
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

Salient Feature Selection Using Feed-Forward
Neural Networks and Signal-to-Noise Ratios with
a Focus Toward Network Threat Detection and
Risk Level identification
Kristy L. Moore

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Moore, Kristy L., "Salient Feature Selection Using Feed-Forward Neural Networks and Signal-to-Noise Ratios with a Focus Toward
Network Threat Detection and Risk Level identification" (2014). Theses and Dissertations. 685.
https://scholar.afit.edu/etd/685

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/685?utm_source=scholar.afit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

SALIENT FEATURE SELECTION USING FEED-FORWARD

NEURAL NETWORKS AND SIGNAL-TO-NOISE RATIOS

WITH A FOCUS TOWARD NETWORK THREAT DETECTION

AND CLASSIFICATION

THESIS

Kristy L. Moore, Major, USAF

AFIT-ENS-14-M-22

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT-ENS-14-M-22

SALIENT FEATURE SELECTION USING FEED-FORWARD NEURAL

NETWORKS AND SIGNAL-TO-NOISE RATIOS WITH A FOCUS TOWARD

NETWORK THREAT DETECTION AND CLASSIFICATION

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Kristy L. Moore

Major, USAF

March 2014

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENS-14-M-22

SALIENT FEATURE SELECTION USING FEED-FORWARD NEURAL

NETWORKS AND SIGNAL-TO-NOISE RATIOS WITH A FOCUS TOWARD

NETWORK THREAT DETECTION AND CLASSIFICATION

Kristy L. Moore

Major, USAF

Approved:

 //signed// 25 Feb 2014

Dr. Kenneth W. Bauer, Jr. (Chairman) Date

 //signed// 25 Feb 2014

Thomas E. Dube, Maj, USAF (Member) Date

 //signed// 25 Feb 2014

David M. Ryer, Lt Col, USAF (Member) Date

iv

AFIT-ENS-14-M-22

Abstract

Most communication in the modern era takes place over some type of cyber

network, to include telecommunications, banking, stock exchanges, vehicular traffic

flow, public utilities, health systems, and social networking to name a few. Information

gained from illegitimate network access can be used to create catastrophic effects at the

individual, corporate, national, and even international levels, making cyber security a top

priority.

Cyber networks frequently encounter amounts of network traffic too large to

process real-time threat detection efficiently. Reducing the amount of information

necessary for a network monitor to determine the presence of a threat would likely aide in

keeping networks more secure.

This thesis uses network traffic data captured during the Department of Defense

Cyber Defense Exercise to determine which features of network traffic are salient to

detecting and classifying threats. After generating a set of 248 features from the capture

data, feed-forward artificial neural networks were generated and signal-to-noise ratios

were used to prune the feature set to 18 features while still achieving an accuracy ranging

from 83% - 97% for the testing/training sets and 63% - 88% for the validation sets. The

salient features primarily come from the transport layer section of the network traffic data

and involve the client/server connection parameters, size of the initial data sent, and

number of segments and/or bytes sent in the flow.

v

Dedication

To my husband and son who make it all worth it.

vi

Acknowledgments

I would like to express my sincere gratitude to my faculty advisor, Dr. Kenneth

Bauer, for his guidance and support and for allowing me to explore a topic that extends

beyond the realm of Operations Research. I would also like to thank my reader, Maj

Thomas Dube, for his insights and assistance and Dr. Timothy Lacey for providing

technical support in the development and processing of the datasets. I would also like to

express my appreciation to CPT James Jablonski for his help with the MATLAB code

and to Trevor Bihl for his technical expertise and insights.

Finally, and most importantly, I would like to thank my family for their love,

support, encouragement, and sacrifice throughout this process. Thank you for putting up

with me and for always believing in me.

Kristy L. Moore

vii

Table of Contents

Page

Abstract .. iv

Dedication ... v

Acknowledgments.. vi

Table of Contents .. vii

List of Figures ... xii

List of Tables ... xiii

I. Introduction ... 1

1.1. Background .. 1

1.2. Research Goal and Objectives .. 2

1.3. Assumptions and Limitations ... 2

1.4. Implications .. 3

1.5. Preview ... 3

II. Literature Review ... 4

2.1. Chapter Overview .. 4

2.2. Background Information .. 4

2.2.1. Terminology and Concepts.. 5

2.2.2. TCP/IP Model .. 10

2.3. General Internet Traffic Classification Methods .. 11

2.3.1. Port Analysis and Signature-Based Methods .. 12

2.3.2. Machine Learning (ML) Methods ... 14

2.3.2.1. Unsupervised Machine Learning Methods ... 14

2.3.2.2. Supervised Machine Learning Methods ... 16

2.3.3. Other Classification Methods .. 21

viii

2.4. Network Threat Detection Classification Methods .. 23

2.5. Feature Selection Using Neural Networks ... 26

2.6. Summary .. 28

III. Methodology ... 30

3.1. Chapter Overview .. 30

3.2. Dataset Description .. 30

3.2.1. Data Collection .. 31

3.2.2. Collection Equipment .. 31

3.2.3. Dataset Type and Size ... 32

3.3. Overall Methodology ... 34

3.4. Data Preprocessing ... 34

3.4.1. Feature Generation .. 36

3.4.1.1. Software Requirements ... 36

3.4.1.2. Equipment ... 37

3.4.1.3. Processing Issues .. 38

3.4.2. Threat Label Creation .. 39

3.4.2.1. Equipment ... 39

3.4.2.2. Security Onion .. 39

3.4.2.3. Snort Intrusion Detection System ... 40

3.4.2.4. Sguil .. 40

3.4.3. Observation Threat Labeling ... 42

3.4.4. Data Cleanup ... 43

3.4.5. Data Balancing .. 44

3.4.6. Final Dataset Description .. 44

ix

3.5. Neural Network Analysis Methodology .. 45

3.5.1. Neural Networks .. 45

3.5.1.1. Definitions .. 47

3.5.1.2. Algorithm .. 48

3.5.1.3. Saliency Measure .. 50

3.5.2. MATLAB Neural Network Tool ... 51

3.5.2.1. Tool Specifics ... 52

3.5.2.2. Code Modifications ... 52

3.5.2.2.1. Hidden Nodes ... 54

3.5.2.2.2. Noise Creation .. 54

3.5.2.2.3. Net Selection .. 54

3.5.2.2.4. Bookkeeping ... 55

3.5.2.2.5. Generated Data Storage .. 55

3.5.2.2.6. Time Keeping ... 55

3.5.3. Performance Metrics ... 56

3.5.3.1. Confusion Matrix .. 56

3.5.3.2. Overall Success Rate .. 57

3.5.3.3. Marginal Rates .. 57

3.5.3.4. Means Measures ... 58

3.5.3.5. ROC Curves .. 58

3.6. Summary .. 60

IV. Experimental Analysis & Results ... 61

4.1. Chapter Overview .. 61

4.2. Overall Dataset ... 61

x

4.3. MATLAB Neural Network Tool Settings .. 64

4.4. Dataset Analysis ... 65

4.4.1. Threat vs. No-Threat Dataset .. 66

4.4.1.1. Hidden Layer Structure – Threat vs. No-Threat Dataset 66

4.4.1.2. Overall Accuracy – Threat vs. No-Threat Dataset.................................... 68

4.4.1.3. Performance Metrics – Threat vs. No-Threat Dataset 69

4.4.1.4. Optimal Operating Characteristics – Threat vs. No-Threat Dataset 69

4.4.1.5. Validation Results – Threat vs. No-Threat Validation Dataset 71

4.4.1.6. Salient Feature Description – Threat vs. No-Threat Dataset 73

4.4.2. Threats Only (Low, Medium, High).. 74

4.4.2.1. Hidden Layer Structure – Threats Only Dataset 75

4.4.2.2. Overall Accuracy – Threats Only Dataset .. 76

4.4.2.3. Performance Metrics – Threats Only Dataset ... 76

4.4.2.4. Optimal Operating Characteristics – Threats Only Dataset 78

4.4.2.5. Validation Results – Threats Only Validation Dataset 79

4.4.2.6. Salient Feature Description – Threats Only Dataset 82

4.4.3. Complete Set (None, Low, Medium, High) .. 83

4.4.3.1. Hidden Layer Structure – Complete Dataset .. 83

4.4.3.2. Overall Accuracy – Complete Dataset .. 84

4.4.3.3. Performance Metrics – Complete Dataset .. 85

4.4.3.4. Optimal Operating Characteristics – Complete Dataset 86

4.4.3.5. Validation Results – Complete Validation Dataset 88

4.4.3.6. Salient Feature Description – Complete Dataset 92

4.5. Summary .. 93

xi

V. Conclusion ... 95

5.1. Chapter Overview .. 95

5.2. Conclusions of Research .. 95

5.3. Research Contributions .. 98

5.4. Recommendations for Future Research ... 99

5.5. Summary .. 100

Appendix A: Acronym List .. 101

Appendix B: Original Feature List ... 104

Appendix C: MATLAB Code for Neural Network Processing 114

References ... 122

Vita .. 129

SF298 .. 130

xii

List of Figures

Page

Figure 2.1: OSI vs. TCP/IP Model [13] .. 11

Figure 3.1: Screenshot of an Example Network Packet ... 33

Figure 3.2: Overall Methodology Flow Chart .. 35

Figure 3.3: Fullstats Attribute Generator .. 37

Figure 3.4: AFIT GECO Laboratory .. 38

Figure 3.5: Sguil GUI Screenshot ... 41

Figure 3.6: Fully Connected MLP ANN Example [66] .. 46

Figure 3.7: MATLAB Neural Network Training GUI ... 53

Figure 3.8: Two-Class ROC Curve Example ... 59

Figure 4.1: Overall Dataset Threat Frequency .. 62

Figure 4.2: Overall Dataset Correlation Color Map ... 63

Figure 4.3: Kaiser Dimensionality Plot - Overall Dataset .. 64

Figure 4.4: Hidden Layer Structure Comparison – Threat vs. No-Threat Dataset 67

Figure 4.5: Overall Classification Accuracy – Threat vs. No-Threat Dataset (10 nodes) 68

Figure 4.6: ROC Curves and Ensemble Threshold Plots – Threat vs. No-Threat Dataset

(10 nodes) - 13 Features .. 70

Figure 4.7: Hidden Layer Structure Comparison - Threats Only Dataset 75

Figure 4.8: Overall Classification Accuracy - Threats Only Dataset (10 nodes) 76

Figure 4.9: ROC Curves and Ensemble Threshold Plots - Threats Only Dataset (10

nodes) - 6 Features .. 78

Figure 4.10: Hidden Layer Structure Comparison - Complete Dataset 84

Figure 4.11: Overall Classification Accuracy - Complete Dataset (30 nodes) 85

Figure 4.12: ROC Curves and Ensemble Threshold Plots - Complete Dataset (30 nodes)

- 8 Features .. 87

xiii

List of Tables

Page

Table 2.1: Summary of Previously Covered Methodologies Applied to Network Threat

Detection ... 23

Table 3.1: Breakdown of Dataset Packets and Flows ... 34

Table 3.2: Yearly Breakdown of Full Dataset .. 45

Table 3.3: Final Datasets for Analysis .. 45

Table 3.4: Two-Class Confusion Matrix .. 57

Table 4.1: MATLAB Training Tool Settings ... 65

Table 4.2: Hidden Layer Structure – Performance Comparison - Threat vs. No-Threat

Dataset... 67

Table 4.3: Confusion Matrix - Threat vs. No-Threat Dataset (13 Features) 69

Table 4.4: Performance Metrics - Threat vs. No-Threat Dataset (13 Features) 69

Table 4.5: Optimal Operating Characteristics - Threat vs. No-Threat Dataset (13

Features) .. 71

Table 4.6: Confusion Matrix - Threat vs. No-Threat Validation Dataset - No-Threat

Focus (13 Features) ... 72

Table 4.7: Performance Metrics - Threats vs. No-Threat Validation Dataset – No-Threat

Focus (13 Features) ... 72

Table 4.8: Confusion Matrix - Threat vs. No-Threat Validation Dataset - Threat Focus

(13 Features) ... 73

Table 4.9: Performance Metrics - Threats vs. No-Threat Validation Dataset – Threat

Focus (13 Features) ... 73

Table 4.10: Salient Feature Descriptions – Threat vs. No-Threat Dataset [6] 74

Table 4.11: Hidden Layer Structure – Performance Comparison - Threats Only Dataset 75

Table 4.12: Confusion Matrix - Threats Only Dataset (6 Features) 77

Table 4.13: Performance Metrics - Threats Only Dataset (6 Features) 77

Table 4.14: Optimal Operating Characteristics - Threats Only Dataset (6 Features) 79

xiv

Table 4.15: Confusion Matrix – Threats Only Validation Dataset – Low Threat Focus (6

Features) .. 80

Table 4.16: Performance Metrics - Threats Only Validation Dataset – Low Threat Focus

(6 Features) ... 80

Table 4.17: Confusion Matrix – Threats Only Validation Dataset – Medium Threat

Focus (6 Features) ... 81

Table 4.18: Performance Metrics - Threats Only Validation Dataset – Medium Threat

Focus (6 Features) ... 81

Table 4.19: Confusion Matrix – Threats Only Validation Dataset – High Threat Focus (6

Features) .. 82

Table 4.20: Performance Metrics - Threats Only Validation Dataset – High Threat Focus

(6 Features) ... 82

Table 4.21: Salient Feature Description - Threats Only Dataset [6] 82

Table 4.22: Hidden Layer Structure - Performance Comparison - Complete Dataset 83

Table 4.23: Confusion Matrix - Complete Dataset (8 Features) 86

Table 4.24: Performance Metrics - Complete Dataset (8 Features) 86

Table 4.25: Optimal Operating Characteristics - Complete Dataset (8 Features) 88

Table 4.26: Confusion Matrix – Complete Validation Dataset – No-Threat Focus (8

Features) .. 89

Table 4.27: Performance Metrics - Complete Validation Dataset – No-Threat Focus (8

Features) .. 89

Table 4.28: Confusion Matrix – Complete Validation Dataset – Low Threat Focus (8

Features) .. 90

Table 4.29: Performance Metrics - Complete Validation Dataset – Low Threat Focus (8

Features) .. 90

Table 4.30: Confusion Matrix – Complete Validation Dataset - Medium Threat Focus (8

Features) .. 91

Table 4.31: Performance Metrics - Complete Validation Dataset – Medium Threat Focus

(8 Features) ... 91

xv

Table 4.32: Confusion Matrix – Complete Validation Dataset – High Threat Focus (8

Features) .. 91

Table 4.33: Performance Metrics - Complete Validation Dataset – High Threat Focus (8

Features) .. 92

Table 4.34: Salient Features - Complete Dataset [6] .. 92

Table 5.1: Salient Feature Categorization [6] ... 96

1

SALIENT FEATURE SELECTION USING FEED-FORWARD NEURAL

NETWORKS AND SIGNAL-TO-NOISE RATIOS WITH A FOCUS TOWARD

NETWORK THREAT DETECTION AND CLASSIFICATION

I. Introduction

1.1. Background

The integration of cyber technologies into nearly all aspects of our everyday lives

makes cyber security a serious concern. Cyber security has been defined as a

“complicated and complex subject encompassing computer security, information

assurance, comprehensive infrastructure protection, commercial integrity, and ubiquitous

personal interactions” [1]. Most communication in the modern era takes place over some

type of cyber network, to include telecommunications, banking, stock exchanges,

vehicular traffic flow, public utilities, health systems, and social networking to name a

few. Information gained from illegitimate network access can be used to create

catastrophic effects at the individual, corporate, national, and even international levels.

The same could be said for successfully executed attacks against those networks. The

number of cyber attacks on Department of Defense (DoD) and other United States (US)

Government networks is estimated to be 400 million annually [2]. A study published by

McAfee Security suggests US losses due to cyber attacks may reach $100 billion per year

[3]. Cyber security has become important enough to be listed as one of the five central

missions of the Department of Homeland Security [4] and FBI officials speculate cyber

attacks will surpass terrorism as a domestic danger over the next ten years [5].

2

1.2. Research Goal and Objectives

An important aspect of cyber security is threat detection and classification. The

aspect of cyber security chosen for this research is computer network traffic. Computer

network traffic encompasses a massive amount of information. While all of that

information can be captured fairly easily (digital storage space is relatively cheap),

analysis of the information is a time and resource intensive process. The issue becomes

how to sort through the information to determine what is a threat and what is not.

The purpose of this research is to reduce network traffic data into the parts, or

features, salient to threat detection and classification. The inspiration for this thesis comes

from Moore et al. [6], a research study conducted in 2005, to develop a set of features to

assess classification performance on general network traffic data. The outcome of the

study was a list of 248 features based on packet or flow data. After generating a dataset

consisting of those 248 features from a collection of known network attack data, this

thesis attempts to determine which of the features are most important to determining

whether or not a threat exists.

1.3. Assumptions and Limitations

One of the challenges faced when attempting to classify computer network threats

is acquiring the truth data. The people with malicious intent toward a network are

unlikely to give away information on their exploits making it difficult to label threats.

The data used for this research came without truth data making it necessary to derive a

way to create labels for each observation. The method used for this label creation is

discussed in Chapter III; it is assumed the observations using this method are labeled

accurately.

3

1.4. Implications

Much research has gone into defining the salient features for general traffic

classification, some of which will be discussed in Chapter II. The research in this thesis

intends to narrow that focus down, specifically targeting threat detection and

classification. The hope is that most of the data will be unnecessary and can be

disregarded while still capturing the pertinent information. Ideally, this would be done in

real-time with a network sensor that monitors incoming traffic and extracts only the data

necessary for detecting and classifying threats. Successful reduction of the dataset

required for analysis, along with knowledge of what components of the network traffic to

focus on, should noticeably speed up the threat detection process and potentially enable a

more secure computer network.

1.5. Preview

 Chapter II presents previous work done in the areas of general network traffic and

network threat detection classification. It also includes a discussion of the use of neural

networks for classification and the use of the signal-to-noise ratio as a saliency measure.

Chapter III describes the methodologies used in experimentation of the datasets including

the work involved in preprocessing the data for analysis. Chapter IV explores the results

and analysis from the experimentation done with the data. Finally, Chapter V discusses

the conclusions developed from the results in Chapter IV and offers thoughts on future

research of this topic.

4

II. Literature Review

2.1. Chapter Overview

 With the explosion of computer networks and internet usage across the world in

the last 15 to 20 years, methodologies to better understand and classify internet traffic

have become a hot research topic for a multitude of reasons. This chapter provides a

summary of previous work done relevant to the research presented in this thesis and is

organized as follows. The first section attempts to define some of the more common

terms and concepts to help the reader better understand the typical technical jargon. Next,

we will examine research in the areas of general internet traffic classification methods to

gain some insight into the overarching methodologies, and then focus in on the sub-field

of network intrusion detection classification methods, which relates directly to the

research in this thesis. Finally, we will consider research done on the importance of

feature selection to accurate classification, and, while there are many methods to handle

feature selection, we will focus in on using neural networks, leading up to the method

used in this thesis.

2.2. Background Information

The research in this thesis attempts to merge together two distinct, yet related,

academic fields, operations research (OR) and cyber operations (specifically computer

networks). As such, terminology and concepts may be used differently between the two.

Because this is an OR-based thesis, this section is an attempt to bridge the gap between

the two academic fields, making it easier for the OR-based reader to better understand

both the reviewed research and the research presented in this thesis. We will begin by

defining some of the more commonly used terminology and concepts to provide a

5

baseline understanding. Next is a brief discussion of the currently used TCP/IP model

used for describing how computer networks work. An acronym list can be found in

Appendix A: Acronym List.

2.2.1. Terminology and Concepts

 The following are explanations of terminology and concepts seen throughout the

reviewed literature and the research done for this thesis. Most of the definitions come

from Technopedia.com [7], although a few are derived from experience or noted sources.

 Audit: an examination of a computer network’s traffic logs or administrative

policies and procedures [8].

 Bandwidth: broad term defined as the bit-rate measure of the transmission

capacity over a network communication system. Bandwidth is also described as

the carrying capacity of a channel or the data transfer speed of that channel.

However, broadly defined, bandwidth is the capacity of a network. Bandwidth

exists in both the wired and wireless communication networks.

 Client: can be a simple application or a whole system that accesses services being

provided by a server; most often located on another system or computer, which

can be accessed via a network.

 Client/Server Architecture: a computing model, in which the server hosts, delivers

and manages most of the resources and services to be consumed by the client.

This type of architecture has one or more client computers connected to a central

server over a network or Internet connection. This system shares computing

resources.

6

 Computer Networks: a group of computer systems and other computing hardware

devices that are linked together through communication channels to facilitate

communication and resource-sharing among a wide range of users.

 Encryption: the process of using an algorithm to transform information to make it

unreadable for unauthorized users.

 Firewalls: software, hardware, or a combination of both, used to maintain the

security of a private network. Firewalls block unauthorized access to or from

private networks and are often employed to prevent unauthorized Web users or

illicit software from gaining access to private networks connected to the Internet.

 Flows: one or more packets between a pair of hosts, defined by a 5-tuple, made

up of source and destination IP addresses, source and destination port numbers,

and the protocol type (TCP, UDP) used for communication.

 Header: the initial set of bits in a packet transmitted by an end device that

describes what the receiving end device can expect to receive throughout the data

stream.

 Hosts: end systems, sometimes referred to as clients or servers [9].

 Hypertext Transfer Protocol (HTTP): an application-layer protocol used primarily

on the World Wide Web. HTTP uses a client-server model where the web

browser is the client and communicates with the webserver that hosts the website.

The browser uses HTTP, which is carried over TCP/IP to communicate to the

server and retrieve Web content for the user.

 Internet Protocol (IP): protocol that specifies the format of the packets sent and

received among routers and end systems [9]. One of the two most important

7

protocols in the Internet; all internet components with network layers must use IP.

The most common version is IPv4, although IPv6 may take over in the future.

IPv4 is a connectionless protocol providing the logical connection between

network devices by providing identification for each device [7].

 Layer: a logical grouping of similar functions; used in networking to distinguish

the communication functions associated with computer networks [10].

 Network Planning and Resource Provisioning: analyzing network traffic/behavior

to allocate resources to optimize prioritization and performance.

 Network Security Monitoring: a computer network's systematic effort to detect,

deter and track unauthorized access, exploitation, modification, or denial of the

network and network resources.

 Network Traffic: the flow of data across a computer network.

 Offline vs. Online: online refers to analysis or classification done in real-time or

near real-time while the system is monitoring the network and collecting data;

offline refers to analyzing or classifying data that has already been collected.

 Packet: a single network communication data unit containing fixed or variable

lengths, and may contain three portions: header, body and trailer.

 Payload: the raw data a packet carries.

 Ports: process-specific or application-specific software construct serving as a

communication endpoint. A specific network port is identified by its number

commonly referred to as port number, the IP address in which the port is

associated with and the type of transport protocol used for the communication.

Any networking process or device uses a specific network port to transmit and

8

receive data. This means that it listens for incoming packets whose destination

port matches that port number, and/or transmits outgoing packets whose source

port is set to that port number. Processes may use multiple network ports to

receive and send data.

 Protocols: a set of rules and guidelines for communicating data. Rules are defined

for each step and process during communication between two or more computers.

Networks have to follow these rules to successfully transmit data.

 Routers: a device that analyzes the contents of data packets transmitted within a

network or to another network. Routers determine whether the source and

destination are on the same network or whether data must be transferred from one

network type to another, which requires encapsulating the data packet with

routing protocol header information for the new network type.

 Quality of Service (QoS): refers to a network’s ability to achieve maximum

bandwidth and deal with other network performance elements like latency, error

rate and uptime. Quality of service also involves controlling and managing

network resources by setting priorities for specific types of data (video, audio,

files) on the network.

 Server: a computer or computer program that manages access to a centralized

resource or service in a network [11].

 Three-Way Handshake: a method used in a TCP/IP network to create a

connection between a local host/client and server. It is a three-step method that

requires both the client and server to exchange SYN (synchronization),

9

SYN/ACK, and ACK (acknowledgment) packets before actual data

communication begin.

 Transmission Control Protocol (TCP): a network communication protocol

designed to send data packets over the Internet. The other of the two most

important protocols in the internet. TCP is a transport layer protocol used to create

a connection between remote computers by transporting and ensuring the delivery

of messages over supporting networks and the Internet. TCP works in

collaboration with IP, which defines the logical location of the remote node,

whereas TCP transports and ensures that the data is delivered to the correct

destination. Before transmitting data, TCP creates a connection between the

source and destination node and keeps it live until the communication is active.

TCP breaks large data into smaller packets and also ensures that the data integrity

is intact once it is reassembled at the destination node

 Tunneling: a protocol enabling the secure movement of data from one network to

another. Tunneling uses an encapsulation process to make data packets appear as

though they are of a public nature to a public network when they are actually

private data packets, allowing them to pass through unnoticed. Examples of

tunneling include Virtual Private Networks (VPN) and Hypertext Transfer

Protocol (HTTP).

 User Datagram Protocol (UDP): transport layer protocol for client- server

network applications. UDP does not employ handshaking dialogs for reliability,

ordering and data integrity. The protocol assumes that error-checking and

correction is not required, thus avoiding processing at the network interface level.

10

UDP is widely used in video conferencing, real-time computer games, and data

streaming. The protocol permits individual packets to be dropped or received in a

different order than that in which they were sent, allowing for better performance.

 Webserver: a system that delivers content or services to end users over the

Internet. A Web server consists of a physical server, server operating system (OS)

and software used to facilitate HTTP communication.

2.2.2. TCP/IP Model

 In 1984 the Open Systems Interconnection (OSI) Model was published by the

International Organization for Standardization (ISO) to provide a conceptual model that

defines networking standards for hardware and software technology development and

how networking protocols should work [10]. As can be seen in Figure 2.1, the model

breaks down similar functions into logical (the ways the functions act as opposed to

physical placement) layers. The more currently used model, the TCP/IP model, was

developed after the OSI Model around the TCP/IP protocols, what we now call the

internet [12]. The TCP/IP model essentially combines layers from the OSI model into

broader categories more appropriate to current computer networking. The model is

sometimes seen with five layers (separating the network access layer into the data link

and physical layer). The most pertinent information for the reader to know is that the

research for this thesis is focused mostly in the transport layer which handles end-to-end

connections, and is the same in both modes, with some interaction in the internet/network

layer.

11

Figure 2.1: OSI vs. TCP/IP Model [13]

2.3. General Internet Traffic Classification Methods

 Network intrusion detection classification is a subset of general internet traffic

classification and, as such, the overall classification process and its methodologies are the

building blocks for the techniques used in intrusion detection classification. General

traffic classification is imperative in network planning estimation and resource

provisioning, security monitoring and auditing, and Quality of Service (QoS)

measurements. Classification methods discussed here include transport layer port analysis

and payload inspection (signature rule-based matching), machine learning with both

unsupervised and supervised algorithms, and a few other, uncategorized methods. Many

12

of the techniques discussed here can also be found in surveys done by Nguyen and

Armitage [14] and Dainotti et al. [15].

2.3.1. Port Analysis and Signature-Based Methods

Classifying network applications based on well-known port numbers is

considered by some as the simplest, and fastest, method of classification, as long the

classification accuracy is not vital [15]. Moore and Papagiannaki [16] explain that, as

technology and user skills have developed and adapted, well-known port numbers are no

longer reliable for use in classification. This is due mainly to internet applications being

designed to use other than standard port numbers, dynamic port selection, or protocols as

wrappers to slip through security systems, like firewalls, unnoticed. Moore and

Papagiannaki show this change in design leads to a low accuracy classification (50% -

70%) of network traffic when using port-based classification from the Internet Assigned

Numbers Authority (IANA) list [17]. The authors present a classification technique using

a content-based (payload) methodology. This classification technique examines and

interprets the contents of the packet’s payload iterating through nine methods including

port-based classification, packet header information, single packet signatures, single

packet protocols, first kilobyte signatures, first kilobyte protocols, selected flow

protocols, all flow protocols, and host history. Each method is applied sequentially until

the required classification certainty has been reached. While this technique achieves an

impressive overall average accuracy of 98%, it is obviously quite labor intensive.

Roughan et al. [18] suggest classifying network traffic through the use of

statistical application signatures. These signatures are derived from the manner in which

the applications are used, forming a set of classification rules based on port numbers or IP

13

addresses, and are intended to be insensitive to the particular application layer protocols.

The technique first calculates connection statistics offline, using those results to classify

the traffic, then creates rules for the online classifier to use. Nearest Neighbor and Linear

Discriminant Analysis were the two methods used for classification. Using trial-and-

error, the authors selected up to four features to classify the data across four to seven

application classes. Although encouraging, because their analysis is restricted to broadly

defined classes, the authors limit their resulting low error rates (5% - 8%) to wide-

ranging properties found in many applications, meaning the classification method will be

insufficient for identifying specific applications.

Haffner et al. [19] proposes using application-level information taken from

packets to match with common application signatures. Three machine learning (ML)

classifiers are used to derive the application signatures for several network applications –

Naïve Bayes, AdaBoost, and Maximum Entropy. The classifier intends to be insensitive

to port numbers, alterations of network characteristics, and communication pattern

changes. This method of matching application signatures does, however, require frequent

updating because the application signatures are dynamic and may change over time with

application and protocol evolvement. The AdaBoost algorithm results in the best

classification performance (greater than 99%); the authors suggest this may be due to the

extremely low noise level in the data because of the way it was generated. The research

also considered early classification resulting in the conclusion that only the first 64 bytes

of each flow is necessary for application identification. Finally, the authors test the

derived signatures against data captured seven months later, finding only a slight increase

in the error rate, demonstrating the durability of the signatures over time.

14

2.3.2. Machine Learning (ML) Methods

 There are two standard categories of machine learning methods: Unsupervised

and Supervised. Unsupervised learning means the correct classification labels are not

provided with the data [20]. The underlying structure of the data is examined, looking for

correlations in the data to discern patterns, which are then organized into categories.

Supervised learning requires the correct classification labels with the data. Weights are

then used to help the generated network achieve classification as close to the correct

answers as possible. The next few sections discuss clustering, a type of unsupervised

machine learning, and several different types of supervised machine learning methods.

2.3.2.1. Unsupervised Machine Learning Methods

Obstacles such as privacy information, encryption, and protocol tunneling

(encapsulation) have made it difficult, if not impossible, to inspect the payload, or data,

carried in the packets across a network. This, along with increased complexity and

processing overhead, has moved the focus of classification techniques away from payload

inspection and introduced the concept of ML, incorporating unsupervised and supervised

algorithms [15]. This section discusses different uses of the unsupervised ML algorithm

referred to as clustering.

McGregor et al. [21] propose the probabilistic Expectation Maximization (EM)

algorithm to designate flows into clusters based on a fixed set of traffic flow statistics.

This classifier looks for similar properties but provides no explanation as to why the

applications are grouped the way they are; it may, however, provide some insight with

previously unclassified, unknown traffic [22]. McGregor et al. [21] conclude their

15

clustering technique, at this point, is too general to classify individual applications and

new attributes must be developed to illuminate distinctions between those applications.

Zander et al. [23] use AutoClass, a Bayesian clustering algorithm based on EM, in

their approach to traffic classification. The feature selection technique for their

methodology is based on the classification performance of the AutoClass algorithm.

Using sequential forward selection (SFS), also called stepwise selection, features are

added one at a time until the best performing combination is derived. The authors

calculate the homogeneity of the classes, illustrating how an application with a higher

homogeneity is more likely to be separated because its characteristics are dissimilar to the

other applications. One issue with this classification methodology is that some

applications, such as FTP, Telnet, and Web traffic, overlap each other or have a wide

range of characteristics thus making them difficult to separate into classes. While the

average classification accuracy of this technique over all given applications is 86.5%, this

diversity of characteristics results in a false positive rate of up to 40%, depending on the

application.

Unsupervised clustering is also used by Erman et al. [24] for traffic classification,

this time comparing the K-Means (partition-based) and DBSCAN (density-based)

algorithms with the previously used AutoClass (probabilistic model-based) algorithm.

While the DBSCAN algorithm results in a lower overall average classification accuracy

(75%) than K-Means and AutoClass (both greater than 85%), it is noted that DBSCAN’s

clusters are more accurately formed. The model building time of the two newer

algorithms (K-Means, one minute; DBSCAN, three minutes) demonstrates a significant

difference when compared with the old (AutoClass, four and a half hours). This research

16

suggests the K-Means algorithm as the best option because of its high classification

accuracy and low model building time.

Bernaille et al. [25] focus on analyzing only the first five packets of the TCP flow

in an attempt to develop an online, near real-time classifier. Offline traces are used to

train the classifier based on the size of the data packets using Euclidean distance. K-

Means clustering is used to find natural clusters in the data, chosen because this method

does not rely on previously defined classes. This lack of reliance allows for applications

with multiple behaviors to be modeled separately. The description and composition of

each cluster determine how the online classifier identifies the traffic flow. This method

achieves an average accuracy of greater than 80% for the flows tested. One potentially

serious limitation exists with this online classifier, however, if the network monitor uses

packet sampling instead of complete packet capture because the technique requires the

first five packets of the flow.

2.3.2.2. Supervised Machine Learning Methods

This section discusses several Supervised ML algorithms and their application to

internet traffic classification. These techniques include Naïve Bayes (NB), C4.5 Decision

Tree (C4.5), k-Nearest Neighbor (kNN), Support Vector Machines, and Neural networks.

Moore and Zuev [22] demonstrate internet traffic classification through the NB

method, both with and without kernel density estimation. Kernel density estimation is a

non-parametric (infinite-dimensional) method of estimating the probability density

function [26]. Feature selection is addressed in this research by use of the Fast

Correlation-Based Filter (FCBF) [22]. Straight NB resulted in an average classification

accuracy of 65.26%; using FCBF pre-filtering brought that value up to an average of

17

94.29%. NB with kernel density estimation demonstrated an average accuracy of 93.5%,

with an increase to average of 96.29% after using FCBF pre-filtering. The experiment

was repeated with data from approximately 12 months after the initial data set resulting in

a severe drop in classification accuracy for the NB method with an overall average

accuracy of 20.75% without kernel estimation and 37.65% with kernel estimation. Using

the FCBF pre-filtering brings those values up to 93.38% and 93.73%, respectively,

demonstrating the value of the dimension reduction of the features used for analysis.

Williams et al. [27] compared five ML algorithms for internet traffic classification

on the basis of both classification accuracy and computational performance. The authors

illustrated how classification accuracies can be very similar between the different

algorithms while computational performance can be significantly different; this is very

important when considering real-time analysis. The five supervised machine learning

algorithms analyzed were NB (both discretisation (NBD) and kernel density estimation

(NBK)), C4.5, Bayesian Network (BayesNet), and Naïve Bayes Tree (NBTree). The

same ‘full feature set’ (containing 22 features) is used for each ML algorithm tested.

Consistency-based (CON) and Correlation-based (CFS) algorithms are then used for

feature selection or reduction and the tests are re-run for comparison. There is little

change in the classification accuracy (2 – 2.5%) across the five algorithms tested when

comparing the full and reduced feature sets. NBK is the only algorithm not at or above

the 95% accuracy level (~80%). With computational performance C4.5 has the fastest

classification speed, with NBK the slowest, and NBK has the fastest build time, with

NBTree the slowest.

18

Zhang et al. [28] take the NB method a step further by using it in combination

with a bag-of-flows (BoF), or a correlated grouping of flows occurring in the same time

period. The BoF concept allows for the correlated flows to be aggregated which, when

used in concert with the NB algorithm and a set of combination decision rules (sum,

maximum, median, and majority), create a set of posterior probabilities used for class

prediction. Referred to as BoF-NB, the proposed classification method is then compared

to four other classification methods including C4.5, k-Nearest Neighbor (k-NN), NB, and

a semi-supervised method proposed by Erman et al. [29]. Six out of the original 20

features are selected through CFS. Results demonstrate the BoF-NB performed, in

general, as good as or better than the other methods tested with an overall average

accuracy of 88% to 94%, depending on the data set chosen. The authors believe the better

performance is because the BoF-NB’s effective use of the flow correlation information.

Huang et al. [30] suggested using k-NN in their classification model. To achieve

the best classification results the authors select 10 features and 6 classes, based on

performance of the classifier. Mahalanobis, in contrast to Euclidean, distance was used to

measure the distance between the data samples. This research focused on the change in

classification accuracy as additional classes were added, allowing for finer grained

classification. Using only three of the classes results in classification accuracies of greater

than 99%; however, once the additional three classes are added in, classification

accuracies drop as low as 46%. According to the authors, these results occur because the

selected classes have similar statistical features and, with the selected features, the

correlation between the classes is not taken into consideration.

19

In an extension of [22], Auld et al. [31] demonstrated a traffic classifier using

supervised ML based on Bayesian trained neural networks without source or destination

host address or port information, enabling classification of anonymized or encrypted

packet headers. Unlike [22], the classification methodology does not assume

independence between the discriminators, allowing for a more robust and useful

classifier. This experiment consists of data collected from 2 24-hour periods separated by

8 months and focuses solely on TCP flows (i.e., ignores UDP, ICMP, etc.). Multilayer

perceptron classification networks, containing one hidden layer with 10 nodes and

Bayesian-inferred weights, assign classification probabilities to the traffic flows using

246 features as inputs. This research used the hyperbolic tangent function as the

activation function to model nonlinearities. Using the neural networks, the experiments

resulted in an average classification of greater than 99% for the first data collection

period and 95% for the second. Comparisons are also studied in consideration of the data

sizes of the different classes of traffic and its effect on accuracy.

Expanding upon both [22] and [31], Zhou et al. [32] propose a traffic

classification technique using feed-forward neural networks trained through Bayesian

regularization and compare its results to the NB classifier subject to the Gaussian

distribution assumption. The neural networks used for this research are set up very

similarly to those in [31] with a single hidden layer containing 10 neurons. Results of the

experimentation demonstrate the feed-forward neural networks, with an average overall

accuracy of about 95%, perform better than the NB classifier, with an average overall

accuracy of about 75%, and are more stable. The authors argue the NB classifier’s poor

20

performance is due to a misrepresentation of the traffic flow properties because of the

Gaussian distribution assumption.

Much of the internet traffic classification research focuses on offline classification

due to heavy processing overhead and potential bandwidth limitations. Li and Moore [33]

propose an online, near-real time, classification system using packet-header based

behavioral features and C4.5. This technique requires only information readily available

to internet routers without reliance on port numbers or payload inspections and enables

examination of latency and throughput of the monitoring system. Because this

methodology is designed to be near real-time, the approach capitalizes on features pulled

from only an initial few packets (5 – 10), as opposed to those based on entire flows. A

CFS method was used for feature dimension reduction leading to a selection of 12

features. C4.5 averaged an overall average classification accuracy of 99.834%. This

research also shows, for this methodology, using part of the traffic flow, instead of the

entire flow, does not reduce the classification accuracy.

Based on a trial-and-error approach, Tabatabaei et al. [34] choose seven as the

necessary number of packets required for online traffic classification comparing Support

Vector Machines (SVM) and k-NN techniques. SVM is typically used as a binary

classifier so several binary classifiers are combined to create a multi-category SVM

focusing on “fuzzy” one-against all and “fuzzy” pairwise techniques. The authors handle

feature selection through a minimum redundancy-maximum relevance (MRMR)

technique based on maximum statistical dependency, choosing 40 flow and packet-based

features. The three classification techniques are compared using both the complete traffic

flow and just the first seven packets resulting in the highest average accuracy of 84.9%

21

occurring with the SVM fuzzy one-against-all using only the first seven packets. For all

techniques, using only the first seven packets shows a higher average accuracy; the

authors explain this may be because the first few packets contain the setup parameters

and those parameters distinguish the different applications.

The Bag-of-Words (BoW) ML classification model proposed by Zhang et al. [35]

is designed to use application categories as a representation of the bags and centroids to

represent the words. The authors create BoW vectors consisting of the size of the first

five packets, source port, destination port, and transport-layer protocol; then cluster them

to create the centroids. Vectors representing traffic categories are constructed and the

nearest neighbor algorithm, along with the cosine similarity, calculated between the

training representation vectors and the incoming flow representation vectors, classifies

the incoming traffic. A novel consideration of this research is the effect of out-of-order

packet arrival. BoW technique results are compared to those of C4.5 algorithm using both

in-order and out-of-order packet data. The BoW methodology scores remain stable at

88.4% while C4.5 drops from 87.15% to 78.33% when the out-of-order data is used. The

authors explain this is because the BoW technique does not preserve any order

information preventing it from having any effect on the classification accuracy.

2.3.3. Other Classification Methods

Some classification methods fail to fall neatly into one of the above categories.

The methods still provide valuable insight into the focus of this thesis and, thus, should

be included so they are gathered together here. Crotti et al. [36] present a classification

algorithm built around normalized anomaly thresholds and ‘protocol fingerprints’

consisting of three features (packet size, inter-arrival time, and arrival order) from

22

captured traffic packets. Unlike the majority of the other classification techniques,

authors designed this technique to be site-dependent, or not transportable, meaning each

site needs its own fingerprints. A series of Probability Density Functions (PDFs) describe

the behavior of the packets for certain protocols. Classification is done by statistically

matching the behavior of the traffic flow with one of the PDFs, creating an anomaly score

based on how far the flow is from the chosen PDF. Anomaly thresholds indicate the

highest score a flow can have to be considered a member of a certain protocol; the

smaller the threshold, the more accurate the classifier. The authors limit their testing to

just three protocols (HTTP, POP3, and SMTP), looking at only the first four packets from

each flow, achieving an average classification accuracy to around 91%.

Li and Kianmehr [37] apply a classification methodology based on associative

classifiers. Associative classifiers combine associative rule mining, or pattern/correlation

searches, with classification with the intention of creating classification models that are

easier for users to understand than previously studied ML algorithms. Essentially, the

rules are first generated from the training set then pruned to derive the best set of rules.

The classifier is built from that best set of rules. The three associative classification

algorithms compared by the authors are Classification-Based Association (CBA),

Classification-Based on Multiple Association Rules (CMAR), and Classification-Based

on Predictive Association Rules (CPAR). Feature selection is handled through an

embedded version of chi-squared that computes a statistic with respect to class and uses it

to determine the value of the feature. The results show the CPAR algorithm performs the

best out of the three tested with an overall average accuracy of 92.05%.

23

2.4. Network Threat Detection Classification Methods

The earlier section presented previous work related to the broad category of

general network traffic classification. The work in this section narrows the focus to

research done specifically looking at network threat detection and classification. Many of

the methods used to classify network traffic threats are the same as those used for

classifying general network traffic so, to avoid unnecessary redundant discussion, they

will not be discussed in depth in this paper. They are, however, listed in Table 2.1 so the

reader may research them further if so desired. Related work presenting methodologies

not already covered in the earlier section will, however be discussed in depth in this

section.

Table 2.1: Summary of Previously Covered Methodologies

Applied to Network Threat Detection

Author(s) Year Methodology Outcome

Panda and Patra [38] 2007 Naïve Bayes

Overall detection rate:

95%; False positive rate:

.02% - 26%

Portnoy et al. [39] 2001 Clustering

Detection rate: 18.56% -

56.25%; False alarm rate:

.3% - 11.37%

Zanero and Savaresi [40] 2004
Clustering, Payload

Inspection

SOM performed better

than PDDP and K-means

Pan et al. [41] 2003
C4.5, Neural

Networks

Average detection rate:

85.01% -93.28%; False

positive rate: .2% - 19.7%

Moradi and Zulkernine [42] 2004 Neural Networks Accuracy: 86% - 90%

Xu and Wang [43] 2005 SVM, PCA
Accuracy: 58.3% - 99.9%

(class dependent)

Hu W. et al. [44] 2008 AdaBoost
Detection rate: 91.21%;

False alarm rate: 3.14%

Linda et al. [45] 2009 Neural Networks

Detection rate: 66.06% -

100%; False alarm rate:

0% - .378%

24

 The Learning Rules for Anomaly Detection (LERAD) algorithm developed by

Mahoney and Chan is based on association rule mining [46]. The research takes

advantage of the network traffic characteristic of being time series data with long range

dependencies. The purpose of the algorithm is to find conditional rules that spot rare

events in a time series of tuples, or sequences, of attributes. The long range dependency

can be seen as the number of matching attribute values between two tuples lessens

inversely to the time interval between the tuples. The two sets of attributes used to test

LERAD were IP packets and TCP streams and the dataset was restricted to only the first

few inbound packets for each flow. Experimentation with the combined sets of attributes

resulted in an average classification accuracy of 50%.

Genetic algorithm based feature selection is used in combination with a decision

tree classifier in Stein et al. [47]. The iterative process begins with the random generation

of a population where each individual has genes representing the feature set. Each gene

receives a value of one or zero depending on whether or not the feature is used in

building the decision tree. A decision tree using C4.5 is built for each individual and

tested with validation datasets. Fitness of each individual is assessed based on the

classification error rate. The genetic algorithm then begins generating the next generation

of the population based on those fitness values. The process is repeated with each newly

generated population until it reaches a set number of generations. The average

classification accuracy ranged from 80% - 99% depending on which category of attack

was being considered.

Linda et al. [48] present a fuzzy logic based anomaly detection system. The

learning algorithm creates a fuzzy rule base that characterizes previously seen behavior

25

patterns for standard communication. The rule base is constructed using a real-time

version of the nearest neighbor clustering algorithm with the incoming packets; clusters

are then converted into the individual fuzzy rules. Real-time processing is made cost

effective because the algorithm learns directly from the streaming data and makes storing

the packet data unnecessary. The features used were developed in [45] and consisted of

window-based statistics generated as a window of specified length was shifted over the

stream of packets. Feature vectors are calculated from the packets inside the window as

the new packets enter and the last packets exit. The fuzzy rule base is applied to the new

input data which is then labeled as anomalous or normal. Experimentation resulted in 71

fuzzy rules created with an average classification of 99.36% and no false positives.

 Faloutsos proposes a method of using traffic dispersion graphs for threat detection

[49]. The traffic dispersion graphs visualize the communication paths between the hosts

and can model interactions such as the type and number of packets. The term “link

homophily” is used to represent the tendency of network traffic flows with common IP

hosts to share the same application. Link homophily in the network data reveals statistical

dependencies between flows with common IP hosts that can be used for traffic

classification without requiring information on the packet content or properties. The

research introduces a new algorithm called the Neighboring Link Classifier with

Relaxation Labeling which requires no training phase or feature generation. The

algorithm was used in combination with the traffic dispersion graphs and reportedly

worked successfully with botnet detection (a collection of computers used for network

attack), however no numerical results were provided.

26

2.5. Feature Selection Using Neural Networks

In [22] the authors demonstrate how reducing the dimensionality of the features,

using FCBF, can improve the technique’s classification accuracy. This is shown again in

[31], by way of multilayer neural networks. Feature reduction is addressed by inspection

of the weights associated with each of the input nodes, eliminating those with the

relatively smaller values. From this, the authors reduce the number of features down to

128 for all data sets and 20 “important” features for most data sets. Other examples

include [27], using CON and CFS methods, [37] where an embedded Chi-squared is used

to determine the value of each feature, and [34] where features are chosen using an

MRMR technique based on maximum statistical dependency. While many methods exist

for performing feature selection, we will focus on different techniques using neural

networks as this leads in to the method chosen for this thesis.

 Setiono and Liu look at feature selection using a feedforward neural network with

backpropagation [50]. Their methodology begins with all the features and prunes the

irrelevant features one at a time. For each feature, the neural network’s classification

accuracy is calculated with that feature’s weights set to zero. The feature that results in

the smallest decrease in classification accuracy is removed. This process is repeated until

the accuracy rate drops below and decided level. The cross-entropy function, in

combination with a penalty function based on the magnitude of each connection’s

weights, is used as the measurement to minimize during network training. The algorithm

was tested with several datasets, both generated and real-world, resulting in a statistically

significant improvement in classification accuracy with the selected features versus the

accuracy with all of the features.

27

Belue and Bauer [51] proposed a methodology incorporating a known irrelevant

feature (noise) into the set of features. Any feature with a saliency measure falling within

a confidence interval around the saliency measure of the noise feature would be removed.

Steppe and Bauer [52] built upon this methodology by requiring a paired-t test to account

for naturally paired feature saliency observations, and a Bonferroni-type test to

demonstrate statistical confidence. Two saliency measures are assessed in this research:

derivative-based and weight-based. The iterative process begins with the addition of the

noise feature to the feature set followed by generation and training of a set number of

neural networks. The saliency measure is calculated for all features and compared to the

saliency measure of the noise feature to see if they are statistically different. Features

found to be statistically different are kept and the rest are eliminated. The neural network

is then retrained using only the retained features. Experimentation with two separate

datasets demonstrated an improvement in network performance for both with the reduced

feature set.

Two terms are added to the cross-entropy cost function in order to constrain the

derivatives of neural network output and hidden node transfer functions in research done

by Verikas and Bacauskiene [53]. The network is then trained by minimizing the

modified cost function and feature selection is determined by the response of the

classification error after features are removed. Once the neural network is generated and

trained, the classification accuracy is calculated by setting each feature, one at a time, to

zero. The feature removal resulting in the lowest drop in accuracy is eliminated. This

continues until only one feature is left. The entire process repeats for each neural network

generated and the expected feature rankings and accuracy are calculated by taking the

28

average results from all of the networks generated. The features deemed salient, based on

the set level of accuracy required, are kept and the neural network retrained. Four datasets

were used comparing the method proposed in [53] to five other feature selection methods.

This experimentation resulted in the proposed method achieving at least slightly higher

classification accuracy on all tested data than any of the other tested methods.

The method that compared closest to the one proposed in [53] comes from Bauer

et al. [54], and is part of the methodology used in this thesis. The focus of [54] is using

the signal-to-noise ratio (SNR) in determining salient feature selection. This research is

an extension of the research done in [51] and [52], and proposes the SNR saliency

measure which compares the weight-based saliency measure of a feature to the weight-

based saliency measure of an injected noise feature. The SNR saliency measures for

irrelevant features should be less than or close to zero while the measures for salient

features should be significantly larger than zero. The higher the SNR saliency measure,

the higher the saliency of the feature. The SNR method was applied using three different

datasets and compared against the performance of the algorithm developed in [50] and a

method using Principal Component Analysis (PCA). The SNR method performed

comparably against the other two methods while only requiring one feature versus an

average of 2.7 features for [50] and nine features for the PCA method.

2.6. Summary

This chapter presented highlights of work related to the work done in this thesis.

The chapter opened with background information to give the reader some familiarity with

computer networking terms and concepts. Next, the broad category of general network

traffic classification was explored, looking at port and signature-based analysis as well as

29

different aspects of unsupervised and supervised machine learning algorithms including

clustering and neural networks. The focus then narrowed to threat detection classification

examining methods not discussed in the general traffic classification section. Narrowing

further, the chapter concluded by focusing on previous work done on salient feature

selection using neural networks and the SNR saliency measure.

30

III. Methodology

3.1. Chapter Overview

 This chapter describes the methodology used in this thesis. First is a description of

the dataset, including the quantity and type of data, and the data collection process. Next

is a breakdown of the overall methodology. The discussion continues with an explanation

of the data preprocessing, a major endeavor, using a feature generator with some

challenging requirements and specialized network security software to create ground

truth data. The chapter then provides a brief summary of the science behind neural

networks and salient feature selection, followed by a description of the software-based

tools necessary for the data analysis. The chapter concludes with a discussion of the

performance metrics used to evaluate the performance of the neural network classifier.

 The focus of this research is the processing and analysis of network traffic capture

data to determine the salient features when threat detection is of primary interest. Massive

amounts of traffic data can pass through a network quickly and the sheer magnitude of

the data makes analysis both difficult and untimely. If those particular features of the

traffic data that provide valuable threat-assessing information could be determined, they

could be focused on, reducing the necessary processing and analysis time, while enabling

and enhancing network security.

3.2. Dataset Description

 Data for this research comes from the Cyber Defense Exercise (CDX) sponsored

by the US National Security Agency (NSA). A description of the data and the

situation/environment it was collected in can be found in Mullins et al. [55]. CDX is an

annual competition held between the US Military Academy at West Point, US Air Force

31

Academy, Naval Postgraduate School (NPS), US Naval Academy, US Coast Guard

Academy, US Merchant Marine Academy, and Air Force Institute of Technology (AFIT).

The exercise provides military students the opportunity to apply defensive information

assurance best practices in a real-world-modeled environment. During the exercise, the

NSA, along with highly trained operators from the services’ network operations centers,

acts as a “Red Team” of hackers, launching cyber attacks on the networks designed and

defended by the students.

3.2.1. Data Collection

 As an exercise based on real-world situations, the CDX data was deemed an

acceptable representation of the type of traffic a military network might face and thus, a

good choice to use for this research. The network traffic data used was collected during

the CDX from 2003 – 2007, and 2009. Having several years worth of data frees the

analysis from being restricted to the year the data was collected (as techniques and

exploits are constantly evolving and adapting).

3.2.2. Collection Equipment

 AFIT’s part of the CDX took place in the Laboratory for Information System

Security/Assurance Research and Development (LISSARD), a subsection of the school’s

Graduate Education Cyberspace Operations (GECO) laboratory. Equipment used for the

CDX varied from year to year but consisted primarily of Dell and Cisco brand

information technology (IT) products [55]. Traffic was collected off the firewall, a Dell

server with two network ports, and captured on the external port to get all traffic coming

into and going out of the network. The TCPDump software, running on an OpenBSD

Linux distribution, handled the actual traffic collection.

32

3.2.3. Dataset Type and Size

 The network traffic collected during the CDX was captured in the libpcap file

format (commonly denoted as pcap) which is the standard format for network capture

tools such as TCPDump [56], used mainly with Linux-based operating systems, and

Wireshark [57], used frequently in Microsoft Windows operating systems. The pcap files

consist of the packets transmitted between the hosts and clients for that specific collection

time period. Figure 3.1 is a screenshot of an example packet captured in Wireshark.

Information in the packet includes (from top to bottom) Frame, Ethernet, IP, and TCP

parameters. The parameters listed will depend on the type of protocol the packet is sent as

(e.g., TCP, UDP or ICMP). We can see the packet from Figure 3.1 was sent using TCP

because it includes the TCP parameters. The very bottom of the screenshot shows the

contents of the packet’s payload.

Table 3.1 shows the total number of packets captured for each year of the

provided dataset. The total number of packets in the full dataset is 12,145,569. Rather

than focus at the packet level, the data was separated into flows designated by the four-

tuple of source and destination IP addresses and port numbers. This occurred during the

data preprocessing stage. Typically, flows are created by the five-tuple which includes

the previously mentioned four-tuple and the internet protocol type. Most of the packets’

internet protocols in the CDX dataset were TCP; however, in order to eliminate any

protocol-based restrictions on the results, no specific efforts were made to remove other

protocol types and the four-tuple was used instead. Traffic was considered in all

directions: client-to-server, server-to-client, and back and forth between client and server.

33

Figure 3.1: Screenshot of an Example Network Packet

The traffic captured also had no requirement to get a complete traffic flow,

meaning the flow captured does not have to include the SYN and final (FIN) packets.

Removing this limitation allows for interpretation even if the traffic capture occurred

mid-flow or does not continue until transmission is complete. Merging the packets into

34

flows reduced the total number of observations to 2,048,918 (a flow can consist of one or

more packets). The yearly flow breakdown is also included in Table 3.1.

Table 3.1: Breakdown of Dataset Packets and Flows

 2003 2004 2005 2006 2007 2009 Total

Packets 1555220 2855596 1156398 1060816 3878980 1638559 12145569

Flows 268884 610601 38821 194001 627327 309284 2048918

3.3. Overall Methodology

The overall methodology for this research is broken down into two parts: data

preprocessing and neural network analysis. Each part of the methodology is explained in

more detail in the sections that follow. A flow chart is shown in Figure 3.2 to provide a

visual representation of the overall methodology and how its parts fit together.

3.4. Data Preprocessing

A large portion of the work for this research dealt with preprocessing the data for

analysis. Converting the provided dataset, containing packet information like in Figure

3.1, into data readable by neural networks was both challenging and time consuming. The

preprocessing began with feature extraction to create the flows or observations. The

threat labels then were created and matched up with their corresponding observations.

From there, the data went through a cleanup process involving the removal of

observations containing incomplete data and the removal of information-less features.

Finally, the data was randomly separated into balanced sets, containing equal numbers of

observations per class. Other, more current, software solutions may be available to

generate the attributes without this level of preprocessing, but were unavailable at time of

writing.

35

Figure 3.2: Overall Methodology Flow Chart

Start

Data

Preprocessing

Feature

Generation

Threat

Labeling

Data & Label

Merging

Data

Cleanup

Data

Balancing

Neural

Network

Analysis

Train Network

Select Best

Network

Calculate

Feature SNR

Remove Feature

w/Smallest SNR

Choose # of

Hidden Nodes &

Features

Retained

Calculate

Network

Performance

Metrics

Calculate

Optimal

Operating

Characteristics

Test Network w/

Validation Data

Finish

R
ep

ea
t

3
0
 T

im
es

R
ep

ea
t

U
n
ti

l
1
 F

ea
tu

re
 R

em
ai

n
s

R
ep

ea
t

F
o

r
A

ll
 3

 D
at

as
et

s

36

3.4.1. Feature Generation

Feature generation from the data was made possible by the fullstats.v1.0

(Fullstats) Perl script created by Moore [22]. It is available for download from the

University of Cambridge Computer Laboratory Downloads: BRASIL – Characterizing

Network-based Applications page [58]. A description of the list of features generated

from the packet capture data is in Appendix B: Original Feature List.

3.4.1.1. Software Requirements

Fullstats consists of three scripts that call on functionality from previously

installed software packages. The three scripts include a flow creator, an attribute

generator, and a script to convert the attribute output into different file formats. Because

Fullstats was created several years ago, it requires functionality no longer supported in

current versions of the necessary installed software packages. Information on the specific

versions of the software packages required to run the script was provided by Ji [59]. The

Fullstats script and its required software packages ran on the Ubuntu (Linux-based) OS

version 5.10, referred to as “Breezy Badger”, set up as a virtual machine using Oracle

Virtual Box. The software package versions used in this research include, GCC 4.0.1-3,

Perl 5.8.7-5, TCPDump 3.9.1-1, TCPTrace 6.6.1, TCPDemux 20050725, and TCPSlice

1.2a3. Most of the software listed here had to be retrieved from their individual archives

or SourceForge.net as the update repositories have long been closed. Figure 3.3 shows a

screenshot of the Fullstats attribute generator running in the virtual machine. Displayed

there, from left to right, is the file number of the current file being processed, processing

bit rate, processing frame rate, current file storage location, and estimated time of overall

processing completion.

37

Figure 3.3: Fullstats Attribute Generator

3.4.1.2. Equipment

Due to the size of the provided dataset, and the time required to run all of it

through Fullstats, processing required multiple computers. Five dedicated Dell PCs in

AFIT’s GECO Laboratory were used, all running Microsoft Windows 7 Enterprise

edition with Service Pack 1. Each PC had Intel Xeon 3GHz multi-core processors ranging

from 6 to 8 cores and 20 to 32 GB of RAM. It took the five computers about 600 hours

total to process all of the data through Fullstats. Figure 3.4 is an image of the GECO

Laboratory where the data was processed.

38

Figure 3.4: AFIT GECO Laboratory

3.4.1.3. Processing Issues

A few issues came up during the Fullstats feature extraction that needed to be

addressed to allow the script to work successfully. First off, the script for converting the

attribute output to a particular file format had to be modified to include an “unknown”

traffic direction, possibly because the original code was designed to focus on just the

TCP protocol. This research makes no distinction between the TCP and UDP protocols,

considering flows using both formats. Secondly, the large size of the capture files

frequently caused the script to abruptly halt, so TCPDump was used to split the large

capture files into capture files small enough for Fullstats to process. Finally, about 90%

of the data was rendered useless because Fullstats was unable to completely process

39

many of the manually created and/or truncated packets found in the network traffic

generated during the exercise. The sheer magnitude of the data, however, made this less

of a concern, as there were still over 204,000 complete observations, across all years

captured, available for analysis.

3.4.2. Threat Label Creation

 One of the most difficult issues when attempting to analyze network traffic is

acquiring the ground truth data. Truth data was not provided for the CDX, during or after

the exercise; team points were assessed based on how well the targeted systems were kept

operational, not on the specific attacks or defensive techniques [55]. Because of the lack

of truth data, another method of labeling the observation classes was developed using a

network security-based Linux OS and an intrusion detection engine.

3.4.2.1. Equipment

 Processing from this point forward took place on two computers: a custom-built

PC with an AMD Phenom II 3.2GHz 4-core processor with 8GB RAM and a Hewlett-

Packard Envy model laptop with an Intel Core i7 4-core processor with 8GB of RAM.

Both computers were running Windows 7 Home Premium edition with Service Pack 1.

3.4.2.2. Security Onion

 Security Onion is a network security-based OS developed by Doug Burks [60].

The OS is based on the Ubuntu version of Linux and includes a plethora of network

security monitoring, intrusion detection, and log management software. The version of

Security Onion chosen was 12.04.3-20130904 64-bit, running in an Oracle Virtual Box

virtual machine. The software tools used included TCPReplay [61], to play back the

40

capture files through the intrusion detection system sensor, and Sguil [62], a graphical

user interface (GUI) console designed for use with the Snort intrusion detection engine.

3.4.2.3. Snort Intrusion Detection System

 Snort is signature-based intrusion detection system created by Sourcefire, now a

branch of Cisco [63]. Intrusion detection is handled through the use of customizable rule

sets which decide how the traffic should be handled based on what matches up with

packet header or content information. The Security Onion OS came with Snort version

2.9.5.3. The rule set used for this research was created and released by developers at

Snort.org and was current as of November 7, 2013. Because the most recent capture data

came from the exercise in 2009, it is assumed the Snort rule set included any threat it

would encounter with this data set.

3.4.2.4. Sguil

 The Sguil console provides a human-interpretable representation of the threats

discovered by the Snort intrusion detection system. The threat levels, assessed by the rule

sets in the Snort engine, are differentiated by different colors. The Security Onion OS

included Sguil version 0.8.0. The virtual machine’s network adapter was set to internal

network only to keep any outside traffic from interfering. A MySQL-based query

capability allows the user to search for and export labeled threat data. In the sequential

label creation process, the capture files were run through the intrusion detection system

using TCPReplay (version 3.4.3) with the Sguil interface opened to display the threat

assessment output. A query using the TCPReplay start time provided a listing of the

capture files’ threat-labeled flows which was then exported into a comma separated value

(CSV) file format. The exported file also included the flows’ source and destination IP

41

addresses and port numbers which was used later on to merge with the observations

created by Fullstats.

Figure 3.5 shows a screenshot of the Sguil GUI. In the screenshot, we can see the

assessed threat levels on the left side of the side in yellow, orange, and red.

Corresponding parameter information makes up the rest of the table. On the bottom right

we can see the parameters and payload of the highlighted listing.

Figure 3.5: Sguil GUI Screenshot

42

3.4.3. Observation Threat Labeling

 The primary output of Fullstats is the ARFF file format, intended for use with the

WEKA Java-based data mining software developed at the University of Waikato in New

Zealand [64]. This was an issue because the label files intended to merge with the

observation data were in the CSV file format. While the WEKA software has many

analysis tools included in it, analysis for this research was to be done using the neural net

tool in MATLAB, which cannot read in ARFF files without additional added

functionality. Conversion from ARFF to CSV is possible; however, Fullstats is also

capable of outputting CSV file format versions of the observation data, making

conversion unnecessary. Another benefit of the CSV output files from Fullstats is the

inclusion of the IP and port information for the flows. This information was imperative in

matching up the labels with their corresponding observations.

The threat levels provided by Sguil consist of levels 1-5, with 1 being the highest

threat, and 5, the lowest. For simplification, threat labels in the label files were converted

to a 1 if the Sguil level was 4 or 5, 2 if the Sguil level was 2 or 3, and 3 if the Sguil level

was 1, allowing for the no-threat level to be represented by a 0 and escalating from there.

A macro written in Visual Basic for Applications (VBA) in Microsoft Excel allowed for

an automated method of merging the observation and threat label data, based on the

previously mentioned four-tuple of source and destination IP addresses and port numbers.

This macro provided a large time-savings considering the number of observations in the

data set.

43

3.4.4. Data Cleanup

 Three steps were involved in cleaning up the data and preparing it for analysis.

The first step dealt with missing data. As mentioned earlier, approximately 90% of the

packet capture data was unable to be completely processed by Fullstats; this created

many observations with missing information. Once the observation files were merged

with the label files, the observations with missing data needed to be removed. Another

macro was written in Excel to automate the searching and removal process.

Some of the observation data contained the letter Y or N in response to whether or

not the flows met certain criteria (e.g., window scaling factor was used). To keep the data

numerical the Ys were changed to 1s and the Ns were changed to 0s in the second step of

data cleanup.

 The third step involved the removal of features providing no valuable information

to the analysis. Features specific to the requirement of having a complete flow (capturing

the SYN and FIN packets from the flow) were removed because the experiment was

specifically designed to include incomplete flows (allows for broader interpretations).

Other features were determined as having zero variance. If all entries in the feature are

the same then the feature provides no new information to aid in classification. After the

datasets were balanced (see section 3.3.5), a couple simple lines of MATLAB code

computed the standard deviation of the provided data set and removed the indicated

features. Removing the information-less features prior to analysis helps the neural net

tool function correctly. Finally, the features for server and client port numbers were

removed because port number analysis has been shown to be a poor predictor [16].

44

3.4.5. Data Balancing

 Of the 204,000 observations, only about 16,000, or 8% of the data, were labeled

as a threat, making the data extremely unbalanced. To give the neural net tool the best

chance of success, new, smaller data sets were created. The pseudo-random number

generator in Excel was used to randomly select an equal number from each class for each

desired data set. Using this method was deemed acceptable because the random number

function in versions of Excel 2003 or later pass the standard tests of randomness referred

to as Diehard [65]. Three separate datasets were developed. The first, and largest set, is

intended to determine whether or not traffic should be considered a threat (all threat level

data combined into one class). The second set is designed to determine how well the

different threat levels could be distinguished. The third set is a “complete” data set, meant

to determine whether or not a threat was present and if so, the level of that threat. The

new data sets were coded as Threat vs. No-Threat (No-Threat, Threat), Threats Only

(Low, Medium, High), and Complete (None, Low, Medium, High). After the new data

sets were created, 10% of each class in each data set was withheld as validation data.

3.4.6. Final Dataset Description

The number of alert observations versus the number of overall observations

broken down by year is shown in Table 3.2. The small number of observations with

threat level 1, the lowest level, greatly reduced the overall number of observations for the

Threats Only and Complete datasets. Table 3.3 provides the breakdown of the final data

sets chosen for analysis, including the number withheld for validation. There are an equal

number of observations of each class in each data set. The table also includes the number

45

of features each dataset begins with after data cleanup is complete (not including the label

feature).

Table 3.2: Yearly Breakdown of Full Dataset

 2003 2004 2005 2006 2007 2009 Total

Observations 30829 73507 1301 9535 51777 37422 204371

Threat observations 3357 8628 39 214 41 4037 16316

Percentage 10.89% 11.74% 3.00% 2.24% 0.08% 10.79% 7.98%

Table 3.3: Final Datasets for Analysis

Threat vs. No-Threat Threats Only Complete

Observations 29369 516 688

Withheld 3263 57 76

Total 32632 573 764

Starting Features 229 222 224

Classes 2 3 4

3.5. Neural Network Analysis Methodology

 The main focus of this research is to determine which features, derived from

network traffic, are the most important to determining if a threat is present on the

network. The methodology chosen to accomplish this is the feed-forward artificial neural

network using backpropagation using signal-to-noise ratio for feature selection. This

section discusses both the neural network concepts and the tools this research uses to

apply the neural network classification capabilities to analyze the final datasets.

3.5.1. Neural Networks

Neural networks are a method of supervised machine learning modeled by the

learning abilities of biological cognitive systems (i.e., neurons in the brain) [66]. The

neurons are networked together to allow communication and information processing. The

learning takes place through feedback causing parameter adjustments intended to make

46

the output more accurate. Figure 3.6 illustrates an example of a fully connected

multilayer perceptron (MLP) artificial neural network.

Figure 3.6: Fully Connected MLP ANN Example [66]

A weighted combination of the inputs is created and the data is transformed

through a threshold logic or transformation function. Examples of transformation

functions include hard limiting, hyperbolic tangents, and sigmoid functions. This research

uses the sigmoid function as the transformation function for the neural networks to

address because it addresses the non-linearity introduced by the hidden layers, is

47

continuous (differentiable), and has a limited range (0 to 1) but never reaches a maximum

or minimum [67]. The next few sections present definitions of terms used with neural

networks, as well as the specific algorithm and saliency measure used in this research.

3.5.1.1. Definitions

 The following are definitions of terminology used when describing the neural net

methodology. The definitions come from the class notes used in OPER685 Multivariate

Analysis I, Spring 2013 [66].

 Activation Function: defines the output of a node given an input or set of inputs

 Artificial Neural Network (ANN): an information processing system (algorithm)

that operates on inputs to extract information and produces outputs corresponding

to the extracted information

 Architecture: the topological arrangement of neurons, layers, and connections,

which defines the set of modeling equations available to the ANN

 Backpropagation: a learning algorithm for updating weights in a feed-forward

MLP ANN that minimizes the (e.g., mean squared) mapping error

 Epoch: a complete presentation of the dataset being used to train the MLP, or

equivalently called a training cycle

 Feature: in neural networks, features refer to the input vectors of information

which are presumed to have some relation that may be helpful in distinguishing

the various output classes; vector of features is often called an observation

 Feed-forward: multilayer ANNs whose connections exclusively feed inputs from

lower to higher levels; in contrast to a feedback or recurrent ANN, feed-forward

ANNs operate only until all the inputs propagate to the output layer

48

 Hidden Units: processing elements in MLP ANN that are not included in the input

or output layers; the part of the neural network located between the input and

output layers

 Learning Algorithm: equations used to modify the weights of processing elements

in response to input and output values

 Neuron: fundamental building block of an ANN; normally, each neuron takes a

weighted sum of its input to determine its net input which is then processed

through a transfer function to produce a single-valued output that is broadcast to

‘downstream’ neurons

 Perceptron: a type of ANN algorithm used in pattern classification problems that

is trained using “supervision”; can be single or multilayer; connection weights

and thresholds can be fixed or adapted using a number of different algorithms

 Supervised Training: a method of training adaptive ANNs that requires a labeled

training dataset and an external teacher; using the desired response, the teacher

provides responses for correct of incorrect classification by the network

 Weight: processing elements (or neurons or units) receive inputs by means of

interconnects (also called ‘connections’ or ‘links’), each of which has an

associated weight, signifying its strength; the weights are combined to calculate

the activation functions

3.5.1.2. Algorithm

 The algorithm chosen for this research is the Instantaneous Backpropagation

Algorithm for a Single Hidden Layer Feed-Forward Neural Network; its steps are as

follows from [66, 68]:

49

1. Randomly partition data into training, training-test, and validation sets.

2. Normalize the feature input data.

3. Initialize weights to small random values.

4. Present the network with a randomly selected vector from the training set,

denoted .px

5. Calculate the network output pz associated with the
thp training vector.

 2 1

0
 neural network output: z , where

 is the number of middle nodes
1

 () for sigmoidal activation functions
(1)

 () for linear activation functions

Hth p

k jk jj

a

j

K f w x

H

f a
e

f a
w

2

1

0

1 1

0

 is the weight from middle node to output node

 is the middle layer bias term and is set equal to 1

 is the output of middle node

 is the number of fe

k

M p

j ij ii

j k

x

x f w x j

M

1

0

ature inputs
 is the weight from input node to middle node

 is the input layer bias term, and is equal to 1

 is the feature input

ij
p

p th

i

w i j

x

x i

6. Update the weights.

 Upper layer weights:
2 2 2 1() ()jk jk k jw w x ,

 Lower layer weights:
1 1 1() () p

ij ij j iw w x , where

-
2()jkw

 is the updated weight from middle node j to output k

-
2()jkw

is the old weight from middle node j to output k

-
1()ijw

 is the updated weight from input i to middle node j

-
1()ijw

 is the old weight from input i to middle node j

- is the step size

50

- 2 () (1)p p p p

k k k k kd z z z , if there is a sigmoid on the output

- 2 ()p p

k k kd z , if the output is linear

-
1 1 1 2 2

1
(1) ()

K

j j j k jkk
x x w

 , if there is a sigmoid on the middle node j

-
2 2

1
()

K

k jkk
w

 , if middle node j is linear

- p

kd is the thk desired output of the
thp exemplar

7. If training-test set error does not indicate sufficient convergence, go to step 4.

3.5.1.3. Saliency Measure

 The saliency measure is used to determine feature relevance in order to find a

parsimonious feature set. The focus of this research is to determine which features of the

dataset are salient. Two types of salient measures for neural network feature selection are

derivative-based and weight-based [69]. The measure chosen for this research is the

weight-based signal-to-noise ratio (SNR) saliency measure. This was discussed in Bauer

et al. [54]. A simple weight-based saliency measure is computed as, shown in [70]:

,

1 2

1
()

i j

J

i j
w

 , where

 1 is the measure for feature i , J is the number of hidden nodes,
1

,i jw is

the first layer weight between input node i and hidden node j

 The measure is simply the sum of the squared weights between input node

i and all hidden nodes 1 through J

The SNR measure directly compares the saliency of a feature to an injected noise

feature. The measure expands upon the simple weight-based computation as:

51

1

,

1 2

,1

10 2

1

()
10log

()
N j

J

i jj

i base J

j

w
SNR

w

, where

 iSNR is the value of the saliency measure for feature i , J is the number of

hidden nodes,
1

,i j
w is the weight from node i to node j , and

1

,N jw is the

first layer weight from the noise node N to node j

 The injected noise is created as a Uniform (0,1) distribution

 The scaled logarithmic transformation of the ratio converts the saliency

measure to a decibel scale

The idea behind the SNR saliency measure is that if a feature is relevant to the

output, its weights will be higher, thus making the SNR higher [54]. The noise feature is

added to the set of features, the features are standardized to zero mean with unit variance,

the weights are randomly initialized and assigned, the neural network is generated, and

the SNR for each feature is calculated. The feature with the lowest of the calculated SNR

values is dropped, the neural network generation begins again, and the process is repeated

until only one feature and the noise feature remain

3.5.2. MATLAB Neural Network Tool

 Due to the complexity of the neural network and saliency measure calculations, in

combination with size of the dataset, a software tool is required for data analysis. The

primary tool used to analyze the final datasets is the Mathworks MATLAB Neural

Network toolbox. From the website, “Neural Network Toolbox™ provides functions and

apps for modeling complex nonlinear systems that are not easily modeled with a closed-

form equation. Neural Network Toolbox supports supervised learning with feedforward,

http://www.mathworks.com/discovery/nonlinear-model.html
http://www.mathworks.com/discovery/supervised-learning.html

52

radial basis, and dynamic networks. With the toolbox you can design, train, visualize, and

simulate neural networks. You can use Neural Network Toolbox for applications such as

data fitting, pattern recognition, clustering, time-series prediction, and dynamic system

modeling and control.” [71].

3.5.2.1. Tool Specifics

For standard pattern recognition without encompassing feature

reduction/selection, one tool available, from the Neural Network Toolbox, is the pattern

recognition tool or “nprtool”. Observation data is loaded into nprtool as inputs and

observation labels (truth data) are loaded as outputs. Calling the tool from the MATLAB

command line opens a GUI for the user to select the parameters. The GUI walks the user

through selection of the input data, the target or output data, how the data should be

broken into training, testing, validation sets, and the number of hidden neurons in the

middle layers. From there, the user selects “train” to train the neural network on the data

provided, which can be repeated until satisfactory results are achieved. Next, the network

is evaluated and a number of deployment options are provided, finishing with the ability

to save the generated network.

3.5.2.2. Code Modifications

The nprtool GUI is adequate when looking at smaller feature sets, as analysis

occurs at a one-at-a-time rate, but very cumbersome when the feature sets are large. A

nice feature of the GUI is that it allows a script to be generated based on the steps taken

using the GUI. This script can then be used as the base code and modified to include the

desired parameters and allow for automation. When the modified code for this research is

used the nprtool GUI does not show; instead, the neural network training GUI appears,

53

allowing the user to view the network generation process if so desired. The rest of the

processing takes place in the background. Figure 3.7 provides a screenshot of the neural

network training GUI. For this research, the code was modified to include automation of

the neural network processing through user-defined network structure, noise feature

creation, “best” network selection, tracking of the features dropped, and a tailored data

storage system to make sure all data is captured throughout the processing. The modified

code can be found in Appendix C: MATLAB Code for Neural Network Processing.

Figure 3.7: MATLAB Neural Network Training GUI

54

3.5.2.2.1. Hidden Nodes

 Neural networks usually consist of three layers, input, middle, and output. The

structures of the input and output layers are decided by the number of features in the

dataset (input) and the number of classes of the data (output). The structure of the middle,

or hidden, layer can play a large part in how well the neural network performs. Weights

are applied to the data as it passes from the input layer to the hidden layer and again, as

the data passes from the hidden layer to the output layer. The number of neurons in the

middle layer, called hidden nodes, determines the complexity of the network. More nodes

may generate a better performing network, but it also increase network complexity and

processing time. The code was modified so the user can choose the number of hidden

nodes in the network offering the ability to compare the network performance versus

processing time trade-off. The number of hidden nodes chosen is explored in Chapter IV.

3.5.2.2.2. Noise Creation

 The noise feature is generated from a uniform (0, 1) distribution. The MATLAB

“rand” function is used to create the noise feature making it the same length of the dataset

(i.e., same number of observations). That noise feature is then appended to the dataset as

the first column.

3.5.2.2.3. Net Selection

 Another benefit of the modified code is the ability to set the number of attempts

made to generate the neural networks. This is a valuable tool because the networks

generated occasionally get stuck at a local minimum, causing classification accuracy to

be lower than it should. Running multiple attempts of the neural network generation

allows a better performing network to be chosen. There are several options available to

55

use for network performance criteria such as mean square error, sum square error, and

cross-entropy. When neural network analysis begins, the performance value is calculated

for the network generated with each attempt. The networks are reinitialized at the start of

each attempt. The attempt with the best performance value (usually the minimum) is

chosen as the best network and the saliency measurements are calculated for the features.

The feature with the smallest SNR value is then removed from the feature set and the

process begins again.

3.5.2.2.4. Bookkeeping

 A necessary aspect of the automated feature removal process is keeping track of

what features remain after each removal in order to relate the new list of features with the

original feature set. When the feature is removed, the indexes of the features after the

removed feature will change. Careful bookkeeping keeps that original structure intact.

Separate arrays are used to keep track of both the features remaining (based on the

original structure) and those features removed.

3.5.2.2.5. Generated Data Storage

 Running the neural network tool generates a large amount of data, from network

performance graphs, to confusion matrices, to arrays tracking classification accuracies

and feature removal. The modified code creates both cell arrays capable of holding large

amounts of multidimensional data and individual plots, tailored for specific purposes, to

make sure no valuable information is lost.

3.5.2.2.6. Time Keeping

 With such large amounts of data, processing time is of concern. For example, the

previously mentioned performance versus processing time associated with the network

56

hidden layer structure. Another example is the number of attempts made generating the

networks. The increase in performance needs to be worth the extra time it takes to

process the data. With that in mind, the code was modified to include a timekeeper, or

“stopwatch”, function. A timer starts when the neural network tool begins and ends with

the completion of the last attempt at network generation. The time information is saved

and made available for comparison.

3.5.3. Performance Metrics

 Evaluating the performance of a classifier is a complicated and focus-specific

task. There are several different areas of interest that can define performance such as cost,

speed, and accuracy [72]. The focus areas chosen depend on what is defined as important

in the classification outcome. The performance metrics used in this research are based on

information found in the confusion matrix and include the overall success rate, marginal

rates, means measures, and receiver operating characteristic (ROC) curves.

3.5.3.1. Confusion Matrix

 A confusion matrix describes how the observation classifications are distributed

over the actual and predicted classifications in a grid-like format. The rows represent

predicted classes and columns represent actual classes. Table 3.4 provides an example of

a confusion matrix for a two class classifier [66]. A confusion matrix contains four values

used to derive other performance measures:

 True Positive (TP): percentage of correct positive class predictions; hits

 True Negative (TN): percentage of correct negative class predictions; correct

rejections

57

 False Positive (FP): percentage of incorrect positive class predictions; false

alarms; type I errors

 False Negative (FN): percentage of incorrect negative class predictions; misses;

type II error

 Positive (P): number of positive labeled observations

 Negative (N): number of negative labeled observations

Table 3.4: Two-Class Confusion Matrix

Predicted

Target Noise

Actual
Target TP FN

Noise FP TN

3.5.3.2. Overall Success Rate

 The most commonly seen classification performance metric is the overall success

rate, or percent correct over all instances; also referred to as overall accuracy. Overall

accuracy is the trace of the confusion matrix, divided by the total number of instances and

ranges from 0 to 1, or perfect misclassification to perfect classification [72]. Accuracy by

class is also included. Class accuracy is the percent correct out of each class.

()

()

TP TN
Accuracy

P N

3.5.3.3. Marginal Rates

Classification accuracy is more than just the percentage of correctly classified

observations [72]. The marginal rates (i.e., margins of the confusion matrix) provide

useful performance metrics as well. The marginal rates metrics used in this research are

recall (or true positive rate (TPR)), specificity (or true negative rate), precision (or

positive predictive value), false positive rate (FPR - type I error), and false negative rate

58

(FNR – type II error) [73]. Recall measures the ability of the model to correctly predict

observations are in a particular class [74]. Specificity is similar to recall, but for correctly

predicting observations are not in a particular class. Precision measures the accuracy of a

specific class being predicted. All five measures range from 0 to 1.

() ()

() () ()

TP TP TN TN
Recall Specificity

P TP FN N FP TN

TP FP FN
Precision FPR FNR

TP FP FP TN TP FN

3.5.3.4. Means Measures

 Two types of means measures are looked at in this research. Means measures

focus on the per-class performance. The first is the geometric mean or G-measure. The

G-measure is the square root of the product of precision and recall. The measure

normalizes the true positive to the geometric mean of the predicted and actual positives

[73].

*G Precision Recall

The F-measure (or F1 score) is another way to measure a classifier’s accuracy.

The F-measure corresponds to the harmonic mean of recall and precision. It measures the

overlapping of the actual and predicted classes and ranges from 0 to 1, or no overlap

(worst) to complete overlap (best).

1

*
2*

Precision Recall
F

Precision Recall

3.5.3.5. ROC Curves

ROC Curves got their start as a way of explaining radio signals during World War

II and have become a commonly used tool in machine learning research communities in

59

recent years [75]. ROC Curves provide a graphical way to visualize the tradeoff between

TPR and FPR based as a function of some varied parameter of the classifier [66]. For this

research the parameter is the decision threshold value for deciding which class an

observation belongs to. Perfect classification is represented as the point (0, 1) along the

curve (see Figure 3.8). The optimal operating point of the curve is the threshold providing

the best combination of TPR and FPR.

Figure 3.8: Two-Class ROC Curve Example

The area under the ROC Curve (AUC) provides a metric of how well the

classifier can predict an observation’s class. The AUC is the probability that the classifier

will classify a randomly chosen positive instance higher than a randomly chosen negative

instance [75]. As with the previous metrics, AUC ranges between 0 and 1, with 0 giving

the worst predictive capability and 1 giving the best.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve - Two Class Example

Class 0

Class 1

60

3.6. Summary

 The methodology described in this chapter is designed to provide an accurate

determination of the most important features in network traffic data for classifying

threats. The initial dataset was discussed, followed by the process it took to turn that

dataset into something useable for analysis by neural networks. After that, neural

networks were explained. The chapter concluded with a discussion of the software tools

and modifications necessary for analysis and a description of the metrics used for

evaluating the neural network classification performance.

61

IV. Experimental Analysis & Results

4.1. Chapter Overview

 This chapter presents the analysis and results from the experiments. The chapter

starts with a brief investigation of the overall dataset followed by a discussion of the

chosen settings used for the MATLAB Neural Network tool. The rest of the chapter

consists of the results and interpretation for each of the datasets used during

experimentation.

 Later in this chapter much effort goes into gleaning as much information as

possible, through neural network analysis, from the datasets discussed in Chapter III. In

order to better understand those datasets and the results of that analysis, a brief

investigation of the overall dataset is presented. Because each of the experimental

datasets was created from this overall dataset, the results of the investigation will, in

general, apply to all the datasets. The investigation looked at the class breakdown,

correlation information of the features, and the dimensionality of the dataset.

4.2. Overall Dataset

 The overall analyzable dataset consists of 204,371 observations. Approximately

8% of those observations are labeled as a threat (Low, Medium, or High). A visual

representation of the frequency of the threats is shown in Figure 4.1. Although the large

gap between the number of threat observations and non-threat observations is likely a

realistic expectation for what a normal government network encounters, this overloading

of one class of data does not work well with neural network analysis. It causes the neural

network output to be heavily skewed in favor of the overloaded class. As previously

discussed in Chapter III, three smaller, balanced, datasets were created to address the

62

unequal class representation. Information about the three experimental datasets can be

found in Table 3.3 in Chapter III.

Figure 4.1: Overall Dataset Threat Frequency

Looking at data correlation is an important starting point when investigating

datasets. Looking at the correlation can reveal dependence, or relation, among the

features and provide some insight into what features do or do not provide additional

information (e.g., redundancy). Correlation is used, as opposed to covariance, because

with correlation the data is normalized and unit-less, important because the scale varies

greatly between the features. Features that are highly correlated with the class feature but

not with each other are likely to be the salient features. Due to the high number of

features, a color map (see Figure 4.2) is used to visualize the correlation matrix because it

is easier to read and interpret than a number matrix would be. As can be seen in the color

map, most of the data is uncorrelated (green) with occasional pockets of moderate

0 1 2 3
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000
Overall Dataset Threat Level Frequency Graph

Threat Level

F
re

q
u
e
n
c
y

No-Threat

Low Threat

Med Threat

High Threat

63

(yellow or light blue) to high (red or dark blue) correlation between some features. None

of the features seem to be highly correlated with the class (first row/column – somewhat

difficult to see); however, there does seem to be some mild to moderate correlation with

features numbered in the teens, 80s, 90s, and 170s.

Figure 4.2: Overall Dataset Correlation Color Map

 A dimensionality assessment is another way of investigating datasets.

Dimensionality assessments provide insight into the number of features (not necessarily

which features) that contain information (i.e., explain the variance) about the dataset. A

simple dimensionality assessment is Kaiser’s Criterion. Figure 4.3 shows a plot of the

Feature Number

F
e
a
tu

re
 N

u
m

b
e
r

Overall Dataset Correlation Color Map

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

120

140

160

180

200

220

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

64

Kaiser’s Criterion dimensionality test. Using the data correlation, the eigenvalues are

computed for each of the features and plotted against the number of features. The number

of features with eigenvalues of one or higher should be kept. From the plot we see about

40 features have eigenvalues of 1 or higher. These 40 features explain about 85% of the

variance in the data. This indicates the dimensionality of the data is 40 features; however,

we have yet to determine which of these features, if any, are salient.

Figure 4.3: Kaiser Dimensionality Plot - Overall Dataset

4.3. MATLAB Neural Network Tool Settings

 To maintain consistency throughout experimentation, the same function

parameter settings were used for each run of the MATLAB Neural Network pattern

recognition tool. Data was divided up randomly using the ‘dividerand’ setting, selecting

70% of the data for training, 15% for testing, and 15% for training error validation. The

transformation function used was the ‘logsig’ or Log-Sigmoid function. This function

was described previously in Chapter III. The Scaled Conjugate Gradient backpropagation

0 50 100 150 200
0

5

10

15

20

25

30

35

Features

E
ig

e
n
v
a
lu

e
s

Kaiser's Criterion Dimensionality Test

Overall Dataset

Eigenvalue Line

Kaiser's Constant

65

function or ‘trainscg’ was selected as the neural network training algorithm. MATLAB

includes several different training algorithms; through initial trial and error, ‘trainscg’

seemed faster than other algorithms with similar classification accuracy outcomes.

Network performance was calculated using the cross-entropy algorithm. Typically, mean

squared error is the default performance metric, but the natural log function in the cross-

entropy algorithm factors in the accuracy prediction values and becomes a more fine-

grained method of calculating error thus providing better performing networks [76].

Table 4.1 lists out the parameter settings used to determine when the training tool

should end a training iteration. The automation settings described in Chapter III ran the

training tool through 30 network-generating attempts for each number of features with

network structures containing 10, 20, 30, 40, and 50 hidden nodes. For deciding which

class an observation belongs to, the default threshold value of .5 was used for each

dataset. After the optimal operating characteristics were determined, the optimal

threshold was used for the validations datasets.

Table 4.1: MATLAB Training Tool Settings

Training Tool Settings Setting

Epochs (max) 500

Time (max) 300 (seconds)

Network Performance Goal .005

Validation Checks (max) 10

4.4. Dataset Analysis

 This section walks through the results from the analysis of the three experimental

datasets. Each of the three subsections focuses on a particular dataset, first discussing the

chosen hidden layer structure and the overall accuracy leading to the decision on the

number of features to keep. Next, the results of the neural network’s performance metrics

66

and optimal operating characteristics are presented. The data used for these metrics

consists of the combination of the training and testing sets calculated using only the

retained feature set. This is followed by the performance metrics computed with the

neural network using the withheld validation data. Each subsection concludes with a

discussion of the salient features for each dataset.

4.4.1. Threat vs. No-Threat Dataset

 The first dataset is referred to as the Threat vs. No-Threat dataset. This dataset is

the most general and, because of that, has the most observations of the three datasets. The

dataset is broken down into two classes; an observation is either a threat or not a threat.

The analysis for this dataset focuses solely on determining whether or not a threat is

present and provides no information on the risk level of the threat discussed. It is likely a

method such as this would be used in conjunction with another threat detection method

capable of discerning the level of the threat.

4.4.1.1. Hidden Layer Structure – Threat vs. No-Threat Dataset

 The number of nodes in the hidden layer makes up the hidden layer structure. The

importance of the hidden layer structure is discussed in Chapter III. Each dataset was run

through the MATLAB Neural Network tool using 10, 20, 30, 40, and 50 hidden nodes to

determine which structure provided the most benefit when factored against the time

required to process the data. Plots of the overall accuracy against the number of features

(commonly referred to as a “knee plot”) and the overall accuracy values were considered

for each structure to determine an appropriate performance “drop” point. Table 4.2

presents the results of the testing done with regard to the hidden layer structure. For the

Threat vs. No-Threat dataset, dropping below .9355 for the last time was chosen as the

67

comparison drop point. As can be seen in Table 4.2 the selection method results in a

different number of features remaining for each hidden layer structure. The idea is to

optimize efficiency – minimize time and the number of features while maximizing

accuracy. A plot of the number of nodes versus the accuracy at the drop point and the

processing time provides an easy way to visualize the tradeoff and can be seen in Figure

4.4. It is obvious that as the number of hidden nodes increases, the accuracy stays

relatively the same while the processing time increases. The highlighted row in Table 4.2

shows the chosen structure of 10 nodes with 13 features remaining.

Table 4.2: Hidden Layer Structure – Performance Comparison -

Threat vs. No-Threat Dataset

of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining

10 81250 0 .9358 13

20 100856 19606 .9357 11

30 136415 55165 .9360 9

40 155990 74740 .9374 6

50 199852 118602 .9377 10

Figure 4.4: Hidden Layer Structure Comparison – Threat vs. No-Threat Dataset

0.9

0.91

0.92

0.93

0.94

0.95

A
c
c
u
ra

c
y
 a

t
D

ro
p
 P

o
in

t

10 20 30 40 50

75000

100000

125,000

150,000

175,000

200,000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Number of Neurons in Hidden Layer

Hidden Layer Structure Comparison - Threat vs. No-Threat Dataset

Processing Time

Accuracy

68

4.4.1.2. Overall Accuracy – Threat vs. No-Threat Dataset

 Once the hidden layer structure has been selected, we take a closer look at the

performance of the neural network built around the number of remaining features. The

objective is to maintain the desired classification accuracy while minimizing the number

of features. A knee-plot of the overall accuracy against the number of features removed is

shown in Figure 4.5. The accuracy is very consistent at around 94% while most of the

features are removed. At feature number 217 (the noted feature), the neural network is

performing at a 93.58% classification accuracy rate. After feature number 217 is removed

the accuracy starts to take a steep decline and it never comes back up. This is the “knee”

point of the plot and determines how many features are required to keep while

maintaining the desired classification accuracy. Based on the location of the knee, the

decision was made to keep the last 13 features remaining and evaluate the network

performance.

Figure 4.5: Overall Classification Accuracy – Threat vs. No-Threat Dataset (10 nodes)

0 50 100 150 200 250

0.8

0.85

0.9

0.95

1

Overall Classification Accuracy

Threat vs. No-Threat Dataset (10 nodes)

Number of Features Removed

O
v
e
ra

ll
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Accuracy

Drop w/ 217

features removed

69

4.4.1.3. Performance Metrics – Threat vs. No-Threat Dataset

 Several performance metrics were calculated to evaluate the neural network

created with 13 features remaining. These metrics were calculated from the results shown

in the confusion matrix (Table 4.3) and are displayed in Table 4.4. We can see from the

results that the generated network performs at over 93% accuracy on the data it was

trained and tested on. There is a consistently high classification performance both

between classes and within classes (i.e., overall and class-based accuracies).

FPR equates to false alarm rate. The FPRs displayed indicate an expectation of a

2.42% false alarm rate for observations classified as benign and a 9.79% false alarm rate

for those classified as a threat. This means we should expect less than 3 out of 100

observations classified as benign to actually be a threat and approximately 10 out of 100

observations classified as a threat to actually be benign.

Table 4.3: Confusion Matrix -

Threat vs. No-Threat Dataset (13 Features)

Predicted

No-Threat Threat

Actual
No-Threat 13125 1559

Threat 326 14359

Table 4.4: Performance Metrics - Threat vs. No-Threat Dataset (13 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

No-Threat .9358 .9758 .8938 .9021 .0242 .0979 .9339 .9330

Threat .9358 .9021 .9778 .9758 .0979 .0242 .9392 .9387

Overall Accuracy .9358

4.4.1.4. Optimal Operating Characteristics – Threat vs. No-Threat Dataset

 The next step in analyzing the outcome of selected neural network was

determining the optimal operating characteristics for that network. The optimal operating

70

characteristics refer to the threshold used when determining what class a particular

observation belongs to based on the output score generated by the neural network. The

initial decision threshold for all classes in the trained dataset was the default 0.5,

considering each dataset equally.

ROC Curves for each class and their associated ensemble threshold plots were

generated to check network performance and determine the optimal thresholds and can be

seen in Figure 4.6. The ideal location for a ROC curve is the upper left corner of the

graph and the lines shown here are very close to that; this indicates the network is

performing well. The graph indicates there is a threshold that provides a TPR at or above

0.9 while still keeping an FPR below 0.1 for both target classes. The ensemble threshold

plots appear to be robust with threshold values varying between about .15 and .99 for the

no-threat class and between about .02 and .85 for the threat class, holding an approximate

90% classification accuracy.

Figure 4.6: ROC Curves and Ensemble Threshold Plots – Threat vs. No-Threat Dataset

(10 nodes) - 13 Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curves - Threat vs. No-Threat Dataset

(10 nodes) - 13 Features

No-threat

Threat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold for Specified Class Returns

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Ensemble Threshold Plot - Threat vs. No-Threat Dataset

(10 nodes) - 13 Features

No-Threat

Threat

71

 The optimal operating characteristics were explored further looking at the AUC

for the ROC curves. The higher the AUC is the higher the predictive capability of the

network should be. From Table 4.5 we can see an AUC of .9614 and .9616 for the no-

threat and threat classes, respectively. These are high values indicating the network has a

high predictive capability. The table also provides the results for the optimal TPR, FPR,

and the associated optimal threshold and ensemble accuracy. Notice the similarities

between the optimal FPRs and the FPRs shown in Table 4.4. This indicates using the

optimal threshold had little effect on the expected false alarm rates of the classes..

Table 4.5: Optimal Operating Characteristics -

Threat vs. No-Threat Dataset (13 Features)

Class AUC Optimal

TPR

Optimal

FPR

Optimal

Threshold

Max Ensemble

Accuracy

No-Threat .9614 .8932 .0211 .5449 .9361

Threat .9616 .9742 .1034 .6099 .9354

4.4.1.5. Validation Results – Threat vs. No-Threat Validation Dataset

Because the generated neural network learns and trains on the input data

specifically, it is important to test the network with a separate set of validation data. The

optimal thresholds determined in the previous section were used for discriminating

between the two classes. Because there are two classes of data, each with its own optimal

threshold, the results of testing the validation data consists of two parts, one part focusing

on the no-threat class data and the other part focusing on the threat class data.

Table 4.6 provides the confusion matrix results using the .5449 threshold value

with a focus on the no-threat class data. The confusion matrix results were then used to

calculate the performance metrics for the dataset; those results are shown in Table 4.7.

The overall accuracy is above 84% which could be still considered fairly high. The

72

precision of the threat data at over 96% indicates the neural network predicts the threat

data class well, although the FPR indicates that may be due to over-prediction of that

class. The effect of the optimal threshold is evident in the associated much lower no-

threat data precision result.

We can also see the FPR changes with the validation dataset to 4.29% and

22.15% for the no-threat and threat data classes, respectively. This means about 4 out of

100 observations will be classified as benign when they are actually threats and about 22

out of 100 observations will be classified as a threat when they are actually benign. The

false alarm jump for the threat class data from 9.79% with the training data to 22.15%

with the validation data is likely due to the neural network overfitting in the

training/testing set. In the cyber realm a false alarm rate that high is likely to overwhelm

network operators and cause the alert system to be disregarded.

Table 4.6: Confusion Matrix - Threat vs. No-Threat

Validation Dataset - No-Threat Focus (13 Features)

Predicted

No-Threat Threat

Actual
No-Threat 1183 449

Threat 53 1578

Table 4.7: Performance Metrics - Threats vs. No-Threat

Validation Dataset – No-Threat Focus (13 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

No-Threat .8462 .9571 .7249 .7785 .0429 .2215 .8329 .8250

Threat .8462 .7785 .9675 .9571 .2215 .0429 .8679 .8628

Overall Accuracy .8462

 Table 4.8 shows the confusion matrix after using the .6099 threshold, focusing on

the data classified as a threat. The network performance metrics were computed from the

confusion matrix results and are presented in Table 4.9. The overall accuracy is again

73

over 84%. Changing the threshold to focus on the threat class data caused little change in

the performance of the network, including the false alarm results.

Table 4.8: Confusion Matrix - Threat vs. No-Threat

Validation Dataset - Threat Focus (13 Features)

Predicted

No-Threat Threat

Actual
No-Threat 1196 436

Threat 60 1571

Table 4.9: Performance Metrics - Threats vs. No-Threat

Validation Dataset – Threat Focus (13 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

No-Threat .8480 .9522 .7328 .7828 .0478 .2172 .8354 .8283

Threat .8480 .7828 .9632 .9522 .2172 .0478 .8683 .8637

Overall Accuracy .8480

4.4.1.6. Salient Feature Description – Threat vs. No-Threat Dataset

This section provides a description of the 13 salient features chosen for the Threat

vs. No-Threat dataset. Table 4.10 contains the feature numbers from the original feature

set and their associated descriptions. The features are listed by their index number in the

original feature set, not according to their weight. The salient features all have to do with

the size or number of the packets (also referred to as segments) or the bytes within a

packet. Segment size (minimums and maximums) or number of segments is part of 5 of

the 13 features. The rest of the features consist of the number of bytes in some portion of

the packet, including the control information, which is used to tell the network how and

where to deliver the packet and is typically found in the packet headers or trailers.

74

Table 4.10: Salient Feature Descriptions – Threat vs. No-Threat Dataset [6]

Original Feature Number Feature description

10 Minimum of bytes in (Ethernet) packet, using the size of

the packet on the wire

17 Minimum of total bytes in IP packet, using the size of

the payload declared by the IP packet

80 Maximum segment size requested as a TCP option in the

SYN packet opening the connection (server to client)

84 Minimum segment size observed during the lifetime of

the connection (server to client)

86 Average segment size observed during the lifetime of the

connection calculated as the value reported in the actual

data bytes field divided by the actual data packets

reported (server to client)

96 Total number of bytes sent in the initial window (i.e., the

number of bytes seen in the initial flight of data before

receiving the first ACK packet from the other endpoint

acknowledging some data – not the 3-way handshake)

(server to client)

97 Total number of segments (packets) sent in the initial

window (client to server)

98 Total number of segments (packets) sent in the initial

window (server to client)

173 Variance of control bytes packet (client to server)

179 Maximum of bytes in (Ethernet) packet (server to client)

186 Maximum of total bytes in IP packet

187 Variance of total bytes in IP packet (server to client)

193 Maximum of control bytes in packet

4.4.2. Threats Only (Low, Medium, High)

The next dataset is referred to as the Threats Only dataset. This dataset consists of

only those observations classified as one of the three threat levels, Low, Medium, and

High. Because of the limited number of Low threat observations, this dataset is the

smallest of the three. Investigation into this dataset is intended to determine how well the

neural network can distinguish between the different threat levels so no benign data is

included. This type of analysis would work well as a post-investigation to the data

characterized as a threat from the previous Threat vs. No-Threat dataset.

75

4.4.2.1. Hidden Layer Structure – Threats Only Dataset

Table 4.11 presents the results of the hidden layer structure performance. For the

Threats Only dataset, dropping below .95 for the last time was chosen as the comparison

drop point. The plot of the number of nodes versus the accuracy at the drop point and the

processing time can be seen in Figure 4.7. As the number of hidden nodes increases, the

accuracy falls, stays relatively steady, and then drops while the processing time increases.

The highlighted row in Table 4.11 shows the chosen structure of 10 nodes with 6 features

remaining.

Table 4.11: Hidden Layer Structure – Performance Comparison - Threats Only Dataset

of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining

10 2798 0 .9729 6

20 3351 553 .9612 6

30 3699 901 .9612 8

40 3879 1081 .9632 9

50 4183 1385 .9516 8

Figure 4.7: Hidden Layer Structure Comparison - Threats Only Dataset

10 20 30 40 50
0.95

0.955

0.96

0.965

0.97

0.975

A
c
c
u
ra

c
y
 a

t
D

ro
p
 P

o
in

t

Number of Neurons in Hidden Layer

Hidden Layer Structure Comparison

Threats Only Dataset

2500

3000

3500

4000

4500

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Accuracy

Processing Time

76

4.4.2.2. Overall Accuracy – Threats Only Dataset

A knee-plot of the overall accuracy against the number of features removed is

shown in Figure 4.8. The accuracy fluctuates between about 96% and 99% as most of the

features are removed. At feature number 217 (the noted feature), the neural network is

performing at a 97.29% classification accuracy rate. After feature number 217 is

removed, the accuracy starts to take a steep decline and it never comes back up. Based on

the location of the knee, the decision was made to keep the last six features remaining

and evaluate the network performance.

Figure 4.8: Overall Classification Accuracy - Threats Only Dataset (10 nodes)

4.4.2.3. Performance Metrics – Threats Only Dataset

Performance metrics were calculated to evaluate the neural network created with

six features remaining. These metrics were calculated from the results shown in the

confusion matrix (Table 4.12) and are displayed in Table 4.13. From the results we can

see the generated network performs at over 97% accuracy on the data it was trained and

0 50 100 150 200 250
0.75

0.8

0.85

0.9

0.95

1

Number of Features Removed

O
v
e
ra

ll
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Overall Classification Accuracy

Threats Only Dataset (10 nodes)
Accuracy

Drop w/ 217

features removed

77

tested on. The high classification performance is consistent both between classes and

within classes (i.e., overall and class-based accuracies). Precision for the Low threat class

indicates the neural network may not predict that class as well as it does with the other

classes. The results for the Medium and High threat classes are similar and very high,

suggesting the neural network classifies those classes well.

The FPRs shown indicate an expectation of a 2.58% false alarm rate for

observations classified as Low threat, a .88% false alarm rate for those classified as

Medium threat, and a .59% false alarm rate for those classified as High threat. This

means we should expect approximately 3 out of 100 observations classified as Medium

or High threat to actually be Low threat; less than 1 out of 100 observations classified as

Low or High threat to actually be Medium threat; and less than 1 out of 100 observations

classified as Low or Medium threat to actually be High threat. The false alarm rate for

Medium and High threat indicates the network does an excellent job differentiating

Medium and High both between each other and against the Low class.

Table 4.12: Confusion Matrix - Threats Only Dataset (6 Features)

Predicted

Low Medium High

Actual

Low 163 4 5

Medium 3 169 0

High 1 1 170

Table 4.13: Performance Metrics - Threats Only Dataset (6 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

Low .9748 .9760 .9477 .9742 .0258 .0240 .9618 .9617

Medium .9845 .9713 .9826 .9912 .0088 .0287 .9769 .9769

High .9864 .9714 .9884 .9947 .0059 .0286 .9799 .9798

Overall Accuracy .9729

78

4.4.2.4. Optimal Operating Characteristics – Threats Only Dataset

This section discusses the optimal operating characteristics established for the

generated neural network. ROC Curves for each class and their associated ensemble

threshold plots were generated to check network performance and determine the optimal

thresholds. The plots are shown in Figure 4.9. The curve lines shown in the ROC Curve

plots are extremely close to the upper left corner indicating a high level of performance

from the neural network. From the graph we can see there is a threshold that provides a

TPR close to one with an FPR close to zero for all three classes. Similar to the Threat vs.

No-Threat dataset results, the ensemble threshold plots appear to be quite robust.

Threshold values for Low threat class data to achieve at least 90% accuracy range from

about 0.1 to .95. Threshold values for Medium and High threat data to get 90% accuracy

begin at 0 and extend to 1 and about 0.9 for Medium and High threat data, respectively.

These operating characteristic curves reiterate that the generated neural network performs

better with Medium and High threat data than it does with the Low threat data.

Figure 4.9: ROC Curves and Ensemble Threshold Plots - Threats Only Dataset

(10 nodes) - 6 Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold for Specified Class Returns

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Ensemble Threshold Plot - Threats Only Dataset

(10 nodes) - 6 Features

Low

Medium

High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curves - Threats Only Dataset

(10 nodes) - 6 Features

Low

Medium

High

79

The AUC for the generated ROC curves was also explored. In Table 4.14 we can

see an AUC of over .99 for all three classes. These are extremely high values indicating

the network has an excellent predictive capability. The optimal TPR, FPR, and associated

optimal threshold and ensemble accuracy can also be seen Table 4.14. In contrast to the

results from the Threats vs. No-Threats dataset, there is little difference between the

optimal FPRs and the FPRs shown in Table 4.13. This is likely due to the robustness of

the optimal threshold as varying the threshold seems to cause much of an effect on the

accuracy outcome. The ranking of the false alarm percentage did swap between the

Medium and High threat data but they are both still at less than 1%.

Table 4.14: Optimal Operating Characteristics - Threats Only Dataset (6 Features)

Class AUC Optimal

TPR

Optimal

FPR

Optimal

Threshold

Max Ensemble

Accuracy

Low .9931 .9419 .0116 .5627 .9729

Medium .9988 .9709 .0029 .6213 .9884

High .9959 .9826 .0087 .8146 .9884

4.4.2.5. Validation Results – Threats Only Validation Dataset

The optimal thresholds determined in the previous section were used for testing

the validation data. The following results consist of three parts focusing on each of the

Low, Medium, and High threat class data.

Table 4.15 shows the confusion matrix results using the .5627 threshold value

with a focus on the Low threat class data. These results were then used to calculate the

performance metrics for the dataset which are shown in Table 4.16. The overall accuracy

is above 87% which could be still considered fairly high but is a 10 percentage point drop

from the training dataset overall accuracy. The precision of the Low threat data at

approximately 79%, when compared to the 89% and 95% for the Medium and High

80

threat data, reinforces the earlier notion that the neural network does not predict the Low

threat data class as well as the other classes. The results do show, however, when the

focus is on identifying the Low threat, the neural network’s recall performance is much

better for the Low class than either of the other classes.

We can also see there is a jump in the false alarm rate for all classes with the

validation data. The FPR went up to 9.76% for the Low threat class data, 5.41% for the

Medium threat class data, and 2.78% for the High threat class data. This translates to an

expectation of about 10 out of 100 observations classified as Medium or High threat

when they are actually Low; about 5 out of 100 observations classified as Low or High

when they are actually Medium; and about 3 out of 100 observations classified as Low or

Medium threat when they are actually High. The false alarm jump is again likely due to

the neural network overfitting on the training/testing set.

Table 4.15: Confusion Matrix – Threats Only

Validation Dataset – Low Threat Focus (6 Features)

Predicted

Low Medium High

Actual

Low 15 3 1

Medium 0 17 2

High 1 0 18

Table 4.16: Performance Metrics - Threats Only

Validation Dataset – Low Threat Focus (6 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

Low .9123 .9375 .7895 .9024 .0976 .0625 .8603 .8571

Medium .9123 .8500 .8947 .9459 .0541 .1500 .8721 .8718

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000

Overall Accuracy .8772

 Table 4.17 shows the confusion matrix after using the .6213 threshold, focusing

on the data classified as Medium threat. The network performance metrics were

81

computed from the confusion matrix results and are presented in Table 4.18. The results

are identical to those found when focusing on the Low threat class. Looking at the neural

network score output, the scores for each observation are generally high in one class’ cell

suggesting the network was able to distinguish between the classes at a high level. The

change in the threshold was not enough to affect the prediction outcome so the results

turned out exactly the same.

Table 4.17: Confusion Matrix – Threats Only

Validation Dataset – Medium Threat Focus (6 Features)

Predicted

Low Medium High

Actual

Low 15 3 1

Medium 0 17 2

High 1 0 18

Table 4.18: Performance Metrics - Threats Only

Validation Dataset – Medium Threat Focus (6 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

Low .9123 .9375 .7895 .9024 .0976 .0625 .8603 .8571

Medium .9123 .8500 .8947 .9459 .0541 .1500 .8721 .8718

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000

Overall Accuracy .8772

Table 4.19 shows the confusion matrix after using the .8146 threshold, focusing

on the data classified as High threat. The network performance metrics were computed

from the confusion matrix results and are presented in Table 4.20. The overall accuracy

stayed exactly the same at 87.72%. Focusing on the High threat class evened out recall

and precision for the Low and Medium threat class data. This balancing out was the result

of the prediction values for the Low and Medium threat turning out the same with 16 true

positives and 3 false positives. The false alarm rate reflected the effect as well with the

High threat data remaining at 2.78% and the Low and Medium threat data even at 7.69%.

82

Table 4.19: Confusion Matrix – Threats Only

Validation Dataset – High Threat Focus (6 Features)

Predicted

Low Medium High

Actual

Low 16 2 1

Medium 1 16 2

High 1 0 18

Table 4.20: Performance Metrics - Threats Only Validation Dataset –

High Threat Focus (6 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

Low .9123 .8889 .8421 .9231 .0769 .1111 .8652 .8649

Medium .9123 .8889 .8421 .9231 .0769 .1111 .8652 .8649

High .9298 .8571 .9474 .9722 .0278 .1429 .9011 .9000

Overall Accuracy .8772

4.4.2.6. Salient Feature Description – Threats Only Dataset

This section provides a description of the six salient features chosen for the

Threats Only dataset (see Table 4.21). All of the salient features pertain to segment size

or number of bytes in a section of the packet, again, mostly the control section. The one

exception is the minimum window advertisement seen. The window advertisement is a

flow control mechanism sent from the receiver letting the sender know how much of data

can be received before the sender has to wait for an acknowledgment.

Table 4.21: Salient Feature Description - Threats Only Dataset [6]

Original Feature Number Feature description

81 Maximum segment size observed during the life of the

connection (client to server)

83 Minimum segment size observed during the life of the

connection (client to server)

90 Minimum window advertisement seen (if both sides

negotiated window scaling)(server to client)

171 Third quartile of control bytes in packet

173 Variance of control bytes in packet

180 Variance of bytes in Ethernet packet

83

4.4.3. Complete Set (None, Low, Medium, High)

The final dataset is the Complete dataset. This dataset consists of four classes:

None, Low threat, Medium threat, and High threat. The limited number of Low threat

observations affects the size of this dataset as it did the Threats Only dataset, however,

with the inclusion of the None data, this data is slight larger. Investigation into this

dataset is intended to test how well the neural network can not only detect a threat, but

also determine the level of the threat. Unlike the previous datasets, this method should be

able to stand on its own without further processing.

4.4.3.1. Hidden Layer Structure – Complete Dataset

Table 4.22 presents the results of the hidden layer structure performance. For the

Complete dataset, dropping below .8 for the last time was chosen as the comparison drop

point. The plot of the number of nodes versus the accuracy at the drop point and the

processing time can be seen in Figure 4.10. Unlike the previous datasets, classification

performance jumps as the nodes increase to 30 before dropping rapidly, while incurring

only a mild increase in processing time, thus making 30 nodes the chosen structure as

opposed to the 10 nodes used for the previous datasets. The highlighted row in Table 4.22

shows the chosen structure of 30 nodes with 8 features remaining.

Table 4.22: Hidden Layer Structure - Performance Comparison - Complete Dataset

of Nodes Time (s) Time Diff (s) Accuracy at Drop Features Remaining

10 3573 0 .8110 11

20 3634 61 .8110 10

30 4063 490 .8256 8

40 4149 576 .8125 7

50 4561 988 .8009 7

84

Figure 4.10: Hidden Layer Structure Comparison - Complete Dataset

4.4.3.2. Overall Accuracy – Complete Dataset

A knee-plot of the overall accuracy against the number of features removed is

shown in Figure 4.11. The accuracy bounces between about 83% and 87% as most of the

features are removed. At this point we see indicators that the neural network does not

distinguish threat and threat levels as well as it does when they are separated, as the

overall accuracy of the training data is, on average, at least a full 10 percentage points

lower than it was for each of the other datasets. At feature number 217 (the noted

feature), the neural network is performing at an 82.56% classification accuracy rate. After

feature number 217 is removed, the accuracy starts to decline and never comes back up.

Based on the location of the knee, the decision was made to keep the last eight features

remaining and evaluate the network performance.

10 20 30 40 50
0.8

0.805

0.81

0.815

0.82

0.825

0.83

A
c
c
u
ra

c
y
 a

t
D

ro
p
 P

o
in

t

Number of Neurons in Hidden Layer

Hidden Layer Structure Comparison

Complete Dataset

3000

3500

4000

4500

5000

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

Accuracy

Processing Time

85

Figure 4.11: Overall Classification Accuracy - Complete Dataset (30 nodes)

4.4.3.3. Performance Metrics – Complete Dataset

Performance metrics were calculated to evaluate the neural network created with

eight features remaining. These metrics were calculated from the results shown in the

confusion matrix (see Table 4.23) and are displayed in Table 4.24. From the results we

can see the generated network performs at almost 83% accuracy on the data it was trained

and tested on. The classification performance is inconsistent both between classes and

within classes (i.e., overall and class-based accuracies). The None and Low threat

classification accuracies are similar to each other but different from the Medium and

High threat classification accuracies. The low precision values for the None and Low

threat classes, in contrast to the high values for the Medium and High threat classes,

indicate the neural network may not predict those classes as well as it does with the other

classes. Classification of the Medium threat class seems to generally be the highest

across the range of statistics presented.

0 50 100 150 200 250

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Features Removed

O
v
e
ra

ll
C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Overall Classification Accuracy

Complete Dataset (30 nodes)

Accuracy

Drop w/ 217

features removed

86

The FPRs shown indicate an expectation of an 11.28% false alarm rate for

observations classified as None, 7.72% false alarm rate for those classified as Low threat,

2.68% false alarm rate for those classified as Medium threat, and 1.04% false alarm rate

for those classified as High threat. This means we should expect about 11 out of 100

observations classified as some level of threat to actually be benign; 8 out of 100

observations classified as None, Medium, or High threat to actually be Low threat; 3 out

of 100 observations classified as None, Low, or High threat to actually be Medium threat;

and 1 out of 100 observations classified as None, Low, or Medium threat to actually be

High threat. The network appears to distinguishing the High threat well.

Table 4.23: Confusion Matrix - Complete Dataset (8 Features)

Predicted

None Low Medium High

Actual

None 111 29 4 28

Low 31 132 3 6

Medium 3 7 158 4

High 2 2 1 167

Table 4.24: Performance Metrics - Complete Dataset (8 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

None .8590 .7551 .6453 .8872 .1128 .2449 .6981 .6959

Low .8866 .7765 .7674 .9228 .0772 .2235 .7719 .7719

Medium .9680 .9518 .9186 .9732 .0268 .0482 .9351 .9349

High .9375 .8146 .9709 .9896 .0104 .1854 .8894 .8859

Overall Accuracy .8256

4.4.3.4. Optimal Operating Characteristics – Complete Dataset

ROC Curves for each class and their associated ensemble threshold plots were

generated to check network performance and determine the optimal thresholds. The plots

are shown in Figure 4.12. The curve lines shown in the ROC Curve plots for the Medium

and High threat classes are close to the upper left corner indicating a high level of

87

performance from the neural network. From the graph we can see there is a threshold that

provides a TPR greater than .9 with an FPR less than .1 for both classes. The curves for

the None and Low threat classes suggest the neural network does not perform as well for

classifying those two classes as the FPR needed for a TPR of .9 is close to .3, meaning

30% of the classification would result in false alarms. Similar to the previous dataset

results, the ensemble threshold plots appear to be fairly robust, although the achieved

accuracy is not as high for the Complete dataset. There is an obvious gap between the

accuracies of the None and Low threat classes and the Medium and High classes. These

operating characteristic curves demonstrate that the generated neural network performs

better with Medium and High threat data than it does with the None and Low threat data.

Figure 4.12: ROC Curves and Ensemble Threshold Plots - Complete Dataset

 (30 nodes) - 8 Features

The AUC for the generated ROC curves was also explored. In Table 4.25 we can

see an AUC of over .90 for all four classes. The Medium and High threat class data

results show extremely high values of .9838 and .9828, respectively, indicating the neural

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curves - Complete Dataset

(30 nodes) - 8 Features

None

Low

Medium

High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold for Specified Class Returns

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Ensemble Threshold Plot - Complete Dataset

(30 nodes) - 8 Features

None

Low

Medium

High

88

network has an excellent predictive capability for those particular classes. The lower

AUC values for the None and Low threat classes show the neural network has a good but

not great predictive capability. The optimal TPR, FPR, and associated optimal threshold

and ensemble accuracy can also be seen in the table. There is a noticeable difference

between the optimal FPRs and the FPRs shown in Table 4.24. This difference indicates

that, similarly to the Threat vs. No-Threat dataset, the threshold has an effect on the false

alarm rate.

Table 4.25: Optimal Operating Characteristics - Complete Dataset (8 Features)

Class AUC Optimal

TPR

Optimal

FPR

Optimal

Threshold

Max Ensemble

Accuracy

None .9055 .6919 .0814 .4106 .8619

Low .9287 .6802 .0523 .5854 .8808

Medium .9838 .9244 .0136 .4022 .9709

High .9828 .9593 .0465 .5672 .9549

4.4.3.5. Validation Results – Complete Validation Dataset

As with the previous datasets, the optimal thresholds determined in the previous

section were used for testing the validation data. The following results consist of four

parts focusing on each of the None, Low, Medium, and High threat class data.

Table 4.26 shows the confusion matrix results using the .4106 threshold value

with a focus on the None class data. These results were then used to calculate the

performance metrics for the dataset which are shown in Table 4.27. The overall accuracy

dropped to 65.79%, a reduction by almost 15 percentage points from the training data.

Recall is a low 43% and 53% for the None and Low threat class data compared to 100%

and 75% for the Medium and High threat data. Precision presents similar results. This

89

reinforces the earlier notion that the neural network does not predict the None and Low

threat data class as well as it does for the other two classes.

The false alarm rate increases for all classes with the validation data; the highest

increase is with Low class data which rose over 10 percentage points. Coupled with the

FPR of the None class (at almost 17%), the Low class FPR increase likely has to do with

the neural network having a difficult time distinguishing between the None and Low

threat classes. The results translate to an expectation of about 17 out of 100 observations

classified as some threat level when they are actually None; 18 out of 100 observations

classified as None, Medium, or High threat when they are actually Low threat; 8 out of

100 observations classified as None, Low, or High threat when they are actually Medium

threat; and 2 out of 100 observations classified as None, Low, or Medium threat when

they are actually High threat.

Table 4.26: Confusion Matrix – Complete Validation Dataset

– No-Threat Focus (8 Features)

Predicted

None Low Medium High

Actual

None 10 4 0 5

Low 10 8 0 1

Medium 2 3 14 0

High 1 0 0 18

Table 4.27: Performance Metrics - Complete Validation Dataset

– No-Threat Focus (8 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

None .7105 .4348 .5263 .8302 .1698 .5652 .4784 .4762

Low .7632 .5333 .4211 .8197 .1803 .4667 .4739 .4706

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372

Overall Accuracy .6579

90

Table 4.28 shows the confusion matrix after using the .5854 threshold, focusing

on the data classified as Low threat. Table 4.29 contains the performance metrics

computed from the confusion matrix results. The overall accuracy dropped slightly from

the None class focused value to 63.16%. Focusing on the Low threat reduced the neural

network’s performance on all four of the classes. This reduction in performance includes

the false alarm rate with FPR staying the same or increasing for all classes.

Table 4.28: Confusion Matrix – Complete Validation Dataset

– Low Threat Focus (8 Features)

Predicted

None Low Medium High

Actual

None 10 4 0 5

Low 11 7 0 1

Medium 2 3 14 0

High 2 0 0 17

Table 4.29: Performance Metrics - Complete Validation Dataset

– Low Threat Focus (8 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

None .6842 .4000 .5263 .8235 .1765 .6000 .4588 .4545

Low .7500 .5000 .3684 .8065 .1935 .5000 .4292 .4242

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485

High .8947 .7391 .8947 .9623 .0377 .2609 .8132 .8095

Overall Accuracy .6316

Table 4.30 shows the confusion matrix after using the .4022 threshold, focusing

on the data classified as Medium threat; the associated performance metrics are presented

in Table 4.31. The results are identical to those found when focusing on the None class;

this is not surprising with the threshold values being so similar (.4106 vs. .4022). The

change in the threshold is not large enough to create a change in the classification of the

neural network’s output scores.

91

Table 4.30: Confusion Matrix – Complete Validation Dataset

- Medium Threat Focus (8 Features)

Predicted

None Low Medium High

Actual

None 10 4 0 5

Low 10 8 0 1

Medium 2 3 14 0

High 1 0 0 18

Table 4.31: Performance Metrics - Complete Validation Dataset

– Medium Threat Focus (8 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

None .7105 .4348 .5263 .8302 .1698 .5652 .4784 .4762

Low .7632 .5333 .4211 .8197 .1803 .4667 .4739 .4706

Medium .9342 1.000 .7368 .9194 .0806 0 .8584 .8485

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372

Overall Accuracy .6579

Table 4.32 shows the confusion matrix after using the .5672 threshold, with a

focus on the data classified as High threat. The neural network performance metrics were

computed from the confusion matrix results and are presented in Table 4.33. Focusing on

the High threat reduced the neural network’s performance on all four of the classes. The

reduction in performance includes the false alarm rate with FPR staying the same or

increasing for all classes.

Table 4.32: Confusion Matrix – Complete Validation Dataset

– High Threat Focus (8 Features)

Predicted

None Low Medium High

Actual

None 10 4 0 5

Low 11 7 0 1

Medium 2 3 14 0

High 1 0 0 18

92

Table 4.33: Performance Metrics - Complete Validation Dataset

– High Threat Focus (8 Features)

Class Accuracy Recall Precision Specificity FPR FNR G F1

None .6974 .4167 .5263 .8269 .1731 .5833 .4683 .4651

Low .7500 .5000 .3684 .8065 .1935 .5000 .4292 .4242

Medium .9342 1.000 .7386 .9194 .0806 0 .8584 .8485

High .9079 .7500 .9474 .9808 .0192 .2500 .8429 .8372

Overall Accuracy .6447

Varying the threshold for this dataset seems to have little effect; it either reduced

or maintained the performance results. The little variance in the optimal threshold values

indicates the neural network output scores for the Complete dataset must also have little

variance making it more difficult to distinguish between them.

4.4.3.6. Salient Feature Description – Complete Dataset

This section provides a description of the eight salient features chosen for the

Complete dataset. Table 4.34 contains the feature numbers from the original feature set

and their associated descriptions.

Table 4.34: Salient Features - Complete Dataset [6]

Original Feature Number Feature description

17 Minimum of total bytes in IP Packet, using the size of the

payload declared by the IP Packet

26 Median of control bytes in packet

86 Average segment size observed during the lifetime of the

connection calculated as the value reported in the actual

data bytes field divided by the actual data packets reported

(server to client)

90 Minimum window advertisement seen (if both sides

negotiated window scaling)(server to client)

158 Maximum of bytes in (Ethernet) packet

173 Variance of control bytes in packet

178 Third quartile of bytes in (Ethernet) packet

187 Variance of total bytes in IP packet

93

Similarly to the previously analyzed datasets, the salient features reference the

number of bytes in certain sections of the packet (Ethernet and IP), segment size feature,

and the minimum window advertisement seen.

4.5. Summary

This chapter presented the results and analysis for the experimentation done with

the three datasets developed in Chapter III. Neural networks were generated for each

dataset. The best network for each dataset was chosen based on a combination of a

heuristically chosen hidden layer structure and the overall accuracy percentage drop as

features were removed. The Threat vs. No-Threat dataset exploration resulted in a hidden

layer structure containing 10 nodes, with 13 features retained. The Threats Only dataset’s

chosen structure contained 10 nodes as well, with 6 features retained. The Complete

dataset, encompassing both the benign and threat-level distinguish data, resulted in a 30

node hidden layer and 8 features retained.

Performance metrics were calculated for each dataset’s chosen neural network.

The Threats Only dataset had the best overall classification accuracy with 97.29%,

followed by the Threat vs. No-Threat dataset with 93.58%, and the Complete dataset with

82.56%. An examination of the optimal operating characteristics using ROC curves and

ensemble threshold plots resulted in a similar ranking between the three datasets.

The results from the optimal operating characteristics were used with the

validation datasets, the 10% withheld from the original dataset, to test the general

predictive capabilities of the selected neural networks for each dataset. The edge for

overall classification accuracy went to the Threats Only dataset with the Threat vs. No-

Threat dataset following behind. The results from analysis of the Complete dataset show

94

a distinct weakness in the generated neural network’s predictive capability for

distinguishing across the four classes of data. The high classification performance shown

for the Medium and High threat classes is countered by the mediocre performance shown

for the None and Low threat classes.

 False alarm rates for each class in each dataset were also explored. The Threat vs.

No-Threat and Complete datasets presented the highest false alarm rates, especially for

the validation data. This was not surprising considering the neural networks for those

datasets performed the worst. The high false positive rates could possibly be mitigated

through use of a secondary classification or ensemble method.

 Finally, the salient features of each dataset were discussed. One feature, number

173 (variance of control bytes in packet) appeared in all three datasets. Numbers 17

(Minimum of total bytes in IP Packet, using the size of the payload declared by the IP

Packet), 86 (Average segment size observed during the lifetime of the connection

calculated as the value reported in the actual data bytes field divided by the actual data

packets reported (server to client)), 90 (Minimum window advertisement seen (if both

sides negotiated window scaling) (server to client)), and 187 (Variance of total bytes in

IP packet (server to client)) were each seen in 2 of the datasets. The rest of the features

shared segment size or a count of the number of bytes in sections of the packets in

common.

95

V. Conclusion

5.1. Chapter Overview

This chapter provides the key elements derived from this research. Next it

discusses how this research may contribute to both the operations research and cyber

defense fields. The chapter concludes with some thoughts on potential future research.

5.2. Conclusions of Research

This research determined that 21 of the original 248 features were salient to

classifying computer network threats. Common components of these salient features

included segment size (maximum and minimum), number of segments or bytes sent in

the initial window, the minimum window advertisement seen, and a count of the number

of bytes in Ethernet, IP, or control packet sections (maximum, minimum, quartiles, total,

and variance). Table 5.1 lists the 21 salient features. This list combines those features

deemed salient from all three datasets.

Considering the features by their associated category provides insight into where

the salient information resides. Almost half of the features (10 of 21) are part of the

Transport (typically TCP) section of the packet. This is slightly deceptive, however, if the

correlation between the features is examined. Features 81 and 83 share a 97.8%

correlation. This is not surprising as the features are either minimums or maximums of

the same information (segment size from client to server). It is likely only one of each of

those features is necessary to acquire the available information. A similar situation occurs

with features 80 and 90 with a correlation of 75.9%.

96

Table 5.1: Salient Feature Categorization [6]

Original Feature

Number
Feature description Category

26 Median of control bytes in packet

Transport

80 Maximum segment size requested as a TCP option in the

SYN packet opening the connection (server to client)

81 Maximum segment size observed during the life of the

connection (client to server)

83 Minimum segment size observed during the life of the

connection (client to server)

84 Minimum segment size observed during the lifetime of

the connection (server to client)

86 Average segment size observed during the lifetime of the

connection calculated as the value reported in the actual

data bytes field divided by the actual data packets

reported (server to client)

90 Minimum window advertisement seen (if both sides

negotiated window scaling)(server to client)

171 Third quartile of control bytes in packet (client to

server)

173 Variance of control bytes in packet(client to server)

193 Maximum of control bytes in packet (server to client)

96 Total number of bytes sent in the initial window (i.e., the

number of bytes seen in the initial flight of data before

receiving the first ACK packet from the other endpoint

acknowledging some data – not the 3-way handshake)

(server to client)
Initial

Window
97 Total number of segments (packets) sent in the initial

window (client to server)

98 Total number of segments (packets) sent in the initial

window (server to client)

10 Minimum of bytes in (Ethernet) packet, using the size of

the packet on the wire

Ethernet

158 Maximum of bytes in (Ethernet) packet(client to server)

178 Third quartile of bytes in (Ethernet) packet(server to

client)

179 Maximum of bytes in (Ethernet) packet (server to client)

180 Variance of bytes in Ethernet packet (server to client)

17 Minimum of total bytes in IP Packet, using the size of

the payload declared by the IP Packet
IP

186 Maximum of total bytes in IP packet (server to client)

187 Variance of total bytes in IP packet (server to client)

97

This correlation is also not surprising as they are both server-based functions to

manage traffic flow (feature 80 synchronizes the initial segment size while feature 90

manages how large each segment size thereafter is). Keeping only one of each of the

highly correlated features reduces the number of Transport features to 8, which is still

close to double the number of features contained in the other categories.

 Another high correlation within a category occurs between features 179 and 180,

in the Ethernet category, with a correlation of 94.1%. The Ethernet wrapper encompasses

the entire packet so it is understandable that the size of the packet would be a threat

indicator. Similarly to the highly correlated features in the Transport category, the

correlation value between the feature 179 and 180 suggests keeping only 1 of them would

still provide the available information.

 A between category correlation of 83.3% occurs between feature 10 in the

Ethernet category and feature 17 in the IP category. Ethernet wraps around the IP part of

the packet so it is not surprising that the number of bytes is correlated between the two.

The other category of packet information shown here is the Initial Window. The

initial window consists of the initial data sent (after the three-way handshake establishing

the communication link) from one end point to another before the first acknowledgment

is received by the sender. The initial window’s inclusion as salient points out that threat

information is likely to appear in the first round of data passing between end points.

The outcome of this research reveals that the neural networks generated in this

research seem to be best suited for distinguishing whether or not a threat exists or, if a

threat exists, what risk level the threat is. When the two concepts are combined the

network performance suffers. The salient features are contained in four general categories

98

of packet or flow information: Transport, Initial Window, Ethernet, and IP. Most of the

features fall under the Transport category and, especially when size is the metric, end up

affecting the Ethernet and IP values because of the packet structure. Segment size or

number of bytes seems to have the highest effect on threat classification. Taking feature

correlation greater than 80% into consideration, the original list of 248 features can be

pruned down to 18 features while still retaining enough information to detect threats with

high accuracy.

5.3. Research Contributions

This research makes its contributions in two ways. The first way is providing

insight into what components of network traffic should be focused on when trying to

detect and classifying potential threats. The magnitude of network traffic information is

overwhelming and most of it is likely unimportant. Knowing what areas to focus on

allows for faster, more efficient, processing and hopefully, better protection against any

potential threats.

The second contribution is the less obvious but still important demonstration of

combining the field of OR with the field of cyber operations. The developmental process

for this thesis provides testimony to the value of multidisciplinary OR personnel.

Familiarity with computer programming and computer communication networks allowed

for the data processing and, after applying the OR tools, comprehension and

interpretation of the results. Without knowledge and application of concepts in both

fields, this research could not have been done. Members of the OR field should be

encouraged to gain expertise in other fields to see what OR tools and techniques can be

applied and new information discovered.

99

5.4. Recommendations for Future Research

The research in this thesis is limited to the scope time and available resources

allowed. Other aspects of the research may be worthy considering for future research.

One future consideration could be cost of misclassification. The costs of miscalculation

were considered equally for this research (i.e., there was no difference in the penalty for

failing to classify any of the classes). It might be beneficial, considering the potential

detrimental effects of a successful Medium or High threat intrusion, to conduct an

analysis of the salient features weighting the costs of miscalculating the Medium or High

threat observations heavier than that of the benign or Low threat observations.

Another consideration for future research could be looking at online, or real-time,

versus offline classification. The research in this thesis was conducted on data that was

previously captured. Discovering a threat offline provides little opportunity to prevent

intrusion – it is reactive as opposed to proactive. Determining which features work best

for a real-time analysis could enable better computer network protection, especially if

combined with reduced resources necessary if only the first few packets of a flow are

needed.

A final future research consideration could be exploring the different training

algorithms available for training and evaluating neural network performance. The

algorithms and methods chosen for this research were chosen mainly due to time

constraints. It is possible some of the other training algorithms may train better

performing networks and produce improved results.

100

5.5. Summary

This research examined computer network traffic to determine what features of

the traffic were salient to detecting and classifying threats. The data captured from the

CDX was converted to a dataset with 248 features which was then separated into 3

smaller, specifically designed datasets. These datasets were reduced, through the use of

neural networks, to sets ranging from 6 to 13 features. The combined number of features

totaled 21, although looking at the correlation between the features revealed the possible

presence of redundancy. The generated neural networks performed at a high level when

either detecting threats or distinguishing between them, but performance suffered when

combining both concepts. Four categories of packet information emerged as being salient

to threat detection and classification: Transport, Initial Window, Ethernet, and IP.

Tactics and techniques of network attack change and adapt over time. Because the

dataset used in this research spanned seven years, the results show temporal stability in

the outcome. It is quite possible, however, this could change though as new protocols

emerge (e.g., IPv6) and new technologies offer those with malicious intent new ways of

accessing computer networks. Like the potential attackers, the protection must adapt and

examination of the salient features should be done periodically to discover any changes.

101

Appendix A: Acronym List

Acronym Definition

ACK Acknowledge

AFIT Air Force Institute of Technology

ANN Artificial Neural Network

AUC Area under the curve

BayesNet Bayesian Network

BoF Bag-of-Flows

BoW Bag-of-Words

C4.5 C4.5 Decision Tree

CBA Classification-Based Association

CDX Cyber Defense Exercise

CFS Correlation-based algorithm

CMAT Classification-Based on Multiple Association Rules

CON Consistency-based algorithm

CPAR Classification-Based on Predictive Association Rules

CSV Comma Separated Values

DBSCAN Density-based Spatial Clustering of Applications with Noise

DoD Department of Defense

EM Expectation Maximization

FBI Federal Bureau of Investigation

FCBF Fast Correlation Based Filter

FIN Final

FN False Negative

102

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FTP File Transfer Protocol

GECO Graduate Education Cyberspace Operations

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICMP Internet Message Control Protocol

IP Internet Protocol

ISO International Organization for Standardization

kNN k-Nearest Neighbor

LERAD Learning Rules for Anomaly Detection

LISSARD Laboratory for Information System Security/Assurance Research

and Development

ML Machine Learning

MLP Multilayer Perceptron

MRMR Maximum Redundancy – Maximum Relevance

NB Naïve Bayes

NBD Naïve Bayes Discretisation

NBK Naïve Bayes Kernel Density Estimation

NBTree Naïve Bayes Tree

NPS Naval Postgraduate School

NSA National Security Agency

OR Operations Research

103

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

PCA Principal Component Analysis

PDF Probability Density Functions

POP3 Post Office Protocol

QoS Quality of Service

RAM Random Access Memory

ROC Receiver Operating Characteristic

SFS Sequential Forward Selection

SMTP Simple Mail Transfer Protocol

SNR Signal-to-Noise Ratio

SVM Support Vector Machines

SYN Synchronization

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TPR True Positive Rate

UDP User Datagram Protocol

US United States

VBA Visual Basic for Applications

VPN Virtual Private Network

104

Appendix B: Original Feature List

The original 248 feature set from Moore et al. [6].

105

106

107

108

109

110

111

112

113

114

Appendix C: MATLAB Code for Neural Network Processing

The following code was generated from the MATLAB neural network tool, and then

modified by CPT James Jablonski and Maj Kristy Moore for use with this thesis research.

function [targets, netouts, removed,overalltrue ,cmconfuse, timevar] =

netsnr1outputtf_Moore1(Data,attempts,doSNR,usegpu, trainmodeinput)

%This function creates a Neural Network and performs SNR on a given data set

% The Data must include rows of exemplars and columns of features.

% This function Assumes data labels are in column 1 and parses them into the proper

form for NN training

%

%Data = Data inputs

%num attempts = Number of iterations of training (will return the net with the least

cross-entropy)

%doSNR = 0 don't perform SNR on data end on full feature set. else=DO

%USEGPU = 0 don't use GPU. 1= use gpu with PURELIN transfer function.

%train = type of training for the neural net; use 1 for trainscg, 2 for

%trainbr, 3 traingdm, 4 traingda, 5 traincgp, 6 traingcgf, 7 trainbfg, %8traincgb, 9

traingdx, 10 trainlm, 11 trainoss, or 12 trainrp (this %could change to a for loop that

cycles through these in the future)

%Based on the function input, choose which training algorithm to use

trainingmodes = {'trainscg';'trainbr';'traingdm';'traingda';'traincgp';'traincgf';...

'trainbfg';'traincgb';'traingdx'; 'trainlm';'trainoss';'traingrp'};

%trainingmodes = cellstr(trainingmodelist);

trainmodefunc = trainingmodes(trainmodeinput);

%the number of hidden nodes in the structure

numhidden = [10 20 30 40 50];

for b =1:length(numhidden) %Loop through running with a different node structure each

time

 %start the stopwatch to track how long the processing takes

 tic

 %create the save name for this run

 trainmodename = char(trainmodefunc);

 savename = strcat(inputname(1),'_',num2str(numhidden(b)), ...

'_',num2str(attempts),'_',trainmodename);

 mkdir(savename);

 currentfolder = pwd;

115

 savepath = fullfile(currentfolder,savename);

 %count the number of classes

 classvalues = unique(Data(:,1));

 numclasses = length(classvalues);

 %See if 0 is a class

 if any(classvalues)==0

 n = 0;

 else

 n = 1;

 end

 %allocate size for datakey vector

 %if there are 2 classes, say (0,1) then we only need 1 datakey %column

 if numclasses == 2 && n == 0

 datakeys = zeros(length(Data),1);

 else

 datakeys = zeros(length(Data),numclasses);

 end

 for i=1:length(Data(:,1)) %go through the first column

 %check for 0,1 class which can be considered 1 class

 if numclasses == 2 && n == 0

 if Data(i,1) ~= 0

 datakeys(i,1) = 1; %for whatever the other class value is

 end

 else

 for j=1:numclasses %cycle through the class values

 if Data(i,1)==classvalues(j)

 if n == 0

 datakeys(i,j+1)=1; %need a column for the zero values

 else

 datakeys(i,j)=1; %need columns only for class values

 end

 end

 end

 end

 end

 %chop off first column (class)

 data = Data(:,2:size(Data,2));

 %standardize my data

 meanV = repmat(mean(data),length(data),1); %feature means vector

116

 stdev = repmat(std(data),length(data),1); %prepare vector of %feature stdev

 %sub mean to center

 data = data - meanV;

 %divide by std's

 data = data./stdev;

 %add noise vector

 data = [rand(length(data),1),data];

 %set up the neural nets input and output

 input = data;

 output = datakeys;

 % "remember" removed feature (for SNR)- bookkeeping

 featuresremaining = 1:size(data,2);

 snrs = zeros(size(data,2),size(data,2)); %a place to store all %SNR's

 %Loop through creating several nets, then pick the best one

 %then select fewer features using SNR

 for z = 1:(size(data,2)-1); %iterate through all features until 2 %are left (includes

noise)

 nets = {}; %create the cell array to store the nets

 perfs = []; %create the array to store the performance values

 %if not doing the SNR feature removal then this loop only happens once

 if doSNR == 0

 z = size(data,2)-1;

 end

 %neural network requires them to be transposed

 inputs = input';

 targets = output';

 %set up the network

 net = patternnet(numhidden(b));

 %Loop through all desired attempts at creating nets

 for k = 1:attempts

 %Initialize network weights and biases after 1st run (initialized on net creation)

 if k > 1

117

 net = init(net);

 end

 % Pre/Post functions

 net.inputs{1}.processFcns = {'mapminmax','removeconstantrows'};

%,'removeconstantrows'

 net.outputs{1}.processFcns = {'removeconstantrows'};

%'removeconstantrows'

 %Specifiy 'logsig' or 'purelin' the transfer function at each layer

 if usegpu==1

 net.layers{1}.transferFcn = 'purelin';

 net.layers{2}.transferFcn = 'purelin';

 else

 net.layers{1}.transferFcn = 'logsig';

 net.layers{2}.transferFcn = 'logsig';

 end

 % Data manipulations

 net.divideFcn = 'dividerand'; %divide up the data randomly

 net.divideMode = 'sample'; % Divide by sample

 net.divideParam.trainRatio = 70/100; %70% for training

 net.divideParam.valRatio = 15/100; %15% for validation

 net.divideParam.testRatio = 15/100; %15% for testing

 % help nntrain

 net.trainFcn = trainmodename; % Selected training mode from above

 net.trainParam.epochs = 500; % Specify training epochs

 net.trainParam.time = 300; % Specify max training time

 net.trainParam.goal = .005; % Specify training error goal def .005

 net.trainParam.showWindow = 1; % 0 = Don't show the training GUI

 net.trainParam.max_fail = 10; %number of validation failures

 % Choose a Performance Function

 % For a list of all performance functions type: help nnperformance

 net.performFcn = 'crossentropy'; % Cross-Entropy

 % train

 if usegpu==1

 [net,tr] = train(net,inputs,targets,'useGPU','yes');

 else

 [net,tr] = train(net,inputs,targets);

 end

 %run it

118

 outputs = net(inputs);

 %get performance data from the network created

 errors = gsubtract(targets,outputs);

 performance = perform(net,targets,outputs);

 perfs(k,1)=performance; %record crossentropys

 nets{k,1}=net;

 end

 [v,I]=min(perfs); %find index of best net by crossentropy

 perfsout(z) = v;

 outputs = nets{I,1}(inputs); % get outputs from best net

 NetOutputs{z} = outputs; %track the best outputs

 netout=nets{I,1};

 netouts{z}=netout;

 %Get the confusion matrix information and store it

 %Am not currently using the ind - can change later if needed

 [c,cm,ind,per] = confusion(targets, outputs);

 perfconfuse{z} = per;

 cmconfuse{z} = cm;

 %Overall classification accuracy

 overalltrue(z)=1-c

 %Get the ROC Curve data with posclass for each class level

 [tpr, fpr, thresholds] = roc(targets, outputs);

 tprout{z} = tpr;

 fprout{z} = fpr;

 thresholdsout{z} = thresholds;

 rocInfo{z} = {tprout{z}, fprout{z}, thresholdsout{z}};

 %convert the iteration number to a string

 num = num2str(z);

 %plot the ROC curves

 figure(z), plotroc(targets,outputs);

 %create the save name for the ROC curves

 ROC_curves_savename = strcat('ROCCurve_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,ROC_curves_savename));

 close(gcf)

119

 %plot the performance

 figure(z), plotperform(tr);

 %create the save name for the performance curves

 perform_curves_savename = strcat('PerformCurve_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,perform_curves_savename));

 close(gcf)

 %plot the training state

 figure(z), plottrainstate(tr);

 %create the save name for the train state plot

 trainstate_savename = strcat('TrainState_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,trainstate_savename));

 close(gcf)

 %plot the error history

 figure(z), ploterrhist(errors,'bins',20);

 %create the save name for the error history

 ErrHistory_savename = strcat('ErrHistory_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,ErrHistory_savename));

 close(gcf)

 %plot the final confusion matrix

 figure(z), plotconfusion(targets,outputs);

 %create the save name for the figure

 confusion_plot_savename = strcat('ConfusionPlot_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,confusion_plot_savename));

 close(gcf)

 if doSNR == 1

 %do the SNR check

 snr = [];

 wts = net.IW{1,1}; %create the weights for SNR

 dim = size(wts);

 noise = wts(:,1)'*wts(:,1);

 for j = 2:dim(2) %calculate the SNR values

 snr(j)=10*log10((wts(:,j)'*wts(:,j))/noise);

 end

 %create the array for bookkeeping

 row = zeros(1,size(snrs,2));

120

 %adjust the array of features remaining

 for d = 1:length(snr)

 index = featuresremaining(d);

 row(1,index) = row(1,index)+snr(d);

 end

 snrs(z,:) = row;

 %plot the features remaining vs. their snrs

 figure(z), bar(featuresremaining,snr);

 bar_plot_savename = strcat('SNR_BarPlot_',savename,'(',num,').fig');

 %save the figure then close it

 savefig(fullfile(savepath,bar_plot_savename));

 close(gcf)

 snr(1)=100; %make sure I don't remove noise

 %Remove Least significant Features in Order of SNR loop %through trials again

 [val, I]=min(snr); %index of smallest SNR = I

 %remove index of smallest feature from featuresremaining

 removed(z)=featuresremaining(I);

 %check to see if end of array

 if I==size(featuresremaining,2)

 featuresremaining=featuresremaining(:,1:I-1);

 else

 featuresremaining=[featuresremaining(:,1:I-

1),featuresremaining(:,I+1:dim(2))];

 end

 %remove smallest feature; check to see if end of array

 if I==dim(2)

 input=input(:,1:I-1);

 else

 input=[input(:,1:I-1),input(:,I+1:dim(2))];

 end

 end

 end

 %stop the timer

 timevar = toc;

 %save the workspace and its associated variables

121

 saveworkspace = strcat(savename, '.mat');

 save(saveworkspace)

end

end

122

References

[1] H. Katzan Jr., "Essentials of Cybersecurity," in Southeastern INFORMS Conference,

Myrtle Beach, 2012.

[2] October 2013. [Online]. Available: http://www.militarycybersecurity.com/agenda-

military-cyber-security-conference/. [Accessed 10 January 2014].

[3] "The Economic Impact of Cybercrime and Cyber Espionage," 2013.

[4] "Department of Homeland Security Strategic Plan Fiscal Years 2012-2016," 2012.

[5] S. Ackerman, "Cyber-Attacks Eclipsing Terrorism as Gravest Domestic Threat," The

Guardian, November 2013.

[6] A. W. Moore, D. Zuev and M. L. Crogran, "Discrimators for use in flow-based

classification," Department of Computer Science, Queen Mary University of London,

London, 2005.

[7] C. Janssen, 2013. [Online]. Available: http://www.techopedia.com/. [Accessed 05

November 2013].

[8] M. Elizabeth, October 2013. [Online]. Available: http://www.wisegeek.com/what-is-a-

computer-audit.htm. [Accessed 5 November 2013].

[9] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 6 ed.,

Pearson Education, 2012.

[10] C. M. Kozierok, September 2005. [Online]. Available:

http://tech911.info/html/body_it_training_help.html. [Accessed 05 November 2013].

[11] "Oxford Dictionary," October 2013. [Online]. Available:

http://oxforddictionaries.com/us/definition/american_english/server. [Accessed 05

November 2013].

[12] D. Chandrasekaran, August 2002. [Online]. Available:

http://www.boloji.com/index.cfm?md=Content&sd=Articles&ArticleID=497.

[Accessed 05 November 2013].

[13] "ITT Training," October 2013. [Online]. Available:

http://tech911.info/html/body_it_training_help.html. [Accessed 5 November 2013].

123

[14] T. T. Nguyen and G. Armitage, "A Survey of Techniques for Internet Traffic

Classification using Machine Learning," IEEE Communications Surveys and Tutorials,

vol. 10, no. 4, pp. 56 - 76, 2008.

[15] A. Dainotti, A. Pescape and K. C. Claffy, "Issues and Future Directions in Traffic

Classification," IEEE Network, vol. 26, no. 1, pp. 35-40, January/February 2012.

[16] A. W. Moore and K. Papagiannaki, "Toward the Accurate Identification of Network

Applications," Proeedings of the 6th Passive Active Measurement (PAM) Workshop,

vol. 3431, pp. 41-54, March 2005.

[17] "IANA Port Numbers," January 2014. [Online]. Available:

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml. [Accessed 15 January 2014].

[18] M. Roughan, S. Sen, O. Spatscheck and N. Duffield, "Class-of-Service Mapping for

QoS: A statistical signature-based approach to IP traffic classification," in Proceedings

of ACM SIGCOMM Internet Measurement Workshop, Sicily, 2004.

[19] P. Haffner, S. Sen, O. Spatscheck and D. Wang, "ACAS: Automated Construction of

Application Signatures," in Proceedings of the 2005 ACM SIGCOMM Workshop on

Mining network data, Philadelphia, 2005.

[20] A. K. Jain and J. Mao, "Artificial Neural Networks: A Tutorial," IEEE Computer, vol.

29, no. 3, pp. 31-44, March 1996.

[21] A. McGregor, M. Hall, P. Lorier and J. Brunskill, "Flow Clustering Using Machine

Learning Techniques," in Proceedings of the 5th Passive and Active Measurement

Workshop (PAM 2004), Berlin Heidelberg, 2004.

[22] A. W. Moore and D. Zuev, "Internet traffic classification using bayesian analysis

techniques," ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1, pp.

50-60, 2005.

[23] S. Zander, T. Nguyen and G. Armitage, "Automated traffic classification and

application identification using maching learning," in 30th Annual IEEE Conference on

Local Computer Networks, Sydbey, 2005.

[24] J. Erman, M. Arlitt and A. Mahanti, "Traffic classification using clustering

algorithms," in Proceedings of the 2006 SIGCOMM workshop on Mining network data,

ACM, 2006.

124

[25] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule and K. Salamatian, "Traffic

classification on the fly," ACM SIGCOMM Computer Communication Review, vol. 36,

no. 2, pp. 23 - 26, April 2006.

[26] "UC Davis Statwiki," January 2014. [Online]. Available:

http://statwiki.ucdavis.edu/Nonparametric_Inference/Kernel_Density_Estimation.

[Accessed 15 January 2014].

[27] N. Williams, S. Zander and G. Armitage, "A Preliminary Performance Comparison of

Five Machine Learning Algorithms for Practical IP Traffic Flow Classification," ACM

SIGCOMM Computer Communication Review, vol. 36, no. 5, pp. 5 - 16, October 2006.

[28] J. Zhang, C. Chen, W. Zhou and Y. Xiang, "Internet Traffic Classification by

Aggregating Correlated Naive Bayes Predictions," IEEE Transactions on Information

Forensics and Security, vol. 8, no. 1, pp. 5 - 15, January 2013.

[29] J. Erman, A. Mahanti, M. Arlitt, I. Cohen and C. Williamson, "Offline/Realtime

Classification Using Semi-Supervised Learning," Performance Evaluation, vol. 64, no.

9 , pp. 1194 - 1213, October 2007.

[30] S. Huang, K. Chen, C. Liu, A. Liang and H. Guan, "A Statistical-Feature-Based

Approach to Internet Traffic Classification Using Machine Learning," in International

Conference on Ultra Modern Telecommunications Workshops (ICUMT '09), 2009.

[31] T. Auld, A. W. Moore and S. F. Gull, "Bayesian Neural Networks for Internet

Classification," IEEE TRANSACTIONS ON NEURAL NETWORKS, vol. 18, no. 1, pp.

223-239, January 2007.

[32] W. Zhou, L. Dong, L. Bic, M. Zhou and L. Chen, "Internet Classification Using Feed-

Forward Neural Network," in 2011 International Conference on Computational

Problem-Solving (ICCP), Chengdu, 2011.

[33] W. Li and A. W. Moore, "A machine learning approach for efficient traffic

classification," in 15th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, 2007. MASCOTS '07,

Istanbul, 2007.

[34] T. S. Tabatabaei, F. Karray and M. Kamel, "Early Internet Traffic Recognition Based

on Machine Learning Methods," in IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE), Montreal, 2012.

[35] Y. Zhang, Y. Zhou and K. Chen, "Internet Traffic Classification based on Bag-of-

Words Model," in 2012 IEEE Globecom Workshops (GC Wkshps), Anaheim, 2012.

125

[36] M. Crotti, M. Dusi, F. Gringoli and L. Salgarelli, "Traffic Classification through

Simple Statistical Fingerprinting," ACM SIGCOMM Computer Communication

Review, vol. 37, no. 1, pp. 5 - 16, 2007.

[37] L. Li and K. Kianmehr, "Internet Traffic Classification based on Associative

Classifiers," in 2012 IEEE International Conference on Cyber Technology in

Automation, Control and Intelligent Systems (CYBER), Bangkok, 2012.

[38] M. Panda and M. R. Patra, "Network Intrusion Detection Using Naive Bayes,"

International Journal of Computer Science and Network Security, vol. 7, no. 12, pp.

258 - 263, December 2007.

[39] L. Portnoy, E. Eskin and S. Stolfo, "Intrusion Detection with Unlabeled Data Using

Clustering," in Proceedings of ACM CSS Workshop on Data Mining Applied to

Security (DMSA-2001), 2001.

[40] S. Zanero and S. M. Savaresi, "Unsupervised Learning Techniques for an Intrusion

Detection System," in Proceedings of the 2004 ACM Symposium on Applied

Computing, New York, 2004.

[41] Z. S. Pan, S. C. Chen, G. B. Hu and D. Q. Zhang, "Hybrid Neural Network and C4.5

for Misuse Detection," in Proceedings of the 2nd International Conference on Machine

Learning and Cybernetics, Xi'an, 2003.

[42] M. Moradi and M. Zulkernine, "A Neural Network Based System for Intrusion

Detection and Classification of Attacks," in Proceedings of 2004 IEEE International

Conference on Advances in Intelligent Systems Theory and Applications, Luxembourg

Kirchberg, 2004.

[43] X. Xu and X. Wang, "An Adaptive Network Intrusion Detection Method Based on

PCA and Support Vector Machines," in Advanced Data Mining and Applications, X.

Li, S. Wang and Z. Y. Dong, Eds., Wuhan, Springer Berlin Heidelberg, 2005, pp. 696 -

703.

[44] W. Hu, W. Hu and S. Maybank, "AdaBoost-Based Algorithm for Network Intrusion

Detection," IEEE Transactions on Systems, Man, and Cybernetics -- Part B,

Cybernetics, vol. 38, no. 2, pp. 577 - 583, April 2008.

[45] O. Linda, T. Vollmer and M. Mainc, "Neural Network Based Intrusion Detection

System for Critical Infrastructures," in IEEE International Joint Conference on Neural

Networks, Atlanta, 2009.

126

[46] M. V. Mahoney and P. K. Chan, "Learning Rules for Anomaly Detection of Hostile

Network Traffic," in Third IEEE International Conference on Data Mining (ICDM),

Melbourne, 2003.

[47] G. Stein, B. Chen, A. S. Wu and K. A. Hua, "Decision Tree Classifier for Network

Intrusion Detection with GA-Based Feature Selection," in Proceedings of the 43rd

Southeast Regional Conference (ACM) - Volume 2, Kennesaw, 2005.

[48] O. Linda, M. Manic, T. Vollmer and J. Wright, "Fuzzy Logic Based Anomaly

Detection for Embedded Network Security Cyber Sensor," in IEEE Symposium on

Computational Intelligence in Cyber Security (CICS), Paris, 2011.

[49] M. Faloutsos, "Detecting Malware with Graph-based Methods: Traffic Classification,

Botnets, and Facebook Scams," in Proceedings of the 22nd International Conference

on World Wide Web Companion, Rio de Janeiro, 2013.

[50] R. Setiono and H. Liu, "Neural-Network Feature Selector," IEEE Transactions on

Neural Networks, vol. 8, no. 3, pp. 654 - 662, May 1997.

[51] L. M. Belue and K. W. Bauer Jr., "Determining Input Features for Multilayer

Perceptrons," Neurocomputing, vol. 7, no. 2, pp. 111 - 121, March 1995.

[52] J. M. Steppe and K. W. Bauer Jr., "Improved Feature Screening in Feedforward Neural

Networks," Neurocomputing, vol. 13, no. 1, pp. 47 - 58, September 1996.

[53] A. Verikas and M. Bacauskiene, "Feature Selection with Neural Networks," Pattern

Recognition Letters, vol. 23, no. 11, pp. 1323 - 1335, September 2002.

[54] K. W. Bauer Jr., S. G. Alsing and K. A. Greene, "Feature Screening Using Signal-to-

Noise Ratios," Neurocomputing, vol. 31, no. 1-4, pp. 29-44, March 2000.

[55] B. E. Mullins, T. H. Lacey, R. F. Mills, J. M. Trechter and S. D. Bass, "How the Cyber

Defense Exercise Shaped an Information-Assurance Curriculum," IEEE Security &

Privacy, vol. 5, no. 5, pp. 40-49, October 2007.

[56] "TCPDump," [Online]. Available: http://www.tcpdump.org. [Accessed 15 November

2013].

[57] "Wireshark," 2013. [Online]. Available: http://www.wireshark.org. [Accessed 30

December 2013].

127

[58] "BRASIL Downloads," 2009. [Online]. Available:

http://www.cl.cam.ac.uk/research/srg/netos/brasil/downloads/. [Accessed 15 November

2013].

[59] J. W. Ji, "Holistic Network Defense: Fusing Host and Network Features for Attack

Classification," Wright-Patterson AFB, OH, 2001.

[60] D. Burks, 2013. [Online]. Available: http://blog.securityonion.net/. [Accessed 15

November 2013].

[61] A. Turner, 2013. [Online]. Available: https://github.com/synfinatic/tcpreplay.

[Accessed 15 November 2013].

[62] B. Visscher, 2007. [Online]. Available: http://sguil.sourceforge.net/. [Accessed 15

November 2013].

[63] "Snort," 2013. [Online]. Available: http://www.snort.org/. [Accessed 04 January 2014].

[64] "WEKA," 2013. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/index.html.

[Accessed 15 November 2013].

[65] "Microsoft Support," September 2011. [Online]. Available:

http://support.microsoft.com/kb/828795. [Accessed 15 January 2014].

[66] K. W. Bauer, "OPER 685 Multivariate Analysis - Class Notes," Wright-Patterson AFB,

2013.

[67] V. Cheung and K. Cannons, "An Introduction to Neural Networks," Winnpeg, 2002.

[68] D. E. Rumelhart, G. E. Hintont and R. J. Williams, "Learning Representations by

Back-propagating Errors," Nature, vol. 323, no. 9, pp. 533-536, October 1986.

[69] J. Steppe and K. Bauer Jr., "Feature Saliency Measures," Computers & Mathematics

with Applications, vol. 33, no. 8, pp. 109 - 126, April 1997.

[70] G. L. Tarr, "Multi-layered Feedforward Neural Networks for Image Segmentation,"

Wright-Patterson AFB, OH, 1991.

[71] "Mathworks," 2013. [Online]. Available: http://www.mathworks.com/products/neural-

network/. [Accessed 30 December 2013].

[72] V. Labatut and H. Cherifi, "Accuracy Measures for the Comparison of Classifiers," in

arXiv: 1207.3790, Amman, 2012.

128

[73] D. M. W. Powers, "Evaluation: From Precision, Recall and F-Measure to ROC,

Informedness, Markedness & Correlation," Journal of Machine Learning

Technologies, vol. 2, no. 1, pp. 37-63, February 2011.

[74] M. Barjaktarovic, May 2013. [Online]. Available:

http://www.cs.odu.edu/~mukka/cs795sum13dm/Lecturenotes/Day4/recallprecision.pdf.

[Accessed 04 January 2013].

[75] A. Slaby, "ROC Analysis with Matlab," in 29th International Conference on

Information Technology Interfaces, Cavtat, Croatia, 2007.

[76] J. D. McCaffrey, November 2013. [Online]. Available:

http://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-

error-instead-of-classification-error-or-mean-squared-error-for-neural-network-

classifier-training/. [Accessed 30 December 2013].

129

Vita

Major Kristy L. Moore is currently a graduate student pursuing a degree in

Operations Research at the Air Force Institute of Technology. She graduated from

Dominican University of California with a Bachelor of Arts Degree in Mathematics in

2001. She received her commission from Officer Training School at Maxwell Air Force

Base, Alabama. Maj Moore also has a Master’s of Computer Information Systems from

the University of Phoenix and is CompTIA A+ certified.

Her previous assignments include Deputy Program Manager, Air Force Research

Laboratory Human Effectiveness Bioacoustics Branch; Directed Energy Weapons

Modeler, National Air and Space Intelligence Center; Chief of Analysis, F-15C Division,

59
th

 Test and Evaluation Squadron; and Project Manager, National Assessment Group.

She has also been a member of the Department of Defense Space Countermeasures

Hands-On Program and served in direct support of OPERATION NOBLE EAGLE. After

graduation Major Moore will be assigned to Detachment 1, 609
th

 Air Operations Center,

Shaw Air Force Base, South Carolina.

130

SF298

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington

Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

27-03-2014
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From — To)

Sep 2012 – Mar 2014

4. TITLE AND SUBTITLE

Salient feature selection using feed-forward neural networks and

signal-to-noise ratios with a focus toward network threat detection

and risk level identification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

 Moore, Kristy L, Major, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/ENY)

2950 Hobson Way

WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER

AFIT-ENS-14-M-22

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RYA

POC: Lt Col David Ryer, David.Ryer@us.af.mil

2241 Avionics Circle Area B, Building 620

WPAFB, OH 45433-7321

(937)528-8389

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject
to copyright protection in the United States.

14. ABSTRACT

Most communication in the modern era takes place over some type of cyber network, to include telecommunications,

banking, public utilities, and health systems. Information gained from illegitimate network access can be used to create

catastrophic effects at the individual, corporate, national, and even international levels, making cyber security a top

priority. Cyber networks frequently encounter amounts of network traffic too large to process real-time threat detection

efficiently. Reducing the amount of information necessary for a network monitor to determine the presence of a threat

would likely aide in keeping networks more secure. This thesis uses network traffic data captured during the

Department of Defense Cyber Defense Exercise to determine which features of network traffic are salient to detecting

and classifying threats. After generating a set of 248 features from the capture data, feed-forward artificial neural

networks were generated and signal-to-noise ratios were used to prune the feature set to 18 features while still

achieving an accuracy ranging from 83% - 94%. The salient features primarily come from the transport layer section of

the network traffic data and involve the client/server connection parameters, size of the initial data sent, and number of

segments and/or bytes sent in the flow.
15. SUBJECT TERMS

Network Threat Detection; Feature Selection, Neural Networks, Flow Feature Generation
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

 146

19a. NAME OF RESPONSIBLE PERSON

Dr. Kenneth W. Bauer, Jr.

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)

(937)255-3636, ext 4328

 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	Salient Feature Selection Using Feed-Forward Neural Networks and Signal-to-Noise Ratios with a Focus Toward Network Threat Detection and Risk Level identification
	Kristy L. Moore
	Recommended Citation

	tmp.1513088586.pdf._I1NO

