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AFIT-ENS-14-M-08
Abstract

War games are routinely analyzed by the Department of Defense to study the players

decision making process. This research develops a multicriteria model that enhances a

war game players decision-making capability. The war game consists of a hexagonal-grid

map of varying terrain that will be represent as a two-dimensional directed network. The

network is obstructed by multiple enemy threats that expose a unit traversing the network

to possible attack. The player is faced with the decision of choosing a route to a target node

that balances the objectives of following the shortest path and maximizing the probability of

success. A weighted arc cost matrix is supplied to Dijkstras shortest path algorithm to find

an optimal route. Critical values of the ratio of the objective function weights determine

where the optimal path changes. These values are determined on a test scenario for the war

game The Drive On Metz.
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APPLICATION OF A MULTI-OBJECTIVE NETWORK

MODEL TO A COMBAT SIMULATION GAME:

“THE DRIVE ON METZ” CASE STUDY

I. Introduction

1.1 Background

Many real-world systems can be modeled as a network. The nodes of a network and

the arcs between them can represent a wide range of real or conceptual items, such as cities,

roads, landmarks, transportation hubs, communication lines, or even human relationships.

These connections can have a variety of measurable attributes associated with them, such

as distance, cost, weight, or time. One may often encounter the problem of finding a path

through this network that is measured or constrained by one or more of the associated

attributes of interest. Additionally, there may be obstacles or threats located throughout

the network. If an obstacle lies along the desired path, then it may be preferred to reroute

through the network to avoid the obstacle. However, this may require the new route to

deviate from the preferred path to avoid the obstacle. Furthermore, if there are multiple

obstacles, each may pose the entity traveling through the network to a different level of

risk. Therefore, the optimal route is one that balances the trade-off between avoiding the

high-risk obstacles and following the preferred path.

1.2 War Gaming

In a war game, sometimes referred to as a combat simulation, the battle area is

commonly divided into some sort of grid [17]. This structure lends itself to easy modeling

as a network, where each grid area can be represented as a node in the network. As a player
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plans a strategy and plays the game, many successive decisions are required as to which

way is best to maneuver their units. At any time, several courses of action (COAs) may be

available for the player to choose from. This decision-making aspect of wargaming is one

of its key features.

Perla [15] defines wargaming as “a warfare model or simulation that does not involve

the operations of actual forces, and in which the flow of events shapes and is shaped by

decisions made by a human player or players.” He further states that war gaming is more

focused on the “interplay of human decisions and game events,” rather than just who wins

or loses. Ducharme [7] describes the role of wargaming within the armed services as

addressing “future concepts and capabilities in the context of Title 10 responsibilities to

organize, train, and equip its forces to carry out its roles and functions as a component of

the national instrument of power.” The Department of Defense (DoD) routinely studies

war games for analytic or training purposes. As opposed to playing for recreation, the DoD

desires to gain some useful information or to train their personnel. A war game provides

the opportunity to place a player in a decision-making situation and observe their response

to a countless number of “what if” scenarios. Perla [15] states that, when wargaming serves

the purpose of training, the analysis will focus on “an instructor’s observation and critique

of the student’s play.” However, when the purpose of a war game is research, the analysis

focuses on “understanding why decisions were made.” He makes a further distinction

between wargaming and analysis by saying that wargaming “is a tool for exploring the

effects of human interpretation of information rather than those of the actual information

(or data) itself. Wargames focus on the decisions players make, how and why they make

them, and what effects they have on subsequent events and decisions.”

It is within this decision analysis context that the Air Force Simulation and Analysis

Facility (SIMAF) uses the war game The Drive On Metz for combat simulation studies. One

of their objectives is to conduct studies “with a scientific emphasis on extracting analytical

2



knowledge from the players” [10]. They have chosen to use a war game approach “to

follow the play of the game eliciting decisions, decision criteria, knowledge requirements,

thinking patterns, rationale, etc., from all the participants.” When a decision maker, such

as a player in a war game, is faced with a decision situation wherein they are faced with

multiple objectives to consider, it would be beneficial to have a tool that aids in making a

balanced, well-informed decision.

1.3 The Drive On Metz

The Drive On Metz is a simple war game that was developed to demonstrate how

a war game is designed and played [8]. It attempts to recreate General George Patton’s

advance toward the French city of Metz during World War II. With respect to the

historical circumstances, the Germans were retreating from the advancing Americans.

The Americans sought to cross the Moselle river and capture the town of Metz, while

the Germans sought to mount an effective defense that did not expend too much of their

resources. The Drive On Metz simulates this scenario as a two-player game with one side

playing the role of the advancing American forces and the other the defending German

forces.

The game is played on a map that represents the vicinity of the city of Metz,

covering an area of approximately 1,500 square kilometers. Significant terrain features are

interspersed across the map, including cities, towns, fortifications, roads, rivers, clearings,

forests, and rough terrain. A hexagonal grid is superimposed on the map with each hexagon

covering an area of approximately 4 kilometers across. The hexagonal grid serves the

purpose of regulating the location and movement of a player’s forces throughout the game.

Figure 1.1 shows a portion of the game map used in The Drive On Metz.

The forces for each player consist of a set of markers representing individual units

of mostly regimental size. At any point during the game, each hex may be occupied by

3



Figure 1.1: A portion of The Drive On Metz game map

only one unit. Units traverse the map by moving from its current hex to an adjacent hex.

Each unit is assigned a fixed movement allowance which is used to determine the maximum

possible movement of that unit on each turn. Each terrain type requires a different number

of movement points to be able to move into that hex. Thus, a unit must have a movement

allowance at least as great as the number of movement points required to move into a hex

of a particular terrain type. Additionally, all hexes that surround a unit are referred to as

that unit’s zone of control. If a unit enters the zone of control of an enemy unit it must cease

its movement.

In addition to being assigned a movement allowance, each unit is also assigned a

number representing its combat strength. The combat strength is used as a measure to

compare the relative strengths of different units and is a key factor in determining the

outcome of battle engagements and a player’s strategy. The combat strength and movement

allowance are depicted on each unit marker as indicated on Figure 1.2.

The game is played over a series of seven turns with each turn consisting of a

movement phase and a combat phase for each player. The American player starts the game

and each succeeding turn, executing both the movement and combat phases before the

4



Figure 1.2: Unit marker

German player begins his or her turn. During the movement phase each player may move

as many units as they wish, up to the movement allowance of each unit. Once a player has

completed all desired movements, they may then engage the other player in combat with

as many units that are within the zone of control of the opposing player’s units.

The the outcome of a combat engagement is determined by the relative combat

strengths of the battling units and the roll of a single die. The combat strength of the

defending unit is subtracted from the combat strength of the attacking unit to compute

a combat strength differential. A die is then cast and the outcome of the engagement is

looked up on the Combat Results Table (CRT). This process is sometimes referred to as

the battle calculus. The CRT consists of six rows and eight columns in which each row

represents the number determined by the die roll and each column represents a combat

strength differential. Each entry on the table then indicates the outcome of the engagement

by specifying the number of hexes that either the attacker or defender must retreat. Table

1.1 shows the CRT for The Drive On Metz.

Additionally, the type of terrain occupied by the defending unit may impact the

outcome of a combat engagement. For differing types of terrain, the column referenced

5



Table 1.1: Combat Results Table

Combat Differential

Die Roll -1 0 +1 +2,+3 +4,+5 +6,+7 +8,+9 +10+

1 — DR DR DR DR2 DR2 DR2 DR2

2 — — DR DR DR DR2 DR2 DR2

3 AR — — DR DR DR DR2 DR2

4 AR AR AR — DR DR DR DR2

5 AR AR AR AR — DR DR DR

6 AR AR AR AR AR — DR DR

“AR” = Attacker Retreats, “DR” = Defender Retreats

on the CRT may be shifted to the left if the terrain occupied by the defender would offer a

defensive advantage. The terrain effects on movement and combat are shown Table 1.2.

Table 1.2: Terrain Effects

Terrain Type Movement Effect Combat Effect

Road 1 Movement Point No Shift

Clear 2 Movement Points No Shift

Rough 3 Movement Points Shift Left 1 Column

Forest 4 Movement Points Shift Left 2 Columns

City/Town Based on terrain Shift Left 2 Columns

Fortified Based on terrain Shift Left 3 Columns

Throughout the game each player may be awarded victory points by achieving certain

objectives. To win the game, a player must have accumulated more victory points than the

6



Table 1.3: Awarding of Victory Points

American Side

5 Points Per unit east of the Moselle for three complete turns

5 Points Per unit to exit the east side of the map before the end of the game

5 Points If an American unit is last to enter or pass through Thionville (hex 0701)

20 Points If an American unit is the last to enter or pass through Metz (hex 0807)

German Side

10 Points Per unit to exit the west edge of the map before the end of the game

7 Points Per specified unit* to exit the east or south edge of the map on Turn 1

6 Points Per specified unit* to exit the east or south edge of the map on Turn 2

5 Points Per specified unit* to exit the east or south edge of the map on Turn 3

4 Points Per specified unit* to exit the east or south edge of the map on Turn 4

3 Points Per specified unit* to exit the east or south edge of the map on Turn 5

2 Points Per specified unit* to exit the east or south edge of the map on Turn 6

1 Points Per specified unit* to exit the east or south edge of the map on Turn 7

*Applies to the following units: 8 PG, 29 PG, 37 SS, and 38 SS

opponent at the end of the game. The awarding of victory points for each player is shown

in Table 1.3. The location of a player’s units at specified points in the game determines the

awarding of victory points, rather than the outcome of combat engagements. Therefore,

battling the enemy is not a direct factor in the outcome of the game, but merely an obstacle

to overcome or avoid. The ability to position and maneuver a player’s units during play is

the crucial factor in determining who ultimately wins the game.

7



1.4 Problem Statement

The hexagonal structure of The Drive On Metz game map lends itself to easy modeling

as a connected network. While a player may be able to visually identify a good route on

a small map similar to The Drive On Metz, it is more difficult for larger or more complex

networks. Furthermore, the need to balance competing objectives and the existence of

enemy threats that may impede the shortest path make determining an acceptable COA

more difficult. Therefore, a tool that considers the objectives and player’s preferences in

finding an optimal path would greatly enhance the decision-making ability of the player

and give them confidence that the chosen COA meets those objectives.

1.4.1 Research Objective.

This research develops a model that can be used as a decision tool for a player in the

war game The Drive On Metz. The objective of this research is to develop a preference

based, multicriteria model that determines an optimal path between any two nodes on the

directed network generated from The Drive On Metz game map.

1.4.2 Scope.

This model considers the objectives of finding the shortest path and maximizing the

probability of successfully completing the path. This research provides the American game

player with a tool that improves the ability to select an optimal route for a given static

scenario.

1.4.3 Assumptions.

Several assumptions are made to simplify the development of the model:

1. A single American unit is advancing and any number of German units are defending.

2. The model is static.

(a) The sequence of turns is not modeled.

(b) The threat locations are static.

8



(c) The battle calculus (attacks and retreats) is not modeled.

3. Known threat locations (i.e. perfect knowledge of German unit placement).

4. Only one-on-one engagements are considered (i.e. no coordinated attacks).

Assumption 1 is necessary to simplify the coding and user interface that is created

for the model. Only a one-directional model is needed to demonstrate the effectiveness

and validity of the methodology. Assumption 2 is made in keeping within the scope

of this research to generate an optimal path for a static point in time. However, any

time the situation changes, the model can be run again to determine an updated optimal

path. Assumption 3 is a consequence of the standard game rules, whereby both players

know the exact location of the other player’s units at all times. Finally, Assumption 3 is

made to reduce the complexity of the model. This is also a factor in making Assumption

1 because the weaker German units essential require coordinated attacks to defeat the

stronger American units.

1.5 Overview of Remaining Chapters

The following is an overview of the remaining chapters. Chapter 2 reviews the

literature relevant to developing a multicriteria shortest path model. The methodology

for the model is presented in Chapter 3. The results of the model and a demonstration

of its functionality for a scenario within The Drive On Metz is included in Chapter 4.

Finally, Chapter 5 will discuss the conclusions derived from this research and propose

some possible areas of future research.

9



II. Literature Review

A thorough review of the literature is required to develop a multicriteria shortest path

model. This chapter summarizes the literature relevant to the development of The Drive On

Metz model. No sources were found that directly modeled a game as a network. However,

there are several instances of a game being the object of an academic study. There are

also several sources discussing the application of a network model. Specifically, Dimdal’s

[6] and Isensee’s [12] theses introduce methods for considering multiple objectives in a

shortest path network model. Finally, Dijkstra’s [5] shortest path algorithm is reviewed.

2.1 Game Studies

Lee’s [13] Graduate Research Paper is a recent example that demonstrates the value of

using a board game as the object of an academic study. He applied a Markov chain analysis

and Monte-Carlo simulation to the board game RISK to compare and analyze different

game strategies. This project provided an analysis of different strategies that, similar to the

objective of this research, could lead to outcomes consistent with a player’s preferences.

Similarly, Blatt [4], Georgiou [11] and Tan [18] conducted analyses of RISK to provide

players with a choice of strategies.

Mood [14] describes the value of war games as “the perfect vehicle for studying

strategy and tactics... One could try dozens of plans in the time it would take to play

dozens of games, and the play of each would test not only its efficacy but its feasibility. The

flexibility of a given plan could easily be tested by playing it in the game against a variety

of enemy strategies. The sensitivity of a plan to unpredictable factors could be tested by

changing those factors over a wide range in the rules of the game.” Furthermore, games

have beneficial value in training and educational applications, where they can “easily be

made to illustrate and clarify complex and subtle relationships.”

10



Mood further presents characteristics of war games that are required for useful

analysis. The first is that the game must be easily playable so as to allow it to be played

numerous times. This requires a fixed set of rules that allow a player to gain experience that

can be carried in later plays. However, in contrast to games with fixed rules, some games

may be classified as general-purpose, allowing them to be adapted to differing problem

scenarios. In these games, rules and factors may be adjusted so as to examine how those

changes impact a player’s decisions or how the outcome of the game changes in later plays.

In either case, the playing time should be kept short and the number of factors that a

player has control over should be limited. This restricts the scope of the game so that it

is appropriately sized to the problem at hand—large enough to capture the dynamics of the

problem, but no larger. The Drive on Metz complies with these characteristics outlined by

Mood.

2.2 Vehicle Path Finder

Dimdal [6] applied the A* algorithm to find an optimal route for a vehicle traveling

on a three-dimensional surface. The three-dimensional surface was projected onto a two-

dimensional map that was discretized into a regularly-spaced square grid. Each grid cell

was assigned attributes characterizing the terrain type and height above sea level. A cell-

to-cell approached is used to model the movement across the network. The objective was

to find the fastest path between two points, where the vehicle’s speed is a function of the

terrain type and constrained by the terrain slope, which is determined by the change in

elevation between cells.

In finding the unobstructed fastest path, arc costs are first specified as a “basic edge

cost”, then a “modifier” is applied to account for enemies or obstacles. The terrain type

defines the “basic edge cost”, wherein each terrain type has a different vehicle speed. The

“modifiers” then increase or decrease the vehicle speed across that arc to account for any
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roads, changes in slope, or obstacles. The modified edge costs were then supplied to the

A* algorithm to find the fastest path.

2.3 Multicriteria Network Routing

Inensee [12] used a multicriteria model to optimize the route of tactical aircraft flying

in a radar threat environment. His approach was to model the mission area as a two-level,

point-to-point grid network, which was defended by enemy radars. Terrain features, major

roads, and cities were modeled as obstacles to be avoided. The two levels represent high

and low flight altitudes. The objective was to determine the optimal route considering three

criteria: distance traveled, active radar detection, and passive radar detection. Probability

of detection was the metric used for radar detection.

Each arc in the network had a set of costs associated with it that correspond to the

three objectives. The arc costs for each objective were stored in an individual matrix. A

three term composite cost matrix was created by multiplying each of the detection matrices

by the distance matrix component-wise, multiplying each by a weight, then summing both

of these with the weighted distance matrix. For example, if A is the distance matrix, B

is the active radar detection matrix, and C is the passive radar detection matrix, then the

composite cost matrix is λ1A + λ2AB + λ3AC. The new composite cost matrix is supplied

as the arc costs to a modified Dijsktra’s algorithm to determine the optimal route.

2.4 Dijkstra’s Algorithm

Dijkstra’s algorithm [5] is a simple and efficient procedure for finding a shortest

path between a source node and all other nodes in a network, assuming non-negative arc

lengths [2]. Dijsktra’s algorithm is a node-labeling technique that divides the nodes in the

network into two sets: those that are temporarily labeled and those that are permanently

labeled. The algorithm begins at the source node s and temporarily labels every node in

the network with its shortest distance from s. The node with the smallest temporary label
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is permanently labeled with its shortest distance, and the temporary labels of all adjacent

nodes are updated. This procedure repeats until either all nodes are permanently labeled, or

the desired end node is permanently labeled. Throughout this procedure the predecessor of

each permanently labeled node is tracked, which allows the shortest path to be backtracked

after the procedure terminates. Figure 2.1 shows the algorithm pseudo-code, where S

designates the set of permanently labeled nodes, S designates the set of temporarily labeled

nodes, di designates the distance label of node i, pred(i) designates the predecessor of node

i, and ci j designates the cost of each arc (i, j).

Figure 2.1: Dijkstra’s algorithm [1]

2.5 Analytical Hierarchy Process

Saaty’s [16] Analytical Hierarchy Process (AHP) was reviewed as a potential method

of comparing different COAs. The purpose of the AHP is to determine the best COA from

a set of potential COAs that is consistent with the decision maker’s preferences as rated by

the scale shown on Table 2.1. However, the model developed as a result of this research

is designed to present a player with a single COA for a given preference with respect to
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the objectives. Because alternate COAs can only be generated by changing the player’s

preferences, it is concluded that use of the AHP is not appropriate for this research.

Table 2.1: Preference scale for pairwise comparisons [3]

Preference Level Numeric Value

Equally Preferred 1

Equally to Moderately Preferred 2

Moderately Preferred 3

Moderately to Strongly Preferred 4

Strongly Preferred 5

Strongly Preferred to Very Strongly Preferred 6

Very Strongly Preferred 7

Very Strongly Preferred to Extremely Preferred 8

Extremely Preferred 9

2.6 Summary

As the previous game studies described in this chapter demonstrate, war game analysis

is a relevant area of study. The methods employed by Dimdal [6] and Isensee [12] of

creating weighted arc cost matrices are effective at characterizing a multicritera network.

Furthermore, Dijsktra’s algorithm [5] effectively solves the multiobjective shortest path

problem. These methods are integrated into The Drive On Metz model as described in the

subsequent chapters.
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III. Methodology

This chapter discusses the methodology of how the multiobjective optimal path model

is formulated. To develop this model, it is necessary to describe the network representation

of The Drive On Metz game map, the representation of threats in the network, the

integration and balancing of the primary objectives, and the implementation of the model.

3.1 Network Representation

This study will utilize a directed network, G = (N, A), where N represents the set

of nodes and A represents the set of arcs, consisting of all adjacent node pairs (i, j) in the

network. Each hex from The Drive On Metz game map will represent a node in the network.

Each node is connected by up to six arcs joining that node to its adjacent nodes. Because

this map contains 9 columns and 11 rows of hexes, the network will contain 99 nodes and

516 arcs. Each node is identified by its column and row indices, n and m, respectively,

where n ∈ {01, ..., 09} and m ∈ {01, ..., 11}. For example, the node in the fourth column and

sixth row would be identified as node 0406, which corresponds with its label printed on the

game map. Figure 3.1 shows how each hex and its neighboring hexes are identified.

The connecting arc between every adjacent pair of nodes is assigned a cost, ci j. These

costs will be further described in a subsequent section of this chapter. These values will

be stored in a sparse matrix where each row represents a starting node and each column

an ending node. Figure 3.2 shows an example of how the hexagonal grid is extracted from

the game map and transformed into the corresponding network and arc cost matrix. For

this example, the values in the matrix represent the number of movement points to move

between the respective hexes. Consider traveling from node 0102 to node 0202. Observe

on the game map that node 0202 is forested terrain, requiring 4 movement points to make
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Figure 3.1: Network node identification

this move. Thus, the entry on the distance matrix at (0102, 0202) is 4. The full distance

matrix is created in this fashion for all arcs on the game map.

3.1.1 Shortest Path Problem.

With the game map now sufficiently modeled as a directed network, the shortest path

between a source node s and a sink node t can be found. The shortest path problem can be

solved as a network flow problem in which one unit of flow is introduced into the network

[1]. This single unit of flow is allowed to pass through the network from the starting node

until it reaches the ending node. The cost of each arc along the path traveled is summed

together to determine the total cost of the path. Traveling a particular path that minimizes

this cost is the shortest path. The linear programming formulation of the shortest path

problem [2] is:
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Figure 3.2: Network and distance matrix

Minimize
∑

(i, j)∈A

ci jxi j

Subject to
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki =


1 if i = 1

0 if i , 1 or N

−1 if i = N

xi j ∈ {0, 1} (i, j) ∈ A

This formulation is for a general network consisting of N nodes and a cost ci j

associated with each arc. The variable xi j is a binary variable that indicates whether or

not the arc from node i to node j is on the shortest path. This is easily solved using a
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linear programming method such as simplex for a small network. However, the formulation

can quickly become very large, even for a relatively modest network such as that on The

Drive On Metz. For the shortest path problem formulated from The Drive On Metz, the

objective function would contain 516 terms (one indicating whether or not each arc is on

the path) and 99 constraints (flow balance at each node). Directly attempting to solve this

linear programming formulation would be cumbersome and undesirable. Several effective

algorithms exist that can solve a shortest path problem. A common and effective algorithm

for solving the shortest path problem is Dijkstra’s Algorithm.

3.1.2 Dijkstra’s Algorithm.

Dijkstra’s algorithm is describe in Section 2.4 and is implemented in The Drive on

Metz model via a MATLAB function. The MATLAB code is included in Appendix A.

The MATLAB function requires the input of the starting node, ending node, and arc cost

matrix. As described above, each entry of the cost matrix represents the cost between

the two nodes corresponding to that row and column. If the supplied matrix contains

values representing the number of movement points between hexes on the game map, the

MATLAB code will return the shortest path to travel from the starting node to the ending

node. Implementing Dijkstra’s algorithm in this fashion will achieve the first objective of

minimizing the distance traveled through the network.

3.2 Threat Environment

Simply finding the shortest path may not be sufficient. In many instances, the shortest

path may not be feasible or desired if there is some other complicating factor, such as an

obstacle along the path. In the context of The Drive on Metz, obstacles appear in the form

of enemy units. Suppose that for the network shown in Figure 3.3, Dijkstra’s algorithm is

implemented and the shortest path in terms of movement points from node 0101 to node

0303 is found to be along the path highlighted in blue. Now, suppose an enemy unit is

located on node 0103 as shown in Figure 3.4. In order to reach the objective node, a
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unit traversing this path will pass into the zone of control of the enemy unit. This would

force the advancing unit to stop its movement and either attack the enemy unit or wait to be

attacked by the enemy unit. Thus, successfully traversing this path depends on the outcome

of the attack. Alternately, another path could be found that completely avoids the enemy

zone of control. For example, the path 0101-0201-0302-0303 could be followed to avoid

the enemy unit.

Figure 3.3: Shortest path Figure 3.4: Enemy zone of control

3.2.1 Threat Avoidance.

Finding a path that avoids the enemy units will now be considered. A path that

completely avoids any nodes that contain an enemy unit is one that maximizes the

probability successfully traversing the path. Specifically, the probability of successfully

traveling an unimpeded path is 1. However, if there are no feasible paths that can avoid

all enemy units, then any path from the starting to ending nodes will have a probability

of success that is less than 1. Consider again the network shown in Figure 3.4. If a unit

traverses the blue path until the zone of control for the enemy unit located at node 0103 is

encountered, then an attack must be successfully resolved in order to continue along that

path. For a given combat strength differential and any terrain impacts, the probability of
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an attack being successful is determined by the combat results table discussed in Chapter

1 (see Table 1.1). If, for example, the combat strength differential for the units depicted

in Figure 3.4 were +4 and there is no terrain impact, then the attack is successful if the

defender must retreat, which occurs when the die roll is a 1, 2, 3, or 4. Thus, the probability

of success for this attack would be 4/6 ≈ 0.67.

For any node that is overlapped by the zone of control of two or more enemy units,

the probability of success for that node is the product of the probabilities associated with

all the influential enemy nodes. For example, Figure 3.5 shows that if an additional enemy

unit is added at node 0302, then node 0202 is overlapped by two zones of control. If the

additional unit has the same individual probability of success as in the previous example,

then the total probability of success associated with node 0202 for a single attack would be

0.672 ≈ 0.44.

Figure 3.5: Multiple enemy zones of control

3.2.2 Cumulative Probability of Success.

In determining the probability of success against a threat in the examples above, the

probability of an attack resulting in a draw is assumed to be the same as a loss. In actuality,

there are three possible outcomes of an attack: a win, a loss, or a draw. In the event of
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a draw, either player may reattempt the attack on a subsequent turn, again with the same

three possible outcomes. Thus, the overall probability of a win is the sum of the probability

of a win on the first attempt, plus the probability of a win on any subsequent attempts in

the event of a draw. This results in an infinite series that, if taken to the limit, converges to

a finite value.

Let PS equal the probability of success and PD equal the probability of a draw. The

series expansion representing the overall probability of success would then be:

PS = PS + PD(PS + PD(PS + PD(PS + ...)))

= PS + PD(PS ) + PD2(PS ) + PD3(PS ) + ... + PDn

= PS (1 + PD + PD2 + PD3 + ... + PDn−1) + PDn

Approximating this series by computing the probabilities for the first several terms, the

probability of a successful attack converges to the values shown in the bottom row of Table

3.1. Recall that “AR” indicates that the attacking unit must retreat (a loss), “DR” indicates

that the defending unit must retreat (a loss), and “—” indicates that neither unit retreats (a

draw).

Let pi j designate the probability of success along an arc between nodes i and j. Each

pi j is fixed for every node in the network when the initial locations of threats are known. For

every node j that is not in any enemy unit’s zone of control, the probability of successfully

traveling into that node is pi j = 1. To find the probability of success for the entire path,

take the product of all probabilities along each arc on the path. For the example in Figure

3.5, this would be:

psuccess = (p0101,0201)(p0201,0202)(p0202,0303)

= (0.67)(0.44)(0.67)

= 0.20
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Table 3.1: Combat Results Table Probabilities

Combat Differential

Die Roll -1 0 +1 +2,+3 +4,+5 +6,+7 +8,+9 +10+

1 — DR DR DR DR2 DR2 DR2 DR2

2 — — DR DR DR DR2 DR2 DR2

3 AR — — DR DR DR DR2 DR2

4 AR AR AR — DR DR DR DR2

5 AR AR AR AR — DR DR DR

6 AR AR AR AR AR — DR DR

Psuccess 0 0.25 0.4 0.6 0.8 1.0 1.0 1.0

3.2.3 Threat Avoidance Objective Function.

The mathematical objective function that maximizes the probability of success along

the path can be written as:

Maximize
∏

(i, j)∈A

pxi j

i j

where xi j ∈ {0, 1},∀(i, j) ∈ A is the decision variable that indicates if arc (i, j) is on the path.

Taking the natural logarithm, the product can be rewritten as a summation:

Maximize
∑

(i, j)∈A

(lnpi j)xi j

This objective function can then be written as a minimization by taking its negative.

Minimize
∑

(i, j)∈A

(−lnpi j)xi j

The only difference between this objective function and the shortest path objective function

is that (−lnpi j) is substituted in place of ci j. Thus, this form of the objective function can

also be solved via Dijkstra’s algorithm as discussed in Section 2.4:
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Minimize
∑

(i, j)∈A

(−lnpi j)xi j

Subject to
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki =


1 if i = 1

0 if i , 1 or N

−1 if i = N

xi j ∈ {0, 1} (i, j) ∈ A

Using Dijsktra’s algorithm to solve this problem will return a path that has the

maximum probability of success. The algorithm will give preference to avoiding threats

entirely, but if a zone of control must be traversed, preference will be given to those threats

against which the advancing unit has the highest probability of success.

3.3 Multicriteria Weighted Sum Model

Clearly, the two objectives of finding the shortest path and avoiding enemy units may

be in direct conflict with one another. Thus, it is desired to integrate both of these competing

objectives in a manner that allows for a trade-off of one for the other in accordance with a

particular player’s preference.

The general multicriteria weighted sum problem formulation [9] is:

Minimize
N∑

k=1

λk fk(x)

Subject to x ∈ X

for n objectives, where λk ≥ 0 is the objective weight and X designates the set of feasible

solutions. For this two-objective formulation let:

f1(x) = di jxi j

f2(x) = −(lnpi j)xi j

where di j is the distance measured in movement points. Weighing and summing these two

objective functions forms the complete multicriteria objective function:

Minimize
∑

(i, j)∈A

(λ1di j − λ2lnpi j)xi j
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If D = [di j] is the distance matrix and P = [−lnpi j] is the probability of success matrix

for i, j ∈ {0101, ..., 0911}, then the matrix C = λ1D−λ2P = [λ1di j−λ2lnpi j] is the composite

arc cost matrix. The the value of each term ci j = (λ1di j − λ2lnpi j) in C is the weighted cost

assigned to each arc (i, j) in the network. The final formulation is:

Minimize
∑

(i, j)∈A

ci jxi j

Subject to
∑

j:(i, j)∈A

xi j −
∑

k:(k,i)∈A

xki =


1 if i = 1

0 if i , 1 or N

−1 if i = N

xi j ∈ {0, 1} (i, j) ∈ A

For a specified set of weights λ1 and λ2, this formulation can be solved via Dijkstra’s

algorithm. The choice of weights will be based on a player’s preferred balance of finding

the shortest path and avoiding the enemy units.

Despite the fact that the probability term is subtracted from the distance term in the

objective function, the terms are really additive because the natural logarithm of a number

less than 1 results in a negative value. Thus, subtracting the negative value is really additive.

This essentially makes the probability term act like a “modifier” to the distance term. If an

enemy unit is present, thus making lnpi j nonzero, then that term adds to the value of the

distance term. This makes that node less unlikely to be on the shortest path. For example,

if di j = 3, pi j = 0.5, λ1 = 1, and λ2 = 2, then the weighted arc cost is:

ci j = λ1di j − λ2 ln pi j

= (1)(3) − (2) ln 0.5

= 3 + 1.4

= 4.4
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This demonstrates how a node influenced by a threat modifies the cost to traverse an arc that

enters that node. The choice of weights will determine the magnitude of that modification,

and they can be adjusted in accordance with a player’s preferences.

3.4 Model Implementation

The model can be run for a variety of scenarios with the formulation developed in

Section 3.3. A basic Decision Support System (DSS) consisting of a simplified version of

The Drive On Metz was created in Microsoft Excel. The DSS uses a set of Microsoft Visual

Basic for Applications (VBA) macros to set up the scenario. The assumptions required to

implement the model are listed in Section 1.4.3 and are again summarized here:

1. One American unit is the advancing unit.

2. The German units are the defending units.

3. The German units are stationary.

4. Attacks and combat resolution are not modeled.

5. The probability of success for each arc is independent.

The Excel DSS contains the game map that displays the location of the enemy units

and plots the route once it has been determined. All of the pertinent information, including

the node and arc lists, distance matrix, threat locations, arc values, combat results table,

and unit information are stored within the DSS. The American unit, German units and their

locations, the objective weights, and the desired route are updated via a scenario setup form

depicted in Figure 3.6.

Figure 3.7 depicts a process chart of how the route is calculated. The arc values are

automatically updated once the desired scenario is specified. A VBA function sends the

starting node, ending node, and arc values to the MATLAB function which then calculates
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Figure 3.6: Scenario setup form

the route and outputs the result to a temporary file. Finally, Excel reads the route from the

temporary file back into the workbook and plots it onto the map.

Figure 3.7: Model process flow chart
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3.5 Summary

The network representation, incorporation of enemy threats, mulitobjective weighted

arc costs, and DSS are the key components required to implement this model. With

these pieces sufficiently describe, the model can be run for a test scenario to determine

its behavior.
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IV. Results and Analysis

This chapter describes the results and analysis of the model as implemented. The

focus is on examining the outcomes of the model for different values of the objective

weights in order to describe the overall model behavior. The baseline scenario consists of

an American unit attempting to advance from the upper leftmost corner of the map (node

0101) to the lower rightmost (node 0911). The German units are located at the nodes on

the map where they would begin during normal game play. This is done by examining a

sequence of scenarios to find the shortest path (λ1 = 1, λ2 = 0) and the highest probability

path (λ1 = 0, λ1 = 1) for the cases when there are no threats, one threat, and all threats on

the map. Additionally, a sensitivity analysis is done to determine the objective weights at

non-endpoint values that result in a change to the optimal path. The objective weights are

evaluated across the ranges of 1 ≤ λ1 ≤ 10 and 1 ≤ λ2 ≤ 10. This results in a square design

space consisting of 100 runs as depicted in Figure 4.1

Figure 4.1: Design space for sensitivity analysis
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4.1 Model Behavior

This section examines six scenarios for the two cases defined below. The results from

these cases are used to validate that the model behaves as expected.

Case 1: λ1 = 1 λ2 = 0

Case 2: λ1 = 0 λ2 = 1

4.1.1 Scenario with no threats.

Figure 4.2a shows the shortest path for the Case 1 baseline scenario on the game map

strictly in terms of movement points. As the figure shows, this path follows a roadway since

that is the least cost type of terrain to travel. The number of movement points required to

complete this route is 19.

Figure 4.2b shows the path with the highest probability of success for Case 2. Because

there are no threats impeding this path, the probability of success is 100%. This path is

similar to the shortest path, however, the algorithm is no longer constrained by the terrain

in finding the path. Rather, it traverses the fewest number of arcs that still result in the

highest probability. This results in a route that does not follow a road and instead passes

through undesirable terrain, including several river crossings where there is no road, and

thus requires 58 movement points to complete. This is significantly higher than the shortest

path.

4.1.2 Scenario with 1 threat.

Again consider Case 1 and suppose a single threat is placed on the map such that

it lies on the shortest path as shown in Figure 4.3a. The threat shown is the German

Unterfuhrer regiment, which begins the game at node 0507 and has a combat strength of

1. Assuming the American unit has the highest possible combat strength of 7, the resulting

combat differential is +6. Furthermore, because the German unit lies on a node that is

fortified, a shift of 3 columns to the left on the combat results table is permitted. Thus,

by applying the probability of success method describe in Section 3.2.2, the probability of
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(a) Shortest Path (b) Highest Probability

Figure 4.2: Shortest path and highest probability path for no threats

success against this unit is 0.4, or 40%. However, because the model assumes stationary

threats and this route passes through three nodes in the German unit’s zone of control, the

overall probability of success computed by the model for this path is 0.43 = 0.064, or 6.4%.

Figure 4.3b shows how the path changes for Case 2 when the same threat is in place.

As in the case with no threat, the algorithm finds a path that has an overall probability

of success equal to 100%, but again does not consider the terrain being traveled through.

Thus, the number of movement points for this path is 43.
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(a) Shortest Path (b) Highest Probability

Figure 4.3: Shortest path and highest probability path for one threat

4.1.3 Scenario with all threats.

Consider now the scenario where all German units are on the map at their initial

positions. Figure 4.4b shows the shortest path for Case 1 with this threat layout. As before,

this path requires 19 movement points to traverse, but now there are multiple threats located

on the path. The zone of control for six German units must be passed through, thus the

overall probability of success for this path is 3.4 × 10−5, or essentially 0%.

Figure 4.4a shows how the path changes for Case 2 with the same threat locations. In

this case, only one German zone of control is passed through, and the probability increases

to 0.216, or 21.6%. However, the number of movement points drastically increases to 55.
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(a) Highest Probability Path (b) Shortest Path

Figure 4.4: Highest probability path and shortest path for all threats

Table 4.1 summarizes the results for both Case 1 and Case 2 with each threat layout.

These results show that the model behaves as expected. In the extreme case where

finding the shortest path is the only objective being considered, the model finds the same

shortest path regardless of the presence of enemy threats. Conversely, in the extreme case

where finding the path with the highest probability of success is the only objective being

considered, the model finds a route that avoids all threats as much as possible.
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Table 4.1: Movement Points and Probability of Success for Case 1 and Case 2

Threat Scenario No Threats One Threat All Threats

Case Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Movement Points 19 58 19 43 19 55

Probability of Success 100% 100% 6.4% 100% 0.0% 21.6%

4.2 Sensitivity Analysis

To explore the effects of the objective weights λ1 and λ2, the model was iteratively

run with each weight varying from 1 ≤ λ1 ≤ 10 and 1 ≤ λ2 ≤ 10 in step sizes of 1.

Because the objective function contains mixed units of movement points and probabilities,

the value of the objective function itself is not particularly meaningful. Rather, a player

would be more interested in the number of movement points and the probability of success

to traverse a path. Figure 4.5 shows a contour plot that depicts the decision space of the

movement points for ranges of λ1 and λ2 that result in the most change. This plot shows that

as the shortest path weight λ1 increases or the probability of success weight λ2 decreases,

the resulting path length decreases. Conversely, Figure 4.6 shows that the trend is reversed

for the probability of success in the same range of objective weight values. As the shortest

path weight λ1 decreases or the probability of success weight λ2 increases, the probability

of successfully traversing the path increases.

4.3 Objective Ratio

In order to better compare the results of the sensitivity analysis, it is useful to express

the results in terms of the objective ratio, here defined as the preference parameter, r:

r =
λ1

λ2
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Figure 4.5: Contour plot of movement points for 1 ≤ λ1 ≤ 3 and 6 ≤ λ2 ≤ 10

Note: “w1” = λ1 and “w2” = λ2 in this figure

Figure 4.6: Contour plot of probability of success for 1 ≤ λ1 ≤ 3 and 6 ≤ λ2 ≤ 10

Note: “w1” = λ1 and “w2” = λ2 in this figure

Higher values of r result in paths that favor the shortest path, whereas lower values r will

favor a path with the highest probability of success. The critical values of r where the path

changed during execution of the sensitivity analysis for the baseline scenario are show in

Table 4.2. This table shows that r values above 1.6 do not result in any changes in the
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shortest path. However, r values below 1.6 progressively trade off the shortest path for a

path with a higher probability of success. It is important to note that these critical values

are applicable only to this particular scenario. Differing threat locations or an American

unit with a different combat strength may result in different critical values.

Table 4.2: Objective ratio ranges

COA Range for r Movement Points Probability of Success

1 [0, 0.13) 44 21.6%

2 [0.13, 0.40) 28 2.4%

3 [0.40, 0.46) 25 0.7%

4 [0.46, 1.17) 22 0.2%

5 [1.17, 1.60) 20 0.02%

6 [1.60,∞) 19 0.0%

Figures 4.4a and 4.4b are examples of paths for r values in the first and last ranges

of Table 4.2, respectively. Figures 4.7a to 4.7d show examples of the paths for increasing

values of r in each of the other four respective ranges.

4.4 Model Limitations

Although this research has developed a model that effectively balances a player’s

preferences in finding an optimal route, there are some innate limitations. One such

limitation is its speed. While the model effectively computes an optimal path, it takes

approximately ten seconds to compute the route. While this is sufficient for an academic

study of the optimal route, it may be cumbersome for a player to use during the course of

the game. Additionally, if this methodology were expanded to larger network applications,

the computation speed will also increase.
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(a) r = 0.25 (b) r = 0.45

(c) r = 1.0 (d) r = 1.5

Figure 4.7: Paths for different values of the objective ratio, r
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Another limitation of this methodology is that there is no mechanism to determine

alternate optimal routes. This is inherent to the use of Dijkstra’s algorithm. There is no

way of knowing if an equally optimal route is available if there are extraneous factors that

would make the route determined by the model undesirable. Thus, the player would be

forced to compromise on their preference in order to find another route.

Finally, the assumptions describe in Section 1.4.3 outline several limitations. As

describe in that section, many were made to reduce the complexity of the model. However,

this results in the model having reduced fidelity in recreating the actual game play

experience of The Drive On Metz.

4.5 Summary

The results of this model show that it behaves as expected. Changes to the preference

parameter, r, accurately produce a corresponding change in the model output, where higher

values of r generate a shortest path route and lower values of r generate a higher probability

of success route. Therefore, the preference parameter is an appropriate characterization of

a game player’s preference towards finding the shortest path or maximizing the probability

of successfully completing the path.
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V. Conclusions and Future Research

5.1 Conclusions

This research applies a network model to the war game The Drive On Metz. The

result is a multicriteria model that can be a useful tool for a game player to balance

the objectives of finding the shortest path and finding the path that avoids threats with

the highest probability of success. The model behavior is consistent with the expected

outcomes for a given set of inputs. The preference parameter r effectively quantifies the

relative importance of the two objectives and characterizes the player’s risk aversion. For

a given threat layout an specified value of r, the model will compute an optimal route.

By considering different values of r, the game player is then provided a range of efficient

paths from which to chose. This successfully demonstrates how the model accommodates

varying levels of risk aversion and consequently produces appropriately adjusted outcomes.

5.2 Future Research

The natural progression from this research would be to address the limitations and

assumptions. The computation speed of the model could be increased by reworking

the VBA code to be more efficient or using a more advanced programming language

or technique. Efficiency can also be gained by examining the shortest path algorithm.

Dijkstra’s algorithm could be enhanced to improve upon its shortcomings and improve

its data structure, or another algorithm that is more efficient could be used. Similarly,

incorporating an algorithm or technique to search for alternate optimal routes could provide

the game player with multiple COAs for a given preference parameter.

To improve the fidelity of the game play experience, more functionality of the game

could be incorporated. This could include multiple advancing units for coordinated attacks,

modeling the sequence of turns for both players, or simulating the attacks and combat

38



resolution. Because this model is based on a static scenario, a logical progression could

be to incorporate a dynamic threat environment. A dynamic programming approach

could consider the outcome of an attack against a threat encountered along the path, then

recompute the optimal path from that point. This may provide a better picture of whether

or not a particular route is preferable.

A pre-assessment of a player’s risk aversion may be useful in estimating the preference

parameter for that player. That value could then be input into the model and held constant

throughout the game to determine if it is consistently accurate.

It may also be of interest to consider the possibility of incorporating nodes of interest

in the network that a route might be drawn to, rather than only considering a network

with nodes that contain threats to be avoided. This could be done by reversing the penalty

approach and instead providing an incentive towards particular arcs or nodes of interest.

Finally, it may be of interest to consider a non-perfect information format of the game.

This could be done by masking the unknown threat locations and applying a probability to

the likelihood of a threat at a particular location. This probability would be a measure of

confidence in the reliability or quality of the imperfect information.

39



Appendix: MATLAB Code

Listing A.1: MATLAB code

1 function [] = metz_route(RouteStart , RouteEnd)

2

3 clc

4

5 % Excel data file variables used in the functions below.

6 filename1 = ’Metz_macro.xlsm’;

7 filename2 = ’temp.xlsx’;

8 sheet1 = ’Arcs’;

9 sheet2 = ’Nodes’;

10 sheet3 = ’Route’;

11 sheet4 = ’Threats’;

12 sheet5 = ’Laydown’;

13 sheet6 = ’Distance’;

14

15 % ’xlsread’ is a built in MATLAB funcion used to read the

16 % distance matrix values as vectors from the Excel file.

17 Distance = xlsread(filename1 ,sheet5,’D:D’);

18 StartNodes = xlsread(filename1 ,sheet5,’E:E’);

19 EndNodes = xlsread(filename1 ,sheet5,’F:F’);

20

21 % ’sparse’ is a built in MATLAB function that generates a

22 % sparse matrix from three vectors defining the rows,

23 % columns, and matrix values, respectively. This matrix

24 % represents the directed graph of the network.
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25 DG = sparse(StartNodes ,EndNodes,Distance);

26

27 % ’graphshortestpath ’ is a built in MATLAB function that takes

28 % sparse network, starting node, and ending node as inputs and

29 % finds the shortest path. ’dist’ is the length of the shortest

30 % path, ’path’ is a vector of nodes representing the path, and

31 % ’pred’ is a vector of nodes representing the predecessor nodes.

32 % Dijkstra’s algorithm is this functions default method for

33 % finding the shortest path.

34 [dist, path, pred] = graphshortestpath(DG,RouteStart ,RouteEnd);

35

36 % ’xlswrite’ is a built in MATLAB function that exports the

37 % results to a temporary Excel file

38 xlswrite(filename2 ,transpose(path),sheet3,’A1’);

39 xlswrite(filename2 ,dist,sheet6,’A1’);

40 end
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