
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

Feasibility of Onboard Processing of Heuristic Path
Planning and Navigation Algorithms within SUAS
Autopilot Computational Constraints
Charles J. Neal

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Neal, Charles J., "Feasibility of Onboard Processing of Heuristic Path Planning and Navigation Algorithms within SUAS Autopilot
Computational Constraints" (2014). Theses and Dissertations. 717.
https://scholar.afit.edu/etd/717

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/717?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feasibility of Onboard Processing of Heuristic Path Planning and Navigation 

Algorithms within SUAS Autopilot Computational Constraints 

 

THESIS 

MARCH 2014 

 

Charles J. Neal, Captain, USAF 

 

 AFIT-ENV-14-M-44  

 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 
 

AIR FORCE INSTITUTE OF TECHNOLOGY 
  

Wright-Patterson Air Force Base, Ohio 

 

 DISTRIBUTION STATEMENT A 

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government. 

 



AFIT-ENV-14-M-44 

 

 

 

FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH PLANNING 

AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT 

COMPUTATIONAL CONSTRAINTS 

 

 

THESIS 

 

 

Presented to the Faculty 

 

Department of Systems Engineering and Management 

 

Graduate School of Engineering and Management 

 

Air Force Institute of Technology 

 

Air University 

 

Air Education and Training Command 

 

In Partial Fulfillment of the Requirements for the 

 

Degree of Master of Science in Systems Engineering 

 

 

 

Charles J. Neal, BS 

 

Captain, USAF 

 

 

 March 2014  

 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

  

 

 

 

 

 

 

 



AFIT-ENV-14-M-44 

 

 

 

FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH PLANNING 

AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT 

COMPUTATIONAL CONSTRAINTS 

 

 

 

 

Charles J. Neal, BS 

Captain, USAF 

 

 

 

 

 

 

 

Approved: 

 

 

___________________________________ ______________ 

Dr. John Colombi, AFIT/ENV (Chairman) Date 

 

 

___________________________________ ______________ 

Dr. David Jacques, AFIT/ENV (Member)  Date 

 

 

___________________________________ ______________ 

Maj Brian Stone, AFIT/ENS (Member)  Date 

 

//signed// 

//signed// 

//signed// 

14 March 2014 

14 March 2014 

14 March 2014 



AFIT-ENV-14-M-44 

iv 

 

Abstract 

This research addresses the flight path optimality of Small Unmanned Aerial 

Systems (SUAS) conducting overwatch missions for convoys or other moving ground 

targets.  Optimal path planning algorithms have been proposed, but are computationally 

excessive for real-time execution.  Using the Arduino-based ArduPilot Mega Unmanned 

Aerial Vehicle (UAV) autopilot system, Hardware-in-the-Loop (HIL) analysis is 

conducted on default mobile target tracking methods.  Designed experimentation is used 

to determine autopilot settings that improve performance with respect to path optimality.   

Optimality is characterized using a weighted combination of stand-off range and aircraft 

roll-rate. Finally, a state-based heuristic navigation strategy is designed, developed, and 

tested that approximates optimal path solutions and can be used for real-time execution.  

A 66% improvement in mean performance is achieved over default target tracking 

methods.  Finite state machine improvements are found to be statistically significant and 

it is concluded that heuristic strategies can be a viable approach to realizing near-optimal 

SUAS flight paths utilizing onboard processing capabilities.   
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FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH 

PLANNING AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT 

COMPUTATIONAL CONSTRAINTS 

I.  Introduction 

Background 

As unmanned systems technology decreases in both size and cost, the range of 

applications grows.  In particular, use of Small Unmanned Aerial Systems (SUAS) has 

seen a disproportionately high amount of growth as the affordability of subcomponents 

has allowed for an increase in availability to probable markets.  Applications include, but 

are not limited to defense, agriculture, law enforcement, and numerous commercial 

endeavors.  Yet no matter how complex or adaptive the payload, the design of any truly 

purpose-built SUAS must be considered with respect to all subsystems and their 

contribution to the desired mission.  This design focus holds especially true for the 

navigation logic of the autopilot as increased autonomy is frequently considered an 

enabler for proposed applications, particularly those in the defense realm. 

To that end, multiple research efforts at the Air Force Institute of Technology 

(AFIT) have culminated in algorithms that provide theoretical aircraft control for various 

missions extending beyond the existing functionality of most available autopilots.  One 

such effort is the development of an optimal path planning algorithm for tracking and 

surveillance of a moving ground target [1].  Heuristic variants of these calculations have 

been suggested with the potential to be implemented onboard existing SUAS autopilots 

allowing for real-time, autonomous execution.  This work has been proposed and 

supported by the Air Force Research Laboratory (AFRL) as an enabling capability for 
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convoy overwatch using SUAS.  While this mission may be partially achievable with 

basic manipulation of autopilot waypoints, a more custom approach to navigation logic, 

capable of implementation onboard the air vehicle, provides potential for increased flight 

path optimality. 

Statement of Problem 

The convoy overwatch scenario proposed by AFRL involves the use of a field-

deployed SUAS to autonomously track and provide intelligence, surveillance, and 

reconnaissance (ISR) on mobile ground vehicle maneuvers.  Current SUAS convoy ISR 

operations require a pilot to monitor the air vehicle and a sensor operator (often the pilot 

in a dual role) to command the payload.  Typically, these are continuous functions for the 

duration of the mission, both of which are required in order to keep the sensor on target 

and the air vehicle within specified flight parameters.  Rather than placing a constant 

workload on one or more individuals, the proposed functionality would allow for 

autonomous execution of the mission by the SUAS.  A single operator could launch the 

air vehicle, input flight parameters (target of interest, desired stand-off distance, and 

sensor angles), and focus attention elsewhere until recovery is required. 

While this autonomy may be partially realized using dynamic waypoint 

capabilities that already exist on some SUAS autopilots, past work suggests that an 

optimized path planning approach may result in significant performance increases in 

terms of target tracking and air vehicle endurance [2].  Current AFIT research by 

Livermore seeks to design such an approach utilizing a cost function to minimize air 

vehicle control effort and maximize time spent with the sensor at a given stand-off 
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distance [1].  However, there are indicators that implementation of such a function can be 

infeasible with the resources available onboard a SUAS autopilot [3].  True optimization 

functions typically require high computing times while real-time execution of the 

proposed missions will require multiple iterations per second.  Other past research efforts 

have addressed this issue and suggest that under certain circumstances, optimal routing 

algorithms can be sufficiently mimicked using more manageable strategies [4].  In order 

to achieve the desired performance, the specific challenge is the design and 

implementation of a heuristic approximation of the proposed optimization algorithm that 

is capable of real-time, autonomous execution onboard the SUAS. 

Research Objective 

The primary objective of this research effort is the implementation of a heuristic, 

autonomous autopilot flight mode that replicates, to the best extent achievable, the 

performance of an actual path planning optimization function designed for the proposed 

convoy overwatch scenario.  Design iterations of this mode are flight tested with the 

provided results focused on the achieved versus optimal performance and the feasibility 

of integration into operational systems.  The intent is to provide information and analysis 

sufficient for AFRL to make informed decisions on continuation of future research and 

development efforts in the field of optimized tracking using SUAS.  Additionally, 

implementation is achieved in a manner that considers the architecture best suited for 

enabling future integration of customized autonomous navigation functions. 
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Investigative Questions 

Work focuses on answering the following investigative questions sequentially in 

order to achieve the primary research objective with a build-up approach facilitated by 

flight test resources available to AFIT: 

1. What is the target tracking and flight path performance of the SUAS when using a 

basic follow-me mode?  The follow-me mode describes a very simple approach in 

which the autopilot is fed a series of target location coordinates at a fixed frequency 

and updates its current navigation waypoint to match.  Most available SUAS 

autopilots have this capability and it serves as an intuitive starting point for most 

target tracking missions.  The reason for characterizing tracking and navigation in this 

mode is that it serves as a comparative baseline for evaluating performance of any 

other tracking algorithm.  Note that for this effort, qualitative reference to 

performance or optimality of any flight path is based on the similarity of the path to 

that which could have conceivably been achieved under identical conditions as 

calculated by Livermore’s optimization algorithm.  Details on the measures of 

optimality are discussed in Chapter 2. 

2. What is the best path performance achievable by the adjustment of existing or readily 

accessible navigation control without implementation of state responsive logic?  The 

process by which this question is answered is intended to make existing navigation 

functionality achieve the most optimal flight paths possible with regards to ground 

target tracking.  It is important to ascertain these settings before proceeding to 

evaluation of states within which varied control logic may be appropriate. 
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3. What is the achievable SUAS flight path optimality using a state-based, heuristic 

approximation of the optimization strategy?  The intent of this question is 

characterization of the attempted heuristic path planning strategy with respect to 

baseline, adjusted, and true optimal performance. 

4. What is the feasibility of implementing heuristic ground target tracking logic that is 

capable of real-time execution onboard a SUAS autopilot?  This question is designed 

to answer the overarching research objective based on answers from all preceding 

questions.  The feasibility analysis is formulated based on an assessment of the 

achieved performance during SUAS flight test events designed to replicate the 

convoy overwatch scenario. 

Assumptions and Constraints  

The proposed convoy overwatch scenario has a wide potential range of 

application and complexity, varying from straight line path following to highly diverse 

road networks with high levels of variance in vehicle speed, direction, and altitude.  For 

this research, a set of assumptions is made to facilitate the planning of achievable 

experiments with meaningful results than can be conducted within the constraints of 

equipment and range time available to AFIT.  The baseline scenario is that of a SUAS 

providing overwatch for a ground control station (GCS) located on a mobile ground 

vehicle of known global positioning system (GPS) coordinates.  The actual path driven 

by the ground vehicle for all tests associated with this effort is shown in Figure 1.  This 

route was selected based on range availability and safety approvals. 
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Figure 1: Ground Vehicle Path Used For Testing 

 

For any ground tracking scenario, it is assumed that a well-designed system is one 

in which the ground speed of the air vehicle while commanding its optimal cruise throttle 

setting into maximum expected wind conditions is also the maximum ground speed that 

may be reached, either momentary or steady-state, of the ground target in question.  This 

speed is characterized for the SUAS used during experimentation and the maximum 

speed of the ground vehicle is constrained accordingly.  Failing to make this design 

choice allows for states in which the ground vehicle may simply outrun the air vehicle.  

Additionally, this research assumes that altitude variance in the ground path is negligible 
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and, based on safety concerns, all SUAS flights are performed at a fixed altitude of 150 

meters above ground. 

Regarding the air vehicle specifically, one constraint placed on the research effort 

is the use of waypoint navigation instead of fly-by-wire navigation.  It is assumed that 

any autopilot potentially fielded for target tracking missions is capable of waypoint 

navigation, including the capability to update waypoints dynamically and perform a fixed 

loiter should it arrive at a waypoint without receiving any updates.  All developed logic 

uses point navigation as opposed to a fly-by-wire approach which would involve direct 

control of flight conditions such as bank, pitch, and heading. 

Finally, it is assumed that any SUAS to be integrated with the proposed tracking 

functionality is capable of operating a sensor gimbal to given pointing angles.  The 

algorithm developed generates dynamic target coordinates, but actuation of the gimbal to 

the desired angle is considered an existing capability of the autopilot or associated 

peripherals.  Furthermore, it is assumed that error in the pointing functionality of the 

gimbal is negligible and no work is done to provide compensation for pointing 

inaccuracies. 

Overview of Methodology 

The first step in this research is the integration of air and ground vehicle telemetry 

as inputs to MATLAB optimization scripts that will serve as the primary method of 

generating optimal flight paths using Livermore’s proposed cost function.  For a given 

run, the output is an optimal flight path that could have been executed given the physical 

bounds of the aircraft and environment. 
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The following step will be development of a heuristic approach to approximating 

optimized paths that is capable of being integrated in Arduino code and run on the APM 

without introduction of excessive computing delay.  Flight test is designed to evaluate the 

stock performance, adjusted non state-based performance, and finally modified state-

based performance of the SUAS performing a ground vehicle tracking mission.  Flight 

tests are conducted iteratively, with navigation logic for each building on the results of 

the previous.  The goal is to compare achieved optimality, in terms of cost function value, 

for the above listed flight conditions against each associated optimal solution.  Data 

required for these comparisons includes basic aircraft telemetry (GPS information, 

aircraft physical state, control effort, and gimbal angles) from real-world flights as well 

as comparable data from MATLAB generated paths.  Differences in performance are 

used to report on the feasibility of achieving near-optimal target tracking missions with 

high levels of autonomy using existing autopilot computing resources.  Additionally, 

discussion is provided on the architecture required to implement customized flight modes 

onboard the APM. 

Thesis Overview 

This chapter provides a brief background on SUAS, description of the motivation 

for integrating heuristic tracking strategies onboard SUAS autopilots, discussion of the 

specific research tasks to be addressed, and an overview of the equipment and 

methodology used.  Chapter 2 examines literature and past work relevant to this effort 

providing validation of the equipment selection, problem statement, and experimentation 

methodology.  In addition, further discussion is given to the expectation of performance 
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differences for SUAS missions under optimal, near-optimal, or non-optimal planning 

methods.  Chapter 3 provides a more in-depth look at the test methodology with greater 

emphasis on specific test events.  Chapter 4 presents the software design and the results 

of the research efforts built on data that have been collected and processed.  Chapter 5 

concludes the thesis and discusses implications of this work as well as recommendations 

for future efforts. 
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II. Literature Review 

Chapter Overview 

The literature review is intended to provide a synopsis of research efforts and 

findings that are relevant to, or have culminated in, the challenge of characterizing SUAS 

heuristic tracking algorithm performance.  While the motivating requirement for the 

current research effort has been proposed by AFRL, it is appropriate to mention that other 

sources allude to the current or future need for optimized ground tracking capabilities.  

The United States Air Force Unmanned Aircraft Systems Flight Plan 2009-2047 lists 

many UAS currently used in deployed environments as well as generic capabilities of 

UAS in different size classes [5].  Only two aircraft specifically include convoy 

overwatch in their lists of capabilities, the MQ-1 Predator and the MQ-9 Reaper.  

However, in its coverage of future applications of SUAS, the UAS Flight Plan lists close-

in ISR, personal ISR, and auto-sentry.  These missions will likely include (as a subset) 

autonomous tracking of a ground target, whether friendly or hostile.  In a 2011 RAND 

Corporation report to the US Army, Peters et al. discuss the technical and operational 

feasibility of overwatch missions by UAS [6].  They argue that large UAS present the 

most technically feasible options for convoy overwatch but claim that operational 

feasibility is highly constrained by the tasking complexity and low availability of this 

aircraft class.  Their final assertion is that feasibility would be positively impacted if 

miniaturization of technology enabled vehicle overwatch to be performed by smaller, 

cheaper UAS. 

For the remainder of this chapter, topics specific to the current research are 

addressed.  Coverage is given to the expected benefits of optimized routing followed by 
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the specifics of current path planning research efforts.  Past work is discussed on the 

subject of approximating optimization algorithms in real-time.  Finally, research is 

examined that discusses performance characterization of small UAS with regards to 

metrics and utilities relevant to validating the experimentation methodology of this 

research effort. 

Flight Path Optimization 

Characterizing the performance implications of approximated optimal path 

planning solutions warrants discussion of three key areas.  First is the expected impact of 

optimization on SUAS performance.  Second is the work currently proposed for 

achieving the overwatch mission in question.  Last is the challenge of approximating 

optimal solutions in a heuristic manner.  Prior work on each of these topics is examined.  

Effects on SUAS Performance 

While the current research effort characterizes performance primarily with respect 

to path planning, it is important to note that previous work provides preliminary 

indicators of other potential benefits.  Research conducted by Lazano examines 

performance of SUAS autopilot control loops parameterized to optimize flight endurance 

and optical sensor effectiveness [2].  A predicted 33% increase in flight endurance is 

achieved by altering pitch-from-altitude control loop settings.  The performance 

difference is attributed to the amount of work required of these control loops when 

deviating from steady level flight conditions, either intentionally or unintentionally, 

suggesting that the best way to optimize endurance is to minimize altitude holding efforts 

by the aircraft.  It follows that the cost function to be utilized in the current research, 
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which seeks to minimize roll rate and consequently altitude holding effort, can 

reasonably be expected to have a positive impact on mission endurance. 

Lazano continues by examining the surveillance efficiency of his missions.  It is 

suggested that considering navigation waypoints separate of sensor aimpoint results in 

decreased surveillance effectiveness and optimality of the flight path.  He asserts that 

implementing a gimbaled sensor with path planning based on footprint location may be 

the most significant contributors to ISR effectiveness for SUAS.  In his research 

conclusion, with specific regards to “loiter surveillance and moving-target surveillance,” 

Lazano recommends that “additional research should be conducted to determine 

improved persistence settings for respective surveillance methods” [2, pp. 95-96]. 

Current Efforts 

AFIT research has been conducted to directly address the convoy overmatch 

problem proposed by AFRL.  This effort is presented by Livermore where he proposes a 

dynamic path optimization strategy designed to minimize both error in SUAS distance 

from the ground target and SUAS control effort [1].  This strategy begins by defining a 

function which characterizes the cost, J, of any given SUAS flight.  This function is 

defined in Equation 1 [1]. 

The cost function aims to minimize the weighted sum of the control and slant 

range (SR) error.  The cost function represents the desire to keep the UAV a 

certain distance from the ground vehicle while using the minimum required 

control.  In [Equation 1], the first term penalizes deviation from desired slant 

range and the second term penalizes the control.  Both the slant range and control 

terms are normalized relative to constant values so that the two terms can be 

equally weighted relative to each other. [1, p. 36] 
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Equation 1 
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After establishing this cost function, Livermore develops a MATLAB function 

that accounts for the path driven by a ground target, weather conditions, the starting 

location of the SUAS, the desired slant range, the umax specific to the SUAS, as well as 

speed and turning characteristics specific to the SUAS.  With these inputs, the function 

attempts to identify the most optimal flight path that could have been executed.  The 

selected path is defined at that with the lowest associated cost [1].  An example of 

Livermore’s path generation based on real world ground vehicle and weather information 

is show in Figure 2. 
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Figure 2: Example Optimal Path Generation 

 

Approximations of Optimal Solutions 

In early AFIT optimization work, Zollars proposes a dynamic optimization 

algorithm that determines the best route for a SUAS attempting to place a sensor footprint 

on a target of known location and velocity [7].  While the motivation for his work is 

different than that of the current effort, he arrives at a computationally intensive 

optimization algorithm similar to that being evaluated at present.  Implementation of 

Zollars’ work is attempted by Terning, who works to “specifically look at heuristic, 

iterative techniques which can quickly calculate flight path solutions, implement these 
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solutions on actual UAV systems, and validate the algorithm through flight tests” [3, p. 

3].  Terning concludes that the amount and variance in execution time makes Zollars’ 

technique infeasible for direct application in real-time circumstances: 

Because the code execution time proved unpredictable, it proved impossible to 

extrapolate out the future position of the aircraft to a point where the flight path 

commands would actually be executed. If, for example, we knew with relative 

certainty that it would take 10 seconds to compute an optimal flight path, we 

could effectively extrapolate the future location of the UAV, and optimize for that 

point. If, however, the calculation time is unpredictable and highly variant, no 

prediction can be made. The other option would be to force a return after a certain 

number of seconds. This would essentially guarantee an erroneous result of 

unknown tolerance if the optimization routine was exited prematurely, so this 

option was abandoned. [3, p. 20] 

Terning’s final solution is an iterative approach that evaluates various coordinates along 

the vector of the ground target based on present information about both the target and the 

air vehicle.  When the calculated time-of-arrival becomes equal for both entities (or 

nearly equal as predefined by a threshold parameter), the evaluated location becomes the 

new navigation point for the SUAS.  The GCS software executes this calculation 

repetitively, each time updating the navigation point.  Terning demonstrates his heuristic 

approach using a hardware-in-the-loop (HIL) simulation and provides strong evidence 

that an iterative approximation of an optimization based on cost functions can be 

achieved in real-time with worthwhile results. 

 A similar strategy is seen in research presented by Boire, who builds on the work 

of Seibert et al. and attempts to achieve an implementation of the aforementioned rover-

relay architecture [4].  Boire notes that for an instantaneous set of aircraft states (both 

rover and relay SUAS) it is a simple midpoint calculation to determine the optimal 

location at which the relay should be positioned.  However, when attempting to account 
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for future states based on the motion of both SUAS, the optimization function becomes 

complex enough that an approximation is the most feasible approach to real-time 

implementation.  He arrives at a strategy of repetitively calculating and commanding an 

instantaneously optimal solution, including a future position compensation factor for the 

rover SUAS.  The cyclical nature of the approach makes it similar to Terning’s work. 

However Boire’s method differs in that the calculation itself is not recursive.  The 

strategy is implemented in the proposed GCS software and demonstrated in simulation.  

Findings indicate that his solution is able to achieve a range increase for the rover SUAS 

close to that expected of the optimal solution, providing further evidence that heuristic 

approximations can effectively emulate their optimal counterparts if designed properly. 

Sensor Time-on-Target 

In addition to the development of SUAS path planning strategies, it is of equal 

importance for the current research effort to validate achieved performance.  The primary 

challenge is ensuring that the sensor maintains persistent coverage of the ground target in 

question.  For this research, it is sufficient to quantify the percentage of flight time during 

which the sensor field of view encompassed the target. 

Welborn encounters the same issue in his research attempts to quantify achievable 

ISR for the Raven SUAS [8].  His approach builds on a basic MATLAB script originally 

built by Lozano for visualizing a sensor aimpoint and footprint [2].  Welborn modifies 

the script to characterize dynamic flight telemetry and provide statistical output for time 

on target.  Because his work utilizes real telemetry files and hard-coded sensor angles, the 

generated time on target is theoretical for a real world flight, which helps account for 
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sensor mounting error that may be present in the actual video.  Additionally, adjustment 

of inputs allow for performance analysis of alternative sensor configurations without 

requiring extra flights.  Welborn’s utility is used for calculating achieved time on target 

for all flight tests executed in the current research effort.  The generated visualization of 

sensor aimpoint and footprint assists in characterizing flight conditions contributing to 

gimbal performance.  Modifications to the utility include telemetry input format, dynamic 

sensor angles from telemetry (to account for a gimbaled camera), and dynamic ground 

target location (to account for a moving target).  Figure 3 shows an example ISR flight 

visualization generated using Welborn’s utility for a fixed body camera. 

 

 

Figure 3: Welborn Example Flight Path with Sensor Aimpoint and Footprint 
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Summary 

The literature review examines prior work that has culminated in, contributed to, 

or provided justification for the current research effort.  Initial focus is given to 

documentation supporting the requirement for an optimized mobile ground target 

tracking function.  SUAS work at AFIT is then reviewed to justify some of the key 

equipment selections made prior to executing flight test.  Research on the potential 

effects of optimized path planning is discussed that further supports the thesis motivation.  

This is followed by a more thorough examination of efforts to optimize the convoy 

overwatch mission as well as past work to approximate similar path planning functions.  

Finally, coverage is given to supporting work providing performance validation and 

analysis utilities directly relevant to the experimentation portion of this research. 
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III. Methodology 

Chapter Overview 

The methodology chapter describes the process used to answer the stated 

investigative questions associated with the research objective.  Those questions are as 

follows: 

• What is the target tracking and flight path performance of the SUAS when 

using a basic follow-me mode? 

• What is the best path performance achievable by the adjustment of existing or 

readily accessible navigation control without implementation of state 

responsive logic? 

• What is the achievable SUAS flight path optimality using a state-based, 

heuristic approximation of the optimization strategy? 

• What is the feasibility of implementing heuristic ground target tracking logic 

that is capable of real-time execution onboard a SUAS autopilot? 

Each of the investigative questions is designed to augment its predecessor, cumulatively 

arriving at a feasibility assessment regarding SUAS autonomous mobile target tracking.  

The determination of feasibility is justified by characterizing the spectrum of achievable 

performance and recording how heuristic approximation compares to worst and best case 

scenarios. 

 Documentation of the methodology begins with a discussion of the materials and 

equipment to be used for the research effort.  This is followed by examination of the 

procedures followed in order for experimentation to provide the data required to analyze 

current performance and design an improved navigation strategy. 
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Materials and Equipment 

The traditional components of a SUAS include the air vehicle, payload, ground 

control station, communications, launch and recovery hardware, and ground support 

equipment [9].  These components can be divided into various subcomponents unique to 

the system and its mission.  The conclusions of this research effort are based primarily on 

data gathered from flight test.  For that reason, it is appropriate to review the components 

and subcomponents of the SUAS used in testing that most directly impact or constrain the 

data collected.  Those components include the air vehicle, autopilot, ground control 

station, and sensor gimbal.  

Air Vehicle 

The air vehicle used for this testing is the Sig Rascal 110.  This aircraft is a 

commercial-off-the-shelf (COTS) hobbyist RC aircraft that has been modified for use as 

an AFIT SUAS test platform.  Modifications include upgrades to battery and power-plant 

for increased reliability and endurance, as well as installation of an autopilot.  The Rascal 

is conducive to AFIT flight research due to its availability and current status as an 

approved airframe for USAF test on the Atterbury range.  Figure 4 shows the Rascal in 

use during flight test at Camp Atterbury.  See Appendix A for detailed specifications. 

 

Figure 4: Rascal SUAS 
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Ground Vehicle 

 The ground vehicle used for all flight test associated with this effort is a military 

HMMWV troop carrying vehicle.  This selection is based on safety approval 

considerations and range availability.  As configured, the vehicle allows for a driver and 

ground station operator in the cab of the vehicle with the safety pilot seated in the rear to 

maintain view of the SUAS.  The HMMWV used for testing is shown in Figure 5. 

 

Figure 5: Ground Vehicle 

 

Autopilot 

Many COTS SUAS autopilots are available on the market with wide variance in 

cost and capability.  The autopilot currently in use for AFIT research is the ArduPilot 

Mega (APM) version 2.5.  The APM is built as a variant of the Arduino electronics 

prototyping board.  In addition to being low-cost, the APM has been selected because it is 

an open source platform.  All firmware being run onboard is available in community 

repositories rather than being treated as proprietary to an originating designer, which 

makes the APM conducive to research efforts requiring custom code. 

The APM is similar in size, computing power, and flight functionality to those 

autopilots currently used in many fielded systems [9].  This similarity helps ensure 
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transferability of the results, as the proposed convoy overwatch scenario is primarily a 

defense application.  The APM is designed to operate a variety of ground or air vehicles 

based on the firmware being run.  For this research effort, the ArduPlane Arduino sketch 

is used, which is designed primarily for powered, fixed wing aircraft.  Peripherals to the 

APM include a transceiver for telemetry and real-time control, a GPS receiver, a 

barometric pitot-static unit for airspeed and altitude measurements, and a magnetometer 

for heading measurement augmentation.  Figure 6 depicts the APM with key components 

labeled [10].  Reference Appendix B for detailed specifications. 

 

Figure 6: ArduPilot Mega 
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Ground Control Station 

The GCS selected includes a laptop running Microsoft Windows, a telemetry 

transceiver matching that onboard the aircraft, and the APM Mission Planner software.  

This software is also open source and provides the functions required to monitor the 

SUAS in real-time and provide any required control updates.  Like the APM, Mission 

Planner is highly representative of ground control software found in many fielded 

systems.  The similarity contributes to the utility of findings while the fact that it is open 

source allows for modification of functionality.  In addition to the standard GCS 

configuration, a GPS receiver is integrated with the laptop to provide information on the 

ground vehicle location and velocity while moving.  A screenshot of the Mission Planner 

software used for this research effort is shown in Figure 7.  For details on the specific 

GCS setup used for this effort, reference Appendix C. 

 

Figure 7: Mission Planner Screenshot 
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Sensor Gimbal 

The payload integrated onboard the Rascal is mounted on a two-axis (pan-tilt) 

gimbal comprised of all COTS components with stabilization actuation provided by the 

autopilot.  The frame is built on two RC servos.  The pan servo allows for ±180° rotation 

from its center position.  The tilt servo is capable of +10° and -90° rotation from the 

horizontal plane of the SUAS.  For this effort, all servo commands are generated directly 

by the APM.  Minor code modifications allow the autopilot to actively update look angle 

(and subsequent servo positions) while flying in a dynamic ground vehicle tracking 

mode.  Chapter 4 provides a more detailed discussion of all firmware modifications. 

The camera used is the HackHD board camera.  The HackHD is a high-definition 

(1080p) color camera with a standard lens mount so that the optics can be altered to meet 

specific mission needs.  In addition, the camera supports onboard recording of video to a 

micro-SD flash memory card which allows for post-processing of full quality video and 

makes real-time transmission optional for testing purposes.  Figure 8 shows the integrated 

camera and gimbal system mounted to the Rascal in flight configuration.  Reference 

Appendix D for detailed payload specifications. 

 

Figure 8: Gimbal with Video Camera 
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Range Support and Flight Preparation 

All SUAS flight tests for this research are conducted at the SUAS airstrip located 

at Camp Atterbury Joint Maneuver Training Center in Indiana.  All flight tests require 

AFIT support in scheduling range time and providing necessary coordination with Camp 

Atterbury.  In addition, AFIT policy dictates that a Form 5028 be submitted prior to any 

flight testing.  This form outlines specific equipment configurations and actual flight test 

points to be executed.  Approval of the Form 5028 may only be attained after 

presentation in both a Test Review Board (TRB) and a Safety Review Board (SRB). 

Hardware in the Loop Simulation 

In addition to flight test data collected on real-world equipment, the effort 

leverages the APM capability to execute some of the flight test in a hardware-in-the-loop 

(HIL) simulated scenario.  This allows for collection of a higher number of test points 

than otherwise possible with fewer safety and logistical considerations.  HIL simulation 

works by connecting the APM to the GCS computer over a serial port.  In addition to the 

Mission Planner software, a simulated flight environment, FlightGear, is run using a 

model version of the Rascal airframe.  FlightGear uses a model called JSBSim for 6-

degree-of-freedom flight dynamics simulation as well as aircraft parameter definitions 

[11].  Figure 9 depicts the communications architecture for running HIL simulations.  

Note that in this configuration, the APM is running all navigation logic in an identical 

fashion to real-world flight.  Only processes responsible for reading sensor data are aware 

that state information should be obtained from the serial port rather than actual sensors.  

Because of the object oriented nature of the firmware, the source of this information is 

hidden when passed to navigation processes.   
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Figure 9: Hardware-in-the-Loop Communications Architecture 

 

In addition to the default HIL configuration described, pre-scripted GPS 

information can be output on a local virtual serial port, enabling the use of follow-me 

mode in Mission Planner.  Scripting the GPS data to match the profile of the HMMWV 

executing the selected real-world ground path, as well as using a modeled version of the 

actual air vehicle being used, allows HIL flights for the effort to match real-world flight 

performance to a high extent.  Reference Appendix E for the definition file used to 

instantiate the simulated Rascal used in this effort. 
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Procedures and Processes 

The findings of this research effort are formed on data aggregated from real world 

SUAS flight telemetry as well as emulated flight paths based on real air vehicle 

characteristics.  Work required to collect this data begins with characterization of ground 

target tracking performance using the unmodified follow-me mode.  Performance in this 

this configuration serves as a baseline.  Next, experimentation is done to determine the 

best settings for all navigation logic pertinent to the proposed path planning strategy.  

Finally, a finite state machine approach to path planning is constructed with design based 

on analysis of flights flown at the aforementioned best settings.  

Field Data Collection 

For flight test (both real-world and HIL simulation), field data is collected in the 

form of aircraft and ground vehicle telemetry.  APM Mission Planner can record certain 

information directly to telemetry log (TLOG) files for later analysis or simulated re-

creation of the flight.  For this effort, the TLOG format is used to collect all aircraft data 

on the GCS laptop.  Specific TLOG information of interest includes air vehicle GPS 

location data, aircraft attitude, gimbal servo outputs, inertial sensor readings, wind 

conditions, and ground target location data. 

For optimal paths calculated in MATLAB, the same data is generated with the 

exception of ground vehicle location, which must be treated as an input to the function in 

order for the paths to remain applicable to specific real-world conditions.  Air vehicle 

GPS location, attitude, and gimbal control will all be output by the utility and inertial 

readings can be derived from aircraft state information.   
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Follow-Me Flight Test 

The initial attempt at a real world, moving ground target tracking effort is 

achieved with the APM follow-me mode.  Follow-me is used as the performance baseline 

for comparison of all subsequent tracking attempts.  This functionality is already partially 

implemented in the APM and Mission Planner software.  The existing function sends a 

new waypoint to the SUAS at a fixed frequency.  The waypoint is simply the location of 

the GCS (based on a GPS reciever) at the time of the message and does not project to a 

future intercept point based on velocity.  If the aircraft arrives before the waypoint 

changes, it will enter a loiter about that point. 

Flights are conducted with the aircraft placed in follow-me mode and the GCS 

located on the ground vehicle.  The ground profile driven is the pre-selected path 

introduced in Chapter 1.  Air vehicle altitude is fixed at 150 meters as determined by 

airspace constraints and local terrain.  The mission is executed at different SUAS loiter 

radius settings but the data of interest is that collected at the radius determined to be 

nearest optimal in subsequent experimentation.  Recorded field data includes ground 

vehicle profile, aircraft telemetry, and ground target video. 

Increasing Path Optimality by Experimentation 

In order to develop navigation logic in the form of a finite state machine that is 

responsive to real-time SUAS conditions, the existing performance is examined to 

identify which states warrant alternative behavior.  However, rather than performing this 

analysis on data from the unmodified follow-me mode, it is first important to adjust any 

relevant system settings to achieve the most optimal flight paths possible.  Flight data 
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garnered from these settings result in a more appropriate determination of state 

definitions. 

Examination of the existing APM fixed-wing aircraft firmware yields three 

parameters which directly have roles in the navigation logic that impacts the 

minimization of roll rate and the maximization of effort to stay at a specified standoff 

distance.  These parameters are the loiter radius itself, loiter range, and navigation point. 

Loiter radius is the actual horizontal distance from the ground target point that the 

aircraft will attempt to maintain.  For a fixed target point, this represents a circular loiter.  

When inside or on the loiter radius, updates to desired heading (which are subsequently 

fed into lower level control loops) account for the ratio of the current distance from target 

to the desired distance.  The level of effort applied to achieve that distance, which is 

expressed as the magnitude of change to the desired heading for any one instance of the 

control loop, directly represents a balance between control effort and slant range. 

Loiter range is an additional distance beyond the loiter radius, inside which the 

SUAS will begin a gradual transition from straight flight towards the target point to 

circular, tangential flight around the target point.  This is a fixed distance, rather than a 

proportion of the loiter radius, and is designed to allow for smooth entry into loiters with 

minimal overshoot.  Similar to the effects of loiter radius, control effort is directly based 

on a ratio representing relative position inside the range, meaning that the range itself can 

impact the optimality of any given flight.  Modifications, discussed in Chapter 4, are 

required to parameterize loiter range, as it is hard coded at 60 meters in the default 

firmware.  Figure 10 demonstrates the role of both loiter radius and range in the APM 

navigation logic. 
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Figure 10: APM Loiter Navigation 

 

Finally, the point to which the aircraft is navigating must be considered.  Under 

normal circumstances, this point is only affected by motion of the ground vehicle.  

However, Terning’s work [3] shows that forward projecting the location of a moving 

ground target affects the behavior of a SUAS when attempting to intercept a point.  

Additional APM firmware modifications include the addition of a lead time parameter to 

account for the possibility of impacting the performance of a ground target tracking 

mission.  For any lead time greater than zero, the SUAS will navigate to a point directly 

forward of the ground vehicle based on the number of seconds input and the vehicle’s 

velocity. 
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HIL simulation and range safety limitations are used to identify a safe range of 

potential settings for all three parameters in question.  This allows for design of 

experiments (DOE) planned tests executed in two stages.  The first stage accounts for all 

three factors tested across their entire range of values to identify which factors have a 

significant impact on flight cost (optimality) as well as providing an initial assessment of 

the settings that should be used.  A computer generated central composite design (CCD) 

is used because quadratic effects and two-factor interactions are predicted.  The second 

stage provides finer granularity in a smaller test space to validate the initial findings and 

arrive at the final recommendations for settings. Again, a computer generated CCD is 

used. 

State-Based Navigation Logic 

After completion of a designed experiment to optimize the performance of 

follow-me mode, a more appropriate analysis of flight data is conducted.  This allows for 

the identification of states in which there is room for improvement in terms of ground 

target tracking flight path optimality.  Analysis of flight data collected at the 

recommended settings identifies the most noteworthy states with suboptimal 

performance.  To account for these scenarios, a finite state machine is designed that 

allows the SUAS to execute alternate navigation when the appropriate conditions are met.  

Modifications made to the APM firmware allow for the implementation of the proposed 

state machine.  After integration, flight test is conducted to verify improved SUAS path 

performance.   
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Summary 

The methodology chapter examines the work performed to answer the technical 

investigative questions requisite to produce a feasibility report on achieving efficient 

ground target tracking missions through heuristic path planning strategies.  Initial 

discussion is on the specific hardware used for testing and how each piece contributes to 

the research effort.  Next, procedures and processes are explained.  Focus is given to the 

necessary order of testing as well as justification for each test, concluding with an 

overview of the achieved state-based strategy.  



 

34 

IV. Analysis and Results 

Chapter Overview 

The analysis and results chapter discusses all data that was collected following the 

methodology outlined in Chapter 3.  This discussion begins with an overview of code 

modifications initially required for the autopilot to perform the convoy overwatch 

mission.  Following is an examination of actual flight data from each of the three phases 

of test (follow-me, optimal settings experimentation, and finite state machine 

implantation) to include justifications of associated navigation logic choices.  Final 

examination is focused on additional firmware modifications required to achieve the 

documented performance.  

Initial Firmware Modifications 

The initial research phase was used to base-line existing performance, however 

certain firmware modifications were necessary to enable the experimentation and 

improvement phases.  Changes were made to address two notable shortcomings of the 

stock ArduPlane firmware.  First is a lack of autonomous sensor gimbal control for a 

moving target.  Second is a fixed loiter direction for all modes using loiter-based 

navigation logic. 

Sensor Gimbal Target Tracking 

While the APM autopilot has a follow-me navigation function, it proved 

insufficient to meet the basic requirements of the convoy overwatch mission in its default 

form.  Most notable was the immaturity of the AP_Mount library.  The library is used to 

define the AP_Mount class which, when instantiated as an object by the main ArduPlane 
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thread (known as an Arduino sketch), represents a sensor gimbal on the aircraft.  Methods 

associated with this class are used for the execution of all sensor gimbal motion. 

In its unmodified state, the AP_Mount class is designed to accommodate two 

basic functions.  First is single or multiple axis stabilization about an earth-fixed pointing 

angle, designed primarily to minimize image motion from the aircraft.  The second is a 

pointing function designed to keep the sensor fixed on a single ground location while the 

aircraft is in motion.  This function is based solely on point-and-click user inputs from the 

Mission Planner interface, with specialized telemetry link packets for updating 

commands.  Execution of a convoy overwatch mission in this configuration would 

require a dedicated operator and be inherently inaccurate due to the point-and-click 

update method. 

To accommodate the desired autonomy, modifications were made to allow all 

ArduPlane processes access to global knowledge of the ground vehicle location.  Once 

the ground vehicle location was available, it could be used to calculate the desired 

pointing angle within the update_mount_position method in the AP_Mount class.  

Modifications to this method introduced two input parameters.  First was the location of 

the ground vehicle, replacing the previously internal location calculation.  The second 

was a boolean, used as a flag to inform AP_Mount of the status of follow-me mode 

where true indicated use of the modified function.  This allowed retention of the default 

functionality should an operator wish to override the gimbal or if follow-me mode was 

stopped.  Figure 11 depicts class diagrams for both the default and modified AP_Mount 

class with the modified function highlighted.  Reference Appendix F for the revised 

update_mount_position function. 
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Figure 11: Original and Modified Class Diagrams for APM Gimbal Mount 

 

Loiter Direction 

Early familiarization flights with the APM found that the default ArduPlane 

firmware (version 2.68 available from community APM repository) [12] only allowed for 

loitering behavior in a righthand direction (clockwise when viewing from above).  This 

was the case for loiter mode, full auto mode with a loiter waypoint, and guided mode 

(utilized by follow-me mode). 

Although the fixed loiter direction did not preclude the use of follow-me mode, it 

was clear from the familiarization flights that the aircraft would often make unnecessary 
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control efforts (in the form of turns greater than 90° in heading change) in order to enter a 

righthand loiter even if already in a tangential orientation to the desired radius requiring 

no effort to enter a lefthand loiter.  It was decided that allowing the air vehicle to loiter 

either direction based on real-time conditions would provide the greatest opportunity to 

match the generated optimal path. 

A relative bearing function was introduced to the firmware navigation file, 

allowing the loiter logic to determine the angle from the current heading of the aircraft to 

the ground target.  This function provided an assessment of how much effort would be 

associated with entering a loiter in either direction.  The loiter could be changed from 

righthand to lefthand by reversing the sign of the calculated ΔNavBearing introduced in 

Chapter 2, Figure 10, based upon the relative distance of the aircraft to the ground target, 

loiter radius line, and loiter range line.  Note that for this research effort, tests executed in 

the original follow-me mode were intended to baseline unmodified performance 

(excepting sensor gimbal actuation) so dynamic loiter directions were not activated for 

phase one flights.  They were used for all subsequent tests. 

Flight Test Results and Data Analysis 

Flight test for the research effort began after all pertinent settings had been 

identified, experimentation was designed, and requisite firmware modifications were 

made.  Familiarization efforts and tests of initial modifications were all executed in real-

world flight tests.  For the planned test phases, the range was made available for two 

separate date ranges. 
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The primary objective of the first event was collection of all flight data points 

associated with designed experimentation to determine optimal settings.  The loss of the 

primary aircraft on takeoff and hardware integration problems with backup aircraft 

resulted in collection of all data points using a simulated Rascal in a HIL environment.  

The second test event was intended to serve primarily as a demonstration of the final 

proposed navigation logic, but was limited due to weather.  Three flights were executed 

but only the first, a replicate of basic follow-me mode, was done so within the wind limits 

of the Rascal airframe.  To account for these conditions, all presented data analysis was 

done on flights executed in a HIL environment.  Results from real-world flights are 

shown for reference, but to ensure consistency, HIL flights are used anywhere a statistical 

inference is required. 

Analysis of Optimality 

The objective of experimentation and design for this effort was the minimization 

of the objective cost function (cost) associated with flights executed in real-time by the 

autopilot.  Analysis necessary to achieve the design work required not only the cost 

associated with a given flight, but an observation of instantaneous contribution to cost 

versus time.  To measure cost contribution for a discrete point, the derivative of 

Livermore’s proposed cost function [1] was taken and defined in Equation 2 as Ji. 

Equation 2 
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Note that defining Ji in such a manner allowed each flight to be profiled over time 

to provide more information than total cost alone.  Flights could now be divided into 

segments of time based on a selected threshold for Ji to determine a relationship between 

flight conditions and contribution to cost.  Charts like the example in Figure 12 were used 

for analysis and validation of all flight tests. 

 

Figure 12: Example Analysis of Ji 

 

Follow-Me 

Phase one of flight tests for the research effort was characterization of baseline 

cost performance for comparison with subsequent design work.  An initial flight was 

conducted for the purpose of flight path analysis and cost profiling.  Three additional 

replicate flights were flown to validate results.  Figure 13 shows the flight path with these 

settings (which results in a cost, J, of 9.732) as well as the associated optimal route while 

Figure 14 depicts the achieved cost profile.  These flights were all conducted with a 

desired slant range of 212m, which equates to a 150m radius when flying at an altitude of 

150m. 



 

40 

 

Figure 13: Flight Path with Basic Follow-Me Settings 

 

 

Figure 14: Analysis of Ji for Basic Follow-Me Flight 

 

Optimal Settings Experimentation 

After characterizing performance of the unmodified follow-me mode, the first 

designed experiment was executed.  This experiment consisted of 16 flights with loiter 
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radius, loiter range, and lead time at varied settings coded for analysis in the consequent 

regression model.  Each of the flights was conducted with the air vehicle in starting 

conditions as similar as achievable by the operator.  The simulated ground vehicle drove 

an identically repeatable preprogrammed course representing the course available on the 

Camp Atterbury test range.  The HIL wind model was stochastic with the average defined 

as 3.1 m/s (found as real-world average during familiarization flights).  Identical settings 

were used for all flights.   Note that the combined starting conditions are used for flights 

conducted in all three research phases, and are not exclusive to the experimentation 

portion of the work.  Table 1 shows the coded levels for the first stage CCD experiment.  

High, low, and center values are denoted with a +, -, or 0, respectively.  Axial values are 

denoted with either an “a” or “A.”  Table 2 summarizes the response results of these 

flights.  Treatment labels are a concatenation of coded levels for loiter range, radius, and 

lead time in order, with 0 representing all center values. 

Table 1: Coded Units for First Stage Flight Experimentation 

 

Coded Level Loiter Range (m) Loiter Radius (m) Lead Time (s)

a 40 50 0

- 58 67 1.1

0 120 125 5

+ 182 183 8.9

A 200 200 10

Associated Engineering Units
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Table 2: Cost Results for First Stage Flight Experimentation 

 

Once the data was collected, a regression model could be built using the statistical 

model generated in conjunction with the experimental design.  The effects of 

experimental factors (radius, range, and lead time) in the model were found to be 

significant (p-value < .05) as presented in Table 3.  The model terms are presented in  

Table 4 sorted in order of estimate magnitude. 

Table 3: Analysis of Variance for First Stage Flight Experimentation 

 

 

Flight (Test Point) Treatment Cost (J , α=.95)

1 +++ 4.323

2 a00 9.651

3 --+ 25.999

4 00a 55.478

5 0 44.775

6 -++ 7.750

7 0 46.970

8 A00 148.387

9 +-+ 111.477

10 ++- 7.066

11 +-- 143.779

12 00A 47.530

13 -+- 9.099

14 0a0 50.445

15 0A0 29.020

16 --- 109.754

Source
Degrees of 

Freedom

Sum of 

Squares

Mean 

Square
F Statistic

Model 5 26057.933 5211.59 5.3697

Error 10 9705.456 970.55 Prob > F

Total 15 35763.390 0.0118
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Table 4: Sorted Parameter Estimates for First Stage Flight Experimentation 

 

Note that the experiment indicated only loiter radius and loiter range to be 

statistically significant at the � = .05 level.  A factor profile, shown in Figure 15, was 

generated based on the model to help select the recommended settings.  The resultant 

recommendations were to set loiter radius to its highest setting and range to its lowest, 

which for this experiment translated to a radius of 200m and a range of 40m.  It was 

decided to select 150m as the recommendation for radius, based on the real-world safety 

requirement that the pilot must maintain visual contact with the SUAS.  Lead time was 

suggested to be set at zero, even though it was not significant. 

 

Figure 15: Factor Profiler for First Stage Experimental Model 

Term Estimate Std Error t Ratio Prob > |t|

Loiter Radius -34.5023 9.262 -3.73 0.0039

Loiter Range 25.8644 9.262 2.79 0.019

Loiter Range * Loiter Radius -15.6204 11.0145 -1.42 0.1865

Loiter Radius * Lead Time 13.9956 11.0145 1.27 0.2326

Lead Time -11.524 9.262 -1.24 0.2418
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To validate the results and increase confidence in recommended settings, a second 

stage experiment with finer granularity was designed around the 150m radius and 40m 

range test space.  Due to the lack of significance, lead time was excluded from this 

experiment in all but one center point replicate and set to zero for all flights.  Coded units 

for the CCD are shown in Table 5 and cost results after completion are shown in Table 6. 

Table 5: Coded Units for Second Stage Flight Experimentation 

 

Table 6: Cost Results for Second Stage Flight Experimentation 

  

Once flights were conducted, a second regression model was built using the 

generated model on which the experimental design was based.  Analysis of second 

model, shown in Table 7, finds that the included terms do have a statistically significant 

impact (p-value < .05) on the cost of a flight. 

Coded Level Loiter Range (m) Loiter Radius (m)

a 18 108

- 20 110

0 40 130

+ 60 150

A 62 152

Associated Engineering Units

Flight (Test Point) Treatment Cost (J , α=.95)

1 0A 19.288

2 -+ 17.185

3 A0 25.146

4 0 30.076

5 0 21.442

6 -- 27.742

7 +- 22.606

8 a0 31.880

9 0a 21.574

10 ++ 23.250
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Table 7: ANOVA for Second Stage Flight Experimentation 

 

Parameter estimates for this model, shown sorted in Table 8, only indicated the 

significance of $/!
)+ +#�!�. � at the � = .05 level, resulting in the quadratic profile 

seen in Figure 16.  The profiler, in agreement with the first stage experiment, suggested a 

high setting for the loiter radius.  Due to safety limitations, the highest recommendation 

for radius remained 150m.  Loiter range, although not statistically significant, still 

showed a negative regression parameter estimate in agreement with the first stage model. 

The lowest non-axial loiter range treatment used in the second test, 20m, became the 

recommended setting. 

Table 8: Sorted Parameter Estimates for Second Stage Flight Experimentation 

 

 

Source
Degrees of 

Freedom

Sum of 

Squares

Mean 

Square
F Statistic

Model 4 167.586 41.90 7.3047

Error 4 22.942 5.74 Prob > F

Total 8 190.528 0.0400

Term Estimate Std Error t Ratio Prob > |t|

Loiter Radius * Loiter Radius -6.8416 1.594 -4.29 0.0127

Loiter Range * Loiter Radius 2.8003 1.197 2.34 0.0795

Loiter Radius -1.9571 0.952 -2.06 0.1091

Loiter Range -1.0010 0.952 -1.05 0.3525
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Figure 16: Factor Profiler for Second Stage Experimental Model 

 

After both stages of experimentation were complete, demonstration flights were 

done at the final recommended settings of 150m loiter radius, 20m loiter range, and no 

lead time.  One initial flight was done for analysis purposes, with two additional 

replicates for validation.  These were treated separately from the test point at these 

settings flown during experimentation, which served as a third replicate at the suggested 

settings.  Figure 17 shows the demonstration flight path (J = 15.185) as well as the 

associated optimal route while Figure 18 depicts the achieved cost profile.  Note that 

optimal flight paths are calculated based on real wind data telemetry from each associated 

test.  The result is that even though starting conditions were common for all flights in the 

research effort, calculated optimal paths are not all identical. 
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Figure 17: Flight Path Using Settings Determined by Experimentation 

 

 

Figure 18: Analysis of Ji for Settings Determined by Experimentation 
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Finite State Machine First Iteration 

After completing experimentation, arriving at recommended settings, and 

profiling associate cost performance, design was done on a heuristic approach to further 

improve performance.  It is important to note that the ArduPlane firmware is written as an 

Arduino sketch, using a combination of C++ libraries and traditional Arduino code for 

main processes.  Arduino sketches are run as loops, using conditional statements to vary 

behavior and timing.  Therefore, the natural way to implement heuristic logic is to assess 

the system state iteratively and execute the desired reaction using switch conditions, 

which allows cases to be defined and run selectively.  When examining any single 

process loop, the implementation of mutually exclusive selective cases is the equivalent 

of a finite state machine (FSM). 

To design such a state machine for the purpose of minimizing cost during convoy 

overwatch missions, states were defined in which alternate behavior is required.  In 

Figure 19, the Ji profile for the demonstration of experimentally suggested settings was 

plotted over the turn rate of the ground vehicle being driven.  It was found that both of 

the time segments with large increases in Ji are immediately preceded by substantial turns 

made by the ground vehicle. 

 

Figure 19: Ji Compared Against Ground Vehicle Turn Rate 
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Also of note is that while both large increases in Ji followed periods of high 

ground vehicle turn rate, not all ground vehicle turns result in Ji growth.  Figure 20 shows 

the air and ground vehicle paths highlighting the period of time encapsulating the second 

large peak in Ji, from time = 235-280s.  It was found that both periods of increased cost 

correspond to a common situation in which the ground vehicle turned such that it was 

heading in a divergent direction from the air vehicle.  Even when the aircraft commanded 

a full effort turn, the time required to return to the desired slant range resulted in large 

cost contributions if these two headings were initially opposite. 

 

Figure 20: Highlighted Portion of Flight Test with Increased Ji 
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To account for this scenario, an FSM was constructed which allowed for tighter 

turns in the event that the air vehicle was both conducting a full effort turn and Ji 

increased past a given threshold.  In this additional state, a multiplier was used to 

temporarily decrease the output throttle setting, causing a reduced turn radius.  The 

designed FSM is diagrammed in Figure 21. 

 

Figure 21: Finite State Machine Initial Design 

 

The initial demonstration of the FSM was flown with Jthreshold set to 0.04 and the 

throttle multiplier at 0.75.  Jthreshold was selected based on the evaluated Ji profile in an 

attempt to detect true peaks and avoid unnecessary state transition based on minor 

oscillation.  The throttle multiplier was selected as a conservative value meant to 
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noticeably decrease the associated turn radii without causing excessive control behavior 

or risking stalled conditions.  The flight path for the initial demonstration, as well as the 

calculated optimal path, is shown in Figure 22, achieving a cost of 5.110.  The 

accompanying Ji profile is shown in Figure 23.  In addition, two replicate flights were 

executed. 

 

Figure 22: Flight Path Using Initial State Machine Logic 
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Figure 23: Analysis of Ji for Initial State Machine Logic 

 

Experiment Review and Finite State Machine Second Iteration 

After completion of all three flight test phases (follow-me, experimentation, and 

FSM design), including replicates, cost data was combined and compared.  Table 9 shows 

these results, to include averages.  Note that real-world tests of each mode were included 

for reference, but not included in statistical analysis. 

Table 9: Summary of Cost Results from Initial Tests and Follow-On Replicates 

 

The most noteworthy observation from these results is that the settings 

determined to be most optimal through experimentation in fact achieved worse 

performance than basic follow-me settings.  In addition, flights at these settings had a 

much wider cost variance than either follow-me or FSM, signifying inconsistent 

performance.  This inconsistency, coupled with degraded average performance compared 

Basic Follow-Me
NonHeuristic 

Optimal Settings
Finite State Machine

Replicate Environment Cost (J, α=.95) Cost (J, α=.95) Cost (J, α=.95)

Initial Test HIL 9.732 15.185 5.110

Rep 1 HIL 6.747 4.964 3.100

Rep 2 HIL 5.656 3.325 3.598

Rep 3 HIL 4.915 N/A N/A

CCD Test Point HIL N/A 17.185 N/A

Flight Test Real World 9.171 6.701 8.285

7.244 9.472 5.023

6.762 10.165 3.936

Average

Average (HIL Only)
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to follow-me, indicates that analysis of initial experimental data failed to properly 

characterize key effects. 

The data from flight experimentation was reassessed by combining all 26 original 

test points in non-coded form (engineering units) and creating a traditional regression 

model.  Note that lead time was zero for all second stage flights.  Terms were considered 

to the three factor interaction level and screened before inclusion in the model.  Table 10 

shows the screener results with considered terms, based on contrast, highlighted.  This 

was validated by Figure 24, a half normal plot indicating potential term significance. 

Table 10: Screener for Factor Inclusion in Combined Data Regression Model 

 

 

Term Contrast t-Ratio
Individual 

p-Value

Radius -23.0789 -7.24 0.0002

Range 20.7977 6.52 0.0003

Lead Time -7.2107 -2.26 0.0368

Radius * Radius -3.0166 -0.95 0.3333

Radius * Range -9.6744 -3.03 0.0121

Range * Range 5.7567 1.81 0.0825

Radius * Lead Time 7.0742 2.22 0.0394

Range * Lead Time -0.8153 -0.26 0.8067

Lead Time * Lead Time -3.5546 -1.11 0.2591

Radius * Radius * Radius 6.7533 2.12 0.0472

Radius * Radius * Range -13.3488 -4.19 0.0031

Radius * Range * Range -6.4166 -2.01 0.0563

Range * Range * Range -2.0162 -0.63 0.5529

Radius * Radius * Lead Time -4.067 -1.28 0.2009

Radius * Range * Lead Time -1.4136 -0.44 0.6699

Range * Range * Lead Time 0.2447 0.08 0.9440

Radius * Lead Time * Lead Time -8.105 -2.54 0.0235

Range * Lead Time * Lead Time 1.3055 0.41 0.6965

Lead Time * Lead Time * Lead Time 1.8446 0.58 0.5856
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Figure 24: Half Normal Plot with Significant Terms Labeled 

 

The terms proposed in the screener were used to construct a new, more complex, 

regression model with a value 0.931 for ��45���� .  Table 11 validates that the models 

effect on cost was significant and the final model estimates are shown in Table 12. 

Table 11: ANOVA for Combined Data Set with Selected Factors 

 

Table 12: Sorted Parameter Estimates for Combined Regression Model 

 

Source
Degrees of 

Freedom

Sum of 

Squares

Mean 

Square
F Statistic

Model 10 39498.222 3949.82 34.6455

Error 15 1710.102 114.01 Prob > F

Total 25 41208.325 <.0001

Term Estimate Std Error t Ratio Prob > |t|

Range 0.591026 0.064623 9.15 <.0001

(Radius-126.923)*(Radius-126.923)*(Range-89.231) -0.000189 0.000026 -7.19 <.0001

(Range-89.231)*(Range-89.231) 0.004299 0.000859 5.01 0.0002

(Radius-126.923)*(Radius-126.923)*(Radius-126.923) -0.000617 0.000149 -4.14 0.0009

(Radius-126.923)*(LeadTime-3.269) 0.455661 0.112129 4.06 0.0010

LeadTime -2.641159 0.690165 -3.83 0.0017

Radius 2.944517 0.773584 3.81 0.0017

(Radius-126.923)*(LeadTime-3.269)*(LeadTime-3.269) -0.114114 0.031304 -3.65 0.0024

(Radius-126.923)*(Range-89.231)*(Range-89.231) -0.000072 0.000080 -0.90 0.3808

(Radius-126.923)*(Range-89.231) -0.000718 0.004953 -0.14 0.8867
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A factor profiler, shown in Figure 25, was constructed for the new model to help 

graphically determine the best combination of settings.  The results of the new model 

were in fact different from the first iteration of experimental data analysis.  The 

recommended settings from the combined regression analysis were a 100m loiter radius, 

a 65m loiter range, and a 3s lead time.  In this case, all three were determined to be 

significant at the � = .05 level. 

 

Figure 25: Factor Profiler for Combined Regression Model 

 

Demonstration flights were conducted with the lead time reintroduced at 3s, loiter 

range increased to 65m, proposed FSM functionality disabled, and loiter radius left at 

150m.  Note that the suggested setting of 100m was not used to allow for comparison 

with results from existing tests.  The flight path achieved a cost of J = 2.799 and is shown 

in Figure 26.  The associated Ji profile is shown in Figure 27.  Three additional replicates 

were flown for validation. 
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Figure 26: Flight Path for Optimal Settings from Combined Regression Model 

 

 

Figure 27: Analysis of Ji for Suggested Settings from Combined Regression Model 

 

Following flight test of resultant settings from the second experimental analysis, a 

second iteration of FSM design was proposed.  Definition of states requiring alternate 

behavior was not as intuitive as the first design due to an overall increase in performance 
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with most peaks in Ji not exceeding 0.01.  Figure 28 depicts an analysis of slant range for 

the demonstration flight where it is seen that most increases in Ji correlated to periods 

during which the aircraft spent inordinate amounts of time off of the desired slant range.   

  

Figure 28: Slant Range Analysis Generated for Suggested Settings Flight Path 

  

This relationship was expected given that α, as defined in Equation 1, was set to 

0.95 for all of Livermore’s optimization functions used in this effort [1], heavily favoring 

slant range.  However, when compared to the actual flight path, the analysis helps 

demonstrate that flight times with poor slant range performance are typically those in 

which the SUAS overcame the ground vehicle while both were traveling in relatively 

straight paths with common headings.  Under these circumstances, it was found that the 

air vehicle occasionally found itself unable to commit to either a full turnaround or 

increased effort to regain the desired slant range. 

A second iteration FSM was proposed that, when appropriate, attempted to 

diminish the effects of this scenario by scaling the level of effort being used to maintain 

slant range.  This design, with all associated transition logic is diagramed in Figure 29. 



 

58 

 

Figure 29: Revised Finite State Machine 

 

The second iteration FSM was implemented on the APM with Jthreshold = 0.003 

and control effort buffer set to 35m, representing a ±23% change over a desired radius of 

150m.  Like the initial FSM, Jthreshold was selected based on the Ji profile in an attempt to 

execute state transitions when necessary but not excessively.  The control effort buffer 

was set to a conservative value intended to effect measurable changes without causing 

unsafe behavior if flown in real-world test.  A demonstration flight was conducted, 
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followed by three additional replicates.  The demonstration flight path is shown in Figure 

30, with cost of 2.35.  The Ji profile for the flight is shown in Figure 31. 

 

Figure 30: Flight Path for Revised Finite State Machine 

 

 

Figure 31: Analysis of Ji for Revised Finite State Machine 
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For the final replicate flight utilizing the revised FSM design, a debugger was 

added to the firmware allowing for analysis of which states were active over the course of 

the flight.  This is profiled in Figure 32. 

 

Figure 32: Profile of Current State for Final FSM Flight 

 

While the profile shows that the best setting for state transition conditions may 

require further experimentation, it does validate that all three states were entered at 

various points throughout the course of flight.  The fact that the majority of the time was 

spent in the standard tracking state does indicate that both alternate states were effective 

in their goals of returning the SUAS to a condition with low Ji and low slant range error. 

Comparative Results and Investigative Questions 

Once all replicate flights were executed with telemetry data appropriately 

recorded, comparative analyses were conducted both to measure improvement in cost and 

validate applicability to the convoy overwatch scenario.  Table 13 presents a summary of 

cost results for initial demonstration flights and replicates flown in all three stages of the 

research effort.  For this analysis, note that only the second iteration of experimentally 

suggested settings and FSM design were considered. 



 

61 

Table 13: Summary of Cost Results after Secondary Data Analysis and State 

Machine Design 

 

 

These sets of results were specifically intended to answer the first three 

investigative questions listed for this effort, restated below: 

• What is the target tracking and flight path performance of the SUAS when 

using a basic follow-me mode? 

• What is the best path performance achievable by the adjustment of existing or 

readily accessible navigation control without implementation of state 

responsive logic? 

• What is the achievable SUAS flight path optimality using a state-based, 

heuristic approximation of the optimization strategy? 

• What is the feasibility of implementing heuristic ground target tracking logic 

that is capable of real-time execution onboard a SUAS autopilot? 

Basic follow-me flights, flights at the experimentally suggested settings, and the 

proposed FSM flights were all conducted in direct response to first three investigative 

questions, respectively.  A visual depiction of the achieved performance differences is 

shown in Figure 33, in which the Ji profile for all three initial flight demonstrations are 

overlapped along with associated average Ji for each. 

 

Basic Follow-Me
DOE Suggested 

Settings - V2

Finite State 

Machine - V2

Replicate Environment Cost (J, α=.95) Cost (J, α=.95) Cost (J, α=.95)

Initial Test HIL 9.732 2.699 2.350

Rep 1 HIL 6.747 5.249 1.966

Rep 2 HIL 5.656 2.799 2.513

Rep 3 HIL 4.915 1.985 2.361

6.762 3.183 2.298

52.9% 66.0%

Average

% Improvement over Follow-Me
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Figure 33: Cost Performance for Initial Flight Tests of Main Configurations 

 

The final investigative question was more complex.  From a technical standpoint, 

two items were required to subjectively assess the viability of heuristic approximation of 

optimal control: first was a measure of performance increase significance and second was 

validation that the proposed strategy remains capable of meeting mission requirements. 

Basic costs, both individuals and averages, are presented in Table 13, above.  

However, this does not provide an indication of the significance of achieved results.  In 

order to claim that performance increases can truly be expected from the presented 

settings and heuristic design, confidence intervals based on the collected samples were 

compared.  Table 14 shows 95% confidence intervals calculated for the true mean 

performance expected at each of the three demonstrated firmware configurations.  The 

samples used to calculate these intervals were the initial flights and replicates collected at 

each stage of the effort.  For all three configurations n is equal to four replications. 
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Table 14: 95% Confidence Intervals for Cost Performance of Main Configurations  

 

Figure 34 depicts the same confidence intervals graphically.  This figure is 

important because it demonstrates that there was no overlap between the basic follow-me 

and final FSM configurations.  The lack of overlap means that the true average 

performance was in fact been improved over the basic follow-me performance.  The same 

could not be said for the experimentally suggested settings.  However, theses settings 

were intended primarily to provide the requisite analysis for arriving at the final FSM. 

 

Figure 34: Confidence Intervals for Cost Performance of Main Configurations 

Firmware Configuration
Achieved Cost (J) 

Sample Average
-t0.05,3*(s/n

0.5
) + t0.05,3*(s/n

0.5
)

Basic Follow-Me 6.762 3.393 10.132

Final Experimental Suggested Setting 3.183 0.917 5.449

Final FSM Design 2.298 1.926 2.669
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Next, flights conducted with the final FSM could be compared to their respective 

optimal paths (theoretically calculated in MATLAB) to determine differences in 

performance.  Table 15 shows data from all four flights using the proposed firmware with 

each associated optimal cost, including a 95% confidence interval conducted on each set 

of four J values.  These confidence intervals are depicted graphically in Figure 35. 

Table 15: 95% Confidence Interval for Final FSM and Associated Optimal Costs 

 

 

 

Figure 35: Plotted Confidence Intervals for Final FSM Design and Respective 

Optimal Paths 

Replicate
Final FSM Achieved 

Cost

Associated Optimal 

Path Cost

Initial Test 2.350 1.449

Rep 1 1.966 1.842

Rep 2 2.513 1.329

Rep 3 2.361 0.838

Sample Average 2.298 1.364

+ t0.05,3*(s/n
0.5

) 2.669 2.023

-t0.05,3*(s/n
0.5

) 1.926 0.706
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Note that using the four replicates conducted, overlapping confidence intervals 

were found for the achieved and optimal costs.  While this was a good indicator that 

achieved performance was close to the optimal, the overlap was relatively narrow so a 

more conservative hypothesis test was conducted.  A one tailed t-test was used based on 

the sample sizes and the assumption that the FSM could not perform better than the 

optimal.  The results of this test are shown in Table 16. 

Table 16: Two Sample t-Test (Unequal Variance) for Final FSM Flights and 

Associated Optimal Paths 

 

With tstat > tcritical, this test rejected the hypothesized difference of zero and 

indicated that the final FSM did in fact perform worse than the optimal at the α = 0.05 

level.  This was expected as the calculated optimal is based on perfect future knowledge 

of the ground vehicle path and the proposed FSM is a real-time heuristic making no cost 

assessments of predicted scenarios. 

Finally, to validate that the proposed solution was capable of meeting convoy 

overwatch mission requirements, sensor time-on-target was evaluated for the follow-me, 

DOE suggested, and final FSM settings.  The HIL environment allowed a virtual sensor 

gimbal to be added to the SUAS, enabling theoretical time-on-target to be evaluated in an 

Final FSM Achieved 

Cost

Associated Optimal 

Path Cost

Mean 2.2975 1.3643

Variance 0.054362087 0.171317413

Observations 4 4

Hypothesized Mean Difference 0

df 5

t Stat 3.928788685

P(T<=t) one-tail 0.005541883

t Critical one-tail 2.015048373
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identical fashion to real world flights.  Figure 36 depicts sensor aimpoint for all three 

respective demonstration flights while Table 17 provides associated percentages for both 

the actual HackHD lens (160° field of view) and an optional 16.9° lens. 

 

Figure 36: Sensor Aimpoint for Initial Flight Tests of Main Configurations 

 



 

67 

Table 17: Sensor Time-on-Target Performance for Initial Flight Tests of Main 

Configurations 

 

Findings show that all three configurations maintained the sensor on target for 

effectively the entire flight using the default HackHD lens.  If a very narrow field of view 

had been used (25mm lens), there would have been a decrease in performance for the 

proposed FSM to 92%.  Further analysis shows that if a smaller ground sample distance 

was desired, the final FSM design could have been flown with a field of view as low as 

45° while still maintaining 100% time-on-target (assuming the same aspect ratio as the 

25mm lens).  The conclusion is that using the FSM did not sacrifice mission requirements 

to any significant degree in order to achieve increased flight path optimality.  Figure 37 

shows a screenshot taken from the gimbal mounted video collected during the real-world 

FSM flight test. 

 

Figure 37: Screenshot from Real-World Ground Vehicle Tracking Mission 

Flight
Percent Time-on-Target with 

Stock 160° Lens

Percent Time-on-Target with 

Optional 25mm 16.9° Lens

Basic Follow-Me 100% 100%

DOE Suggested Settings V2 99% 92%

FSM Final Design 100% 92%
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Final Firmware Modifications 

Many modifications to the ArduPlane firmware were required for this research 

effort.  The version used as a baseline was V2.68.  From there, changes were made to the 

primary loop, the navigation process file, the telemetry management process file, and 

control mode response routines.  Most noteworthy however, was the introduction of a 

new library and parameter modifications for control.  Reference Appendix H for the final 

proposed ArduPlane firmware structure. 

Ground Vehicle Class 

To achieve the proposed heuristic behavior as well as conduct all described 

experimentation, it was necessary for the SUAS autopilot to access certain information 

regarding the ground vehicle being tracked.  Because C++ and Arduino are object 

oriented languages, the most direct way of calculating, organizing, and presenting this 

data was to create a ground vehicle class, labeled Ground_Vehicle.  Doing so allowed the 

main ArduPlane process to instantiate an object, notated GV, and when required call 

certain public attributes and methods.  Using telemetry from the GCS, GV can be 

regularly updated to provide all pertinent information on the actual ground vehicle.  This 

includes a safety check, GV.active, that allows the system to know if updates are no 

longer being received from the ground vehicle (even if a link with the GCS is still 

present) and failsafe to existing navigation logic.  The Ground_Vehicle class was 

implemented using the traditional C++ library design [13], consisting of a header file 

called by ArduPlane, and an implementation file containing all logic associated with the 

defined methods.  Figure 38 depicts a diagram showing the Ground_Vehicle class.  

Reference Appendix G for the associated C++ header. 
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Figure 38: Class Diagram for Ground Vehicle 

Parameter Entries 

The number of flights required for this effort, even with most being conducted in 

HIL, was not feasible if every configuration change had required firmware adjustment, 

recompilation, uploading to the APM, power cycling, redoing the aircraft preflight, and 

reinitiating flight test.  In order to conduct all requisite flights, especially during the 

experimentation stage of research, it was essential that the operator have real-time control 

over all factors.  To address this challenge, changes made to the ArduPlane firmware, 

when possible, were parameterized and transmitted to the GCS upon connection.  The 

final firmware version associated with this effort includes the following parameters in 

addition to the default configuration file.  For future replication of any work, Appendices 

I and J define the parameter sets used for both real-world and HIL flights, respectively. 
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Target Tracking Mode 

Tracking mode is a flag allowing the operator to enable or disable certain 

functionality.  If desired, all code modifications associated with this effort could be 

turned off, resulting in reversion to entirely stock behavior.  The second option is that 

only those changes listed in the initial modifications section (sensor gimbal tracking, and 

dual direction loiter) be enabled.  The final option is to enable all altered functions, which 

was used during experimentation and FSM flights. 

Lead Time 

The lead time value is the number of seconds used when calculating a forward 

projected ground vehicle location.  This was a key experimental parameter requiring real-

time adjustment.  The input value for lead time is passed into the GV object and handled 

internally, after which a public structure, labeled lead_location could be read and used for 

navigation. 

Loiter Range 

While using the loiter range for smooth transition to circular flight is a stock 

function, it was not made accessible to the operator by default.  The range was a hard 

coded private attribute internal to the navigation process.  Parameterization of this 

attribute allowed for the experimentation portion of the research to be executed as 

designed. 

Loiter Direction 

Allowing the loiter direction to be selected dynamically was an enabling function 

for the ground target tracking mission.  However, this required that a defining parameter 
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be passed into the navigation process whenever a fixed loiter was required.  This 

parameter allows direction specification for static loiter scenarios. 

Ji Threshold 

This parameter can be called by the navigation process and compared against the 

current Ji whenever assessing state-based behavior. Current Ji is a public attribute of GV 

used as a metric for state transition conditions in the proposed FSM design.   

Control Effort Buffer 

The control effort buffer, parameterized in meters, can be called when changing 

the level of effort applied to reach a desired slant range.  This change was required for the 

alternate states proposed in the final FSM. 

 

Summary 

The analysis and results chapter expanded on the flight test methodology 

presented in Chapter 3 and describes in detail the results associated with each step.  Initial 

discussion focused on firmware modifications made to enable the planned test 

procedures, including sensor gimbal target tracking and dynamic loiter direction.  Next, 

results from the three planned test methodology phases were presented.  Analysis was 

given as justification for performing a second iteration of the last two phases.  These 

phases include settings experimentation and design of an FSM approach to heuristically 

approximate the proposed optimal path planning strategy.  Flight data collected using the 

final recommended navigation logic was analyzed more extensively, providing evidence 

of statistically significant performance improvements.  All test data was then presented 



 

72 

alongside the investigative questions by which each test was justified.  Finally, an 

overview of the firmware modifications required to implement all proposed changes was 

discussed with focus on new object oriented structures and all entities implemented for 

user control.  Chapter 5 will discuss the implications of these findings with attention to 

how results conclude the research objective, as well as recommendations for future work. 
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V.  Conclusions and Recommendations 

Chapter Overview 

The final chapter concludes the research effort by expanding upon the data 

presented in Chapter 4 to discuss final implications as well as recommendations for 

follow-up action and future research.  Conclusions focus on the stated research objective 

of approximating optimal flight path solutions for SUAS tracking of a mobile ground 

target.  Follow-up actions are recommendations for work that could be done to augment 

the effort in order to validate or improve the achieved results.  Finally, future research 

refers to potential work that could make use of the presented flight results or navigation 

strategy for other investigative purposes. 

Conclusions of Research 

The effort presented a research objective and four associated investigative 

questions.  The first three questions formed the stages of research and focused on the 

characterization of achievable optimality for basic follow-me, DOE suggested, and state-

based firmware configurations.  Optimality was characterized using methods proposed by 

Livermore [1] for missions requiring a SUAS to track and monitor a moving ground 

target.  The data collected during these stages is presented in Chapter 4 and it was 

concluded that each firmware setting, in the order conducted, achieved better average 

results than the previous. 

The research objective was to achieve final implementation of the proposed 

strategy for approximation of optimal performance.  The firmware was proposed and 

successfully implemented in the third stage of the effort.  The final investigative question 
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was designed to characterize the implications of the applied firmware by describing the 

feasibility of achieving approximated optimality in real-world systems requiring 

autonomous mobile ground target tracking.  To answer this question, the achieved cost of 

all executed flights was considered.  The effort used data from a total of 47 flights at 

various settings: 16 for the first stage experiment, 10 for the second stage experiment, 4 

using default follow-me, 3 at the initial DOE suggested settings, 3 with the initial FSM, 4 

at the revised DOE suggested settings, 4 demonstrations of the final FSM, and 3 real-

world flights.  With regards to cost, the first quartile for all flights was found to be J = 

4.915.  The highest cost achieved by any of the four demonstration flights utilizing the 

final FSM was J = 3.178.  In other words, flights with the final proposed firmware design 

fell within the best 25% of all results.  Furthermore, while statistical analysis showed that 

the final FSM did not match the performance of the MATLAB generated optimal paths, it 

was found that cost was significantly improved over the baseline follow-me functionality.  

The relatively low cost of these flights coupled with the considerable performance 

increases over default capabilities indicate that near-optimal flight paths are operationally 

feasible using a real-time heuristic strategy implemented onboard the APM autopilot. 

Follow-Up Action 

Follow-up action describes potential efforts that could be done to improve on the 

documented results.  These efforts would provide increased confidence in the presented 

findings and directly support the stated research objective. 
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Real-World Replication of Designed Experiment 

One of the largest tradeoffs made in accomplishing this effort was the logistical 

inability to execute all flight tests using real-world equipment.  All conducted simulation 

used a real APM physically connected to the GCS running both Mission Planner and the 

aircraft environment simulation software.  The code being run was the actual APM 

firmware, as opposed to emulated software on the GCS.  All navigation logic of concern 

in this effort was run without differentiation between real-world and simulated input 

states.  This means that the experimental results are representative of real APM 

performance. 

However, this does make it difficult to verify that the exact settings used are those 

that would work specifically on the real-world Rascal aircraft. For that reason, there 

would be some benefit to repeating the experimentation and demonstration portion of the 

effort in a real-world environment if possible.  If constraints do not allow the entire 26 

CCD flights to be executed, conducting smaller experiments to simply verify the factor 

limits and basic effects would also help to validate findings. 

In addition, replication of experimentation should consider the possibility of using 

varied ground paths.  The stated constraints for this effort allowed for only one path, 

which was selected to represent a range of tracking scenarios.  However, this does not 

conclusively characterize universal performance.  Validation of findings may be aided by 

examining a more exhaustive assortment of ground target paths. 

Experimental Design to Analyze Finite State Machine 

Designed experimentation was used in this effort to arrive at suggestions for 

existing (or easily modified) settings, which was consequently used for state analysis.  
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The final suggested FSM however, introduced two new factors (Ji threshold and control 

effort buffer) that were only flown at values concluded from initial analysis.  If not 

resource constrained, it would be highly beneficial to perform a final DOE accounting for 

all pertinent parameters: loiter radius, loiter range, lead time, Ji threshold, and control 

effort buffer. 

Lessons learned from the first attempt at analysis of experimental results showed 

that it can be difficult to detect and model both curvature and interrelationships of these 

parameters in a setting as complex as SUAS flight.  Therefore, it would be suggested to 

begin with a screening experiment to determine which factors are truly significant and the 

approximate portion of the test space containing the best values for each.  This could be 

conducted in a relatively efficient manner by beginning with a factorial (2
k
) or fractional 

factorial (2
k-p

) experiment using only a high and low setting for each factor.  These types 

of experiments are commonly used for screening and have the potential to provide useful 

results when many factors are present and number of test points is limited [14].  After 

such a screener is conducted, more complex experimentation could be conducted in a 

narrower test space (with potentially fewer factors) to arrive at final suggested settings.  It 

is possible that such an effort could better utilize the proposed navigation logic and 

achieve even better cost results. 

Replication of Experimentation with Alternate Response 

While the proposed FSM did result in significant performance increases, it was 

observed that the achieved path often had very little overlap with the associated optimal.  

Technically, the cost of a flight is the best measure of optimality, which is why J was 

selected as the primary response for all analysis in this effort.  However, it is possible that 
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any further improvement over the proposed FSM may require consideration of horizontal 

deviation from the true optimal path. 

The challenge of characterizing two dimensional path deviation between any two 

sets of aircraft flight data was discussed by McCarthy in his attempt to analyze close-

formation flight capability for SUAS [15].  Specifically, he was attempting to achieve 

formation flight using a dynamic waypoint update strategy.  When addressing the 

feasibility of such an approach, McCarthy recognized that adherence to waypoint paths 

requires comparative characterization to identify the best achieved autopilot parameter 

set.  His solution was a MATLAB script capable of comparing two location matrices and 

charting XY deviation against a normalized time vector.  This deviation, while not a 

direct measure of the optimality with which the current effort is concerned, still provides 

useful comparative information regarding the similarity of any two flight paths.  Figure 

39 shows an example two dimensional path comparison generated by McCarthy.  Figure 

40 is the associated chart showing horizontal path deviation.  Parameterization of this 

deviation and use as an alternate or secondary response in experimentation may allow 

even more significant cost improvements with a heuristic real-time strategy. 

 



 

78 

 

Figure 39: McCarthy Example Flight Path Visualization 

 

 

Figure 40: McCarthy Example Flight Path Deviation Chart 
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Future Research 

Future research suggests alternate efforts that may benefit from the documented 

results.  These suggestions are for work that does not directly support the stated research 

objective, but rather focuses on new objectives in related areas. 

Analysis of Optimization Cost Function 

This effort attempted to achieve the lowest possible objective cost function value, 

as defined by Livermore [1], in a heuristic, real-time fashion.  However, no investigation 

was given to the value of the cost function as a measurement of convoy overwatch 

performance.  Future work in the field of flight path optimization, specifically flights 

aimed at mobile target tracking, would benefit from validation of the cost metric through 

the application of systems engineering principles. 

To achieve this validation, a true requirements elicitation should be conducted for 

the convoy overwatch mission including, but not limited to, input from those conducting 

the ground missions as well as those performing intelligence processing.  The results of 

such an effort would include, as a subset, any technical requirements associated with 

conducting convoy overwatch with a SUAS.  Any given flight path alternatives, 

theoretical or real-world, can be compared against the key performance parameters 

associated with such requirements and rank ordered using traditional decision analysis.  

Ranking in such a manner can help validate the cost function used for this effort as the 

achieved J values, when sorted, should align with the decision analysis results.  

Furthermore, any future proposed cost function can be validated in the same manner. 
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Stochastic Estimation of Ground Vehicle Path 

The final recommendation for future research focuses on prediction of the path of 

the ground vehicle.  In the case of this research effort, it is assumed that operations are 

occurring in an environment where future knowledge of the ground path is not feasible.  

The implementation of the lead time functionality accounts for only the current ground 

vehicle heading and speed to predict a linear future location.   

In Livermore’s work, he finds that it is unnecessary to know the entire future path 

of the ground vehicle to arrive at a feasible optimal path.  He presents a strategy by which 

the optimization function is called repeatedly (at 1.5Hz) considering the current states of 

the air and ground vehicle as well as the future path for only a specified period of time 

(labeled as the look-ahead).  The notional air vehicle executes the first 0.667s of the 

returned flight path before reevaluating.  He finds that using a look-ahead as low as 4 

seconds for the future ground path knowledge results in an overall flight effectively 

identical in path and cost to a single iteration of the optimization function considering the 

full future path [1]. 

If future efforts or constraint changes allow for updates to the Ground_Vehicle 

library that provide an estimation of the future path for as little as 4 seconds, it is possible 

that real-time execution of Livermore’s path planning strategy could be implemented in a 

non-heuristic fashion.  If the period of time is small enough, work could be done to 

implement a nonlinear optimization C++ library into the ArduPlane firmware to most 

thoroughly emulate Livermore’s strategy.  Conversely, if true onboard optimization 

libraries prove computationally excessive, simple functions can be written to consider a 

fixed number of look-ahead flight paths and return the lowest cost option as either a 
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waypoint array or direct control sequence.  Both options have the potential to realize 

significant performance benefits in terms of onboard approaches to optimal path 

planning. 

Summary 

The presented research evaluated the feasibility of achieving heuristic path 

planning strategies running in real-time onboard a SUAS performing a convoy overwatch 

mission.  The proposed strategy was designed to emulate, to the best extent possible, an 

existing flight path optimization function built for post-processing assuming full future 

ground vehicle information.  Work began by evaluating the default behavior of the APM 

autopilot.  Minor modifications were made to parameterize existing settings as well as 

add basic functionality that previous research suggested to be important.  Changes 

included adjustments to the sensor gimbal control library, addition of a dynamic loiter 

direction, and the ability to lead the ground vehicle by a given time period. 

Next, a two stage designed experiment was conducted to arrive at the best 

achievable combination of settings (with regards to flight path optimality).  A time 

analysis of instantaneous contributions to optimality (Ji) was performed and a finite state 

machine approach to navigation logic was proposed to further increase performance.  The 

suggested FSM was integrated into the APM flight firmware and tested in a six-degree-

of-freedom hardware in the loop environment.  It was found that achieved optimality 

demonstrated a statistically significant improvement over the default follow-me 

performance.  The effort concludes that real-time heuristic approximations to optimal 
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path planning do present a viable alternative to the high computational and equipment 

costs associated with implementing a true optimal solution. 
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Wingspan 110 in.

Wing Area 1522 sq. in.

Length 75.75 in.

Flying Weight ≈ 12 lbs.

Propeller APC 18x8E

Motor Himax HC6330-200

Electronic Speed Control Castle 120A HV

Flight Batteries Turnigy 5000 mAh LiPo

Autopilot ArduPilot Mega 2.5

Cruise Airspeed 15 m/s

Aileron Servos Hitec HS-6635HB

Aileron Deflection ±27°

Elevator Servo Hitec HS-5485HB

Elevator Deflection ±19°

Rudder Servo Hitec HS-5485HB

Rudder Deflection ±12°

Maximum Roll Rate 100°/sec.

Appendix A: Rascal Configuration 

 

Figure 41: Rascal SUAS Used for Flight Test 

 

Table 18: Rascal SUAS Key Specifications 
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Appendix B: Autopilot and Peripherals Specifications 

 

Figure 42: APM 2.5 Dimensions [16] 
 

Table 19: Autopilot Specifications 

 

Table 20: Telemetry Modem Specifications 

 

Autopilot ArduPilot Mega

Hardware Version 2.5

Software Version 2.68 with modifications

Processor Atmel 2560

Gyro + Accelerometer InvenSense MPU-6000

Magnetometer Honeywell HMC5883L

Barometric Sensor Measurement Specialties MS5611-01BA03

GPS Receiver uBlox LEA-6H

Airspeed Sensor Freescale MPXV7002

Telemetry Modem 3DRobotics Radio Set

Modem Brand 3DRobotics

Frequency 915 MHz

Transmission Type Frequency Hopping Spread Spectrum

Data Connection 6 Pin DF13

Maximum Output Power 100 mW

Rx Sensitivity -117 dBm

Transmission Connector RP-SMA

Supply Voltage 3.7-6 VDC

Size 26.7 x 55.5 x 13.3mm



 

87 

Computer HP EliteBook 8560w

Ground Control Software APM Mission Planner

Software Version 1.2.76

Telemetry Modem 3DRobotics Radio Set

GPS Receiver GlobalSat BU-353

Ground Vehicle HMMWV Troop Carrier Configuration

Appendix C: Ground Control Station Specifications 

Table 21: Ground Control Station Equipment 
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Appendix D: Payload Specifications 

Table 22: Payload Components 

 

 

Model Servocity SPT100H

Pan Servo Hitec HS-785HB

Pan Rotation ±180°

Pan Pulsewidth Range 1390-1625

Tilt Servo Hitec HS-5485HB

Tilt Rotation +10°, -90°

Tilt Pulsewidth Range 1000-2000

Model HackHD

Resolution 1080P

Pixel Count 9MP

Framerate 30 FPS

Aspect Ratio 16:9

Storage onboard microSD

Lens Mount M12

Video Output Composite 480P

Supply Voltage 3.7-5 VDC

Frequency 5.8 GHz

Transmitter ImmersionRC TX_5G8_600

Tx Power 600 mW

Supply Voltage 6-25 VDC

Receiver Iftron Yellowjacket Diversity

Supply Voltage 6-15 VDC

Rx Sensitivity -91 dBm

Gimbal

Camera

Transmission
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Figure 43: Servocity SPT100H Pan-Tilt Gimbal Dimensional Drawing [17] 

 

 

Figure 44: HackHD Camera Dimensional Drawing [18] 
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Appendix E: Simulated Rascal Definition 

<?xml version="1.0"?> 
<?xml-stylesheet 
href="http://jsbsim.sourceforge.net/JSBSim.xsl" 
type="text/xsl"?> 
<fdm_config name="rascal" version="2.0" release="BETA" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 
xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.n
et/JSBSim.xsd"> 
 
    <fileheader> 
        <author> Author Name </author> 
        <filecreationdate> Creation Date 
</filecreationdate> 
        <version> Version </version> 
        <description> Models a rascal </description> 
    </fileheader> 
 
    <metrics> 
        <wingarea unit="FT2"> 10.57 </wingarea> 
        <wingspan unit="FT"> 9.17 </wingspan> 
        <chord unit="FT"> 1.15 </chord> 
        <htailarea unit="FT2"> 1.69 </htailarea> 
        <htailarm unit="FT"> 3.28 </htailarm> 
        <vtailarea unit="FT2"> 1.06 </vtailarea> 
        <vtailarm unit="FT"> 0 </vtailarm> 
        <location name="AERORP" unit="IN"> 
            <x> 37.4 </x> 
            <y> 0 </y> 
            <z> 0 </z> 
        </location> 
        <location name="EYEPOINT" unit="IN"> 
            <x> 20 </x> 
            <y> 0 </y> 
            <z> 5 </z> 
        </location> 
        <location name="VRP" unit="IN"> 
            <x> 0 </x> 
            <y> 0 </y> 
            <z> 0 </z> 
        </location> 
    </metrics> 
 
    <mass_balance> 
        <ixx unit="SLUG*FT2"> 1.95 </ixx> 
        <iyy unit="SLUG*FT2"> 1.55 </iyy> 
        <izz unit="SLUG*FT2"> 1.91 </izz> 
        <ixy unit="SLUG*FT2"> 0 </ixy> 
        <ixz unit="SLUG*FT2"> 0 </ixz> 
        <iyz unit="SLUG*FT2"> 0 </iyz> 
        <emptywt unit="LBS"> 13 </emptywt> 
        <location name="CG" unit="IN"> 
            <x> 36.4 </x> 
            <y> 0 </y> 
            <z> 4 </z> 
        </location> 
    </mass_balance> 
 
    <ground_reactions> 
        <contact type="BOGEY" name="LEFT_MLG"> 
            <location unit="IN"> 
                <x> 33.1 </x> 
                <y> -12.9 </y> 
                <z> -13.1 </z> 
            </location> 
            <static_friction> 0.8 </static_friction> 
            <dynamic_friction> 0.5 </dynamic_friction> 
            <rolling_friction> 0.1 </rolling_friction> 
            <spring_coeff unit="LBS/FT"> 480 
</spring_coeff> 
            <damping_coeff unit="LBS/FT/SEC"> 100 
</damping_coeff> 
            <max_steer unit="DEG"> 0.0 </max_steer> 
            <brake_group> NONE </brake_group> 
            <retractable>0</retractable> 

        </contact> 
        <contact type="BOGEY" name="RIGHT_MLG"> 
            <location unit="IN"> 
                <x> 33.1 </x> 
                <y> 12.9 </y> 
                <z> -13.1 </z> 
            </location> 
            <static_friction> 0.8 </static_friction> 
            <dynamic_friction> 0.5 </dynamic_friction> 
            <rolling_friction> 0.1 </rolling_friction> 
            <spring_coeff unit="LBS/FT"> 480 
</spring_coeff> 
            <damping_coeff unit="LBS/FT/SEC"> 100 
</damping_coeff> 
            <max_steer unit="DEG"> 0.0 </max_steer> 
            <brake_group> NONE </brake_group> 
            <retractable>0</retractable> 
        </contact> 
        <contact type="BOGEY" name="TAIL_LG"> 
            <location unit="IN"> 
                <x> 68.9 </x> 
                <y> 0 </y> 
                <z> -13.1 </z> 
            </location> 
            <static_friction> 8.0 </static_friction> 
            <dynamic_friction> 5.0 </dynamic_friction> 
            <rolling_friction> 0.1 </rolling_friction> 
            <spring_coeff unit="LBS/FT"> 480 
</spring_coeff> 
            <damping_coeff unit="LBS/FT/SEC"> 100 
</damping_coeff> 
            <max_steer unit="DEG"> 360.0 </max_steer> 
            <brake_group> NONE </brake_group> 
            <retractable>0</retractable> 
        </contact> 
    </ground_reactions> 
 
    <propulsion> 
        <engine file="Zenoah_G-26A"> 
            <location unit="IN"> 
                <x> 36 </x> 
                <y> 0 </y> 
                <z> 0 </z> 
            </location> 
            <orient unit="DEG"> 
                <roll> 0.0 </roll> 
                <pitch> 0 </pitch> 
                <yaw> 0 </yaw> 
            </orient> 
            <feed>0</feed> 
            <thruster file="18x8"> 
                <location unit="IN"> 
                    <x> 1 </x> 
                    <y> 0 </y> 
                    <z> 0 </z> 
                </location> 
                <orient unit="DEG"> 
                    <roll> 0.0 </roll> 
                    <pitch> 0.0 </pitch> 
                    <yaw> 0.0 </yaw> 
                </orient> 
                <p_factor>1.0</p_factor> 
            </thruster> 
        </engine> 
        <tank type="FUEL">    <!-- Tank number 0 --> 
            <location unit="IN"> 
                <x> 36.36 </x> 
                <y> 0 </y> 
                <z> -1.89375 </z> 
            </location> 
            <capacity unit="LBS"> 1.5 </capacity> 
            <contents unit="LBS"> 1.5 </contents> 
        </tank> 
    </propulsion> 
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    <flight_control name="FCS: rascal"> 
     <channel name="All"> 
 
        <summer name="Pitch Trim Sum"> 
            <input>fcs/elevator-cmd-norm</input> 
            <input>fcs/pitch-trim-cmd-norm</input> 
            <clipto> 
                <min>-1</min> 
                <max>1</max> 
            </clipto> 
        </summer> 
 
        <aerosurface_scale name="Elevator Control"> 
            <input>fcs/pitch-trim-sum</input> 
            <range> 
                <min>-0.35</min> 
                <max>0.3</max> 
            </range> 
            <output>fcs/elevator-pos-rad</output> 
        </aerosurface_scale> 
 
        <aerosurface_scale name="Elevator Normalized"> 
            <input>fcs/elevator-pos-rad</input> 
            <domain> 
                <min>-0.3</min> 
                <max> 0.3</max> 
            </domain> 
            <range> 
                <min>-1</min> 
                <max> 1</max> 
            </range> 
            <output>fcs/elevator-pos-norm</output> 
        </aerosurface_scale> 
 
        <summer name="Roll Trim Sum"> 
            <input>fcs/aileron-cmd-norm</input> 
            <input>fcs/roll-trim-cmd-norm</input> 
            <clipto> 
                <min>-1</min> 
                <max>1</max> 
            </clipto> 
        </summer> 
 
        <aerosurface_scale name="Left Aileron Control"> 
            <input>fcs/roll-trim-sum</input> 
            <range> 
                <min>-0.35</min> 
                <max>0.35</max> 
            </range> 
            <output>fcs/left-aileron-pos-rad</output> 
        </aerosurface_scale> 
 
        <aerosurface_scale name="Right Aileron Control"> 
            <input>-fcs/roll-trim-sum</input> 
            <range> 
                <min>-0.35</min> 
                <max>0.35</max> 
            </range> 
            <output>fcs/right-aileron-pos-rad</output> 
        </aerosurface_scale> 
 
        <aerosurface_scale name="Left aileron Normalized"> 
            <input>fcs/left-aileron-pos-rad</input> 
            <domain> 
                <min>-0.35</min> 
                <max> 0.35</max> 
            </domain> 
            <range> 
                <min>-1</min> 
                <max> 1</max> 
            </range> 
            <output>fcs/left-aileron-pos-norm</output> 
        </aerosurface_scale> 
 
        <aerosurface_scale name="Right aileron 
Normalized"> 
            <input>fcs/right-aileron-pos-rad</input> 
            <domain> 
                <min>-0.35</min> 

                <max> 0.35</max> 
            </domain> 
            <range> 
                <min>-1</min> 
                <max> 1</max> 
            </range> 
            <output>fcs/right-aileron-pos-norm</output> 
        </aerosurface_scale> 
 
        <summer name="Rudder Command Sum"> 
            <input>fcs/rudder-cmd-norm</input> 
            <input>fcs/yaw-trim-cmd-norm</input> 
            <clipto> 
                <min>-1</min> 
                <max>1</max> 
            </clipto> 
        </summer> 
 
        <aerosurface_scale name="Rudder Control"> 
            <input>fcs/rudder-command-sum</input> 
            <range> 
                <min>-0.35</min> 
                <max>0.35</max> 
            </range> 
            <output>fcs/rudder-pos-rad</output> 
        </aerosurface_scale> 
 
        <aerosurface_scale name="Rudder Normalized"> 
            <input>fcs/rudder-pos-rad</input> 
            <domain> 
                <min>-0.35</min> 
                <max> 0.35</max> 
            </domain> 
            <range> 
                <min>-1</min> 
                <max> 1</max> 
            </range> 
            <output>fcs/rudder-pos-norm</output> 
        </aerosurface_scale> 
     </channel> 
    </flight_control> 
 
    <aerodynamics> 
        <axis name="DRAG"> 
            <function name="aero/coefficient/CD0"> 
                
<description>Drag_at_zero_lift</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                      <table> 
                          <independentVar>aero/alpha-
rad</independentVar> 
                          <tableData> 
                              -1.5700 1.5000 
                              -0.2600 0.0560 
                              0.0000 0.0280 
                              0.2600 0.0560 
                              1.5700 1.5000 
                          </tableData> 
                      </table> 
                </product> 
            </function> 
            <function name="aero/coefficient/CDi"> 
                <description>Induced_drag</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>aero/cl-squared</property> 
                    <value>0.0400</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/CDbeta"> 
                
<description>Drag_due_to_sideslip</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                      <table> 
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                          <independentVar>aero/beta-
rad</independentVar> 
                          <tableData> 
                              -1.5700 1.2300 
                              -0.2600 0.0500 
                              0.0000 0.0000 
                              0.2600 0.0500 
                              1.5700 1.2300 
                          </tableData> 
                      </table> 
                </product> 
            </function> 
            <function name="aero/coefficient/CDde"> 
                
<description>Drag_due_to_Elevator_Deflection</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>fcs/elevator-pos-
norm</property> 
                    <value>0.0300</value> 
                </product> 
            </function> 
        </axis> 
 
        <axis name="SIDE"> 
            <function name="aero/coefficient/CYb"> 
                
<description>Side_force_due_to_beta</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>aero/beta-rad</property> 
                    <value>-1.0000</value> 
                </product> 
            </function> 
        </axis> 
 
        <axis name="LIFT"> 
            <function name="aero/coefficient/CLalpha"> 
                
<description>Lift_due_to_alpha</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                      <table> 
                          <independentVar>aero/alpha-
rad</independentVar> 
                          <tableData> 
                              -0.2000 -0.7500 
                              0.0000 0.2500 
                              0.2300 1.4000 
                              0.6000 0.7100 
                          </tableData> 
                      </table> 
                </product> 
            </function> 
            <function name="aero/coefficient/CLde"> 
                
<description>Lift_due_to_Elevator_Deflection</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>fcs/elevator-pos-
rad</property> 
                    <value>0.2000</value> 
                </product> 
            </function> 
        </axis> 
 
        <axis name="ROLL"> 
            <function name="aero/coefficient/Clb"> 
                
<description>Roll_moment_due_to_beta</description> 
                <!-- aka dihedral effect --> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 

                    <property>aero/beta-rad</property> 
                    <value>-0.1000</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Clp"> 
                
<description>Roll_moment_due_to_roll_rate</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>aero/bi2vel</property> 
                    <property>velocities/p-aero-
rad_sec</property> 
                    <value>-0.4000</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Clr"> 
                
<description>Roll_moment_due_to_yaw_rate</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>aero/bi2vel</property> 
                    <property>velocities/r-aero-
rad_sec</property> 
                    <value>0.1500</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Clda"> 
                
<description>Roll_moment_due_to_aileron</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>fcs/left-aileron-pos-
rad</property> 
                      <table> 
                          
<independentVar>velocities/mach</independentVar> 
                          <tableData> 
                              0.0000 0.1300 
                              2.0000 0.0570 
                          </tableData> 
                      </table> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cldr"> 
                
<description>Roll_moment_due_to_rudder</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>fcs/rudder-pos-
rad</property> 
                    <value>0.0100</value> 
                </product> 
            </function> 
        </axis> 
 
        <axis name="PITCH"> 
            <function name="aero/coefficient/Cmalpha"> 
                
<description>Pitch_moment_due_to_alpha</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/cbarw-ft</property> 
                    <property>aero/alpha-rad</property> 
                    <value>-0.5000</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cmde"> 
                
<description>Pitch_moment_due_to_elevator</description> 
                <product> 
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                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/cbarw-ft</property> 
                    <property>fcs/elevator-pos-
rad</property> 
                      <table> 
                          
<independentVar>velocities/mach</independentVar> 
                          <tableData> 
                              0.0000 -0.5000 <!-- was -
1.1 --> 
                              2.0000 -0.2750 
                          </tableData> 
                      </table> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cmq"> 
                
<description>Pitch_moment_due_to_pitch_rate</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/cbarw-ft</property> 
                    <property>aero/ci2vel</property> 
                    <property>velocities/q-aero-
rad_sec</property> 
                    <value>-12.0000</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cmadot"> 
                
<description>Pitch_moment_due_to_alpha_rate</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/cbarw-ft</property> 
                    <property>aero/ci2vel</property> 
                    <property>aero/alphadot-
rad_sec</property> 
                    <value>-7.0000</value> 
                </product> 
            </function> 
        </axis> 
 
        <axis name="YAW"> 
            <function name="aero/coefficient/Cnb"> 
                
<description>Yaw_moment_due_to_beta</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>aero/beta-rad</property> 

                    <value>0.1200</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cnr"> 
                
<description>Yaw_moment_due_to_yaw_rate</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>aero/bi2vel</property> 
                    <property>velocities/r-aero-
rad_sec</property> 
                    <value>-0.1500</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cndr"> 
                
<description>Yaw_moment_due_to_rudder</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>fcs/rudder-pos-
rad</property> 
                    <value>-0.0500</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cnda"> 
                <description>Adverse_yaw</description> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <property>fcs/left-aileron-pos-
rad</property> 
                    <value>-0.0300</value> 
                </product> 
            </function> 
            <function name="aero/coefficient/Cndi"> 
                
<description>Yaw_moment_due_to_tail_incidence</description
> 
                <product> 
                    <property>aero/qbar-psf</property> 
                    <property>metrics/Sw-sqft</property> 
                    <property>metrics/bw-ft</property> 
                    <value>0.0007</value> 
                </product> 
            </function> 
        </axis> 
    </aerodynamics> 
</fdm_config>
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Appendix F: AP_Mount Revised update_mount_position Function 

/// This one should be called periodically 
void AP_Mount::update_mount_position(struct Location *guided_WP_target, bool 
guided_mode_bool) 
//added input arguments Jul13, ref. AP_Mount.h  -cjn 
{ 
#if MNT_RETRACT_OPTION == ENABLED 
    static bool mount_open = 0;     // 0 is closed 
#endif 
 
    switch((enum MAV_MOUNT_MODE)_mount_mode.get()) 
    { 
#if MNT_RETRACT_OPTION == ENABLED 
    // move mount to a "retracted position" or to a position where a fourth servo can 
retract the entire mount into the fuselage 
    case MAV_MOUNT_MODE_RETRACT: 
    { 
        Vector3f vec = _retract_angles.get(); 
        _roll_angle  = vec.x; 
        _tilt_angle  = vec.y; 
        _pan_angle   = vec.z; 
        break; 
    } 
#endif 
 
    // move mount to a neutral position, typically pointing forward 
    case MAV_MOUNT_MODE_NEUTRAL: 
    { 
        Vector3f vec = _neutral_angles.get(); 
        _roll_angle  = vec.x; 
        _tilt_angle  = vec.y; 
        _pan_angle   = vec.z; 
        break; 
    } 
 
    // point to the angles given by a mavlink message 
    case MAV_MOUNT_MODE_MAVLINK_TARGETING: 
    { 
        Vector3f vec = _control_angles.get(); 
        _roll_control_angle  = radians(vec.x); 
        _tilt_control_angle  = radians(vec.y); 
        _pan_control_angle   = radians(vec.z); 
        stabilize(); 
        break; 
    } 
 
    // RC radio manual angle control, but with stabilization from the AHRS 
    case MAV_MOUNT_MODE_RC_TARGETING: 
    { 
#if MNT_JSTICK_SPD_OPTION == ENABLED 
        if (_joystick_speed) {                  // for spring loaded joysticks 
            // allow pilot speed position input to come directly from an RC_Channel 
            if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) { 
                _roll_control_angle += rc_ch[_roll_rc_in-1]->norm_input() * 0.00001 * 

_joystick_speed; 
                if (_roll_control_angle < radians(_roll_angle_min*0.01)) 

_roll_control_angle = radians(_roll_angle_min*0.01); 
                if (_roll_control_angle > radians(_roll_angle_max*0.01)) 

_roll_control_angle = radians(_roll_angle_max*0.01); 
            } 
            if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) { 
                _tilt_control_angle += rc_ch[_tilt_rc_in-1]->norm_input() * 0.00001 * 

_joystick_speed; 
                if (_tilt_control_angle < radians(_tilt_angle_min*0.01)) 

_tilt_control_angle = radians(_tilt_angle_min*0.01); 
                if (_tilt_control_angle > radians(_tilt_angle_max*0.01)) 

_tilt_control_angle = radians(_tilt_angle_max*0.01); 
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            } 
            if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) { 
                _pan_control_angle += rc_ch[_pan_rc_in-1]->norm_input() * 0.00001 * 

_joystick_speed; 
                if (_pan_control_angle < radians(_pan_angle_min*0.01)) _pan_control_angle 

= radians(_pan_angle_min*0.01); 
                if (_pan_control_angle > radians(_pan_angle_max*0.01)) _pan_control_angle 

= radians(_pan_angle_max*0.01); 
            } 
        } else { 
#endif 
            // allow pilot position input to come directly from an RC_Channel 
            if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) { 
                _roll_control_angle = angle_input_rad(rc_ch[_roll_rc_in-1], 

_roll_angle_min, _roll_angle_max); 
            } 
            if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) { 
                _tilt_control_angle = angle_input_rad(rc_ch[_tilt_rc_in-1], 

_tilt_angle_min, _tilt_angle_max); 
            } 
            if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) { 
                _pan_control_angle = angle_input_rad(rc_ch[_pan_rc_in-1], _pan_angle_min, 

_pan_angle_max); 
            } 
#if MNT_JSTICK_SPD_OPTION == ENABLED 
        } 
#endif 
        stabilize(); 
        break; 
    } 
 
#if MNT_GPSPOINT_OPTION == ENABLED 
    // point mount to a GPS point given by the mission planner 
    case MAV_MOUNT_MODE_GPS_POINT: 
    { 
        if(_gps->fix) { 
 //if in guided mode, calls calc_GPS_target_angle with guided 

waypoint location 
   if (guided_mode_bool==1) { 
    calc_GPS_target_angle(guided_WP_target); 
    } 
    else { 
    calc_GPS_target_angle(&_target_GPS_location); 
    } 
            stabilize(); 
        } 
        break; 
    } 
#endif 
 
    default: 
        break; 
    } 
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Appendix G: Ground_Vehicle Library Definition 

/****************************************************** 
Ground_Vehicle.h:   library for ground vehicle class 
Author:             Neal, Charles 
Date:               January 2014 
Purpose:            keeps track of ground vehicle being 
                    updated using follow-me mode. 
*******************************************************/ 
 
#ifndef Ground_Vehicle_h 
#define Ground_Vehicle_h 
 
#include "Arduino.h" 
#include <AP_Common.h> 
#include <AP_Math.h> 
 
class Ground_Vehicle 
{ 
  public: 
 
    //Constructor 
    Ground_Vehicle(Location start_location, int start_time); 
 
    //Update all GV attributes 
    void update_gv(Location new_location, int new_time, Location AC_location, int 
desired_radius, float alt, float lead_time); 
 
    //Call frequently to update the active flag 
    void update_gv_active(int check_time); 
 
    // Public Attributes 
    Location        current_location; 
    Location        lead_location; 
    int             time;   //milliseconds from millis() 
    int             d_t;    //milliseconds 
    int             heading_cd; //centi-degrees 
    float           speed;  //m/s 
    float           turn_rate;  //deg/s 
    float           standoff;   //meters 
    float           close_rate; //m/s 
    float           J; 
    float           J_total; 
    bool            active; 
   
  private: 
 
    // Private Attributes 
    struct Location _last_location; 
    int             _last_time; 
    float           _last_standoff; 
    float           _d_location; 
    int             _last_heading; 
    float           _slant_range; 
    float           _slant_range_desired; 
    float           _lat_temp; 
    float           _lng_temp; 
 
}; 
 
#endif 
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Figure 45: Diagram of Modified ArduPlane File Relationships 
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Appendix I: Real-World Rascal APM Parameters 

AA_J_THRESHOLD,0.04 
AA_LOITER_DIR,1 
AA_LOITER_RANGE,20 
AA_MNT_FOLLOW,2 
AA_THRT_RATIO,0.75 
AAA_DEBUG,0 
AHRS_BARO_USE,0 
AHRS_GPS_GAIN,1 
AHRS_GPS_USE,1 
AHRS_RP_P,0.3 
AHRS_TRIM_X,-0.017 
AHRS_TRIM_Y,0.076 
AHRS_TRIM_Z,0 
AHRS_WIND_MAX,0 
AHRS_YAW_P,0.3 
ALT_CTRL_ALG,0 
ALT_HOLD_FBWCM,0 
ALT_HOLD_RTL,10000 
ALT_MIX,1 
ALT_OFFSET,0 
ALT2PTCH_D,0.2 
ALT2PTCH_I,0.2 
ALT2PTCH_IMAX,600 
ALT2PTCH_P,1.75 
AMP_OFFSET,0 
AMP_PER_VOLT,27.32 
ARSP2PTCH_D,0 
ARSP2PTCH_I,0.1 
ARSP2PTCH_IMAX,500 
ARSP2PTCH_P,0.65 
ARSPD_ENABLE,1 
ARSPD_FBW_MAX,22 
ARSPD_FBW_MIN,6 
ARSPD_OFFSET,3517.628 
ARSPD_RATIO,1.994 
ARSPD_USE,0 
BATT_CAPACITY,1760 
BATT_CURR_PIN,-1 
BATT_MONITOR,0 
BATT_VOLT_PIN,-1 
CAM_TRIGG_TYPE,0 
CMD_INDEX,0 
CMD_TOTAL,2 
COMPASS_AUTODEC,1 
COMPASS_DEC,-0.099 
COMPASS_LEARN,1 
COMPASS_OFS_X,-57.363 
COMPASS_OFS_Y,-8.322 
COMPASS_OFS_Z,85.877 
COMPASS_USE,1 
ELEVON_CH1_REV,0 
ELEVON_CH2_REV,0 
ELEVON_MIXING,0 
ELEVON_REVERSE,0 
ENRGY2THR_D,0 
ENRGY2THR_I,0 
ENRGY2THR_IMAX,20 
ENRGY2THR_P,1 
FBWB_ELEV_REV,0 
FENCE_ACTION,0 
FENCE_CHANNEL,0 
FENCE_MAXALT,0 
FENCE_MINALT,0 
FENCE_TOTAL,0 
FLAP_1_PERCNT,0 
FLAP_1_SPEED,0 

FLAP_2_PERCNT,0 
FLAP_2_SPEED,0 
FLTMODE_CH,8 
FLTMODE1,10 
FLTMODE2,2 
FLTMODE3,2 
FLTMODE4,2 
FLTMODE5,0 
FLTMODE6,0 
FORMAT_VERSION,13 
FS_GCS_ENABL,0 
FS_LONG_ACTN,0 
FS_SHORT_ACTN,0 
GND_ABS_PRESS,98367.6 
GND_TEMP,27.274 
HDNG2RLL_D,0.1 
HDNG2RLL_I,0.15 
HDNG2RLL_IMAX,600 
HDNG2RLL_P,1.5 
INPUT_VOLTS,4.68 
INS_ACCOFFS_X,1.227 
INS_ACCOFFS_Y,-7.232 
INS_ACCOFFS_Z,4.337 
INS_ACCSCAL_X,1 
INS_ACCSCAL_Y,1 
INS_ACCSCAL_Z,1 
INS_GYROFFS_X,-0.012 
INS_GYROFFS_Y,0.033 
INS_GYROFFS_Z,0.029 
INS_MPU6K_FILTER,0 
INS_PRODUCT_ID,88 
INVERTEDFLT_CH,0 
KFF_PTCH2THR,0 
KFF_PTCHCOMP,0.125 
KFF_RDDRMIX,0.4 
KFF_THR2PTCH,0 
LAND_FLARE_ALT,3 
LAND_FLARE_SEC,2 
LAND_PITCH_CD,0 
LIM_PITCH_MAX,2500 
LIM_PITCH_MIN,-2500 
LIM_ROLL_CD,4000 
LOG_BITMASK,0 
MAG_ENABLE,1 
MANUAL_LEVEL,0 
MIN_GNDSPD_CM,0 
MNT_ANGMAX_PAN,17999 
MNT_ANGMAX_ROL,4500 
MNT_ANGMAX_TIL,1000 
MNT_ANGMIN_PAN,-18000 
MNT_ANGMIN_ROL,-4500 
MNT_ANGMIN_TIL,-9000 
MNT_CONTROL_X,0 
MNT_CONTROL_Y,0 
MNT_CONTROL_Z,0 
MNT_JSTICK_SPD,0 
MNT_MODE,1 
MNT_NEUTRAL_X,0 
MNT_NEUTRAL_Y,-2200 
MNT_NEUTRAL_Z,12 
MNT_RC_IN_PAN,0 
MNT_RC_IN_ROLL,0 
MNT_RC_IN_TILT,0 
MNT_RETRACT_X,0 
MNT_RETRACT_Y,0 
MNT_RETRACT_Z,0 
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MNT_STAB_PAN,1 
MNT_STAB_ROLL,1 
MNT_STAB_TILT,1 
PTCH2SRV_D,0.23 
PTCH2SRV_I,0.25 
PTCH2SRV_IMAX,700 
PTCH2SRV_P,2.3 
RC1_DZ,30 
RC1_MAX,1861 
RC1_MIN,1143 
RC1_REV,1 
RC1_TRIM,1200 
RC10_DZ,0 
RC10_FUNCTION,0 
RC10_MAX,1900 
RC10_MIN,1100 
RC10_REV,1 
RC10_TRIM,1500 
RC11_DZ,0 
RC11_FUNCTION,0 
RC11_MAX,1900 
RC11_MIN,1100 
RC11_REV,1 
RC11_TRIM,1500 
RC2_DZ,30 
RC2_MAX,2014 
RC2_MIN,990 
RC2_REV,-1 
RC2_TRIM,1200 
RC3_DZ,3 
RC3_MAX,1939 
RC3_MIN,989 
RC3_REV,1 
RC3_TRIM,990 
RC4_DZ,30 
RC4_MAX,2015 
RC4_MIN,989 
RC4_REV,1 
RC4_TRIM,1200 
RC5_DZ,0 
RC5_FUNCTION,6 
RC5_MAX,1625 
RC5_MIN,1390 
RC5_REV,-1 
RC5_TRIM,1500 
RC6_DZ,0 
RC6_FUNCTION,7 
RC6_MAX,2000 
RC6_MIN,1000 
RC6_REV,1 
RC6_TRIM,1500 
RC7_DZ,0 
RC7_FUNCTION,0 
RC7_MAX,1499 
RC7_MIN,1498 
RC7_REV,1 
RC7_TRIM,1499 
RC8_DZ,0 
RC8_FUNCTION,0 
RC8_MAX,1761 
RC8_MIN,989 
RC8_REV,1 
RC8_TRIM,1758 
RC9_DZ,0 
RC9_FUNCTION,0 

RC9_MAX,1900 
RC9_MIN,1100 
RC9_REV,1 
RC9_TRIM,1500 
RLL2SRV_D,0.2 
RLL2SRV_I,0.1 
RLL2SRV_IMAX,500 
RLL2SRV_P,2 
RSSI_PIN,-1 
RST_MISSION_CH,0 
RST_SWITCH_CH,0 
RUDDER_STEER,0 
SCALING_SPEED,15 
SERIAL3_BAUD,57 
SR0_EXT_STAT,2 
SR0_EXTRA1,10 
SR0_EXTRA2,10 
SR0_EXTRA3,2 
SR0_PARAMS,50 
SR0_POSITION,3 
SR0_RAW_CTRL,1 
SR0_RAW_SENS,2 
SR0_RC_CHAN,2 
SR3_EXT_STAT,1 
SR3_EXTRA1,1 
SR3_EXTRA2,1 
SR3_EXTRA3,1 
SR3_PARAMS,50 
SR3_POSITION,1 
SR3_RAW_CTRL,1 
SR3_RAW_SENS,1 
SR3_RC_CHAN,1 
STICK_MIXING,1 
SYS_NUM_RESETS,13 
SYSID_MYGCS,255 
SYSID_SW_TYPE,0 
SYSID_THISMAV,1 
TELEM_DELAY,0 
THR_FAILSAFE,1 
THR_FS_VALUE,950 
THR_MAX,100 
THR_MIN,0 
THR_PASS_STAB,0 
THR_SLEWRATE,35 
THR_SUPP_MAN,0 
THROTTLE_NUDGE,1 
TRIM_ARSPD_CM,1200 
TRIM_AUTO,0 
TRIM_PITCH_CD,0 
TRIM_THROTTLE,65 
VOLT_DIVIDER,3.56 
WHEELSTEER_D,0 
WHEELSTEER_I,0 
WHEELSTEER_IMAX,0 
WHEELSTEER_P,0 
WP_LOITER_RAD,150 
WP_RADIUS,40 
XTRK_ANGLE_CD,4500 
XTRK_GAIN_SC,80 
XTRK_MIN_DIST,50 
XTRK_USE_WIND,1 
YW2SRV_D,0.1 
YW2SRV_I,0 
YW2SRV_IMAX,0 
YW2SRV_P,1.5 
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Appendix J: Simulated Rascal APM Parameters 

AA_J_THRESHOLD,0.003 
AA_LEAD_TIME_S,3 
AA_LOITER_DIR,1 
AA_LOITER_RANGE,65 
AA_MNT_FOLLOW,2 
AA_OFFSET_IN2OUT,35 
AA_OFFSET_OUT2IN,35 
AAA_DEBUG,0 
AHRS_BARO_USE,0 
AHRS_GPS_GAIN,1 
AHRS_GPS_USE,1 
AHRS_RP_P,0.4 
AHRS_TRIM_X,0 
AHRS_TRIM_Y,0 
AHRS_TRIM_Z,0 
AHRS_WIND_MAX,0 
AHRS_YAW_P,0.4 
ALT_CTRL_ALG,0 
ALT_HOLD_FBWCM,0 
ALT_HOLD_RTL,10000 
ALT_MIX,1 
ALT_OFFSET,0 
ALT2PTCH_D,0 
ALT2PTCH_I,0.1 
ALT2PTCH_IMAX,500 
ALT2PTCH_P,0.65 
AMP_OFFSET,0 
AMP_PER_VOLT,27.32 
ARSP2PTCH_D,0 
ARSP2PTCH_I,0.1 
ARSP2PTCH_IMAX,500 
ARSP2PTCH_P,0.65 
ARSPD_ENABLE,0 
ARSPD_FBW_MAX,22 
ARSPD_FBW_MIN,6 
ARSPD_OFFSET,1120.364 
ARSPD_RATIO,1.994 
ARSPD_USE,0 
BATT_CAPACITY,1760 
BATT_CURR_PIN,2 
BATT_MONITOR,0 
BATT_VOLT_PIN,1 
CAM_TRIGG_TYPE,0 
CMD_INDEX,0 
CMD_TOTAL,0 
COMPASS_AUTODEC,1 
COMPASS_DEC,-0.071 
COMPASS_LEARN,1 
COMPASS_OFS_X,4.372 
COMPASS_OFS_Y,12.571 
COMPASS_OFS_Z,-17.435 
COMPASS_USE,1 
ELEVON_CH1_REV,0 
ELEVON_CH2_REV,0 
ELEVON_MIXING,0 
ELEVON_REVERSE,0 
ENRGY2THR_D,0 
ENRGY2THR_I,0 
ENRGY2THR_IMAX,20 
ENRGY2THR_P,0.5 
FBWB_ELEV_REV,0 
FENCE_ACTION,0 
FENCE_CHANNEL,0 
FENCE_MAXALT,0 
FENCE_MINALT,0 
FENCE_TOTAL,0 

FLAP_1_PERCNT,0 
FLAP_1_SPEED,0 
FLAP_2_PERCNT,0 
FLAP_2_SPEED,0 
FLTMODE_CH,8 
FLTMODE1,10 
FLTMODE2,11 
FLTMODE3,5 
FLTMODE4,2 
FLTMODE5,2 
FLTMODE6,0 
FORMAT_VERSION,13 
FS_GCS_ENABL,0 
FS_LONG_ACTN,0 
FS_SHORT_ACTN,0 
GND_ABS_PRESS,97488.42 
GND_TEMP,32.23528 
HDNG2RLL_D,0.1 
HDNG2RLL_I,0.02 
HDNG2RLL_IMAX,500 
HDNG2RLL_P,1 
INPUT_VOLTS,4.68 
INS_ACCOFFS_X,27.988 
INS_ACCOFFS_Y,-0.098 
INS_ACCOFFS_Z,-82.307 
INS_ACCSCAL_X,1 
INS_ACCSCAL_Y,1 
INS_ACCSCAL_Z,1 
INS_GYROFFS_X,0 
INS_GYROFFS_Y,0 
INS_GYROFFS_Z,0 
INS_MPU6K_FILTER,0 
INS_PRODUCT_ID,0 
INVERTEDFLT_CH,0 
KFF_PTCH2THR,0 
KFF_PTCHCOMP,0.35 
KFF_RDDRMIX,0.25 
KFF_THR2PTCH,0 
LAND_FLARE_ALT,3 
LAND_FLARE_SEC,2 
LAND_PITCH_CD,0 
LIM_PITCH_MAX,2000 
LIM_PITCH_MIN,-2000 
LIM_ROLL_CD,4500 
LOG_BITMASK,334 
MAG_ENABLE,1 
MANUAL_LEVEL,0 
MIN_GNDSPD_CM,0 
MNT_ANGMAX_PAN,17999 
MNT_ANGMAX_ROL,4500 
MNT_ANGMAX_TIL,8000 
MNT_ANGMIN_PAN,-17999 
MNT_ANGMIN_ROL,-4500 
MNT_ANGMIN_TIL,-8000 
MNT_CONTROL_X,0 
MNT_CONTROL_Y,-40 
MNT_CONTROL_Z,90 
MNT_JSTICK_SPD,0 
MNT_MODE,1 
MNT_NEUTRAL_X,0 
MNT_NEUTRAL_Y,0 
MNT_NEUTRAL_Z,0 
MNT_RC_IN_PAN,0 
MNT_RC_IN_ROLL,0 
MNT_RC_IN_TILT,0 
MNT_RETRACT_X,0 
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MNT_RETRACT_Y,0 
MNT_RETRACT_Z,0 
MNT_STAB_PAN,1 
MNT_STAB_ROLL,0 
MNT_STAB_TILT,1 
PTCH2SRV_D,0.15 
PTCH2SRV_I,0.2 
PTCH2SRV_IMAX,700 
PTCH2SRV_P,2 
RC1_DZ,30 
RC1_MAX,1911 
RC1_MIN,1096 
RC1_REV,-1 
RC1_TRIM,1200 
RC10_DZ,0 
RC10_FUNCTION,0 
RC10_MAX,1900 
RC10_MIN,1100 
RC10_REV,1 
RC10_TRIM,1500 
RC11_DZ,0 
RC11_FUNCTION,0 
RC11_MAX,1900 
RC11_MIN,1100 
RC11_REV,1 
RC11_TRIM,1500 
RC2_DZ,30 
RC2_MAX,1903 
RC2_MIN,1092 
RC2_REV,-1 
RC2_TRIM,1200 
RC3_DZ,3 
RC3_MAX,1900 
RC3_MIN,1085 
RC3_REV,1 
RC3_TRIM,1086 
RC4_DZ,30 
RC4_MAX,1898 
RC4_MIN,1086 
RC4_REV,-1 
RC4_TRIM,1200 
RC5_DZ,0 
RC5_FUNCTION,7 
RC5_MAX,2000 
RC5_MIN,1000 
RC5_REV,1 
RC5_TRIM,1552 
RC6_DZ,0 
RC6_FUNCTION,6 
RC6_MAX,2000 
RC6_MIN,1000 
RC6_REV,1 
RC6_TRIM,1498 
RC7_DZ,0 
RC7_FUNCTION,0 
RC7_MAX,1498 
RC7_MIN,1497 
RC7_REV,1 
RC7_TRIM,1498 
RC8_DZ,0 
RC8_FUNCTION,10 
RC8_MAX,1900 
RC8_MIN,1100 
RC8_REV,1 
RC8_TRIM,1901 
RC9_DZ,0 

RC9_FUNCTION,0 
RC9_MAX,1900 
RC9_MIN,1100 
RC9_REV,1 
RC9_TRIM,1500 
RLL2SRV_D,0.08 
RLL2SRV_I,0.2 
RLL2SRV_IMAX,1000 
RLL2SRV_P,1.75 
RSSI_PIN,-1 
RST_MISSION_CH,0 
RST_SWITCH_CH,0 
RUDDER_STEER,0 
SCALING_SPEED,15 
SERIAL3_BAUD,57 
SR0_EXT_STAT,2 
SR0_EXTRA1,10 
SR0_EXTRA2,10 
SR0_EXTRA3,2 
SR0_PARAMS,50 
SR0_POSITION,3 
SR0_RAW_CTRL,50 
SR0_RAW_SENS,2 
SR0_RC_CHAN,2 
SR3_EXT_STAT,0 
SR3_EXTRA1,0 
SR3_EXTRA2,0 
SR3_EXTRA3,0 
SR3_PARAMS,0 
SR3_POSITION,0 
SR3_RAW_CTRL,0 
SR3_RAW_SENS,0 
SR3_RC_CHAN,0 
STICK_MIXING,1 
SYS_NUM_RESETS,26 
SYSID_MYGCS,255 
SYSID_SW_TYPE,0 
SYSID_THISMAV,1 
TELEM_DELAY,0 
THR_FAILSAFE,1 
THR_FS_VALUE,950 
THR_MAX,100 
THR_MIN,0 
THR_PASS_STAB,0 
THR_SLEWRATE,20 
THR_SUPP_MAN,0 
THROTTLE_NUDGE,1 
TRIM_ARSPD_CM,2500 
TRIM_AUTO,0 
TRIM_PITCH_CD,0 
TRIM_THROTTLE,65 
VOLT_DIVIDER,3.56 
WHEELSTEER_D,0 
WHEELSTEER_I,0 
WHEELSTEER_IMAX,0 
WHEELSTEER_P,0 
WP_LOITER_RAD,150 
WP_RADIUS,45 
XTRK_ANGLE_CD,5500 
XTRK_GAIN_SC,60 
XTRK_MIN_DIST,50 
XTRK_USE_WIND,1 
YW2SRV_D,0.7 
YW2SRV_I,0.01 
YW2SRV_IMAX,0 
YW2SRV_P,0.75 
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