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Abstract 

Most communication in the modern era takes place over some type of cyber 

network, to include telecommunications, banking, stock exchanges, vehicular traffic 

flow, public utilities, health systems, and social networking to name a few. Information 

gained from illegitimate network access can be used to create catastrophic effects at the 

individual, corporate, national, and even international levels, making cyber security a top 

priority.  

Cyber networks frequently encounter amounts of network traffic too large to 

process real-time threat detection efficiently. Reducing the amount of information 

necessary for a network monitor to determine the presence of a threat would likely aide in 

keeping networks more secure.     

This thesis uses network traffic data captured during the Department of Defense 

Cyber Defense Exercise to determine which features of network traffic are salient to 

detecting and classifying threats. After generating a set of 248 features from the capture 

data, feed-forward artificial neural networks were generated and signal-to-noise ratios 

were used to prune the feature set to 18 features while still achieving an accuracy ranging 

from 83% - 97% for the testing/training sets and 63% - 88% for the validation sets. The 

salient features primarily come from the transport layer section of the network traffic data 

and involve the client/server connection parameters, size of the initial data sent, and 

number of segments and/or bytes sent in the flow. 
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SALIENT FEATURE SELECTION USING FEED-FORWARD NEURAL 

NETWORKS AND SIGNAL-TO-NOISE RATIOS WITH A FOCUS TOWARD 

NETWORK THREAT DETECTION AND CLASSIFICATION 

I. Introduction 

1.1. Background 

The integration of cyber technologies into nearly all aspects of our everyday lives 

makes cyber security a serious concern. Cyber security has been defined as a 

“complicated and complex subject encompassing computer security, information 

assurance, comprehensive infrastructure protection, commercial integrity, and ubiquitous 

personal interactions” [1].  Most communication in the modern era takes place over some 

type of cyber network, to include telecommunications, banking, stock exchanges, 

vehicular traffic flow, public utilities, health systems, and social networking to name a 

few. Information gained from illegitimate network access can be used to create 

catastrophic effects at the individual, corporate, national, and even international levels. 

The same could be said for successfully executed attacks against those networks. The 

number of cyber attacks on Department of Defense (DoD) and other United States (US) 

Government networks is estimated to be 400 million annually [2]. A study published by 

McAfee Security suggests US losses due to cyber attacks may reach $100 billion per year 

[3].  Cyber security has become important enough to be listed as one of the five central 

missions of the Department of Homeland Security [4] and FBI officials speculate cyber 

attacks will surpass terrorism as a domestic danger over the next ten years [5].  
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1.2. Research Goal and Objectives 

An important aspect of cyber security is threat detection and classification. The 

aspect of cyber security chosen for this research is computer network traffic.  Computer 

network traffic encompasses a massive amount of information. While all of that 

information can be captured fairly easily (digital storage space is relatively cheap), 

analysis of the information is a time and resource intensive process. The issue becomes 

how to sort through the information to determine what is a threat and what is not.  

The purpose of this research is to reduce network traffic data into the parts, or 

features, salient to threat detection and classification. The inspiration for this thesis comes 

from Moore et al. [6], a research study conducted in 2005, to develop a set of features to 

assess classification performance on general network traffic data. The outcome of the 

study was a list of 248 features based on packet or flow data. After generating a dataset 

consisting of those 248 features from a collection of known network attack data, this 

thesis attempts to determine which of the features are most important to determining 

whether or not a threat exists. 

1.3. Assumptions and Limitations 

One of the challenges faced when attempting to classify computer network threats 

is acquiring the truth data. The people with malicious intent toward a network are 

unlikely to give away information on their exploits making it difficult to label threats. 

The data used for this research came without truth data making it necessary to derive a 

way to create labels for each observation. The method used for this label creation is 

discussed in Chapter III; it is assumed the observations using this method are labeled 

accurately.  
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1.4. Implications 

Much research has gone into defining the salient features for general traffic 

classification, some of which will be discussed in Chapter II. The research in this thesis 

intends to narrow that focus down, specifically targeting threat detection and 

classification. The hope is that most of the data will be unnecessary and can be 

disregarded while still capturing the pertinent information. Ideally, this would be done in 

real-time with a network sensor that monitors incoming traffic and extracts only the data 

necessary for detecting and classifying threats. Successful reduction of the dataset 

required for analysis, along with knowledge of what components of the network traffic to 

focus on, should noticeably speed up the threat detection process and potentially enable a 

more secure computer network.  

1.5. Preview  

 Chapter II presents previous work done in the areas of general network traffic and 

network threat detection classification. It also includes a discussion of the use of neural 

networks for classification and the use of the signal-to-noise ratio as a saliency measure. 

Chapter III describes the methodologies used in experimentation of the datasets including 

the work involved in preprocessing the data for analysis. Chapter IV explores the results 

and analysis from the experimentation done with the data. Finally, Chapter V discusses 

the conclusions developed from the results in Chapter IV and offers thoughts on future 

research of this topic.
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II. Literature Review 

2.1. Chapter Overview 

 With the explosion of computer networks and internet usage across the world in 

the last 15 to 20 years, methodologies to better understand and classify internet traffic 

have become a hot research topic for a multitude of reasons. This chapter provides a 

summary of previous work done relevant to the research presented in this thesis and is 

organized as follows. The first section attempts to define some of the more common 

terms and concepts to help the reader better understand the typical technical jargon. Next, 

we will examine research in the areas of general internet traffic classification methods to 

gain some insight into the overarching methodologies, and then focus in on the sub-field 

of network intrusion detection classification methods, which relates directly to the 

research in this thesis. Finally, we will consider research done on the importance of 

feature selection to accurate classification, and, while there are many methods to handle 

feature selection, we will focus in on using neural networks, leading up to the method 

used in this thesis.  

2.2. Background Information 

The research in this thesis attempts to merge together two distinct, yet related, 

academic fields, operations research (OR) and cyber operations (specifically computer 

networks). As such, terminology and concepts may be used differently between the two. 

Because this is an OR-based thesis, this section is an attempt to bridge the gap between 

the two academic fields, making it easier for the OR-based reader to better understand 

both the reviewed research and the research presented in this thesis. We will begin by 

defining some of the more commonly used terminology and concepts to provide a 
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baseline understanding. Next is a brief discussion of the currently used TCP/IP model 

used for describing how computer networks work. An acronym list can be found in 

Appendix A: Acronym List.  

2.2.1. Terminology and Concepts 

 The following are explanations of terminology and concepts seen throughout the 

reviewed literature and the research done for this thesis. Most of the definitions come 

from Technopedia.com [7], although a few are derived from experience or noted sources. 

 Audit: an examination of a computer network’s traffic logs or administrative 

policies and procedures [8]. 

 Bandwidth: broad term defined as the bit-rate measure of the transmission 

capacity over a network communication system. Bandwidth is also described as 

the carrying capacity of a channel or the data transfer speed of that channel. 

However, broadly defined, bandwidth is the capacity of a network. Bandwidth 

exists in both the wired and wireless communication networks. 

 Client: can be a simple application or a whole system that accesses services being 

provided by a server; most often located on another system or computer, which 

can be accessed via a network. 

 Client/Server Architecture: a computing model, in which the server hosts, delivers 

and manages most of the resources and services to be consumed by the client. 

This type of architecture has one or more client computers connected to a central 

server over a network or Internet connection. This system shares computing 

resources. 
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 Computer Networks: a group of computer systems and other computing hardware 

devices that are linked together through communication channels to facilitate 

communication and resource-sharing among a wide range of users. 

 Encryption: the process of using an algorithm to transform information to make it 

unreadable for unauthorized users. 

 Firewalls: software, hardware, or a combination of both, used to maintain the 

security of a private network. Firewalls block unauthorized access to or from 

private networks and are often employed to prevent unauthorized Web users or 

illicit software from gaining access to private networks connected to the Internet. 

 Flows: one or more packets between a pair of hosts, defined by a 5-tuple, made 

up of source and destination IP addresses, source and destination port numbers, 

and the protocol type (TCP, UDP) used for communication.  

 Header: the initial set of bits in a packet transmitted by an end device that 

describes what the receiving end device can expect to receive throughout the data 

stream. 

 Hosts: end systems, sometimes referred to as clients or servers [9]. 

 Hypertext Transfer Protocol (HTTP): an application-layer protocol used primarily 

on the World Wide Web. HTTP uses a client-server model where the web 

browser is the client and communicates with the webserver that hosts the website. 

The browser uses HTTP, which is carried over TCP/IP to communicate to the 

server and retrieve Web content for the user. 

 Internet Protocol (IP): protocol that specifies the format of the packets sent and 

received among routers and end systems [9]. One of the two most important 
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protocols in the Internet; all internet components with network layers must use IP. 

The most common version is IPv4, although IPv6 may take over in the future. 

IPv4 is a connectionless protocol providing the logical connection between 

network devices by providing identification for each device [7]. 

 Layer: a logical grouping of similar functions; used in networking to distinguish 

the communication functions associated with computer networks [10]. 

 Network Planning and Resource Provisioning: analyzing network traffic/behavior 

to allocate resources to optimize prioritization and performance. 

 Network Security Monitoring: a computer network's systematic effort to detect, 

deter and track unauthorized access, exploitation, modification, or denial of the 

network and network resources. 

 Network Traffic: the flow of data across a computer network. 

 Offline vs. Online: online refers to analysis or classification done in real-time or 

near real-time while the system is monitoring the network and collecting data; 

offline refers to analyzing or classifying data that has already been collected.  

 Packet: a single network communication data unit containing fixed or variable 

lengths, and may contain three portions: header, body and trailer. 

 Payload: the raw data a packet carries.  

 Ports: process-specific or application-specific software construct serving as a 

communication endpoint. A specific network port is identified by its number 

commonly referred to as port number, the IP address in which the port is 

associated with and the type of transport protocol used for the communication. 

Any networking process or device uses a specific network port to transmit and 
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receive data. This means that it listens for incoming packets whose destination 

port matches that port number, and/or transmits outgoing packets whose source 

port is set to that port number. Processes may use multiple network ports to 

receive and send data. 

 Protocols: a set of rules and guidelines for communicating data. Rules are defined 

for each step and process during communication between two or more computers. 

Networks have to follow these rules to successfully transmit data. 

 Routers: a device that analyzes the contents of data packets transmitted within a 

network or to another network. Routers determine whether the source and 

destination are on the same network or whether data must be transferred from one 

network type to another, which requires encapsulating the data packet with 

routing protocol header information for the new network type. 

 Quality of Service (QoS): refers to a network’s ability to achieve maximum 

bandwidth and deal with other network performance elements like latency, error 

rate and uptime. Quality of service also involves controlling and managing 

network resources by setting priorities for specific types of data (video, audio, 

files) on the network. 

 Server: a computer or computer program that manages access to a centralized 

resource or service in a network [11]. 

 Three-Way Handshake: a method used in a TCP/IP network to create a 

connection between a local host/client and server. It is a three-step method that 

requires both the client and server to exchange SYN (synchronization), 
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SYN/ACK, and ACK (acknowledgment) packets before actual data 

communication begin. 

 Transmission Control Protocol (TCP): a network communication protocol 

designed to send data packets over the Internet. The other of the two most 

important protocols in the internet. TCP is a transport layer protocol used to create 

a connection between remote computers by transporting and ensuring the delivery 

of messages over supporting networks and the Internet. TCP works in 

collaboration with IP, which defines the logical location of the remote node, 

whereas TCP transports and ensures that the data is delivered to the correct 

destination. Before transmitting data, TCP creates a connection between the 

source and destination node and keeps it live until the communication is active. 

TCP breaks large data into smaller packets and also ensures that the data integrity 

is intact once it is reassembled at the destination node 

 Tunneling: a protocol enabling the secure movement of data from one network to 

another. Tunneling uses an encapsulation process to make data packets appear as 

though they are of a public nature to a public network when they are actually 

private data packets, allowing them to pass through unnoticed. Examples of 

tunneling include Virtual Private Networks (VPN) and Hypertext Transfer 

Protocol (HTTP). 

 User Datagram Protocol (UDP): transport layer protocol for client- server 

network applications. UDP does not employ handshaking dialogs for reliability, 

ordering and data integrity. The protocol assumes that error-checking and 

correction is not required, thus avoiding processing at the network interface level. 
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UDP is widely used in video conferencing, real-time computer games, and data 

streaming. The protocol permits individual packets to be dropped or received in a 

different order than that in which they were sent, allowing for better performance. 

 Webserver: a system that delivers content or services to end users over the 

Internet. A Web server consists of a physical server, server operating system (OS) 

and software used to facilitate HTTP communication. 

2.2.2. TCP/IP Model 

 In 1984 the Open Systems Interconnection (OSI) Model was published by the 

International Organization for Standardization (ISO) to provide a conceptual model that 

defines networking standards for hardware and software technology development and 

how networking protocols should work [10]. As can be seen in Figure 2.1, the model 

breaks down similar functions into logical (the ways the functions act as opposed to 

physical placement) layers. The more currently used model, the TCP/IP model, was 

developed after the OSI Model around the TCP/IP protocols, what we now call the 

internet [12]. The TCP/IP model essentially combines layers from the OSI model into 

broader categories more appropriate to current computer networking. The model is 

sometimes seen with five layers (separating the network access layer into the data link 

and physical layer). The most pertinent information for the reader to know is that the 

research for this thesis is focused mostly in the transport layer which handles end-to-end 

connections, and is the same in both modes, with some interaction in the internet/network 

layer. 
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Figure 2.1: OSI vs. TCP/IP Model [13] 

2.3. General Internet Traffic Classification Methods 

 Network intrusion detection classification is a subset of general internet traffic 

classification and, as such, the overall classification process and its methodologies are the 

building blocks for the techniques used in intrusion detection classification. General 

traffic classification is imperative in network planning estimation and resource 

provisioning, security monitoring and auditing, and Quality of Service (QoS) 

measurements. Classification methods discussed here include transport layer port analysis 

and payload inspection (signature rule-based matching), machine learning with both 

unsupervised and supervised algorithms, and a few other, uncategorized methods. Many 
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of the techniques discussed here can also be found in surveys done by Nguyen and 

Armitage [14] and Dainotti et al. [15].  

2.3.1. Port Analysis and Signature-Based Methods 

Classifying network applications based on well-known port numbers is 

considered by some as the simplest, and fastest, method of classification, as long the 

classification accuracy is not vital [15]. Moore and Papagiannaki [16] explain that, as 

technology and user skills have developed and adapted, well-known port numbers are no 

longer reliable for use in classification. This is due mainly to internet applications being 

designed to use other than standard port numbers, dynamic port selection, or protocols as 

wrappers to slip through security systems, like firewalls, unnoticed. Moore and 

Papagiannaki show this change in design leads to a low accuracy classification (50% - 

70%) of network traffic when using port-based classification from the Internet Assigned 

Numbers Authority (IANA) list [17]. The authors present a classification technique using 

a content-based (payload) methodology. This classification technique examines and 

interprets the contents of the packet’s payload iterating through nine methods including 

port-based classification, packet header information, single packet signatures, single 

packet protocols, first kilobyte signatures, first kilobyte protocols, selected flow 

protocols, all flow protocols, and host history. Each method is applied sequentially until 

the required classification certainty has been reached. While this technique achieves an 

impressive overall average accuracy of 98%, it is obviously quite labor intensive. 

Roughan et al. [18] suggest classifying network traffic through the use of 

statistical application signatures. These signatures are derived from the manner in which 

the applications are used, forming a set of classification rules based on port numbers or IP 
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addresses, and are intended to be insensitive to the particular application layer protocols. 

The technique first calculates connection statistics offline, using those results to classify 

the traffic, then creates rules for the online classifier to use. Nearest Neighbor and Linear 

Discriminant Analysis were the two methods used for classification. Using trial-and-

error, the authors selected up to four features to classify the data across four to seven 

application classes. Although encouraging, because their analysis is restricted to broadly 

defined classes, the authors limit their resulting low error rates (5% - 8%) to wide-

ranging properties found in many applications, meaning the classification method will be 

insufficient for identifying specific applications.  

Haffner et al. [19] proposes using application-level information taken from 

packets to match with common application signatures. Three machine learning (ML) 

classifiers are used to derive the application signatures for several network applications – 

Naïve Bayes, AdaBoost, and Maximum Entropy. The classifier intends to be insensitive 

to port numbers, alterations of network characteristics, and communication pattern 

changes. This method of matching application signatures does, however, require frequent 

updating because the application signatures are dynamic and may change over time with 

application and protocol evolvement. The AdaBoost algorithm results in the best 

classification performance (greater than 99%); the authors suggest this may be due to the 

extremely low noise level in the data because of the way it was generated. The research 

also considered early classification resulting in the conclusion that only the first 64 bytes 

of each flow is necessary for application identification. Finally, the authors test the 

derived signatures against data captured seven months later, finding only a slight increase 

in the error rate, demonstrating the durability of the signatures over time. 



 

14 

2.3.2. Machine Learning (ML) Methods 

 There are two standard categories of machine learning methods: Unsupervised 

and Supervised. Unsupervised learning means the correct classification labels are not 

provided with the data [20]. The underlying structure of the data is examined, looking for 

correlations in the data to discern patterns, which are then organized into categories. 

Supervised learning requires the correct classification labels with the data. Weights are 

then used to help the generated network achieve classification as close to the correct 

answers as possible. The next few sections discuss clustering, a type of unsupervised 

machine learning, and several different types of supervised machine learning methods. 

2.3.2.1. Unsupervised Machine Learning Methods 

Obstacles such as privacy information, encryption, and protocol tunneling 

(encapsulation) have made it difficult, if not impossible, to inspect the payload, or data, 

carried in the packets across a network. This, along with increased complexity and 

processing overhead, has moved the focus of classification techniques away from payload 

inspection and introduced the concept of ML, incorporating unsupervised and supervised 

algorithms [15]. This section discusses different uses of the unsupervised ML algorithm 

referred to as clustering.  

McGregor et al. [21] propose the probabilistic Expectation Maximization (EM) 

algorithm to designate flows into clusters based on a fixed set of traffic flow statistics. 

This classifier looks for similar properties but provides no explanation as to why the 

applications are grouped the way they are; it may, however, provide some insight with 

previously unclassified, unknown traffic [22]. McGregor et al. [21] conclude their 
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clustering technique, at this point, is too general to classify individual applications and 

new attributes must be developed to illuminate distinctions between those applications.  

Zander et al. [23] use AutoClass, a Bayesian clustering algorithm based on EM, in 

their approach to traffic classification. The feature selection technique for their 

methodology is based on the classification performance of the AutoClass algorithm. 

Using sequential forward selection (SFS), also called stepwise selection, features are 

added one at a time until the best performing combination is derived. The authors 

calculate the homogeneity of the classes, illustrating how an application with a higher 

homogeneity is more likely to be separated because its characteristics are dissimilar to the 

other applications. One issue with this classification methodology is that some 

applications, such as FTP, Telnet, and Web traffic, overlap each other or have a wide 

range of characteristics thus making them difficult to separate into classes. While the 

average classification accuracy of this technique over all given applications is 86.5%, this 

diversity of characteristics results in a false positive rate of up to 40%, depending on the 

application. 

Unsupervised clustering is also used by Erman et al. [24] for traffic classification, 

this time comparing the K-Means (partition-based) and DBSCAN (density-based) 

algorithms with the previously used AutoClass (probabilistic model-based) algorithm. 

While the DBSCAN algorithm results in a lower overall average classification accuracy 

(75%) than K-Means and AutoClass (both greater than 85%), it is noted that DBSCAN’s 

clusters are more accurately formed. The model building time of the two newer 

algorithms (K-Means, one minute; DBSCAN, three minutes) demonstrates a significant 

difference when compared with the old (AutoClass, four and a half hours). This research 
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suggests the K-Means algorithm as the best option because of its high classification 

accuracy and low model building time. 

Bernaille et al. [25] focus on analyzing only the first five packets of the TCP flow 

in an attempt to develop an online, near real-time classifier. Offline traces are used to 

train the classifier based on the size of the data packets using Euclidean distance. K-

Means clustering is used to find natural clusters in the data, chosen because this method 

does not rely on previously defined classes. This lack of reliance allows for applications 

with multiple behaviors to be modeled separately. The description and composition of 

each cluster determine how the online classifier identifies the traffic flow. This method 

achieves an average accuracy of greater than 80% for the flows tested. One potentially 

serious limitation exists with this online classifier, however, if the network monitor uses 

packet sampling instead of complete packet capture because the technique requires the 

first five packets of the flow. 

2.3.2.2. Supervised Machine Learning Methods 

This section discusses several Supervised ML algorithms and their application to 

internet traffic classification. These techniques include Naïve Bayes (NB), C4.5 Decision 

Tree (C4.5), k-Nearest Neighbor (kNN), Support Vector Machines, and Neural networks.  

Moore and Zuev [22] demonstrate internet traffic classification through the NB 

method, both with and without kernel density estimation. Kernel density estimation is a 

non-parametric (infinite-dimensional) method of estimating the probability density 

function [26]. Feature selection is addressed in this research by use of the Fast 

Correlation-Based Filter (FCBF) [22]. Straight NB resulted in an average classification 

accuracy of 65.26%; using FCBF pre-filtering brought that value up to an average of 



 

17 

94.29%. NB with kernel density estimation demonstrated an average accuracy of 93.5%, 

with an increase to average of 96.29% after using FCBF pre-filtering. The experiment 

was repeated with data from approximately 12 months after the initial data set resulting in 

a severe drop in classification accuracy for the NB method with an overall average 

accuracy of 20.75% without kernel estimation and 37.65% with kernel estimation. Using 

the FCBF pre-filtering brings those values up to 93.38% and 93.73%, respectively, 

demonstrating the value of the dimension reduction of the features used for analysis.  

Williams et al. [27] compared five ML algorithms for internet traffic classification 

on the basis of both classification accuracy and computational performance. The authors 

illustrated how classification accuracies can be very similar between the different 

algorithms while computational performance can be significantly different; this is very 

important when considering real-time analysis. The five supervised machine learning 

algorithms analyzed were NB (both discretisation (NBD) and kernel density estimation 

(NBK)), C4.5, Bayesian Network (BayesNet), and Naïve Bayes Tree (NBTree). The 

same ‘full feature set’ (containing 22 features) is used for each ML algorithm tested. 

Consistency-based (CON) and Correlation-based (CFS) algorithms are then used for 

feature selection or reduction and the tests are re-run for comparison. There is little 

change in the classification accuracy (2 – 2.5%) across the five algorithms tested when 

comparing the full and reduced feature sets. NBK is the only algorithm not at or above 

the 95% accuracy level (~80%). With computational performance C4.5 has the fastest 

classification speed, with NBK the slowest, and NBK has the fastest build time, with 

NBTree the slowest.  
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Zhang et al. [28] take the NB method a step further by using it in combination 

with a bag-of-flows (BoF), or a correlated grouping of flows occurring in the same time 

period. The BoF concept allows for the correlated flows to be aggregated which, when 

used in concert with the NB algorithm and a set of combination decision rules (sum, 

maximum, median, and majority), create a set of posterior probabilities used for class 

prediction. Referred to as BoF-NB, the proposed classification method is then compared 

to four other classification methods including C4.5, k-Nearest Neighbor (k-NN), NB, and 

a semi-supervised method proposed by Erman et al. [29]. Six out of the original 20 

features are selected through CFS. Results demonstrate the BoF-NB performed, in 

general, as good as or better than the other methods tested with an overall average 

accuracy of 88% to 94%, depending on the data set chosen. The authors believe the better 

performance is because the BoF-NB’s effective use of the flow correlation information. 

Huang et al. [30] suggested using k-NN in their classification model. To achieve 

the best classification results the authors select 10 features and 6 classes, based on 

performance of the classifier. Mahalanobis, in contrast to Euclidean, distance was used to 

measure the distance between the data samples. This research focused on the change in 

classification accuracy as additional classes were added, allowing for finer grained 

classification. Using only three of the classes results in classification accuracies of greater 

than 99%; however, once the additional three classes are added in, classification 

accuracies drop as low as 46%. According to the authors, these results occur because the 

selected classes have similar statistical features and, with the selected features, the 

correlation between the classes is not taken into consideration.  
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In an extension of [22], Auld et al. [31] demonstrated a traffic classifier using 

supervised ML based on Bayesian trained neural networks without source or destination 

host address or port information, enabling classification of anonymized or encrypted 

packet headers. Unlike [22], the classification methodology does not assume 

independence between the discriminators, allowing for a more robust and useful 

classifier. This experiment consists of data collected from 2 24-hour periods separated by 

8 months and focuses solely on TCP flows (i.e., ignores UDP, ICMP, etc.). Multilayer 

perceptron classification networks, containing one hidden layer with 10 nodes and 

Bayesian-inferred weights, assign classification probabilities to the traffic flows using 

246 features as inputs. This research used the hyperbolic tangent function as the 

activation function to model nonlinearities. Using the neural networks, the experiments 

resulted in an average classification of greater than 99% for the first data collection 

period and 95% for the second. Comparisons are also studied in consideration of the data 

sizes of the different classes of traffic and its effect on accuracy.  

Expanding upon both [22] and [31], Zhou et al. [32] propose a traffic 

classification technique using feed-forward neural networks trained through Bayesian 

regularization and compare its results to the NB classifier subject to the Gaussian 

distribution assumption. The neural networks used for this research are set up very 

similarly to those in [31] with a single hidden layer containing 10 neurons. Results of the 

experimentation demonstrate the feed-forward neural networks, with an average overall 

accuracy of about 95%, perform better than the NB classifier, with an average overall 

accuracy of about 75%, and are more stable. The authors argue the NB classifier’s poor 
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performance is due to a misrepresentation of the traffic flow properties because of the 

Gaussian distribution assumption. 

Much of the internet traffic classification research focuses on offline classification 

due to heavy processing overhead and potential bandwidth limitations. Li and Moore [33] 

propose an online, near-real time, classification system using packet-header based 

behavioral features and C4.5. This technique requires only information readily available 

to internet routers without reliance on port numbers or payload inspections and enables 

examination of latency and throughput of the monitoring system. Because this 

methodology is designed to be near real-time, the approach capitalizes on features pulled 

from only an initial few packets (5 – 10), as opposed to those based on entire flows. A 

CFS method was used for feature dimension reduction leading to a selection of 12 

features. C4.5 averaged an overall average classification accuracy of 99.834%. This 

research also shows, for this methodology, using part of the traffic flow, instead of the 

entire flow, does not reduce the classification accuracy. 

Based on a trial-and-error approach, Tabatabaei et al. [34] choose seven as the 

necessary number of packets required for online traffic classification comparing Support 

Vector Machines (SVM) and k-NN techniques. SVM is typically used as a binary 

classifier so several binary classifiers are combined to create a multi-category SVM 

focusing on “fuzzy” one-against all and “fuzzy” pairwise techniques. The authors handle 

feature selection through a minimum redundancy-maximum relevance (MRMR) 

technique based on maximum statistical dependency, choosing 40 flow and packet-based 

features. The three classification techniques are compared using both the complete traffic 

flow and just the first seven packets resulting in the highest average accuracy of 84.9% 
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occurring with the SVM fuzzy one-against-all using only the first seven packets. For all 

techniques, using only the first seven packets shows a higher average accuracy; the 

authors explain this may be because the first few packets contain the setup parameters 

and those parameters distinguish the different applications. 

The Bag-of-Words (BoW) ML classification model proposed by Zhang et al. [35] 

is designed to use application categories as a representation of the bags and centroids to 

represent the words. The authors create BoW vectors consisting of the size of the first 

five packets, source port, destination port, and transport-layer protocol; then cluster them 

to create the centroids. Vectors representing traffic categories are constructed and the 

nearest neighbor algorithm, along with the cosine similarity, calculated between the 

training representation vectors and the incoming flow representation vectors, classifies 

the incoming traffic. A novel consideration of this research is the effect of out-of-order 

packet arrival. BoW technique results are compared to those of C4.5 algorithm using both 

in-order and out-of-order packet data. The BoW methodology scores remain stable at 

88.4% while C4.5 drops from 87.15% to 78.33% when the out-of-order data is used. The 

authors explain this is because the BoW technique does not preserve any order 

information preventing it from having any effect on the classification accuracy.  

2.3.3. Other Classification Methods 

Some classification methods fail to fall neatly into one of the above categories. 

The methods still provide valuable insight into the focus of this thesis and, thus, should 

be included so they are gathered together here. Crotti et al. [36] present a classification 

algorithm built around normalized anomaly thresholds and ‘protocol fingerprints’ 

consisting of three features (packet size, inter-arrival time, and arrival order) from 
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captured traffic packets. Unlike the majority of the other classification techniques, 

authors designed this technique to be site-dependent, or not transportable, meaning each 

site needs its own fingerprints. A series of Probability Density Functions (PDFs) describe 

the behavior of the packets for certain protocols. Classification is done by statistically 

matching the behavior of the traffic flow with one of the PDFs, creating an anomaly score 

based on how far the flow is from the chosen PDF. Anomaly thresholds indicate the 

highest score a flow can have to be considered a member of a certain protocol; the 

smaller the threshold, the more accurate the classifier. The authors limit their testing to 

just three protocols (HTTP, POP3, and SMTP), looking at only the first four packets from 

each flow, achieving an average classification accuracy to around 91%.  

Li and Kianmehr [37] apply a classification methodology based on associative 

classifiers. Associative classifiers combine associative rule mining, or pattern/correlation 

searches, with classification with the intention of creating classification models that are 

easier for users to understand than previously studied ML algorithms. Essentially, the 

rules are first generated from the training set then pruned to derive the best set of rules. 

The classifier is built from that best set of rules. The three associative classification 

algorithms compared by the authors are Classification-Based Association (CBA), 

Classification-Based on Multiple Association Rules (CMAR), and Classification-Based 

on Predictive Association Rules (CPAR). Feature selection is handled through an 

embedded version of chi-squared that computes a statistic with respect to class and uses it 

to determine the value of the feature. The results show the CPAR algorithm performs the 

best out of the three tested with an overall average accuracy of 92.05%. 
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2.4. Network Threat Detection Classification Methods 

The earlier section presented previous work related to the broad category of 

general network traffic classification. The work in this section narrows the focus to 

research done specifically looking at network threat detection and classification. Many of 

the methods used to classify network traffic threats are the same as those used for 

classifying general network traffic so, to avoid unnecessary redundant discussion, they 

will not be discussed in depth in this paper. They are, however, listed in Table 2.1 so the 

reader may research them further if so desired. Related work presenting methodologies 

not already covered in the earlier section will, however be discussed in depth in this 

section. 

Table 2.1: Summary of Previously Covered Methodologies  

Applied to Network Threat Detection 

Author(s) Year Methodology Outcome 

Panda and Patra [38] 2007 Naïve Bayes 

Overall detection rate: 

95%; False positive rate: 

.02% - 26% 

Portnoy et al. [39] 2001 Clustering 

Detection rate: 18.56% - 

56.25%; False alarm rate: 

.3% - 11.37% 

Zanero and Savaresi [40] 2004 
Clustering, Payload 

Inspection 

SOM performed better 

than PDDP and K-means 

Pan et al. [41] 2003 
C4.5, Neural 

Networks 

Average detection rate: 

85.01% -93.28%; False 

positive rate: .2% - 19.7% 

Moradi and Zulkernine [42] 2004 Neural Networks Accuracy: 86% - 90% 

Xu and Wang [43] 2005 SVM, PCA 
Accuracy: 58.3% - 99.9% 

(class dependent) 

Hu W. et al. [44] 2008 AdaBoost 
Detection rate: 91.21%; 

False alarm rate: 3.14% 

Linda et al. [45] 2009 Neural Networks 

Detection rate: 66.06% - 

100%; False alarm rate: 

0% - .378% 
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 The Learning Rules for Anomaly Detection (LERAD) algorithm developed by 

Mahoney and Chan is based on association rule mining [46]. The research takes 

advantage of the network traffic characteristic of being time series data with long range 

dependencies. The purpose of the algorithm is to find conditional rules that spot rare 

events in a time series of tuples, or sequences, of attributes. The long range dependency 

can be seen as the number of matching attribute values between two tuples lessens 

inversely to the time interval between the tuples. The two sets of attributes used to test 

LERAD were IP packets and TCP streams and the dataset was restricted to only the first 

few inbound packets for each flow. Experimentation with the combined sets of attributes 

resulted in an average classification accuracy of 50%.   

Genetic algorithm based feature selection is used in combination with a decision 

tree classifier in Stein et al. [47]. The iterative process begins with the random generation 

of a population where each individual has genes representing the feature set. Each gene 

receives a value of one or zero depending on whether or not the feature is used in 

building the decision tree. A decision tree using C4.5 is built for each individual and 

tested with validation datasets. Fitness of each individual is assessed based on the 

classification error rate. The genetic algorithm then begins generating the next generation 

of the population based on those fitness values. The process is repeated with each newly 

generated population until it reaches a set number of generations. The average 

classification accuracy ranged from 80% - 99% depending on which category of attack 

was being considered.  

Linda et al. [48] present a fuzzy logic based anomaly detection system. The 

learning algorithm creates a fuzzy rule base that characterizes previously seen behavior 
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patterns for standard communication. The rule base is constructed using a real-time 

version of the nearest neighbor clustering algorithm with the incoming packets; clusters 

are then converted into the individual fuzzy rules. Real-time processing is made cost 

effective because the algorithm learns directly from the streaming data and makes storing 

the packet data unnecessary. The features used were developed in [45] and consisted of 

window-based statistics generated as a window of specified length was shifted over the 

stream of packets. Feature vectors are calculated from the packets inside the window as 

the new packets enter and the last packets exit. The fuzzy rule base is applied to the new 

input data which is then labeled as anomalous or normal. Experimentation resulted in 71 

fuzzy rules created with an average classification of 99.36% and no false positives.  

 Faloutsos proposes a method of using traffic dispersion graphs for threat detection 

[49]. The traffic dispersion graphs visualize the communication paths between the hosts 

and can model interactions such as the type and number of packets. The term “link 

homophily” is used to represent the tendency of network traffic flows with common IP 

hosts to share the same application. Link homophily in the network data reveals statistical 

dependencies between flows with common IP hosts that can be used for traffic 

classification without requiring information on the packet content or properties. The 

research introduces a new algorithm called the Neighboring Link Classifier with 

Relaxation Labeling which requires no training phase or feature generation. The 

algorithm was used in combination with the traffic dispersion graphs and reportedly 

worked successfully with botnet detection (a collection of computers used for network 

attack), however no numerical results were provided.   
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2.5. Feature Selection Using Neural Networks 

In [22] the authors demonstrate how reducing the dimensionality of the features, 

using FCBF, can improve the technique’s classification accuracy. This is shown again in 

[31], by way of multilayer neural networks. Feature reduction is addressed by inspection 

of the weights associated with each of the input nodes, eliminating those with the 

relatively smaller values. From this, the authors reduce the number of features down to 

128 for all data sets and 20 “important” features for most data sets. Other examples 

include [27], using CON and CFS methods, [37] where an embedded Chi-squared is used 

to determine the value of each feature, and [34] where features are chosen using an 

MRMR technique based on maximum statistical dependency. While many methods exist 

for performing feature selection, we will focus on different techniques using neural 

networks as this leads in to the method chosen for this thesis.  

 Setiono and Liu look at feature selection using a feedforward neural network with 

backpropagation [50]. Their methodology begins with all the features and prunes the 

irrelevant features one at a time. For each feature, the neural network’s classification 

accuracy is calculated with that feature’s weights set to zero. The feature that results in 

the smallest decrease in classification accuracy is removed. This process is repeated until 

the accuracy rate drops below and decided level. The cross-entropy function, in 

combination with a penalty function based on the magnitude of each connection’s 

weights, is used as the measurement to minimize during network training. The algorithm 

was tested with several datasets, both generated and real-world, resulting in a statistically 

significant improvement in classification accuracy with the selected features versus the 

accuracy with all of the features.  
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Belue and Bauer [51] proposed a methodology incorporating a known irrelevant 

feature (noise) into the set of features. Any feature with a saliency measure falling within 

a confidence interval around the saliency measure of the noise feature would be removed. 

Steppe and Bauer [52] built upon this methodology by requiring a paired-t test to account 

for naturally paired feature saliency observations, and a Bonferroni-type test to 

demonstrate statistical confidence. Two saliency measures are assessed in this research: 

derivative-based and weight-based. The iterative process begins with the addition of the 

noise feature to the feature set followed by generation and training of a set number of 

neural networks. The saliency measure is calculated for all features and compared to the 

saliency measure of the noise feature to see if they are statistically different. Features 

found to be statistically different are kept and the rest are eliminated. The neural network 

is then retrained using only the retained features.    Experimentation with two separate 

datasets demonstrated an improvement in network performance for both with the reduced 

feature set.  

Two terms are added to the cross-entropy cost function in order to constrain the 

derivatives of neural network output and hidden node transfer functions in research done 

by Verikas and Bacauskiene [53]. The network is then trained by minimizing the 

modified cost function and feature selection is determined by the response of the 

classification error after features are removed. Once the neural network is generated and 

trained, the classification accuracy is calculated by setting each feature, one at a time, to 

zero. The feature removal resulting in the lowest drop in accuracy is eliminated. This 

continues until only one feature is left. The entire process repeats for each neural network 

generated and the expected feature rankings and accuracy are calculated by taking the 
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average results from all of the networks generated. The features deemed salient, based on 

the set level of accuracy required, are kept and the neural network retrained. Four datasets 

were used comparing the method proposed in [53] to five other feature selection methods. 

This experimentation resulted in the proposed method achieving at least slightly higher 

classification accuracy on all tested data than any of the other tested methods.  

The method that compared closest to the one proposed in [53] comes from Bauer 

et al. [54], and is part of the methodology used in this thesis. The focus of [54] is using 

the signal-to-noise ratio (SNR) in determining salient feature selection. This research is 

an extension of the research done in [51] and [52], and proposes the SNR saliency 

measure which compares the weight-based saliency measure of a feature to the weight-

based saliency measure of an injected noise feature. The SNR saliency measures for 

irrelevant features should be less than or close to zero while the measures for salient 

features should be significantly larger than zero. The higher the SNR saliency measure, 

the higher the saliency of the feature.  The SNR method was applied using three different 

datasets and compared against the performance of the algorithm developed in [50] and a 

method using Principal Component Analysis (PCA).  The SNR method performed 

comparably against the other two methods while only requiring one feature versus an 

average of 2.7 features for [50] and nine features for the PCA method.  

2.6. Summary 

This chapter presented highlights of work related to the work done in this thesis. 

The chapter opened with background information to give the reader some familiarity with 

computer networking terms and concepts. Next, the broad category of general network 

traffic classification was explored, looking at port and signature-based analysis as well as 
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different aspects of unsupervised and supervised machine learning algorithms including 

clustering and neural networks. The focus then narrowed to threat detection classification 

examining methods not discussed in the general traffic classification section. Narrowing 

further, the chapter concluded by focusing on previous work done on salient feature 

selection using neural networks and the SNR saliency measure.  
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III. Methodology 

3.1. Chapter Overview 

 This chapter describes the methodology used in this thesis. First is a description of 

the dataset, including the quantity and type of data, and the data collection process. Next 

is a breakdown of the overall methodology. The discussion continues with an explanation 

of the data preprocessing, a major endeavor, using a feature generator with some 

challenging requirements and specialized network security software to create ground 

truth data. The chapter then provides a brief summary of the science behind neural 

networks and salient feature selection, followed by a description of the software-based 

tools necessary for the data analysis. The chapter concludes with a discussion of the 

performance metrics used to evaluate the performance of the neural network classifier. 

 The focus of this research is the processing and analysis of network traffic capture 

data to determine the salient features when threat detection is of primary interest. Massive 

amounts of traffic data can pass through a network quickly and the sheer magnitude of 

the data makes analysis both difficult and untimely. If those particular features of the 

traffic data that provide valuable threat-assessing information could be determined, they 

could be focused on, reducing the necessary processing and analysis time, while enabling 

and enhancing network security. 

3.2. Dataset Description 

 Data for this research comes from the Cyber Defense Exercise (CDX) sponsored 

by the US National Security Agency (NSA). A description of the data and the 

situation/environment it was collected in can be found in Mullins et al. [55]. CDX is an 

annual competition held between the US Military Academy at West Point, US Air Force 
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Academy, Naval Postgraduate School (NPS), US Naval Academy, US Coast Guard 

Academy, US Merchant Marine Academy, and Air Force Institute of Technology (AFIT). 

The exercise provides military students the opportunity to apply defensive information 

assurance best practices in a real-world-modeled environment. During the exercise, the 

NSA, along with highly trained operators from the services’ network operations centers, 

acts as a “Red Team” of hackers, launching cyber attacks on the networks designed and 

defended by the students.  

3.2.1. Data Collection 

 As an exercise based on real-world situations, the CDX data was deemed an 

acceptable representation of the type of traffic a military network might face and thus, a 

good choice to use for this research. The network traffic data used was collected during 

the CDX from 2003 – 2007, and 2009. Having several years worth of data frees the 

analysis from being restricted to the year the data was collected (as techniques and 

exploits are constantly evolving and adapting).  

3.2.2. Collection Equipment 

 AFIT’s part of the CDX took place in the Laboratory for Information System 

Security/Assurance Research and Development (LISSARD), a subsection of the school’s 

Graduate Education Cyberspace Operations (GECO) laboratory. Equipment used for the 

CDX varied from year to year but consisted primarily of Dell and Cisco brand 

information technology (IT) products [55]. Traffic was collected off the firewall, a Dell 

server with two network ports, and captured on the external port to get all traffic coming 

into and going out of the network. The TCPDump software, running on an OpenBSD 

Linux distribution, handled the actual traffic collection.  
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3.2.3. Dataset Type and Size 

 The network traffic collected during the CDX was captured in the libpcap file 

format (commonly denoted as pcap) which is the standard format for network capture 

tools such as TCPDump [56], used mainly with Linux-based operating systems, and 

Wireshark [57], used frequently in Microsoft Windows operating systems. The pcap files 

consist of the packets transmitted between the hosts and clients for that specific collection 

time period. Figure 3.1 is a screenshot of an example packet captured in Wireshark. 

Information in the packet includes (from top to bottom) Frame, Ethernet, IP, and TCP 

parameters. The parameters listed will depend on the type of protocol the packet is sent as 

(e.g., TCP, UDP or ICMP). We can see the packet from Figure 3.1 was sent using TCP 

because it includes the TCP parameters. The very bottom of the screenshot shows the 

contents of the packet’s payload. 

Table 3.1 shows the total number of packets captured for each year of the 

provided dataset. The total number of packets in the full dataset is 12,145,569. Rather 

than focus at the packet level, the data was separated into flows designated by the four-

tuple of source and destination IP addresses and port numbers. This occurred during the 

data preprocessing stage. Typically, flows are created by the five-tuple which includes 

the previously mentioned four-tuple and the internet protocol type. Most of the packets’ 

internet protocols in the CDX dataset were TCP; however, in order to eliminate any 

protocol-based restrictions on the results, no specific efforts were made to remove other 

protocol types and the four-tuple was used instead. Traffic was considered in all 

directions: client-to-server, server-to-client, and back and forth between client and server.  
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Figure 3.1: Screenshot of an Example Network Packet 

The traffic captured also had no requirement to get a complete traffic flow, 

meaning the flow captured does not have to include the SYN and final (FIN) packets. 

Removing this limitation allows for interpretation even if the traffic capture occurred 

mid-flow or does not continue until transmission is complete. Merging the packets into 
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flows reduced the total number of observations to 2,048,918 (a flow can consist of one or 

more packets). The yearly flow breakdown is also included in Table 3.1. 

Table 3.1: Breakdown of Dataset Packets and Flows 

  2003 2004 2005 2006 2007 2009 Total 

Packets 1555220 2855596 1156398 1060816 3878980 1638559 12145569 

Flows 268884 610601 38821 194001 627327 309284 2048918 

3.3. Overall Methodology 

The overall methodology for this research is broken down into two parts: data 

preprocessing and neural network analysis. Each part of the methodology is explained in 

more detail in the sections that follow. A flow chart is shown in Figure 3.2 to provide a 

visual representation of the overall methodology and how its parts fit together. 

3.4. Data Preprocessing 

A large portion of the work for this research dealt with preprocessing the data for 

analysis. Converting the provided dataset, containing packet information like in Figure 

3.1, into data readable by neural networks was both challenging and time consuming. The 

preprocessing began with feature extraction to create the flows or observations. The 

threat labels then were created and matched up with their corresponding observations. 

From there, the data went through a cleanup process involving the removal of 

observations containing incomplete data and the removal of information-less features. 

Finally, the data was randomly separated into balanced sets, containing equal numbers of 

observations per class. Other, more current, software solutions may be available to 

generate the attributes without this level of preprocessing, but were unavailable at time of 

writing. 
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Figure 3.2: Overall Methodology Flow Chart 
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3.4.1. Feature Generation  

Feature generation from the data was made possible by the fullstats.v1.0 

(Fullstats) Perl script created by Moore [22]. It is available for download from the 

University of Cambridge Computer Laboratory Downloads: BRASIL – Characterizing 

Network-based Applications page [58]. A description of the list of features generated 

from the packet capture data is in Appendix B: Original Feature List.   

3.4.1.1. Software Requirements 

Fullstats consists of three scripts that call on functionality from previously 

installed software packages. The three scripts include a flow creator, an attribute 

generator, and a script to convert the attribute output into different file formats. Because 

Fullstats was created several years ago, it requires functionality no longer supported in 

current versions of the necessary installed software packages. Information on the specific 

versions of the software packages required to run the script was provided by Ji [59]. The 

Fullstats script and its required software packages ran on the Ubuntu (Linux-based) OS 

version 5.10, referred to as “Breezy Badger”, set up as a virtual machine using Oracle 

Virtual Box. The software package versions used in this research include, GCC 4.0.1-3, 

Perl 5.8.7-5, TCPDump 3.9.1-1, TCPTrace 6.6.1, TCPDemux 20050725, and TCPSlice 

1.2a3. Most of the software listed here had to be retrieved from their individual archives 

or SourceForge.net as the update repositories have long been closed. Figure 3.3 shows a 

screenshot of the Fullstats attribute generator running in the virtual machine. Displayed 

there, from left to right, is the file number of the current file being processed, processing 

bit rate, processing frame rate, current file storage location, and estimated time of overall 

processing completion.  
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Figure 3.3: Fullstats Attribute Generator 

3.4.1.2. Equipment 

Due to the size of the provided dataset, and the time required to run all of it 

through Fullstats, processing required multiple computers. Five dedicated Dell PCs in 

AFIT’s GECO Laboratory were used, all running Microsoft Windows 7 Enterprise 

edition with Service Pack 1. Each PC had Intel Xeon 3GHz multi-core processors ranging 

from 6 to 8 cores and 20 to 32 GB of RAM. It took the five computers about 600 hours 

total to process all of the data through Fullstats. Figure 3.4 is an image of the GECO 

Laboratory where the data was processed.  
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Figure 3.4: AFIT GECO Laboratory 

3.4.1.3. Processing Issues 

A few issues came up during the Fullstats feature extraction that needed to be 

addressed to allow the script to work successfully. First off, the script for converting the 

attribute output to a particular file format had to be modified to include an “unknown” 

traffic direction, possibly because the original code was designed to focus on just the 

TCP protocol. This research makes no distinction between the TCP and UDP protocols, 

considering flows using both formats. Secondly, the large size of the capture files 

frequently caused the script to abruptly halt, so TCPDump was used to split the large 

capture files into capture files small enough for Fullstats to process. Finally, about 90% 

of the data was rendered useless because Fullstats was unable to completely process 
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many of the manually created and/or truncated packets found in the network traffic 

generated during the exercise. The sheer magnitude of the data, however, made this less 

of a concern, as there were still over 204,000 complete observations, across all years 

captured, available for analysis.  

3.4.2. Threat Label Creation 

 One of the most difficult issues when attempting to analyze network traffic is 

acquiring the ground truth data. Truth data was not provided for the CDX, during or after 

the exercise; team points were assessed based on how well the targeted systems were kept 

operational, not on the specific attacks or defensive techniques [55]. Because of the lack 

of truth data, another method of labeling the observation classes was developed using a 

network security-based Linux OS and an intrusion detection engine. 

3.4.2.1. Equipment 

 Processing from this point forward took place on two computers: a custom-built 

PC with an AMD Phenom II 3.2GHz 4-core processor with 8GB RAM and a Hewlett-

Packard Envy model laptop with an Intel Core i7 4-core processor with 8GB of RAM. 

Both computers were running Windows 7 Home Premium edition with Service Pack 1.  

3.4.2.2. Security Onion  

 Security Onion is a network security-based OS developed by Doug Burks [60]. 

The OS is based on the Ubuntu version of Linux and includes a plethora of network 

security monitoring, intrusion detection, and log management software. The version of 

Security Onion chosen was 12.04.3-20130904 64-bit, running in an Oracle Virtual Box 

virtual machine. The software tools used included TCPReplay [61], to play back the 
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capture files through the intrusion detection system sensor, and Sguil [62], a graphical 

user interface (GUI) console designed for use with the Snort intrusion detection engine. 

3.4.2.3. Snort Intrusion Detection System 

        Snort is signature-based intrusion detection system created by Sourcefire, now a 

branch of Cisco [63]. Intrusion detection is handled through the use of customizable rule 

sets which decide how the traffic should be handled based on what matches up with 

packet header or content information. The Security Onion OS came with Snort version 

2.9.5.3. The rule set used for this research was created and released by developers at 

Snort.org and was current as of November 7, 2013. Because the most recent capture data 

came from the exercise in 2009, it is assumed the Snort rule set included any threat it 

would encounter with this data set. 

3.4.2.4. Sguil 

 The Sguil console provides a human-interpretable representation of the threats 

discovered by the Snort intrusion detection system. The threat levels, assessed by the rule 

sets in the Snort engine, are differentiated by different colors. The Security Onion OS 

included Sguil version 0.8.0. The virtual machine’s network adapter was set to internal 

network only to keep any outside traffic from interfering. A MySQL-based query 

capability allows the user to search for and export labeled threat data. In the sequential 

label creation process, the capture files were run through the intrusion detection system 

using TCPReplay (version 3.4.3) with the Sguil interface opened to display the threat 

assessment output. A query using the TCPReplay start time provided a listing of the 

capture files’ threat-labeled flows which was then exported into a comma separated value 

(CSV) file format. The exported file also included the flows’ source and destination IP 
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addresses and port numbers which was used later on to merge with the observations 

created by Fullstats. 

Figure 3.5 shows a screenshot of the Sguil GUI. In the screenshot, we can see the 

assessed threat levels on the left side of the side in yellow, orange, and red. 

Corresponding parameter information makes up the rest of the table. On the bottom right 

we can see the parameters and payload of the highlighted listing.  

 

Figure 3.5: Sguil GUI Screenshot 
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3.4.3. Observation Threat Labeling 

 The primary output of Fullstats is the ARFF file format, intended for use with the 

WEKA Java-based data mining software developed at the University of Waikato in New 

Zealand [64]. This was an issue because the label files intended to merge with the 

observation data were in the CSV file format. While the WEKA software has many 

analysis tools included in it, analysis for this research was to be done using the neural net 

tool in MATLAB, which cannot read in ARFF files without additional added 

functionality. Conversion from ARFF to CSV is possible; however, Fullstats is also 

capable of outputting CSV file format versions of the observation data, making 

conversion unnecessary. Another benefit of the CSV output files from Fullstats is the 

inclusion of the IP and port information for the flows. This information was imperative in 

matching up the labels with their corresponding observations.  

The threat levels provided by Sguil consist of levels 1-5, with 1 being the highest 

threat, and 5, the lowest. For simplification, threat labels in the label files were converted 

to a 1 if the Sguil level was 4 or 5, 2 if the Sguil level was 2 or 3, and 3 if the Sguil level 

was 1, allowing for the no-threat level to be represented by a 0 and escalating from there. 

A macro written in Visual Basic for Applications (VBA) in Microsoft Excel allowed for 

an automated method of merging the observation and threat label data, based on the 

previously mentioned four-tuple of source and destination IP addresses and port numbers. 

This macro provided a large time-savings considering the number of observations in the 

data set.  



 

43 

3.4.4. Data Cleanup 

 Three steps were involved in cleaning up the data and preparing it for analysis. 

The first step dealt with missing data. As mentioned earlier, approximately 90% of the 

packet capture data was unable to be completely processed by Fullstats; this created 

many observations with missing information. Once the observation files were merged 

with the label files, the observations with missing data needed to be removed. Another 

macro was written in Excel to automate the searching and removal process.  

Some of the observation data contained the letter Y or N in response to whether or 

not the flows met certain criteria (e.g., window scaling factor was used). To keep the data 

numerical the Ys were changed to 1s and the Ns were changed to 0s in the second step of 

data cleanup.  

 The third step involved the removal of features providing no valuable information 

to the analysis. Features specific to the requirement of having a complete flow (capturing 

the SYN and FIN packets from the flow) were removed because the experiment was 

specifically designed to include incomplete flows (allows for broader interpretations). 

Other features were determined as having zero variance. If all entries in the feature are 

the same then the feature provides no new information to aid in classification. After the 

datasets were balanced (see section 3.3.5), a couple simple lines of MATLAB code 

computed the standard deviation of the provided data set and removed the indicated 

features. Removing the information-less features prior to analysis helps the neural net 

tool function correctly. Finally, the features for server and client port numbers were 

removed because port number analysis has been shown to be a poor predictor [16].  
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3.4.5. Data Balancing 

 Of the 204,000 observations, only about 16,000, or 8% of the data, were labeled 

as a threat, making the data extremely unbalanced. To give the neural net tool the best 

chance of success, new, smaller data sets were created. The pseudo-random number 

generator in Excel was used to randomly select an equal number from each class for each 

desired data set. Using this method was deemed acceptable because the random number 

function in versions of Excel 2003 or later pass the standard tests of randomness referred 

to as Diehard [65]. Three separate datasets were developed. The first, and largest set, is 

intended to determine whether or not traffic should be considered a threat (all threat level 

data combined into one class). The second set is designed to determine how well the 

different threat levels could be distinguished. The third set is a “complete” data set, meant 

to determine whether or not a threat was present and if so, the level of that threat. The 

new data sets were coded as Threat vs. No-Threat (No-Threat, Threat), Threats Only 

(Low, Medium, High), and Complete (None, Low, Medium, High). After the new data 

sets were created, 10% of each class in each data set was withheld as validation data.  

3.4.6. Final Dataset Description 

The number of alert observations versus the number of overall observations 

broken down by year is shown in Table 3.2. The small number of observations with 

threat level 1, the lowest level, greatly reduced the overall number of observations for the 

Threats Only and Complete datasets. Table 3.3 provides the breakdown of the final data 

sets chosen for analysis, including the number withheld for validation. There are an equal 

number of observations of each class in each data set. The table also includes the number 
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of features each dataset begins with after data cleanup is complete (not including the label 

feature). 

Table 3.2: Yearly Breakdown of Full Dataset 

  2003 2004 2005 2006 2007 2009 Total 

Observations 30829 73507 1301 9535 51777 37422 204371 

Threat observations 3357 8628 39 214 41 4037 16316 

Percentage 10.89% 11.74% 3.00% 2.24% 0.08% 10.79% 7.98% 

Table 3.3: Final Datasets for Analysis 

 
Threat vs. No-Threat Threats Only Complete 

Observations 29369 516 688 

Withheld 3263 57 76 

Total 32632 573 764 

Starting Features 229 222 224 

Classes 2 3 4 

3.5. Neural Network Analysis Methodology 

 The main focus of this research is to determine which features, derived from 

network traffic, are the most important to determining if a threat is present on the 

network. The methodology chosen to accomplish this is the feed-forward artificial neural 

network using backpropagation using signal-to-noise ratio for feature selection. This 

section discusses both the neural network concepts and the tools this research uses to 

apply the neural network classification capabilities to analyze the final datasets. 

3.5.1. Neural Networks 

Neural networks are a method of supervised machine learning modeled by the 

learning abilities of biological cognitive systems (i.e., neurons in the brain) [66]. The 

neurons are networked together to allow communication and information processing. The 

learning takes place through feedback causing parameter adjustments intended to make 
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the output more accurate. Figure 3.6 illustrates an example of a fully connected 

multilayer perceptron (MLP) artificial neural network.  

 

Figure 3.6: Fully Connected MLP ANN Example [66] 

A weighted combination of the inputs is created and the data is transformed 

through a threshold logic or transformation function. Examples of transformation 

functions include hard limiting, hyperbolic tangents, and sigmoid functions. This research 

uses the sigmoid function as the transformation function for the neural networks to 

address because it addresses the non-linearity introduced by the hidden layers, is 
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continuous (differentiable), and has a limited range (0 to 1) but never reaches a maximum 

or minimum [67]. The next few sections present definitions of terms used with neural 

networks, as well as the specific algorithm and saliency measure used in this research.  

3.5.1.1. Definitions 

 The following are definitions of terminology used when describing the neural net 

methodology. The definitions come from the class notes used in OPER685 Multivariate 

Analysis I, Spring 2013 [66].  

 Activation Function: defines the output of a node given an input or set of inputs 

 Artificial Neural Network (ANN): an information processing system (algorithm) 

that operates on inputs to extract information and produces outputs corresponding 

to the extracted information 

 Architecture: the topological arrangement of neurons, layers, and connections, 

which defines the set of modeling equations available to the ANN 

 Backpropagation: a learning algorithm for updating weights in a feed-forward 

MLP ANN that minimizes the (e.g., mean squared) mapping error 

 Epoch: a complete presentation of the dataset being used to train the MLP, or 

equivalently called a training cycle 

 Feature: in neural networks, features refer to the input vectors of information 

which are presumed to have some relation that may be helpful in distinguishing 

the various output classes; vector of features is often called an observation 

 Feed-forward: multilayer ANNs whose connections exclusively feed inputs from 

lower to higher levels; in contrast to a feedback or recurrent ANN, feed-forward 

ANNs operate only until all the inputs propagate to the output layer 
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 Hidden Units: processing elements in MLP ANN that are not included in the input 

or output layers; the part of the neural network located between the input and 

output layers 

 Learning Algorithm: equations used to modify the weights of processing elements 

in response to input and output values 

 Neuron: fundamental building block of an ANN; normally, each neuron takes a 

weighted sum of its input to determine its net input which is then processed 

through a transfer function to produce a single-valued output that is broadcast to 

‘downstream’ neurons 

 Perceptron: a type of ANN algorithm used in pattern classification problems that 

is trained using “supervision”; can be single or multilayer;  connection weights 

and thresholds can be fixed or adapted using a number of different algorithms  

 Supervised Training: a method of training adaptive ANNs that requires a labeled 

training dataset and an external teacher; using the desired response, the teacher 

provides responses for correct of incorrect classification by the network 

 Weight: processing elements (or neurons or units) receive inputs by means of 

interconnects (also called ‘connections’ or ‘links’), each of which has an 

associated weight, signifying its strength; the weights are combined to calculate 

the activation functions 

3.5.1.2. Algorithm 

 The algorithm chosen for this research is the Instantaneous Backpropagation 

Algorithm for a Single Hidden Layer Feed-Forward Neural Network; its steps are as 

follows from [66, 68]: 
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1. Randomly partition data into training, training-test, and validation sets. 

2. Normalize the feature input data. 

3. Initialize weights to small random values. 

4. Present the network with a randomly selected vector from the training set, 

denoted .px   

5. Calculate the network output pz  associated with the 
thp  training vector. 

 2 1

0
 neural network output: z , where

        is the number of middle nodes
1

       ( )  for sigmoidal activation functions
(1 )

       ( ) for linear activation functions
       

Hth p

k jk jj

a

j

K f w x

H

f a
e

f a
w









 







 

2

1

0

1 1

0

 is the weight from middle node  to output node 

        is the middle layer bias term and is set equal to 1

        is the output of middle node 

        is the number of fe

k

M p

j ij ii

j k

x

x f w x j

M




 





1

0

ature inputs
        is the weight from input node  to middle node 

        is the input layer bias term, and is equal to 1

        is the  feature input

ij
p

p th

i

w i j

x

x i







 

6. Update the weights. 

 Upper layer weights: 
2 2 2 1( ) ( )jk jk k jw w x   , 

 Lower layer weights: 
1 1 1( ) ( ) p
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-  
2( )jkw 

 is the updated weight from middle node j to output k  

-  
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is the old weight from middle node j to output k  

-  
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 is the updated weight from input i  to middle node j  

-  
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 is the old weight from input i  to middle node j  

-    is the step size 
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7. If training-test set error does not indicate sufficient convergence, go to step 4. 

3.5.1.3. Saliency Measure 

 The saliency measure is used to determine feature relevance in order to find a 

parsimonious feature set. The focus of this research is to determine which features of the 

dataset are salient. Two types of salient measures for neural network feature selection are 

derivative-based and weight-based [69]. The measure chosen for this research is the 

weight-based signal-to-noise ratio (SNR) saliency measure. This was discussed in Bauer 

et al. [54]. A simple weight-based saliency measure is computed as, shown in [70]: 

,

1 2

1
( )

i j

J

i j
w


 , where 

 1  is the measure for feature i , J  is the number of hidden nodes, 
1

,i jw  is 

the first layer weight between input node i  and hidden node j  

 The measure is simply the sum of the squared weights between input node 

i  and all hidden nodes 1 through J   

The SNR measure directly compares the saliency of a feature to an injected noise 

feature. The measure expands upon the simple weight-based computation as: 
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, where 

 iSNR is the value of the saliency measure for feature i , J  is the number of 

hidden nodes, 
1

,i j
w  is the weight from node i  to node j , and 

1

,N jw is the 

first layer weight from the noise node N to node j  

 The injected noise is created as a Uniform (0,1) distribution 

 The scaled logarithmic transformation of the ratio converts the saliency 

measure to a decibel scale 

The idea behind the SNR saliency measure is that if a feature is relevant to the 

output, its weights will be higher, thus making the SNR higher [54]. The noise feature is 

added to the set of features, the features are standardized to zero mean with unit variance, 

the weights are randomly initialized and assigned, the neural network is generated, and 

the SNR for each feature is calculated. The feature with the lowest of the calculated SNR 

values is dropped, the neural network generation begins again, and the process is repeated 

until only one feature and the noise feature remain 

3.5.2. MATLAB Neural Network Tool 

 Due to the complexity of the neural network and saliency measure calculations, in 

combination with size of the dataset, a software tool is required for data analysis. The 

primary tool used to analyze the final datasets is the Mathworks MATLAB Neural 

Network toolbox. From the website, “Neural Network Toolbox™ provides functions and 

apps for modeling complex nonlinear systems that are not easily modeled with a closed-

form equation. Neural Network Toolbox supports supervised learning with feedforward, 

http://www.mathworks.com/discovery/nonlinear-model.html
http://www.mathworks.com/discovery/supervised-learning.html
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radial basis, and dynamic networks. With the toolbox you can design, train, visualize, and 

simulate neural networks. You can use Neural Network Toolbox for applications such as 

data fitting, pattern recognition, clustering, time-series prediction, and dynamic system 

modeling and control.” [71].  

3.5.2.1. Tool Specifics 

For standard pattern recognition without encompassing feature 

reduction/selection, one tool available, from the Neural Network Toolbox, is the pattern 

recognition tool or “nprtool”. Observation data is loaded into nprtool as inputs and 

observation labels (truth data) are loaded as outputs. Calling the tool from the MATLAB 

command line opens a GUI for the user to select the parameters. The GUI walks the user 

through selection of the input data, the target or output data, how the data should be 

broken into training, testing, validation sets, and the number of hidden neurons in the 

middle layers. From there, the user selects “train” to train the neural network on the data 

provided, which can be repeated until satisfactory results are achieved. Next, the network 

is evaluated and a number of deployment options are provided, finishing with the ability 

to save the generated network.  

3.5.2.2. Code Modifications 

The nprtool GUI is adequate when looking at smaller feature sets, as analysis 

occurs at a one-at-a-time rate, but very cumbersome when the feature sets are large. A 

nice feature of the GUI is that it allows a script to be generated based on the steps taken 

using the GUI. This script can then be used as the base code and modified to include the 

desired parameters and allow for automation. When the modified code for this research is 

used the nprtool GUI does not show; instead, the neural network training GUI appears, 
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allowing the user to view the network generation process if so desired. The rest of the 

processing takes place in the background. Figure 3.7 provides a screenshot of the neural 

network training GUI. For this research, the code was modified to include automation of 

the neural network processing through user-defined network structure, noise feature 

creation, “best” network selection, tracking of the features dropped, and a tailored data 

storage system to make sure all data is captured throughout the processing. The modified 

code can be found in Appendix C: MATLAB Code for Neural Network Processing. 

 

Figure 3.7: MATLAB Neural Network Training GUI 
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3.5.2.2.1. Hidden Nodes  

 Neural networks usually consist of three layers, input, middle, and output. The 

structures of the input and output layers are decided by the number of features in the 

dataset (input) and the number of classes of the data (output). The structure of the middle, 

or hidden, layer can play a large part in how well the neural network performs. Weights 

are applied to the data as it passes from the input layer to the hidden layer and again, as 

the data passes from the hidden layer to the output layer. The number of neurons in the 

middle layer, called hidden nodes, determines the complexity of the network. More nodes 

may generate a better performing network, but it also increase network complexity and 

processing time. The code was modified so the user can choose the number of hidden 

nodes in the network offering the ability to compare the network performance versus 

processing time trade-off. The number of hidden nodes chosen is explored in Chapter IV.  

3.5.2.2.2. Noise Creation 

 The noise feature is generated from a uniform (0, 1) distribution. The MATLAB 

“rand” function is used to create the noise feature making it the same length of the dataset 

(i.e., same number of observations). That noise feature is then appended to the dataset as 

the first column.  

3.5.2.2.3. Net Selection 

 Another benefit of the modified code is the ability to set the number of attempts 

made to generate the neural networks. This is a valuable tool because the networks 

generated occasionally get stuck at a local minimum, causing classification accuracy to 

be lower than it should. Running multiple attempts of the neural network generation 

allows a better performing network to be chosen. There are several options available to 
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use for network performance criteria such as mean square error, sum square error, and 

cross-entropy. When neural network analysis begins, the performance value is calculated 

for the network generated with each attempt. The networks are reinitialized at the start of 

each attempt. The attempt with the best performance value (usually the minimum) is 

chosen as the best network and the saliency measurements are calculated for the features. 

The feature with the smallest SNR value is then removed from the feature set and the 

process begins again. 

3.5.2.2.4. Bookkeeping 

 A necessary aspect of the automated feature removal process is keeping track of 

what features remain after each removal in order to relate the new list of features with the 

original feature set. When the feature is removed, the indexes of the features after the 

removed feature will change. Careful bookkeeping keeps that original structure intact. 

Separate arrays are used to keep track of both the features remaining (based on the 

original structure) and those features removed.  

3.5.2.2.5. Generated Data Storage 

 Running the neural network tool generates a large amount of data, from network 

performance graphs, to confusion matrices, to arrays tracking classification accuracies 

and feature removal. The modified code creates both cell arrays capable of holding large 

amounts of multidimensional data and individual plots, tailored for specific purposes, to 

make sure no valuable information is lost.  

3.5.2.2.6. Time Keeping 

 With such large amounts of data, processing time is of concern. For example, the 

previously mentioned performance versus processing time associated with the network 
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hidden layer structure. Another example is the number of attempts made generating the 

networks. The increase in performance needs to be worth the extra time it takes to 

process the data. With that in mind, the code was modified to include a timekeeper, or 

“stopwatch”, function. A timer starts when the neural network tool begins and ends with 

the completion of the last attempt at network generation. The time information is saved 

and made available for comparison.  

3.5.3. Performance Metrics 

 Evaluating the performance of a classifier is a complicated and focus-specific 

task. There are several different areas of interest that can define performance such as cost, 

speed, and accuracy [72]. The focus areas chosen depend on what is defined as important 

in the classification outcome. The performance metrics used in this research are based on 

information found in the confusion matrix and include the overall success rate, marginal 

rates, means measures, and receiver operating characteristic (ROC) curves. 

3.5.3.1. Confusion Matrix 

 A confusion matrix describes how the observation classifications are distributed 

over the actual and predicted classifications in a grid-like format. The rows represent 

predicted classes and columns represent actual classes. Table 3.4 provides an example of 

a confusion matrix for a two class classifier [66]. A confusion matrix contains four values 

used to derive other performance measures: 

 True Positive (TP): percentage of correct positive class predictions; hits 

 True Negative (TN): percentage of correct negative class predictions; correct 

rejections 
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 False Positive (FP): percentage of incorrect positive class predictions; false 

alarms; type I errors 

 False Negative (FN): percentage of incorrect negative class predictions; misses; 

type II error 

 Positive (P): number of positive labeled observations 

 Negative (N): number of negative labeled observations 

Table 3.4: Two-Class Confusion Matrix 

 
Predicted 

Target Noise 

Actual 
Target TP FN 

Noise FP TN 

3.5.3.2. Overall Success Rate 

 The most commonly seen classification performance metric is the overall success 

rate, or percent correct over all instances; also referred to as overall accuracy. Overall 

accuracy is the trace of the confusion matrix, divided by the total number of instances and 

ranges from 0 to 1, or perfect misclassification to perfect classification [72]. Accuracy by 

class is also included. Class accuracy is the percent correct out of each class.  

( )

( )

TP TN
Accuracy

P N





 

3.5.3.3. Marginal Rates 

Classification accuracy is more than just the percentage of correctly classified 

observations [72]. The marginal rates (i.e., margins of the confusion matrix) provide 

useful performance metrics as well. The marginal rates metrics used in this research are 

recall (or true positive rate (TPR)), specificity (or true negative rate), precision (or 

positive predictive value), false positive rate (FPR - type I error), and false negative rate 
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(FNR – type II error) [73]. Recall measures the ability of the model to correctly predict 

observations are in a particular class [74]. Specificity is similar to recall, but for correctly 

predicting observations are not in a particular class. Precision measures the accuracy of a 

specific class being predicted. All five measures range from 0 to 1.  

          
( ) ( )

                  
( ) ( ) ( )

TP TP TN TN
Recall Specificity

P TP FN N FP TN

TP FP FN
Precision FPR FNR

TP FP FP TN TP FN

   
 

  
  

 

3.5.3.4. Means Measures 

 Two types of means measures are looked at in this research. Means measures 

focus on the per-class performance. The first is the geometric mean or G-measure. The 

G-measure is the square root of the product of precision and recall. The measure 

normalizes the true positive to the geometric mean of the predicted and actual positives 

[73].  

*G Precision Recall  

The F-measure (or F1 score) is another way to measure a classifier’s accuracy. 

The F-measure corresponds to the harmonic mean of recall and precision. It measures the 

overlapping of the actual and predicted classes and ranges from 0 to 1, or no overlap 

(worst) to complete overlap (best).  

1

*
2*

Precision Recall
F

Precision Recall



 

3.5.3.5. ROC Curves 

ROC Curves got their start as a way of explaining radio signals during World War 

II and have become a commonly used tool in machine learning research communities in 
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recent years [75]. ROC Curves provide a graphical way to visualize the tradeoff between 

TPR and FPR based as a function of some varied parameter of the classifier [66]. For this 

research the parameter is the decision threshold value for deciding which class an 

observation belongs to. Perfect classification is represented as the point (0, 1) along the 

curve (see Figure 3.8). The optimal operating point of the curve is the threshold providing 

the best combination of TPR and FPR. 

 

Figure 3.8: Two-Class ROC Curve Example 

The area under the ROC Curve (AUC) provides a metric of how well the 

classifier can predict an observation’s class. The AUC is the probability that the classifier 

will classify a randomly chosen positive instance higher than a randomly chosen negative 

instance [75]. As with the previous metrics, AUC ranges between 0 and 1, with 0 giving 

the worst predictive capability and 1 giving the best. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve - Two Class Example

 

 

Class 0

Class 1



 

60 

3.6. Summary 

 The methodology described in this chapter is designed to provide an accurate 

determination of the most important features in network traffic data for classifying 

threats. The initial dataset was discussed, followed by the process it took to turn that 

dataset into something useable for analysis by neural networks. After that, neural 

networks were explained. The chapter concluded with a discussion of the software tools 

and modifications necessary for analysis and a description of the metrics used for 

evaluating the neural network classification performance.  
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IV. Experimental Analysis & Results 

4.1. Chapter Overview 

 This chapter presents the analysis and results from the experiments. The chapter 

starts with a brief investigation of the overall dataset followed by a discussion of the 

chosen settings used for the MATLAB Neural Network tool. The rest of the chapter 

consists of the results and interpretation for each of the datasets used during 

experimentation. 

 Later in this chapter much effort goes into gleaning as much information as 

possible, through neural network analysis, from the datasets discussed in Chapter III. In 

order to better understand those datasets and the results of that analysis, a brief 

investigation of the overall dataset is presented. Because each of the experimental 

datasets was created from this overall dataset, the results of the investigation will, in 

general, apply to all the datasets. The investigation looked at the class breakdown, 

correlation information of the features, and the dimensionality of the dataset.  

4.2. Overall Dataset 

 The overall analyzable dataset consists of 204,371 observations. Approximately 

8% of those observations are labeled as a threat (Low, Medium, or High). A visual 

representation of the frequency of the threats is shown in Figure 4.1. Although the large 

gap between the number of threat observations and non-threat observations is likely a 

realistic expectation for what a normal government network encounters, this overloading 

of one class of data does not work well with neural network analysis. It causes the neural 

network output to be heavily skewed in favor of the overloaded class. As previously 

discussed in Chapter III, three smaller, balanced, datasets were created to address the 
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unequal class representation. Information about the three experimental datasets can be 

found in Table 3.3 in Chapter III. 

 

Figure 4.1: Overall Dataset Threat Frequency 

Looking at data correlation is an important starting point when investigating 

datasets. Looking at the correlation can reveal dependence, or relation, among the 

features and provide some insight into what features do or do not provide additional 

information (e.g., redundancy). Correlation is used, as opposed to covariance, because 

with correlation the data is normalized and unit-less, important because the scale varies 

greatly between the features. Features that are highly correlated with the class feature but 

not with each other are likely to be the salient features. Due to the high number of 

features, a color map (see Figure 4.2) is used to visualize the correlation matrix because it 

is easier to read and interpret than a number matrix would be. As can be seen in the color 

map, most of the data is uncorrelated (green) with occasional pockets of moderate 
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(yellow or light blue) to high (red or dark blue) correlation between some features. None 

of the features seem to be highly correlated with the class (first row/column – somewhat 

difficult to see); however, there does seem to be some mild to moderate correlation with 

features numbered in the teens, 80s, 90s, and 170s.  

 

Figure 4.2: Overall Dataset Correlation Color Map 
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Kaiser’s Criterion dimensionality test. Using the data correlation, the eigenvalues are 

computed for each of the features and plotted against the number of features. The number 

of features with eigenvalues of one or higher should be kept. From the plot we see about 

40 features have eigenvalues of 1 or higher. These 40 features explain about 85% of the 

variance in the data. This indicates the dimensionality of the data is 40 features; however, 

we have yet to determine which of these features, if any, are salient.  

 

Figure 4.3: Kaiser Dimensionality Plot - Overall Dataset 
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function or ‘trainscg’ was selected as the neural network training algorithm. MATLAB 

includes several different training algorithms; through initial trial and error, ‘trainscg’ 

seemed faster than other algorithms with similar classification accuracy outcomes. 

Network performance was calculated using the cross-entropy algorithm. Typically, mean 

squared error is the default performance metric, but the natural log function in the cross-

entropy algorithm factors in the accuracy prediction values and becomes a more fine-

grained method of calculating error thus providing better performing networks [76].  

Table 4.1 lists out the parameter settings used to determine when the training tool 

should end a training iteration. The automation settings described in Chapter III ran the 

training tool through 30 network-generating attempts for each number of features with 

network structures containing 10, 20, 30, 40, and 50 hidden nodes. For deciding which 

class an observation belongs to, the default threshold value of .5 was used for each 

dataset. After the optimal operating characteristics were determined, the optimal 

threshold was used for the validations datasets. 

Table 4.1: MATLAB Training Tool Settings 

Training Tool Settings Setting 

Epochs (max) 500 

Time (max) 300 (seconds) 

Network Performance Goal .005 

Validation Checks (max) 10 

4.4. Dataset Analysis 

 This section walks through the results from the analysis of the three experimental 

datasets. Each of the three subsections focuses on a particular dataset, first discussing the 

chosen hidden layer structure and the overall accuracy leading to the decision on the 

number of features to keep. Next, the results of the neural network’s performance metrics 
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and optimal operating characteristics are presented. The data used for these metrics 

consists of the combination of the training and testing sets calculated using only the 

retained feature set. This is followed by the performance metrics computed with the 

neural network using the withheld validation data. Each subsection concludes with a 

discussion of the salient features for each dataset. 

4.4.1. Threat vs. No-Threat Dataset 

 The first dataset is referred to as the Threat vs. No-Threat dataset. This dataset is 

the most general and, because of that, has the most observations of the three datasets. The 

dataset is broken down into two classes; an observation is either a threat or not a threat. 

The analysis for this dataset focuses solely on determining whether or not a threat is 

present and provides no information on the risk level of the threat discussed. It is likely a 

method such as this would be used in conjunction with another threat detection method 

capable of discerning the level of the threat. 

4.4.1.1. Hidden Layer Structure – Threat vs. No-Threat Dataset 

 The number of nodes in the hidden layer makes up the hidden layer structure. The 

importance of the hidden layer structure is discussed in Chapter III. Each dataset was run 

through the MATLAB Neural Network tool using 10, 20, 30, 40, and 50 hidden nodes to 

determine which structure provided the most benefit when factored against the time 

required to process the data. Plots of the overall accuracy against the number of features 

(commonly referred to as a “knee plot”) and the overall accuracy values were considered 

for each structure to determine an appropriate performance “drop” point. Table 4.2 

presents the results of the testing done with regard to the hidden layer structure. For the 

Threat vs. No-Threat dataset, dropping below .9355 for the last time was chosen as the 
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comparison drop point. As can be seen in Table 4.2 the selection method results in a 

different number of features remaining for each hidden layer structure. The idea is to 

optimize efficiency – minimize time and the number of features while maximizing 

accuracy. A plot of the number of nodes versus the accuracy at the drop point and the 

processing time provides an easy way to visualize the tradeoff and can be seen in Figure 

4.4. It is obvious that as the number of hidden nodes increases, the accuracy stays 

relatively the same while the processing time increases. The highlighted row in Table 4.2 

shows the chosen structure of 10 nodes with 13 features remaining.  

Table 4.2: Hidden Layer Structure – Performance Comparison -  

Threat vs. No-Threat Dataset 

# of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining 

10 81250 0 .9358 13 

20 100856 19606 .9357 11 

30 136415 55165 .9360 9 

40 155990 74740 .9374 6 

50 199852 118602 .9377 10 

 

 

Figure 4.4: Hidden Layer Structure Comparison – Threat vs. No-Threat Dataset 
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4.4.1.2. Overall Accuracy – Threat vs. No-Threat Dataset 

 Once the hidden layer structure has been selected, we take a closer look at the 

performance of the neural network built around the number of remaining features. The 

objective is to maintain the desired classification accuracy while minimizing the number 

of features. A knee-plot of the overall accuracy against the number of features removed is 

shown in Figure 4.5. The accuracy is very consistent at around 94% while most of the 

features are removed. At feature number 217 (the noted feature), the neural network is 

performing at a 93.58% classification accuracy rate. After feature number 217 is removed 

the accuracy starts to take a steep decline and it never comes back up. This is the “knee” 

point of the plot and determines how many features are required to keep while 

maintaining the desired classification accuracy. Based on the location of the knee, the 

decision was made to keep the last 13 features remaining and evaluate the network 

performance.  

 

Figure 4.5: Overall Classification Accuracy – Threat vs. No-Threat Dataset (10 nodes) 
 

0 50 100 150 200 250

0.8

0.85

0.9

0.95

1

Overall Classification Accuracy

Threat vs. No-Threat Dataset (10 nodes)

Number of Features Removed

O
v
e
ra

ll 
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Accuracy 

Drop w/ 217 

features removed 



 

69 

4.4.1.3. Performance Metrics – Threat vs. No-Threat Dataset 

 Several performance metrics were calculated to evaluate the neural network 

created with 13 features remaining. These metrics were calculated from the results shown 

in the confusion matrix (Table 4.3) and are displayed in Table 4.4. We can see from the 

results that the generated network performs at over 93% accuracy on the data it was 

trained and tested on.  There is a consistently high classification performance both 

between classes and within classes (i.e., overall and class-based accuracies).  

FPR equates to false alarm rate. The FPRs displayed indicate an expectation of a 

2.42% false alarm rate for observations classified as benign and a 9.79% false alarm rate 

for those classified as a threat.   This means we should expect less than 3 out of 100 

observations classified as benign to actually be a threat and approximately 10 out of 100 

observations classified as a threat to actually be benign.   

Table 4.3: Confusion Matrix -  

Threat vs. No-Threat Dataset (13 Features) 

 
Predicted 

No-Threat Threat 

Actual 
No-Threat 13125 1559 

Threat 326 14359 

Table 4.4: Performance Metrics - Threat vs. No-Threat Dataset (13 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

No-Threat .9358 .9758 .8938 .9021 .0242 .0979 .9339 .9330 

Threat .9358 .9021 .9778 .9758 .0979 .0242 .9392 .9387 

Overall Accuracy .9358 

4.4.1.4. Optimal Operating Characteristics – Threat vs. No-Threat Dataset 

 The next step in analyzing the outcome of selected neural network was 

determining the optimal operating characteristics for that network. The optimal operating 
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characteristics refer to the threshold used when determining what class a particular 

observation belongs to based on the output score generated by the neural network. The 

initial decision threshold for all classes in the trained dataset was the default 0.5, 

considering each dataset equally.   

ROC Curves for each class and their associated ensemble threshold plots were 

generated to check network performance and determine the optimal thresholds and can be 

seen in Figure 4.6. The ideal location for a ROC curve is the upper left corner of the 

graph and the lines shown here are very close to that; this indicates the network is 

performing well. The graph indicates there is a threshold that provides a TPR at or above 

0.9 while still keeping an FPR below 0.1 for both target classes. The ensemble threshold 

plots appear to be robust with threshold values varying between about .15 and .99 for the 

no-threat class and between about .02 and .85 for the threat class, holding an approximate 

90% classification accuracy.  

 

Figure 4.6: ROC Curves and Ensemble Threshold Plots – Threat vs. No-Threat Dataset 
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 The optimal operating characteristics were explored further looking at the AUC 

for the ROC curves. The higher the AUC is the higher the predictive capability of the 

network should be. From Table 4.5 we can see an AUC of .9614 and .9616 for the no-

threat and threat classes, respectively. These are high values indicating the network has a 

high predictive capability. The table also provides the results for the optimal TPR, FPR, 

and the associated optimal threshold and ensemble accuracy. Notice the similarities 

between the optimal FPRs and the FPRs shown in Table 4.4. This indicates using the 

optimal threshold had little effect on the expected false alarm rates of the classes.. 

Table 4.5: Optimal Operating Characteristics -  

Threat vs. No-Threat Dataset (13 Features) 

Class AUC Optimal  

TPR 

Optimal 

FPR 

Optimal 

Threshold 

Max Ensemble 

Accuracy 

No-Threat .9614 .8932 .0211 .5449 .9361 

Threat .9616 .9742 .1034 .6099 .9354 

4.4.1.5. Validation Results – Threat vs. No-Threat Validation Dataset 

Because the generated neural network learns and trains on the input data 

specifically, it is important to test the network with a separate set of validation data.  The 

optimal thresholds determined in the previous section were used for discriminating 

between the two classes. Because there are two classes of data, each with its own optimal 

threshold, the results of testing the validation data consists of two parts, one part focusing 

on the no-threat class data and the other part focusing on the threat class data.  

Table 4.6 provides the confusion matrix results using the .5449 threshold value 

with a focus on the no-threat class data. The confusion matrix results were then used to 

calculate the performance metrics for the dataset; those results are shown in Table 4.7. 

The overall accuracy is above 84% which could be still considered fairly high. The 



 

72 

precision of the threat data at over 96% indicates the neural network predicts the threat 

data class well, although the FPR indicates that may be due to over-prediction of that 

class. The effect of the optimal threshold is evident in the associated much lower no-

threat data precision result. 

We can also see the FPR changes with the validation dataset to 4.29% and 

22.15% for the no-threat and threat data classes, respectively. This means about 4 out of 

100 observations will be classified as benign when they are actually threats and about 22 

out of 100 observations will be classified as a threat when they are actually benign. The 

false alarm jump for the threat class data from 9.79% with the training data to 22.15% 

with the validation data is likely due to the neural network overfitting in the 

training/testing set. In the cyber realm a false alarm rate that high is likely to overwhelm 

network operators and cause the alert system to be disregarded.  

Table 4.6: Confusion Matrix - Threat vs. No-Threat  

Validation Dataset - No-Threat Focus (13 Features) 

 
Predicted 

No-Threat Threat 

Actual 
No-Threat 1183 449 

Threat 53 1578 

Table 4.7: Performance Metrics - Threats vs. No-Threat 

Validation Dataset – No-Threat Focus (13 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

No-Threat .8462 .9571 .7249 .7785 .0429 .2215 .8329 .8250 

Threat .8462 .7785 .9675 .9571 .2215 .0429 .8679 .8628 

Overall Accuracy .8462 

 Table 4.8 shows the confusion matrix after using the .6099 threshold, focusing on 

the data classified as a threat. The network performance metrics were computed from the 

confusion matrix results and are presented in Table 4.9. The overall accuracy is again 
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over 84%. Changing the threshold to focus on the threat class data caused little change in 

the performance of the network, including the false alarm results.  

Table 4.8: Confusion Matrix - Threat vs. No-Threat  

Validation Dataset - Threat Focus (13 Features) 

 
Predicted 

No-Threat Threat 

Actual 
No-Threat 1196 436 

Threat 60 1571 

Table 4.9: Performance Metrics - Threats vs. No-Threat 

Validation Dataset – Threat Focus (13 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

No-Threat .8480 .9522 .7328 .7828 .0478 .2172 .8354 .8283 

Threat .8480 .7828 .9632 .9522 .2172 .0478 .8683 .8637 

Overall Accuracy .8480 

4.4.1.6. Salient Feature Description – Threat vs. No-Threat Dataset 

This section provides a description of the 13 salient features chosen for the Threat 

vs. No-Threat dataset. Table 4.10 contains the feature numbers from the original feature 

set and their associated descriptions. The features are listed by their index number in the 

original feature set, not according to their weight. The salient features all have to do with 

the size or number of the packets (also referred to as segments) or the bytes within a 

packet. Segment size (minimums and maximums) or number of segments is part of 5 of 

the 13 features. The rest of the features consist of the number of bytes in some portion of 

the packet, including the control information, which is used to tell the network how and 

where to deliver the packet and is typically found in the packet headers or trailers.     
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Table 4.10: Salient Feature Descriptions – Threat vs. No-Threat Dataset [6] 

Original Feature Number Feature description 

10 Minimum of bytes in (Ethernet) packet, using the size of 

the packet on the wire 

17 Minimum of total bytes in IP packet, using the size of 

the payload declared by the IP packet 

80 Maximum segment size requested as a TCP option in the 

SYN packet opening the connection (server to client) 

84 Minimum segment size observed during the lifetime of 

the connection (server to client) 

86 Average segment size observed during the lifetime of the 

connection calculated as the value reported in the actual 

data bytes field divided by the actual data packets 

reported (server to client) 

96 Total number of bytes sent in the initial window (i.e., the 

number of bytes seen in the initial flight of data before 

receiving the first ACK packet from the other endpoint 

acknowledging some data – not the 3-way handshake) 

(server to client) 

97 Total number of segments (packets) sent in the initial 

window (client to server) 

98 Total number of segments (packets) sent in the initial 

window (server to client) 

173 Variance of control bytes packet (client to server) 

179 Maximum of bytes in (Ethernet) packet (server to client) 

186 Maximum of total bytes in IP packet 

187 Variance of total bytes in IP packet (server to client) 

193 Maximum of control bytes in packet 

4.4.2. Threats Only (Low, Medium, High) 

The next dataset is referred to as the Threats Only dataset. This dataset consists of 

only those observations classified as one of the three threat levels, Low, Medium, and 

High. Because of the limited number of Low threat observations, this dataset is the 

smallest of the three. Investigation into this dataset is intended to determine how well the 

neural network can distinguish between the different threat levels so no benign data is 

included. This type of analysis would work well as a post-investigation to the data 

characterized as a threat from the previous Threat vs. No-Threat dataset.  
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4.4.2.1. Hidden Layer Structure – Threats Only Dataset 

Table 4.11 presents the results of the hidden layer structure performance. For the 

Threats Only dataset, dropping below .95 for the last time was chosen as the comparison 

drop point. The plot of the number of nodes versus the accuracy at the drop point and the 

processing time can be seen in Figure 4.7. As the number of hidden nodes increases, the 

accuracy falls, stays relatively steady, and then drops while the processing time increases. 

The highlighted row in Table 4.11 shows the chosen structure of 10 nodes with 6 features 

remaining. 

Table 4.11: Hidden Layer Structure – Performance Comparison - Threats Only Dataset 

# of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining 

10 2798 0 .9729 6 

20 3351 553 .9612 6 

30 3699 901 .9612 8 

40 3879 1081 .9632 9 

50 4183 1385 .9516 8 

 

Figure 4.7: Hidden Layer Structure Comparison - Threats Only Dataset 
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4.4.2.2. Overall Accuracy – Threats Only Dataset 

A knee-plot of the overall accuracy against the number of features removed is 

shown in Figure 4.8. The accuracy fluctuates between about 96% and 99% as most of the 

features are removed. At feature number 217 (the noted feature), the neural network is 

performing at a 97.29% classification accuracy rate. After feature number 217 is 

removed, the accuracy starts to take a steep decline and it never comes back up. Based on 

the location of the knee, the decision was made to keep the last six features remaining 

and evaluate the network performance. 

 

Figure 4.8: Overall Classification Accuracy - Threats Only Dataset (10 nodes) 
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tested on.  The high classification performance is consistent both between classes and 

within classes (i.e., overall and class-based accuracies). Precision for the Low threat class 

indicates the neural network may not predict that class as well as it does with the other 

classes. The results for the Medium and High threat classes are similar and very high, 

suggesting the neural network classifies those classes well.     

The FPRs shown indicate an expectation of a 2.58% false alarm rate for 

observations classified as Low threat, a .88% false alarm rate for those classified as 

Medium threat, and a .59% false alarm rate for those classified as High threat.   This 

means we should expect approximately 3 out of 100 observations classified as Medium 

or High threat to actually be Low threat; less than 1 out of 100 observations classified as 

Low or High threat to actually be Medium threat; and less than 1 out of 100 observations 

classified as Low or Medium threat to actually be High threat.  The false alarm rate for 

Medium and High threat indicates the network does an excellent job differentiating 

Medium and High both between each other and against the Low class.  

Table 4.12: Confusion Matrix - Threats Only Dataset (6 Features) 

 
Predicted 

Low Medium High 

Actual 

Low 163 4 5 

Medium 3 169 0 

High 1 1 170 

Table 4.13: Performance Metrics - Threats Only Dataset (6 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

Low .9748 .9760 .9477 .9742 .0258 .0240 .9618 .9617 

Medium .9845 .9713 .9826 .9912 .0088 .0287 .9769 .9769 

High .9864 .9714 .9884 .9947 .0059 .0286 .9799 .9798 

Overall Accuracy .9729 
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4.4.2.4. Optimal Operating Characteristics – Threats Only Dataset 

This section discusses the optimal operating characteristics established for the 

generated neural network. ROC Curves for each class and their associated ensemble 

threshold plots were generated to check network performance and determine the optimal 

thresholds. The plots are shown in Figure 4.9. The curve lines shown in the ROC Curve 

plots are extremely close to the upper left corner indicating a high level of performance 

from the neural network. From the graph we can see there is a threshold that provides a 

TPR close to one with an FPR close to zero for all three classes. Similar to the Threat vs. 

No-Threat dataset results, the ensemble threshold plots appear to be quite robust. 

Threshold values for Low threat class data to achieve at least 90% accuracy range from 

about 0.1 to .95.  Threshold values for Medium and High threat data to get 90% accuracy 

begin at 0 and extend to 1 and about 0.9 for Medium and High threat data, respectively. 

These operating characteristic curves reiterate that the generated neural network performs 

better with Medium and High threat data than it does with the Low threat data.   

 

Figure 4.9: ROC Curves and Ensemble Threshold Plots - Threats Only Dataset  
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The AUC for the generated ROC curves was also explored. In Table 4.14 we can 

see an AUC of over .99 for all three classes. These are extremely high values indicating 

the network has an excellent predictive capability. The optimal TPR, FPR, and associated 

optimal threshold and ensemble accuracy can also be seen Table 4.14. In contrast to the 

results from the Threats vs. No-Threats dataset, there is little difference between the 

optimal FPRs and the FPRs shown in Table 4.13. This is likely due to the robustness of 

the optimal threshold as varying the threshold seems to cause much of an effect on the 

accuracy outcome. The ranking of the false alarm percentage did swap between the 

Medium and High threat data but they are both still at less than 1%.   

Table 4.14: Optimal Operating Characteristics - Threats Only Dataset (6 Features) 

Class AUC Optimal 

TPR 

Optimal 

FPR 

Optimal 

Threshold 

Max Ensemble 

Accuracy 

Low .9931 .9419 .0116 .5627 .9729 

Medium .9988 .9709 .0029 .6213 .9884 

High .9959 .9826 .0087 .8146 .9884 

4.4.2.5. Validation Results – Threats Only Validation Dataset 

The optimal thresholds determined in the previous section were used for testing 

the validation data. The following results consist of three parts focusing on each of the 

Low, Medium, and High threat class data.  

Table 4.15 shows the confusion matrix results using the .5627 threshold value 

with a focus on the Low threat class data. These results were then used to calculate the 

performance metrics for the dataset which are shown in Table 4.16. The overall accuracy 

is above 87% which could be still considered fairly high but is a 10 percentage point drop 

from the training dataset overall accuracy. The precision of the Low threat data at 

approximately 79%, when compared to the 89% and 95% for the Medium and High 
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threat data, reinforces the earlier notion that the neural network does not predict the Low 

threat data class as well as the other classes. The results do show, however, when the 

focus is on identifying the Low threat, the neural network’s recall performance is much 

better for the Low class than either of the other classes.  

We can also see there is a jump in the false alarm rate for all classes with the 

validation data.  The FPR went up to 9.76% for the Low threat class data, 5.41% for the 

Medium threat class data, and 2.78% for the High threat class data.  This translates to an 

expectation of about 10 out of 100 observations classified as Medium or High threat 

when they are actually Low; about 5 out of 100 observations classified as Low or High 

when they are actually Medium; and about 3 out of 100 observations classified as Low or 

Medium threat when they are actually High. The false alarm jump is again likely due to 

the neural network overfitting on the training/testing set.  

Table 4.15: Confusion Matrix – Threats Only  

Validation Dataset – Low Threat Focus (6 Features) 

 
Predicted 

Low Medium High 

Actual 

Low 15 3 1 

Medium 0 17 2 

High 1 0 18 

Table 4.16: Performance Metrics - Threats Only 

Validation Dataset – Low Threat Focus (6 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

Low .9123 .9375 .7895 .9024 .0976 .0625 .8603 .8571 

Medium .9123 .8500 .8947 .9459 .0541 .1500 .8721 .8718 

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000 

Overall Accuracy .8772 

 Table 4.17 shows the confusion matrix after using the .6213 threshold, focusing 

on the data classified as Medium threat. The network performance metrics were 
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computed from the confusion matrix results and are presented in Table 4.18. The results 

are identical to those found when focusing on the Low threat class. Looking at the neural 

network score output, the scores for each observation are generally high in one class’ cell 

suggesting the network was able to distinguish between the classes at a high level. The 

change in the threshold was not enough to affect the prediction outcome so the results 

turned out exactly the same. 

Table 4.17: Confusion Matrix – Threats Only  

Validation Dataset – Medium Threat Focus (6 Features) 

 
Predicted 

Low Medium High 

Actual 

Low 15 3 1 

Medium 0 17 2 

High 1 0 18 

Table 4.18: Performance Metrics - Threats Only 

Validation Dataset – Medium Threat Focus (6 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

Low .9123 .9375 .7895 .9024 .0976 .0625 .8603 .8571 

Medium .9123 .8500 .8947 .9459 .0541 .1500 .8721 .8718 

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000 

Overall Accuracy .8772 

Table 4.19 shows the confusion matrix after using the .8146 threshold, focusing 

on the data classified as High threat. The network performance metrics were computed 

from the confusion matrix results and are presented in Table 4.20. The overall accuracy 

stayed exactly the same at 87.72%.  Focusing on the High threat class evened out recall 

and precision for the Low and Medium threat class data. This balancing out was the result 

of the prediction values for the Low and Medium threat turning out the same with 16 true 

positives and 3 false positives. The false alarm rate reflected the effect as well with the 

High threat data remaining at 2.78% and the Low and Medium threat data even at 7.69%.  
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Table 4.19: Confusion Matrix – Threats Only  

Validation Dataset – High Threat Focus (6 Features) 

 
Predicted 

Low Medium High 

Actual 

Low 16 2 1 

Medium 1 16 2 

High 1 0 18 

Table 4.20: Performance Metrics - Threats Only Validation Dataset –  

High Threat Focus (6 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

Low .9123 .8889 .8421 .9231 .0769 .1111 .8652 .8649 

Medium .9123 .8889 .8421 .9231 .0769 .1111 .8652 .8649 

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000 

Overall Accuracy .8772 

4.4.2.6. Salient Feature Description – Threats Only Dataset 

This section provides a description of the six salient features chosen for the 

Threats Only dataset (see Table 4.21). All of the salient features pertain to segment size 

or number of bytes in a section of the packet, again, mostly the control section. The one 

exception is the minimum window advertisement seen. The window advertisement is a 

flow control mechanism sent from the receiver letting the sender know how much of data 

can be received before the sender has to wait for an acknowledgment. 

Table 4.21: Salient Feature Description - Threats Only Dataset [6] 

Original Feature Number Feature description 

81 Maximum segment size observed during the life of the 

connection (client to server) 

83 Minimum segment size observed during the life of the 

connection (client to server) 

90 Minimum window advertisement seen (if both sides 

negotiated window scaling)(server to client) 

171  Third quartile of control bytes in packet 

173 Variance of control bytes in packet 

180 Variance of bytes in Ethernet packet 
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4.4.3. Complete Set (None, Low, Medium, High) 

The final dataset is the Complete dataset. This dataset consists of four classes: 

None, Low threat, Medium threat, and High threat. The limited number of Low threat 

observations affects the size of this dataset as it did the Threats Only dataset, however, 

with the inclusion of the None data, this data is slight larger. Investigation into this 

dataset is intended to test how well the neural network can not only detect a threat, but 

also determine the level of the threat. Unlike the previous datasets, this method should be 

able to stand on its own without further processing. 

4.4.3.1. Hidden Layer Structure – Complete Dataset 

Table 4.22 presents the results of the hidden layer structure performance. For the 

Complete dataset, dropping below .8 for the last time was chosen as the comparison drop 

point. The plot of the number of nodes versus the accuracy at the drop point and the 

processing time can be seen in Figure 4.10. Unlike the previous datasets, classification 

performance jumps as the nodes increase to 30 before dropping rapidly, while incurring 

only a mild increase in processing time, thus making 30 nodes the chosen structure as 

opposed to the 10 nodes used for the previous datasets. The highlighted row in Table 4.22 

shows the chosen structure of 30 nodes with 8 features remaining. 

Table 4.22: Hidden Layer Structure - Performance Comparison - Complete Dataset 

# of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining 

10 3573 0 .8110 11 

20 3634 61 .8110 10 

30 4063 490 .8256 8 

40 4149 576 .8125 7 

50 4561 988 .8009 7 
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Figure 4.10: Hidden Layer Structure Comparison - Complete Dataset 

4.4.3.2. Overall Accuracy – Complete Dataset 
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Figure 4.11: Overall Classification Accuracy - Complete Dataset (30 nodes) 

4.4.3.3. Performance Metrics – Complete Dataset 

Performance metrics were calculated to evaluate the neural network created with 

eight features remaining. These metrics were calculated from the results shown in the 

confusion matrix (see Table 4.23) and are displayed in Table 4.24. From the results we 

can see the generated network performs at almost 83% accuracy on the data it was trained 

and tested on.  The classification performance is inconsistent both between classes and 

within classes (i.e., overall and class-based accuracies). The None and Low threat 

classification accuracies are similar to each other but different from the Medium and 

High threat classification accuracies. The low precision values for the None and Low 

threat classes, in contrast to the high values for the Medium and High threat classes, 

indicate the neural network may not predict those classes as well as it does with the other 

classes.  Classification of the Medium threat class seems to generally be the highest 

across the range of statistics presented.  

0 50 100 150 200 250

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Features Removed

O
v
e
ra

ll 
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Overall Classification Accuracy

Complete Dataset (30 nodes)

Accuracy 

Drop w/ 217 

features removed 



 

86 

The FPRs shown indicate an expectation of an 11.28% false alarm rate for 

observations classified as None, 7.72% false alarm rate for those classified as Low threat, 

2.68% false alarm rate for those classified as Medium threat, and 1.04% false alarm rate 

for those classified as High threat.   This means we should expect about 11 out of 100 

observations classified as some level of threat to actually be benign; 8 out of 100 

observations classified as None, Medium, or High threat to actually be Low threat; 3 out 

of 100 observations classified as None, Low, or High threat to actually be Medium threat; 

and 1 out of 100 observations classified as None, Low, or Medium threat to actually be 

High threat.  The network appears to distinguishing the High threat well. 

Table 4.23: Confusion Matrix - Complete Dataset (8 Features) 

 
Predicted 

None Low Medium High 

Actual 

None 111 29 4 28 

Low 31 132 3 6 

Medium 3 7 158 4 

High 2 2 1 167 

Table 4.24: Performance Metrics - Complete Dataset (8 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

None .8590 .7551 .6453 .8872 .1128 .2449 .6981 .6959 

Low .8866 .7765 .7674 .9228 .0772 .2235 .7719 .7719 

Medium .9680 .9518 .9186 .9732 .0268 .0482 .9351 .9349 

High .9375 .8146 .9709 .9896 .0104 .1854 .8894 .8859 

Overall Accuracy .8256 

4.4.3.4. Optimal Operating Characteristics – Complete Dataset 

ROC Curves for each class and their associated ensemble threshold plots were 

generated to check network performance and determine the optimal thresholds. The plots 

are shown in Figure 4.12. The curve lines shown in the ROC Curve plots for the Medium 

and High threat classes are close to the upper left corner indicating a high level of 
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performance from the neural network. From the graph we can see there is a threshold that 

provides a TPR greater than .9 with an FPR less than .1 for both classes. The curves for 

the None and Low threat classes suggest the neural network does not perform as well for 

classifying those two classes as the FPR needed for a TPR of .9 is close to .3, meaning 

30% of the classification would result in false alarms. Similar to the previous dataset 

results, the ensemble threshold plots appear to be fairly robust, although the achieved 

accuracy is not as high for the Complete dataset. There is an obvious gap between the 

accuracies of the None and Low threat classes and the Medium and High classes. These 

operating characteristic curves demonstrate that the generated neural network performs 

better with Medium and High threat data than it does with the None and Low threat data.   

 

Figure 4.12: ROC Curves and Ensemble Threshold Plots - Complete Dataset 

 (30 nodes) - 8 Features 

The AUC for the generated ROC curves was also explored. In Table 4.25 we can 

see an AUC of over .90 for all four classes. The Medium and High threat class data 

results show extremely high values of .9838 and .9828, respectively, indicating the neural 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curves - Complete Dataset

(30 nodes) - 8 Features

 

 

None

Low

Medium

High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold for Specified Class Returns

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Ensemble Threshold Plot - Complete Dataset

(30 nodes) - 8 Features

 

 

None

Low

Medium

High



 

88 

network has an excellent predictive capability for those particular classes. The lower 

AUC values for the None and Low threat classes show the neural network has a good but 

not great predictive capability. The optimal TPR, FPR, and associated optimal threshold 

and ensemble accuracy can also be seen in the table. There is a noticeable difference 

between the optimal FPRs and the FPRs shown in Table 4.24. This difference indicates 

that, similarly to the Threat vs. No-Threat dataset, the threshold has an effect on the false 

alarm rate.  

Table 4.25: Optimal Operating Characteristics - Complete Dataset (8 Features) 

Class AUC Optimal 

TPR 

Optimal 

FPR 

Optimal 

Threshold 

Max Ensemble 

Accuracy 

None .9055 .6919 .0814 .4106 .8619 

Low .9287 .6802 .0523 .5854 .8808 

Medium .9838 .9244 .0136 .4022 .9709 

High .9828 .9593 .0465 .5672 .9549 

4.4.3.5. Validation Results – Complete Validation Dataset 

As with the previous datasets, the optimal thresholds determined in the previous 

section were used for testing the validation data. The following results consist of four 

parts focusing on each of the None, Low, Medium, and High threat class data.  

Table 4.26 shows the confusion matrix results using the .4106 threshold value 

with a focus on the None class data. These results were then used to calculate the 

performance metrics for the dataset which are shown in Table 4.27. The overall accuracy 

dropped to 65.79%, a reduction by almost 15 percentage points from the training data.  

Recall is a low 43% and 53% for the None and Low threat class data compared to 100% 

and 75% for the Medium and High threat data. Precision presents similar results. This 
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reinforces the earlier notion that the neural network does not predict the None and Low 

threat data class as well as it does for the other two classes.  

The false alarm rate increases for all classes with the validation data; the highest 

increase is with Low class data which rose over 10 percentage points. Coupled with the 

FPR of the None class (at almost 17%), the Low class FPR increase likely has to do with 

the neural network having a difficult time distinguishing between the None and Low 

threat classes.   The results translate to an expectation of about 17 out of 100 observations 

classified as some threat level when they are actually None; 18 out of 100 observations 

classified as None, Medium, or High threat when they are actually Low threat; 8 out of 

100 observations classified as None, Low, or High threat when they are actually Medium 

threat; and 2 out of 100 observations classified as None, Low, or Medium threat when 

they are actually High threat.  

Table 4.26: Confusion Matrix – Complete Validation Dataset  

– No-Threat Focus (8 Features) 

 
Predicted 

None Low Medium High 

Actual 

None 10 4 0 5 

Low 10 8 0 1 

Medium 2 3 14 0 

High 1 0 0 18 

Table 4.27: Performance Metrics - Complete Validation Dataset 

– No-Threat Focus (8 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

None .7105 .4348 .5263 .8302 .1698 .5652 .4784 .4762 

Low .7632 .5333 .4211 .8197 .1803 .4667 .4739 .4706 

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485 

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372 

Overall Accuracy .6579 
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Table 4.28 shows the confusion matrix after using the .5854 threshold, focusing 

on the data classified as Low threat. Table 4.29 contains the performance metrics 

computed from the confusion matrix results. The overall accuracy dropped slightly from 

the None class focused value to 63.16%.  Focusing on the Low threat reduced the neural 

network’s performance on all four of the classes. This reduction in performance includes 

the false alarm rate with FPR staying the same or increasing for all classes.  

Table 4.28: Confusion Matrix – Complete Validation Dataset  

– Low Threat Focus (8 Features) 

 
Predicted 

None Low Medium High 

Actual 

None 10 4 0 5 

Low 11 7 0 1 

Medium 2 3 14 0 

High 2 0 0 17 

Table 4.29: Performance Metrics - Complete Validation Dataset  

– Low Threat Focus (8 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

None .6842 .4000 .5263 .8235 .1765 .6000 .4588 .4545 

Low .7500 .5000 .3684 .8065 .1935 .5000 .4292 .4242 

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485 

High .8947 .7391 .8947 .9623 .0377 .2609 .8132 .8095 

Overall Accuracy .6316 

Table 4.30 shows the confusion matrix after using the .4022 threshold, focusing 

on the data classified as Medium threat; the associated performance metrics are presented 

in Table 4.31. The results are identical to those found when focusing on the None class; 

this is not surprising with the threshold values being so similar (.4106 vs. .4022). The 

change in the threshold is not large enough to create a change in the classification of the 

neural network’s output scores.  
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Table 4.30: Confusion Matrix – Complete Validation Dataset  

- Medium Threat Focus (8 Features) 

 
Predicted 

None Low Medium High 

Actual 

None 10 4 0 5 

Low 10 8 0 1 

Medium 2 3 14 0 

High 1 0 0 18 

Table 4.31: Performance Metrics - Complete Validation Dataset  

– Medium Threat Focus (8 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

None .7105 .4348 .5263 .8302 .1698 .5652 .4784 .4762 

Low .7632 .5333 .4211 .8197 .1803 .4667 .4739 .4706 

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485 

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372 

Overall Accuracy .6579 

Table 4.32 shows the confusion matrix after using the .5672 threshold, with a 

focus on the data classified as High threat. The neural network performance metrics were 

computed from the confusion matrix results and are presented in Table 4.33. Focusing on 

the High threat reduced the neural network’s performance on all four of the classes. The 

reduction in performance includes the false alarm rate with FPR staying the same or 

increasing for all classes.  

Table 4.32: Confusion Matrix – Complete Validation Dataset  

– High Threat Focus (8 Features) 

 
Predicted 

None Low Medium High 

Actual 

None 10 4 0 5 

Low 11 7 0 1 

Medium 2 3 14 0 

High 1 0 0 18 
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Table 4.33: Performance Metrics - Complete Validation Dataset  

– High Threat Focus (8 Features) 

Class Accuracy Recall Precision Specificity FPR FNR G F1 

None .6974 .4167 .5263 .8269 .1731 .5833 .4683 .4651 

Low .7500 .5000 .3684 .8065 .1935 .5000 .4292 .4242 

Medium .9342 1.000 .7386 .9194 .0806 0 .8584 .8485 

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372 

Overall Accuracy .6447 

Varying the threshold for this dataset seems to have little effect; it either reduced 

or maintained the performance results. The little variance in the optimal threshold values 

indicates the neural network output scores for the Complete dataset must also have little 

variance making it more difficult to distinguish between them.   

4.4.3.6. Salient Feature Description – Complete Dataset 

This section provides a description of the eight salient features chosen for the 

Complete dataset. Table 4.34 contains the feature numbers from the original feature set 

and their associated descriptions.  

Table 4.34: Salient Features - Complete Dataset [6] 

Original Feature Number Feature description 

17 Minimum of total bytes in IP Packet, using the size of the 

payload declared by the IP Packet 

26 Median of control bytes in packet 

86 Average segment size observed during the lifetime of the 

connection calculated as the value reported in the actual 

data bytes field divided by the actual data packets reported 

(server to client) 

90 Minimum window advertisement seen (if both sides 

negotiated window scaling)(server to client) 

158 Maximum of bytes in (Ethernet) packet 

173 Variance of control bytes in packet 

178 Third quartile of bytes in (Ethernet) packet 

187 Variance of total bytes in IP packet 
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Similarly to the previously analyzed datasets, the salient features reference the 

number of bytes in certain sections of the packet (Ethernet and IP), segment size feature, 

and the minimum window advertisement seen. 

4.5. Summary 

This chapter presented the results and analysis for the experimentation done with 

the three datasets developed in Chapter III. Neural networks were generated for each 

dataset. The best network for each dataset was chosen based on a combination of a 

heuristically chosen hidden layer structure and the overall accuracy percentage drop as 

features were removed. The Threat vs. No-Threat dataset exploration resulted in a hidden 

layer structure containing 10 nodes, with 13 features retained. The Threats Only dataset’s 

chosen structure contained 10 nodes as well, with 6 features retained. The Complete 

dataset, encompassing both the benign and threat-level distinguish data, resulted in a 30 

node hidden layer and 8 features retained. 

Performance metrics were calculated for each dataset’s chosen neural network. 

The Threats Only dataset had the best overall classification accuracy with 97.29%, 

followed by the Threat vs. No-Threat dataset with 93.58%, and the Complete dataset with 

82.56%. An examination of the optimal operating characteristics using ROC curves and 

ensemble threshold plots resulted in a similar ranking between the three datasets.  

The results from the optimal operating characteristics were used with the 

validation datasets, the 10% withheld from the original dataset, to test the general 

predictive capabilities of the selected neural networks for each dataset. The edge for 

overall classification accuracy went to the Threats Only dataset with the Threat vs. No-

Threat dataset following behind. The results from analysis of the Complete dataset show 
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a distinct weakness in the generated neural network’s predictive capability for 

distinguishing across the four classes of data. The high classification performance shown 

for the Medium and High threat classes is countered by the mediocre performance shown 

for the None and Low threat classes. 

 False alarm rates for each class in each dataset were also explored. The Threat vs. 

No-Threat and Complete datasets presented the highest false alarm rates, especially for 

the validation data. This was not surprising considering the neural networks for those 

datasets performed the worst. The high false positive rates could possibly be mitigated 

through use of a secondary classification or ensemble method.  

 Finally, the salient features of each dataset were discussed. One feature, number 

173 (variance of control bytes in packet) appeared in all three datasets. Numbers 17 

(Minimum of total bytes in IP Packet, using the size of the payload declared by the IP 

Packet), 86 (Average segment size observed during the lifetime of the connection 

calculated as the value reported in the actual data bytes field divided by the actual data 

packets reported (server to client)), 90 (Minimum window advertisement seen (if both 

sides negotiated window scaling) (server to client)), and 187 (Variance of total bytes in 

IP packet (server to client)) were each seen in 2 of the datasets. The rest of the features 

shared segment size or a count of the number of bytes in sections of the packets in 

common.
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V. Conclusion 

5.1. Chapter Overview 

This chapter provides the key elements derived from this research. Next it 

discusses how this research may contribute to both the operations research and cyber 

defense fields. The chapter concludes with some thoughts on potential future research.  

5.2. Conclusions of Research 

This research determined that 21 of the original 248 features were salient to 

classifying computer network threats. Common components of these salient features 

included segment size (maximum and minimum), number of segments or bytes sent in 

the initial window, the minimum window advertisement seen,  and a count of the number 

of bytes in Ethernet, IP, or control packet sections (maximum, minimum, quartiles, total, 

and variance). Table 5.1 lists the 21 salient features. This list combines those features 

deemed salient from all three datasets.  

Considering the features by their associated category provides insight into where 

the salient information resides. Almost half of the features (10 of 21) are part of the 

Transport (typically TCP) section of the packet. This is slightly deceptive, however, if the 

correlation between the features is examined. Features 81 and 83 share a 97.8% 

correlation. This is not surprising as the features are either minimums or maximums of 

the same information (segment size from client to server). It is likely only one of each of 

those features is necessary to acquire the available information. A similar situation occurs 

with features 80 and 90 with a correlation of 75.9%.   
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Table 5.1: Salient Feature Categorization [6] 

Original Feature 

Number 
Feature description Category 

26 Median of control bytes in packet 

Transport 

80 Maximum segment size requested as a TCP option in the 

SYN packet opening the connection (server to client) 

81 Maximum segment size observed during the life of the 

connection (client to server) 

83 Minimum segment size observed during the life of the 

connection (client to server) 

84 Minimum segment size observed during the lifetime of 

the connection (server to client) 

86 Average segment size observed during the lifetime of the 

connection calculated as the value reported in the actual 

data bytes field divided by the actual data packets 

reported (server to client) 

90 Minimum window advertisement seen (if both sides 

negotiated window scaling)(server to client) 

171  Third quartile of control bytes in packet (client to 

server) 

173 Variance of control bytes in packet(client to server)  

193 Maximum of control bytes in packet (server to client) 

96 Total number of bytes sent in the initial window (i.e., the 

number of bytes seen in the initial flight of data before 

receiving the first ACK packet from the other endpoint 

acknowledging some data – not the 3-way handshake) 

(server to client) 
Initial 

Window 
97 Total number of segments (packets) sent in the initial 

window (client to server) 

98 Total number of segments (packets) sent in the initial 

window (server to client) 

10 Minimum of bytes in (Ethernet) packet, using the size of 

the packet on the wire 

Ethernet 

158 Maximum of bytes in (Ethernet) packet(client to server) 

178 Third quartile of bytes in (Ethernet) packet(server to 

client) 

179 Maximum of bytes in (Ethernet) packet (server to client) 

180 Variance of bytes in Ethernet packet (server to client) 

17 Minimum of total bytes in IP Packet, using the size of 

the payload declared by the IP Packet 
IP 

186 Maximum of total bytes in IP packet (server to client) 

187 Variance of total bytes in IP packet (server to client) 
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This correlation is also not surprising as they are both server-based functions to 

manage traffic flow (feature 80 synchronizes the initial segment size while feature 90 

manages how large each segment size thereafter is). Keeping only one of each of the 

highly correlated features reduces the number of Transport features to 8, which is still 

close to double the number of features contained in the other categories.  

 Another high correlation within a category occurs between features 179 and 180, 

in the Ethernet category, with a correlation of 94.1%. The Ethernet wrapper encompasses 

the entire packet so it is understandable that the size of the packet would be a threat 

indicator. Similarly to the highly correlated features in the Transport category, the 

correlation value between the feature 179 and 180 suggests keeping only 1 of them would 

still provide the available information. 

 A between category correlation of 83.3% occurs between feature 10 in the 

Ethernet category and feature 17 in the IP category. Ethernet wraps around the IP part of 

the packet so it is not surprising that the number of bytes is correlated between the two. 

The other category of packet information shown here is the Initial Window. The 

initial window consists of the initial data sent (after the three-way handshake establishing 

the communication link) from one end point to another before the first acknowledgment 

is received by the sender. The initial window’s inclusion as salient points out that threat 

information is likely to appear in the first round of data passing between end points. 

The outcome of this research reveals that the neural networks generated in this 

research seem to be best suited for distinguishing whether or not a threat exists or, if a 

threat exists, what risk level the threat is. When the two concepts are combined the 

network performance suffers. The salient features are contained in four general categories 
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of packet or flow information: Transport, Initial Window, Ethernet, and IP. Most of the 

features fall under the Transport category and, especially when size is the metric, end up 

affecting the Ethernet and IP values because of the packet structure. Segment size or 

number of bytes seems to have the highest effect on threat classification. Taking feature 

correlation greater than 80% into consideration, the original list of 248 features can be 

pruned down to 18 features while still retaining enough information to detect threats with 

high accuracy. 

5.3. Research Contributions 

This research makes its contributions in two ways. The first way is providing 

insight into what components of network traffic should be focused on when trying to 

detect and classifying potential threats. The magnitude of network traffic information is 

overwhelming and most of it is likely unimportant. Knowing what areas to focus on 

allows for faster, more efficient, processing and hopefully, better protection against any 

potential threats.  

The second contribution is the less obvious but still important demonstration of 

combining the field of OR with the field of cyber operations. The developmental process 

for this thesis provides testimony to the value of multidisciplinary OR personnel. 

Familiarity with computer programming and computer communication networks allowed 

for the data processing and, after applying the OR tools, comprehension and 

interpretation of the results. Without knowledge and application of concepts in both 

fields, this research could not have been done. Members of the OR field should be 

encouraged to gain expertise in other fields to see what OR tools and techniques can be 

applied and new information discovered.  
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5.4. Recommendations for Future Research 

The research in this thesis is limited to the scope time and available resources 

allowed. Other aspects of the research may be worthy considering for future research. 

One future consideration could be cost of misclassification. The costs of miscalculation 

were considered equally for this research (i.e., there was no difference in the penalty for 

failing to classify any of the classes). It might be beneficial, considering the potential 

detrimental effects of a successful Medium or High threat intrusion, to conduct an 

analysis of the salient features weighting the costs of miscalculating the Medium or High 

threat observations heavier than that of the benign or Low threat observations. 

Another consideration for future research could be looking at online, or real-time, 

versus offline classification. The research in this thesis was conducted on data that was 

previously captured. Discovering a threat offline provides little opportunity to prevent 

intrusion – it is reactive as opposed to proactive. Determining which features work best 

for a real-time analysis could enable better computer network protection, especially if 

combined with reduced resources necessary if only the first few packets of a flow are 

needed.  

A final future research consideration could be exploring the different training 

algorithms available for training and evaluating neural network performance. The 

algorithms and methods chosen for this research were chosen mainly due to time 

constraints. It is possible some of the other training algorithms may train better 

performing networks and produce improved results. 
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5.5. Summary 

This research examined computer network traffic to determine what features of 

the traffic were salient to detecting and classifying threats. The data captured from the 

CDX was converted to a dataset with 248 features which was then separated into 3 

smaller, specifically designed datasets. These datasets were reduced, through the use of 

neural networks, to sets ranging from 6 to 13 features. The combined number of features 

totaled 21, although looking at the correlation between the features revealed the possible 

presence of redundancy. The generated neural networks performed at a high level when 

either detecting threats or distinguishing between them, but performance suffered when 

combining both concepts. Four categories of packet information emerged as being salient 

to threat detection and classification: Transport, Initial Window, Ethernet, and IP. 

Tactics and techniques of network attack change and adapt over time. Because the 

dataset used in this research spanned seven years, the results show temporal stability in 

the outcome. It is quite possible, however, this could change though as new protocols 

emerge (e.g., IPv6) and new technologies offer those with malicious intent new ways of 

accessing computer networks. Like the potential attackers, the protection must adapt and 

examination of the salient features should be done periodically to discover any changes.  
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Appendix A: Acronym List 

Acronym Definition 

ACK Acknowledge 

AFIT  Air Force Institute of Technology 

ANN  Artificial Neural Network 

AUC Area under the curve 

BayesNet  Bayesian Network 

BoF Bag-of-Flows 

BoW  Bag-of-Words 

C4.5 C4.5 Decision Tree 

CBA  Classification-Based Association 

CDX  Cyber Defense Exercise 

CFS  Correlation-based algorithm 

CMAT  Classification-Based on Multiple Association Rules 

CON Consistency-based algorithm 

CPAR  Classification-Based on Predictive Association Rules 

CSV  Comma Separated Values 

DBSCAN Density-based Spatial Clustering of Applications with Noise 

DoD Department of Defense 

EM Expectation Maximization 

FBI Federal Bureau of Investigation 

FCBF Fast Correlation Based Filter 

FIN  Final 

FN  False Negative 
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FNR False Negative Rate 

FP  False Positive 

FPR  False Positive Rate 

FTP File Transfer Protocol 

GECO  Graduate Education Cyberspace Operations 

GUI  Graphical User Interface 

HTTP Hypertext Transfer Protocol  

ICMP Internet Message Control Protocol 

IP Internet Protocol 

ISO International Organization for Standardization 

kNN k-Nearest Neighbor 

LERAD Learning Rules for Anomaly Detection 

LISSARD  Laboratory for Information System Security/Assurance Research 

and Development 

ML Machine Learning 

MLP  Multilayer Perceptron 

MRMR  Maximum Redundancy – Maximum Relevance 

NB  Naïve Bayes 

NBD Naïve Bayes Discretisation 

NBK  Naïve Bayes Kernel Density Estimation 

NBTree Naïve Bayes Tree 

NPS Naval Postgraduate School 

NSA  National Security Agency 

OR Operations Research 
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OS Operating System 

OSI Open Systems Interconnection 

PC  Personal Computer 

PCA  Principal Component Analysis 

PDF  Probability Density Functions 

POP3 Post Office Protocol 

QoS Quality of Service 

RAM  Random Access Memory 

ROC  Receiver Operating Characteristic 

SFS  Sequential Forward Selection 

SMTP Simple Mail Transfer Protocol 

SNR  Signal-to-Noise Ratio 

SVM Support Vector Machines 

SYN Synchronization 

TCP Transmission Control Protocol 

TN  True Negative 

TP  True Positive 

TPR  True Positive Rate 

UDP User Datagram Protocol 

US United States 

VBA  Visual Basic for Applications 

VPN Virtual Private Network 
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Appendix B: Original Feature List 

The original 248 feature set from Moore et al. [6]. 
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Appendix C: MATLAB Code for Neural Network Processing 

The following code was generated from the MATLAB neural network tool, and then 

modified by CPT James Jablonski and Maj Kristy Moore for use with this thesis research. 

function [targets, netouts, removed,overalltrue ,cmconfuse, timevar] = 

netsnr1outputtf_Moore1( Data,attempts,doSNR,usegpu, trainmodeinput ) 

 

%This function creates a Neural Network and performs SNR on a given data set 

% The Data must include rows of exemplars and columns of features. 

% This function Assumes data labels are in column 1 and parses them into the proper 

form for NN training 

% 

%Data = Data inputs 

%num attempts = Number of iterations of training (will return the net with the least 

cross-entropy)  

%doSNR = 0 don't perform SNR on data end on full feature set. else=DO 

%USEGPU = 0 don't use GPU.  1= use gpu with PURELIN transfer function. 

%train = type of training for the neural net; use 1 for trainscg, 2 for 

%trainbr, 3 traingdm, 4 traingda, 5 traincgp, 6 traingcgf, 7 trainbfg, %8traincgb, 9 

traingdx, 10 trainlm, 11 trainoss, or 12 trainrp (this %could change to a for loop that 

cycles through these in the future) 

  

%Based on the function input, choose which training algorithm to use 

trainingmodes = {'trainscg';'trainbr';'traingdm';'traingda';'traincgp';'traincgf';... 

'trainbfg';'traincgb';'traingdx'; 'trainlm';'trainoss';'traingrp'}; 

 

%trainingmodes = cellstr(trainingmodelist); 

trainmodefunc = trainingmodes(trainmodeinput); 

  

%the number of hidden nodes in the structure 

numhidden = [10 20 30 40 50]; 

  

for b =1:length(numhidden) %Loop through running with a different node structure each 

time 

     

    %start the stopwatch to track how long the processing takes 

    tic 

  

    %create the save name for this run 

    trainmodename = char(trainmodefunc); 

    savename = strcat(inputname(1),'_',num2str(numhidden(b)), ... 

'_',num2str(attempts),'_',trainmodename); 

    mkdir(savename); 

    currentfolder = pwd; 
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    savepath = fullfile(currentfolder,savename); 

     

    %count the number of classes 

    classvalues = unique(Data(:,1)); 

    numclasses = length(classvalues); 

     

    %See if 0 is a class 

    if any(classvalues)==0 

        n = 0; 

    else 

        n = 1; 

    end 

     

    %allocate size for datakey vector 

    %if there are 2 classes, say (0,1) then we only need 1 datakey %column 

    if numclasses == 2 && n == 0 

        datakeys = zeros(length(Data),1); 

    else 

        datakeys = zeros(length(Data),numclasses); 

    end 

     

    for i=1:length(Data(:,1)) %go through the first column 

        %check for 0,1 class which can be considered 1 class 

        if numclasses == 2 && n == 0 

            if Data(i,1) ~= 0 

                datakeys(i,1) = 1; %for whatever the other class value is 

            end 

        else 

            for j=1:numclasses %cycle through the class values 

                if Data(i,1)==classvalues(j) 

                    if n == 0 

                        datakeys(i,j+1)=1; %need a column for the zero values 

                    else 

                        datakeys(i,j)=1; %need columns only for class values 

                    end 

                end 

            end 

        end 

    end 

     

    %chop off first column (class) 

    data = Data(:,2:size(Data,2)); 

     

    %standardize my data 

    meanV = repmat(mean(data),length(data),1); %feature means vector 
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    stdev = repmat(std(data),length(data),1);  %prepare vector of %feature stdev 

     

    %sub mean to center 

    data = data - meanV; 

     

    %divide by std's 

    data = data./stdev; 

     

    %add noise vector 

    data = [rand(length(data),1),data]; 

     

    %set up the neural nets input and output 

    input = data; 

    output = datakeys; 

     

    % "remember" removed feature (for SNR)- bookkeeping 

    featuresremaining = 1:size(data,2); 

     

    snrs = zeros(size(data,2),size(data,2)); %a place to store all %SNR's 

     

    %Loop through creating several nets, then pick the best one 

    %then select fewer features using SNR 

     

    for z = 1:(size(data,2)-1);   %iterate through all features until 2 %are left (includes 

noise) 

        nets = {};    %create the cell array to store the nets 

        perfs = [];   %create the array to store the performance values 

         

        %if not doing the SNR feature removal then this loop only happens once 

        if doSNR == 0 

            z = size(data,2)-1; 

        end 

         

        %neural network requires them to be transposed 

        inputs = input'; 

        targets = output'; 

         

        %set up the network 

        net = patternnet(numhidden(b)); 

         

        %Loop through all desired attempts at creating nets 

        for k = 1:attempts 

             

            %Initialize network weights and biases after 1st run (initialized on net creation) 

            if k > 1 
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                net = init(net); 

            end 

             

            % Pre/Post functions 

            net.inputs{1}.processFcns = {'mapminmax','removeconstantrows'}; 

%,'removeconstantrows' 

            net.outputs{1}.processFcns = {'removeconstantrows'};  

%'removeconstantrows' 

             

            %Specifiy 'logsig' or 'purelin'  the transfer function at each layer 

            if usegpu==1 

                net.layers{1}.transferFcn = 'purelin'; 

                net.layers{2}.transferFcn = 'purelin'; 

            else 

                net.layers{1}.transferFcn = 'logsig'; 

                net.layers{2}.transferFcn = 'logsig'; 

            end 

             

            % Data manipulations 

            net.divideFcn = 'dividerand';  %divide up the data randomly 

            net.divideMode = 'sample';  % Divide by sample 

            net.divideParam.trainRatio = 70/100; %70% for training 

            net.divideParam.valRatio = 15/100; %15% for validation 

            net.divideParam.testRatio = 15/100; %15% for testing 

             

            %  help nntrain 

            net.trainFcn = trainmodename;  % Selected training mode from above 

            net.trainParam.epochs = 500; % Specify training epochs 

            net.trainParam.time = 300;   % Specify max training time 

            net.trainParam.goal = .005; % Specify training error goal def .005 

            net.trainParam.showWindow = 1;  % 0 = Don't show the training GUI 

            net.trainParam.max_fail = 10; %number of validation failures 

             

            % Choose a Performance Function 

            % For a list of all performance functions type: help nnperformance 

            net.performFcn = 'crossentropy';  % Cross-Entropy 

             

            % train 

            if usegpu==1 

                [net,tr] = train(net,inputs,targets,'useGPU','yes'); 

            else 

                [net,tr] = train(net,inputs,targets); 

            end 

             

            %run it 
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            outputs = net(inputs); 

             

            %get performance data from the network created 

            errors = gsubtract(targets,outputs); 

            performance = perform(net,targets,outputs); 

            perfs(k,1)=performance; %record crossentropys 

            nets{k,1}=net; 

             

        end 

         

        [v,I]=min(perfs); %find index of best net by crossentropy 

         

        perfsout(z) = v; 

         

        outputs = nets{I,1}(inputs); % get outputs from best net 

        NetOutputs{z} = outputs; %track the best outputs 

        netout=nets{I,1}; 

        netouts{z}=netout; 

         

        %Get the confusion matrix information and store it 

        %Am not currently using the ind - can change later if needed 

        [c,cm,ind,per] = confusion(targets, outputs); 

        perfconfuse{z} = per; 

        cmconfuse{z} = cm; 

         

        %Overall classification accuracy 

        overalltrue(z)=1-c 

         

        %Get the ROC Curve data with posclass for each class level 

        [tpr, fpr, thresholds] = roc(targets, outputs); 

        tprout{z} = tpr; 

        fprout{z} = fpr; 

        thresholdsout{z} = thresholds; 

        rocInfo{z} = {tprout{z}, fprout{z}, thresholdsout{z}}; 

         

        %convert the iteration number to a string 

        num = num2str(z); 

         

        %plot the ROC curves 

        figure(z), plotroc(targets,outputs); 

        %create the save name for the ROC curves 

        ROC_curves_savename = strcat('ROCCurve_',savename,'(',num,').fig'); 

        %save the figure then close it 

        savefig(fullfile(savepath,ROC_curves_savename)); 

        close(gcf) 
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        %plot the performance 

        figure(z), plotperform(tr); 

        %create the save name for the performance curves 

        perform_curves_savename = strcat('PerformCurve_',savename,'(',num,').fig'); 

        %save the figure then close it 

        savefig(fullfile(savepath,perform_curves_savename)); 

        close(gcf) 

         

        %plot the training state 

        figure(z), plottrainstate(tr); 

        %create the save name for the train state plot 

        trainstate_savename = strcat('TrainState_',savename,'(',num,').fig'); 

        %save the figure then close it 

        savefig(fullfile(savepath,trainstate_savename)); 

        close(gcf) 

         

        %plot the error history 

        figure(z), ploterrhist(errors,'bins',20); 

        %create the save name for the error history 

        ErrHistory_savename = strcat('ErrHistory_',savename,'(',num,').fig'); 

        %save the figure then close it 

        savefig(fullfile(savepath,ErrHistory_savename)); 

        close(gcf) 

         

        %plot the final confusion matrix 

        figure(z), plotconfusion(targets,outputs); 

        %create the save name for the figure 

        confusion_plot_savename = strcat('ConfusionPlot_',savename,'(',num,').fig'); 

        %save the figure then close it 

        savefig(fullfile(savepath,confusion_plot_savename)); 

        close(gcf) 

         

        if doSNR == 1 

            %do the SNR check 

            snr = []; 

            wts = net.IW{1,1}; %create the weights for SNR 

            dim = size(wts); 

            noise = wts(:,1)'*wts(:,1); 

            for j = 2:dim(2) %calculate the SNR values 

                snr(j)=10*log10((wts(:,j)'*wts(:,j))/noise); 

            end 

             

            %create the array for bookkeeping 

            row = zeros(1,size(snrs,2)); 
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            %adjust the array of features remaining 

            for d = 1:length(snr) 

                index = featuresremaining(d); 

                row(1,index) = row(1,index)+snr(d); 

            end 

             

            snrs(z,:) = row; 

             

            %plot the features remaining vs. their snrs 

            figure(z), bar(featuresremaining,snr); 

            bar_plot_savename = strcat('SNR_BarPlot_',savename,'(',num,').fig'); 

            %save the figure then close it 

            savefig(fullfile(savepath,bar_plot_savename)); 

            close(gcf) 

             

            snr(1)=100; %make sure I don't remove noise 

             

            %Remove Least significant Features in Order of SNR loop %through trials again 

             

            [val, I]=min(snr); %index of smallest SNR = I 

             

            %remove index of smallest feature from featuresremaining 

            removed(z)=featuresremaining(I); 

             

            %check to see if end of array 

            if I==size(featuresremaining,2) 

                featuresremaining=featuresremaining(:,1:I-1); 

            else 

                featuresremaining=[featuresremaining(:,1:I-

1),featuresremaining(:,I+1:dim(2))]; 

            end 

             

            %remove smallest feature; check to see if end of array 

            if I==dim(2) 

                input=input(:,1:I-1); 

            else 

                input=[input(:,1:I-1),input(:,I+1:dim(2))]; 

            end 

        end 

    end 

     

    %stop the timer 

    timevar = toc; 

     

    %save the workspace and its associated variables 
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    saveworkspace = strcat(savename, '.mat'); 

    save(saveworkspace)  

     

end 

  

end 
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