of treated wastewater to the start of the Installation 

Potable Water Treatment node for additional treatment before it is introduced into potable 

distribution.  Similarly, the fourth linkage shows direct introduction of highly treated wastewater 

effluent to the Potable Water Distribution node without further treatment.  Finally, the fifth 

linkage shows introduction of the treated effluent to the Recycled Water Distribution node, a 

segregated recycled water system for non-potable use.  Considerations such as federal and state 

regulations on viable reuse options, USAF technical orders guiding use of water in industrial 

processes, and other unique requirements of an individual installation must be reviewed on a 

case-by-case basis to determine which nodes and linkages are relevant.
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Figure 30. Hybrid systems view of a net zero water program at a USAF installation with boundaries at the installation and facility level (figure 
produced in Enterprise Architect). 
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4.3.2. Treatment Nodes 

 The four aforementioned treatment nodes shaded purple in Figure 30 merit further 

discussion with regard to potential for UV LED/H2O2 AOP technology integration.  Figure 31 

decomposes each of the nodes into activity diagrams that are representative of possible treatment 

trains.  Throughout Figure 30 and Figure 31, technologies for the online monitoring of conditions 

such as flow, volume, and basic water quality parameters (e.g. pH, chlorine, temperature, 

turbidity, conductivity, etc) should be considered and will not be discussed further.  

Technologies for measuring such parameters exist and are commercially available, and 

additional smart sensors for remote monitoring have shown promise as an emerging technology 

(Cloete et al., 2016).  These technologies can regularly inform a central function of the overall 

health and status of the water system and can also assist in automatically balancing flow between 

potable, recycled, and reuse water sources based on the current status and demand for each. 
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Figure 31. Operational activity lanes for four areas of potential UV LED/H2O2 advanced oxidation treatment 
within a net zero water program (figure produced in Enterprise Architect). 
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 4.3.2.1. Installation Potable Water Treatment 

 Installations that treat raw water on site for introduction to the potable water distribution 

system will typically follow one of two treatment schemes, centralized or decentralized.  In 

centralized treatment, raw water sources (either ground or surface) converge at a single water 

treatment plant that manages all treatment steps.  In decentralized treatment, individual wells will 

pull from a ground water source at multiple locations, and water treatment is then applied at each 

well individually.  As examples, Whiteman AFB in Missouri utilizes a central treatment plant 

operation, whereas Wright-Patterson AFB in Ohio and McChord Field in Washington treat 

directly at individual wells.  Figure 31a depicts an activity model of a straightforward potable 

water treatment train using UV LED/H2O2 in conjunction with other technologies.  The Conduct 

Pretreatment step refers to traditional coagulation, flocculation, softening, etc., dependent on the 

influent water source and quality.  In the example train, membrane filtration is utilized 

immediately before UV LED/H2O2 advanced oxidation and could be used in place of all 

pretreatment steps if the source water is of sufficient initial quality.  Following the UV 

LED/H2O2 step, granular activated carbon (GAC) filtration is conducted, followed by 

chlorination and fluoridation.  

 

 4.3.2.2. Facility Captured Water Treatment 

 Captured water sources within the span of control of an individual facility account for 

water obtained from rainwater harvesting systems and collection of climate control system 

condensate.  These captured water sources should be relatively clean with some exceptions.  

Early capture of rainwater from roof surfaces and other surfaces (asphalt, concrete, etc.) may 

contain bird feces and some other biological contaminants.  Additionally, if rainwater is 
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collected from parking lot runoff, chemical contaminants from sources such as leaking petroleum 

products or antifreeze could be present in trace amounts.  Figure 31b shows an activity model for 

a potential captured water treatment train.  The initial step includes coarse screening to catch 

particulate matter, leaves, and any other debris.  The next step is UV LED/H2O2 advanced 

oxidation, followed by GAC filtration.  There is no chlorination or fluoridation included in this 

particular treatment train, as there is no intent to introduce the treated water to the potable water 

system in a decentralized manner. 

 

 4.3.2.3. Facility Recycled Water Treatment 

 Facility recycled water treatment refers to the capturing of a portion (up to 100%) of 

spent water that would traditionally be discharged to the sewer system, and instead processing it 

through a facility-level treatment train to repurpose the water for additional use within the 

facility’s span of control.  Just as with captured water treatment, the intent is to repurpose the 

water for non-potable uses only.  Such reuse purposes include toilet water supply, industrial 

process water, cooling tower water, and irrigation.  The particular treatment train shown in 

Figure 31c includes a membrane bioreactor as a form of decentralized wastewater (including 

black water) treatment.  The membrane bioreactor is followed by UV LED/H2O2 advanced 

oxidation and GAC filtration, sequentially.   

 

 4.3.2.4. Installation Wastewater Treatment 

 The installation wastewater treatment activities are depicted in Figure 31d.  The node 

where these activities occur is responsible for processing all graywater, black water, and 

industrial wastewater that is not recycled at the facility level.  Given this blending of waste 
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streams in larger volumes from multiple facilities, there is a higher propensity for pathogens and 

numerous chemical contaminants to be present in the influent water.  The treatment train begins 

with traditional primary, secondary, and tertiary treatment steps.  These steps would typically 

include processes such as sedimentation, activated sludge, sand filtration and nutrient removal.  

The next steps are microfiltration and reverse osmosis treatment to remove ions and larger 

particles prior to entry to the UV LED/H2O2 AOP.  Final steps include GAC filtration and 

chlorination before potential return to either the installation recycled water supply or potable 

water supply. 

 

4.4. Discussion 

With regard to the treatment nodes in Section 4.3.2., treatment trains (unit treatment 

processes linked in sequence) are often necessary and, in some cases, can provide secondary 

benefits.  Such is the case with GAC, which is prevalent throughout all nodes in Figure 31.  Not 

only can GAC capture and remove some recalcitrant chemicals which are resistant to the UV 

LED/H2O2 AOP, such as PFCs, it can also serve as an effective quenching agent to remove H2O2 

from the treated water before it is recycled or repurposed.  Other technologies used in removing 

peroxide include those that use free chlorine or catalase as quenching agents.  The amount of 

peroxide to be removed and rate of removal will vary, dependent upon the concentration of 

peroxide initially supplied, other constituents in the water matrix that may potentially consume 

the peroxide, and the overall flow of the treatment system.   

As shown in this study and prior published studies, the optimal dose of H2O2 required in 

the AOP will vary based on the identity of compounds in the matrix and the concentration of 

each.  The cost of H2O2 in the treatment process has also been cited as prohibitive and 
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disadvantageous in some cases.  There are, however, some emerging technologies seeking to 

produce H2O2 by novel means that could reduce supply costs significantly.  One such technology 

utilizes a three-chamber electrochemical reactor where oxygen flows into an initial chamber, 

passes into a second chamber where a catalyst reduces the oxygen gas to H2O2, and in the third 

chamber another catalyst helps convert water back to oxygen gas to start the cycle all over again.  

The system has proven successful at bench scale and only requires around 1.6 volts, making it 

ideal for decentralized use and capable of using alternative power supplies (Chen et al., 2017).  

Other emerging technologies are being researched to produce H2O2 from microbial fuel cells 

paired with primary sludge processes (Ki et al., 2017). Both technologies have been proven with 

small scale, low volume throughput.  Scale up to support volumes and concentrations of H2O2 

production necessary to support real world water treatment application is being developed. 

The feasibility of real world water treatment application is tightly linked to the volume 

and rate of water demand.  In turn, the feasible application of UV LED/H2O2 AOP must be 

placed in the context of the installation and facility level water demand.  As previously noted, 

Wright-Patterson AFB (WPAFB) provides decentralized treatment at each of 10 individual water 

wells. The 2016 water quality report for WPAFB notes that approximately 1 billion gallons of 

water are supplied annually.  For illustrative purposes, if we assume steady production 24 hours 

per day and 7 days per week equally distributed between all 10 wells, a constant 192.5 gallons 

per minute (gpm) is required at each well.  If this level of production were instead centralized at 

a single treatment facility, an illustrative rate of around 2000 gpm would be expected (not 

accounting for water spent in the treatment process).  Comparatively, the apparent first order 

degradation rate constants reported for representative contaminants measured in Chapter 2 were 

achieved at a flow of 2 mL/min with 2 LEDs.  The number of LEDS required to treat 
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installation-level water or wastewater demand would be prohibitive with currently available 

technology.  Though UV LEDs offer flexible placement alternatives, there could be negatives 

associated with current costs of individual UV LEDs and with lack of existing UV LED arrays or 

UV LEDs with more diodes that are closer to matching the optical output power of traditional 

mercury bulbs.  Furthermore, individual UV LEDs represent individual points of potential 

failure; therefore, wiring more individual LEDs into a system to achieve higher output power, 

simultaneously increases complexity in diagnosing performance issues with an individual LED.  

As manufacturing processes improve, costs drop, and prepackaged arrays of UV LEDs with 

higher output power arrive, this issue may be mitigated.  However, in the near term, it is more 

feasible that UV LED/H2O2 AOP technology be considered for implementation in reuse and 

recycling programs at the facility level where total water volume and flow are much lower. 

Figure 32 depicts a UV LED/H2O2 AOP reactor at the facility level.  Two volumetric 

flow rates, Q1 and Q2, are represented in the figure.  Q1 is the flow of potable water supply 

initially entering the facility.  Q2 is the flow of recycled water to be treated via the UV 

LED/H2O2 AOP and reused within the facility.  Q2 is an adjustable rate where the ratio of Q2/Q1 

can range from 0-1, meaning 0% to 100% recycle.  Though basic in form, this figure can provide 

meaningful insight into applicability of UV LEDs in real world reuse scenarios.  Metcalf and 

Eddy’s Wastewater Engineering: Treatment and Reuse provides a range of per capita estimates 

for wastewater production and chemical oxygen demand (COD) loading rates.  Wastewater 

flowrates for industrial buildings ranges from 15-35 gallons per employee per day.  Estimates for 

COD range from 110-295 grams per person per day.  To further illustrate example pairing with 

Figure 32 recycle scenarios, we will assume a UV LED/H2O2 AOP reactor of 55 gallon volume, 

wastewater flowrate of 30 gal/person/day and an average COD loading of 200 g/person/day.  If 
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we further assume that the system in Figure 32 is operating at steady state, then we must achieve 

an apparent first order degradation rate constant, ks, that is related to the residence time in the 

reactor as ks = 1/τ.  We can use this relationship to suggest the necessary apparent first order 

degradation rate constants that are required to treat the wastewater at varying facility sizes and 

recycle ratios.  An example of this relationship is provided in the plot in Figure 33.  The figure 

provides ks curves for facilities ranging from 500 – 2000 personnel and recycle ratios from 0.1-

0.9.  Inherit in this plot is an assumption that the COD loading is approximately equal to total 

organic carbon (TOC) loading, meaning approximately all of the wastewater being treated is 

primarily comprised of organic compounds.  Of importance in this figure is the observation that 

the required apparent first order degradation rate constants overlap the apparent first order 

degradation rate constants measured in Chapter 2.  At 200 mA, measured apparent first order 

degradation rate constants ranged from 0.084 – 1.078 min-1. As an example, we can look at a 

facility with 500 personnel with a desired recycle ratio of 0.9, and the required ks is 0.170 min-1.  

Comparing this to the dyes and achromatic chemicals, we note that the ks values for TBA, DNT, 

and EB are below this cutoff value and the desired level of degradation could not be achieved 

without moving to a larger reactor or otherwise optimizing the reactor, although optimizing the 

reactor is possible.  Figure 33 also addresses hypothesis #3 from Chapter 1 in that the required 

apparent first order degradation rate constant is lower for smaller facilities, indicating that 

smaller facilities offer the most promising opportunity for UV LED/H2O2 AOP application.  

Though this example pertains to facilities with large numbers of personnel, similar relationships 

can be made with industrial wastewater from industrial facility processes involving chemicals 

without respect to personnel.  Instead of per capita COD or TOC loading rates, real values of 
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minimum, maximum, and average TOC loading and volumetric flow from industrial process 

wastewater sampling can be used to establish similar relationships.
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Figure 32. Mass balance relationships between facility influent, recycle, and effluent flows; Q2/Q1 represents a recycle ratio in water reuse scenarios. 
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Figure 33. The effect of facility size and recycle ratio on the required first order rate constant.
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 The facility sizes captured in Figure 33 are relatively large, and the majority of facilities 

on a typical installation will fall somewhere between 0 to 500 personnel.  Larger facilities of the 

type captured in the figure would typically consist of non-industrial functions such as 

headquarters facilities, dormitories, lodging facilities, education and training functions, and other 

organizations performing primarily office tasks.  Food dyes such as those used in the study in 

Chapter 2 are expected to be prevalent in waste streams of these types (and to a lesser extent in 

industrial facilities).  Actions such as pouring a colored beverage down a sink drain or rinsing 

food containers with traces of food dye remaining are common, expected examples.  The dyes 

tested in this study are representative of the full range of apparent first order degradation rate 

constants that would be expected from this group of compounds, as they are representative of the 

most prevalent dyes used in United States foodstuffs. 

 Medical facilities on an installation vary greatly in size and scope from small clinics with 

no inpatient care to large medical centers with a full range of advanced care and inpatient beds.  

Medical waste streams will certainly include the aforementioned dyes, but will also likely 

include higher concentrations of prescription and non-prescription pharmaceuticals and 

compounds such as antibacterial hand sanitizing agents and isopropyl alcohol.  Though care is 

taken to properly dispose of medications, it is inevitable that a portion will eventually reside in 

wastewater through lack of metabolism and eventual excretion by the body and the potential for 

direct flushing or rinsing of medications.  Numerous studies have been conducted on the 

effectiveness of advanced oxidation processes at removing pharmaceutical compounds from 

wastewater.  One such study investigated the removal of nine pharmaceutical compounds, 

including ibuprofen, carbamazepine and diazepam, from wastewater via ozonation and AOP.  

Results indicated that the selected compounds reacted with hydroxyl radicals at a rate 2-3 times 
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faster than did MTBE (Huber, et al. 2003).  This comparison indicates that the UV LED/H2O2 

AOP should be highly effective against a range of pharmaceuticals. 

 TBA and MTBE were selected in Chapter 2 as relevant and representative test 

compounds from historic fuel operations and because both were expected to exhibit some level 

of hydroxyl radical chain termination and comparatively lower degradation rates.  Though most 

fuel contaminants would be anticipated to occur from aquifer infiltration or surface water 

discharges following accidental spills, there is opportunity for low levels of these contaminants 

to enter wastewater flow through rinsing of storage vessels and transfer devices and cleaning of 

residual amounts from personnel.  Larger quantities may also be intentionally contained in 

industrial wastewater catchment systems and require subsequent treatment or disposal.  Buxton 

et al reported a hydroxyl radical rate constant of 6.0 X 108 M-1s-1 for TBA (Buxton, et al. 1988).  

Other constituents that may show up to some extent in USAF fuel system include ethanol, 

methanol, and 2-propanol.  Representative hydroxyl radical rate constants for those compounds 

are 1.2 X 109, 7.5 X 108, and 1.2 X 109 M-1s-1, respectively (Buxton, et al. 1988).  The values 

indicate that methanol would be expected to degrade at only a slightly faster rate than TBA in the 

UV LED/H2O2 AOP, whereas ethanol and 2-propanol would degrade at a rate twice as fast. 

 MAL is an acetylcholinesterase inhibitor and shares structural similarities with other 

organophosphate pesticides.  It was used as a representative surrogate for USAF pesticide 

processes and may be found in storm water collection systems.  Because MAL is also used as a 

treatment for head lice, it would be found in wastewater associated with hospitals, family 

housing, and dormitories. A study on the removal of several pesticides and herbicides from water 

matrices investigated the viability of the UV/H2O2 treatment process as an option.  Compounds 

tested included atrazine, isoproturon, diuron, alachlor, pentachlorophenol, and chlorfenvinphos 
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hydroxyl radical rate constants ranged from 0.8-18.5 X 109 M-1s-1.  The lowest degradation rate 

is associated with isoproturon and it would be expected to degrade at a relatively slow rate 

similar to TBA.  Degradation rates of the other compounds were 6 – 23 times faster. (Sanches, et 

al. 2010) 

 DNT is representative of explosives byproducts and munitions propellants that may be 

found at ammunition manufacturing facilities, explosives ordinance disposal facilities, security 

forces training facilities, and special operations facilities.  DNT exists as six isomers of which 

2,4-DNT (utilized in this study) and 2,6-DNT are categorized as priority pollutants by the 

USEPA (USEPA, 2014).  In kinetics studies, DNT was consistently on track with TBA as one of 

the two compounds most resistant to the UV LED/H2O2 AOP.  A representative hydroxyl radical 

rate constant for 2,6-DNT from the literature is 7.5 X 108 M-1s-1, putting it in close proximity to 

the slower observed degradation of 2,4-DNT (Beltran, et al. 1998).  Another representative 

compound used as a secondary explosive in the manufacture of US military munitions is 

hexahydro-1,3,5-trinitro-1,3,5-triazine, better known as RDX (USEPA, 2014).  Rates of 

hydroxyl radical degradation of RDX are comparatively more than twice as fast as DNT at 1.6 X 

109 M-1s-1, indicating that it should be more susceptible to the UV LED/H2O2 AOP. 

4.5. Conclusions 

Water challenges for the USAF in the near term include water scarcity due to drought 

conditions and population demands as well as water quality related to both internal and external 

contamination events and preparation for future emerging contaminants.  Net zero water systems 

designed with a goal to capture, reuse, and repurpose water are imperative to help mitigate those 

challenges.  This study has presented a reference systems architecture view with a focus on 

delineating installation and facility level points of application where UV LED/H2O2 AOP 
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technologies may be inserted alone or in conjunction with other technologies to achieve specific 

water treatment goals.  Treatment trains were presented as an optimal solution to both facilitate 

removal of recalcitrant compounds and quench excess hydrogen peroxide remaining in the AOP 

effluent.   Facility-level treatment for recycling of wastewater was found to be the most feasible 

application for the near term as the decentralized flow rates and volumes of water treated are 

comparatively favorable to the current state of UV LED technology.  An approach was also 

presented to enable comparison of the required apparent first order degradation rate constant to 

facility size and desired recycle ratio.  Required degradation rates for a 55 gallon UV LED/H2O2 

AOP reactor at 0.1-0.9 recycle ratios show desirable overlap with the apparent first order 

degradation rate constants reported in Chapter 2.  At 200 mA, measured apparent first order 

degradation rate constants ranged from 0.084 – 1.078 min-1. At a desired recycle ratio of 0.9, the 

required ks is 0.170 min-1 for a facility with 500 personnel.  From measured kinetic experiment 

data, 8 out of 11 dye and achromatic chemicals exceed that required degradation rate.  The 

remaining three, TBA, DNT, and EB, would require a larger reactor volume or other 

optimizations.  This approach can be used with any combination of facility size and effluent 

parameters.  Furthermore, if paired with a predictive tool such as the QSPR model presented in 

Chapter 2, the design criteria can extend to future contaminants as they emerge and impact the 

USAF. 
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V.  Conclusions 

5.1  Discussion 

The first objective in this work sought to determine the effect of key UV LED/H2O2 AOP 

reactor operating parameters on the degradation kinetics of soluble organic compounds. To 

accomplish this objective, six dyes and five achromatic chemicals were reacted in the same well 

mixed, flow through reactor platform under the same reaction conditions.  This research is the 

first UV LED-based AOP study to identify linear power-kinetics relationships, determine 

optimum molar peroxide ratios, and reveal the complex role of molar absorptivity in shaping the 

speed and extent of treatment.  The effect of LED output power on the chemical degradation 

profiles was investigated and a linear relationship was observed between the input drive current, 

optical output power, and the apparent first order degradation rate constant. When the drive 

current was systematically varied, the apparent first order degradation rate constants depended 

on the identity of the test compound and the drive current, and were between 0.003 min-1 - 1.078 

min-1. A relationship was also observed between the drive current and the degradation extent 

with an exponential tapering at higher drive current levels.  The effect of peroxide stoichiometry 

on the chemical degradation profiles was also investigated.   When the molar peroxide ratio was 

varied, the kinetic profiles showed evidence of peroxide-limited conditions when too little 

peroxide was present or radical-scavenged phenomena when too great a concentration of 

peroxide was present.  The optimum molar peroxide ratios were at or near 500 mole H2O2/mole 

test compound for the dyes, with the exception of EB.  The optimal molar peroxide ratios tested 

for EB were in the range of 2500-3000 mole H2O2/mole EB, likely because of its relatively high 

molar absorbance ratio.  Accounting for molar absorptivity also helped to explain the shape of 

the removal profiles associated with EB and tartrazine and the regression coefficients associated 
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with the model fitting of experimental data. In contrast, the optimal molar peroxide ratios were at 

or near 100 mole H2O2/mole test compound for achromatic chemicals with the lowest molar 

absorptivity.   

The second objective of this research sought to evaluate QSPRs for the advanced oxidation 

of soluble organic compounds with UV LED by using molecular descriptors relevant to the 11 

compounds tested in the first objective to build and assess predictive models.  Molecular 

descriptors used in existing mercury lamp AOP QSPRs from the literature were assessed for their 

fit to the LED domain and the 11 test compounds.   This research represents the first known use 

of QSPR evaluation for UV LED-based reactors.  Linear fit of existing QSPR model descriptors 

was relatively poor.  Resultant R2 values for the combined data set of dyes and achromatic 

chemicals were 0.024, 0.116, 0.157, 0.312, 0.481, and 0.864 for the descriptors used in the six 

models from the litrature.  When breaking the larger data set into smaller subsets of dyes and 

achromatic chemicals, improvement was seen with R2 values between 0.033 – 0.996, but most 

models and individual parameters failed tests of statistical significance.  Statistical robustness 

was also lost in some cases, due to smaller data set sizes compared to the numbers of predictors 

included in models.  A new model was constructed for predicting the dye and achromatic 

chemical degradation rates utilizing ZPE combined with molar absorptivity.  Overall, ZPE and 

molar absorptivity at 265 nm produces a QSPR model with R2 = 0.951 with statistical 

significance in the model and all parameters at a 95% confidence interval.  This research 

represents the first known use of ZPE and molar absorptivity in the construction of a QSPR 

model in the UV/H2O2 AOP domain. 

The final objective was to use systems engineering principles to propose appropriate 

applications of UV LED-based reactors in support of specific water quality applications. Water 
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scarcity and contamination were identified as near term challenges to which the USAF must be 

prepared.  Policies and technologies that support a “Net Zero” water use posture will become 

increasingly important.  The USAF Energy Strategic Plan identifies water as a critical asset and 

seeks potable water demand reduction by capturing and reusing, repurposing, or recharging an 

amount of water that is greater than or equal to the volume of water the installation uses.  This 

study presented a systems architecture view to describe a net zero water program at a 

hypothetical USAF installation.  Four areas within the system boundary were identified where 

advanced oxidation processes utilizing ultraviolet light emitting diodes and hydrogen peroxide 

might be paired with other technologies in order to treat water.  Treatment operations at the 

installation level and the facility level were delineated and facility-level treatment for recycling 

of wastewater was found to be the most feasible application for the near term as the decentralized 

flow rates and volumes of water treated are comparatively favorable to the current state of 

UVLED technology.  An approach was also presented to enable comparison of the required 

apparent first order degradation rate constant to facility size and desired recycle ratio.  Required 

degradation rates for a 55 gallon UVLED/H2O2 AOP reactor at 0.1-0.9 recycle ratios show 

desirable overlap with the apparent first order degradation rate constants measured for the 6 dye 

and 5 achromatic chemical compounds at 200 mA (0.084 – 1.078 min-1).  At a recycle ratio of 

0.9, the comparable required ks is 0.170 min-1.  From the measured experimental data, 8 out of 11 

dye and achromatic chemicals exceed that required degradation rate and the remaining 3 would 

require longer retention times or other optimizations.  Comparisons with test compounds were 

also made to other compounds likely to present at a sampling of representative USAF facilities. 
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5.2  Future Work 

o Scale up reactor volume and optimize geometry.  Research to date at AFIT has 

focused on two basic cylindrical reactor geometries and modifying operational 

parameters within those reactors.  Future work should seek to explore larger 

reactor volumes and more optimal reactor geometries that enhance UV 

distribution.  

o Utilize higher power LEDs and/or LED arrays.  Studies to date have solely 

utilized two LED models from one manufacturer.  An updated sourcing study 

should be done to ascertain the full scope of currently available models and the 

available output wavelengths and powers.  Higher power models should be 

investigated in conjunction with updated reactor designs and considered for 

installation.  Short of newer LED models, creative arrays of LED placement 

should be considered to optimize photon distribution throughout the reactor 

geometry. 

o Investigate peroxide production technology.  A more complete review of the 

literature should be conducted on the current state of H2O2 production methods.  

Opportunities for partnering with institutions on linking the technology with the 

UV LED reactor should be explored. 

o Further investigate the degradation phenomena associated with EB through 

additional experimental design objectives.  EB elicited novel degradation kinetics 

and the scope and timeline associated with this research did not allow for full 

analysis under all conditions.  There is likely much more data that can continue to 
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tell a story based on unique EB data but also applicable to other compounds that 

are subject to photodegradation and hydroxyl radical oxidation. 

o Further explore ZPE.  ZPE emerged as a statistically significant factor in 

predicting the degradation rates associated with the test compounds utilized in this 

study.   ZPE should continue to be tested against additional compounds and 

compounds from other chemical classes, as well as with published data developed 

for other UV light sources. 

o Expand QSPR models to include prediction of optimal peroxide dosing based on 

the molecular descriptors of a compound. 

o Conduct bench-scale studies on mixtures of chemical compounds to assess impact 

on optimal molar peroxide ratios. 

o Utilize technologies to measure peroxide and hydroxyl radical concentration 

changes in time.  Microsensors hold the promise of allowing observation of 

phenomena occurring inside of a reactor without disturbing the reaction.  Sensors 

capable of providing real time measurement of H2O2 and hydroxyl radical 

concentrations within a reactor could provide useful information regarding the 

underlying kinetics. 

o Utilize treatment trains for conditioning the water matrix and quenching peroxide 

when needed.  With regards to the systems application, understand when peroxide 

quenching is needed, and explore options for peroxide quenching including GAC 

and catalase matrices.  With regards to GAC, assess the impact that H2O2 has on 

the ability of GAC to remove other recalcitrant chemicals. 
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o Utilize competition kinetics to measure hydroxyl radical rate constants.  Future 

UV LED reactor experiments should consider some type of competition kinetics 

measurements in order to allow current experiments to be compared directly to 

published hydroxyl radical rate constants. 
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VI.  Appendix A 
 

Supplementary figures 

 

Table A1. Summary of apparent degradation rate constants, ks (min-1), for all drive currents. 

 
20mA 40mA 80mA 120mA 160mA 200mA 

AR 0.033 0.064 0.308 0.483 0.635 0.785 
BB 0.028 0.049 0.156 0.256 0.342 0.476 
TT 0.011 0.025 0.119 0.220 0.310 0.438 
EB 0.003 0.006 0.029 0.103 0.143 0.255 
SY 0.027 0.056 0.242 0.397 0.560 0.716 
FG 0.022 0.041 0.131 0.217 0.284 0.393 
BPA 0.091 0.165 0.474 0.687 0.860 0.964 
DNT 0.023 0.044 0.073 0.110 0.134 0.149 
MAL 0.114 0.167 0.522 0.604 0.950 1.078 
MTBE 0.030 0.054 0.166 0.224 0.325 0.402 
TBA 0.013 0.032 0.065 0.111 0.141 0.167 

 

 

Table A2. Summary of degradation extent (% removal) for all drive currents. 

 
20mA 40mA 80mA 120mA 160mA 200mA 

AR 37.3 55.2 89.6 94.6 96.5 97.8 
BB 32.0 45.7 74.5 84.0 88.4 93.2 
TT 17.0 31.9 73.7 86.6 91.5 95.4 
EB 4.5 9.6 40.9 96.1 97.0 97.1 
SY 32.7 50.9 85.5 92.4 96.1 97.1 
FG 27.7 41.7 70.7 81.7 86.6 91.2 
BPA 59.9 75.0 93.4 96.3 97.6 98.4 
DNT 24.3 36.3 55.4 65.9 72.7 74.8 
MAL 61.9 73.8 95.2 92.1 95.8 97.9 
MTBE 31.1 50.0 74.6 78.8 87.4 89.3 
TBA 17.8 37.8 56.2 69.2 78.0 78.0 
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Table A3. Absorbance and molar extinction coefficient comparisons at 265 nm wavelength. 

Chemical Absorbance at 
265 nm 

Molar Extinction 
Coefficient 
(M-1cm-1) 

Absorptivity Ratio 
Relative to 500:1 

H2O2 
100:1 Peroxide .011 1070 N/A 
500:1 Peroxide .063 6310 N/A 

BB .074 7350 1.16 
FG .074 7400 1.17 
TT .247 24700 3.91 
SY .142 14200 2.25 
AR .131 13100 2.07 
EB .344 34400 5.45 

BPA .045 4450 0.70 
TBA .002 180 0.03 
MAL .028 2830 0.45 
DNT .106 10550 1.67 

MTBE .002 210 0.03 
 
 

 

 

Table A4. Comparison of deviation of model fit (R2) with molar absorptivity 

 

20 mA 40 mA 80 mA 120 mA 160 mA 200 mA Abs at 
265 nm 

AR 1 0.99 0.92 0.9 0.9 0.91 0.158 

BB 1 1 1 0.99 0.97 0.95 0.1 

EB 0.99 1 0.9 0.47 0.48 0.6 0.371 

FG 1 1 1 0.99 0.97 0.95 0.101 

SY 1 1 0.94 0.91 0.89 0.9 0.169 

TT 1 0.99 0.93 0.88 0.86 0.85 0.274 
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Table A5. Parameters and tests of statistical significance for models built with molecular descriptors of 
existing QSPR models from the literature. 

 

 

Model Data Set Rsquare Rsquare Adj RMSE F Ratio Prob > F Parameter Parameter Estimate Prob > t
Wang et al., 2009 Full Set (n=11) 0.157 -0.204 0.345 0.435 0.7351 Intercept 1.4985277 0.3779

HOMO 0.120925 0.4981
MSA 0.0009508 0.5066
DM -0.023057 0.3424

Wang et al., 2009 Dyes (n=6) 0.801 0.504 0.142 2.69 0.2825 Intercept -4.029688 0.1607
HOMO -0.596527 0.1218
MSA -0.001318 0.1994
DM 0.0351431 0.1734

Wang et al., 2009 Achromatic (n=5) 0.983 0.933 0.114 19.58 0.1643 Intercept 22.060342 0.3894
HOMO 2.2074904 0.3831
MSA -0.020181 0.4658
DM 0.5241355 0.4163

Jin et al., 2015 Full Set (n=11) 0.481 -0.297 0.358 0.619 0.715 Intercept 6.2253693 0.315
HBA 0.2855091 0.3606
BV -1.433525 0.7217
DB -0.247911 0.4398
MASN -5.817407 0.2934
MAL2m -0.565174 0.6373
CH2RX -0.076636 0.6321

Tang et al., 2004 Full Set (n=11) 0.024 -0.084 0.327 0.2215 0.6491 Intercept 0.54867 0.0006
LUMO -0.023898 0.6491

Tang et al., 2004 Dyes (n=6) 0.393 0.241 0.175 2.588 0.183 Intercept 0.4636993 0.0039
LUMO -0.148431 0.183

Tang et al., 2004 Achromatic (n=5) 0.033 -0.29 0.501 0.101 0.7715 Intercept 0.6263486 0.1484
LUMO -0.034497 0.7715

Kusic et al., 2009 Full Set (n=11) 0.312 -0.147 0.337 0.679 0.6313 Intercept 5.5068128 0.1342
HOMO 0.4620056 0.1613
AL7wP -0.001947 0.3283
GACL2wP -0.760255 0.4659
PC8 -0.009211 0.2437

Kusic et al., 2009 Omit MAL and AR (n=9) 0.985 0.971 0.045 67.5 0.0006 Intercept 7.3060112 <.0001
HOMO 0.6488038 <.0001
AL7wP -0.002917 0.0003
GACL2wP -0.996798 0.0016
PC8 -0.01186 0.0003

Kusic et al., 2009 Dyes (n=6) 0.992 0.961 0.04 32.05 0.1316 Intercept 2.7587428 0.2193
HOMO 0.3297615 0.2006
AL7wP -0.004671 0.0779
GACL2wP 2.5296858 0.0888
PC8 0.0013733 0.5318

Suhakaran and Amy, 2012 Full Set (n=11) 0.864 0.728 0.164 6.3625 0.0317 Intercept 7.0584708 0.0024
EA -0.57937 0.0101
HOMO-LUMO 0.6832793 0.0037
Halogen -0.09306 0.1246
Ring Atoms 0.063115 0.006
OtoC 0.0192175 0.9749

Sudhakaran and Amy, 2013 Full Set (n=11) 0.116 -0.263 0.353 0.3065 0.8202 Intercept 1.7360915 0.2755
DBE -0.033767 0.4552
EA 0.0586533 0.4949
IP -0.117716 0.4759

Sudhakaran and Amy, 2013 Dyes (n=6) 0.568 -0.081 0.209 0.8753 0.5723 Intercept -0.769738 0.6858
DBE -0.01624 0.6962
EA 0.1155415 0.4495
IP 0.1923857 0.4894

Sudhakaran and Amy, 2013 Achromatic (n=5) 0.996 0.983 0.058 76.94 0.0836 Intercept 0.6893163 0.4127
DBE 0.6937853 0.0665
EA -0.389132 0.0785
IP -0.23356 0.1143
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Figure A1. Effect of LED drive current on dye and achromatic chemical removal extent. 
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Figure A2. Comparative degradation rates across drive currents, grouped by chemical compound. 
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Figure A3. Comparative degradation extent across drive currents, grouped by chemical compound. 
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Figure A4. Comparative degradation rates across chemical compounds, grouped by drive current. 
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Figure A5. Comparative degradation extent across chemical compounds, grouped by drive current.
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Figure A6. Spectrophotometer measurements comparing absorptivity of DI water, peroxide and dyes at 265 nm
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Figure A7. Spectrophotometer scan comparing absorptivity of DI water, peroxide, and dyes. 
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Figure A8. Allura Red degradation as a function of drive current. 
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Figure A9. Brilliant Blue degradation as a function of drive current. 
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Figure A10. Erythrosine B degradation as a function of drive current. 
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Figure A11.  Fast Green degradation as a function of drive current. 
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Figure A12. Sunset Yellow degradation as a function of drive current. 
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Figure A13. Tartrazine degradation as a function of drive current. 
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Figure A14. Comparative degradation of dyes at 20 mA drive current. 
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Figure A15. Comparative degradation of dyes at 40 mA drive current. 
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Figure A16. Comparative degradation of dyes at 80 mA drive current. 
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Figure A17. Comparative degradation of dyes at 120 mA drive current. 
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Figure A18. Comparative degradation of dyes at 160 mA drive current. 
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Figure A19. Comparative degradation of dyes at 200 mA drive current. 
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Figure A20. Bisphenol A degradation as a function of drive current. 
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Figure A21. 2,4-Dinitrotoluene degradation as a function of drive current. 
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Figure A22. Malathion degradation as a function of drive current. 
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Figure A23. Methyl tert-butyl ether degradation as a function of drive current. 
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Figure A24. Tert-butyl alcohol degradation as a function of drive current. 
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Figure A25. Comparative degradation of achromatic chemicals at 20 mA drive current. 
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Figure A26. Comparative degradation of achromatic chemicals at 40 mA drive current. 
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Figure A27. Comparative degradation of achromatic chemicals at 80 mA drive current.
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Figure A28. Comparative degradation of achromatic chemicals at 120 mA drive current. 
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Figure A29. Comparative degradation of achromatic chemicals at 160 mA drive current. 
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Figure A30. Comparative degradation of achromatic chemicals at 200 mA drive current. 
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Figure A31. Allura Red degradation as a function of peroxide ratio, 40 mA. 
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Figure A32. Allura Red degradation as a function of peroxide ratio, 200 mA.
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Figure A33. Erythrosine B degradation as a function of peroxide ratio, 40 mA. 
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Figure A34. Erythrosine B degradation as a function of peroxide ratio, 120 mA. 
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Figure A35. Erythrosine B degradation as a function of peroxide ratio, 160 mA. 
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Figure A36. Erythrosine B degradation as a function of peroxide ratio, 200 mA. 
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Figure A37. Fast Green degradation as a function of peroxide ratio, 200 mA. 



175 

 
Figure A38. Sunset Yellow degradation as a function of peroxide ratio, 120 mA. 
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Figure A39. Sunset Yellow degradation as a function of peroxide ratio, 200 mA. 
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Figure A40. Tartrazine degradation as a function of peroxide ratio, 120 mA. 
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Figure A41. Tartrazine degradation as a function of peroxide ratio, 200 mA. 
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Figure A42. Bisphenol A degradation as a function of peroxide ratio, 120 mA. 
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Figure A43. 2,4-DNT degradation as a function of peroxide ratio, 120 mA. 
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Figure A44. Malathion degradation as a function of peroxide ratio, 120 mA. 
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Figure A45. MTBE degradation as a function of peroxide ratio, 120 mA. 
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Figure A46.  Comparative negative correlation between R2 of model fit and absorptivity values.
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VII.  Appendix B 
 
The table below and on subsequent pages contains an initial set of molecular descriptors 
generated from PubChem and Mold2for the dyes and achromatic chemicals utilized. 
 

Descriptor Description 

PC1 Molecular Weight 

PC2 Molecular Formula 

PC3 XLogP3 

PC4 Hydrogen Bond Donor Count 

PC5 Hydrogen Bond Acceptor Count 

PC6 Rotatable Bond Count 

PC7 Exact Mass 

PC8 Monoisotopic Mass 

PC9 Topological Polar Surface Area 

PC10 Heavy Atom Count 

PC11 Formal Charge 

PC12 Complexity 

PC13 Isotope Atom Count 

PC14 Defined Atom Stereocenter Count 

PC15 Undefined Atom Stereocenter Count 

PC16 Defined Bond Stereocenter Count 

PC17 Undefined Bond Stereocenter Count 

PC18 Covalently-Bonded Unit Count 

D001 number of 6-membered aromatic rings (only carbon atoms) 

D002 Number of 03-membered rings 

D003 Number of 04-membered rings 

D004 Number of 05-membered rings 

D005 Number of 06-membered rings 

D006 Number of 07-membered rings 



185 

D007 Number of 08-membered rings 

D008 Number of 09-membered rings 

D009 Number of 10-membered rings 

D010 Number of 11-membered rings 

D011 Number of 12-membered rings 

D012 number of multiple bonds 

D013 number of circuits structure 

D014 number of rotatable bonds 

D015 rotatable bond fraction 

D016 number of double bonds 

D017 number of aromatic bonds 

D018 sum of conventional bond orders (H-depleted) 

D019 number of Hydrogen 

D020 number of Helium 

D021 number of Lithium 

D022 number of Beryllium 

D023 number of Boron 

D024 number of Carbon 

D025 number of Nitrogen 

D026 number of Oxygen 

D027 number of Fluorine 

D028 number of Neon 

D029 number of Sodium 

D030 number of Magnesium 

D031 number of Aluminum 

D032 number of Silicon 

D033 number of Phosphorus 

D034 number of Sulfur 

D035 number of Chlorine 
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D036 number of Argon 

D037 number of Potassium 

D038 number of Calcium 

D039 number of Scandium 

D040 number of Titanium 

D041 number of Vanadium 

D042 number of Chromium 

D043 number of Manganese 

D044 number of Iron 

D045 number of Cobalt 

D046 number of Nickel 

D047 number of Copper 

D048 number of Zinc 

D049 number of Gallium 

D050 number of Germanium 

D051 number of Arsenic 

D052 number of Selenium 

D053 number of Bromine 

D054 number of Krypton 

D055 number of Rubidium 

D056 number of Strontium 

D057 number of Yttrium 

D058 number of Zirconium 

D059 number of Niobium 

D060 number of Molybdenum 

D061 number of Technetium 

D062 number of Ruthenium 

D063 number of Rhodium 

D064 number of Palladium 
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D065 number of Silver 

D066 number of Cadmium 

D067 number of Indium 

D068 number of Tin 

D069 number of Antimony 

D070 number of Tellurium 

D071 number of Iodine 

D072 number of Xenon 

D073 number of Cesium 

D074 number of Barium 

D075 number of Lanthanum 

D076 number of Cerium 

D077 number of Praseodymium 

D078 number of Neodymium 

D079 number of Promethium 

D080 number of Samarium 

D081 number of Europium 

D082 number of Gadolinium 

D083 number of Terbium 

D084 number of Dysprosium 

D085 number of Holmium 

D086 number of Erbium 

D087 number of Thulium 

D088 number of Ytterbium 

D089 number of Lutetium 

D090 number of Hafnium 

D091 number of Tantalum 

D092 number of Tungsten 

D093 number of Rhenium 
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D094 number of Osmium 

D095 number of Iridium 

D096 number of Platinum 

D097 number of Gold 

D098 number of Mercury 

D099 number of Thallium 

D100 number of Lead 

D101 number of Bismuth 

D102 number of Polonium 

D103 number of Astatine 

D104 number of Radon 

D105 number of Francium 

D106 number of Radium 

D107 number of Actinium 

D108 number of Thorium 

D109 number of Protactinium 

D110 number of Uranium 

D111 number of Neptunium 

D112 number of Plutonium 

D113 number of Americium 

D114 number of Curium 

D115 number of Berkelium 

D116 number of californium 

D117 number of Einsteinium 

D118 number of Fermium 

D119 number of Mendelevium 

D120 number of Nobelium 

D121 number of Lawrencium 

D122 Molecular weight 
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D123 Average of molecular weight 

D124 number of atoms in each molecule 

D125 number of none-Hydrogen atoms in each molecule 

D126 number of bonds in each molecule 

D127 number of none-Hydrogen bonds in each molecule 

D128 number of rings in each molecule 

D129 number of triple bonds in each molecule 

D130 number of halogen atoms in each molecule 

D131 molecular size index 

D132 atomic composition index 

D133 mean value of atomic composition index 

D134 Branch index 

D135 Molecular structure connectivity index 

D136 Narumi-type topological index 

D137 Harmonic topological index 

D138 Geometric topological index 

D139 Topological distance count order-3 

D140 log of vertex distance path count 

D141 average of vertex distance path count 

D142 Balaban type of mean square vertex distance index 

D143 sum of atomic Van Der Waals Carbon-scale 

D144 mean atomic van der Waals Carbon-scale 

D145 sum of atomic electronegativities Pauling-Scale on Carbon 

D146 mean atomic electronegativities Pauling-scaled on Carbon 

D147 sum of atomic electronegativities Sanderson-scaled on Carbon 

D148 mean atomic electronegativity Sanderson-scaled on Carbon 

D149 sum of atomic electronegativity Allred-Rochow-scaled on Carbon 

D150 mean atomic electronegativity Allred-Rochow-scaled on Carbon 

D151 sum of atomic polarizabilities scaled on Carbon-SP3 



190 

D152 mean atomic polarizability scaled on Carbon-SP3 

D153 Zagreb order-1 index 

D154 Zagreb order-1 index with value of valence vertex degrees 

D155 Zagreb order-2 index 

D156 Vertex degree topological index 

D157 second Zagreb order-2 index with value of valence vertex degrees 

D158 valence electrons of principal quantum index 

D159 Schultz type Molecular Topological index 

D160 Schultz type Molecular Topological Index of valence vertex degrees 

D161 Molecular Topological Distance Index 

D162 Molecular Topological Distance Index of valence vertex degrees 

D163 Molecular size and branching index 

D164 index of terminal vertex matrix 

D165 Wiener index 

D166 Average Path length in Wiener Index 

D167 reciprocal index of Wiener distance matrix 

D168 Harary index 

D169 Index of Laplacian Matrix 

D170 First No-Zero eigenvalue of Laplacian matrix 

D171 Wiener–Path index 

D172 reciprocal Wiener-Path index 

D173 Mohar order-2 index 

D174 Maximum Path Index 

D175 Wiener Type Maximum Path Index 

D176 reciprocal Wiener Type Maximum Path Index 

D177 Minimum-Path/Maximum-Path Index 

D178 
All-Path Wiener - sum of the edges in the shortest paths between all pairs of non-
hydrogen atoms 

D179 Heteroatoms and Multiple bonds weighted Distance Matrix 
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D180 Mass Weighted Distance Matrix 

D181 Index of Van Der Waals Weighted Distance Matrix 

D182 Distance Matrix of Electronegativity Weighted with Electronegativities Pauling-Scale 

D183 Distance Matrix of Electronegativity Weighted with Sanderson Electronegativities 

D184 Distance Matrix of Electronegativity Weighted with Allred-Rochow Electronegativites 

D185 Polarizability weighted distance matrix 

D186 Average vertex distance connectivity index 

D187 Balaban heteroatoms bonds weighted index 

D188 Balaban mass weighted index 

D189 Balaban van der Waals weighted index 

D190 Balaban electronegativity weighted with Pauling-Scale index 

D191 Balaban electronegativity weighted with Sanderson-Scale index 

D192 Balaban electronegativity weighted with Allred-Rochow-Scale index 

D193 Balaban-type polarizability weighted index 

D194 maximal valence vertex electrotopological negative variation 

D195 maximal valence vertex electrotopological positive variation 

D196 Sum absolute electrotopological negative variation 

D197 Electrotopological index 

D198 sum electrotopological states index 

D199 mean electrotopological states index 

D200 vertex connectivity order-0 index 

D201 vertex connectivity order-1 index 

D202 vertex connectivity order-2 index 

D203 vertex connectivity order-3 index 

D204 vertex connectivity order-4 index 

D205 vertex connectivity order-5 index 

D206 average vertex connectivity order-0 index 

D207 average vertex connectivity order-1 index 

D208 average vertex connectivity order-2 index 
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D209 average vertex connectivity order-3 index 

D210 average vertex connectivity order-4 index 

D211 average vertex connectivity order-5 index 

D212 valence vertex connectivity order-0 Index 

D213 valence vertex connectivity order-1 Index 

D214 valence vertex connectivity order-2 Index 

D215 valence vertex connectivity order-3 Index 

D216 valence vertex connectivity order-4 Index 

D217 valence vertex connectivity order-5 Index 

D218 average valence vertex connectivity order-0 Index 

D219 average valence vertex connectivity order-1 Index 

D220 average valence vertex connectivity order-2 Index 

D221 average valence vertex connectivity order-3 Index 

D222 average valence vertex connectivity order-4 Index 

D223 average valence vertex connectivity order-5 Index 

D224 principal quantum vertex connectivity order-0 Index 

D225 principal quantum vertex connectivity order-1 Index 

D226 principal quantum vertex connectivity order-2 Index 

D227 principal quantum vertex connectivity order-3 Index 

D228 principal quantum vertex connectivity order-4 Index 

D229 principal quantum vertex connectivity order-5 Index 

D230 aromaticity valence vertex connectivity order-1 index 

D231 sum of valence vertex connectivity order-1 index 

D232 reciprocal distance order-1 sum product index 

D233 squared reciprocal distance order-1 sum product index 

D234 Kier atom's 0-order path information index 

D235 Kier 1-path index 

D236 Kier 2-path index 

D237 Kier 3-path index 
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D238 Molecular flexibility index 

D239 atom's connectivity index in longest path 

D240 sum of the longest path of the atom 

D241 average longest path of the molecule 

D242 average of deviation of average of longest path 

D243 average of deviation of distance degree 

D244 shortest path in the molecule 

D245 shortest path centralization index 

D246 maximum value of variation 

D247 EXP2 of Path-distance / Walk-distance over all atoms 

D248 EXP3 of Path-distance / Walk-distance over all atoms 

D249 EXP4 of Path-distance / Walk-distance over all atoms 

D250 EXP5 of Path-distance / Walk-distance over all atoms 

D251 Petitjean index 

D252 structure centric index 

D253 structure lopping centric group index 

D254 radial centric index 

D255 vertex distance count equality index 

D256 vertex distance count magnitude index 

D257 total vertex distance count equality index 

D258 total vertex distance count magnitude index 

D259 mean of distance degree equality index 

D260 mean of distance degree magnitude index 

D261 information of vertex degree equality index 

D262 information of bonds index 

D263 vertex distance path count index 

D264 complexity vertex distance path count index 

D265 Vertex distance information index 

D266 relative of vertex distance information index 
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D267 mean of vertex distance information index 

D268 extended of vertex distance information index 

D269 information content order-0 index 

D270 information content order-1 index 

D271 information content order-2 index 

D272 information content order-3 index 

D273 information content order-4 index 

D274 information content order-5 index 

D275 total information content order-0 index 

D276 total information content order-1 index 

D277 total information content order-2 index 

D278 total information content order-3 index 

D279 total information content order-4 index 

D280 total information content order-5 index 

D281 structural information content order-0 index 

D282 structural information content order-1 index 

D283 structural information content order-2 index 

D284 structural information content order3 index 

D285 structural information content order-4 index 

D286 structural information content order-5 index 

D287 Complementary information content order-0 index 

D288 Complementary information content order-1 index 

D289 Complementary information content order-2 index 

D290 Complementary information content order3 index 

D291 Complementary information content order-4 index 

D292 Complementary information content order-5 index 

D293 bond information content order-0 index 

D294 bond information content order-1 index 

D295 bond information content order-2 index 
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D296 bond information content order3 index 

D297 bond information content order-4 index 

D298 bond information content order-5 index 

D299 The largest eigenvalue 

D300 spanning tree with log value 

D301 Maximum eigenvalue weighted by Heteroatoms and Multiple bonds Matrix 

D302 Maximum eigenvalue weighted by mass distance matrix 

D303 Maximum eigenvalue weighted by van der Waals distance matrix 

D304 Maximum eigenvalue weighted by polarizability distance matrix 

D305 Maximum eigenvalue weighted by electronegativity Pauling-Scale distance matrix 

D306 
Maximum eigenvalue weighted by electronegativity Sanderson-Scale weighted 
distance matrix 

D307 
Maximum eigenvalue weighted by electronegativity Allred-Rochow-Scale distance 
matrix 

D308 Sum eigenvalue weighted by Heteroatoms and Multiple bonds Distance Matrix 

D309 Sum eigenvalue weighted by mass distance matrix 

D310 Sum eigenvalue weighted by van der Waals distance matrix 

D311 Sum eigenvalue weighted by polarizability distance matrix 

D312 Sum eigenvalue weighted by electronegativity Pauling-Scale distance matrix 

D313 Sum eigenvalue weighted by electronegativity Sanderson-Scale distance matrix 

D314 Sum eigenvalue weighted by electronegativity Allred-Rochow-Scale distance matrix 

D315 
Sum absolute eigenvalue weighted by Heteroatoms and Multiple bonds Distance 
Matrix 

D316 Sum absolute eigenvalue weighted by mass distance matrix 

D317 Sum absolute eigenvalue weighted by van der Waals distance matrix 

D318 Sum absolute eigenvalue weighted by polarizability distance matrix 

D319 Sum absolute eigenvalue weighted by electronegativity Pauling-Scale distance matrix 

D320 
Sum absolute eigenvalue weighted by electronegativity Sanderson-Scale distance 
matrix 

D321 
Sum absolute eigenvalue weighted by electronegativity Allred-Rochow-Scale distance 
matrix 
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D322 distance+detour path with ring index of order 3 

D323 distance+detour path with ring index of order 4 

D324 distance+detour path with ring index of order 5 

D325 distance+detour path with ring index of order 6 

D326 distance+detour path with ring index of order 7 

D327 distance+detour path with ring index of order 8 

D328 distance+detour path with ring index of order 9 

D329 distance+detour path with ring index of order 10 

D330 distance+detour path with ring index of order 11 

D331 distance+detour path with ring index of order 12 

D332 distance+detour path on ring index of order 3 (circuits) 

D333 distance+detour path on ring index of order 4 (circuits) 

D334 distance+detour path on ring index of order 5 (circuits) 

D335 distance+detour path on ring index of order 6 (circuits) 

D336 distance+detour path on ring index of order 7 (circuits) 

D337 distance+detour path on ring index of order 8 (circuits) 

D338 distance+detour path on ring index of order 9 (circuits) 

D339 distance+detour path on ring index of order 10 (circuits) 

D340 distance+detour path on ring index of order 11 (circuits) 

D341 distance+detour path on ring index of order 12 (circuits) 

D342 molecular topological path index of order 02 

D343 molecular topological path index of order 03 

D344 molecular topological path index of order 04 

D345 molecular topological path index of order 05 

D346 molecular topological path index of order 06 

D347 molecular topological path index of order 07 

D348 molecular topological path index of order 08 

D349 molecular topological path index of order 09 

D350 molecular topological path index of order 10 
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D351 molecular topological multiple path index of order 03 

D352 molecular topological multiple path index of order 04 

D353 molecular topological multiple path index of order 05 

D354 molecular topological multiple path index of order 06 

D355 molecular topological multiple path index of order 07 

D356 molecular topological multiple path index of order 08 

D357 molecular topological multiple path index of order 09 

D358 molecular topological multiple path index of order 10 

D359 molecular topological all path index 

D360 conventional bond index 

D361 ratio of convention bonds with total path counts 

D362 ratio of difference of conventional bonds and total path counts 

D363 Randic index 

D364 Balaban All-Path index 

D365 Balaban Short-Path index 

D366 sum of topological distance between the vertices N and N 

D367 sum of topological distance between the vertices N and P 

D368 sum of topological distance between the vertices N and O 

D369 sum of topological distance between the vertices N and S 

D370 sum of topological distance between the vertices N and F 

D371 sum of topological distance between the vertices N and Cl 

D372 sum of topological distance between the vertices N and Br 

D373 sum of topological distance between the vertices N and I 

D374 sum of topological distance between the vertices O and O 

D375 sum of topological distance between the vertices O and S 

D376 sum of topological distance between the vertices O and P 

D377 sum of topological distance between the vertices O and F 

D378 sum of topological distance between the vertices O and Cl 

D379 sum of topological distance between the vertices O and Br 
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D380 sum of topological distance between the vertices O and I 

D381 sum of topological distance between the vertices S and S 

D382 sum of topological distance between the vertices S and P 

D383 sum of topological distance between the vertices S and F 

D384 sum of topological distance between the vertices S and Cl 

D385 sum of topological distance between the vertices S and Br 

D386 sum of topological distance between the vertices S and I 

D387 sum of topological distance between the vertices P and P 

D388 sum of topological distance between the vertices P and F 

D389 sum of topological distance between the vertices P and Cl 

D390 sum of topological distance between the vertices P and Br 

D391 sum of topological distance between the vertices P and I 

D392 sum of topological distance between the vertices F and F 

D393 sum of topological distance between the vertices F and Cl 

D394 sum of topological distance between the vertices F and Br 

D395 sum of topological distance between the vertices F and I 

D396 sum of topological distance between the vertices Cl and Cl 

D397 sum of topological distance between the vertices Cl and Br 

D398 sum of topological distance between the vertices Cl and I 

D399 sum of topological distance between the vertices Br and Br 

D400 sum of topological distance between the vertices Br and I 

D401 sum of topological distance between the vertices I and I 

D402 walk count order-01 

D403 walk count order-02 

D404 walk count order-03 

D405 walk count order-04 

D406 walk count order-05 

D407 walk count order-06 

D408 walk count max-10 steps 
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D409 walk-returning count order-1 

D410 walk-returning count order-2 

D411 walk-returning count order-3 

D412 walk-returning count order-4 

D413 walk-returning count order-5 

D414 walk-returning count order-6 

D415 topological structure autocorrelation length-1 weighted by atomic masses 

D416 topological structure autocorrelation length-2 weighted by atomic masses 

D417 topological structure autocorrelation length-3 weighted by atomic masses 

D418 topological structure autocorrelation length-4 weighted by atomic masses 

D419 topological structure autocorrelation length-5 weighted by atomic masses 

D420 topological structure autocorrelation length-6 weighted by atomic masses 

D421 topological structure autocorrelation length-7 weighted by atomic masses 

D422 topological structure autocorrelation length-8 weighted by atomic masses 

D423 
topological structure autocorrelation length-1 weighted by atomic van der Waals 
volumes 

D424 
topological structure autocorrelation length-2 weighted by atomic van der Waals 
volumes 

D425 
topological structure autocorrelation length-3 weighted by atomic van der Waals 
volumes 

D426 
topological structure autocorrelation length-4 weighted by atomic van der Waals 
volumes 

D427 
topological structure autocorrelation length-5 weighted by atomic van der Waals 
volumes 

D428 
topological structure autocorrelation length-6 weighted by atomic van der Waals 
volumes 

D429 
topological structure autocorrelation length-7 weighted by atomic van der Waals 
volumes 

D430 
topological structure autocorrelation length-8 weighted by atomic van der Waals 
volumes 

D431 
topological structure autocorrelation length-1 weighted by atomic Sanderson 
electronegativities 
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D432 
topological structure autocorrelation length-2 weighted by atomic Sanderson 
electronegativities 

D433 
topological structure autocorrelation length-3 weighted by atomic Sanderson 
electronegativities 

D434 
topological structure autocorrelation length-4 weighted by atomic Sanderson 
electronegativities 

D435 
topological structure autocorrelation length-5 weighted by atomic Sanderson 
electronegativities 

D436 
topological structure autocorrelation length-6 weighted by atomic Sanderson 
electronegativities 

D437 
topological structure autocorrelation length-7 weighted by atomic Sanderson 
electronegativities 

D438 
topological structure autocorrelation length-8 weighted by atomic Sanderson 
electronegativities 

D439 topological structure autocorrelation length-1 weighted by atomic polarizabilities 

D440 topological structure autocorrelation length-2 weighted by atomic polarizabilities 

D441 topological structure autocorrelation length-3 weighted by atomic polarizabilities 

D442 topological structure autocorrelation length-4 weighted by atomic polarizabilities 

D443 topological structure autocorrelation length-5 weighted by atomic polarizabilities 

D444 topological structure autocorrelation length-6 weighted by atomic polarizabilities 

D445 topological structure autocorrelation length-7 weighted by atomic polarizabilities 

D446 topological structure autocorrelation length-8 weighted by atomic polarizabilities 

D447 Geary topological structure autocorrelation length-1 weighted by atomic masses 

D448 Geary topological structure autocorrelation length-2 weighted by atomic masses 

D449 Geary topological structure autocorrelation length-3 weighted by atomic masses 

D450 Geary topological structure autocorrelation length-4 weighted by atomic masses 

D451 Geary topological structure autocorrelation length-5 weighted by atomic masses 

D452 Geary topological structure autocorrelation length-6 weighted by atomic masses 

D453 Geary topological structure autocorrelation length-7 weighted by atomic masses 

D454 Geary topological structure autocorrelation length-8 weighted by atomic masses 

D455 
Geary topological structure autocorrelation length-1 weighted by atomic van der 
Waals volumes 
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D456 
Geary topological structure autocorrelation length-2 weighted by atomic van der 
Waals volumes 

D457 
Geary topological structure autocorrelation length-3 weighted by atomic van der 
Waals volumes 

D458 
Geary topological structure autocorrelation length-4 weighted by atomic van der 
Waals volumes 

D459 
Geary topological structure autocorrelation length-5 weighted by atomic van der 
Waals volumes 

D460 
Geary topological structure autocorrelation length-6 weighted by atomic van der 
Waals volumes 

D461 
Geary topological structure autocorrelation length-7 weighted by atomic van der 
Waals volumes 

D462 
Geary topological structure autocorrelation length-8 weighted by atomic van der 
Waals volumes 

D463 
Geary topological structure autocorrelation length-1 weighted by atomic Sanderson 
electronegativities 

D464 
Geary topological structure autocorrelation length-2 weighted by atomic Sanderson 
electronegativities 

D465 
Geary topological structure autocorrelation length-3 weighted by atomic Sanderson 
electronegativities 

D466 
Geary topological structure autocorrelation length-4 weighted by atomic Sanderson 
electronegativities 

D467 
Geary topological structure autocorrelation length-5 weighted by atomic Sanderson 
electronegativities 

D468 
Geary topological structure autocorrelation length-6 weighted by atomic Sanderson 
electronegativities 

D469 
Geary topological structure autocorrelation length-7 weighted by atomic Sanderson 
electronegativities 

D470 
Geary topological structure autocorrelation length-8 weighted by atomic Sanderson 
electronegativities 

D471 
Geary topological structure autocorrelation length-1 weighted by atomic 
polarizabilities 

D472 
Geary topological structure autocorrelation length-2 weighted by atomic 
polarizabilities 

D473 
Geary topological structure autocorrelation length-3 weighted by atomic 
polarizabilities 
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D474 
Geary topological structure autocorrelation length-4 weighted by atomic 
polarizabilities 

D475 
Geary topological structure autocorrelation length-5 weighted by atomic 
polarizabilities 

D476 
Geary topological structure autocorrelation length-6 weighted by atomic 
polarizabilities 

D477 
Geary topological structure autocorrelation length-7 weighted by atomic 
polarizabilities 

D478 
Geary topological structure autocorrelation length-8 weighted by atomic 
polarizabilities 

D479 Moran topological structure autocorrelation length-1 weighted by atomic masses 

D480 Moran topological structure autocorrelation length-2 weighted by atomic masses 

D481 Moran topological structure autocorrelation length-3 weighted by atomic masses 

D482 Moran topological structure autocorrelation length-4 weighted by atomic masses 

D483 Moran topological structure autocorrelation length-5 weighted by atomic masses 

D484 Moran topological structure autocorrelation length-6 weighted by atomic masses 

D485 Moran topological structure autocorrelation length-7 weighted by atomic masses 

D486 Moran topological structure autocorrelation length-8 weighted by atomic masses 

D487 
Moran topological structure autocorrelation length-1 weighted by atomic van der 
Waals volumes 

D488 
Moran topological structure autocorrelation length-2 weighted by atomic van der 
Waals volumes 

D489 
Moran topological structure autocorrelation length-3 weighted by atomic van der 
Waals volumes 

D490 
Moran topological structure autocorrelation length-4 weighted by atomic van der 
Waals volumes 

D491 
Moran topological structure autocorrelation length-5 weighted by atomic van der 
Waals volumes 

D492 
Moran topological structure autocorrelation length-6 weighted by atomic van der 
Waals volumes 

D493 
Moran topological structure autocorrelation length-7 weighted by atomic van der 
Waals volumes 

D494 
Moran topological structure autocorrelation length-8 weighted by atomic van der 
Waals volumes 
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D495 
Moran topological structure autocorrelation length-1 weighted by atomic Sanderson 
electronegativities 

D496 
Moran topological structure autocorrelation length-2 weighted by atomic Sanderson 
electronegativities 

D497 
Moran topological structure autocorrelation length-3 weighted by atomic Sanderson 
electronegativities 

D498 
Moran topological structure autocorrelation length-4 weighted by atomic Sanderson 
electronegativities 

D499 
Moran topological structure autocorrelation length-5 weighted by atomic Sanderson 
electronegativities 

D500 
Moran topological structure autocorrelation length-6 weighted by atomic Sanderson 
electronegativities 

D501 
Moran topological structure autocorrelation length-7 weighted by atomic Sanderson 
electronegativities 

D502 
Moran topological structure autocorrelation length-8 weighted by atomic Sanderson 
electronegativities 

D503 
Moran topological structure autocorrelation length-1 weighted by atomic 
polarizabilities 

D504 
Moran topological structure autocorrelation length-2 weighted by atomic 
polarizabilities 

D505 
Moran topological structure autocorrelation length-3 weighted by atomic 
polarizabilities 

D506 
Moran topological structure autocorrelation length-4 weighted by atomic 
polarizabilities 

D507 
Moran topological structure autocorrelation length-5 weighted by atomic 
polarizabilities 

D508 
Moran topological structure autocorrelation length-6 weighted by atomic 
polarizabilities 

D509 
Moran topological structure autocorrelation length-7 weighted by atomic 
polarizabilities 

D510 
Moran topological structure autocorrelation length-8 weighted by atomic 
polarizabilities 

D511 Molecular topological order-1 charge index 

D512 Molecular topological order-2 charge index 

D513 Molecular topological order-3 charge index 
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D514 Molecular topological order-4 charge index 

D515 Molecular topological order-5 charge index 

D516 Molecular topological order-6 charge index 

D517 Molecular topological order-7 charge index 

D518 Molecular topological order-8 charge index 

D519 Molecular topological order-9 charge index 

D520 Molecular topological order-10 charge index 

D521 Mean molecular topological order-1 charge index 

D522 Mean molecular topological order-2 charge index 

D523 Mean molecular topological order-3 charge index 

D524 Mean molecular topological order-4 charge index 

D525 Mean molecular topological order-5 charge index 

D526 Mean molecular topological order-6 charge index 

D527 Mean molecular topological order-7 charge index 

D528 Mean molecular topological order-8 charge index 

D529 Mean molecular topological order-9 charge index 

D530 Mean molecular topological order-10 charge index 

D531 Sum of molecular topological mean charge index 

D532 Lowest eigenvalue from Burden matrix weighted by masses order-1 

D533 Lowest eigenvalue from Burden matrix weighted by masses order-2 

D534 Lowest eigenvalue from Burden matrix weighted by masses order-3 

D535 Lowest eigenvalue from Burden matrix weighted by masses order-4 

D536 Lowest eigenvalue from Burden matrix weighted by masses order-5 

D537 Lowest eigenvalue from Burden matrix weighted by masses order-6 

D538 Lowest eigenvalue from Burden matrix weighted by masses order-7 

D539 Lowest eigenvalue from Burden matrix weighted by masses order-8 

D540 Lowest eigenvalue from Burden matrix weighted by van der Walls order-1 

D541 Lowest eigenvalue from Burden matrix weighted by van der Walls order-2 

D542 Lowest eigenvalue from Burden matrix weighted by van der Walls order-3 
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D543 Lowest eigenvalue from Burden matrix weighted by van der Walls order-4 

D544 Lowest eigenvalue from Burden matrix weighted by van der Walls order-5 

D545 Lowest eigenvalue from Burden matrix weighted by van der Walls order-6 

D546 Lowest eigenvalue from Burden matrix weighted by van der Walls order-7 

D547 Lowest eigenvalue from Burden matrix weighted by van der Walls order-8 

D548 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-1 

D549 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-2 

D550 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-3 

D551 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-4 

D552 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-5 

D553 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-6 

D554 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-7 

D555 
Lowest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-8 

D556 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-1 

D557 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-2 

D558 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-3 

D559 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-4 

D560 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-5 

D561 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-6 

D562 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-7 

D563 Lowest eigenvalue from Burden matrix weighted by polarizabilities order-8 

D564 Highest eigenvalue from Burden matrix weighted by masses order-1 

D565 Highest eigenvalue from Burden matrix weighted by masses order-2 

D566 Highest eigenvalue from Burden matrix weighted by masses order-3 
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D567 Highest eigenvalue from Burden matrix weighted by masses order-4 

D568 Highest eigenvalue from Burden matrix weighted by masses order-5 

D569 Highest eigenvalue from Burden matrix weighted by masses order-6 

D570 Highest eigenvalue from Burden matrix weighted by masses order-7 

D571 Highest eigenvalue from Burden matrix weighted by masses order-8 

D572 Highest eigenvalue from Burden matrix weighted by van der Walls order-1 

D573 Highest eigenvalue from Burden matrix weighted by van der Walls order-2 

D574 Highest eigenvalue from Burden matrix weighted by van der Walls order-3 

D575 Highest eigenvalue from Burden matrix weighted by van der Walls order-4 

D576 Highest eigenvalue from Burden matrix weighted by van der Walls order-5 

D577 Highest eigenvalue from Burden matrix weighted by van der Walls order-6 

D578 Highest eigenvalue from Burden matrix weighted by van der Walls order-7 

D579 Highest eigenvalue from Burden matrix weighted by van der Walls order-8 

D580 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-1 

D581 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-2 

D582 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-3 

D583 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-4 

D584 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-5 

D585 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-6 

D586 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-7 

D587 
Highest eigenvalue from Burden matrix weighted by electronegativities Sanderson-
Scale order-8 

D588 Highest eigenvalue from Burden matrix weighted by polarizabilities order-1 

D589 Highest eigenvalue from Burden matrix weighted by polarizabilities order-2 

D590 Highest eigenvalue from Burden matrix weighted by polarizabilities order-3 
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D591 Highest eigenvalue from Burden matrix weighted by polarizabilities order-4 

D592 Highest eigenvalue from Burden matrix weighted by polarizabilities order-5 

D593 Highest eigenvalue from Burden matrix weighted by polarizabilities order-6 

D594 Highest eigenvalue from Burden matrix weighted by polarizabilities order-7 

D595 Highest eigenvalue from Burden matrix weighted by polarizabilities order-8 

D596 number of total primary C-sp3 

D597 number of total secondary C-sp3 

D598 number of total tertiary C-sp3 

D599 number of total quaternary C-sp3 

D600 number of ring secondary C-sp3 

D601 number of ring tertiary C-sp3 

D602 number of ring quaternary C-sp3 

D603 number of unsubstituted aromatic C-sp2 

D604 number of substituted aromatic C-sp2 

D605 number of primary C-sp2 

D606 number of secondary C-sp2 

D607 number of tertiary C-sp2 

D608 number of group allenes 

D609 number of terminal C-sp 

D610 number of non-terminal C-sp 

D611 number of group cyanates (aliphatic) 

D612 number of group cyanates (aromatic) 

D613 number of group isocyanates (aliphatic) 

D614 number of group isocyanates (aromatic) 

D615 number of group thiocyanates (aliphatic) 

D616 number of group thiocyanates (aromatic) 

D617 number of group isothiocyanates (aliphatic) 

D618 number of group isothiocyanates (aromatic) 

D619 number of group carboxylic acids (aliphatic) 



208 

D620 number of group carboxylic acids (aromatic) 

D621 number of group esters (aliphatic) 

D622 number of group esters (aromatic) 

D623 number of group primary amides (aliphatic) 

D624 number of group primary amides (aromatic) 

D625 number of group secondary amides (aliphatic) 

D626 number of group secondary amides (aromatic) 

D627 number of group tertiary amides (aliphatic) 

D628 number of group tertiary amides (aromatic) 

D629 number of group carbamates (aliphatic) 

D630 number of group carbamates (aromatic) 

D631 number of group acyl halogenides (aliphatic) 

D632 number of group acyl halogenides (aromatic) 

D633 number of group thioacids (aliphatic) 

D634 number of group thioacids (aromatic) 

D635 number of group ditioacids (aliphatic) 

D636 number of group ditioacids (aromatic) 

D637 number of group thioesters (aliphatic) 

D638 number of group thioesters (aromatic) 

D639 number of group dithioesters (aliphatic) 

D640 number of group dithioesters (aromatic) 

D641 number of group aldehydes (aliphatic) 

D642 number of group aldehydes (aromatic) 

D643 number of group ketones (aliphatic) 

D644 number of group ketones (aromatic) 

D645 number of group urea derivatives 

D646 number of group urea derivatives (aromatic) 

D647 number of group primary amines (aliphatic) 

D648 number of group primary amines (aromatic) 
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D649 number of group secondary amines (aliphatic) 

D650 number of group secondary amines (aromatic) 

D651 number of group tertiary amines (aliphatic) 

D652 number of group tertiary amines (aromatic) 

D653 number of group N-hydrazines (aliphatic) 

D654 number of group N-hydrazines (aromatic) 

D655 number of group N-azo (aliphatic) 

D656 number of group N-azo (aromatic) 

D657 number of group nitriles (aliphatic) 

D658 number of group nitriles (aromatic) 

D659 number of group imines (aliphatic) 

D660 number of group imines (aromatic) 

D661 number of group ammonia groups (aliphatic) 

D662 number of group ammonia groups (aromatic) 

D663 number of group hydroxylamines (aliphatic) 

D664 number of group hydroxylamines (aromatic) 

D665 number of group oximes (aliphatic) 

D666 number of group oximes (aromatic) 

D667 number of group N-nitroso (aliphatic) 

D668 number of group N-nitroso (aromatic) 

D669 number of group nitroso (aliphatic) 

D670 number of group nitroso (aromatic) 

D671 number of group nitro (aliphatic) 

D672 number of group nitro (aromatic) 

D673 number of group imides 

D674 number of group total hydroxyl groups 

D675 number of group phenols 

D676 number of group primary alcohols (aliphatic) 

D677 number of group secondary alcohols (aliphatic) 
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D678 number of group tertiary alcohols (aliphatic) 

D679 number of group ethers (aliphatic) 

D680 number of group ethers (aromatic) 

D681 number of group hypohalogenydes (aliphatic) 

D682 number of group hypohalogenydes (aromatic) 

D683 number of group water molecules 

D684 number of group sulfoxides 

D685 number of group sulfones 

D686 number of group sulfates 

D687 number of group thioles 

D688 number of group thioketones 

D689 number of group sulfides 

D690 number of group disulfides 

D691 number of group sulfonic acids 

D692 number of group sulfonamides 

D693 number of group phosphites 

D694 number of group phosphates 

D695 number of group phosphothionates 

D696 number of group phosphodithionates 

D697 number of group phosphothioates 

D698 number of group CH2X 

D699 number of group CR2HX 

D700 number of group CR3X 

D701 number of group R=CHX 

D702 number of group R=CRX 

D703 number of group R#CX 

D704 number of group CHRX2 

D705 number of group CR2X2 

D706 number of group R=CX2 
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D707 number of group RCX3 

D708 number of group X-C on aromatic ring 

D709 number of group X-C- on ring 

D710 number of group X-C= on ring 

D711 number of group X-C on conjugated C 

D712 number of group donor atoms for H-bonds (with N and O) 

D713 number of group acceptor atoms for H-bonds (N O F) 

D714 number of group CH3R and CH4 

D715 number of group CH2R2 

D716 number of group CHR3 

D717 number of group CR4 

D718 number of group CH3X 

D719 number of group CH2RX 

D720 number of group CH2X2 

D721 number of group CHR2X 

D722 number of group CHRX2 

D723 number of group CHX3 

D724 number of group CR3X 

D725 number of group CR2X2 

D726 number of group CRX3 

D727 number of group CX4 

D728 number of group =CH2 

D729 number of group =CHR 

D730 number of group =CR2 

D731 number of group =CHX 

D732 number of group =CRX 

D733 number of group =CX2 

D734 number of group #CH 

D735 number of group #CR or R=C=R 
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D736 number of group #CX 

D737 number of group R~CH~R 

D738 number of group R~CR~R 

D739 number of group R~CX~R 

D740 number of group Al-CH=X 

D741 number of group Ar-CH=X 

D742 number of group Al-C(=X)-Al 

D743 number of group Ar-C(=X)-R 

D744 number of group R-C(=X)-X / R-C#X 

D745 number of group X-C(=X)-X 

D746 number of group H attached to C0(sp3) no X attached to next C 

D747 number of group H attached to heteroatom 

D748 number of group H attached to C0(sp3) with 1X attached to next C 

D749 number of group H attached to C0(sp3) with 2X attached to next C 

D750 number of group H attached to C0(sp3) with 3X attached to next C 

D751 number of group H attached to C0(sp3) with 4X attached to next C 

D752 number of group alcohol 

D753 number of group phenol or enol or carboxyl OH 

D754 number of group O= 

D755 number of group Al-O-Al 

D756 number of group Al-O-Ar or Ar-O-Ar or R-O-C=X 

D757 number of group Al-NH2 

D758 number of group Al2-NH 

D759 number of group Al3-N 

D760 number of group Ar-NH2 or X-NH2 

D761 number of group Ar-NH-Al 

D762 number of group Ar-NAl2 

D763 number of group RCO-N< or >N-X=X 

D764 number of group Ar2NH or Ar3N or Ar2N-Al 
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D765 number of group R#N or R=N 

D766 r of group Ar-NO2 or RO-NO2 

D767 number of group Al-NO2 

D768 number of group Ar-N=X or X-N=X 

D769 number of group R-SH 

D770 number of group R2S or RS-SR 

D771 number of group R=S 

D772 number of group R-SO-R 

D773 number of group R-SO2-R 

D774 unsaturation index weighted by conventional bonds order 

D775 hydrophilic factor index 

D776 aromatic bonds ratio 

D777 Molecular regression coefficients surface LogP index 
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