
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

Feasibility of Onboard Processing of Heuristic Path
Planning and Navigation Algorithms within SUAS
Autopilot Computational Constraints
Charles J. Neal

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Neal, Charles J., "Feasibility of Onboard Processing of Heuristic Path Planning and Navigation Algorithms within SUAS Autopilot
Computational Constraints" (2014). Theses and Dissertations. 717.
https://scholar.afit.edu/etd/717

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/717?utm_source=scholar.afit.edu%2Fetd%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Feasibility of Onboard Processing of Heuristic Path Planning and Navigation

Algorithms within SUAS Autopilot Computational Constraints

THESIS

MARCH 2014

Charles J. Neal, Captain, USAF

 AFIT-ENV-14-M-44

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

 DISTRIBUTION STATEMENT A

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT-ENV-14-M-44

FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH PLANNING

AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT

COMPUTATIONAL CONSTRAINTS

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Charles J. Neal, BS

Captain, USAF

 March 2014

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-14-M-44

FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH PLANNING

AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT

COMPUTATIONAL CONSTRAINTS

Charles J. Neal, BS

Captain, USAF

Approved:

___________________________________ ______________

Dr. John Colombi, AFIT/ENV (Chairman) Date

___________________________________ ______________

Dr. David Jacques, AFIT/ENV (Member) Date

___________________________________ ______________

Maj Brian Stone, AFIT/ENS (Member) Date

//signed//

//signed//

//signed//

14 March 2014

14 March 2014

14 March 2014

AFIT-ENV-14-M-44

iv

Abstract

This research addresses the flight path optimality of Small Unmanned Aerial

Systems (SUAS) conducting overwatch missions for convoys or other moving ground

targets. Optimal path planning algorithms have been proposed, but are computationally

excessive for real-time execution. Using the Arduino-based ArduPilot Mega Unmanned

Aerial Vehicle (UAV) autopilot system, Hardware-in-the-Loop (HIL) analysis is

conducted on default mobile target tracking methods. Designed experimentation is used

to determine autopilot settings that improve performance with respect to path optimality.

Optimality is characterized using a weighted combination of stand-off range and aircraft

roll-rate. Finally, a state-based heuristic navigation strategy is designed, developed, and

tested that approximates optimal path solutions and can be used for real-time execution.

A 66% improvement in mean performance is achieved over default target tracking

methods. Finite state machine improvements are found to be statistically significant and

it is concluded that heuristic strategies can be a viable approach to realizing near-optimal

SUAS flight paths utilizing onboard processing capabilities.

AFIT-ENV-14-M-44

v

To Megan, for her unwavering support

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Figures .. ix

List of Tables .. xii

List of Equations .. xiv

I. Introduction ...2

Background ...2

Statement of Problem ..3

Research Objective .. 4

Investigative Questions ... 5

Assumptions and Constraints ..6

Overview of Methodology ..8

Thesis Overview..9

II. Literature Review ..11

Chapter Overview ...11

Flight Path Optimization ...12

Effects on SUAS Performance ... 12

Current Efforts .. 13

Approximations of Optimal Solutions ... 15

Sensor Time-on-Target ...17

Summary ...19

III. Methodology ..20

Chapter Overview ...20

Materials and Equipment ..21

Air Vehicle ... 21

Ground Vehicle ... 22

Autopilot .. 22

Ground Control Station ... 24

Sensor Gimbal ... 25

Range Support and Flight Preparation ... 26

Hardware in the Loop Simulation ... 26

Procedures and Processes ..28

vii

Field Data Collection .. 28

Follow-Me Flight Test ... 29

Increasing Path Optimality by Experimentation ... 29

State-Based Navigation Logic ... 32

Summary ...33

IV. Analysis and Results ..34

Chapter Overview ...34

Initial Firmware Modifications ...34

Sensor Gimbal Target Tracking .. 34

Loiter Direction ... 36

Flight Test Results and Data Analysis ..37

Analysis of Optimality ... 38

Follow-Me ... 39

Optimal Settings Experimentation .. 40

Finite State Machine First Iteration .. 48

Experiment Review and Finite State Machine Second Iteration 52

Comparative Results and Investigative Questions .. 60

Final Firmware Modifications...68

Ground Vehicle Class .. 68

Parameter Entries ... 69

Summary ...71

V. Conclusions and Recommendations ..73

Chapter Overview ...73

Conclusions of Research ...73

Follow-Up Action ...74

Real-World Replication of Designed Experiment ... 75

Experimental Design to Analyze Finite State Machine ... 75

Replication of Experimentation with Alternate Response 76

Future Research ...79

Analysis of Optimization Cost Function .. 79

Stochastic Estimation of Ground Vehicle Path ... 80

Summary ...81

REFERENCES ..83

Appendix A: Rascal Configuration ..85

Appendix B: Autopilot and Peripherals Specifications ...86

Appendix C: Ground Control Station Specifications...87

Appendix D: Payload Specifications ...88

viii

Appendix E: Simulated Rascal Definition ...90

Appendix F: AP_Mount Revised update_mount_position Function94

Appendix G: Ground_Vehicle Library Definition ...96

Appendix H: Final Proposed ArduPlane Sketch Structure ..97

Appendix I: Real-World Rascal APM Parameters ..98

Appendix J: Simulated Rascal APM Parameters ...100

ix

List of Figures

 Page

Figure 1: Ground Vehicle Path Used For Testing .. 7

Figure 2: Example Optimal Path Generation .. 15

Figure 3: Welborn Example Flight Path with Sensor Aimpoint and Footprint 18

Figure 4: Rascal SUAS ... 21

Figure 5: Ground Vehicle ... 22

Figure 6: ArduPilot Mega ... 23

Figure 7: Mission Planner Screenshot .. 24

Figure 8: Gimbal with Video Camera ... 25

Figure 9: Hardware-in-the-Loop Communications Architecture 27

Figure 10: APM Loiter Navigation ... 31

Figure 11: Original and Modified Class Diagrams for APM Gimbal Mount 36

Figure 12: Example Analysis of Ji .. 39

Figure 13: Flight Path with Basic Follow-Me Settings .. 40

Figure 14: Analysis of Ji for Basic Follow-Me Flight .. 40

Figure 15: Factor Profiler for First Stage Experimental Model .. 43

Figure 16: Factor Profiler for Second Stage Experimental Model 46

Figure 17: Flight Path Using Settings Determined by Experimentation 47

Figure 18: Analysis of Ji for Settings Determined by Experimentation 47

Figure 19: Ji Compared Against Ground Vehicle Turn Rate .. 48

Figure 20: Highlighted Portion of Flight Test with Increased Ji 49

Figure 21: Finite State Machine Initial Design ... 50

x

Figure 22: Flight Path Using Initial State Machine Logic .. 51

Figure 23: Analysis of Ji for Initial State Machine Logic ... 52

Figure 24: Half Normal Plot with Significant Terms Labeled ... 54

Figure 25: Factor Profiler for Combined Regression Model .. 55

Figure 26: Flight Path for Optimal Settings from Combined Regression Model 56

Figure 27: Analysis of Ji for Suggested Settings from Combined Regression Model 56

Figure 28: Slant Range Analysis Generated for Suggested Settings Flight Path 57

Figure 29: Revised Finite State Machine .. 58

Figure 30: Flight Path for Revised Finite State Machine ... 59

Figure 31: Analysis of Ji for Revised Finite State Machine ... 59

Figure 32: Profile of Current State for Final FSM Flight ... 60

Figure 33: Cost Performance for Initial Flight Tests of Main Configurations 62

Figure 34: Confidence Intervals for Cost Performance of Main Configurations 63

Figure 35: Plotted Confidence Intervals for Final FSM Design and Respective Optimal

Paths ... 64

Figure 36: Sensor Aimpoint for Initial Flight Tests of Main Configurations 66

Figure 37: Screenshot from Real-World Ground Vehicle Tracking Mission 67

Figure 38: Class Diagram for Ground Vehicle ... 69

Figure 39: McCarthy Example Flight Path Visualization ... 78

Figure 40: McCarthy Example Flight Path Deviation Chart .. 78

Figure 41: Rascal SUAS Used for Flight Test .. 85

Figure 42: APM 2.5 Dimensions [16]... 86

Figure 43: Servocity SPT100H Pan-Tilt Gimbal Dimensional Drawing [17] 89

xi

Figure 44: HackHD Camera Dimensional Drawing [18] ... 89

Figure 45: Diagram of Modified ArduPlane File Relationships 97

xii

List of Tables

 Page

Table 1: Coded Units for First Stage Flight Experimentation .. 41

Table 2: Cost Results for First Stage Flight Experimentation .. 42

Table 3: Analysis of Variance for First Stage Flight Experimentation 42

Table 4: Sorted Parameter Estimates for First Stage Flight Experimentation 43

Table 5: Coded Units for Second Stage Flight Experimentation 44

Table 6: Cost Results for Second Stage Flight Experimentation 44

Table 7: ANOVA for Second Stage Flight Experimentation ... 45

Table 8: Sorted Parameter Estimates for Second Stage Flight Experimentation.............. 45

Table 9: Summary of Cost Results from Initial Tests and Follow-On Replicates............ 52

Table 10: Screener for Factor Inclusion in Combined Data Regression Model 53

Table 11: ANOVA for Combined Data Set with Selected Factors 54

Table 12: Sorted Parameter Estimates for Combined Regression Model 54

Table 13: Summary of Cost Results after Secondary Data Analysis and State Machine

Design .. 61

Table 14: 95% Confidence Intervals for Cost Performance of Main Configurations 63

Table 15: 95% Confidence Interval for Final FSM and Associated Optimal Costs 64

Table 16: Two Sample t-Test (Unequal Variance) for Final FSM Flights and Associated

Optimal Paths ... 65

Table 17: Sensor Time-on-Target Performance for Initial Flight Tests of Main

Configurations ... 67

Table 18: Rascal SUAS Key Specifications ... 85

xiii

Table 19: Autopilot Specifications ... 86

Table 20: Telemetry Modem Specifications ... 86

Table 21: Ground Control Station Equipment .. 87

Table 22: Payload Components .. 88

xiv

List of Equations

 Page

Equation 1 ... 14

Equation 2 ... 38

2

FEASIBILITY OF ONBOARD PROCESSING OF HEURISTIC PATH

PLANNING AND NAVIGATION ALGORITHMS WITHIN SUAS AUTOPILOT

COMPUTATIONAL CONSTRAINTS

I. Introduction

Background

As unmanned systems technology decreases in both size and cost, the range of

applications grows. In particular, use of Small Unmanned Aerial Systems (SUAS) has

seen a disproportionately high amount of growth as the affordability of subcomponents

has allowed for an increase in availability to probable markets. Applications include, but

are not limited to defense, agriculture, law enforcement, and numerous commercial

endeavors. Yet no matter how complex or adaptive the payload, the design of any truly

purpose-built SUAS must be considered with respect to all subsystems and their

contribution to the desired mission. This design focus holds especially true for the

navigation logic of the autopilot as increased autonomy is frequently considered an

enabler for proposed applications, particularly those in the defense realm.

To that end, multiple research efforts at the Air Force Institute of Technology

(AFIT) have culminated in algorithms that provide theoretical aircraft control for various

missions extending beyond the existing functionality of most available autopilots. One

such effort is the development of an optimal path planning algorithm for tracking and

surveillance of a moving ground target [1]. Heuristic variants of these calculations have

been suggested with the potential to be implemented onboard existing SUAS autopilots

allowing for real-time, autonomous execution. This work has been proposed and

supported by the Air Force Research Laboratory (AFRL) as an enabling capability for

3

convoy overwatch using SUAS. While this mission may be partially achievable with

basic manipulation of autopilot waypoints, a more custom approach to navigation logic,

capable of implementation onboard the air vehicle, provides potential for increased flight

path optimality.

Statement of Problem

The convoy overwatch scenario proposed by AFRL involves the use of a field-

deployed SUAS to autonomously track and provide intelligence, surveillance, and

reconnaissance (ISR) on mobile ground vehicle maneuvers. Current SUAS convoy ISR

operations require a pilot to monitor the air vehicle and a sensor operator (often the pilot

in a dual role) to command the payload. Typically, these are continuous functions for the

duration of the mission, both of which are required in order to keep the sensor on target

and the air vehicle within specified flight parameters. Rather than placing a constant

workload on one or more individuals, the proposed functionality would allow for

autonomous execution of the mission by the SUAS. A single operator could launch the

air vehicle, input flight parameters (target of interest, desired stand-off distance, and

sensor angles), and focus attention elsewhere until recovery is required.

While this autonomy may be partially realized using dynamic waypoint

capabilities that already exist on some SUAS autopilots, past work suggests that an

optimized path planning approach may result in significant performance increases in

terms of target tracking and air vehicle endurance [2]. Current AFIT research by

Livermore seeks to design such an approach utilizing a cost function to minimize air

vehicle control effort and maximize time spent with the sensor at a given stand-off

4

distance [1]. However, there are indicators that implementation of such a function can be

infeasible with the resources available onboard a SUAS autopilot [3]. True optimization

functions typically require high computing times while real-time execution of the

proposed missions will require multiple iterations per second. Other past research efforts

have addressed this issue and suggest that under certain circumstances, optimal routing

algorithms can be sufficiently mimicked using more manageable strategies [4]. In order

to achieve the desired performance, the specific challenge is the design and

implementation of a heuristic approximation of the proposed optimization algorithm that

is capable of real-time, autonomous execution onboard the SUAS.

Research Objective

The primary objective of this research effort is the implementation of a heuristic,

autonomous autopilot flight mode that replicates, to the best extent achievable, the

performance of an actual path planning optimization function designed for the proposed

convoy overwatch scenario. Design iterations of this mode are flight tested with the

provided results focused on the achieved versus optimal performance and the feasibility

of integration into operational systems. The intent is to provide information and analysis

sufficient for AFRL to make informed decisions on continuation of future research and

development efforts in the field of optimized tracking using SUAS. Additionally,

implementation is achieved in a manner that considers the architecture best suited for

enabling future integration of customized autonomous navigation functions.

5

Investigative Questions

Work focuses on answering the following investigative questions sequentially in

order to achieve the primary research objective with a build-up approach facilitated by

flight test resources available to AFIT:

1. What is the target tracking and flight path performance of the SUAS when using a

basic follow-me mode? The follow-me mode describes a very simple approach in

which the autopilot is fed a series of target location coordinates at a fixed frequency

and updates its current navigation waypoint to match. Most available SUAS

autopilots have this capability and it serves as an intuitive starting point for most

target tracking missions. The reason for characterizing tracking and navigation in this

mode is that it serves as a comparative baseline for evaluating performance of any

other tracking algorithm. Note that for this effort, qualitative reference to

performance or optimality of any flight path is based on the similarity of the path to

that which could have conceivably been achieved under identical conditions as

calculated by Livermore’s optimization algorithm. Details on the measures of

optimality are discussed in Chapter 2.

2. What is the best path performance achievable by the adjustment of existing or readily

accessible navigation control without implementation of state responsive logic? The

process by which this question is answered is intended to make existing navigation

functionality achieve the most optimal flight paths possible with regards to ground

target tracking. It is important to ascertain these settings before proceeding to

evaluation of states within which varied control logic may be appropriate.

6

3. What is the achievable SUAS flight path optimality using a state-based, heuristic

approximation of the optimization strategy? The intent of this question is

characterization of the attempted heuristic path planning strategy with respect to

baseline, adjusted, and true optimal performance.

4. What is the feasibility of implementing heuristic ground target tracking logic that is

capable of real-time execution onboard a SUAS autopilot? This question is designed

to answer the overarching research objective based on answers from all preceding

questions. The feasibility analysis is formulated based on an assessment of the

achieved performance during SUAS flight test events designed to replicate the

convoy overwatch scenario.

Assumptions and Constraints

The proposed convoy overwatch scenario has a wide potential range of

application and complexity, varying from straight line path following to highly diverse

road networks with high levels of variance in vehicle speed, direction, and altitude. For

this research, a set of assumptions is made to facilitate the planning of achievable

experiments with meaningful results than can be conducted within the constraints of

equipment and range time available to AFIT. The baseline scenario is that of a SUAS

providing overwatch for a ground control station (GCS) located on a mobile ground

vehicle of known global positioning system (GPS) coordinates. The actual path driven

by the ground vehicle for all tests associated with this effort is shown in Figure 1. This

route was selected based on range availability and safety approvals.

7

Figure 1: Ground Vehicle Path Used For Testing

For any ground tracking scenario, it is assumed that a well-designed system is one

in which the ground speed of the air vehicle while commanding its optimal cruise throttle

setting into maximum expected wind conditions is also the maximum ground speed that

may be reached, either momentary or steady-state, of the ground target in question. This

speed is characterized for the SUAS used during experimentation and the maximum

speed of the ground vehicle is constrained accordingly. Failing to make this design

choice allows for states in which the ground vehicle may simply outrun the air vehicle.

Additionally, this research assumes that altitude variance in the ground path is negligible

8

and, based on safety concerns, all SUAS flights are performed at a fixed altitude of 150

meters above ground.

Regarding the air vehicle specifically, one constraint placed on the research effort

is the use of waypoint navigation instead of fly-by-wire navigation. It is assumed that

any autopilot potentially fielded for target tracking missions is capable of waypoint

navigation, including the capability to update waypoints dynamically and perform a fixed

loiter should it arrive at a waypoint without receiving any updates. All developed logic

uses point navigation as opposed to a fly-by-wire approach which would involve direct

control of flight conditions such as bank, pitch, and heading.

Finally, it is assumed that any SUAS to be integrated with the proposed tracking

functionality is capable of operating a sensor gimbal to given pointing angles. The

algorithm developed generates dynamic target coordinates, but actuation of the gimbal to

the desired angle is considered an existing capability of the autopilot or associated

peripherals. Furthermore, it is assumed that error in the pointing functionality of the

gimbal is negligible and no work is done to provide compensation for pointing

inaccuracies.

Overview of Methodology

The first step in this research is the integration of air and ground vehicle telemetry

as inputs to MATLAB optimization scripts that will serve as the primary method of

generating optimal flight paths using Livermore’s proposed cost function. For a given

run, the output is an optimal flight path that could have been executed given the physical

bounds of the aircraft and environment.

9

The following step will be development of a heuristic approach to approximating

optimized paths that is capable of being integrated in Arduino code and run on the APM

without introduction of excessive computing delay. Flight test is designed to evaluate the

stock performance, adjusted non state-based performance, and finally modified state-

based performance of the SUAS performing a ground vehicle tracking mission. Flight

tests are conducted iteratively, with navigation logic for each building on the results of

the previous. The goal is to compare achieved optimality, in terms of cost function value,

for the above listed flight conditions against each associated optimal solution. Data

required for these comparisons includes basic aircraft telemetry (GPS information,

aircraft physical state, control effort, and gimbal angles) from real-world flights as well

as comparable data from MATLAB generated paths. Differences in performance are

used to report on the feasibility of achieving near-optimal target tracking missions with

high levels of autonomy using existing autopilot computing resources. Additionally,

discussion is provided on the architecture required to implement customized flight modes

onboard the APM.

Thesis Overview

This chapter provides a brief background on SUAS, description of the motivation

for integrating heuristic tracking strategies onboard SUAS autopilots, discussion of the

specific research tasks to be addressed, and an overview of the equipment and

methodology used. Chapter 2 examines literature and past work relevant to this effort

providing validation of the equipment selection, problem statement, and experimentation

methodology. In addition, further discussion is given to the expectation of performance

10

differences for SUAS missions under optimal, near-optimal, or non-optimal planning

methods. Chapter 3 provides a more in-depth look at the test methodology with greater

emphasis on specific test events. Chapter 4 presents the software design and the results

of the research efforts built on data that have been collected and processed. Chapter 5

concludes the thesis and discusses implications of this work as well as recommendations

for future efforts.

11

II. Literature Review

Chapter Overview

The literature review is intended to provide a synopsis of research efforts and

findings that are relevant to, or have culminated in, the challenge of characterizing SUAS

heuristic tracking algorithm performance. While the motivating requirement for the

current research effort has been proposed by AFRL, it is appropriate to mention that other

sources allude to the current or future need for optimized ground tracking capabilities.

The United States Air Force Unmanned Aircraft Systems Flight Plan 2009-2047 lists

many UAS currently used in deployed environments as well as generic capabilities of

UAS in different size classes [5]. Only two aircraft specifically include convoy

overwatch in their lists of capabilities, the MQ-1 Predator and the MQ-9 Reaper.

However, in its coverage of future applications of SUAS, the UAS Flight Plan lists close-

in ISR, personal ISR, and auto-sentry. These missions will likely include (as a subset)

autonomous tracking of a ground target, whether friendly or hostile. In a 2011 RAND

Corporation report to the US Army, Peters et al. discuss the technical and operational

feasibility of overwatch missions by UAS [6]. They argue that large UAS present the

most technically feasible options for convoy overwatch but claim that operational

feasibility is highly constrained by the tasking complexity and low availability of this

aircraft class. Their final assertion is that feasibility would be positively impacted if

miniaturization of technology enabled vehicle overwatch to be performed by smaller,

cheaper UAS.

For the remainder of this chapter, topics specific to the current research are

addressed. Coverage is given to the expected benefits of optimized routing followed by

12

the specifics of current path planning research efforts. Past work is discussed on the

subject of approximating optimization algorithms in real-time. Finally, research is

examined that discusses performance characterization of small UAS with regards to

metrics and utilities relevant to validating the experimentation methodology of this

research effort.

Flight Path Optimization

Characterizing the performance implications of approximated optimal path

planning solutions warrants discussion of three key areas. First is the expected impact of

optimization on SUAS performance. Second is the work currently proposed for

achieving the overwatch mission in question. Last is the challenge of approximating

optimal solutions in a heuristic manner. Prior work on each of these topics is examined.

Effects on SUAS Performance

While the current research effort characterizes performance primarily with respect

to path planning, it is important to note that previous work provides preliminary

indicators of other potential benefits. Research conducted by Lazano examines

performance of SUAS autopilot control loops parameterized to optimize flight endurance

and optical sensor effectiveness [2]. A predicted 33% increase in flight endurance is

achieved by altering pitch-from-altitude control loop settings. The performance

difference is attributed to the amount of work required of these control loops when

deviating from steady level flight conditions, either intentionally or unintentionally,

suggesting that the best way to optimize endurance is to minimize altitude holding efforts

by the aircraft. It follows that the cost function to be utilized in the current research,

13

which seeks to minimize roll rate and consequently altitude holding effort, can

reasonably be expected to have a positive impact on mission endurance.

Lazano continues by examining the surveillance efficiency of his missions. It is

suggested that considering navigation waypoints separate of sensor aimpoint results in

decreased surveillance effectiveness and optimality of the flight path. He asserts that

implementing a gimbaled sensor with path planning based on footprint location may be

the most significant contributors to ISR effectiveness for SUAS. In his research

conclusion, with specific regards to “loiter surveillance and moving-target surveillance,”

Lazano recommends that “additional research should be conducted to determine

improved persistence settings for respective surveillance methods” [2, pp. 95-96].

Current Efforts

AFIT research has been conducted to directly address the convoy overmatch

problem proposed by AFRL. This effort is presented by Livermore where he proposes a

dynamic path optimization strategy designed to minimize both error in SUAS distance

from the ground target and SUAS control effort [1]. This strategy begins by defining a

function which characterizes the cost, J, of any given SUAS flight. This function is

defined in Equation 1 [1].

The cost function aims to minimize the weighted sum of the control and slant

range (SR) error. The cost function represents the desire to keep the UAV a

certain distance from the ground vehicle while using the minimum required

control. In [Equation 1], the first term penalizes deviation from desired slant

range and the second term penalizes the control. Both the slant range and control

terms are normalized relative to constant values so that the two terms can be

equally weighted relative to each other. [1, p. 36]

14

Equation 1

� = � �� ���(
) − �������������� �� + (1 − �) � �(
)
������� �

��

��

Where:
� = !"#$ $!&ℎ

!()

* = !"!
!#$ $!&ℎ

!() � = +)$#
!,) -)!&ℎ
 �� = .$#"
 +#"&) � = +/$$ +#
)

After establishing this cost function, Livermore develops a MATLAB function

that accounts for the path driven by a ground target, weather conditions, the starting

location of the SUAS, the desired slant range, the umax specific to the SUAS, as well as

speed and turning characteristics specific to the SUAS. With these inputs, the function

attempts to identify the most optimal flight path that could have been executed. The

selected path is defined at that with the lowest associated cost [1]. An example of

Livermore’s path generation based on real world ground vehicle and weather information

is show in Figure 2.

15

Figure 2: Example Optimal Path Generation

Approximations of Optimal Solutions

In early AFIT optimization work, Zollars proposes a dynamic optimization

algorithm that determines the best route for a SUAS attempting to place a sensor footprint

on a target of known location and velocity [7]. While the motivation for his work is

different than that of the current effort, he arrives at a computationally intensive

optimization algorithm similar to that being evaluated at present. Implementation of

Zollars’ work is attempted by Terning, who works to “specifically look at heuristic,

iterative techniques which can quickly calculate flight path solutions, implement these

16

solutions on actual UAV systems, and validate the algorithm through flight tests” [3, p.

3]. Terning concludes that the amount and variance in execution time makes Zollars’

technique infeasible for direct application in real-time circumstances:

Because the code execution time proved unpredictable, it proved impossible to

extrapolate out the future position of the aircraft to a point where the flight path

commands would actually be executed. If, for example, we knew with relative

certainty that it would take 10 seconds to compute an optimal flight path, we

could effectively extrapolate the future location of the UAV, and optimize for that

point. If, however, the calculation time is unpredictable and highly variant, no

prediction can be made. The other option would be to force a return after a certain

number of seconds. This would essentially guarantee an erroneous result of

unknown tolerance if the optimization routine was exited prematurely, so this

option was abandoned. [3, p. 20]

Terning’s final solution is an iterative approach that evaluates various coordinates along

the vector of the ground target based on present information about both the target and the

air vehicle. When the calculated time-of-arrival becomes equal for both entities (or

nearly equal as predefined by a threshold parameter), the evaluated location becomes the

new navigation point for the SUAS. The GCS software executes this calculation

repetitively, each time updating the navigation point. Terning demonstrates his heuristic

approach using a hardware-in-the-loop (HIL) simulation and provides strong evidence

that an iterative approximation of an optimization based on cost functions can be

achieved in real-time with worthwhile results.

 A similar strategy is seen in research presented by Boire, who builds on the work

of Seibert et al. and attempts to achieve an implementation of the aforementioned rover-

relay architecture [4]. Boire notes that for an instantaneous set of aircraft states (both

rover and relay SUAS) it is a simple midpoint calculation to determine the optimal

location at which the relay should be positioned. However, when attempting to account

17

for future states based on the motion of both SUAS, the optimization function becomes

complex enough that an approximation is the most feasible approach to real-time

implementation. He arrives at a strategy of repetitively calculating and commanding an

instantaneously optimal solution, including a future position compensation factor for the

rover SUAS. The cyclical nature of the approach makes it similar to Terning’s work.

However Boire’s method differs in that the calculation itself is not recursive. The

strategy is implemented in the proposed GCS software and demonstrated in simulation.

Findings indicate that his solution is able to achieve a range increase for the rover SUAS

close to that expected of the optimal solution, providing further evidence that heuristic

approximations can effectively emulate their optimal counterparts if designed properly.

Sensor Time-on-Target

In addition to the development of SUAS path planning strategies, it is of equal

importance for the current research effort to validate achieved performance. The primary

challenge is ensuring that the sensor maintains persistent coverage of the ground target in

question. For this research, it is sufficient to quantify the percentage of flight time during

which the sensor field of view encompassed the target.

Welborn encounters the same issue in his research attempts to quantify achievable

ISR for the Raven SUAS [8]. His approach builds on a basic MATLAB script originally

built by Lozano for visualizing a sensor aimpoint and footprint [2]. Welborn modifies

the script to characterize dynamic flight telemetry and provide statistical output for time

on target. Because his work utilizes real telemetry files and hard-coded sensor angles, the

generated time on target is theoretical for a real world flight, which helps account for

18

sensor mounting error that may be present in the actual video. Additionally, adjustment

of inputs allow for performance analysis of alternative sensor configurations without

requiring extra flights. Welborn’s utility is used for calculating achieved time on target

for all flight tests executed in the current research effort. The generated visualization of

sensor aimpoint and footprint assists in characterizing flight conditions contributing to

gimbal performance. Modifications to the utility include telemetry input format, dynamic

sensor angles from telemetry (to account for a gimbaled camera), and dynamic ground

target location (to account for a moving target). Figure 3 shows an example ISR flight

visualization generated using Welborn’s utility for a fixed body camera.

Figure 3: Welborn Example Flight Path with Sensor Aimpoint and Footprint

19

Summary

The literature review examines prior work that has culminated in, contributed to,

or provided justification for the current research effort. Initial focus is given to

documentation supporting the requirement for an optimized mobile ground target

tracking function. SUAS work at AFIT is then reviewed to justify some of the key

equipment selections made prior to executing flight test. Research on the potential

effects of optimized path planning is discussed that further supports the thesis motivation.

This is followed by a more thorough examination of efforts to optimize the convoy

overwatch mission as well as past work to approximate similar path planning functions.

Finally, coverage is given to supporting work providing performance validation and

analysis utilities directly relevant to the experimentation portion of this research.

20

III. Methodology

Chapter Overview

The methodology chapter describes the process used to answer the stated

investigative questions associated with the research objective. Those questions are as

follows:

• What is the target tracking and flight path performance of the SUAS when

using a basic follow-me mode?

• What is the best path performance achievable by the adjustment of existing or

readily accessible navigation control without implementation of state

responsive logic?

• What is the achievable SUAS flight path optimality using a state-based,

heuristic approximation of the optimization strategy?

• What is the feasibility of implementing heuristic ground target tracking logic

that is capable of real-time execution onboard a SUAS autopilot?

Each of the investigative questions is designed to augment its predecessor, cumulatively

arriving at a feasibility assessment regarding SUAS autonomous mobile target tracking.

The determination of feasibility is justified by characterizing the spectrum of achievable

performance and recording how heuristic approximation compares to worst and best case

scenarios.

 Documentation of the methodology begins with a discussion of the materials and

equipment to be used for the research effort. This is followed by examination of the

procedures followed in order for experimentation to provide the data required to analyze

current performance and design an improved navigation strategy.

21

Materials and Equipment

The traditional components of a SUAS include the air vehicle, payload, ground

control station, communications, launch and recovery hardware, and ground support

equipment [9]. These components can be divided into various subcomponents unique to

the system and its mission. The conclusions of this research effort are based primarily on

data gathered from flight test. For that reason, it is appropriate to review the components

and subcomponents of the SUAS used in testing that most directly impact or constrain the

data collected. Those components include the air vehicle, autopilot, ground control

station, and sensor gimbal.

Air Vehicle

The air vehicle used for this testing is the Sig Rascal 110. This aircraft is a

commercial-off-the-shelf (COTS) hobbyist RC aircraft that has been modified for use as

an AFIT SUAS test platform. Modifications include upgrades to battery and power-plant

for increased reliability and endurance, as well as installation of an autopilot. The Rascal

is conducive to AFIT flight research due to its availability and current status as an

approved airframe for USAF test on the Atterbury range. Figure 4 shows the Rascal in

use during flight test at Camp Atterbury. See Appendix A for detailed specifications.

Figure 4: Rascal SUAS

22

Ground Vehicle

 The ground vehicle used for all flight test associated with this effort is a military

HMMWV troop carrying vehicle. This selection is based on safety approval

considerations and range availability. As configured, the vehicle allows for a driver and

ground station operator in the cab of the vehicle with the safety pilot seated in the rear to

maintain view of the SUAS. The HMMWV used for testing is shown in Figure 5.

Figure 5: Ground Vehicle

Autopilot

Many COTS SUAS autopilots are available on the market with wide variance in

cost and capability. The autopilot currently in use for AFIT research is the ArduPilot

Mega (APM) version 2.5. The APM is built as a variant of the Arduino electronics

prototyping board. In addition to being low-cost, the APM has been selected because it is

an open source platform. All firmware being run onboard is available in community

repositories rather than being treated as proprietary to an originating designer, which

makes the APM conducive to research efforts requiring custom code.

The APM is similar in size, computing power, and flight functionality to those

autopilots currently used in many fielded systems [9]. This similarity helps ensure

23

transferability of the results, as the proposed convoy overwatch scenario is primarily a

defense application. The APM is designed to operate a variety of ground or air vehicles

based on the firmware being run. For this research effort, the ArduPlane Arduino sketch

is used, which is designed primarily for powered, fixed wing aircraft. Peripherals to the

APM include a transceiver for telemetry and real-time control, a GPS receiver, a

barometric pitot-static unit for airspeed and altitude measurements, and a magnetometer

for heading measurement augmentation. Figure 6 depicts the APM with key components

labeled [10]. Reference Appendix B for detailed specifications.

Figure 6: ArduPilot Mega

24

Ground Control Station

The GCS selected includes a laptop running Microsoft Windows, a telemetry

transceiver matching that onboard the aircraft, and the APM Mission Planner software.

This software is also open source and provides the functions required to monitor the

SUAS in real-time and provide any required control updates. Like the APM, Mission

Planner is highly representative of ground control software found in many fielded

systems. The similarity contributes to the utility of findings while the fact that it is open

source allows for modification of functionality. In addition to the standard GCS

configuration, a GPS receiver is integrated with the laptop to provide information on the

ground vehicle location and velocity while moving. A screenshot of the Mission Planner

software used for this research effort is shown in Figure 7. For details on the specific

GCS setup used for this effort, reference Appendix C.

Figure 7: Mission Planner Screenshot

25

Sensor Gimbal

The payload integrated onboard the Rascal is mounted on a two-axis (pan-tilt)

gimbal comprised of all COTS components with stabilization actuation provided by the

autopilot. The frame is built on two RC servos. The pan servo allows for ±180° rotation

from its center position. The tilt servo is capable of +10° and -90° rotation from the

horizontal plane of the SUAS. For this effort, all servo commands are generated directly

by the APM. Minor code modifications allow the autopilot to actively update look angle

(and subsequent servo positions) while flying in a dynamic ground vehicle tracking

mode. Chapter 4 provides a more detailed discussion of all firmware modifications.

The camera used is the HackHD board camera. The HackHD is a high-definition

(1080p) color camera with a standard lens mount so that the optics can be altered to meet

specific mission needs. In addition, the camera supports onboard recording of video to a

micro-SD flash memory card which allows for post-processing of full quality video and

makes real-time transmission optional for testing purposes. Figure 8 shows the integrated

camera and gimbal system mounted to the Rascal in flight configuration. Reference

Appendix D for detailed payload specifications.

Figure 8: Gimbal with Video Camera

26

Range Support and Flight Preparation

All SUAS flight tests for this research are conducted at the SUAS airstrip located

at Camp Atterbury Joint Maneuver Training Center in Indiana. All flight tests require

AFIT support in scheduling range time and providing necessary coordination with Camp

Atterbury. In addition, AFIT policy dictates that a Form 5028 be submitted prior to any

flight testing. This form outlines specific equipment configurations and actual flight test

points to be executed. Approval of the Form 5028 may only be attained after

presentation in both a Test Review Board (TRB) and a Safety Review Board (SRB).

Hardware in the Loop Simulation

In addition to flight test data collected on real-world equipment, the effort

leverages the APM capability to execute some of the flight test in a hardware-in-the-loop

(HIL) simulated scenario. This allows for collection of a higher number of test points

than otherwise possible with fewer safety and logistical considerations. HIL simulation

works by connecting the APM to the GCS computer over a serial port. In addition to the

Mission Planner software, a simulated flight environment, FlightGear, is run using a

model version of the Rascal airframe. FlightGear uses a model called JSBSim for 6-

degree-of-freedom flight dynamics simulation as well as aircraft parameter definitions

[11]. Figure 9 depicts the communications architecture for running HIL simulations.

Note that in this configuration, the APM is running all navigation logic in an identical

fashion to real-world flight. Only processes responsible for reading sensor data are aware

that state information should be obtained from the serial port rather than actual sensors.

Because of the object oriented nature of the firmware, the source of this information is

hidden when passed to navigation processes.

27

Figure 9: Hardware-in-the-Loop Communications Architecture

In addition to the default HIL configuration described, pre-scripted GPS

information can be output on a local virtual serial port, enabling the use of follow-me

mode in Mission Planner. Scripting the GPS data to match the profile of the HMMWV

executing the selected real-world ground path, as well as using a modeled version of the

actual air vehicle being used, allows HIL flights for the effort to match real-world flight

performance to a high extent. Reference Appendix E for the definition file used to

instantiate the simulated Rascal used in this effort.

28

Procedures and Processes

The findings of this research effort are formed on data aggregated from real world

SUAS flight telemetry as well as emulated flight paths based on real air vehicle

characteristics. Work required to collect this data begins with characterization of ground

target tracking performance using the unmodified follow-me mode. Performance in this

this configuration serves as a baseline. Next, experimentation is done to determine the

best settings for all navigation logic pertinent to the proposed path planning strategy.

Finally, a finite state machine approach to path planning is constructed with design based

on analysis of flights flown at the aforementioned best settings.

Field Data Collection

For flight test (both real-world and HIL simulation), field data is collected in the

form of aircraft and ground vehicle telemetry. APM Mission Planner can record certain

information directly to telemetry log (TLOG) files for later analysis or simulated re-

creation of the flight. For this effort, the TLOG format is used to collect all aircraft data

on the GCS laptop. Specific TLOG information of interest includes air vehicle GPS

location data, aircraft attitude, gimbal servo outputs, inertial sensor readings, wind

conditions, and ground target location data.

For optimal paths calculated in MATLAB, the same data is generated with the

exception of ground vehicle location, which must be treated as an input to the function in

order for the paths to remain applicable to specific real-world conditions. Air vehicle

GPS location, attitude, and gimbal control will all be output by the utility and inertial

readings can be derived from aircraft state information.

29

Follow-Me Flight Test

The initial attempt at a real world, moving ground target tracking effort is

achieved with the APM follow-me mode. Follow-me is used as the performance baseline

for comparison of all subsequent tracking attempts. This functionality is already partially

implemented in the APM and Mission Planner software. The existing function sends a

new waypoint to the SUAS at a fixed frequency. The waypoint is simply the location of

the GCS (based on a GPS reciever) at the time of the message and does not project to a

future intercept point based on velocity. If the aircraft arrives before the waypoint

changes, it will enter a loiter about that point.

Flights are conducted with the aircraft placed in follow-me mode and the GCS

located on the ground vehicle. The ground profile driven is the pre-selected path

introduced in Chapter 1. Air vehicle altitude is fixed at 150 meters as determined by

airspace constraints and local terrain. The mission is executed at different SUAS loiter

radius settings but the data of interest is that collected at the radius determined to be

nearest optimal in subsequent experimentation. Recorded field data includes ground

vehicle profile, aircraft telemetry, and ground target video.

Increasing Path Optimality by Experimentation

In order to develop navigation logic in the form of a finite state machine that is

responsive to real-time SUAS conditions, the existing performance is examined to

identify which states warrant alternative behavior. However, rather than performing this

analysis on data from the unmodified follow-me mode, it is first important to adjust any

relevant system settings to achieve the most optimal flight paths possible. Flight data

30

garnered from these settings result in a more appropriate determination of state

definitions.

Examination of the existing APM fixed-wing aircraft firmware yields three

parameters which directly have roles in the navigation logic that impacts the

minimization of roll rate and the maximization of effort to stay at a specified standoff

distance. These parameters are the loiter radius itself, loiter range, and navigation point.

Loiter radius is the actual horizontal distance from the ground target point that the

aircraft will attempt to maintain. For a fixed target point, this represents a circular loiter.

When inside or on the loiter radius, updates to desired heading (which are subsequently

fed into lower level control loops) account for the ratio of the current distance from target

to the desired distance. The level of effort applied to achieve that distance, which is

expressed as the magnitude of change to the desired heading for any one instance of the

control loop, directly represents a balance between control effort and slant range.

Loiter range is an additional distance beyond the loiter radius, inside which the

SUAS will begin a gradual transition from straight flight towards the target point to

circular, tangential flight around the target point. This is a fixed distance, rather than a

proportion of the loiter radius, and is designed to allow for smooth entry into loiters with

minimal overshoot. Similar to the effects of loiter radius, control effort is directly based

on a ratio representing relative position inside the range, meaning that the range itself can

impact the optimality of any given flight. Modifications, discussed in Chapter 4, are

required to parameterize loiter range, as it is hard coded at 60 meters in the default

firmware. Figure 10 demonstrates the role of both loiter radius and range in the APM

navigation logic.

31

Figure 10: APM Loiter Navigation

Finally, the point to which the aircraft is navigating must be considered. Under

normal circumstances, this point is only affected by motion of the ground vehicle.

However, Terning’s work [3] shows that forward projecting the location of a moving

ground target affects the behavior of a SUAS when attempting to intercept a point.

Additional APM firmware modifications include the addition of a lead time parameter to

account for the possibility of impacting the performance of a ground target tracking

mission. For any lead time greater than zero, the SUAS will navigate to a point directly

forward of the ground vehicle based on the number of seconds input and the vehicle’s

velocity.

32

HIL simulation and range safety limitations are used to identify a safe range of

potential settings for all three parameters in question. This allows for design of

experiments (DOE) planned tests executed in two stages. The first stage accounts for all

three factors tested across their entire range of values to identify which factors have a

significant impact on flight cost (optimality) as well as providing an initial assessment of

the settings that should be used. A computer generated central composite design (CCD)

is used because quadratic effects and two-factor interactions are predicted. The second

stage provides finer granularity in a smaller test space to validate the initial findings and

arrive at the final recommendations for settings. Again, a computer generated CCD is

used.

State-Based Navigation Logic

After completion of a designed experiment to optimize the performance of

follow-me mode, a more appropriate analysis of flight data is conducted. This allows for

the identification of states in which there is room for improvement in terms of ground

target tracking flight path optimality. Analysis of flight data collected at the

recommended settings identifies the most noteworthy states with suboptimal

performance. To account for these scenarios, a finite state machine is designed that

allows the SUAS to execute alternate navigation when the appropriate conditions are met.

Modifications made to the APM firmware allow for the implementation of the proposed

state machine. After integration, flight test is conducted to verify improved SUAS path

performance.

33

Summary

The methodology chapter examines the work performed to answer the technical

investigative questions requisite to produce a feasibility report on achieving efficient

ground target tracking missions through heuristic path planning strategies. Initial

discussion is on the specific hardware used for testing and how each piece contributes to

the research effort. Next, procedures and processes are explained. Focus is given to the

necessary order of testing as well as justification for each test, concluding with an

overview of the achieved state-based strategy.

34

IV. Analysis and Results

Chapter Overview

The analysis and results chapter discusses all data that was collected following the

methodology outlined in Chapter 3. This discussion begins with an overview of code

modifications initially required for the autopilot to perform the convoy overwatch

mission. Following is an examination of actual flight data from each of the three phases

of test (follow-me, optimal settings experimentation, and finite state machine

implantation) to include justifications of associated navigation logic choices. Final

examination is focused on additional firmware modifications required to achieve the

documented performance.

Initial Firmware Modifications

The initial research phase was used to base-line existing performance, however

certain firmware modifications were necessary to enable the experimentation and

improvement phases. Changes were made to address two notable shortcomings of the

stock ArduPlane firmware. First is a lack of autonomous sensor gimbal control for a

moving target. Second is a fixed loiter direction for all modes using loiter-based

navigation logic.

Sensor Gimbal Target Tracking

While the APM autopilot has a follow-me navigation function, it proved

insufficient to meet the basic requirements of the convoy overwatch mission in its default

form. Most notable was the immaturity of the AP_Mount library. The library is used to

define the AP_Mount class which, when instantiated as an object by the main ArduPlane

35

thread (known as an Arduino sketch), represents a sensor gimbal on the aircraft. Methods

associated with this class are used for the execution of all sensor gimbal motion.

In its unmodified state, the AP_Mount class is designed to accommodate two

basic functions. First is single or multiple axis stabilization about an earth-fixed pointing

angle, designed primarily to minimize image motion from the aircraft. The second is a

pointing function designed to keep the sensor fixed on a single ground location while the

aircraft is in motion. This function is based solely on point-and-click user inputs from the

Mission Planner interface, with specialized telemetry link packets for updating

commands. Execution of a convoy overwatch mission in this configuration would

require a dedicated operator and be inherently inaccurate due to the point-and-click

update method.

To accommodate the desired autonomy, modifications were made to allow all

ArduPlane processes access to global knowledge of the ground vehicle location. Once

the ground vehicle location was available, it could be used to calculate the desired

pointing angle within the update_mount_position method in the AP_Mount class.

Modifications to this method introduced two input parameters. First was the location of

the ground vehicle, replacing the previously internal location calculation. The second

was a boolean, used as a flag to inform AP_Mount of the status of follow-me mode

where true indicated use of the modified function. This allowed retention of the default

functionality should an operator wish to override the gimbal or if follow-me mode was

stopped. Figure 11 depicts class diagrams for both the default and modified AP_Mount

class with the modified function highlighted. Reference Appendix F for the revised

update_mount_position function.

36

Figure 11: Original and Modified Class Diagrams for APM Gimbal Mount

Loiter Direction

Early familiarization flights with the APM found that the default ArduPlane

firmware (version 2.68 available from community APM repository) [12] only allowed for

loitering behavior in a righthand direction (clockwise when viewing from above). This

was the case for loiter mode, full auto mode with a loiter waypoint, and guided mode

(utilized by follow-me mode).

Although the fixed loiter direction did not preclude the use of follow-me mode, it

was clear from the familiarization flights that the aircraft would often make unnecessary

37

control efforts (in the form of turns greater than 90° in heading change) in order to enter a

righthand loiter even if already in a tangential orientation to the desired radius requiring

no effort to enter a lefthand loiter. It was decided that allowing the air vehicle to loiter

either direction based on real-time conditions would provide the greatest opportunity to

match the generated optimal path.

A relative bearing function was introduced to the firmware navigation file,

allowing the loiter logic to determine the angle from the current heading of the aircraft to

the ground target. This function provided an assessment of how much effort would be

associated with entering a loiter in either direction. The loiter could be changed from

righthand to lefthand by reversing the sign of the calculated ΔNavBearing introduced in

Chapter 2, Figure 10, based upon the relative distance of the aircraft to the ground target,

loiter radius line, and loiter range line. Note that for this research effort, tests executed in

the original follow-me mode were intended to baseline unmodified performance

(excepting sensor gimbal actuation) so dynamic loiter directions were not activated for

phase one flights. They were used for all subsequent tests.

Flight Test Results and Data Analysis

Flight test for the research effort began after all pertinent settings had been

identified, experimentation was designed, and requisite firmware modifications were

made. Familiarization efforts and tests of initial modifications were all executed in real-

world flight tests. For the planned test phases, the range was made available for two

separate date ranges.

38

The primary objective of the first event was collection of all flight data points

associated with designed experimentation to determine optimal settings. The loss of the

primary aircraft on takeoff and hardware integration problems with backup aircraft

resulted in collection of all data points using a simulated Rascal in a HIL environment.

The second test event was intended to serve primarily as a demonstration of the final

proposed navigation logic, but was limited due to weather. Three flights were executed

but only the first, a replicate of basic follow-me mode, was done so within the wind limits

of the Rascal airframe. To account for these conditions, all presented data analysis was

done on flights executed in a HIL environment. Results from real-world flights are

shown for reference, but to ensure consistency, HIL flights are used anywhere a statistical

inference is required.

Analysis of Optimality

The objective of experimentation and design for this effort was the minimization

of the objective cost function (cost) associated with flights executed in real-time by the

autopilot. Analysis necessary to achieve the design work required not only the cost

associated with a given flight, but an observation of instantaneous contribution to cost

versus time. To measure cost contribution for a discrete point, the derivative of

Livermore’s proposed cost function [1] was taken and defined in Equation 2 as Ji.

Equation 2

�� = � ���� − �������������� �� + (1 − �) � ��������

Where: ! = .
#
) #
 0�++)"

!() � = +)$#
!,) -)!&ℎ
 �� = .$#"
 +#"&) � = +/$$ +#
)

39

Note that defining Ji in such a manner allowed each flight to be profiled over time

to provide more information than total cost alone. Flights could now be divided into

segments of time based on a selected threshold for Ji to determine a relationship between

flight conditions and contribution to cost. Charts like the example in Figure 12 were used

for analysis and validation of all flight tests.

Figure 12: Example Analysis of Ji

Follow-Me

Phase one of flight tests for the research effort was characterization of baseline

cost performance for comparison with subsequent design work. An initial flight was

conducted for the purpose of flight path analysis and cost profiling. Three additional

replicate flights were flown to validate results. Figure 13 shows the flight path with these

settings (which results in a cost, J, of 9.732) as well as the associated optimal route while

Figure 14 depicts the achieved cost profile. These flights were all conducted with a

desired slant range of 212m, which equates to a 150m radius when flying at an altitude of

150m.

40

Figure 13: Flight Path with Basic Follow-Me Settings

Figure 14: Analysis of Ji for Basic Follow-Me Flight

Optimal Settings Experimentation

After characterizing performance of the unmodified follow-me mode, the first

designed experiment was executed. This experiment consisted of 16 flights with loiter

41

radius, loiter range, and lead time at varied settings coded for analysis in the consequent

regression model. Each of the flights was conducted with the air vehicle in starting

conditions as similar as achievable by the operator. The simulated ground vehicle drove

an identically repeatable preprogrammed course representing the course available on the

Camp Atterbury test range. The HIL wind model was stochastic with the average defined

as 3.1 m/s (found as real-world average during familiarization flights). Identical settings

were used for all flights. Note that the combined starting conditions are used for flights

conducted in all three research phases, and are not exclusive to the experimentation

portion of the work. Table 1 shows the coded levels for the first stage CCD experiment.

High, low, and center values are denoted with a +, -, or 0, respectively. Axial values are

denoted with either an “a” or “A.” Table 2 summarizes the response results of these

flights. Treatment labels are a concatenation of coded levels for loiter range, radius, and

lead time in order, with 0 representing all center values.

Table 1: Coded Units for First Stage Flight Experimentation

Coded Level Loiter Range (m) Loiter Radius (m) Lead Time (s)

a 40 50 0

- 58 67 1.1

0 120 125 5

+ 182 183 8.9

A 200 200 10

Associated Engineering Units

42

Table 2: Cost Results for First Stage Flight Experimentation

Once the data was collected, a regression model could be built using the statistical

model generated in conjunction with the experimental design. The effects of

experimental factors (radius, range, and lead time) in the model were found to be

significant (p-value < .05) as presented in Table 3. The model terms are presented in

Table 4 sorted in order of estimate magnitude.

Table 3: Analysis of Variance for First Stage Flight Experimentation

Flight (Test Point) Treatment Cost (J , α=.95)

1 +++ 4.323

2 a00 9.651

3 --+ 25.999

4 00a 55.478

5 0 44.775

6 -++ 7.750

7 0 46.970

8 A00 148.387

9 +-+ 111.477

10 ++- 7.066

11 +-- 143.779

12 00A 47.530

13 -+- 9.099

14 0a0 50.445

15 0A0 29.020

16 --- 109.754

Source
Degrees of

Freedom

Sum of

Squares

Mean

Square
F Statistic

Model 5 26057.933 5211.59 5.3697

Error 10 9705.456 970.55 Prob > F

Total 15 35763.390 0.0118

43

Table 4: Sorted Parameter Estimates for First Stage Flight Experimentation

Note that the experiment indicated only loiter radius and loiter range to be

statistically significant at the � = .05 level. A factor profile, shown in Figure 15, was

generated based on the model to help select the recommended settings. The resultant

recommendations were to set loiter radius to its highest setting and range to its lowest,

which for this experiment translated to a radius of 200m and a range of 40m. It was

decided to select 150m as the recommendation for radius, based on the real-world safety

requirement that the pilot must maintain visual contact with the SUAS. Lead time was

suggested to be set at zero, even though it was not significant.

Figure 15: Factor Profiler for First Stage Experimental Model

Term Estimate Std Error t Ratio Prob > |t|

Loiter Radius -34.5023 9.262 -3.73 0.0039

Loiter Range 25.8644 9.262 2.79 0.019

Loiter Range * Loiter Radius -15.6204 11.0145 -1.42 0.1865

Loiter Radius * Lead Time 13.9956 11.0145 1.27 0.2326

Lead Time -11.524 9.262 -1.24 0.2418

44

To validate the results and increase confidence in recommended settings, a second

stage experiment with finer granularity was designed around the 150m radius and 40m

range test space. Due to the lack of significance, lead time was excluded from this

experiment in all but one center point replicate and set to zero for all flights. Coded units

for the CCD are shown in Table 5 and cost results after completion are shown in Table 6.

Table 5: Coded Units for Second Stage Flight Experimentation

Table 6: Cost Results for Second Stage Flight Experimentation

Once flights were conducted, a second regression model was built using the

generated model on which the experimental design was based. Analysis of second

model, shown in Table 7, finds that the included terms do have a statistically significant

impact (p-value < .05) on the cost of a flight.

Coded Level Loiter Range (m) Loiter Radius (m)

a 18 108

- 20 110

0 40 130

+ 60 150

A 62 152

Associated Engineering Units

Flight (Test Point) Treatment Cost (J , α=.95)

1 0A 19.288

2 -+ 17.185

3 A0 25.146

4 0 30.076

5 0 21.442

6 -- 27.742

7 +- 22.606

8 a0 31.880

9 0a 21.574

10 ++ 23.250

45

Table 7: ANOVA for Second Stage Flight Experimentation

Parameter estimates for this model, shown sorted in Table 8, only indicated the

significance of $/!
)+ +#�!�. � at the � = .05 level, resulting in the quadratic profile

seen in Figure 16. The profiler, in agreement with the first stage experiment, suggested a

high setting for the loiter radius. Due to safety limitations, the highest recommendation

for radius remained 150m. Loiter range, although not statistically significant, still

showed a negative regression parameter estimate in agreement with the first stage model.

The lowest non-axial loiter range treatment used in the second test, 20m, became the

recommended setting.

Table 8: Sorted Parameter Estimates for Second Stage Flight Experimentation

Source
Degrees of

Freedom

Sum of

Squares

Mean

Square
F Statistic

Model 4 167.586 41.90 7.3047

Error 4 22.942 5.74 Prob > F

Total 8 190.528 0.0400

Term Estimate Std Error t Ratio Prob > |t|

Loiter Radius * Loiter Radius -6.8416 1.594 -4.29 0.0127

Loiter Range * Loiter Radius 2.8003 1.197 2.34 0.0795

Loiter Radius -1.9571 0.952 -2.06 0.1091

Loiter Range -1.0010 0.952 -1.05 0.3525

46

Figure 16: Factor Profiler for Second Stage Experimental Model

After both stages of experimentation were complete, demonstration flights were

done at the final recommended settings of 150m loiter radius, 20m loiter range, and no

lead time. One initial flight was done for analysis purposes, with two additional

replicates for validation. These were treated separately from the test point at these

settings flown during experimentation, which served as a third replicate at the suggested

settings. Figure 17 shows the demonstration flight path (J = 15.185) as well as the

associated optimal route while Figure 18 depicts the achieved cost profile. Note that

optimal flight paths are calculated based on real wind data telemetry from each associated

test. The result is that even though starting conditions were common for all flights in the

research effort, calculated optimal paths are not all identical.

47

Figure 17: Flight Path Using Settings Determined by Experimentation

Figure 18: Analysis of Ji for Settings Determined by Experimentation

48

Finite State Machine First Iteration

After completing experimentation, arriving at recommended settings, and

profiling associate cost performance, design was done on a heuristic approach to further

improve performance. It is important to note that the ArduPlane firmware is written as an

Arduino sketch, using a combination of C++ libraries and traditional Arduino code for

main processes. Arduino sketches are run as loops, using conditional statements to vary

behavior and timing. Therefore, the natural way to implement heuristic logic is to assess

the system state iteratively and execute the desired reaction using switch conditions,

which allows cases to be defined and run selectively. When examining any single

process loop, the implementation of mutually exclusive selective cases is the equivalent

of a finite state machine (FSM).

To design such a state machine for the purpose of minimizing cost during convoy

overwatch missions, states were defined in which alternate behavior is required. In

Figure 19, the Ji profile for the demonstration of experimentally suggested settings was

plotted over the turn rate of the ground vehicle being driven. It was found that both of

the time segments with large increases in Ji are immediately preceded by substantial turns

made by the ground vehicle.

Figure 19: Ji Compared Against Ground Vehicle Turn Rate

49

Also of note is that while both large increases in Ji followed periods of high

ground vehicle turn rate, not all ground vehicle turns result in Ji growth. Figure 20 shows

the air and ground vehicle paths highlighting the period of time encapsulating the second

large peak in Ji, from time = 235-280s. It was found that both periods of increased cost

correspond to a common situation in which the ground vehicle turned such that it was

heading in a divergent direction from the air vehicle. Even when the aircraft commanded

a full effort turn, the time required to return to the desired slant range resulted in large

cost contributions if these two headings were initially opposite.

Figure 20: Highlighted Portion of Flight Test with Increased Ji

50

To account for this scenario, an FSM was constructed which allowed for tighter

turns in the event that the air vehicle was both conducting a full effort turn and Ji

increased past a given threshold. In this additional state, a multiplier was used to

temporarily decrease the output throttle setting, causing a reduced turn radius. The

designed FSM is diagrammed in Figure 21.

Figure 21: Finite State Machine Initial Design

The initial demonstration of the FSM was flown with Jthreshold set to 0.04 and the

throttle multiplier at 0.75. Jthreshold was selected based on the evaluated Ji profile in an

attempt to detect true peaks and avoid unnecessary state transition based on minor

oscillation. The throttle multiplier was selected as a conservative value meant to

51

noticeably decrease the associated turn radii without causing excessive control behavior

or risking stalled conditions. The flight path for the initial demonstration, as well as the

calculated optimal path, is shown in Figure 22, achieving a cost of 5.110. The

accompanying Ji profile is shown in Figure 23. In addition, two replicate flights were

executed.

Figure 22: Flight Path Using Initial State Machine Logic

52

Figure 23: Analysis of Ji for Initial State Machine Logic

Experiment Review and Finite State Machine Second Iteration

After completion of all three flight test phases (follow-me, experimentation, and

FSM design), including replicates, cost data was combined and compared. Table 9 shows

these results, to include averages. Note that real-world tests of each mode were included

for reference, but not included in statistical analysis.

Table 9: Summary of Cost Results from Initial Tests and Follow-On Replicates

The most noteworthy observation from these results is that the settings

determined to be most optimal through experimentation in fact achieved worse

performance than basic follow-me settings. In addition, flights at these settings had a

much wider cost variance than either follow-me or FSM, signifying inconsistent

performance. This inconsistency, coupled with degraded average performance compared

Basic Follow-Me
NonHeuristic

Optimal Settings
Finite State Machine

Replicate Environment Cost (J, α=.95) Cost (J, α=.95) Cost (J, α=.95)

Initial Test HIL 9.732 15.185 5.110

Rep 1 HIL 6.747 4.964 3.100

Rep 2 HIL 5.656 3.325 3.598

Rep 3 HIL 4.915 N/A N/A

CCD Test Point HIL N/A 17.185 N/A

Flight Test Real World 9.171 6.701 8.285

7.244 9.472 5.023

6.762 10.165 3.936

Average

Average (HIL Only)

53

to follow-me, indicates that analysis of initial experimental data failed to properly

characterize key effects.

The data from flight experimentation was reassessed by combining all 26 original

test points in non-coded form (engineering units) and creating a traditional regression

model. Note that lead time was zero for all second stage flights. Terms were considered

to the three factor interaction level and screened before inclusion in the model. Table 10

shows the screener results with considered terms, based on contrast, highlighted. This

was validated by Figure 24, a half normal plot indicating potential term significance.

Table 10: Screener for Factor Inclusion in Combined Data Regression Model

Term Contrast t-Ratio
Individual

p-Value

Radius -23.0789 -7.24 0.0002

Range 20.7977 6.52 0.0003

Lead Time -7.2107 -2.26 0.0368

Radius * Radius -3.0166 -0.95 0.3333

Radius * Range -9.6744 -3.03 0.0121

Range * Range 5.7567 1.81 0.0825

Radius * Lead Time 7.0742 2.22 0.0394

Range * Lead Time -0.8153 -0.26 0.8067

Lead Time * Lead Time -3.5546 -1.11 0.2591

Radius * Radius * Radius 6.7533 2.12 0.0472

Radius * Radius * Range -13.3488 -4.19 0.0031

Radius * Range * Range -6.4166 -2.01 0.0563

Range * Range * Range -2.0162 -0.63 0.5529

Radius * Radius * Lead Time -4.067 -1.28 0.2009

Radius * Range * Lead Time -1.4136 -0.44 0.6699

Range * Range * Lead Time 0.2447 0.08 0.9440

Radius * Lead Time * Lead Time -8.105 -2.54 0.0235

Range * Lead Time * Lead Time 1.3055 0.41 0.6965

Lead Time * Lead Time * Lead Time 1.8446 0.58 0.5856

54

Figure 24: Half Normal Plot with Significant Terms Labeled

The terms proposed in the screener were used to construct a new, more complex,

regression model with a value 0.931 for ��45���� . Table 11 validates that the models

effect on cost was significant and the final model estimates are shown in Table 12.

Table 11: ANOVA for Combined Data Set with Selected Factors

Table 12: Sorted Parameter Estimates for Combined Regression Model

Source
Degrees of

Freedom

Sum of

Squares

Mean

Square
F Statistic

Model 10 39498.222 3949.82 34.6455

Error 15 1710.102 114.01 Prob > F

Total 25 41208.325 <.0001

Term Estimate Std Error t Ratio Prob > |t|

Range 0.591026 0.064623 9.15 <.0001

(Radius-126.923)*(Radius-126.923)*(Range-89.231) -0.000189 0.000026 -7.19 <.0001

(Range-89.231)*(Range-89.231) 0.004299 0.000859 5.01 0.0002

(Radius-126.923)*(Radius-126.923)*(Radius-126.923) -0.000617 0.000149 -4.14 0.0009

(Radius-126.923)*(LeadTime-3.269) 0.455661 0.112129 4.06 0.0010

LeadTime -2.641159 0.690165 -3.83 0.0017

Radius 2.944517 0.773584 3.81 0.0017

(Radius-126.923)*(LeadTime-3.269)*(LeadTime-3.269) -0.114114 0.031304 -3.65 0.0024

(Radius-126.923)*(Range-89.231)*(Range-89.231) -0.000072 0.000080 -0.90 0.3808

(Radius-126.923)*(Range-89.231) -0.000718 0.004953 -0.14 0.8867

55

A factor profiler, shown in Figure 25, was constructed for the new model to help

graphically determine the best combination of settings. The results of the new model

were in fact different from the first iteration of experimental data analysis. The

recommended settings from the combined regression analysis were a 100m loiter radius,

a 65m loiter range, and a 3s lead time. In this case, all three were determined to be

significant at the � = .05 level.

Figure 25: Factor Profiler for Combined Regression Model

Demonstration flights were conducted with the lead time reintroduced at 3s, loiter

range increased to 65m, proposed FSM functionality disabled, and loiter radius left at

150m. Note that the suggested setting of 100m was not used to allow for comparison

with results from existing tests. The flight path achieved a cost of J = 2.799 and is shown

in Figure 26. The associated Ji profile is shown in Figure 27. Three additional replicates

were flown for validation.

56

Figure 26: Flight Path for Optimal Settings from Combined Regression Model

Figure 27: Analysis of Ji for Suggested Settings from Combined Regression Model

Following flight test of resultant settings from the second experimental analysis, a

second iteration of FSM design was proposed. Definition of states requiring alternate

behavior was not as intuitive as the first design due to an overall increase in performance

57

with most peaks in Ji not exceeding 0.01. Figure 28 depicts an analysis of slant range for

the demonstration flight where it is seen that most increases in Ji correlated to periods

during which the aircraft spent inordinate amounts of time off of the desired slant range.

Figure 28: Slant Range Analysis Generated for Suggested Settings Flight Path

This relationship was expected given that α, as defined in Equation 1, was set to

0.95 for all of Livermore’s optimization functions used in this effort [1], heavily favoring

slant range. However, when compared to the actual flight path, the analysis helps

demonstrate that flight times with poor slant range performance are typically those in

which the SUAS overcame the ground vehicle while both were traveling in relatively

straight paths with common headings. Under these circumstances, it was found that the

air vehicle occasionally found itself unable to commit to either a full turnaround or

increased effort to regain the desired slant range.

A second iteration FSM was proposed that, when appropriate, attempted to

diminish the effects of this scenario by scaling the level of effort being used to maintain

slant range. This design, with all associated transition logic is diagramed in Figure 29.

58

Figure 29: Revised Finite State Machine

The second iteration FSM was implemented on the APM with Jthreshold = 0.003

and control effort buffer set to 35m, representing a ±23% change over a desired radius of

150m. Like the initial FSM, Jthreshold was selected based on the Ji profile in an attempt to

execute state transitions when necessary but not excessively. The control effort buffer

was set to a conservative value intended to effect measurable changes without causing

unsafe behavior if flown in real-world test. A demonstration flight was conducted,

59

followed by three additional replicates. The demonstration flight path is shown in Figure

30, with cost of 2.35. The Ji profile for the flight is shown in Figure 31.

Figure 30: Flight Path for Revised Finite State Machine

Figure 31: Analysis of Ji for Revised Finite State Machine

60

For the final replicate flight utilizing the revised FSM design, a debugger was

added to the firmware allowing for analysis of which states were active over the course of

the flight. This is profiled in Figure 32.

Figure 32: Profile of Current State for Final FSM Flight

While the profile shows that the best setting for state transition conditions may

require further experimentation, it does validate that all three states were entered at

various points throughout the course of flight. The fact that the majority of the time was

spent in the standard tracking state does indicate that both alternate states were effective

in their goals of returning the SUAS to a condition with low Ji and low slant range error.

Comparative Results and Investigative Questions

Once all replicate flights were executed with telemetry data appropriately

recorded, comparative analyses were conducted both to measure improvement in cost and

validate applicability to the convoy overwatch scenario. Table 13 presents a summary of

cost results for initial demonstration flights and replicates flown in all three stages of the

research effort. For this analysis, note that only the second iteration of experimentally

suggested settings and FSM design were considered.

61

Table 13: Summary of Cost Results after Secondary Data Analysis and State

Machine Design

These sets of results were specifically intended to answer the first three

investigative questions listed for this effort, restated below:

• What is the target tracking and flight path performance of the SUAS when

using a basic follow-me mode?

• What is the best path performance achievable by the adjustment of existing or

readily accessible navigation control without implementation of state

responsive logic?

• What is the achievable SUAS flight path optimality using a state-based,

heuristic approximation of the optimization strategy?

• What is the feasibility of implementing heuristic ground target tracking logic

that is capable of real-time execution onboard a SUAS autopilot?

Basic follow-me flights, flights at the experimentally suggested settings, and the

proposed FSM flights were all conducted in direct response to first three investigative

questions, respectively. A visual depiction of the achieved performance differences is

shown in Figure 33, in which the Ji profile for all three initial flight demonstrations are

overlapped along with associated average Ji for each.

Basic Follow-Me
DOE Suggested

Settings - V2

Finite State

Machine - V2

Replicate Environment Cost (J, α=.95) Cost (J, α=.95) Cost (J, α=.95)

Initial Test HIL 9.732 2.699 2.350

Rep 1 HIL 6.747 5.249 1.966

Rep 2 HIL 5.656 2.799 2.513

Rep 3 HIL 4.915 1.985 2.361

6.762 3.183 2.298

52.9% 66.0%

Average

% Improvement over Follow-Me

62

Figure 33: Cost Performance for Initial Flight Tests of Main Configurations

The final investigative question was more complex. From a technical standpoint,

two items were required to subjectively assess the viability of heuristic approximation of

optimal control: first was a measure of performance increase significance and second was

validation that the proposed strategy remains capable of meeting mission requirements.

Basic costs, both individuals and averages, are presented in Table 13, above.

However, this does not provide an indication of the significance of achieved results. In

order to claim that performance increases can truly be expected from the presented

settings and heuristic design, confidence intervals based on the collected samples were

compared. Table 14 shows 95% confidence intervals calculated for the true mean

performance expected at each of the three demonstrated firmware configurations. The

samples used to calculate these intervals were the initial flights and replicates collected at

each stage of the effort. For all three configurations n is equal to four replications.

63

Table 14: 95% Confidence Intervals for Cost Performance of Main Configurations

Figure 34 depicts the same confidence intervals graphically. This figure is

important because it demonstrates that there was no overlap between the basic follow-me

and final FSM configurations. The lack of overlap means that the true average

performance was in fact been improved over the basic follow-me performance. The same

could not be said for the experimentally suggested settings. However, theses settings

were intended primarily to provide the requisite analysis for arriving at the final FSM.

Figure 34: Confidence Intervals for Cost Performance of Main Configurations

Firmware Configuration
Achieved Cost (J)

Sample Average
-t0.05,3*(s/n

0.5
) + t0.05,3*(s/n

0.5
)

Basic Follow-Me 6.762 3.393 10.132

Final Experimental Suggested Setting 3.183 0.917 5.449

Final FSM Design 2.298 1.926 2.669

64

Next, flights conducted with the final FSM could be compared to their respective

optimal paths (theoretically calculated in MATLAB) to determine differences in

performance. Table 15 shows data from all four flights using the proposed firmware with

each associated optimal cost, including a 95% confidence interval conducted on each set

of four J values. These confidence intervals are depicted graphically in Figure 35.

Table 15: 95% Confidence Interval for Final FSM and Associated Optimal Costs

Figure 35: Plotted Confidence Intervals for Final FSM Design and Respective

Optimal Paths

Replicate
Final FSM Achieved

Cost

Associated Optimal

Path Cost

Initial Test 2.350 1.449

Rep 1 1.966 1.842

Rep 2 2.513 1.329

Rep 3 2.361 0.838

Sample Average 2.298 1.364

+ t0.05,3*(s/n
0.5

) 2.669 2.023

-t0.05,3*(s/n
0.5

) 1.926 0.706

65

Note that using the four replicates conducted, overlapping confidence intervals

were found for the achieved and optimal costs. While this was a good indicator that

achieved performance was close to the optimal, the overlap was relatively narrow so a

more conservative hypothesis test was conducted. A one tailed t-test was used based on

the sample sizes and the assumption that the FSM could not perform better than the

optimal. The results of this test are shown in Table 16.

Table 16: Two Sample t-Test (Unequal Variance) for Final FSM Flights and

Associated Optimal Paths

With tstat > tcritical, this test rejected the hypothesized difference of zero and

indicated that the final FSM did in fact perform worse than the optimal at the α = 0.05

level. This was expected as the calculated optimal is based on perfect future knowledge

of the ground vehicle path and the proposed FSM is a real-time heuristic making no cost

assessments of predicted scenarios.

Finally, to validate that the proposed solution was capable of meeting convoy

overwatch mission requirements, sensor time-on-target was evaluated for the follow-me,

DOE suggested, and final FSM settings. The HIL environment allowed a virtual sensor

gimbal to be added to the SUAS, enabling theoretical time-on-target to be evaluated in an

Final FSM Achieved

Cost

Associated Optimal

Path Cost

Mean 2.2975 1.3643

Variance 0.054362087 0.171317413

Observations 4 4

Hypothesized Mean Difference 0

df 5

t Stat 3.928788685

P(T<=t) one-tail 0.005541883

t Critical one-tail 2.015048373

66

identical fashion to real world flights. Figure 36 depicts sensor aimpoint for all three

respective demonstration flights while Table 17 provides associated percentages for both

the actual HackHD lens (160° field of view) and an optional 16.9° lens.

Figure 36: Sensor Aimpoint for Initial Flight Tests of Main Configurations

67

Table 17: Sensor Time-on-Target Performance for Initial Flight Tests of Main

Configurations

Findings show that all three configurations maintained the sensor on target for

effectively the entire flight using the default HackHD lens. If a very narrow field of view

had been used (25mm lens), there would have been a decrease in performance for the

proposed FSM to 92%. Further analysis shows that if a smaller ground sample distance

was desired, the final FSM design could have been flown with a field of view as low as

45° while still maintaining 100% time-on-target (assuming the same aspect ratio as the

25mm lens). The conclusion is that using the FSM did not sacrifice mission requirements

to any significant degree in order to achieve increased flight path optimality. Figure 37

shows a screenshot taken from the gimbal mounted video collected during the real-world

FSM flight test.

Figure 37: Screenshot from Real-World Ground Vehicle Tracking Mission

Flight
Percent Time-on-Target with

Stock 160° Lens

Percent Time-on-Target with

Optional 25mm 16.9° Lens

Basic Follow-Me 100% 100%

DOE Suggested Settings V2 99% 92%

FSM Final Design 100% 92%

68

Final Firmware Modifications

Many modifications to the ArduPlane firmware were required for this research

effort. The version used as a baseline was V2.68. From there, changes were made to the

primary loop, the navigation process file, the telemetry management process file, and

control mode response routines. Most noteworthy however, was the introduction of a

new library and parameter modifications for control. Reference Appendix H for the final

proposed ArduPlane firmware structure.

Ground Vehicle Class

To achieve the proposed heuristic behavior as well as conduct all described

experimentation, it was necessary for the SUAS autopilot to access certain information

regarding the ground vehicle being tracked. Because C++ and Arduino are object

oriented languages, the most direct way of calculating, organizing, and presenting this

data was to create a ground vehicle class, labeled Ground_Vehicle. Doing so allowed the

main ArduPlane process to instantiate an object, notated GV, and when required call

certain public attributes and methods. Using telemetry from the GCS, GV can be

regularly updated to provide all pertinent information on the actual ground vehicle. This

includes a safety check, GV.active, that allows the system to know if updates are no

longer being received from the ground vehicle (even if a link with the GCS is still

present) and failsafe to existing navigation logic. The Ground_Vehicle class was

implemented using the traditional C++ library design [13], consisting of a header file

called by ArduPlane, and an implementation file containing all logic associated with the

defined methods. Figure 38 depicts a diagram showing the Ground_Vehicle class.

Reference Appendix G for the associated C++ header.

69

Figure 38: Class Diagram for Ground Vehicle

Parameter Entries

The number of flights required for this effort, even with most being conducted in

HIL, was not feasible if every configuration change had required firmware adjustment,

recompilation, uploading to the APM, power cycling, redoing the aircraft preflight, and

reinitiating flight test. In order to conduct all requisite flights, especially during the

experimentation stage of research, it was essential that the operator have real-time control

over all factors. To address this challenge, changes made to the ArduPlane firmware,

when possible, were parameterized and transmitted to the GCS upon connection. The

final firmware version associated with this effort includes the following parameters in

addition to the default configuration file. For future replication of any work, Appendices

I and J define the parameter sets used for both real-world and HIL flights, respectively.

70

Target Tracking Mode

Tracking mode is a flag allowing the operator to enable or disable certain

functionality. If desired, all code modifications associated with this effort could be

turned off, resulting in reversion to entirely stock behavior. The second option is that

only those changes listed in the initial modifications section (sensor gimbal tracking, and

dual direction loiter) be enabled. The final option is to enable all altered functions, which

was used during experimentation and FSM flights.

Lead Time

The lead time value is the number of seconds used when calculating a forward

projected ground vehicle location. This was a key experimental parameter requiring real-

time adjustment. The input value for lead time is passed into the GV object and handled

internally, after which a public structure, labeled lead_location could be read and used for

navigation.

Loiter Range

While using the loiter range for smooth transition to circular flight is a stock

function, it was not made accessible to the operator by default. The range was a hard

coded private attribute internal to the navigation process. Parameterization of this

attribute allowed for the experimentation portion of the research to be executed as

designed.

Loiter Direction

Allowing the loiter direction to be selected dynamically was an enabling function

for the ground target tracking mission. However, this required that a defining parameter

71

be passed into the navigation process whenever a fixed loiter was required. This

parameter allows direction specification for static loiter scenarios.

Ji Threshold

This parameter can be called by the navigation process and compared against the

current Ji whenever assessing state-based behavior. Current Ji is a public attribute of GV

used as a metric for state transition conditions in the proposed FSM design.

Control Effort Buffer

The control effort buffer, parameterized in meters, can be called when changing

the level of effort applied to reach a desired slant range. This change was required for the

alternate states proposed in the final FSM.

Summary

The analysis and results chapter expanded on the flight test methodology

presented in Chapter 3 and describes in detail the results associated with each step. Initial

discussion focused on firmware modifications made to enable the planned test

procedures, including sensor gimbal target tracking and dynamic loiter direction. Next,

results from the three planned test methodology phases were presented. Analysis was

given as justification for performing a second iteration of the last two phases. These

phases include settings experimentation and design of an FSM approach to heuristically

approximate the proposed optimal path planning strategy. Flight data collected using the

final recommended navigation logic was analyzed more extensively, providing evidence

of statistically significant performance improvements. All test data was then presented

72

alongside the investigative questions by which each test was justified. Finally, an

overview of the firmware modifications required to implement all proposed changes was

discussed with focus on new object oriented structures and all entities implemented for

user control. Chapter 5 will discuss the implications of these findings with attention to

how results conclude the research objective, as well as recommendations for future work.

73

V. Conclusions and Recommendations

Chapter Overview

The final chapter concludes the research effort by expanding upon the data

presented in Chapter 4 to discuss final implications as well as recommendations for

follow-up action and future research. Conclusions focus on the stated research objective

of approximating optimal flight path solutions for SUAS tracking of a mobile ground

target. Follow-up actions are recommendations for work that could be done to augment

the effort in order to validate or improve the achieved results. Finally, future research

refers to potential work that could make use of the presented flight results or navigation

strategy for other investigative purposes.

Conclusions of Research

The effort presented a research objective and four associated investigative

questions. The first three questions formed the stages of research and focused on the

characterization of achievable optimality for basic follow-me, DOE suggested, and state-

based firmware configurations. Optimality was characterized using methods proposed by

Livermore [1] for missions requiring a SUAS to track and monitor a moving ground

target. The data collected during these stages is presented in Chapter 4 and it was

concluded that each firmware setting, in the order conducted, achieved better average

results than the previous.

The research objective was to achieve final implementation of the proposed

strategy for approximation of optimal performance. The firmware was proposed and

successfully implemented in the third stage of the effort. The final investigative question

74

was designed to characterize the implications of the applied firmware by describing the

feasibility of achieving approximated optimality in real-world systems requiring

autonomous mobile ground target tracking. To answer this question, the achieved cost of

all executed flights was considered. The effort used data from a total of 47 flights at

various settings: 16 for the first stage experiment, 10 for the second stage experiment, 4

using default follow-me, 3 at the initial DOE suggested settings, 3 with the initial FSM, 4

at the revised DOE suggested settings, 4 demonstrations of the final FSM, and 3 real-

world flights. With regards to cost, the first quartile for all flights was found to be J =

4.915. The highest cost achieved by any of the four demonstration flights utilizing the

final FSM was J = 3.178. In other words, flights with the final proposed firmware design

fell within the best 25% of all results. Furthermore, while statistical analysis showed that

the final FSM did not match the performance of the MATLAB generated optimal paths, it

was found that cost was significantly improved over the baseline follow-me functionality.

The relatively low cost of these flights coupled with the considerable performance

increases over default capabilities indicate that near-optimal flight paths are operationally

feasible using a real-time heuristic strategy implemented onboard the APM autopilot.

Follow-Up Action

Follow-up action describes potential efforts that could be done to improve on the

documented results. These efforts would provide increased confidence in the presented

findings and directly support the stated research objective.

75

Real-World Replication of Designed Experiment

One of the largest tradeoffs made in accomplishing this effort was the logistical

inability to execute all flight tests using real-world equipment. All conducted simulation

used a real APM physically connected to the GCS running both Mission Planner and the

aircraft environment simulation software. The code being run was the actual APM

firmware, as opposed to emulated software on the GCS. All navigation logic of concern

in this effort was run without differentiation between real-world and simulated input

states. This means that the experimental results are representative of real APM

performance.

However, this does make it difficult to verify that the exact settings used are those

that would work specifically on the real-world Rascal aircraft. For that reason, there

would be some benefit to repeating the experimentation and demonstration portion of the

effort in a real-world environment if possible. If constraints do not allow the entire 26

CCD flights to be executed, conducting smaller experiments to simply verify the factor

limits and basic effects would also help to validate findings.

In addition, replication of experimentation should consider the possibility of using

varied ground paths. The stated constraints for this effort allowed for only one path,

which was selected to represent a range of tracking scenarios. However, this does not

conclusively characterize universal performance. Validation of findings may be aided by

examining a more exhaustive assortment of ground target paths.

Experimental Design to Analyze Finite State Machine

Designed experimentation was used in this effort to arrive at suggestions for

existing (or easily modified) settings, which was consequently used for state analysis.

76

The final suggested FSM however, introduced two new factors (Ji threshold and control

effort buffer) that were only flown at values concluded from initial analysis. If not

resource constrained, it would be highly beneficial to perform a final DOE accounting for

all pertinent parameters: loiter radius, loiter range, lead time, Ji threshold, and control

effort buffer.

Lessons learned from the first attempt at analysis of experimental results showed

that it can be difficult to detect and model both curvature and interrelationships of these

parameters in a setting as complex as SUAS flight. Therefore, it would be suggested to

begin with a screening experiment to determine which factors are truly significant and the

approximate portion of the test space containing the best values for each. This could be

conducted in a relatively efficient manner by beginning with a factorial (2
k
) or fractional

factorial (2
k-p

) experiment using only a high and low setting for each factor. These types

of experiments are commonly used for screening and have the potential to provide useful

results when many factors are present and number of test points is limited [14]. After

such a screener is conducted, more complex experimentation could be conducted in a

narrower test space (with potentially fewer factors) to arrive at final suggested settings. It

is possible that such an effort could better utilize the proposed navigation logic and

achieve even better cost results.

Replication of Experimentation with Alternate Response

While the proposed FSM did result in significant performance increases, it was

observed that the achieved path often had very little overlap with the associated optimal.

Technically, the cost of a flight is the best measure of optimality, which is why J was

selected as the primary response for all analysis in this effort. However, it is possible that

77

any further improvement over the proposed FSM may require consideration of horizontal

deviation from the true optimal path.

The challenge of characterizing two dimensional path deviation between any two

sets of aircraft flight data was discussed by McCarthy in his attempt to analyze close-

formation flight capability for SUAS [15]. Specifically, he was attempting to achieve

formation flight using a dynamic waypoint update strategy. When addressing the

feasibility of such an approach, McCarthy recognized that adherence to waypoint paths

requires comparative characterization to identify the best achieved autopilot parameter

set. His solution was a MATLAB script capable of comparing two location matrices and

charting XY deviation against a normalized time vector. This deviation, while not a

direct measure of the optimality with which the current effort is concerned, still provides

useful comparative information regarding the similarity of any two flight paths. Figure

39 shows an example two dimensional path comparison generated by McCarthy. Figure

40 is the associated chart showing horizontal path deviation. Parameterization of this

deviation and use as an alternate or secondary response in experimentation may allow

even more significant cost improvements with a heuristic real-time strategy.

78

Figure 39: McCarthy Example Flight Path Visualization

Figure 40: McCarthy Example Flight Path Deviation Chart

79

Future Research

Future research suggests alternate efforts that may benefit from the documented

results. These suggestions are for work that does not directly support the stated research

objective, but rather focuses on new objectives in related areas.

Analysis of Optimization Cost Function

This effort attempted to achieve the lowest possible objective cost function value,

as defined by Livermore [1], in a heuristic, real-time fashion. However, no investigation

was given to the value of the cost function as a measurement of convoy overwatch

performance. Future work in the field of flight path optimization, specifically flights

aimed at mobile target tracking, would benefit from validation of the cost metric through

the application of systems engineering principles.

To achieve this validation, a true requirements elicitation should be conducted for

the convoy overwatch mission including, but not limited to, input from those conducting

the ground missions as well as those performing intelligence processing. The results of

such an effort would include, as a subset, any technical requirements associated with

conducting convoy overwatch with a SUAS. Any given flight path alternatives,

theoretical or real-world, can be compared against the key performance parameters

associated with such requirements and rank ordered using traditional decision analysis.

Ranking in such a manner can help validate the cost function used for this effort as the

achieved J values, when sorted, should align with the decision analysis results.

Furthermore, any future proposed cost function can be validated in the same manner.

80

Stochastic Estimation of Ground Vehicle Path

The final recommendation for future research focuses on prediction of the path of

the ground vehicle. In the case of this research effort, it is assumed that operations are

occurring in an environment where future knowledge of the ground path is not feasible.

The implementation of the lead time functionality accounts for only the current ground

vehicle heading and speed to predict a linear future location.

In Livermore’s work, he finds that it is unnecessary to know the entire future path

of the ground vehicle to arrive at a feasible optimal path. He presents a strategy by which

the optimization function is called repeatedly (at 1.5Hz) considering the current states of

the air and ground vehicle as well as the future path for only a specified period of time

(labeled as the look-ahead). The notional air vehicle executes the first 0.667s of the

returned flight path before reevaluating. He finds that using a look-ahead as low as 4

seconds for the future ground path knowledge results in an overall flight effectively

identical in path and cost to a single iteration of the optimization function considering the

full future path [1].

If future efforts or constraint changes allow for updates to the Ground_Vehicle

library that provide an estimation of the future path for as little as 4 seconds, it is possible

that real-time execution of Livermore’s path planning strategy could be implemented in a

non-heuristic fashion. If the period of time is small enough, work could be done to

implement a nonlinear optimization C++ library into the ArduPlane firmware to most

thoroughly emulate Livermore’s strategy. Conversely, if true onboard optimization

libraries prove computationally excessive, simple functions can be written to consider a

fixed number of look-ahead flight paths and return the lowest cost option as either a

81

waypoint array or direct control sequence. Both options have the potential to realize

significant performance benefits in terms of onboard approaches to optimal path

planning.

Summary

The presented research evaluated the feasibility of achieving heuristic path

planning strategies running in real-time onboard a SUAS performing a convoy overwatch

mission. The proposed strategy was designed to emulate, to the best extent possible, an

existing flight path optimization function built for post-processing assuming full future

ground vehicle information. Work began by evaluating the default behavior of the APM

autopilot. Minor modifications were made to parameterize existing settings as well as

add basic functionality that previous research suggested to be important. Changes

included adjustments to the sensor gimbal control library, addition of a dynamic loiter

direction, and the ability to lead the ground vehicle by a given time period.

Next, a two stage designed experiment was conducted to arrive at the best

achievable combination of settings (with regards to flight path optimality). A time

analysis of instantaneous contributions to optimality (Ji) was performed and a finite state

machine approach to navigation logic was proposed to further increase performance. The

suggested FSM was integrated into the APM flight firmware and tested in a six-degree-

of-freedom hardware in the loop environment. It was found that achieved optimality

demonstrated a statistically significant improvement over the default follow-me

performance. The effort concludes that real-time heuristic approximations to optimal

82

path planning do present a viable alternative to the high computational and equipment

costs associated with implementing a true optimal solution.

83

REFERENCES

[1] R. Livermore, "Optimal UAV Path Planning for Tracking a Moving Ground Vehicle

with a Gimbaled Camera," Air Force Institute of Technology, Wright Patterson

Air Force Base, 2014.

[2] B. D. Lozano, "Improving Unmanned Aircraft Persistance by Enhancing Endurance

and Effective Surveillance Using Design of Experiments and Regression

Analysis," Air Force Institute of Technology, Wright-Patterson Air Force Base,

2011.

[3] N. A. Terning, "Real-Time Navigation and Flight Path Generation for Tracking

Stop-and-Go Targets with Miniature Air Vehicles," Air Force Institute of

Technology, Wright-Patterson Air Force Base, 2008.

[4] J. P. Boire, "Autonomous Routing of Unmanned Aerial Vehicle (UAV) Relays to

Mimic Optimal Trajectories in Real Time," Air Force Institue of Technology,

Wright-Patterson Air Force Base, 2011.

[5] Headquarters, United States Air Force, "United States Air Force Unmanned Aircraft

Systems Flight Plan 2009-2047," Washington DC, 2009.

[6] RAND Corporation, Arroyo Center, "Unmanned Aircraft Systems for Logistics

Applications," RAND Corporation, Santa Monica, 2011.

[7] M. D. Zollars, "Optimal Wind Corrected Flight Path Planning for Autonomous

Micro Air Vehicles," Air Force Institute of Technology, Wright-Patterson Air

Force Base, 2007.

[8] J. W. Welborn, "Calibration and Extension of a Discrete Event Operations

Simulation Modeling Multiple Un-Manned Aerial Vehicles Controlled by a

Single Operator," Air Force Institute of Technology, Wright-Patterson Air Force

Base, 2013.

[9] J. Gundlach, Designing Unmanned Aircraft Systems: A Comprehensive Approach,

Reston: American Institute of Aeronautics and Astronautics, 2012.

84

[10] "ArduPilot instructional graphics source," DIYDrones, 28 November 2012. [Online].

Available: https://code.google.com/p/ardupilot-mega/wiki/APM2_Graphics.

[Accessed 1 August 2013].

[11] J. Berndt, "JSBSim: An Open Source, Platform-Independent, Flight Dynamics

Model in C++," 2011. [Online]. Available:

jsbsim.sourceforge.net/JSBSimReferenceManual.pdf. [Accessed 17 February

2014].

[12] "diydrones/ardupilot · GitHub," [Online]. Available:

https://github.com/diydrones/ardupilot. [Accessed 9 March 2014].

[13] S. Monk, Programming Arduino Next Steps: Going Further with Sketches, New

York: McGraw-Hill Education, 2014.

[14] D. Montgomery, Design and Analysis of Experiments, Hoboken, NJ: John Wiley &

Sons, 2013.

[15] P. A. McCarthy, "Characterization of UAV Performance and Development of a

Formation Flight Controller for Multiple Small UAVs," Air Force Institute of

Technology, Wright-Patterson Air Force Base, 2006.

[16] "3DRobotics - Learn," 3DRobotics, 2013. [Online]. Available:

http://3drobotics.com/learn/#APM_26_Autopilot. [Accessed 11 February 2014].

[17] "SPT100 Pan & Tilt System," Servocity, 2014. [Online]. Available:

http://www.servocity.com/html/spt100_pan___tilt_system.html. [Accessed 11

February 2014].

[18] "HackHD - Technical Specifications," HackHD, 2013. [Online]. Available:

http://www.hackhd.com/tech.php. [Accessed 11 February 2014].

85

Wingspan 110 in.

Wing Area 1522 sq. in.

Length 75.75 in.

Flying Weight ≈ 12 lbs.

Propeller APC 18x8E

Motor Himax HC6330-200

Electronic Speed Control Castle 120A HV

Flight Batteries Turnigy 5000 mAh LiPo

Autopilot ArduPilot Mega 2.5

Cruise Airspeed 15 m/s

Aileron Servos Hitec HS-6635HB

Aileron Deflection ±27°

Elevator Servo Hitec HS-5485HB

Elevator Deflection ±19°

Rudder Servo Hitec HS-5485HB

Rudder Deflection ±12°

Maximum Roll Rate 100°/sec.

Appendix A: Rascal Configuration

Figure 41: Rascal SUAS Used for Flight Test

Table 18: Rascal SUAS Key Specifications

86

Appendix B: Autopilot and Peripherals Specifications

Figure 42: APM 2.5 Dimensions [16]

Table 19: Autopilot Specifications

Table 20: Telemetry Modem Specifications

Autopilot ArduPilot Mega

Hardware Version 2.5

Software Version 2.68 with modifications

Processor Atmel 2560

Gyro + Accelerometer InvenSense MPU-6000

Magnetometer Honeywell HMC5883L

Barometric Sensor Measurement Specialties MS5611-01BA03

GPS Receiver uBlox LEA-6H

Airspeed Sensor Freescale MPXV7002

Telemetry Modem 3DRobotics Radio Set

Modem Brand 3DRobotics

Frequency 915 MHz

Transmission Type Frequency Hopping Spread Spectrum

Data Connection 6 Pin DF13

Maximum Output Power 100 mW

Rx Sensitivity -117 dBm

Transmission Connector RP-SMA

Supply Voltage 3.7-6 VDC

Size 26.7 x 55.5 x 13.3mm

87

Computer HP EliteBook 8560w

Ground Control Software APM Mission Planner

Software Version 1.2.76

Telemetry Modem 3DRobotics Radio Set

GPS Receiver GlobalSat BU-353

Ground Vehicle HMMWV Troop Carrier Configuration

Appendix C: Ground Control Station Specifications

Table 21: Ground Control Station Equipment

88

Appendix D: Payload Specifications

Table 22: Payload Components

Model Servocity SPT100H

Pan Servo Hitec HS-785HB

Pan Rotation ±180°

Pan Pulsewidth Range 1390-1625

Tilt Servo Hitec HS-5485HB

Tilt Rotation +10°, -90°

Tilt Pulsewidth Range 1000-2000

Model HackHD

Resolution 1080P

Pixel Count 9MP

Framerate 30 FPS

Aspect Ratio 16:9

Storage onboard microSD

Lens Mount M12

Video Output Composite 480P

Supply Voltage 3.7-5 VDC

Frequency 5.8 GHz

Transmitter ImmersionRC TX_5G8_600

Tx Power 600 mW

Supply Voltage 6-25 VDC

Receiver Iftron Yellowjacket Diversity

Supply Voltage 6-15 VDC

Rx Sensitivity -91 dBm

Gimbal

Camera

Transmission

89

Figure 43: Servocity SPT100H Pan-Tilt Gimbal Dimensional Drawing [17]

Figure 44: HackHD Camera Dimensional Drawing [18]

90

Appendix E: Simulated Rascal Definition

<?xml version="1.0"?>
<?xml-stylesheet
href="http://jsbsim.sourceforge.net/JSBSim.xsl"
type="text/xsl"?>
<fdm_config name="rascal" version="2.0" release="BETA"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://jsbsim.sourceforge.n
et/JSBSim.xsd">

 <fileheader>
 <author> Author Name </author>
 <filecreationdate> Creation Date
</filecreationdate>
 <version> Version </version>
 <description> Models a rascal </description>
 </fileheader>

 <metrics>
 <wingarea unit="FT2"> 10.57 </wingarea>
 <wingspan unit="FT"> 9.17 </wingspan>
 <chord unit="FT"> 1.15 </chord>
 <htailarea unit="FT2"> 1.69 </htailarea>
 <htailarm unit="FT"> 3.28 </htailarm>
 <vtailarea unit="FT2"> 1.06 </vtailarea>
 <vtailarm unit="FT"> 0 </vtailarm>
 <location name="AERORP" unit="IN">
 <x> 37.4 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 <location name="EYEPOINT" unit="IN">
 <x> 20 </x>
 <y> 0 </y>
 <z> 5 </z>
 </location>
 <location name="VRP" unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 </metrics>

 <mass_balance>
 <ixx unit="SLUG*FT2"> 1.95 </ixx>
 <iyy unit="SLUG*FT2"> 1.55 </iyy>
 <izz unit="SLUG*FT2"> 1.91 </izz>
 <ixy unit="SLUG*FT2"> 0 </ixy>
 <ixz unit="SLUG*FT2"> 0 </ixz>
 <iyz unit="SLUG*FT2"> 0 </iyz>
 <emptywt unit="LBS"> 13 </emptywt>
 <location name="CG" unit="IN">
 <x> 36.4 </x>
 <y> 0 </y>
 <z> 4 </z>
 </location>
 </mass_balance>

 <ground_reactions>
 <contact type="BOGEY" name="LEFT_MLG">
 <location unit="IN">
 <x> 33.1 </x>
 <y> -12.9 </y>
 <z> -13.1 </z>
 </location>
 <static_friction> 0.8 </static_friction>
 <dynamic_friction> 0.5 </dynamic_friction>
 <rolling_friction> 0.1 </rolling_friction>
 <spring_coeff unit="LBS/FT"> 480
</spring_coeff>
 <damping_coeff unit="LBS/FT/SEC"> 100
</damping_coeff>
 <max_steer unit="DEG"> 0.0 </max_steer>
 <brake_group> NONE </brake_group>
 <retractable>0</retractable>

 </contact>
 <contact type="BOGEY" name="RIGHT_MLG">
 <location unit="IN">
 <x> 33.1 </x>
 <y> 12.9 </y>
 <z> -13.1 </z>
 </location>
 <static_friction> 0.8 </static_friction>
 <dynamic_friction> 0.5 </dynamic_friction>
 <rolling_friction> 0.1 </rolling_friction>
 <spring_coeff unit="LBS/FT"> 480
</spring_coeff>
 <damping_coeff unit="LBS/FT/SEC"> 100
</damping_coeff>
 <max_steer unit="DEG"> 0.0 </max_steer>
 <brake_group> NONE </brake_group>
 <retractable>0</retractable>
 </contact>
 <contact type="BOGEY" name="TAIL_LG">
 <location unit="IN">
 <x> 68.9 </x>
 <y> 0 </y>
 <z> -13.1 </z>
 </location>
 <static_friction> 8.0 </static_friction>
 <dynamic_friction> 5.0 </dynamic_friction>
 <rolling_friction> 0.1 </rolling_friction>
 <spring_coeff unit="LBS/FT"> 480
</spring_coeff>
 <damping_coeff unit="LBS/FT/SEC"> 100
</damping_coeff>
 <max_steer unit="DEG"> 360.0 </max_steer>
 <brake_group> NONE </brake_group>
 <retractable>0</retractable>
 </contact>
 </ground_reactions>

 <propulsion>
 <engine file="Zenoah_G-26A">
 <location unit="IN">
 <x> 36 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 <orient unit="DEG">
 <roll> 0.0 </roll>
 <pitch> 0 </pitch>
 <yaw> 0 </yaw>
 </orient>
 <feed>0</feed>
 <thruster file="18x8">
 <location unit="IN">
 <x> 1 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 <orient unit="DEG">
 <roll> 0.0 </roll>
 <pitch> 0.0 </pitch>
 <yaw> 0.0 </yaw>
 </orient>
 <p_factor>1.0</p_factor>
 </thruster>
 </engine>
 <tank type="FUEL"> <!-- Tank number 0 -->
 <location unit="IN">
 <x> 36.36 </x>
 <y> 0 </y>
 <z> -1.89375 </z>
 </location>
 <capacity unit="LBS"> 1.5 </capacity>
 <contents unit="LBS"> 1.5 </contents>
 </tank>
 </propulsion>

91

 <flight_control name="FCS: rascal">
 <channel name="All">

 <summer name="Pitch Trim Sum">
 <input>fcs/elevator-cmd-norm</input>
 <input>fcs/pitch-trim-cmd-norm</input>
 <clipto>
 <min>-1</min>
 <max>1</max>
 </clipto>
 </summer>

 <aerosurface_scale name="Elevator Control">
 <input>fcs/pitch-trim-sum</input>
 <range>
 <min>-0.35</min>
 <max>0.3</max>
 </range>
 <output>fcs/elevator-pos-rad</output>
 </aerosurface_scale>

 <aerosurface_scale name="Elevator Normalized">
 <input>fcs/elevator-pos-rad</input>
 <domain>
 <min>-0.3</min>
 <max> 0.3</max>
 </domain>
 <range>
 <min>-1</min>
 <max> 1</max>
 </range>
 <output>fcs/elevator-pos-norm</output>
 </aerosurface_scale>

 <summer name="Roll Trim Sum">
 <input>fcs/aileron-cmd-norm</input>
 <input>fcs/roll-trim-cmd-norm</input>
 <clipto>
 <min>-1</min>
 <max>1</max>
 </clipto>
 </summer>

 <aerosurface_scale name="Left Aileron Control">
 <input>fcs/roll-trim-sum</input>
 <range>
 <min>-0.35</min>
 <max>0.35</max>
 </range>
 <output>fcs/left-aileron-pos-rad</output>
 </aerosurface_scale>

 <aerosurface_scale name="Right Aileron Control">
 <input>-fcs/roll-trim-sum</input>
 <range>
 <min>-0.35</min>
 <max>0.35</max>
 </range>
 <output>fcs/right-aileron-pos-rad</output>
 </aerosurface_scale>

 <aerosurface_scale name="Left aileron Normalized">
 <input>fcs/left-aileron-pos-rad</input>
 <domain>
 <min>-0.35</min>
 <max> 0.35</max>
 </domain>
 <range>
 <min>-1</min>
 <max> 1</max>
 </range>
 <output>fcs/left-aileron-pos-norm</output>
 </aerosurface_scale>

 <aerosurface_scale name="Right aileron
Normalized">
 <input>fcs/right-aileron-pos-rad</input>
 <domain>
 <min>-0.35</min>

 <max> 0.35</max>
 </domain>
 <range>
 <min>-1</min>
 <max> 1</max>
 </range>
 <output>fcs/right-aileron-pos-norm</output>
 </aerosurface_scale>

 <summer name="Rudder Command Sum">
 <input>fcs/rudder-cmd-norm</input>
 <input>fcs/yaw-trim-cmd-norm</input>
 <clipto>
 <min>-1</min>
 <max>1</max>
 </clipto>
 </summer>

 <aerosurface_scale name="Rudder Control">
 <input>fcs/rudder-command-sum</input>
 <range>
 <min>-0.35</min>
 <max>0.35</max>
 </range>
 <output>fcs/rudder-pos-rad</output>
 </aerosurface_scale>

 <aerosurface_scale name="Rudder Normalized">
 <input>fcs/rudder-pos-rad</input>
 <domain>
 <min>-0.35</min>
 <max> 0.35</max>
 </domain>
 <range>
 <min>-1</min>
 <max> 1</max>
 </range>
 <output>fcs/rudder-pos-norm</output>
 </aerosurface_scale>
 </channel>
 </flight_control>

 <aerodynamics>
 <axis name="DRAG">
 <function name="aero/coefficient/CD0">

<description>Drag_at_zero_lift</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <table>
 <independentVar>aero/alpha-
rad</independentVar>
 <tableData>
 -1.5700 1.5000
 -0.2600 0.0560
 0.0000 0.0280
 0.2600 0.0560
 1.5700 1.5000
 </tableData>
 </table>
 </product>
 </function>
 <function name="aero/coefficient/CDi">
 <description>Induced_drag</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>aero/cl-squared</property>
 <value>0.0400</value>
 </product>
 </function>
 <function name="aero/coefficient/CDbeta">

<description>Drag_due_to_sideslip</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <table>

92

 <independentVar>aero/beta-
rad</independentVar>
 <tableData>
 -1.5700 1.2300
 -0.2600 0.0500
 0.0000 0.0000
 0.2600 0.0500
 1.5700 1.2300
 </tableData>
 </table>
 </product>
 </function>
 <function name="aero/coefficient/CDde">

<description>Drag_due_to_Elevator_Deflection</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>fcs/elevator-pos-
norm</property>
 <value>0.0300</value>
 </product>
 </function>
 </axis>

 <axis name="SIDE">
 <function name="aero/coefficient/CYb">

<description>Side_force_due_to_beta</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>aero/beta-rad</property>
 <value>-1.0000</value>
 </product>
 </function>
 </axis>

 <axis name="LIFT">
 <function name="aero/coefficient/CLalpha">

<description>Lift_due_to_alpha</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <table>
 <independentVar>aero/alpha-
rad</independentVar>
 <tableData>
 -0.2000 -0.7500
 0.0000 0.2500
 0.2300 1.4000
 0.6000 0.7100
 </tableData>
 </table>
 </product>
 </function>
 <function name="aero/coefficient/CLde">

<description>Lift_due_to_Elevator_Deflection</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>fcs/elevator-pos-
rad</property>
 <value>0.2000</value>
 </product>
 </function>
 </axis>

 <axis name="ROLL">
 <function name="aero/coefficient/Clb">

<description>Roll_moment_due_to_beta</description>
 <!-- aka dihedral effect -->
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>

 <property>aero/beta-rad</property>
 <value>-0.1000</value>
 </product>
 </function>
 <function name="aero/coefficient/Clp">

<description>Roll_moment_due_to_roll_rate</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>aero/bi2vel</property>
 <property>velocities/p-aero-
rad_sec</property>
 <value>-0.4000</value>
 </product>
 </function>
 <function name="aero/coefficient/Clr">

<description>Roll_moment_due_to_yaw_rate</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>aero/bi2vel</property>
 <property>velocities/r-aero-
rad_sec</property>
 <value>0.1500</value>
 </product>
 </function>
 <function name="aero/coefficient/Clda">

<description>Roll_moment_due_to_aileron</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>fcs/left-aileron-pos-
rad</property>
 <table>

<independentVar>velocities/mach</independentVar>
 <tableData>
 0.0000 0.1300
 2.0000 0.0570
 </tableData>
 </table>
 </product>
 </function>
 <function name="aero/coefficient/Cldr">

<description>Roll_moment_due_to_rudder</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>fcs/rudder-pos-
rad</property>
 <value>0.0100</value>
 </product>
 </function>
 </axis>

 <axis name="PITCH">
 <function name="aero/coefficient/Cmalpha">

<description>Pitch_moment_due_to_alpha</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/cbarw-ft</property>
 <property>aero/alpha-rad</property>
 <value>-0.5000</value>
 </product>
 </function>
 <function name="aero/coefficient/Cmde">

<description>Pitch_moment_due_to_elevator</description>
 <product>

93

 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/cbarw-ft</property>
 <property>fcs/elevator-pos-
rad</property>
 <table>

<independentVar>velocities/mach</independentVar>
 <tableData>
 0.0000 -0.5000 <!-- was -
1.1 -->
 2.0000 -0.2750
 </tableData>
 </table>
 </product>
 </function>
 <function name="aero/coefficient/Cmq">

<description>Pitch_moment_due_to_pitch_rate</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/cbarw-ft</property>
 <property>aero/ci2vel</property>
 <property>velocities/q-aero-
rad_sec</property>
 <value>-12.0000</value>
 </product>
 </function>
 <function name="aero/coefficient/Cmadot">

<description>Pitch_moment_due_to_alpha_rate</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/cbarw-ft</property>
 <property>aero/ci2vel</property>
 <property>aero/alphadot-
rad_sec</property>
 <value>-7.0000</value>
 </product>
 </function>
 </axis>

 <axis name="YAW">
 <function name="aero/coefficient/Cnb">

<description>Yaw_moment_due_to_beta</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>aero/beta-rad</property>

 <value>0.1200</value>
 </product>
 </function>
 <function name="aero/coefficient/Cnr">

<description>Yaw_moment_due_to_yaw_rate</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>aero/bi2vel</property>
 <property>velocities/r-aero-
rad_sec</property>
 <value>-0.1500</value>
 </product>
 </function>
 <function name="aero/coefficient/Cndr">

<description>Yaw_moment_due_to_rudder</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>fcs/rudder-pos-
rad</property>
 <value>-0.0500</value>
 </product>
 </function>
 <function name="aero/coefficient/Cnda">
 <description>Adverse_yaw</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <property>fcs/left-aileron-pos-
rad</property>
 <value>-0.0300</value>
 </product>
 </function>
 <function name="aero/coefficient/Cndi">

<description>Yaw_moment_due_to_tail_incidence</description
>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <property>metrics/bw-ft</property>
 <value>0.0007</value>
 </product>
 </function>
 </axis>
 </aerodynamics>
</fdm_config>

94

Appendix F: AP_Mount Revised update_mount_position Function

/// This one should be called periodically
void AP_Mount::update_mount_position(struct Location *guided_WP_target, bool
guided_mode_bool)
//added input arguments Jul13, ref. AP_Mount.h -cjn
{
#if MNT_RETRACT_OPTION == ENABLED
 static bool mount_open = 0; // 0 is closed
#endif

 switch((enum MAV_MOUNT_MODE)_mount_mode.get())
 {
#if MNT_RETRACT_OPTION == ENABLED
 // move mount to a "retracted position" or to a position where a fourth servo can
retract the entire mount into the fuselage
 case MAV_MOUNT_MODE_RETRACT:
 {
 Vector3f vec = _retract_angles.get();
 _roll_angle = vec.x;
 _tilt_angle = vec.y;
 _pan_angle = vec.z;
 break;
 }
#endif

 // move mount to a neutral position, typically pointing forward
 case MAV_MOUNT_MODE_NEUTRAL:
 {
 Vector3f vec = _neutral_angles.get();
 _roll_angle = vec.x;
 _tilt_angle = vec.y;
 _pan_angle = vec.z;
 break;
 }

 // point to the angles given by a mavlink message
 case MAV_MOUNT_MODE_MAVLINK_TARGETING:
 {
 Vector3f vec = _control_angles.get();
 _roll_control_angle = radians(vec.x);
 _tilt_control_angle = radians(vec.y);
 _pan_control_angle = radians(vec.z);
 stabilize();
 break;
 }

 // RC radio manual angle control, but with stabilization from the AHRS
 case MAV_MOUNT_MODE_RC_TARGETING:
 {
#if MNT_JSTICK_SPD_OPTION == ENABLED
 if (_joystick_speed) { // for spring loaded joysticks
 // allow pilot speed position input to come directly from an RC_Channel
 if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) {
 _roll_control_angle += rc_ch[_roll_rc_in-1]->norm_input() * 0.00001 *

_joystick_speed;
 if (_roll_control_angle < radians(_roll_angle_min*0.01))

_roll_control_angle = radians(_roll_angle_min*0.01);
 if (_roll_control_angle > radians(_roll_angle_max*0.01))

_roll_control_angle = radians(_roll_angle_max*0.01);
 }
 if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) {
 _tilt_control_angle += rc_ch[_tilt_rc_in-1]->norm_input() * 0.00001 *

_joystick_speed;
 if (_tilt_control_angle < radians(_tilt_angle_min*0.01))

_tilt_control_angle = radians(_tilt_angle_min*0.01);
 if (_tilt_control_angle > radians(_tilt_angle_max*0.01))

_tilt_control_angle = radians(_tilt_angle_max*0.01);

95

 }
 if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) {
 _pan_control_angle += rc_ch[_pan_rc_in-1]->norm_input() * 0.00001 *

_joystick_speed;
 if (_pan_control_angle < radians(_pan_angle_min*0.01)) _pan_control_angle

= radians(_pan_angle_min*0.01);
 if (_pan_control_angle > radians(_pan_angle_max*0.01)) _pan_control_angle

= radians(_pan_angle_max*0.01);
 }
 } else {
#endif
 // allow pilot position input to come directly from an RC_Channel
 if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) {
 _roll_control_angle = angle_input_rad(rc_ch[_roll_rc_in-1],

_roll_angle_min, _roll_angle_max);
 }
 if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) {
 _tilt_control_angle = angle_input_rad(rc_ch[_tilt_rc_in-1],

_tilt_angle_min, _tilt_angle_max);
 }
 if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) {
 _pan_control_angle = angle_input_rad(rc_ch[_pan_rc_in-1], _pan_angle_min,

_pan_angle_max);
 }
#if MNT_JSTICK_SPD_OPTION == ENABLED
 }
#endif
 stabilize();
 break;
 }

#if MNT_GPSPOINT_OPTION == ENABLED
 // point mount to a GPS point given by the mission planner
 case MAV_MOUNT_MODE_GPS_POINT:
 {
 if(_gps->fix) {
 //if in guided mode, calls calc_GPS_target_angle with guided

waypoint location
 if (guided_mode_bool==1) {
 calc_GPS_target_angle(guided_WP_target);
 }
 else {
 calc_GPS_target_angle(&_target_GPS_location);
 }
 stabilize();
 }
 break;
 }
#endif

 default:
 break;
 }

96

Appendix G: Ground_Vehicle Library Definition

/**
Ground_Vehicle.h: library for ground vehicle class
Author: Neal, Charles
Date: January 2014
Purpose: keeps track of ground vehicle being
 updated using follow-me mode.
***/

#ifndef Ground_Vehicle_h
#define Ground_Vehicle_h

#include "Arduino.h"
#include <AP_Common.h>
#include <AP_Math.h>

class Ground_Vehicle
{
 public:

 //Constructor
 Ground_Vehicle(Location start_location, int start_time);

 //Update all GV attributes
 void update_gv(Location new_location, int new_time, Location AC_location, int
desired_radius, float alt, float lead_time);

 //Call frequently to update the active flag
 void update_gv_active(int check_time);

 // Public Attributes
 Location current_location;
 Location lead_location;
 int time; //milliseconds from millis()
 int d_t; //milliseconds
 int heading_cd; //centi-degrees
 float speed; //m/s
 float turn_rate; //deg/s
 float standoff; //meters
 float close_rate; //m/s
 float J;
 float J_total;
 bool active;

 private:

 // Private Attributes
 struct Location _last_location;
 int _last_time;
 float _last_standoff;
 float _d_location;
 int _last_heading;
 float _slant_range;
 float _slant_range_desired;
 float _lat_temp;
 float _lng_temp;

};

#endif

9
7

A
p

p
en

d
ix

 H
: F

in
a
l P

ro
p

o
sed

 A
rd

u
P

la
n

e S
k

etc
h

 S
tru

ctu
re

Figure 45: Diagram of Modified ArduPlane File Relationships

A rd upla ne.pd e

l J defines Ground Vehicle.b

J
g: Global Variable N av igation.pde

r=--1 mediwn_loop:
function Enumeration

I ~ navigate: implements

function

I G round Vebicle.cpp I debug:

GV: Ground_ Vehicle int call s

- H update _gv _active:

J
nmt_follow: references I update _loiter.

J function instantiates int I function ,

J update_gv:

J
lead_ time_ s: I relative_bearing: I~ I function float I function instantiates

l J defines loiter_ range: AP M ount.b
int

camera _mount: AP _Mount
implements

instantiates loiter_dir:
float

I AP Mount.C)!J! I_ H update_mount_position: J
defines J Parameters.h

J
functlon

j_ threshold: I float

implements
offset:

I guided_ WP _target: J int I P arameters .J!de I location

I FSM_state_radius: J
GCS M av link.pde int

defines

n handleMessage: I call s

I d_hdg_to_tgtWP: J function I float referencesAlpdates
commands.pde

I send_ vfr _ hud:

J---- I guided_WP:

J references J set_guided_ WP:

J function l location

I function

references

calls J fast_loop: J L function

calls

98

Appendix I: Real-World Rascal APM Parameters

AA_J_THRESHOLD,0.04
AA_LOITER_DIR,1
AA_LOITER_RANGE,20
AA_MNT_FOLLOW,2
AA_THRT_RATIO,0.75
AAA_DEBUG,0
AHRS_BARO_USE,0
AHRS_GPS_GAIN,1
AHRS_GPS_USE,1
AHRS_RP_P,0.3
AHRS_TRIM_X,-0.017
AHRS_TRIM_Y,0.076
AHRS_TRIM_Z,0
AHRS_WIND_MAX,0
AHRS_YAW_P,0.3
ALT_CTRL_ALG,0
ALT_HOLD_FBWCM,0
ALT_HOLD_RTL,10000
ALT_MIX,1
ALT_OFFSET,0
ALT2PTCH_D,0.2
ALT2PTCH_I,0.2
ALT2PTCH_IMAX,600
ALT2PTCH_P,1.75
AMP_OFFSET,0
AMP_PER_VOLT,27.32
ARSP2PTCH_D,0
ARSP2PTCH_I,0.1
ARSP2PTCH_IMAX,500
ARSP2PTCH_P,0.65
ARSPD_ENABLE,1
ARSPD_FBW_MAX,22
ARSPD_FBW_MIN,6
ARSPD_OFFSET,3517.628
ARSPD_RATIO,1.994
ARSPD_USE,0
BATT_CAPACITY,1760
BATT_CURR_PIN,-1
BATT_MONITOR,0
BATT_VOLT_PIN,-1
CAM_TRIGG_TYPE,0
CMD_INDEX,0
CMD_TOTAL,2
COMPASS_AUTODEC,1
COMPASS_DEC,-0.099
COMPASS_LEARN,1
COMPASS_OFS_X,-57.363
COMPASS_OFS_Y,-8.322
COMPASS_OFS_Z,85.877
COMPASS_USE,1
ELEVON_CH1_REV,0
ELEVON_CH2_REV,0
ELEVON_MIXING,0
ELEVON_REVERSE,0
ENRGY2THR_D,0
ENRGY2THR_I,0
ENRGY2THR_IMAX,20
ENRGY2THR_P,1
FBWB_ELEV_REV,0
FENCE_ACTION,0
FENCE_CHANNEL,0
FENCE_MAXALT,0
FENCE_MINALT,0
FENCE_TOTAL,0
FLAP_1_PERCNT,0
FLAP_1_SPEED,0

FLAP_2_PERCNT,0
FLAP_2_SPEED,0
FLTMODE_CH,8
FLTMODE1,10
FLTMODE2,2
FLTMODE3,2
FLTMODE4,2
FLTMODE5,0
FLTMODE6,0
FORMAT_VERSION,13
FS_GCS_ENABL,0
FS_LONG_ACTN,0
FS_SHORT_ACTN,0
GND_ABS_PRESS,98367.6
GND_TEMP,27.274
HDNG2RLL_D,0.1
HDNG2RLL_I,0.15
HDNG2RLL_IMAX,600
HDNG2RLL_P,1.5
INPUT_VOLTS,4.68
INS_ACCOFFS_X,1.227
INS_ACCOFFS_Y,-7.232
INS_ACCOFFS_Z,4.337
INS_ACCSCAL_X,1
INS_ACCSCAL_Y,1
INS_ACCSCAL_Z,1
INS_GYROFFS_X,-0.012
INS_GYROFFS_Y,0.033
INS_GYROFFS_Z,0.029
INS_MPU6K_FILTER,0
INS_PRODUCT_ID,88
INVERTEDFLT_CH,0
KFF_PTCH2THR,0
KFF_PTCHCOMP,0.125
KFF_RDDRMIX,0.4
KFF_THR2PTCH,0
LAND_FLARE_ALT,3
LAND_FLARE_SEC,2
LAND_PITCH_CD,0
LIM_PITCH_MAX,2500
LIM_PITCH_MIN,-2500
LIM_ROLL_CD,4000
LOG_BITMASK,0
MAG_ENABLE,1
MANUAL_LEVEL,0
MIN_GNDSPD_CM,0
MNT_ANGMAX_PAN,17999
MNT_ANGMAX_ROL,4500
MNT_ANGMAX_TIL,1000
MNT_ANGMIN_PAN,-18000
MNT_ANGMIN_ROL,-4500
MNT_ANGMIN_TIL,-9000
MNT_CONTROL_X,0
MNT_CONTROL_Y,0
MNT_CONTROL_Z,0
MNT_JSTICK_SPD,0
MNT_MODE,1
MNT_NEUTRAL_X,0
MNT_NEUTRAL_Y,-2200
MNT_NEUTRAL_Z,12
MNT_RC_IN_PAN,0
MNT_RC_IN_ROLL,0
MNT_RC_IN_TILT,0
MNT_RETRACT_X,0
MNT_RETRACT_Y,0
MNT_RETRACT_Z,0

99

MNT_STAB_PAN,1
MNT_STAB_ROLL,1
MNT_STAB_TILT,1
PTCH2SRV_D,0.23
PTCH2SRV_I,0.25
PTCH2SRV_IMAX,700
PTCH2SRV_P,2.3
RC1_DZ,30
RC1_MAX,1861
RC1_MIN,1143
RC1_REV,1
RC1_TRIM,1200
RC10_DZ,0
RC10_FUNCTION,0
RC10_MAX,1900
RC10_MIN,1100
RC10_REV,1
RC10_TRIM,1500
RC11_DZ,0
RC11_FUNCTION,0
RC11_MAX,1900
RC11_MIN,1100
RC11_REV,1
RC11_TRIM,1500
RC2_DZ,30
RC2_MAX,2014
RC2_MIN,990
RC2_REV,-1
RC2_TRIM,1200
RC3_DZ,3
RC3_MAX,1939
RC3_MIN,989
RC3_REV,1
RC3_TRIM,990
RC4_DZ,30
RC4_MAX,2015
RC4_MIN,989
RC4_REV,1
RC4_TRIM,1200
RC5_DZ,0
RC5_FUNCTION,6
RC5_MAX,1625
RC5_MIN,1390
RC5_REV,-1
RC5_TRIM,1500
RC6_DZ,0
RC6_FUNCTION,7
RC6_MAX,2000
RC6_MIN,1000
RC6_REV,1
RC6_TRIM,1500
RC7_DZ,0
RC7_FUNCTION,0
RC7_MAX,1499
RC7_MIN,1498
RC7_REV,1
RC7_TRIM,1499
RC8_DZ,0
RC8_FUNCTION,0
RC8_MAX,1761
RC8_MIN,989
RC8_REV,1
RC8_TRIM,1758
RC9_DZ,0
RC9_FUNCTION,0

RC9_MAX,1900
RC9_MIN,1100
RC9_REV,1
RC9_TRIM,1500
RLL2SRV_D,0.2
RLL2SRV_I,0.1
RLL2SRV_IMAX,500
RLL2SRV_P,2
RSSI_PIN,-1
RST_MISSION_CH,0
RST_SWITCH_CH,0
RUDDER_STEER,0
SCALING_SPEED,15
SERIAL3_BAUD,57
SR0_EXT_STAT,2
SR0_EXTRA1,10
SR0_EXTRA2,10
SR0_EXTRA3,2
SR0_PARAMS,50
SR0_POSITION,3
SR0_RAW_CTRL,1
SR0_RAW_SENS,2
SR0_RC_CHAN,2
SR3_EXT_STAT,1
SR3_EXTRA1,1
SR3_EXTRA2,1
SR3_EXTRA3,1
SR3_PARAMS,50
SR3_POSITION,1
SR3_RAW_CTRL,1
SR3_RAW_SENS,1
SR3_RC_CHAN,1
STICK_MIXING,1
SYS_NUM_RESETS,13
SYSID_MYGCS,255
SYSID_SW_TYPE,0
SYSID_THISMAV,1
TELEM_DELAY,0
THR_FAILSAFE,1
THR_FS_VALUE,950
THR_MAX,100
THR_MIN,0
THR_PASS_STAB,0
THR_SLEWRATE,35
THR_SUPP_MAN,0
THROTTLE_NUDGE,1
TRIM_ARSPD_CM,1200
TRIM_AUTO,0
TRIM_PITCH_CD,0
TRIM_THROTTLE,65
VOLT_DIVIDER,3.56
WHEELSTEER_D,0
WHEELSTEER_I,0
WHEELSTEER_IMAX,0
WHEELSTEER_P,0
WP_LOITER_RAD,150
WP_RADIUS,40
XTRK_ANGLE_CD,4500
XTRK_GAIN_SC,80
XTRK_MIN_DIST,50
XTRK_USE_WIND,1
YW2SRV_D,0.1
YW2SRV_I,0
YW2SRV_IMAX,0
YW2SRV_P,1.5

100

Appendix J: Simulated Rascal APM Parameters

AA_J_THRESHOLD,0.003
AA_LEAD_TIME_S,3
AA_LOITER_DIR,1
AA_LOITER_RANGE,65
AA_MNT_FOLLOW,2
AA_OFFSET_IN2OUT,35
AA_OFFSET_OUT2IN,35
AAA_DEBUG,0
AHRS_BARO_USE,0
AHRS_GPS_GAIN,1
AHRS_GPS_USE,1
AHRS_RP_P,0.4
AHRS_TRIM_X,0
AHRS_TRIM_Y,0
AHRS_TRIM_Z,0
AHRS_WIND_MAX,0
AHRS_YAW_P,0.4
ALT_CTRL_ALG,0
ALT_HOLD_FBWCM,0
ALT_HOLD_RTL,10000
ALT_MIX,1
ALT_OFFSET,0
ALT2PTCH_D,0
ALT2PTCH_I,0.1
ALT2PTCH_IMAX,500
ALT2PTCH_P,0.65
AMP_OFFSET,0
AMP_PER_VOLT,27.32
ARSP2PTCH_D,0
ARSP2PTCH_I,0.1
ARSP2PTCH_IMAX,500
ARSP2PTCH_P,0.65
ARSPD_ENABLE,0
ARSPD_FBW_MAX,22
ARSPD_FBW_MIN,6
ARSPD_OFFSET,1120.364
ARSPD_RATIO,1.994
ARSPD_USE,0
BATT_CAPACITY,1760
BATT_CURR_PIN,2
BATT_MONITOR,0
BATT_VOLT_PIN,1
CAM_TRIGG_TYPE,0
CMD_INDEX,0
CMD_TOTAL,0
COMPASS_AUTODEC,1
COMPASS_DEC,-0.071
COMPASS_LEARN,1
COMPASS_OFS_X,4.372
COMPASS_OFS_Y,12.571
COMPASS_OFS_Z,-17.435
COMPASS_USE,1
ELEVON_CH1_REV,0
ELEVON_CH2_REV,0
ELEVON_MIXING,0
ELEVON_REVERSE,0
ENRGY2THR_D,0
ENRGY2THR_I,0
ENRGY2THR_IMAX,20
ENRGY2THR_P,0.5
FBWB_ELEV_REV,0
FENCE_ACTION,0
FENCE_CHANNEL,0
FENCE_MAXALT,0
FENCE_MINALT,0
FENCE_TOTAL,0

FLAP_1_PERCNT,0
FLAP_1_SPEED,0
FLAP_2_PERCNT,0
FLAP_2_SPEED,0
FLTMODE_CH,8
FLTMODE1,10
FLTMODE2,11
FLTMODE3,5
FLTMODE4,2
FLTMODE5,2
FLTMODE6,0
FORMAT_VERSION,13
FS_GCS_ENABL,0
FS_LONG_ACTN,0
FS_SHORT_ACTN,0
GND_ABS_PRESS,97488.42
GND_TEMP,32.23528
HDNG2RLL_D,0.1
HDNG2RLL_I,0.02
HDNG2RLL_IMAX,500
HDNG2RLL_P,1
INPUT_VOLTS,4.68
INS_ACCOFFS_X,27.988
INS_ACCOFFS_Y,-0.098
INS_ACCOFFS_Z,-82.307
INS_ACCSCAL_X,1
INS_ACCSCAL_Y,1
INS_ACCSCAL_Z,1
INS_GYROFFS_X,0
INS_GYROFFS_Y,0
INS_GYROFFS_Z,0
INS_MPU6K_FILTER,0
INS_PRODUCT_ID,0
INVERTEDFLT_CH,0
KFF_PTCH2THR,0
KFF_PTCHCOMP,0.35
KFF_RDDRMIX,0.25
KFF_THR2PTCH,0
LAND_FLARE_ALT,3
LAND_FLARE_SEC,2
LAND_PITCH_CD,0
LIM_PITCH_MAX,2000
LIM_PITCH_MIN,-2000
LIM_ROLL_CD,4500
LOG_BITMASK,334
MAG_ENABLE,1
MANUAL_LEVEL,0
MIN_GNDSPD_CM,0
MNT_ANGMAX_PAN,17999
MNT_ANGMAX_ROL,4500
MNT_ANGMAX_TIL,8000
MNT_ANGMIN_PAN,-17999
MNT_ANGMIN_ROL,-4500
MNT_ANGMIN_TIL,-8000
MNT_CONTROL_X,0
MNT_CONTROL_Y,-40
MNT_CONTROL_Z,90
MNT_JSTICK_SPD,0
MNT_MODE,1
MNT_NEUTRAL_X,0
MNT_NEUTRAL_Y,0
MNT_NEUTRAL_Z,0
MNT_RC_IN_PAN,0
MNT_RC_IN_ROLL,0
MNT_RC_IN_TILT,0
MNT_RETRACT_X,0

101

MNT_RETRACT_Y,0
MNT_RETRACT_Z,0
MNT_STAB_PAN,1
MNT_STAB_ROLL,0
MNT_STAB_TILT,1
PTCH2SRV_D,0.15
PTCH2SRV_I,0.2
PTCH2SRV_IMAX,700
PTCH2SRV_P,2
RC1_DZ,30
RC1_MAX,1911
RC1_MIN,1096
RC1_REV,-1
RC1_TRIM,1200
RC10_DZ,0
RC10_FUNCTION,0
RC10_MAX,1900
RC10_MIN,1100
RC10_REV,1
RC10_TRIM,1500
RC11_DZ,0
RC11_FUNCTION,0
RC11_MAX,1900
RC11_MIN,1100
RC11_REV,1
RC11_TRIM,1500
RC2_DZ,30
RC2_MAX,1903
RC2_MIN,1092
RC2_REV,-1
RC2_TRIM,1200
RC3_DZ,3
RC3_MAX,1900
RC3_MIN,1085
RC3_REV,1
RC3_TRIM,1086
RC4_DZ,30
RC4_MAX,1898
RC4_MIN,1086
RC4_REV,-1
RC4_TRIM,1200
RC5_DZ,0
RC5_FUNCTION,7
RC5_MAX,2000
RC5_MIN,1000
RC5_REV,1
RC5_TRIM,1552
RC6_DZ,0
RC6_FUNCTION,6
RC6_MAX,2000
RC6_MIN,1000
RC6_REV,1
RC6_TRIM,1498
RC7_DZ,0
RC7_FUNCTION,0
RC7_MAX,1498
RC7_MIN,1497
RC7_REV,1
RC7_TRIM,1498
RC8_DZ,0
RC8_FUNCTION,10
RC8_MAX,1900
RC8_MIN,1100
RC8_REV,1
RC8_TRIM,1901
RC9_DZ,0

RC9_FUNCTION,0
RC9_MAX,1900
RC9_MIN,1100
RC9_REV,1
RC9_TRIM,1500
RLL2SRV_D,0.08
RLL2SRV_I,0.2
RLL2SRV_IMAX,1000
RLL2SRV_P,1.75
RSSI_PIN,-1
RST_MISSION_CH,0
RST_SWITCH_CH,0
RUDDER_STEER,0
SCALING_SPEED,15
SERIAL3_BAUD,57
SR0_EXT_STAT,2
SR0_EXTRA1,10
SR0_EXTRA2,10
SR0_EXTRA3,2
SR0_PARAMS,50
SR0_POSITION,3
SR0_RAW_CTRL,50
SR0_RAW_SENS,2
SR0_RC_CHAN,2
SR3_EXT_STAT,0
SR3_EXTRA1,0
SR3_EXTRA2,0
SR3_EXTRA3,0
SR3_PARAMS,0
SR3_POSITION,0
SR3_RAW_CTRL,0
SR3_RAW_SENS,0
SR3_RC_CHAN,0
STICK_MIXING,1
SYS_NUM_RESETS,26
SYSID_MYGCS,255
SYSID_SW_TYPE,0
SYSID_THISMAV,1
TELEM_DELAY,0
THR_FAILSAFE,1
THR_FS_VALUE,950
THR_MAX,100
THR_MIN,0
THR_PASS_STAB,0
THR_SLEWRATE,20
THR_SUPP_MAN,0
THROTTLE_NUDGE,1
TRIM_ARSPD_CM,2500
TRIM_AUTO,0
TRIM_PITCH_CD,0
TRIM_THROTTLE,65
VOLT_DIVIDER,3.56
WHEELSTEER_D,0
WHEELSTEER_I,0
WHEELSTEER_IMAX,0
WHEELSTEER_P,0
WP_LOITER_RAD,150
WP_RADIUS,45
XTRK_ANGLE_CD,5500
XTRK_GAIN_SC,60
XTRK_MIN_DIST,50
XTRK_USE_WIND,1
YW2SRV_D,0.7
YW2SRV_I,0.01
YW2SRV_IMAX,0
YW2SRV_P,0.75

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

27-03-2014

2. REPORT TYPE

Master's Thesis

3. DATES COVERED (From - To)

Aug 2012 - Mar 2014

4. TITLE AND SUBTITLE

Feasibility of Onboard Processing of Heuristic Path Planning and Navigation

Algorithms within SUAS Autopilot Computational Constraints

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Neal, Charles J, Capt

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT-ENV-14-M-44

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RQQA

2210 8th Street
Bldg 146, Room 300
Wright-Patterson AFB, OH 45433
COMM 937-713-7038; Email: derek.kingston@us.af.mil

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Statement A

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

This research addresses the flight path optimality of Small Unmanned Aerial Systems (SUAS) conducting overwatch missions for
convoys or other moving ground targets. Optimal path planning algorithms have been proposed, but are computationally excessive for
real-time execution. Using the Arduino-based ArduPilot Mega Unmanned Aerial Vehicle (UAV) autopilot system,
Hardware-in-the-Loop (HIL) analysis is conducted on default mobile target tracking methods. Designed experimentation is used to
determine autopilot settings that improve performance with respect to path optimality. Optimality is characterized using a weighted

combination of stand-off range and aircraft roll-rate. Finally, a state-based heuristic navigation strategy is designed, developed, and tested
that approximates optimal path solutions and can be used for real-time execution. A 66% improvement in mean performance is achieved
over default target tracking methods. Finite state machine improvements are found to be statistically significant and it is concluded that
heuristic strategies can be a viable approach to realizing near-optimal SUAS flight paths utilizing onboard processing capabilities.

15. SUBJECT TERMS

UAV, SUAS, autopilot, optimal path planning, mobile target tracking, convoy overwatch, heuristic approximation, finite state
machine, hardware-in-the-loop, flight test

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

116

19a. NAME OF RESPONSIBLE PERSON

Dr. John M. Colombi AFIT/ENV a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636 x3347 john.colombi@afit.edu

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	Feasibility of Onboard Processing of Heuristic Path Planning and Navigation Algorithms within SUAS Autopilot Computational Constraints
	Charles J. Neal
	Recommended Citation

	Microsoft Word - Neal Thesis V14.docx

