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Abstract 

Obtaining a cost effective way to produce safe drinking water is not only a 

priority of almost every residential community in the United States, but the Department 

of Defense has a specific interest cutting edge technology in this domain for disinfecting 

water in a foreign nation during a war campaign.  The development of ultraviolet (UV) 

Light Emitting Diode (LED) technology is a potentially important step towards being 

able to conduct this kind of disinfection with fewer resources.  The traditional UV source 

in use for disinfection today is the mercury lamp.  This UV source requires high amounts 

of voltage, requires significant periods of time for warming up, and is not typically 

lightweight enough or versatile enough to be useful in a deployed setting. 

This project is intended to characterize the optical power for various short 

wavelength UV LEDs.  This optical power is important in determining how much current 

is needed to deactivate bacteria and other pathogens or to optimize hydroxyl radical 

production to oxidize compounds in water. 

The results from this study indicate there is a linear relationship between optical 

power and current for air measurements.  The data collected in this research were applied 

to characterize the performance of LEDs for the two tandem projects and building a model 

to optimize the design and performance of UV LED based reactors.  Additionally, this 

research attempted to measure UV LED emission in water.  Issues associated with these 

measurements are discussed. 
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I. Introduction 

General Background 

 LEDs are used in multiple applications in today’s society.  A few examples would be in the 

auto industry in tail lights, headlights, and dash lights (Lenk and Lenk, 2010).  More specifically, UV 

LEDs have been utilized in chemical recognition equipment, such as high performance liquid 

chromatography (HPLC) (Phytosafe, 2013).  The HPLC uses UV detectors to analyze radiation 

absorbance to identify chemicals of concern, such as carcinogenic agents (Seton Hall University, 

2014).  UV lamps are currently popular in the field of water disinfection, which is the focus of this 

research effort.  These lamps are effective in directly deactivating bacteria and other pathogens by 

interfering cellular functions through disrupting the deoxyribonucleic acid (DNA) chain within 

bacteria or spores (Wuertele et al, 2011).  Recently, interest has also grown in the use of ultraviolet 

light to aid the production of hydroxyl radicals from peroxide in water.  These highly reactive radicals 

can be used to oxidize organic pollutants (US Peroxide, 2012).  Due to some of the issues experienced 

with conventional florescent lamps, LEDs are of interest in this field of study. 

LEDs are of particular interest for this research for various reasons, including their durability 

during handling and transit (especially important for deployed settings), their ability to be altered to 

multiple different wavelengths for different purposes, and the fact that they do not have to be disposed 

of as hazardous waste, unlike florescent lamps which contain mercury.  Further, these devices can be 

cycled rapidly (i. e., they can turn on and off quickly), are light weight and compact, have a narrow 

bandwidth, and require much lower voltage input than the typical mercury lamps.  Additionally, these 

devices have a potential for higher efficiency and longer life.   
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 The focus for this research included improving an understanding of the life, power 

consumption, and efficiency of the UV LEDs.  A study conducted by Gadelmoula et al (2009) 

explored the inactivation of Escherichia coli using continuous UV output and a pulsed 9.1 percent duty 

cycle output using the same peak power.  This research indicated that the time integrated current 

required to drive the UV LED was more than ten times the energy as the pulsed current to produce the 

same result.  These results suggest a pulsed system could be designed to perform the same task as a 

continuous system while extending the life and reducing the power requirement of the UV LEDs.  

However, as this researcher did not quantify the power output of the UV LEDs in pulsed and 

continuous modes, it is not clear that the pulsed configuration exposed the bacteria to optical power 

that was only 9.1% of the continuous condition.  Therefore, the goal of the present research was to 

enable the characterization of UV LEDs in air and water when the UV LEDs are driven continuously 

or in a pulsed mode to permit the power from the UV LEDs and the dose to be quantified. 

 

Problem Statement 

 There are three related projects that will be referenced throughout this thesis.  The hydroxyl 

radical project refers to using UV LEDs and hydrogen peroxide to produce hydroxyl radicals and use 

the radicals to break down hazardous chemicals.  The second project that will be referenced is the 

drinking water disinfection, which refers to using UV LEDs to interrupt the DNA chain in bacteria.  

The third project that will be referenced is the model that will take all of the data collected to predict 

how to optimize the UV LEDs.  There needs to be a way to quantify the hydroxyl radical production 

and DNA destruction as a function of a known optical power reference.  Currently, there is no standard 

measurement method for assessing optical power of an immersed UV LED.  Further, characterization 

of UV LED power output in air or water has not been fully addressed. 
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Research Objectives/Questions/Hypotheses 

 The objective of this research effort is to explore the differences in how UV LED optical 

performance changes in water as compared to air.  The two parameters that are expected to be 

different, which are most important to the performance of the UV LED, are the temperature of the UV 

LED and the efficiency of light emission into the medium of interest, which in this case is water.  The 

hypothesis is that water will decrease the temperature of the UV LED, which typically extends UV 

LED lifetime and improves output efficiency (Lenk/Lenk, 2010).  Further emitting energy directly into 

water, which has a higher index of refraction than air, will increase the power efficiency of UV LEDs 

by improving the coupling of energy into water.  The data collected from this research will then be 

used by a companion researcher to create a model that will be able to predict power consumption, 

lifetime, and AOP utility for the UV LEDs being studied.  This model will also have the ability to 

estimate the parameters for the UV LEDs that are being driven in pulsed or continuous current modes.  

This model will then be used to optimize the UV LED for use in water treatment.  Another innovative 

feature of this project includes applying current of various durations to the UV LEDs rather than 

continuous current, which is expected to reduce the power requirements and extend the life of the UV 

LED when applied in water treatment. 

 The specific questions this project is expected to be able to answer are: 

1. What is the relationship between UV energy output and input current for commercially-

available GaN UV LEDs  when these lamps are driven continuously or pulsed at various duty 

cycles? 

2. Is there a change in the relationship between UV energy output and input current when these 

GaN UV LEDs are immersed in water than when measured in air and can this relationship be 

explained by a simple Snell’s Law relationship? 

3. How do we measure power efficiency of UV LEDs in water? 

Assumptions/Limitations 
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 There were several limitations that affected this research.  The project was restricted to using 

commercially available, off-the-shelf UV LEDs at 240, 260, 265, and 270 nm wavelengths (SETi, 

2014).  Sensor Electronic Technology, Incorporated (SETi) was one of the few manufacturers of these 

UV LEDs worldwide and therefore the they would be sourced from this supplier.  Another important 

limitation was the variability of the vendor’s UV LED devices.  This constraint was also due to the 

cutting edge nature of this technology.  This issue is expected to be eliminated or at least reduced 

significantly as the technology becomes more advanced.  The need to understand the reflectance of 

Spectralon®
, a coating material inside of the integrating sphere used in this study, introduced another 

constraint.  This material had not been well characterized in the ultraviolet range and had not been well 

characterized when interfacing with water rather than air.  Reflectance measurements were conducted 

using the CARY 5000 (CARY 5000, 2011), a ultraviolet and visible spectrum photospectrometer, in 

the AFIT Physics Department, which was not designed to permit water measurements.  One final 

limitation was the integrating sphere, which is used to measure luminous flux and optical power, was 

not received until late in the project.  This limitation forced the development of measurement 

techniques in a shorter than desired time period.  Further, as the manufacturer of this instrument had no 

previous experience in constructing measurement devices for measuring optical power output in water, 

this arrangement was speculative. 

 An assumption made in this work is that the results obtained using the current families of UV 

LEDs can be extrapolated to other UV LEDs.  Further, UV LED measurements are assumed to be 

representative of UV LED performance in the water reactors used in companion portions of this 

research. 
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II. Literature Review 

A study relating optical power and the associated log kills of the bacteria being studied was 

conducted in one of the articles reviewed.  This study proposed various equations accounting for losses 

experienced during data collection (Gadelmoula et al, 2009).  Whenever calculations have to be 

performed, a certain amount of error is introduced.  The more precise way to conduct the experiment 

would be to eliminate surfaces that have to be accounted for as losses.  In some instances, there may 

not be a way to reduce the effect of losses.  However, in Gadelmoula et al’s (2009) study there are a 

few losses that could be eliminated from the experiment.  For example, this research imposed an air 

gap and a quartz cover between the UV LED and the water being disinfected which resulted in optical 

losses, whcih had to be estimated.  Snell’s law describes how light bends went it transmits through 

different media.  The media of most interest for this research is air and water.  Since the index of 

refraction is greater for water than air, there is a high likelihood that water will be a more efficient 

media for light to travel through than air.  However, a more efficient way to irradiate a chamber where 

disinfection (and chemical oxidation) is the objective is to have the UV LED submerged in the media 

of interest (Gadelmoula et al, 2009). 

A 9.1 percent duty cycle was studied for the air stream disinfection was 9.1 percent using a 

pulse that was oscillated between 10 ms on and 100 ms off (Gadelmoula et al, 2009).  The desired 

current for water disinfection, which was an important part of this research effort, was 20 mA 

(Wuertele, 2011).  The better the efficiency and the longer the life of the UV LED, the more efficient 

the water disinfection will be.  The use of a pulsed light source with reduced average power was 

expected to extend the lifetime of the UV LED for a given power efficiency.  The use of this pulsed 

signal provided an initial set of conditions to determine if similar results could be obtained when 

decontaminating water.  Since drinking water is an ingestion hazard for humans, this may prove to be a 
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very useful technology for commercial applications and the Department of Defense for state-side 

compliance and during wartime campaigns when the purchase of water or large scale disinfection may 

not be an option. 

For the scope of this project, an integrating sphere is the primary instrument used to obtain 

optical power measurements.  These devices are particularly useful when measuring the output from 

devices with output that varies as a function of angle as they permit the energy across all angles to be 

integrated.  Integrating spheres are often used to measure luminous flux, but are also useful in 

measuring optical power.  The preferred size of the sphere is four to five times larger than the diameter 

of the light source (Lenk and Lenk, 2010).  These spheres may range in size from a few centimeters to 

large enough to enclose a human.  In an integrating sphere, light is scattered from the source in all 

directions and reflected from the highly reflective material which coats the inside the sphere, until the 

light encounters a collector.  This collector then permits the luminous flux (optical power) to be 

integrated across all angles.  The illumination source is typically placed inside the sphere.  Spheres are 

usually designed so the collector is behind a baffle, which blocks the light to increase the accuracy of 

the instrument.  This baffle is especially important because it prevents the detector from receiving light 

directly from the illumination source, which can adversely affect the measurement.  The integrating 

sphere must be calibrated to a standard light source, which is traceable to a national or international 

standard.  A light source must be used as a calibration source to account for the inner surface of the 

integrating sphere, since it is not 100 percent reflective.  The preferred collector is a spectroradiometer, 

which separates light by wavelength and measures the amount of light at each wavelength.  A 

photometer can be used to measure luminance of a visible light, but is only capable of measuring 

lumens (not spectral information) (Lenk and Lenk, 2010). 
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 For an integrating sphere to operate properly, it is important to have a highly reflective 

surface inside the sphere.  Further, this surface needs to scatter well so that all angles of light emitted 

from the light source can be mixed.  This is necessary to permit measurements to be captured from 

the exit or measurement port, which is a very small area.  The inner surface of most modern 

laboratory spheres are coated with material called Spectralon®, which is a branded version of a 

Teflon® material used by Labsphere®\.  Spectralon® has a few interesting characteristics that are 

important to note.  First, Spectralon® has a high reflectance across the entire visible spectrum and far 

into the infrared.  Labsphere®\ claims reflectance for Spectralon® from wavelengths 250 nm to 2500 

nm to be as high as 99 percent (Labsphere, 2014).  However, it has been reported that the reflectance 

of Spectralon® is greatly reduced for short wavelengths (Moller, 2003).  In fact, Spectralon® has a 

reflectance of approximately 90 percent for wavelengths between 254 nm and 365 nm (Moller, 

2003).  Further, a 30 percent reflectance was observed at a 300 nanometer wavelength in a study 

cited by Moller (2003). 

Another important point to note for future research is the degradation of Spectralon®.  For 

wavelengths less than 450 nanometers, simply exposing Spectralon® to normal room light can cause 

degradation.  Degradation appeared to occur after the first irradiation at these wavelengths, even if 

no further irradiation occurred.  The largest degradations were observed for samples that were 

observed for more than one year (Moller, 2003).  Another article suggested that polycyclic aromatic 

hydrocarbons in the ambient air could be a possible catalyst for this degradation (Ping, 2003).  When 

the fluorescence spectra waere analyzed for multiple integrating spheres.  Florescence of Spectralon® 

decreased between 250nm and 400 nm as the wavelength of the laser increased.  The decrease in 

florescence is not intrinsic to the polytetrafluoroethylene  PTFE  (Teflon) material inside of the 

spheres.  The variations are suspected to be associated with contamination of the PTFE inside of the 
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spheres with volatile impurities from the manufacturing process or exposure to a contaminated 

environment (Ping, 2003).  This research demonstrates that PTFE should have a relatively high 

reflectance for UV energy with wavelengths longer than 250 nm, albeit slightly lower than that for 

visible energy.  The previous research did not discuss the effect that water has on the reflectance of 

the PTFE.  Further, that PTFE permits a high degree of diffusion because it is porous, which allows 

light to enter the surface and reflect many times within the material.  This suggests that water could 

have some effect on the diffusive properties of this material and thus the way light interacts with it. 

 For this research, it is important to understand the function of LEDs.  As the name infers, LEDs 

are diodes and as such permit current to flow in only one direction.  LEDs are broken into two main 

classes: small devices and power devices.  Small devices are sold by the tens of billions every year and 

usually range in power from 20 mA to 100 mA.  Small devices are seen in all kinds of applications, but 

a few examples would be automobiles, cell phones, and traffic lights (Lenk and Lenk, 2010).  Large 

devices are relatively new, as these devices have come into existence within the last 15 years (Kuo et 

al, 1990).  These devices produce enough light to serve as a true illumination device and can draw 0.1 

to 1.0 mA (Cree, 2014).  UV LEDs have only recently become available and therefore have very few 

manufacturers.  Sensor Electronic Technology, Inc (SETi) is a small company, which developed UV 

LED technology using funding primarily from Defense Advanced Research Projects Agency 

(DARPA) for use in sensing applications.  As such, SETi is one of only a few vendors that offer these 

UV LEDs (SETi, 2014).  Ohm’s law does not apply for diodes.  The relationship between voltage and 

current is not linear, but is rather exponential.  Therefore, LEDs are considered current devices, as the 

energy output of the diode is linearly correlated with the current that is passed through the device.  

Theoretically, the current flowing through the LED would be dependent upon the voltage to which the 

diode is exposed.  In reality this relationship is more complicated as other factors, such as the 



20 

 

temperature and the size of the device, also play a role.  This is a key point because overdriving an 

LED may cause an increase in power output, but overdriving may also cause an increase in 

temperature, reducing efficiency and power output causing a shortened life of the LED.  Efficiency is 

defined as the ratio of the power output to the power input, measured in watts.  Efficiency is generally 

reduced as the LED warms up.  Another important performance parameter is whether the LED is being 

pulsed or is being used as continuous wave.  If the LED is pulsed at a high frequency, the device is 

dependent on the average power for the temperature.  If the LED is pulsed at a low frequency (slow), 

there may be adequate time for the die in the LED to cool, which can substantially affect the life of the 

LED.  The thermal time constant of the LED then determines the speed of degradation (Lenk and 

Lenk, 2010). 

 Typically, current increases with an increase in input voltage, once the voltage exceeds a 

threshold voltage.  Overdriving, which is sending too much current through the LED, can significantly 

improve the output of the LED, but typically drastically reduces the lifetime of the LED (Lenk and 

Lenk, 2010) 

For a direct current power system, the input power is calculated by multiplying the current and 

the voltage.  This is not a trivial calculation, however, since the measurement of the current and 

voltage must be taken at the same place.  Therefore, the use of a digital voltmeter will likely be 

necessary to determine the efficiency of the device, as well as measurement of the energy output of the 

LED at the known input power (Lenk and Lenk, 2010). 

The final point that will be discussed in this chapter is what current data exists on optical 

power measurements.  Currently, no optical power measurements exist for UV LEDs in water.  This 

research intends to characterize the optical power for 240 nm, 260 nm, 265 nm, and 270 nm UV 

LEDs.  These UV LEDs are of particular interest due to their applications in water treatment.  
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Understanding the optical power is important for many reasons.  This research effort focuses on 

using these measurements to understand the voltage needed to maximize the UV LEDs performance 

for the disinfection of drinking water and the production of hydroxyl radicals. 
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III. Materials and Methods 

 This chapter will discuss the experimental apparatus, the methods used to collect the data, and 

the experimental design for this research effort that will be applied within this document. Three 

experiments were conducted with several instruments required for each.  To understand optical 

performance of the integrating sphere, a characterization of the reflectance of Spectralon® was first 

conducted.  For the reflectance measurements, a CARY 5000 was used (CARY 5000, 2011).  This 

instrument was not intended to operate with water, so a sample holder was fabricated to enable these 

measurements.  A computer program (DASYLAB) (DASYLAB, 2014), a data acquisition device USB 

driver (Measurement Computing, 2014), and a driver board were required were required to drive the 

UV LED for the air and water experiments.  The air and water experiments had their own required 

hardware and software programs.  A primary focus of this research was to quantify and compare the 

optical performance of UV LEDs in both air and water.  This will allow the extension of LED use from 

air, where they are typically characterized, to water, which represents the environment under which the 

UV LEDs will be applied for water purification. 

Apparatus 

Reflection Instrumentation 

The apparatus used to support these measurements was the CARY 5000, photospectrometer, 

from the Air Force Institute of Technology’s Physics Department (CARY 5000, 2014).  The CARY 

5000 was designed to perform measurements only for a sample in air.  To permit measurements to 

be taken in the water matrix with the CARY 5000, an apparatus had to be created to hold the 

Spectralon® sample.  This sample holder was designed to fit in the CARY swivel table sample 

holder.  In addition to this holder an insert was designed to hold a Spectralon® sample, which was a 

circular sample having about a 1 inch diameter.  Figure 1 shows a picture of the sample holder and 
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insert.  The sample holder was a water tight box made predominantly of a plastic material with a 

quartz window.  The quartz window allows for effective light transmission in order to measure the 

reflectance of the Spectralon® in the insert. 

 

Figure 1: Sample holder for the CARY 

 

 

Figure 2: CARY 5000 

 

The CARY 5000 measured reflectance as a function of angle and wavelength.  The primary 

purpose of this device was to measure transmission or absorbance of a clear or translucent solid.  
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The reflectance measurement was an additional capability of the CARY.  Reflection may be broken 

into two categories: specular and diffuse (CARY 5000, 2011). 

 

Figure 3:  Specular versus diffuse reflectance 

 

Specular reflectance refers to a mirror-like reflection off of a sample surface.  Diffuse 

reflection refers to the surface of the sample scattering light in all directions and angles.  The data 

that the CARY’s software produced was based on background measurements, derived from a 100 

percent reflection, a zero percent reflection, and a reflectance measurement of the sample in the 

sample holder.  These measurements were collected using a series of mirrors, a light source, a 

sample holder, and a data collection port.  For further details of how the beam path operates in the 

CARY and for a better understanding of the geometry inside of the CARY, reference page five of 

the instrument manual (CARY 5000, 2011). 

 

Optical Power Measurements in Air 

Ɵ1= Ɵ2 

 

SAMPLE 

 

Diffuse reflectance 

Specular reflectance 
Incoming light 

Ɵ1   Ɵ2 
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Several instruments were applied to permit characterization of the UV LEDs.  The following 

are the instruments applied to enable the measurements of the UV LEDs in air. 

 

DASYLAB 

 A drive signal for the UV LEDs was produced using the DASYLAB program on a computer 

inside DASYLAB (DASYLAB, 2014).  Two different DASYLAB programs were designed and 

applied, one for the continuous steady state signal and another to produce a pulsed signal.  The 

program for the continuous wave signal was intended to input a desired voltage, record and plot the 

output voltage, and calculate the current.  The pulsed program permitted the user to define a square 

wave having a given duty cycle and frequency.  While the DASYLAB software provided the 

flexibility necessary for this research only a single output could be generated with a pulsed signal and 

this pulse signal was limited to only about 20 Hz.  For this research, a signal having a constant voltage 

was generated for the continuous drive signal while a signal having a frequency of 9.1 Hz and a duty 

cycle of 10 percent was created to generate the pulsed signal.   

Data Acquisition Device (DAQ) 

 The Measurement Computing USB 2408-2AO DAQ received a command signal from the USB 

port on a computer as created in the DASYLAB software (DASYLAB, 2014). The box was of 

outputting a signal, which was limited to 10 volts.  To validate the DASYLAB program was sending 

the proper wave signal to the driver board for the pulsing of the UV LED, an oscilloscope was used.   

Oscilloscope 

The WON PDS50221 oscilloscope was used to validate the frequency, duty cycle, and voltage 

of the pulsed signal provided by the DAQ (Measurement Computing, 2014).  This same device was 
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also used to validate the appropriate signal was being provided by the driver board to the UV LED.  

The Oscilloscope was also used to measure the voltage drop across a 50 ohm resistor to determine the 

appropriate current was being provided to the UV LED in the pulsed mode. 

Digital Multimeter 

To ensure the DASYLAB program was sending the proper voltage to the driver board, a 

Extech Instruments Non-Contact Voltage Detector (S/N 12052602) multi-meter was used to measure 

the voltage coming out of the DAQ and at the fixed resistor where the UV LED was being driven 

(Extech Instruments, 2014).  In addition, the voltage drop across the resistor was also measured with a 

multi-meter to be able to calculate the current being sent through the UV LED. 

Driver Board 

The electronics driver board contained a power supply and various electronic components that 

drove the UV LED.  The power supply was a simple transformer based +/- 24 volt system capable of 

0.6 amps.  24 volts provided the flexibility to provide larger than necessary voltages and 0.6 amps is 

adequate for steady state operation of several UV LEDs since each UV LED only uses 20 mA.  The 

heart of the driver board was an opamp, which operated off of the DAQ output voltage.  The opamp 

created an isolated circuit with the power supply, allowing large amounts of amperage to pass without 

sending amperage back to the DAQ.  This eliminated power feedback loop voltage and amperage, 

while the driver board supplied the amperage to the UV LED. 

The DAQ was attached to the common ground for all measurements and output.  The output 

voltage attached to either the a or b input voltage pin hole.  The op amp opened the isolated circuit to 

the voltage set by the input.  Amperage then flowed from the power supply to the opamp to the UV 

LED.  Each branch had a resistor and pin holes for electrical measurement in series with individual UV 

LEDs, although this research effort only required one UV LED to be used in each experiment.  The 
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resistors were initially selected to provide protection to the UV LED by only allowing 20 mA at 

maximum input voltage (10 volts). 

Spectral Radiometer 

This Labsphere spectral radiometer instrument was used to measure the amount of energy integrated 

across wavelengths ranging from 210 nm to 400 nm. 

Deuterium Lamp 

The D2 Deuterium lamp (S/N 667329) was used as a calibration source, which is intended to 

provide a background subtract for the less than 100 percent reflectance of the integrating sphere 

(Ocean Optics, 2014). 

Chiller 

The Arroyo Instruments chiller was intended to control the temperature inside of the 

integrating sphere.  The chiller was controlled by the Illumia Pro software (Arroyo Instruments, 2014). 

Shutter 

The Labsphere shutter was the device that allowed the light scattering in the sphere to be 

analyzed or blocked from entering a fiber optic cable which is attached to the spectral radiometer 

(Labsphere, 2014).  This shutter was included in the design since the fiber optic cable can degrade 

from UV exposure.  The shutter ensured that this exposure only occurred during the active 

measurement time. 

Labsphere Control System 
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This tower contained the spectral radiometer, the digital readout for the chiller, the power light 

for the calibration lamp, and the power switches for all of the instruments.  This entire system was 

driven by the Illumia Pro software installed on the laptop computer (Labsphere, 2014). 

Illumia Pro Software 

This software was used to analyze the amount of output power the UV LED provided over the 

wavelengths 210 nm to 400 nm.  This allowed the user to see where the largest amount of power 

output existed, which should have been focused mostly at the wavelength the UV LED was designed 

to. 

Optical Power Measurements in Water 

For measurement of UV LED performance in water, the apparatus was modified to be able to place the 

integrating sphere into water.  The modifications include: 

Fish Tank 

 A 50 gallon fish tank served as the area to submerge the integrating sphere into water.  The 

sphere had legs placed on the bottom of it using two fabricated stainless steel pieces and a bolt 

fastened to the bottom port of the sphere. 

D2000 Deuterium Lamp (S/N 0052500730) 

 The calibration lamp worked the same for this experiment in air except that the unit was not 

built into the control system. 

Extended UV LED leads 
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 The leads for the UV LED had to be extended using additional wire.  These wires were 

soldered together and laced with silicone to prevent water intrusion into the electrical wires that power 

the UV LED. 

 

 

 

Figure 4: Electronics box for the integrating sphere 
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Figure 5: Air measurement setup 

 

Figure 6: Water experiment setup (1/2) 
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Figure 7: Water experiment setup (2/2) 

 

 Figure 8: Driver board and DAQ 

 

Method 

Reflectance Measurements 
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 The first set of experiments determined the reflectance of materials to be used within the 

measurement apparatus and within the water reactors.  These reflectance measurements are designed to 

permit the determination of the reflectance of the materials of interest as a function of wavelength and 

angle.  The materials that were to be measured by the CARY included materials that were being 

considered as candidates for the internal surface of the measurement sphere or the water reactor.  

These measurements should permit characterization of the reflectance in air and in water. 

A scan of the reflectivity was performed from 200 nm to 400 nm and was analyzed from a 20 

degree reflection to a 70 degree reflection.  Since the sphere was intended to send the signal for the 

optical power out of a small port in the side of the sphere, coating the inside of the sphere with 

something that was very reflective, which minimized the amount of loss into the sphere.  These losses 

were expected to be quantified in the calibration and will be corrected for in further measurements.  

The CARY also has a background correction feature for the measurements with respect to the 

reflectiveness of the Spectralon® sample.  The CARY first prompted the user for a sample to represent 

100 percent reflectivity, typically a mirror, and then asked for a sample to represent zero percent 

reflectivity, typically a dense cardboard material. 

Optical Power Measurements in Air and Water 

DASYLAB 12.0 was the software chosen to control the driving of the voltage and the pulsing 

of the UV LEDs.  Details of how the DASYLAB programs that were used may be found in the 

Appendix.  This software sent a signal to the DAQ.  The signal was then sent from the DAQ to the 

driver board.  The driver board consisted of a power supply and seven 56 ohm fixed resistors.  The UV 

LED chamber had the leads for the UV LED, which connect to the drive board so the UV LED could 

obtain the necessary voltage to turn on.  Illumia Pro was the software the integrating sphere used to 

process the output power of the UV LED.  This software was linked to the shutter, which was linked to 
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the spectral radiometer, and the main box that had the chiller digital readout, the power switch for the 

spectral radiometer and the deuterium lamp.  The shutter was mounted to the top of the sphere and had 

a fiber optic cable that connected it to the spectrometer.  An Ocean Optics D2 deuterium lamp was 

mounted to the side of the sphere.  The chiller was intended to control the temperature in the UV LED 

chamber to the desired temperature.  This is a key point since temperature is one of the main factors 

that affects UV LED performance. 

The next step in conducting this research was to set up the air measurement experiment.  Figure 

9 is a block diagram that outlines the process for the collection of experimental data.  The first line 

shows how the UV LED obtains power to turn on.  The computer loaded with the DASYLAB software 

to drive the DAQ, which in turn drove the driver board.  The driver board then provided the necessary 

voltage to the UV LED chamber to illuminate the LED.  The second line shows how the software 

interacted to collect the necessary data.  DASYLAB allowed the user to enter an input voltage and a 

pulse signal, if necessary.  That signal was then transferred to the UV LED inside of the integrating 

sphere, which transmitted through the shutter to the spectral radiometer to provide the information to 

plot the integrated power over the 210 to 400 nm spectrum in the Illumia Pro software.  Prior to 

powering the UV LED, a calibration with a known source was performed to correct for the 

interference from the coating on the inside of the sphere.  Once this background correction was 

performed, the UV LED was powered and the continuous and pulsed experiments begun.  The third 

line shows the procedure for performing the calibration.  The Illumia Pro software prompted the user 

to warm up the lamp for a few minutes.  Once the lamp was warm, the data for how the light scattered 

in the sphere began to process.  This process lasted several minutes depending on the ratio of light to 

dark inside of the sphere.  The fourth line shows the process of running the experiments.  Once the 
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calibration was performed, the UV LED was powered using the process outlined above.  DASYLAB 

was then used to run the continuous and pulsed configurations. 

 
Computer DAQ 

Perform 

Continuous 

LED 

Chamber 

Start 

DASYLAB 

Driver 

Board 

Turn on 

lamp 

Calibration 

Start 

Experiments 

Start 

Calibration 

Start 

Illumia Pro 

Perform 

10% DC 

Obtain Calibration 

Curve 

Start 

Warm-up 

Perform 

20% DC 

Perform 

30% DC 
 

       Figure 9: Block diagram for experimental setup 

 

Experimental Design for UV LED Characterization 

Reflectance Measurements 

A less traditional approach was used for this research effort.  An ultraviolet polished aluminum 

mirror inside the insert with two metal spacers were used for the 100 percent reflectance background 

subtract.  Spacers were used to assist with holding the mirror in a vertical position to minimize the 

angular reflection differences for holding the mirror at an angle.  The sample holder with the empty 

insert inside of it was used for the zero percent reflectance.  Once this background was collected, the 

actual reflectance measurements were accomplished.  The Spectralon® was first measured inside of the 

sample holder in air.  Then, a separate background was collected with the sample holder filled with de-
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ionized water.  Once this background was measured, the Spectralon® was submerged into the water 

filled sample holder and analyzed by the CARY. 

Optical Power Measurements in Air 

For the sphere measurements, there were two different parts for each air and water experiment.  

These two parts included continuous wave measurements and pulsed wave measurements.  For the 

pulsed wave measurements, a frequency of 9.1 Hz and a duty cycle of ten percent was chosen to 

because of referenced published data for the 10 ms on and 100 ms off, which was approximately a 9 

percent duty cycle.  That study did not reference the output power, but it did relate to other 

experimental data.  To further characterize the pulsed output power, a duty cycle of twenty percent and 

thirty percent were also used for each UV LED. 

For all continuous wave measurements, the peak wavelength, temperature, current, input 

voltage, total power, and selected power were recorded.  The selected power was the amount of power 

between the wavelength bands chosen by the user in the Illumia Pro software.  For this project, the 

center between the lines was the wavelength for the UV LED being characterized.  The current of most 

interest, since there was referenced published data for a different project for this current, was 20 mA.  

However, to obtain a better understanding of what the output power looks like as current is increased 

or decreased, several measurements were taken below and above 20 mA.  The output power and the 

current were then plotted for comparison.  It was expected that this would be a linear curve.  Another 

plot was also created to predict the pulsed wave current, since that could not be measured directly.  

This plot used an exponential curve using the voltage and current from the continuous measurements. 

For the pulsed wave measurements, the input voltage, total power, selected power, and 

temperature were recorded.  The output power was compared to the current in a plot.  In addition, an 

overlay plot was created by comparing a ten percent duty cycle, a twenty percent duty cycle, and a 
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thirty percent duty cycle.  To better understand if there was a linear correlation between the different 

duty cycles, a two times and three times the ten percent duty cycle lines were created. 

The design for what data needed to be captured was the same for both the air and water 

measurements.  Figures 10 and 11 outline what measurements were intended to be taken when 

beginning the project.  However, since the chiller did not work properly due to a shorting issue, the 

fixed compared with the not fixed temperature comparison could not be made. 

Temperature

Fixed Not fixed

25oC

Used Serial # Temp (oC) Temp (oC)

LED 1

LED 2

LED 3

New

LED 1

LED 2

LED 3  
          Figure 10: Design Matrix for temperature readings 

 

Serial #

Used 10 mA 18 mA 20 mA 10 mA 18 mA 20 mA 10% 20% 30%

LED 1

LED 2

LED 3

New

LED 1

LED 2

LED 3

Power Duty Cycle

Constant Current

Continuous Current

Pulsed

Power

 
Figure 11. Design Matrix for optical power readings 
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Optical Power Measurements in Water 

The final step for collecting the necessary data for this research project was to obtain the water 

measurements.  The water measurements consisted of the second DASYLAB program sending the 

pulse and voltage signals through the DAQ to the driver board to the integrating sphere, which is 

sbumerged into a 55 gallon fish tank filled with distilled water (reverse osmosis water).  To fasten the 

UV LED chamber inside of the integrating sphere, a plate with three holes was used to mount to the 

side of the sphere.  Two screws with taps mounted the UV LED chamber to this plate and the UV LED 

leads were routed out the other hole in the plate.  One of the difficulties with this experiment setup was 

that the shutter is not water safe.  The shutter is necessary for collecting the spectrometer data to view 

in the Illumia Pro software.  To ensure water intrusion did not occur a blue self-forming gasket was 

used to seal the UV LED prongs and the UV LED leads were protected by soldering the wires together 

and using silicone.  A Deuterium 2000 calibration lamp was used for calibration.  This lamp was an 

external unit that was connected to the side of the sphere with a fiber optic cable.  The integration time 

for this was 900,000 ms and averaging of one.  This averaging is referring to the amount of times the 

Illumia Pro software scans the sphere to increase the accuracy.  Since the noise was relatively high, a 

scan of one was necessary due to the amount of time that one scan took. 

In order to obtain a reasonable signal to noise ratio, the integration time was set to 150 ms for 

continuous wave measurements and 440 ms to 990 ms for pulsed wave measurements.  Calibration 

was performed every time the Illumia Pro software was started for the first time that day (calibration at 

150 ms and averages of 20 taking about 6 minutes).  While published data states that UC LEDs can be 

instantly turned on, for consistent measurements a one minute warm up period was included.  This was 

established based on the difference in output power with and without a warm-up period.  There was 
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approximately a five percent increase in power output after the one minute warm up in both cases it 

was tested. 
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IV. Results 

 The measurements described in Chapter III are quantified in this chapter.  While there were 

numerous measurements taken for the different experiments, only the plotted results will be shown in 

this chapter.  Values that were used to create the plots may be found in the appendix.  The results are 

divided into three sections with the first section detailing the reflectance of Spectralon® in air versus 

water. The following two sections describe the performance of the UV LEDs in air and then compares 

these results to initial results for UV LEDs in water.   

Reflectance Measurements 

The reflectance measurements and the sphere measurements were obtained using the CARY 

5000 and Illumia Pro respectively as described in Chapter III.  The reflectance measurements were 

intended to understand how the reflectance of Spectralon® changes in water verses air.  As noted 

earlier, Spectralon® is typically selected as a coating for spheres because of two unique properties.  

First, it provides extremely diffuse reflection, permitting it to disperse the energy such that any light 

ray produced by the source is equally likely to impinge upon the sensor.  Second, it has a high 

reflectance across the entire visual range, where these types of measurements are being taken. 

The reflectance measurements then permitted both the quantification of the uniformity of 

reflection across a range of angles, permitting an assessment of the diffusion of the energy and across a 

range of UV wavelengths, permitting the assessment of the reflectance of the material as a function of 

wavelength. 

Figures 11 through 16 provide results for the reflectiveness of Spectralon® in water versus air 

for multiple angles ranging from 20 to 70 degrees.  Reflection, by definition, cannot be negative, 

however, negative values appear in the plots.  The most logical reason for these negative values to be 

present in the plots is the interference of the sample holder.  The reflection measurements reading 
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negative are assumed to be attributed to the correction which was applied to remove the effect of the 

window on the sample holder. Therefore, the absolute magnitudes of the measured values are 

questionable because the CARY 5000 was not designed to accommodate a sample holder.  Future 

research will likely be needed to truly understand the absolute reflectance of Spectralon® to UV energy 

in water. 

With the presence of negative values as a caveat, the relative trends in these plots are still of 

interest.  These figures indicate the reflectance of Spectralon® was higher in water for 20 to 40 degree 

angles, but lower for 50 to 70 degree angles.  Therefore, it would appear that the Spectralon® is not as 

Lambertian in water as in air, because the reflectance in water is higher for small angles (angles near 

the specular reflection angle) and smaller for large angles. However, the sample of Spectralon® that 

was analyzed was very diffuse since it had a reflectivity of less than one percent for any given angle 

while having a high overall reflectivity. 

While the slope of the curves might be steeper in one plot than the other, the reflectance 

decreases in an exponential decay shape as wavelength decreases for all plots.  For 20 to 40 degrees, 

there seemed to be a threshold around 250 nm for the water sample where the reflectance begins to 

reduce, while the threshold for the air sample occurred around 300 nm.  For 50 to 70 degrees, the 

reduction occurred around 300 to 350 nm.  The wavelength range of interest for this research is from 

approximately 230 nm to 280 nm since the UV LEDs being studied are 240 nm, 260 nm, 265 nm, and 

270 nm.  Focusing on the characteristics of Spectralon® at 250 nm, which was very close to the 

wavelengths of interest, a few key points may be made.  Spectralon® in water appears to have a higher 

reflectance from 20 degrees to 40 degrees.  Spectralon® in air is much lower for this degree of rotation.  

At 50 degrees, both in air and in water Spectralon® is well above zero percent reflectance.  For 60 to 70 
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degrees, Spectralon® in air continues to be well above zero percent reflectance, while in water it 

appeared to stay very close to zero percent reflectance. 

 

 

   Figure 12: Spectralon® reflectance at 20 degrees 

 

 

  Figure 13: Spectralon® reflectance at 30 degrees 
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  Figure 14: Spectralon® reflectance at 40 degrees 

 

 

   Figure 15: Spectralon® reflectance at 50 degrees 
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  Figure 16: Spectralon® reflectance at 60 degrees 

 

 

   Figure 17: Spectralon® reflectance at 70 degrees 

 

To provide a more representative comparison between the characteristics of Spectralon® in air 

and water, Snell’s law should be applied.  Snell’s law is defined as: 

  n1sinΘ1=n2sinΘ2 

where: n1 = the index of refraction of the incident medium 
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 n2 = the index of refraction of the refraction medium 

 Θ1 = the angle of incidence 

 Θ2 = the angle of refraction 

As shown in Figures 18 and 19, the conclusions still hold with adjusting the different angles of 

comparison using Snell’s law.  Upon calculating the difference between air and water, the more 

representative comparison for the reflectance of Spectralon® is as follows: 

 

        Figure 18: Spectralon® reflectance using Snell’s law (1/2) 
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        Figure 19: Spectralon® reflectance using Snell’s law (2/2) 

 

In addition to the Spectralon® being analyzed by the CARY, some possible materials to build 

the apparatus for the DNA destruction and hydroxyl radical production experiments were also tested.  

The two materials that were tested as possible materials for these test cells were stainless steel and 

aluminum.  The plots of the reflectance for these materials may be found in the appendix.  These plots 

indicated that reflectance had a strong dependence on wavelength.  The data suggested the shorter 

wavelengths had less reflectance.  This information was not only useful for attempting to find the best 

material for each application, but it also could be very useful for building the prediction model.  There 

were some key differences in how aluminum acted in air versus water when compared to stainless 

steel.  Since the wavelength range being studied in this research effort was from 240 nm to 270 nm, the 

comparison of differences was focused at 250 nm.  For instance, at 20 degrees aluminum and stainless 

steel in water has approximately the same reflectance, which was about 35 percent.  However, stainless 

steel at 250 nm and 20 degrees in water had only about a six percent reflectance, while it had about a 

20 percent reflectance in air.  Reflectance in water begins to become higher than in air for aluminum 
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up to 40 degrees, while reflectance for stainless steel was more reflective in water than in air through 

60 degrees.  At 70 degrees reflectance of aluminum in air increased up to around 70 percent, while 

reflectance in water only increased to about 40 percent.  The reflectance of stainless steel in water at 

70 degrees remained around 20 percent, while in air it increased to approximately 30 percent.  Based 

upon the plots in the appendix, aluminum appeared to have a substantially higher reflectance.  

However, it is important to note that the sample of aluminum that was analyzed was polished and 

represented a best case scenario.  When aluminum is exposed to water it has a tendency to oxidize, 

which will reduces the amount of reflectance it produces.  Stainless steel does not oxidize nearly as 

rapidly as aluminum and was expected to have a higher reflectance over time.  In order to make a 

decision about which material would make the most sense for future design considerations, a further 

analysis will likely be needed. 

 

UV LED Power Output in Air 

The air measurements were collected over a series of weeks, but the calibration and control 

mechanisms described in Chapter III were always implemented.  Various plots were created from the 

different UV LEDs, but a few representative ones are as follows (the remaining plots are in the 

Appendix). 

Figure 18 show the different characteristic wavelengths for the UV LEDs that were studied in 

this research effort.  The 240 nm UV LED was centered around 245 nm, the 265 nm UV LED was 

centered around 267, and the 270 nm was centered a 270 nm. 
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  Figure 20. Characteristic Wavelengths Plot 

 

Very little variation existed in the characteristic wavelength for the multiple UV LEDs that 

were analyzed.  Table 1 shows the mean wavelength for the various UV LEDs that were evaluated.  

F146, F147, and H610 were all 270 nm UV LEDs with the characteristic wavelength 270 nm.  D45 

was a 240 nm UV LED with a characteristic wavelength of 245 nm.  Further as this table shows, the 

measurements of the center wavelength were consistent whether the UV LED was driven continuously 

or pulsed at 9.1 Hz with 10, 20, or 30 percent duty cycle. 

Table 1: Characteristic wavelengths (λ) for continuously driven and UV LEDs pulsed a 10, 20, 

and 30 percent duty cycle 

S/N 
Cont Peak λ 

(nm) 
P10 Peak λ 

(nm) 
P20 Peak λ 

(nm) 
P30 Peak λ 

(nm) 

F147 270.0 270.2 269.8 270.0 

D45 246.3 245.0 245.0 245.1 

F146 269.8 270.2 270.0 270.0 

H610 270.2 270.5 270.2 270.0 

Figure 19 indicates that the relationship between current input and power output is linear.  This 

linear relationship is consistent with the UV LED data, indicates that the UV LEDs behave 

consistently with more established visible light emitting diodes.  This relationship held whether the 
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UV LEDs were new or older since H610 was a 270 nm UV LED with approximately 75 hours of use, 

while the F146 and F147 are both new 270 nm UV LEDs. 

 

 

  Figure 21: Linear correlation between current and otpical power 

 

To analyze how a 10 percent duty cycle compared to a 100 percent duty cycle another plot was 

created.  Figure 18 is a plot of a new 240 nm and a new 270 nm UV LED that compares power 

measured from a continuously driven UV LED and the data acquired by measuring the optical power 

output of an UV LED when driven at a 10 percent duty cycle after this data was multiplied by a factor 

of ten .  As shown, the data for the D45 UV LED was very consistent when driven continuously or 10 

times the optical power measured for a 0.1 duty cycle.  The data for the F146 diode was slightly lower 

for the compensated 0.1 duty cycle than the continuously driven F146 diode. 



49 

 

 

  Figure 22: Comparison for continuous and 10 percent duty cycle 

 

Figures 21 through 24 indicate that there is a fairly predictable relationship between the pulse 

times.  The x2 and x3 lines correspond almost identically with the measured 20 percent and 30 percent 

duty cycle pulses.  Measurements indicated this was a much more predictable relationship when the 

UV LEDs were new.  When the UV LEDs had been used for several hours the measured and predicted 

data did not align as closely, particularly for low current values.  The misalignment for low current 

values might have been due to shifts in the voltage threshold for the UV LEDs, indicating that the turn 

on voltage may have been higher for low duty cycles.  The other important piece to recognize in these 

plots is the relationship seemed to be clear for both wavelength UV LEDs. 
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   Figure 23: Correlation between various pulses (1/4) 

 

 

  Figure 24: Correlation between various pulses (2/4) 
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   Figure 25: Correlation between various pulses (3/4) 

 

 
  Figure 26: Correlation between various pulses (4/4) 

 

It should also be noted that while Figures 21 through 24 show current on the x axis, these 

current values could not be accurately measured with the available equipment.  The oscilloscope 

could be used to show the trace and measure a voltage drop across a known resistance in line with 

the UV LED, but the trace was noisy and measurement would have been very imprecise.  Therfore, 
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Microsoft Excel was used to fit an exponential curve to predict the current as a function of voltage 

for each UV LED.  This equation was then applied to the input voltage value during the pulse 

conditions to provide an estimate of current  The following table outlines these estimates and their 

respective correlation coefficients for the UV LEDs that are analyzed in Figures 21 through 24. 

Table 2: Parameter estimates for Figures 21 through 24 

S/N Equation R2 

F147 y=0.0324e0.9761x 0.988 

D45 y=0.1366e0.6172x 0.9949 

F146 y=0.0287e0.9986x 0.986 

H610 y=0.0316e1.0181x 0.9817 

 

To further characterize the pulsed and continuous wave similarities in ouput optical power, a 

plot of a new 240 nm and 270 nm UV LEDs under continuous and a 10 percent duty cycle conditions 

were analyzed.  Figure 25 illustrates this relationship. 

 

To calculate the efficiency of the different UV LEDs, a ratio of the optical power and the 

electrical power was taken.  Table 3 indicates what the efficiencies were at 20 mA for each UV LED. 

 

Table 3: UV LED Efficiencies 

H610 (used 
270) Efficiency 

 

F146 (new 
270) Efficiency 

Continuous 4.79% 
 

Continuous 6.01% 

10% Pulsed 0.45% 
 

10% Pulsed 0.53% 

20% Pulsed 0.94% 
 

20% Pulsed 1.11% 

30% Pulsed 1.39% 
 

30% Pulsed 1.67% 

     

     F147 (new 
270) Efficiency 

 

D45 (new 
240) Efficiency 
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Continuous 6.49% 
 

Continuous 2.33% 

10% Pulsed 0.55% 
 

10% Pulsed 0.24% 

20% Pulsed 1.12% 
 

20% Pulsed 0.44% 

30% Pulsed 1.69% 
 

30% Pulsed 0.66% 

 

One further piece of analysis determined what the spread over the various wavelengths looked 

like when comparing continuous and pulsed UV LEDs.  The follwing plot in Figure 26 illustrates the 

spectral distribution of energy output from a sample UV LED under continuously driven and a 10% 

pulsed condition.  Note that the power for the 10% pulsed condition was multiplied by 10 to provide 

comparable spectra.  Another important point to note about the figure below is the UV LED being 

analyzed here is a 265 nm UV LED.  The difference between the pulsed and continuous is not as well 

understood for this wavelength and therefore the difference in this normalized plot is not as easily 

explained. 

 

 

   Figure 27: Normalized Integrated Power comparison plot for 270 nm UV LED (1/2) 
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     Figure 28: Normalized Integrated Power comparison plot for 270 nm UV LED (2/2) 

 

UV LED Power Output in Water 

 The water measurements were more challenging and time consuming to obtain.  Unfortunately, 

due to technical difficulties and time constraints, the water measurements were unable to be collected.  

The original apparatus provided by Labsphere for these measurements included an electronic shutter at 

the top of the integrating sphere to protect the fiber optic cable from UV exposure between 

measurements.  Unfortunately, the electronic shutter could not be immersed in water and required the 

maintenance of an air gap between the water in the integrating sphere and the fiber optic cable.  

Measurements attempted with this apparatus failed to provide the spectral radiometer with sufficient 

energy to permit a measurement.  As it was hypothesized that the air gap was resulting in excessive 

energy loss, a new adapter was procured from the manufacturer of the apparatus which permitted the 

fiber optic cable to be attached directly to the sphere and to fully immerse the sphere in water, 

eliminating the air gap.   

Measurement was again attempted with the modified apparatus.  It was found that the sensor 

received adequate energy to permit a measurement.  However, the energy levels in the water-filled 
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sphere was significantly lower than for the air measurements, requiring integration times that were up 

to 150 times longer than were required for the air measurements.  Further, when the measurements 

were obtained with these long integration times, the sensor obtained a spectral signature in raw pixel 

values that were similar to those obtained in air.  Unfortunately, when the calibration was applied to 

convert these raw pixel values to power, the resulting spectral signal was noisy and the signal to noise 

ratio to be too small to be useful. 

It was also observed that the water level steadily declined over several days.  This was likely 

due to evaporation and potentially some absorption into the Spectralon® since it is a porous material.  

There was also a noticeable amount of oxidation of the bolts for the sphere base and the taps for the 

UV LED plate, which had originally been assumed to be made of stainless steel. 

 The chiller was an issue because the cooling occurred for too long.  For instance, if the 

temperature was supposed to be maintained at 22 degrees Celsius, at 23 degrees Celsius the chiller 

would turn the fan on and cool the UV LED down as far as 17 degrees Celsius.  This large difference 

in temperature and uncontrollable switch created some inaccuracy and inconsistency.  Unfortunately, 

the chiller did not work properly due to the inadequate design of the connections for the chiller from 

Labsphere®
.  The chiller was connected to the UV LED chamber by two small wires, which provided 

the temperature readings to the Illumia Pro software.  However, the metal plate that fit over the UV 

LED made contact with other metal, which caused the circuit to short-circuit.  To resolve this issue a 

small piece of shrink wrap (a small plastic bag) was placed between the two metal surfaces to alleviate 

the short-circuit issue.  This caused the chiller to become confused about the readings and large 

fluctuations in temperature were experienced, which defeated the purpose of using the chiller. 

The DAQ being limited to 10 volts was another limitation.  The driver boards were designed to 

be able to drive 24 volts because it was anticipated that higher voltage would be needed for some UV 
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LEDs in the AOP and disinfection projects.  Since the DAQ was limited to 10 volts, a multiplier had to 

be installed on the board that drove the disinfection project.  The signal to noise ratio for the power 

measurements for the sphere in water were much more of an issue than the sphere in air.  A few 

possible explanations of why there was such a large difference occurred could be the air interface 

before the spectrometer could have seen the measurements because the shutter could not get wet or the 

fact that the lamp was calibrated in air instead of water.  The accuracy of the measurements may have 

been slightly impacted because of this and the power would have certainly been different for water 

because the measurements took so long to be captured.  The air measurements took approximately 30 

seconds per capture point, while the water measurements took close to 45 minutes per capture point.  

The average life of the UV LED, according to the manufacturer’s data, was approximately 150 hours.  

While the degradation curve is currently not well understood, a large amount of degradation was 

assumed to be occurring in the first 50 hours.  The measurements provided by the manufacturer in the 

technical data for the UV LEDs were often quite different than the data the students measured in this 

research project.  For instance, the power measurements according to the integrating sphere in air were 

approximately 50% more than what was claimed by the manufacturer.  The UV LED’s performance in 

water was expected to be better, which would imply the data provided must be after so many hours of 

burning.  However, the data provided did create a starting point for determining how long to run an 

experiment for the disinfection project.   

In addition, there were also multiple assumptions that had to be made in order to proceed with 

the experiments.  The key assumptions made were that the DASYLAB signal stayed consistent for all 

of the experiments, the reverse osmosis water used was very similar to distilled water, the oxidation of 

the metal components in the water did not create a major change in the characteristics of the water, 

switching boards from the air measurements to the water measurements did not create a major impact 
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on the accuracy of the measurements, the difference between the UV LED measurements are attributed 

to the differences in them from the manufacturer and from the amount of time burning for testing, the 

change in water level due to evaporation and absorption into the Spectralon® does not create a major 

impact in the accuracy of the measurements, and the calibration properly accounted for the material 

inside of the sphere for the power measurements. 

 While every software program has its limitations and tolerance for executing code, the 

expectation with the measured data was that the amount of difference did not greatly impact the results 

that were collected.  There certainly are chemical differences between water that is considered 

“distilled” and water that is from a reverse osmosis system.  The amount of filtration the reverse 

osmosis system is based on what is desired to be not in the water.  The measurements for this research 

effort assumed there was no difference in these two types of water, which could make a slight 

difference in the performance of the UV LED.  Furthermore, there was oxidation of the metal 

components connecting all of the necessary items to conduct the experiment.  This oxidation may have 

altered the chemical properties of the water, but the data again assumed the changes in the water’s 

properties.  Another consideration that must be considered with respect to the water was the 

evaporation and the absorption into the porous Spectralon®, which caused the water level inside of the 

fish tank to continually be reduced.  The noticeably different performance parameters in the UV LEDs 

also introduced some uncertainty in the measurements taken for the different research projects 

encompassed.  The calibration process should have introduced minimal uncertainty since it was 

consistently performed in the same manner for all measurements taken.  Switching boards should also 

have introduced very little uncertainty since the boards are very similar in nature. 
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V. Conclusion 

 This research effort characterized optical power for short wavelength UV LEDs.  A theorized 

linear correlation between current and power for both air and water was utilized, however, it could not 

be proven due to the inability to collect accurate water measurements.  Unfortunately, the 

measurements taken using the air integrating sphere was unable to provide the supporting data to prove 

this theory.  In addition, the performance for the various UV LEDs were analyzed. 

This research studied how the performance was different for a new and used UV LEDs.  The 

used UV LEDs were near the manufacturer’s estimated end of life.  As one would expect, the used UV 

LED provided less optical power than a new UV LED.  Another interesting finding is that the ability to 

predict the effect of duty cycles on UV LEDs appears to change over time, with power output varying 

only as a function of the on-time for new LEDs but with aged LEDs providing less power when pulsed 

at shorter durations when correcting for on-time.   

A study was conducted to explore how the reflectance of Spectralon® changes when it is 

immersed in water.  Spectralon®’s published reflectivity in air is 99.99 percent, but there is no 

published reflectivity for it in water.  The CARY 5000 photospectrometer used in this research effort 

was not designed to conduct this type of experiment, however, to the author’s knowledge no other 

instrument has been designed for this purpose either.  For the Spectralon® to be submerged in water, a 

sample holder had to be created to fit in the CARY 5000.  This sample holder changed the way the 

background correction needed to be taken, which introduced some error.  The plots comparing the 

differences in Spectralon®’s behavior in air and water demonstrate that this procedure introduced error 

as it resulted in negative reflectivity values.  However, the results do indicate that the reflectivity of 

spectralong becomes less diffuse in water and the reflectivity of this material is reduced for very short 
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wavelength UV LEDs.  This indicates that this material is not as ideal for UV measurements in water 

as it is for visible light measurements in air.  This is particularly true for wavelengths less than 250 nm. 

The differences in power produced for the different wavelengths, as well as voltage and current 

relationships, were also studied.  There appeared to be a relatively large variation between the 

manufacturer’s claims in their specifications for the UV LEDs and the experimental results.  A few 

examples include the input voltage required to turn on the UV LED and the total output optical power.  

There was up to a 50 percent difference in optical power between experimental results and 

manufacturer specifications for one of the UV LEDs with the measured values exceeding the 

manufacturer’s claimed values.  Additionally, even the manufacturer identified large variations 

between UV LEDs that are supposed to be virtually identical.  For instance, one would expect that for 

two different 270 nm UV LEDs from the same batch and manufacturer, would have similar 

specifications.  However, there was a noticeable difference in required input voltage to obtain the 

desired 20 mA current, within the manufacturer’s specifications and the measured values. 

In summary, this thesis has addressed methods to quantify the optical performance of UV 

LEDs.  As these devices have applicability in sensing of organic compounds and purifying water, it is 

hoped that these methods and findings inform future research activities, helping to transition these 

devices into environmental health applications where they are beneficial. 
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Appendix 

Continuous DASYLAB program 

 

- Time base: this provides the software a clock to be able to sync the data that is being 

collected as the program runs 

- Formula interpreter x2: one is intended to calculate the current (using V=IR) and the 

other is intended to create a safety to turn the program off when the current became “too 

high” (but the program kept shutting down so currently it just the program just bypasses 

this one by inputting a 1) 

- Digital meter: digitally displays the voltage, temperature, and the voltage drop while the 

program is running 

- Plot: this plot is intended to illustrate the input voltage and the calculated current for each 

UV LED (currently setup for 7 UV LEDs) 

- Write: records input voltage, temperature, and voltage drop in a text file 

 

Pulsed program 

 

- Signal generator: allows the user to select different kinds of wave forms (rectangular, 

triangular, etc.) and allows the user to input a frequency, voltage, offset, and duty cycle 

- Plot: serves to let the user know the UV LED has started pulsing (buffer time takes 

several seconds) and displays what the shape of the pulse signal looks like 

 

The reflectance measurements for aluminum and stainless steel were obtained in a 

very similar manner as the Spectralon® samples.  Similar to the mirror, spacers were 

necessary to hold the samples of aluminum and stainless steel as vertical as possible to 

minimize the effect of reflection in the z-axis direction. 

 

Reflectance for Aluminum 

 

 
       Figure A-1: Reflectance for aluminum in air versus water at 20 degrees 
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       Figure A-2: Reflectance for aluminum in air versus water at 30 degrees 

 

 
       Figure A-3: Reflectance for aluminum in air versus water at 40 degrees 
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       Figure A-4: Reflectance for aluminum in air versus water at 50 degrees 

 

 
       Figure A-5: Reflectance for aluminum in air versus water at 60 degrees 
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       Figure A-6: Reflectance for aluminum in air versus water at 70 degrees 

 

Reflectance for Stainless Steel (to explain apparatus for other 2 projects) 

 

 
       Figure A-7: Reflectance for stainless steel in air versus water at 20 degrees 
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       Figure A-8: Reflectance for stainless steel in air versus water at 30 degrees 

 

 
       Figure A-9: Reflectance for stainless steel in air versus water at 40 degrees 
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Figure A-10: Reflectance for stainless steel in air versus water at 50 degrees 

 

 
Figure A-11: Reflectance for stainless steel in air versus water at 60 degrees 
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                   Figure A-12: Reflectance for stainless steel in air versus water at 70 degrees 

 

Remaining Output Power Graphs: 

 

 
                   Figure A-13: Correlation between various pulses 

 

Since current could not be measured directly like in the continuous configuration, Microsoft Excel 

was used to fit an exponential curve to predict the current for each UV LED.  The following table 

outlines these estimates: 

Table A-1:  Parameter estimates for Fig A-13 

S/N Equation R
2
 

K41 y=0.5652e
0.4333x

 0.9839 
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   Figure A-14: Correlation between total power and current for K41 (new 240) 
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