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Abstract

An optimal skin identification system can have great impact in areas such as security

and surveillance. In the field of security, skin identification can augment the effectiveness

of other biometric security systems such as facial recognition and fingerprint identification

[1]. In the case of surveillance, a real-time skin identification system will be extremely

useful at tracking person of interest (POI). Detecting and tracking using a skin

identification technique provides positive, real time acquisition of people as they exit a

building and prevents inadvertent track loss in a large crowd. This thesis presents the

results of an artificial neural network (ANN) that is created in MATLAB® using the

Neural Network Toolbox to identify a POI based on their skin spectral data. A baseline

model is used with the optimal feature set identified by Cain [2]. The baseline model is

then modified and optimized to maximize a ANN capability to identify a POI. Gaussian

noise is calculated and added to the data sets to simulate atmospheric noise of a real world

scene. The simulated atmospheric noise reduced the neural network’s accuracy by 14%.

The neural network model is tested with real Hyperspectral imaging (HSI) images to

verify the applicability of the ANN to identify a POI. The results for HSI testing are

between 40-60% due to the illumination sources’ angle of incidence and the standard

deviation of skin reflectance associated with differing skin locations on the body.
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HYPERSPECTRAL BASED SKIN DETECTION FOR PERSON OF INTEREST

IDENTIFICATION

I. Introduction

The human brain is an intricate organ that has developed unique capabilities and

functions. One such unique function is object cognition. Object cognition is the ability to

recognize and identify an object based on its physical properties [4]. Given an image that

contains over a dozen people, the human brain can identify a person of interest (POI) in

seconds. However, if the POI is in a large crowd of thousands of people, the time it takes

to identify the POI would increase dramatically. This problem is exacerbated when trying

to identify a POI in a video.

Technologies have advanced tremendously over the past two decades, e.g. computers

in 1990s could barely perform gigaflops whereas now they can perform teraflops [5, 6].

Automated identification has progressed to the point where people can be identified based

on their fingerprints, voice, or retina [7]. However, these identification techniques require

a POI to willingly allow their fingerprints or retina to be scanned. Requiring compliance

from a POI, in order to identify them from a crowd, is problematic. To bypass the need for

compliance, remote sensing can be utilized. Remote sensing uses passive collection

techniques to acquire information on an object or person. Cain [2] demonstrated the

possibility of identifying a POI based on skin spectral data. She identified an optimal

feature subset to be used with the hyperspectral data she collected using a

spectroradiometer. Cain’s artificial neural network (ANN) model is used as a baseline

model for the work of this thesis.
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1.1 Background

Nunez et al. [8, 9] determined the wavelengths needed to detect human skin with

Hyperspectral imaging (HSI). Recent research by Cain [2] showed that it is possible to

distinguish a POI in a diverse group of people based on skin spectral data. Using Fast

Correlation-Based Filter (FCBF), Cain determined a set of wavelengths that allow POI

identification. The wavelengths take advantage of the unique properties of human skin.

The color of human skin is determined by specific chromophores. Chromophores are

molecules that absorb specific wavelengths of the visible spectrum while reflecting the

rest. The chromophores that determine the color in human skin are produced in the body

while others are produced by plants [10, 11]. Varying levels of these chromophores give

skin its varying shades from extremely fair to dark.

1.2 Problem Statement

This thesis builds upon the optimal feature set and methodology of identifying a POI.

The problem that this research will address is:

Is the baseline model capable of identifying a POI within their skin tone group? Is the

baseline model capable of identifying a POI in a Hyperspectral Image?

Initial testing to determine the optimal ANN model is done with non-noisy data

collected using a contact probe of a spectroradiometer. Simulation of real world

conditions is accomplished by adding Gaussian noise to the spectroradiometer data.

Training and testing for each skin tone group are accomplished in MATLAB® with the

Neural Network Toolbox. Different normalization techniques, network structures, training

functions, and activation functions are explored to determine the optimal configuration of

the neural network. HSI images are collected with the AisaDUAL hyperspectral sensor

system and are tested in MATLAB®.
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1.3 Justification

An optimal skin identification system can have great impact in areas such as security

and surveillance. In the field of security, skin identification can augment the effectiveness

of other biometric security systems such as facial recognition and fingerprint identification

[1]. Skin identification can act as a validation system to other biometric systems because

of how easily these systems can be bypassed. In the case of surveillance, a real-time skin

identification system would be extremely useful at tracking threats. This would allow

tracking of threats as they enter and leave a building or prevent inadvertent track loss in a

large crowd. Skin identification can also be used to locate a missing or injured POI in the

case of search and rescue situations [12].

1.4 Assumptions

All data collected with the spectroradiometer incorporates a calibrated illumination

source. The onboard calibrated illumination source eliminates the need to set up an

external light source. Having a calibrated light source also eliminates the need to take into

account the various lighting sources and angles. Varying light sources and angles create a

variety of reflectance issues that is not incorporated in this thesis [13].

Skin pigmentation can be altered due to various conditions which change the spectral

data. Skin spectral data changes over a long period of time base on a person’s gender, age,

and ethnicity [14]. However, there are certain conditions that could change the spectral

data in a short time period e.g. sun tan lotions or oils, sunscreen lotions, and moisturizers.

Sunscreen lotions and moisturizing lotions are designed to protect the skin and moisturize

it. However, these products contain chemical compounds that absorb certain ranges of

wavelengths that changes the spectral data of the skin. Between data collections, the skin

is assumed to stay constant and not experience any condition that would change its

spectral data. When testing with HSI data, only skin pixels are being used. This assumes

that the HSI image is already processed with a skin detection algorithm.
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1.5 Scope

This thesis will focus on expanding the application of Cain’s research [2]. Cain’s

research focused on determining a skin identification model that identifies a POI in a

diverse group of people with varying skin tones and different ethnicities. This thesis

extensively tests Cain’s model to determine its capability to identify a POI within their

skin tone group. Improvements to Cain’s model are investigated to create a more accurate

skin identifier for POI’s within a similar skin tone group. Further testing incorporates HSI

images to determine practical capability on real world data.

1.6 Approach

The optimal feature subset that Cain identified is centric to this research. A new HSI

data set is incorporated from the Minor Area Motion Imagery (MAMI) data and is parsed

into skin tone groups based on the Fitzpatrick scale and the melanosomes level for

training and testing the neural network [15]. Cain’s model is the baseline to conduct

testing of the different skin tone groups. Different parameters are investigated to improve

the classification accuracy, i.e. training functions, network sizes, and normalization

methods. Once the optimal configuration is determined, Gaussian noise is added to

simulate atmospheric noise based on the typical noise level for standoff data collects. An

evaluation is conducted with skin pixels from HSI images.

1.7 Materials and Equipment

Data for this thesis is collected with the ASD SpecField® 3 spectroradiometer using a

contact probe. The hyperspectral images are collected using an AisaDUAL hyperspectral

sensor system. Raw data from the ASD and AisaDUAL is collected and processed by

RS 3, ViewSpec Pro 6.0, and ENVI 5.0 (Classic) before they can be used in MATLAB®.

Feature selection and neural network training and testing are accomplished in MATLAB®.

The neural network is created and optimized using the MATLAB Neural Network
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Toolbox. Feature selection is accomplished in MATLAB® using a third party script that

imports the WEKA® feature selection library files [16].

1.8 Organization

Chapter II discusses properties of skin, feature selection, classifiers, and background

on hyperspectral imaging. Chapter III explains the methodological process for all the

training and testing. Chapters IV and V present the results, analysis, and future works.
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II. Background

2.1 Hyperspectral Imaging

Hyperspectral imaging (HSI) collects and processes information across a wide range of

wavelengths in the electromagnetic spectrum [17]. HSI wavelengths typically range from

the visible spectrum (VIS) to the short-wave infrared (SWIR) spectrum (0.4-2.4

micrometers (µm)) [18]. A hyperspectral image or data cube is composed of multiple

layers. Each layer represents a wavelength range in the electromagnetic spectrum [19].

Figure 2.1 is an example of a hyperspectral data cube where it has nb spectral bands and n1

x n2 pixels. The variables n1 and n2 define the spatial information while nb defines the

spectral information.

HSI was originally developed for remote sensing in mining and geology [19].

However, over the last two decades, HSI has been adopted into other fields such as

ecology and surveillance. The increased use and adoption of HSI into other fields has lead

to an increase in research of HSI applications [17]. HSI collects the reflected radiance,

which is the amount of electromagnetic energy incident on the detector determined by its

field of view [19]. Reflectance is the ratio of light reflected from a scene to the light

striking the object [19].

2.2 Feature Selection

Feature selection is the process of selecting a subset of relevant features from the

original set of features based on a certain evaluation criterion [20]. Feature selection is

differentiated into three main categories: filter, wrapper, and embedded method [21].

Filter methods are independent of learning algorithms. Filter methods rely on general

characteristics of the data and an evaluation heuristic that is independent of the classifier.

Filter methods are considered less computationally complex than wrapper and embedded
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Figure 2.1: Hyperspectral Cube: The colors underneath the image are the different layers.

Each layer represents a wavelength range or band of the electromagnetic spectrum.

methods. However, filter methods are computationally faster, but are considered less

accurate than wrapper and embedded methods. [20]

Wrapper methods depend upon the classifier attributes. Wrapper methods have the

advantage of ranking features based on how they perform with the chosen classifier

characteristics. Wrapper methods generally have higher accuracy as compared to filter and

embedded methods. However, as a trade off, they are computationally expensive. [20]

Embedded methods are encapsulated within a learning algorithm and is optimized

specifically for that learning algorithm. One popular example of embedded method is the

recursive feature elimination (RFE) algorithm. This algorithm is commonly used in

support vector machines (SVMs) to recursively build a model and remove features.

Embedded methods tend to be between filter and wrapper methods on computational

complexity. [20]

2.2.1 Information Theory.

Information theory is a branch of mathematics that deals with the transmission, storing

and processing of information [22]. In “A Mathematical Theory of Communication,”
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Shannon defined two important quantities of information theory: entropy and mutual

information [23].

2.2.2 Entropy.

Entropy is the most fundamental measure of information in information theory.

Entropy measures the amount of uncertainty of a random variable [23]. The entropy of a

random variable X is defined as [23]:

H(X) = −
∑

i

P(xi)log2(P(xi)), (2.1)

where P(xi) is the probability of x = xi. When the logarithm in Equation 2.1 is in base 2,

the information is measured in units of bits. In the case of two events, x and y, the joint

entropy would be defined as [23]:

H(X,Y) = −
∑

j

∑
i

P(xi, y j)log2(P(xi, y j)), (2.2)

where P(xi, y j) is the joint probability of xi and y j. Conditional entropy of X given Y ,

P(X|Y) , is defined as [23]:

H(X|Y) = −
∑

j

P(y j)
∑

i

P(xi|y j)log2(P(xi|y j)),

= H(X,Y) − H(Y).

(2.3)

2.2.3 Mutual Information.

Mutual information, or information gain, represents the reduction in uncertainty in X

when Y is known [24]. Mutual information between two random variables, X and Y , is

defined as [23]:

IG(X|Y) = H(X) − H(X|Y), (2.4)

where H(X) is the entropy of X and H(X|Y) is the conditional entropy of X given Y .

2.2.4 Fast Correlation Based Filter.

Fast Correlation-Based Filter (FCBF) is a feature selection method that implements

correlation between two random variables as a measure of goodness [25]. A feature is
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“good” if it is highly correlated to the class but not to any other features. FCBF uses the

information theory concept of entropy and mutual information to measure the correlation

between two random variables instead of the linear correlation coefficient. Measuring

goodness with information theory overcomes the shortcomings of the linear correlation

coefficient.

Symmetrical Uncertainty is the weighted average of two uncertainty coefficients and is

defined as [25]:

S U(X,Y) = 2
[

IG(X|Y)
H(X) + H(Y)

]
. (2.5)

Symmetrical Uncertainty is use as a measure for goodness in FCBF rather than IG to

compensate for IG’s bias toward features with more values. SU also normalizes its value

to 1 to indicate that X and Y are independent and 0 to indicate that X and Y are dependent

[25].

2.3 Feature Extraction

Unlike feature selection, feature extraction transforms the data from high dimensional

space to a lower dimensional space. Data transformation can be either linear or nonlinear.

A common linear transformation technique is principal component analysis (PCA). PCA

computes the eigenvectors and eigenvalues of a data matrix [26]. The eigenvectors are the

principal components while the eigenvalues are their corresponding variances. PCA is set

up in such a way that the first principal component is the one with the largest variance

with the succeeding components as the second, third, fourth, etc. largest variance.

2.4 Supervised Learning

Supervised learning is the process of separating n-dimensional data into m classes

using a discriminant function [27]. All data in supervised learning are labeled with their

respective classes. The main objective of supervised learning is to find a discriminant

function that will correctly classify future data. One of the most straightforward cases of
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supervised learning is to separate n-dimensional vectors into two categories, which can be

accomplished using a linear discriminant function.

2.4.1 Classification.

In machine learning, a classifier is a type of supervised learning [28]. All samples in a

training data set are labeled with their correct classes. Some common classifiers are Naive

Bayes, support vector machine (SVM), and Neural Networks. The classifiers used in this

thesis is a multilayer perceptron and SVM.

2.4.2 Multilayer Perceptron.

A multilayer perceptron (MLP) is a neural network with one or more hidden layer [29].

Figure 2.2 is a directed graph of a MLP. Each neuron in the network includes a nonlinear

activation function that is differentiable [30]. The training process for a MLP is split into

two phases: the forward pass and backward pass. In the forward pass, the synaptic

weights of the network are fixed and the input signal is propagated through the network,

layer by layer, producing an output [30]. In the backward pass, the error is calculated from

the outputs of the network, and is propagated back though the network, layer by layer.

During the backward pass, the synaptic weights are adjusted based on the specific training

method incorporated [30].

2.4.2.1 Stochastic Gradient Descent Back-Propagation.

Back-propagation is a popular training method for a MLP [30]. Back-propagration

uses a stochastic gradient descent algorithm to update the weights. Stochastic gradient

descent is an online learning algorithm, which updates the weights between each training

sample [31]. The induced local field, v j(n), is calculated for each neuron using [30]:

v j(n) =

m∑
i=0

w ji(n)yi(n), (2.6)

where m is the total number of inputs, n is the iteration number, and w ji is the weight of

input i going into neuron j. Each neuron output is operated on by an activation function to
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Figure 2.2: A multilayer perceptron network with a m-dimensional input and n-dimensional

output. The i are the inputs and the o are the outputs. The a, b, and z are the hidden layers

with p, q, and r hidden nodes in each hidden layer. The w are the weight associated with

each input and output of each hidden layer node. There are also bias weights associated

with each hidden node.

obtain the function signal y j(n) [30].

y j(n) = ϕ j(v j(n)), (2.7)

where ϕ j(∗) is the activation function for neuron j. This is done for each neuron in the

network, until the output layer is reached. The error signal is computed by [30]:

e j(n) = d j(n) − o j(n), (2.8)

where d j(n) is the desired response of neuron j and o j(n) is the output from the network at

neuron j [30]. The local gradient L is calculated for each neurons, depending on the

neuron’s location in the network, as shown [30]:

L (l)
j (n) = e(L)

j (n)ϕ′j(v
(L)
j (n)), (2.9)

L (l)
j (n) = ϕ′j(v

(l)
j (n))

∑
k

L (l+1)
k (n)w(l+1)

k j (n), (2.10)
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where ϕ′j() is the first order derivative of the activation function. Equation 2.9 calculates

the gradient of neuron j of output layer L [30]. Equation 2.10 calculates the gradient of

neuron j in a hidden layer l [30].

The ∆w is calculated for each neuron and applied to their respective neuron weight as

shown in Equation 2.11 [30].

w(l)
ji (n + 1) = w(l)

ji (n) + α[∆w(l)
ji (n − 1)] − ηL (l)

j yl−1
i (n) (2.11)

In Equation 2.11, η is the learning rate and α is the momentum constant [30]. The learning

rate controls how much the weight and bias change and the momentum constant prevents

the system from converging to a local minimum.

2.4.2.2 Gradient Descent.

Gradient descent applies adjustments to the weight vector in the direction opposite to

the gradient vector. The gradient descent algorithm is described by

w(n + 1) = w(n) − ηg(n), (2.12)

where η is the learning rate and g(n) is the gradient vector evaluated at w(n) [30]. g(n) is

defined as

g = ∇E (w) =

[
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wM

]T
, (2.13)

where E (w) is the cost function [30]. Gradient descent is a batch learning algorithm,

which updates the weights after the network processes a complete training data set [30].

2.4.2.3 Levenberg-Marquardt.

The Levenberg-Marquardt (LM) training method is a blend between the Gauss-Newton

and gradient descent method [32]. LM is a batch learning algorithm that inherits the speed

of the Gauss-Newton algorithm and the stability of the gradient descent method. The basic

idea of the LM algorithm is that it switches between the Gauss-Newton and the gradient

descent training method. The update rule for the LM algorithm is

wn+1 = wn − (JT
n Jn + µI)−1Jnen, (2.14)
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where µ is the combination coefficient, n is the iteration number, J is the Jacobian matrix,

and I is the identity matrix [32]. The combination coefficient, µ, is what switches the

algorithm between the Gauss-Newton and gradient descent method. When µ is small,

Equation 2.14 essentially becomes a Gauss-Newton algorithm [33]. When µ is very large,

Equation 2.14 approximates to the steepest descent algorithm [33]. The JT
n Jn + µI in

Equation 2.14 approximates the Hessian matrix. The Hessian matrix is a second order

derivative of the error function which is computationally complicated to calculate. The

Jacobian matrix is defined as 2.15:

J =



∂e1,1

∂w1

∂e1,1

∂w2
. . .

∂e1,1

∂wN

∂e1,2

∂w1

∂e1,2

∂w2
. . .

∂e1,2

∂wN

...
...

. . .
...

∂e1,M

∂w1

∂e1,M

∂w2
. . .

∂e1,M

∂wN

...
...

. . .
...

∂eP,1

∂w1

∂eP,1

∂w2
. . .

∂eP,1

∂wN

∂eP,2

∂w1

∂eP,2

∂w2
. . .

∂eP,2

∂wN

...
...

. . .
...

∂eP,M

∂w1

∂eP,M

∂w2
. . .

∂eP,M

∂wN



, (2.15)
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where M is the number of outputs and P is the number of samples [32]. The e in Equation

2.14 is the error vector and has the form of [32]

e =



e1,1

e1,2

...

e1,M

...

eP,1

eP,1

...

eP,M



, (2.16)

where eP,M is the error of sample P at output M.

2.4.3 Support Vector Machine.

SVM is a supervised learning algorithm that classifies data by constructing a

hyperplane that maximizes the margin between two classes in the feature space [34, 35].

A hyperplane can be written as a set of points that satisfy

w · x − b = 0, (2.17)

where x is the set of points, b is the offset, and w is the normal vector to the hyperplane

[34, 35]. The norm of w, ‖w‖, must be minimized in order to maximize the margin (ρ)

between the two classes which is define as ρ = 2
‖w‖ [34]. These margins are defined as

w · xi − b ≥ 1, (2.18)

for xi of the first class and

w · xi − b ≤ −1, (2.19)

for xi of the second class and i is the sample of the class [34, 35].
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2.5 Skin

The skin, or integumentary system, covers the external body and accounts for about

7% of body weight [10, 11]. The skin consists of two main layers: the dermis and

epidermis. The epidermis is the outer layer and is composed of epithelial cells. The

dermis is the underlying layer and is mostly fibrous connective tissue. The epidermis

consists of four distinct cell types: keratinocytes, melanocytes, Langerhans (dendritic)

cells, and Merkel (tactile) cells. Keratinocytes make up 90% of the epidermal cells where

their main role is to produce keratin. Melanocytes make up 8% of the epidermal cells and

mainly produce Melanin. [11]

The epidermis is divided up into four to five layers depending on the thickness of the

skin. Skin thickness vaires based on location of the body, e.g. the palm, fingertips, and

sole of the feet are thicker than other areas [10]. The five layers are stratum basale,

stratum spinosum, stratum granulosum, stratum lucidum, and stratum corneum. The

stratum lucidum is only present in thick skin. [11]

There are three chemical compounds that contribute to skin color: melanin, carotene,

and hemoglobin. Melanin is produced in the skin by melanocytes and give the color

ranging from reddish yellow to brownish black. Carotene is produced by plant products

and ranges from yellow to orange. Hemoglobin is a mellatoprotein that gives either a

pinkish hue or a bluish color depending on the oxygenation of the blood. [10]

The skin also differs between genders as mentioned by Giacomoni et al. [14].

Giacomoni’s paper is a compilation of various studies on the human skin to list the

gender-linked differences in human skin. The gender-linked differences in skin include:

metabolism and reaction to sex hormone, concentration of sebaceous glands, rate of

sweating, skin pH, skin thickness, concentration of melanocytes, and rate at which the

skin darkens when exposed to sunlight [14].
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2.5.1 Melanin.

Melanin is produced by melanocytes in the skin using the amino acid tyrosine and an

enzyme called tyrosinase [10, 11]. The synthesis occurs in a cytoplasmic organelle in

melanocytes called a melanosome. Exposure to ultraviolet (UV) light increases

production of melanin in the skin. Aside from contributing to skin color, melanin also

protects the skin from UV light by absorbing the UV radiation. The synthesis of melanin

is catalyzed by tyrosinase. In the presence of zinc, it produces eumelanin which gives the

black to brown color range. Pheomelanin and trichromes are results from addition of

cysteine to dopaquinone. Pheomelanin gives the yellow to reddish brown color. [11] Both

eumelanin and pheomelanin absorb electromagnetic energy between at 400-700nm [36].

Different ethnicity groups have different melanin concentration producing a wide variety

of skin colors [37].

2.5.2 Carotene.

Carotene is a precursor to vitamin A which is needed for synthesis of color in vision

[10, 11]. Carotene produces a yellow-orange color like egg yolk and carrot. Carotene is

stored in the stratum corneum and fatty areas of the hypodermis. It is commonly found in

nature as beta-carotene. Other form of carotenes are cryptoxanthene, alpha-carotene, and

gamma-carotene. Pigments from carotene are most obvious in the palm and the soles

where the stratum corneum is thickest. [10] Carotene absorbs wavelengths at 400-500nm

and is synthesized only by plants [38].

2.5.3 Hemoglobin.

Hemoglobin is an oxygen-carrying protein that is found in red blood cells or

erythrocytes and gives blood the red color pigment [10, 11]. Each red blood cell contains

about 280 million hemoglobin molecules. Each hemoglobin molecule is made up of a

globin protein and nonprotein pigments called a heme. The globin protein is compose of

four polypeptide chains: two alphas and two betas. A heme is bound to each of the
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polypeptide chain. At the center of each heme is an iron ion that is capable of binding to

one oxygen molecule. Hemoglobin carries oxygen from the lung to other parts of the body

and carries carbon dioxide back to the lung to be exhaled. Oxygenated hemoglobin gives

blood a bright red color while deoxygenated hemoglobin gives blood a dark red color.

[10] Oxygenated hemoglobin absorbs wavelengths of 940nm and deoxygenated blood

absorbs wavelengths at 660nm [39].

2.5.4 Bilirubin.

Bilirubin is a yellow-orange pigment and is the breakdown product of the heme

[10, 11]. When the hemoglobin proteins are degraded, the polypeptides are hydrolyzed

into amino acids while the heme groups are converted into bilirubin. Bilirubin is excreted

into bile after it is coupled with glucuronic acid in the liver. When bile production reaches

a certain concentration it is diffused into tissues and produces jaundice. Bile built up in the

tissues gives the yellow coloration of the skin. [11]

2.5.5 Fitzpatrick Scale.

The Fitzpatrick Scale was developed in 1975 as way to classify skin type based on its

response to ultraviolet light exposure [3]. There are six skin types in the Fitzpatrick Scale.

On one end of the scale, Type I is the type that always burns when exposed to sunlight and

never tans. At the other end of the scale, Type VI is the type that never burns and tans

easily. A person is classified into a skin type based on how he/she scores on a series of

questions about his/her genetic disposition and reaction to extended sun exposure. [40]

Table 2.1 lists the skin types and scores based on the Fitzpatrick Scale.

2.6 Normalization

Data normalization is a technique used to reduce data to standard normal form. There

are various way of normalizing data. Depending on the type of data, different normalizing

techniques will work better than others. Normalization helps to eliminate any anomalies
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Table 2.1: [3] Fitzpatrick Scale is used to classify a person into a skin type based on how

he/she scores on a series of questions. Questions are about a person’s genetic disposition

and reaction to extended sun exposure. Each answer to a question has a score associated to

it. Total score is added up from all the questions to determine the skin type.

Type Score Characteristic

Type I 0-6 Pale white; blond or red hair; blue eyes;

freckles. Always burns, never tans.

Type II 7-13 White; fair; blond or red hair; blue, green or

hazel eyes. Usually burns, tans minimally.

Type III 14-20 Cream white; fair with any hair or eye color;

quite common. Sometimes mild burn, tans

uniformly.

Type IV 21-27 Moderate brown; typical Mediterranean skin

tone. Rarely burns, always tans well.

Type V 28-34 Dark brown; Middle Eastern skin types. Very

rarely burns, tans very easily.

Type VI 35+ Deeply pigmented dark brown to black. Never

burns, tans very easily.

that might arise when collecting samples. For skin data, normalization will counteract the

drift in the spectral measurement due to the skin heating up during data collection.

Table 2.2 lists the normalization methods investigated in this thesis.

2.7 Image Registration

Image registration is the process of aligning two or more images in a scene to

overcome rotation, scaling, and skewing [41, 42]. Image registration is commonly used
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Table 2.2: Normalization methods investigated in this thesis.

Normalization Method Formula Description

Max Samples X
Xmax

Normalization by dividing the sample X by the

maximum value of the sample.

Area Normalization X
Xarea

Normalization by dividing the sample X by

the area under the curve of the hyperspectral

sample.

Unary Features X f− fmin

fmax− fmin
Normalization by bounding samples from 0

to 1 in each feature. X f is the feature f in

sample X and fmin and fmax are the minimum

and maximum values of that feature vector in

the data set respectively.

Max Features X f

X f max
Normalization by dividing by the max value

of each feature from the feature vectors of all

samples.

Euclidean X
‖X‖ Normalizes by dividing each sample by its L-2

norm.

Unary Samples X−Xmax
Xmax−Xmin

Normalization by bounding each samples from

0 to 1 in each sample. Xmin and Xmax are the

minimum and maximum values of the sample

X respectively.

with medical and satellite imagery when images are taken from different camera sources.

For this thesis, image registration is needed to match up the information from the different

sensors in the HSI camera. In order for the HSI camera to collect data in the VIS to the

SWIR wavelength, it requires the use of multiple sensors. These sensors are positioned

19



together along the horizontal axis so rotation and scaling of the images are not needed

during image registration. For this thesis, a standard edge detection technique was used

for image registration.

2.8 Related Works

Previous works have shown that not only is it possible to detect skin with HSI, it is also

possible to distinguish a POI within a diverse group [2, 8, 9, 43]. Nunez et al. first

introduced a physics-based model to describe the reflectance of the human skin [9].

Nunez used the Kubelka-Munk theory to create his model of human skin. The model he

created took into account the various level of collagen, oxygenated and deoxygenated

hemoglobin, melanosomes, water, skin depth, bilirubin, and beta-carotene. The model

also took into account the different layers of the skin and their scattering, absorption,

refraction, and reflection properties.

In 2014, Cain proved that it was feasible to identify a dismount in a diverse group with

a high accuracy using a neural network as a classifier [2]. Cain created a database

containing skin spectral data from a diverse group of people with different skin tone and

ethnicity backgrounds. Cain then used the FCBF feature selection method and determined

an optimal feature subset to reduce the feature space. Using the feature subset list, Cain

trained a neural network using gradient descent with momentum and was able to achieve a

high classification accuracy when trying to identify a POI from a diverse group.
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III. Methodology

3.1 Introduction

The baseline model is used to determine whether it can identify a person of

interest (POI) within their skin tone group or not. Parameters in the baseline model are

adjusted to improve classification accuracy. The final model is compared to support vector

machine (SVM) with various kernels. Gaussian noise is added to the training and testing

data sets to simulate atmospheric noise from the day the Hyperspectral imaging (HSI)

images are taken. HSI testing is done with the final model to determine the practical

application in real life.

3.2 Materials and Equipment

Figure 3.1: FieldSpec® 3 with contact probe and ThinkPad. The contact probe is connected

to the FieldSpec® with the optical cable and the power cable. The power cable power the

built in illumination source and the optical cable collect and transmit the electromagnetic

energy to the FieldSpec® 3. The FieldSpec® 3 is used to process, analyze, and interpolate

the data. The data cable transmits the processed data from the FieldSpec to the RS 3

software in the ThinkPad.
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The materials and equipment used consists of an Analytical Spectral Devices (ASD)

FieldSpec® 3 [44] spectroradiometer with contact probe, Specim AisaDUAL

hyperspectral sensor [45], MATLAB® 2014a, RS 3TM [46], ViewSpecTM Pro 6.0 [47],

ENVI 5.0 [48] (Classic), and Weka version 3.7.11 [49]. The FieldSpec® 3 with contact

probe is used to collect skin spectral data. Figure 3.1 shows the FieldSpec® 3 with the

contact probe. The contact probe reduces the effect of noise due to atmospheric

environment by direct contact with the skin. The contact probe has a built in illumination

source to control illumination variance. The FieldSpec® 3 collects samples from 350 nm

to 2500 nm with a sampling interval of 1.4 nm and 2 nm for the spectral region of 350 nm

- 1000 nm and 1000nm - 2500 nm respectively. Figure 3.2 is an example of a spectral skin

sample from the FieldSpec® 3.

To control and minimize noise when collecting data, the contact probe is calibrated

prior to each collection through optimization and white reflectance. Optimization

calibrates the FieldSpec® 3 to a light source. When the contact probe is used with the

FieldSpec® 3, optimization calibrates the FieldSpec® 3 to the built-in light source of the

contact probe. Optimization is accomplished when the ASD is initialized. White

reflectance calibration is performed to normalize the reading. White reflectance is done

every time before samples are taken. Optimization and white reflectance calibrations are

controlled and performed in RS 3TM. RS 3TM is a proprietary software used by ASD to

control the hyperspectral data collect with the FieldSpec® 3. All data collected by the

FieldSpec® 3 using RS 3TM are saved as ′.asd′ file format which is converted by

ViewSpecTM to American Standard Code for Information Interchange (ASCII) ′.txt′ files

for processing in MATLAB®. MATLAB® is used to import and format the data collected

for feature selection. The Neural Network Toolbox in MATLAB® is be used to train and

test the artificial neural network (ANN).
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HSI data is collected using the Specim AisaDUAL hyperspectral sensor. The

AisaDUAL hyperspectral sensor is composed of two detectors: the AisaEAGLE and the

AisaHAWK. The AisaEAGLE collects data in visible and near-infrared (VNIR) range

(400-970nm) with a spectral resolution of 2.9 nm. The AisaHAWK collects data in the

short-wave infrared (SWIR) range (970-2500nm) with a spectral resolution of 8.5nm.

AisaDUAL collects images in radiance, and ENVI is used to remove atmospheric noise

and convert the images from radiance to reflectance.
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Figure 3.2: FieldSpec® 3 skin sample of the forearm.
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3.3 Data

All skin data collected with the ASD is split into specific skin tone groups based on the

melanin concentration. Jablonski and Chaplin identified that melanin is the dominating

chromophore at 685nm [36]. Therefore, reflectance at 685nm is used to split the skin data

into three skin tone groups. The melanin concentration cutoff range for group one is at 8%

while the cutoff range between group two and three is at 16%. The reflectance value for

these cut off ranges are calculated using Nunez’s model [9]. Nunez’s model calculates the

spectral reflectance of a person based on the melanin concentration, blood level,

oxygenation level, dermal thickness, carotene level, and subcutaneous tissue reflectance

[9]. Calculation from Nunez’s model represents data taken when the light source and

sensor are normal to the skin [9]. This is ideal for partitioning the data into groups

because the sensor used to collect the data is normal to the skin. Table 3.1 shows the skin

tone group with their corresponding Fitzpatrick Skin type and melanin concentration.

Table 3.1: Skin tone group and their corresponding melanin concentration

Skin Tone Group Fitzpatrick Skin Type Melanin Concentration

Group 1 Type I & II 0 − 8%

Group 2 Type III & IV 8 − 16%

Group 3 Type V & VI > 16%

Once the data is split into groups, 20% of the data from each group is randomly

selected to create a validation set for each group for the generalization error. The other

80% of the data is used for training. When training and testing the model, a k-fold cross

validation technique is used in reporting the classification accuracy. To obtain the

generalization error, all data in the training set is used to train the ANN and validation set
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is used for validation. No data is held out during training when calculating the

generalization error.

3.4 Baseline Model Testing

The configuration for the baseline model is shown in Table 3.2. Table 3.2 defines a

configuration of a neural network that is modeled in MATLAB® using the Neural

Network Toolbox.

Table 3.2: Baseline Model Parameters

Parameter Value

Inputs f, number of features

Outputs c, number of classes

Neurons in hidden layer h = N+O
2

Hidden layers 1

Training Function Gradient Descent

Activation Function Sigmoid: f (x) = (1 + e−x)−1

Learning rate 0.3

Momentum 0.2

Epochs 500

Cross Validation (K) 5

Normalization Method l2 − norm

Features 1024,1014,1033,1348

When modeling in MATLAB®, the training function is set to traingdm. MATLAB®’s

traingdm algorithm is a gradient descent function with momentum backpropagation

training technique. Equation 3.1 is a weight update equation with the momentum variable
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α for the backpropagation technique as defined by Robert Jacobs [50], and explained in

Section 2.4.2.1.

w(l)
ji (n + 1) = w(l)

ji (n) + α[∆w(l)
ji (n − 1)] − ηL (l)

j yl−1
i (n) (3.1)

Skin tone group one is tested to determine the validity of the baseline model. During

data collection, ten samples are taken from each individual. For group one, there are a

total of 400 samples in the training set and 100 samples in the validation set or 40 and 10

dismounts/classes respectively. When a POI is tested, all ten of their samples are extracted

from the training set and replicated to match the number of non-POI. For example, when

the first POI from group one is tested, all ten of the POI’s samples are extracted and are

replicated 38 times to match the 390 non-POIs’ samples. This is done to prevent biasing

the network when training the model. All POI samples are labeled as 1 and all non-POI

samples are labeled as 0. The POI samples are also duplicated to match the number of

non-POI samples in the validation set. All results are reported as Equal Weighted

Average (EWA) which is define as

EWA =
PPOI + Pnon−POI

2
, (3.2)

where PPOI is the probability of detecting the POI and Pnon−POI is the probability of

detecting non-POI. The results for the evaluation set are presented in a confusion matrix

format and the terms and formulas for the operating characteristic values are defined in

Table 3.3.

3.5 Optimizing Model

To optimize the network model, various parameters are adjusted. The normalization

methods, transfer functions, network topology, and training functions are investigated to

determine the best neural network model. To determine the best normalization method for

the ANN, the training and activation function remain constant while different
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Table 3.3: Operating Characteristic Values

Term Description/Formula

True Positive (TP) Number of correctly identified POI

True negative (TN) Number of correctly identified non-POI

False Positive (FP) Number of non-POI’s identified as POI’s

False Negative (FN) Number of POI’s identified as non-POI’s

Sensitivity or True Positive Rate (TPR) T P
T P+FN

Specificity (SPC) or True Negative Rate (TNR) T N
FP+T N

Precision or Positive Predictive Value (PPV) T P
T P+FP

Negative Predictive Value (NPV) T N
T N+FN

False Omission Rate (FOR) FN
FN+T N

Fall-out or False Positive Rate (FPR) FP
FP+T N

False Discovery Rate (FDR) 1 − PPV

Miss Rate or False Negative Rate (FNR) FN
FN+T P

Accuracy (ACC) T P+T N
T P+FN+FP+T N

normalization and network topologies are varied. The top two normalization methods are

kept for further testing based on their average classification accuracy. Because there are

infinite possible combinations for topologies, the maximum number of hidden layers and

hidden nodes are limited to five hidden layers and five hidden nodes per layer. This

limiting the maximum number of hidden layers and hidden nodes narrows down the

topology search space to 3905 combinations. When varying topologies, 15 different

combinations are picked for testing. The topologies are picked by randomly picking three

combinations from each possible number of hidden layers. For example, three

combinations are picked when there is only one hidden layer with a maximum of five

hidden nodes in the layer.
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Based on the top two normalization methods, the best activation function is determined.

The training function remains constant while the topology and the activation function

change. The number of topology combinations tested is the same as the normalization

test. The number of activation functions tested is 15. The activation functions investigated

are: competitive, elliot symmetric sigmoid, hard-limit, symmetric hard limit, log-sigmoid,

inverse, positive linear, linear, radial basis, normalized radial basis, saturating linear,

symmetric saturating linear, soft max, hyperbolic tangent sigmoid, and triangular basis.

Each activation function is tested with the top two normalization methods to narrow down

the best normalization technique. This process is repeated to determine the best training

function and best topology. During topology testing, normalization method, activation

function, and training function are held constant while the topology changes.

3.6 Support Vector Machine

A SVM with different kernels is tested to compare to the final neural network model

presented in Section 3.5. The SVM kernels that are investigated are linear, radial basis

function, and polynomial. The same data sets used for the neural network model are used

with the SVM. The SVM is implemented in MATLAB® with the svmtrain and

svmclassi f y functions. Table 3.4 shows the Kernel and their corresponding equations.

There are various parameters that can be set for svmtrain, however, only the autoscale and

kernel f unction parameters are adjusted. All other parameters are left at default as

specified in the MATLAB® documentation for svmtrain. The parameter autoscale is set

to specify whether svmtrain automatically centers the data points at their mean and scales

them to have unit standard deviation. This parameter is set false because the data sets are

already normalized. The kernel f unction specifies the kernel function that svmtrain uses

to map the data. This parameter is set to either linear, polynomial, or rb f .
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Table 3.4: SVM Kernels that are investigated. These are the kernels that are available for

the svmtrain in MATLAB®. The kernel is specified with the kernel f unction parameter.

Kernel Equation

Gaussian or Radial Basis Function G(x1, x2) = exp(−‖x1 − x2‖
2)

Linear G(x1, x2) = xT
1 x2

Polynomial G(x1, x2) = exp(1 + xT
1 x2)p)

3.7 Testing New Model With Other Skin Tone Groups

After the best network configuration is determined, POIs from other skin tone groups

are tested to ensure the model accuracy for all groups. Similar to the testing of group one,

four POIs are chosen and data are duplicated for training and testing in each group.

Table 3.5 shows the settings for the final neural network model.

Table 3.5: Final Model

Parameter Value

Inputs 4

Outputs 2

Neurons in hidden layer 3

Hidden layers 1

Training Function Levenberg-Marquardt

Activation Function Radbas: f (x) = exp(−x2)

Epochs 500

Cross Validation (K) 5

Normalization Method Dividing by the max of each sample

Features 1024,1014,1033,1348
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3.8 Noise Testing

Before testing with real HSI images, the network model is tested with noisy data. The

noisy data are created by adding Gaussian noise to the clean FieldSpec® 3 data. The

Signal-to-Noise Ratio (SNR) of the Gaussian noise is determined by calculating the

standard deviation from the atmospheric noise determined from a National Institute of

Standards and Technology (NIST) certified Spectralon® white panel in the HSI image.

Noises are generated and added to the samples in the training and validation sets. Two

noise simulation tests are done to determine the effect of atmospheric noise on the model.

For one test, non-noisy FieldSpec® 3 data are used for training and noisy FieldSpec® 3

data are used for validation. Other tests focus on both training and validation data

incorporating noise. Figure 3.3 is an example of skin data with Gaussian noise applied.

3.9 HSI Testing

The HSI images that are used for testing were collected using the AisaDUAL during

the Minor Area Motion Imagery (MAMI) data collect in 2013 at Air Force Research

Laboratory (AFRL). The AisaDual system is made up of the AisaHawk and AisaEagle

sensors mounted together in a dual sensor bracket mount. Both sensors are vertically

aligned. All images had to be registered to align data from both sensors in the image.

Image registration is done in MATLAB® with code written by Lt James Arneal. The

image registration code used the Sobel method for edge detection to determine how many

pixels needed to be shifted for the data to line up.

For HSI testing, two images are used for training and a third is used for testing. Skin

pixels for the first two images are hand selected and registered to create the training set.

For the testing image, each individual in the image is outlined and registered to create a

testing set. The results are compared to a truth image to determine the accuracy.

Figure 3.4 contains the testing image with the POI and non-POIs outlined and the
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Figure 3.3: ASD skin sample with Gaussian noise. The red line is the original clean skin

sample and the blue line is the skin sample with Gaussian noise applied.

corresponding truth image. The POI is outlined in green and the non-POIs are outlined in

red. There are a total of 91 POI pixels and 357 non-POIs pixels in the truth image.

Figure 3.5 shows the two training images with the POI and non-POIs used for the

training set outlined. The POI is outlined in green and the non-POIs are outlined in red.

Two non-POIs are omitted from the training set from both images due to the difficulty of

discerning their skin pixel from their shirt and shadow pixels.
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Figure 3.4: The test image is at the top and the truth image is the bottom. In the test image,

the POI is outlined in green and the non-POIs are outlined in red. In the truth image, the

white pixels are the POI and the green pixels are the non-POIs. There are 91 POI pixels

and 357 non-POIs pixels in the truth image.
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Figure 3.5: Training Images. The POI is outlined in green and the non-POIs are outlined

in red. Two non-POIs were not used due to the difficulty in distinguishing their skin pixels

from their shirt or shadow pixels.
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IV. Results and Analysis

This chapter is divided into five sections. Section 4.1 presents the results from testing

the baseline model with the different skin tone groups. In Section 4.2 the results from

testing the different normalization methods, activation function, training function, and

network size in order to determine an optimal model are shown. The results from testing

with different persons of interest (POIs) from different skin tone groups are shown in

Section 4.3. Section 4.4 presents the results from testing the network with Gaussian noise.

Results from testing the model with Hyperspectral imaging (HSI) data are presented in

Section 4.3.

4.1 Model Testing

All data, used with the baseline model, is collected using an ASD FieldSpec 3

spectroradiometer with a contact probe. Each data sample is collected from 350 nm to

2500 nm wavelength with spectral resolution of 3 nm at 700 nm, 10 nm at 1400 nm, and

10 nm at 2100 nm. Ten samples are collected from each individual. The data set contains

sample ranges from fair to dark skin from 101 individuals. The data set is parsed into

three groups based on the melanin concentration at 685 nm. Jablonski and Chaplin

identified that melanin is the dominating chromophore at 685 nm [36]. There are a total of

500 samples for group one, 390 samples for group two, and 120 samples for group three.

For each skin tone group, 20% of the samples are extracted to create the validation set for

their respective group. Figure 4.1 and 4.2 show the distribution of the samples in the

training and testing sets. The figures also contain vertical lines to indicate the four features

that Cain identified as the optimal features at identifying a POI in a diverse skin tone

group as well as the location of the 685 nm wavelength that is used to divide them into

groups. The vertical solid lines indicate the features while the vertical dash line denotes
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the 685 nm wavelength used to divide the samples into their skin tone groups. Group one

has the melanin concentration distribution of 8% or less, group two is between 8-16%, and

group three is above 16% [51].

(a) Group 1 Training Set (b) Group 1 Validation Set

Figure 4.1: Distribution of all classes in Group 1. The vertical dashed line denotes the 685

nm wavelength used to divide the samples into their skin tone groups. The vertical solid

lines indicate the features (1024 nm, 1014 nm, 1033 nm, and 1348 nm). Group one has the

melanin concentration distribution of 8% or less. Each color line is a sample of a class.

The baseline model is set up with the parameters listed in Table 3.2. Table 4.1 shows

the classification accuracy of the 5-fold cross validation as well as the average accuracy of

the 5-fold cross validation for the first four POIs in group one. Figure 4.2 shows the

confusion matrix with the general classification accuracy for the first four POIs in group

one. The general classification accuracy is obtained by using all the data in the training set

to train the neural network and test with the testing set.

From the results in Table 4.2 and Table 4.3, the baseline model demonstrated an

accuracy of 69-90%. Table 4.3 contains the operating characteristic values calculated from

the POI in Table 4.2. Under closer inspection, out of the 32 misclassifications for POI 1,
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(a) Group 2 Training Set (b) Group 2 Validation Set

(a) Group 3 Training Set (b) Group 3 Validation Set

Figure 4.2: Distribution of all classes in Group 2 and 3. The vertical dashed line denotes

the 685 nm wavelength used to divide the samples into their skin tone groups. The vertical

solid lines indicate the features (1024 nm, 1014 nm, 1033 nm, and 1348 nm). Group two

has the melanin concentration distribution between 8% and 16%. Group three has the

melanin concentration distribution of 16% or more. Each color line is a sample of a class.

20 of them are full misclassifications. A full misclassification is when all ten samples of a

non-POI are classified as the POI and a partial misclassification is when there is less than

36



Table 4.1: Accuracy of the five fold cross validation for the first four POIs of group one

using the baseline model. The average is calculated from averaging the results of the five

folds.

POI Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

1 75% 83% 83% 83% 80.5% 80.9%

2 79.5% 86% 75% 83% 73% 79.3%

3 90% 81% 90.5% 90% 91% 88.5%

4 73% 81% 83.5% 81.5% 73% 78.4%

Table 4.2: Generalized Accuracy: the generalized accuracy is obtained by using all the data

in the training set of group one to train the neural network and test with the testing set.

POI 1

Truth

POI nonPOI Total
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ed
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POI 100 32 132

nonPOI 0 68 68

Total 100 100

POI 2

Truth

POI nonPOI Total

C
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ed
A

s

POI 100 38 138

nonPOI 0 62 62

Total 100 100

POI 3

Truth

POI nonPOI Total

C
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ss
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ed
A

s

POI 100 20 120

nonPOI 0 80 80

Total 100 100

POI 4

Truth

POI nonPOI Total

C
la

ss
ifi

ed
A

s

POI 100 61 161

nonPOI 0 39 39

Total 100 100
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Table 4.3: Operating Characteristic values for POIs 1-4 for Table 4.2.

POI 1 POI 2 POI 3 POI 4

Sensitivity or True Positive Rate (%) 100 100 100 100

Miss Rate or False Negative Rate (%) 0 0 0 0

Fall-Out or False Positive Rate (%) 32 38 20 61

Specificity or True Negative Rate (%) 68 62 80 39

Precision or Positive Predictive Value (%) 75.8 72.5 83.3 62.1

False Omission Rate (%) 0 0 0 0

False Discovery Rate (%) 24.2 27.5 16.7 37.9

Negative Predictive Value (%) 100 100 100 100

Equal-Weighted Accuracy (%) 84 81 90 69.5

ten samples of a non-POI that are misclassified. In the case of POI 1, two non-POIs were

misclassified as the POI. The other 12 misclassification are partial misclassifications. For

the other POIs in group one, there are 3 full misclassifications for POI 2, 2 full

misclassifications for POI 3, and 6 full misclassifications for POI 4. The number of full

misclassifications are high and are not consistent throughout. For real world application

the network needs to be adjusted to reduce the number of misclassifications and be

consistent.

4.2 Parameter Testing

There are numerous parameters that can be adjusted to improve the accuracy of the

neural network. However, only four parameters are explored in this thesis: normalization

methods, activation functions, training functions, and topology. Table 2.2 lists the

different normalization methods that are investigated. The top two normalization methods

are determined by taking the average accuracy from the 15 combinations and are kept for
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further testing. The results for the top two normalization methods are in Tables 4.4 to 4.7.

Results for other methods are presented in Appendix A. All percent accuracy results are

Equal Weighted Accuracy calculated from the generalized results. The topologies are

denoted as [i, l1, l2, l3, . . . , ln, o] where the i is the number of inputs, the o is the number of

outputs, and ln is the number of nodes in the nth hidden layer. The ‘Max Samples’

normalization has an average accuracy of 72.36% and ‘Unary Samples’ normalization has

an average accuracy of 73.83%.

Table 4.4: Top two normalization method results from testing different normalizations with

one or two hidden layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 1 2] [4 4 2] [4 5 2] [4 3 2 2] [4 3 4 2] [4 5 3 2]

N
or

m
M

et
ho

d Max Samples 40% 61.5% 78% 50% 65.5% 67.5%

Unary Samples 74.5% 78.5% 79% 40.5% 84% 83.5%

Table 4.5: Top two normalization method results from testing different normalizations with

three hidden layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 3 1 1 2] [4 5 3 5 2] [4 1 2 1 2]

N
or

m
M

et
ho

d Max Samples 93% 85.5% 83%

Unary Samples 82.5% 93.5% 45%
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Table 4.6: Top two normalization method results from testing different normalizations with

four hidden layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 4 3 1 3 2] [4 5 4 2 5 2] [4 2 2 3 5 2]

N
or

m
M

et
ho

d Max Samples 82.5% 50% 83%

Unary Samples 83% 56.5% 97%

Table 4.7: Top two normalization method results from testing different normalizations with

five hidden layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 2 1 4 1 2 2] [4 4 4 4 4 5 2] [4 5 4 4 1 4 2]

N
or

m
M

et
ho

d Max Samples 78% 85% 83%

Unary Samples 50% 75% 85%

There are five stopping criteria in the Neural Network Toolbox in MATLAB® that can

be set to prevent overfitting. The five stopping criteria are min grad, max f ail, time, goal,

and epochs. Only the min grad, max f ail, and epochs are changed from the MATLAB®

default values. The time and goal parameters are kept at the MATLAB® default values.

The min grad parameter is the Minimum Gradient Magnitude, and max f ail parameter is

the Maximum Number of Validation Increases. The Maximum Number of Validation

Increases represents the number of successive iterations that the validation performance

fails to increase [52]. During these tests, the epochs, min grad, and max f ail are set to
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500, 0, and 50 respectively. The neural network continues training on the data samples

until one of the five stopping criteria is met.

Testing of the activation and training functions is executed similarly to testing of the

normalization methods. Similar to the testing of the normalization methods, only the

parameter that is being tested and the topology are changed while all other parameters are

kept constant per Table 4.1. The topology is limited to 15 randomly selected combinations

similar to the normalization test. However, the activation functions will also be tested with

the top two normalization methods that were determined. Different training functions are

tested with the top normalization and activation function with varying topologies while all

other parameters are kept constant per Table 4.1. Tables 4.8 to 4.9 shows the top two

results from testing all the different activation functions available in the MATLAB®

Neural Network Toolbox. Only the results for the topologies with only one hidden layer

are shown in Tables 4.8 to 4.9. Results for other activation functions and hidden layers

combinations are presented in Appendix A. The activation function radbas, radial basis,

performed the best overall with an average accuracy of 87.23% when combined with ‘Max

Samples’ normalization. When used in combination with ‘Unary Samples’ normalization,

radbas produces an average accuracy of 84.83%.

Table 4.10 shows the results from testing three different training functions in

MATLAB®: traingdm, traingdx, and trainlm. The training function traingdm is the

gradient descent with momentum. The function traingdx is the same as traingdm except

the learning rate decays. The trainlm function utilizes the Levenberg-Marquardt algorithm

instead of gradient descent to train the network. For the traingdm and traingdx, the

momentum and learning rate are set to 0.3 and 0.2 respectively. The normalization method

and activation function are set to ‘Max Samples’ and radbas respectively. For trainlm, all

parameters kept at MATLAB® default values with normalization and activation functions

set to ‘Max Samples’ and radbas. Averaging the results of the different topologies,
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Table 4.8: Top two activation functions as determined by nomalization and MLP topology.

The activation functions radbas and tribas are radial basis and triangular basis respectively.

The results here are only from MLP topology with one hidden layer. Appendix A contains

results for all other activation functions and hidden layers. All results are calculated Equal

Weighted Accuracy generalized results.

Normalization Method

Max Samples Unary Samples Max Samples Unary Samples

[4 5 2] [4 5 2] [4 4 2] [4 4 2]

A
ct

iv
at

io
n

Fu
nc

tio
n radbas 88% 84% 91.5% 83.5%

tribas 97.5% 84% 88% 75%

Table 4.9: Top two activation functions as determined by nomalization and MLP topology.

The activation functions radbas and tribas are radial basis and triangular basis respectively.

The results here are only from MLP topology with one hidden layer. Appendix A contains

results for all other activation functions and hidden layers. All results are calculated Equal

Weighted Accuracy generalized results.

Normalization Method

Max Samples Unary Samples

[4 1 2] [4 1 2]

A
ct

iv
at

io
n

Fu
nc

tio
n radbas 74% 69.5%

tribas 89% 50%
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trainlm achieved an average accuracy of 95.55% while traingdm and traingdx achieved

84.3% and 91.7% respectively.

Table 4.10: Results from testing different training functions. All results are Equal Weighted

Accuracy calculated from using all data in the training set for training.

Topology

[4 5 2] [4 4 2] [4 1 2]

Tr
ai

ni
ng

Fu
nc

tio
n traingdx 88% 91.5% 74%

traingdm 88.5% 91% 65%

trainlm 97.5% 80.5% 60%

When testing for the best topology, parameters for normalization, activation, and

training function are ‘Max Samples’, ‘radbas′, and ‘trainlm′ respectively. Other

parameters remain the same as the baseline model while the number of hidden layers and

hidden nodes are varied. In MATLAB®, when a topology has more than one hidden layer,

an activation function must be specified for each hidden layer. If no activation function is

specified then MATLAB® would use the default activation function of tansig. A test was

accomplished with no hidden layer or node to determine if it is beneficial to have hidden

layers and nodes. The results shows that having hidden layers and nodes does have a large

effect on classification accuracy. However, it appears that the numbers of hidden layers

and hidden nodes have little effects on the classification accuracy. This is due to the fact

that after adjusting the normalization, activation, and training functions, the neural

network was able to achieve a relatively high classification accuracy causing any possible

gain from a larger topology to be minimal.
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4.3 Group Testing

Table 4.11 is the final network configuration determined from the results presented in

Section 4.2. Using this network configuration, POIs from group two and three are tested

to validate effectiveness of the network for all skin tone groups. Table 4.12 shows the

results of the classification accuracy from testing the first four POIs in group one. Results

for group two and three are in Appendix B. Tests are accomplished with SVM using

different kernels to compare the effectiveness of the neural network. Table 4.13 shows the

SVM result for group one with the polynomial kernel. Results from group two and three

as well as other kernels can be seen in Appendix B. Changing the kernels in the SVM did

not appreciatively affect the accuracy. Overall the neural network performs better than

SVM at identifying skin. The parameters adjustment based on the results from previous

tests also improved the classification accuracy of the neural network.

Table 4.12: Accuracy of the five fold cross validation for the first four POI of group one.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 96% 100% 100% 100% 100% 100%

POI 2 96% 92% 100% 97.5% 100% 91.5%

POI 3 90% 83.5% 100% 81.5% 99.5% 99.5%

POI 4 85% 100% 100% 95% 73.5% 94.5%
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Table 4.11: Final model from testing the various normalization methods, activation

functions, training functions, and topologies available in MATLAB®. Final normalization

method, activation function, and training function were determined by the best average

accuracy from varying the topology.

Parameter Value

Inputs 4

Outputs 2

Neurons in hidden layer 3

Hidden layers 1

Training Function Levenberg-Marquardt

Activation Function Radbas: f (x) = exp(−n2)

Epochs 500

Cross Validation (K) 5

Normalization Method Dividing by the Max

Features (nm) 1024,1014,1033,1348

Table 4.13: SVM Results with polynomial kernel for the first four POIs in group 1. The

results are for the five fold cross validation. All results are calculated with Equal Weighted

Accuracy.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 73% 73% 73% 66% 72.5% 72%

POI 2 55% 55% 55% 55% 55.5% 59.5%

POI 3 90% 90% 90% 90% 90% 90%

POI 4 51.5% 56% 61.5% 61.5% 56.5% 62.5%
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4.4 Simulated Noise

Before testing with HSI images, the network model is tested with noisy ASD data.

Gaussian noise is added to the non-noisy ASD data to simulate the atmospheric noise for

the specific day the HSI images were taken. To determine the noise standard deviation,

spectral data from a spectralon white panel in the HSI image is extracted and the standard

deviation is calculated. The spectralon white panel is National Institute of Standards and

Technology (NIST) certified with a known reflectance of 1 from the 350 nm to 2500 nm

wavelength. Noise in the data recorded from the spectralon is considered as atmospheric

noise. The HSI images were taken with an AisaDUAL hyperspectral sensor. The

AisaDUAL consist of the AisaHAWK and the AisaEAGLE. The AisaEAGLE is a VNIR

sensor that collects spectral data in the 400-970 nm range with a spectral resolution of 3.3

nm. The AisaHAWK is a short-wave infrared (SWIR) sensor that collect spectral data in

the 970-2500 nm range with a spectral resolution of 12 nm. However, even though the

AisaDUAL specification listed it as capable of collecting spectral data between 400-2500

nm, actual HSI images were only able to collect in the 402-2455 nm range. The HSI

images taken have spectral bands of 4.6 nm in the visible and near-infrared (VNIR) range

and 5.8 nm in the SWIR range. This gives a total of 361 spectral bands from the 402-2455

nm range. The standard deviation was calculated for each spectral band in the HSI

between the 402-2455 nm range using the std function in MATLAB®. Figure 4.3 shows

the standard deviation of the noise for each band of the spectralon white panel.

There are three wavelength ranges that show an increase in noise. The increase of noise

in the 927-1017 nm range is due to the transitioning between the two sensors in the

AisaDUAL. Figure 4.4 is a layer in the HSI image at wave band 1007 nm which shows the

transition from the AisaEAGLE to the AisaHAWK. The increase of noise in the

1329-1454 nm and 1797-1991 nm is due to the water in the atmosphere. Given that there

are only 361 band from the HSI image, interpolation of the data was needed to account for
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Figure 4.3: The standard deviation for the noise calculated from the spectralon white panel

in the HSI image taken during the MAMI data collect in 2013. The standard deviation

is calculated for each of the waveband taken by the AisaDUAL. The increase in noise in

the 1000nm range is due to the transitioning between the AisaEAGLE and AisaHAWK.

The increase in noise in the 1300 nm and 1800 nm regions are due to the water in the

atmosphere.

each wavelength between 402-2455 nm and was accomplished using the interp1 function

with ‘spline′ method in MATLAB®. Wavelength from 350-402 nm and 2455-2500 nm

ranges in the ASD data were removed to match the data from the HSI image. The standard

deviation for each wavelength from 402 nm to 2455 nm are used to generate the Gaussian

noise and is added to each ASD sample in the data set. Figure 4.5 shows the spectral data
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of a non-noisy spectralon white panel with Gaussian noise added, and the spectral data of

the spectralon white panel from the HSI image.

Figure 4.4: A layer in the HSI image at wave band 1007 nm. As can be seen in the figure,

the ghosting effect indicates the transition from the AisaEAGLE to the AisaHAWK. This

require image registration to correctly align the two sensors.

Two different tests are performed with Gaussian noise. A test is performed by training

the neural network with non noisy ASD data and testing the network with noisy ASD

data. Another test is accomplished by both training and testing the neural network with

noisy ASD data. Table 4.14 shows the results of training with non-noisy data and

Table 4.15 shows the results of training with noisy data for group one. Results for group

two and three are in Appendix C. The results show that training with noisy data performs

better than non-noisy data. The results show a small decrease in accuracy when training

with noisy data. This is because of the increase of noise in the 1000 and 1300 nm regions.

As previously mentioned, the 1000 nm region is where the sensor transitions from the

AisaEAGLE to the AisaHAWK and the 1300 nm region is the water absorption region.
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Figure 4.5: This shows the spectral data of a non-noisy spectralon white panel with

Gaussian noise added, and the spectral data of the spectralon white panel from the HSI

image. The red line is the spectralon white panel from the HSI image and the blue line is

the non-noisy spectralon white panel with Gaussian noise added.

Three of the four features in the optimal feature set are in the 1000 nm range and the

fourth feature is in the 1300 nm water absorption region.

4.5 HSI Testing

Three HSI images are used for HSI training and testing. The HSI images are collected

using the AisaDUAL hyperspectral sensor system. The first two are used for training
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Table 4.14: Classification results of training with non noisy data for Group 1

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 45.5% 55% 44.5% 50% 53% 49.5%

POI 2 50% 49% 48.5% 47% 47.5% 50.5%

POI 3 65% 66.5% 50% 60.5% 57% 65%

POI 4 43% 41.5% 35.5% 48.5% 52.5% 50%

Table 4.15: Classification results of training with noisy data for Group 1

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 81% 77% 80.5% 82.5% 94% 86.5%

POI 2 83.5% 89% 84.5% 82.5% 84.5% 93%

POI 3 95% 85% 88.5% 85.5% 97.5% 94%

POI 4 90% 91.5% 86.5% 90.5% 89.5% 91%

while the third is used for testing. In the first two images, the skin pixels are individually

selected with the ginput function in MATLAB®. The selected pixels are labeled and

normalized accordingly. The images are also registered prior to pixel extraction. Image

registration is required to align the data from the two sensors in the AisaDUAL. As can be

seen from Figure 4.4, the parallax causes a larger offset for objects closer to the

AisaDUAL. This require each POI and non-POI to be registered separately and then

combined to make the training set. Image registration is accomplished using edge

detection courtesy of the code created by Lt James Arneal.

Figure 4.6 contains the training images used for the network. In both images, the POI

is outlined in green and the non-POIs are outlined in red. Two non-POIs in both images
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Figure 4.6: Training Images. The POI is outline in green and the non-POIs are outlined in

red. Two non-POIs were not used due to the difficulty in distinguishing their skin pixels

from their shirt or shadow pixels.

were not used due to the difficulty of discerning their skin pixels from their shirt and

shadow pixels.

Figure 4.7 is the test image used for evaluating the network. The bottom image in

Figure 4.7 is the truth image used to calculate the classification accuracy. The white pixels

in the truth image are the POI skin pixels and the green pixels are the non-POIs’ skin
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Figure 4.7: The test image is at the top and the truth image is the bottom. In the test image,

the POI is outline in green and the non-POIs are outlined in red. In the truth image, the

white pixels are the POI and the green pixels are the non-POIs. There are 91 POI pixels

and 357 non-POI pixels in the truth image.

pixels. There are a total of 91 POI and 357 non-POI pixels in the truth image. Figure 4.8

is the result from the neural network. The neural network was able to correctly classify

four of the POI skin pixels. However, the network also misclassify 79 of the non-POI

pixels. The classification accuracy of the network is roughly around 41%.
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Figure 4.8: Result from using the optimal feature set (1014 nm, 1024 nm, 1033 nm, and

1348nm) with the neural network. Identified POI pixels are colored in white and non-POI

pixels are colored in light blue. Most of the POI pixels are correctly identified, however,

most of the non-POIs are also incorrectly identified as the POI.

Fast Correlation-Based Filter (FCBF) was reaccomplished to determine if a new

feature set can alleviate the disparity between the HSI result and the results from the noise

simulation tests. Certain wavelength ranges were omitted from FCBF in order to avoid

obtaining the same feature set. Ranges between 927-1017 nm, 1329-1454 nm, and

1797-1991 nm were omitted because they are in the water absorption spectrum and the

sensor transitioning range. Wavelength range of 390-800 nm was also omitted because

they are the color spectrum and are highly dependent upon lighting. FCBF was performed

on the simulated noisy ASD data with the aforementioned wavelengths removed. The

resulting wavelengths from FCBF are 804 nm, 1137 nm, 891 nm, 1343 nm, 1285 nm,

1255 nm, 1564 nm, and 1695 nm. Figure 4.9 is the result from using the top four features

in the new feature set.
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Figure 4.9: Result of neural network with the top four features (804 nm, 1137 nm, 891 nm,

1343 nm) in the new feature set.

The Equal Weighted Average (EWA) of the new feature set is roughly 54%. Tests are

ran with the new feature set using l2 norm and bigger topology. The EWA for these tests

are between 50% - 60% and their results are in Appendix D. A closer examination at the

pixels used to train the network helped determined the cause of the poor performance.

Figure 4.10 shows some of the samples of the POI and non-POIs used for training the

network. Both the POI and non-POI samples exhibit a large overlapping range. Even after

normalization, the samples still showing large overlap as can be seen in Figure 4.10.

The large variation in spectral data for the POI can be caused by the different angles of

incidence. As can be seen in Figure 4.11, the different angles of incidence have a large

effect in the intensity level. Even though the samples are taken from the same person, the

different intensity due to the different angles of incidence can cause the samples to be

construed as samples from a different person. The large variation can also be due to the

different area of the body. Cain demonstrated that different areas of the body have slightly
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Figure 4.10: (a) shows the samples of the POI and non-POIs used for training the network.

The samples shown are not normalized. (b) shows samples of the POI and non-POIs after

normalization using normalization method number 1.

different spectral readings [2]. The different area of the body and the different angles of

incidence could have contributed to the large variation in the POI and non-POIs samples.
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Figure 4.11: Samples of the POI and non-POIs after normalization using normalization 1.
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V. Conclusion

5.1 Introduction

This thesis tested and determined if a baseline neural network model was sufficient in

identifying a person of interest (POI) within his/her skin tone group and assessed the

practical application of using an artificial neural network (ANN) for identification with

real world hyperspectral images. A baseline model of the neural network was created in

MATLAB® using the Neural Network Toolbox and was determined to be sufficient at

identifying the POI down to 2-4 people. However, to obtain better classification accuracy,

a higher fidelity model is required. The normalization method, activation function,

training function, and topology were investigated and optimized to determine a better

classification model. Based on the results from investigation, a new optimized neural

network model was determined and compared to a support vector machine (SVM) model

with different kernels to determine which classifier is better at skin identification.

Gaussian noise was added to test the model to simulate atmospheric noise in an

Hyperspectral imaging (HSI) image. The new neural network model was tested with real

HSI images to determine real world application.

5.2 Summary of Results

By optimizing the multilayer perceptron (MLP) model, the training function provided

the highest improvement compared to the normalization, activation function and topology.

The classification accuracy increased from 69-90% to 80-100% when the training function

was changed from gradient descent with momentum to the Levenberg-Marquardt

algorithm. Changing the topology showed minimal improvement to the classification

accuracy. However, the minimal improvement was because after adjusting the

normalization, activation and training functions, the classification accuracy was already in
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the 90-99% range. A second topology test was accomplished with the normalization,

activation function, and training function set to the same configuration as the baseline

model. The results from this test showed that varying the topology provided stability of

the ANN rather than improving the classification. The new ANN model showed large

improvements in identifying the POIs within their respective skin tone groups over the

baseline model.

When comparing the new ANN model with a SVM, the new ANN model outperformed

the SVM model in all three skin tone groups. Both SVM and the new ANN model used

the same data and the SVM results were inconsistent. SVM showed large differences in

classification accuracy between different POIs in the same class as compared to the neural

network. The neural network was consistently able to classify with Equal Weighted

Average (EWA) in the 90-100% range for POIs within the same skin tone group. SVM

classification accuracy showed a range of 60-94%. Using different kernels in the SVM, the

differences in the accuracy are negligible. The inconsistency and large standard deviation

of classification accuracy with the SVM results make it unsuitable for POI identification.

The neural network showed high classification accuracies for noisy data. The noise

was generated from the standard deviation calculated from each wave band of the

spectralon white panel in the HSI image and modeled by a Gaussian noise model. The

high accuracy is only achievable when the network was trained with noisy data. When

training with non-noisy data and testing with noisy data, the network shows a dramatic

decrease in classification accuracy. When training with non-noisy data and testing with

noisy data, the accuracy dropped to 40-65%, however, training with noisy data increases

the accuracy to 75%-94%. The decrease in accuracy compared to training and testing with

non-noisy data is due to the high level of noise in the 1000 nm and 1300 nm range. The

noise increase around 1000 nm can be attributed to the transition between the AisaEAGLE
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and the AisaHAWK, and the noise at the 1300 nm bandwidth can be attributed to the

water absorption phenomenon.

Based on the results from testing with noisy data, it was assumed that there would be a

decrease in accuracy when testing with real HSI images. The results in Section 4.5

verified that the classification accuracy did decrease. The classification accuracy was

lower compared to the simulated noise results. This decrease from simulated data to real

data is attributed to the fact that the feature set that was identified as the optimal features

were in highly noisy regions. The optimal features that were identified, 1024 nm, 1014

nm, 1033 nm, and 1348 nm, were in the water absorption spectrum and the ranges where

the AisaDual transitions from the AisaEagle to the AisaHawk. This required a new set of

features, requiring Fast Correlation-Based Filter (FCBF) to be reaccomplished. When

FCBF was reaccomplished, the sensors transitioning wavelength, water absorption

wavelength, and other certain wavelength ranges were omitted from consideration due to

similar issues. However, even with a new feature set, the highest classification accuracy

the network was able to obtain was 60%. A second possible reason is the angle of

incidence of solar radiation. Different angles of incidence produce different intensities

which can be seen in Figure 4.11. Another possible reason is what Cain pointed out when

she measured the standard deviation within and between classes [2]: the deviation

between the different areas of the body with atmospheric noise might have been too much

to correctly train the network.

When testing with data collected from the FieldSpec 3, the ANN was able to perform

extremely well for both non-noisy and noisy conditions. However, when using real HSI

images, the neural network performance is extremely poor. The ANN misclassified most

of the POI and non-POI skin pixels. This could be due to the standard deviation of the

different areas of the body and the different angles of incidence.
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5.3 Future Work

There are a few possible works that can be accomplished to expand upon skin

identification. One possible future work is to retest the neural network with images taken

with a different HSI sensor. One reason for the low classification accuracy that the

network was experiencing was because the optimal feature set that was used was in the

range where the two sensors were in transition. The transition introduced a high level of

noise that made it difficult for the neural network to classify correctly using those optimal

features.

Another possible direction to take is to test the HSI image using radiance instead of

reflectance. One reason that the network failed to correctly identify the POI in the image

was the different angle of incidence of solar reflection. The different angle of incidence

caused the skin reading to have different intensity which in turn created a wide range of

possible POI skin reflectance. Beisley’s work on radiance showed that he was able to

classify skin pixels within an HSI image in both shadow and highly lit areas with high

accuracy [53].
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Appendix A: Model Optimization Results: Normalization

Table A.1: Normalization methods investigated in this thesis.

Normalization Method Formula Description

Max Samples X
Xmax

Normalization by dividing the sample X by the

maximum value of the sample.

Area Normalization X
Xarea

Normalization by dividing the sample X by the

area under the curve of the sample.

Unary Features X f− fmin

fmax− fmin
Normalization by making everything 0 to 1 in

each feature. X f is the feature f in sample X and

fmin and fmax are the minimum and maximum

values of that feature in the data set respectively.

Max Features X f

fmax
Normalization by dividing each feature in sam-

ple X f by the maximum value of that feature

from all the samples.

Euclidean X
‖X‖ Normalizes by dividing each sample by its L-2

norm.

Unary Samples X−Xmax
Xmax−Xmin

Normalization by making everything 0 to 1 in

each sample. Xmin and Xmax are the minimum

and maximum values of sample X respectively.
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Table A.2: MLP results from testing different normalizations with one and two hidden

layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 1 2] [4 4 2] [4 5 2] [4 3 2 2] [4 3 4 2] [4 5 3 2]

N
or

m
M

et
ho

d

No Normalization 85% 78% 78% 83% 89.5% 78.5%

Max Samples 40% 61.5% 78% 50% 65.5% 67.5%

Area Normalization 30% 80% 83% 75% 82% 73%

Unary Features 63% 80% 80% 22% 82.5% 80.5%

Max Features 79% 68% 69.5% 64% 68.5% 72.5%

Euclidean 74% 79.5% 77% 35% 76% 87%

Unary Samples 74.5% 78.5% 79% 40.5% 84% 83.5%

Table A.3: MLP results from testing different normalizations with three hidden layers. All

results are calculated using Equal Weighted Accuracy.

Topology

[4 3 1 1 2] [4 5 3 5 2] [4 1 2 1 2]

N
or

m
M

et
ho

d

No Normalization 50% 83% 83%

Max Samples 93% 85.5% 83%

Area Normalization 50% 81.5% 50%

Unary Features 27% 83% 85%

Max Features 31.5% 83% 69.5%

Euclidean 73.5% 75% 50%

Unary Samples 82.5% 93.5% 45%
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Table A.4: MLP results from testing different normalizations with four hidden layers. All

results are calculated using Equal Weighted Accuracy.

Topology

[4 4 3 1 3 2] [4 5 4 2 5 2] [4 2 2 3 5 2]

N
or

m
M

et
ho

d

No Normalization 50% 84.5% 50%

Max Samples 82.5% 50% 83%

Area Normalization 81% 88% 50%

Unary Features 50% 65.5% 41%

Max Features 73% 83% 50%

Euclidean 80% 79.5% 88%

Unary Samples 83% 56.5% 97%

Table A.5: MLP results from testing different normalizations with five hidden layers. All

results are calculated using Equal Weighted Accuracy.

Topology

[4 2 1 4 1 2 2] [4 4 4 4 4 5 2] [4 5 4 4 1 4 2]

N
or

m
M

et
ho

d

No Normalization 50% 83% 55%

Max Samples 78% 85% 83%

Area Normalization 80% 89% 70.5%

Unary Features 26.5% 82% 55%

Max Features 50% 73% 85%

Euclidean 50% 65% 77%

Unary Samples 50% 75% 85%
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Appendix B: Model Optimization Results: Activation Function

Table B.1: MLP results for testing different activation functions with the top three

normalization methods and one hidden layer

Normalization Method

Max Samps Area Unary Samps Max Samps Area Unary Samps

[4 5 2] [4 5 2] [4 5 2] [4 4 2] [4 4 2] [4 4 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50% 50% 50% 50%

elliotsig 94.5% 75.5% 65.5% 91.5% 84% 78%

hardlim 83% 62% 83% 78% 60.5% 60%

hardlims 71% 66.5% 78.5% 78% 61% 74.5%

logsig 69.5% 80% 85.5% 60.5% 83% 82%

netinv 50% 50% 73.5% 43% 50% 50%

poslin 40% 50% 35% 50% 50% 45%

purelin 45% 50% 45% 35% 50% 50%

radbas 88% 88% 84% 91.5% 88% 83.5%

radbasn 88.5% 83% 84.5% 93% 83% 71.5%

satlin 86% 88% 78% 78% 83.5% 75%

satlins 88% 84.5% 94% 85% 77% 80%

softmax 50% 50% 50% 50% 50% 45%

tansig 88.5% 81% 88% 91% 74.5% 81.5%

tribas 97.5% 89.5% 84% 80.5% 84.5% 85.5%
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Table B.2: MLP results for testing different activation functions with the top three

normalization methods and one hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 1 2] [4 1 2] [4 1 2]
A

ct
iv

at
io

n
Fu

nc
tio

n

compet 50% 50% 50%

elliotsig 77.5% 71.5% 40%

hardlim 67% 75% 69.5%

hardlims 67% 75% 55%

logsig 25% 30% 67%

netinv 40% 50% 50%

poslin 50% 50% 50%

purelin 40% 50% 46%

radbas 74% 72.5% 69.5%

radbasn 50% 50% 50%

satlin 52% 26.5% 45%

satlins 82.5% 40% 73%

softmax 50% 50% 50%

tansig 65% 75% 79%

tribas 60% 70% 79.5%
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Table B.3: MLP results for testing different activation functions with the top three

normalization methods and two hidden layers

Normalization Method

Max Samps Area Unary Samps Max Samps Area Unary Samps

[4 2 1 2] [4 2 1 2] [4 2 1 2] [4 1 5 2] [4 1 5 2] [4 1 5 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50% 50% 50% 50%

elliotsig 50% 45.5% 50% 93.5% 92.5% 67%

hardlim 50% 50% 50% 61.5% 62% 72%

hardlims 53% 50% 47.5% 57.5% 70% 50%

logsig 60% 35.5% 50% 76.5% 80.5% 78.5%

netinv 50% 50% 50% 48% 50% 50%

poslin 50% 50% 50% 45% 50% 50%

purelin 50% 50% 42% 40% 50% 50%

radbas 93% 94% 70.5% 78% 88.5% 82.5%

radbasn 50% 50% 50% 50% 50% 50%

satlin 67% 80% 73% 50% 78% 50%

satlins 88% 95% 44.5% 88% 85.5% 78%

softmax 50% 50% 50% 50% 50% 50%

tansig 80% 75% 50% 95% 78% 83.5%

tribas 88% 69.5% 75% 78% 75% 88.5%
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Table B.4: MLP results for testing different activation functions with the top three

normalization methods and two hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 1 2 2] [4 1 2 2] [4 1 2 2]
A

ct
iv

at
io

n
Fu

nc
tio

n

compet 50% 50% 50%

elliotsig 77% 27% 65%

hardlim 57.5% 74.5% 50%

hardlims 55% 50% 59.5%

logsig 77% 50% 50%

netinv 50% 50% 50%

poslin 50% 50% 50%

purelin 50% 50% 50%

radbas 72% 86% 83%

radbasn 50% 50% 50%

satlin 69.5% 69.5% 41%

satlins 65.5% 75% 80.5%

softmax 50% 50% 50%

tansig 75% 71% 98.5%

tribas 75% 74% 76%
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Table B.5: MLP results for testing different activation functions with the top three

normalization methods and three hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 1 3 4 2] [4 1 3 4 2] [4 1 3 4 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 95% 70% 73%

hardlim 70.5% 75% 64.5%

hardlims 50% 75% 65%

logsig 71% 75% 79%

netinv 50% 50% 50%

poslin 50% 50% 50%

purelin 40.5% 50% 45%

radbas 86.5% 97.5% 81%

radbasn 50% 50% 50%

satlin 75% 86% 67%

satlins 72% 37% 67%

softmax 50% 50% 50%

tansig 83% 84% 82%

tribas 89% 69.5% 50%
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Table B.6: MLP results for testing different activation functions with the top three

normalization methods and three hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 4 1 3 2] [4 4 1 3 2] [4 4 1 3 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 83% 76% 43%

hardlim 88% 55% 82%

hardlims 76% 50% 50%

logsig 78% 76.5% 67%

netinv 39% 50% 50%

poslin 50% 50% 50%

purelin 50% 50% 45.5%

radbas 93% 87.5% 100%

radbasn 50% 50% 50%

satlin 78% 95.5% 100%

satlins 86% 95% 98%

softmax 50% 50% 50%

tansig 93% 89.5% 100%

tribas 88% 90% 85%
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Table B.7: MLP results for testing different activation functions with the top three

normalization methods and three hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 5 4 3 2] [4 5 4 3 2] [4 5 4 3 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 95% 91% 100%

hardlim 68% 55% 55%

hardlims 60% 73% 50%

logsig 84.5% 75% 79.5%

netinv 50% 72.5% 68%

poslin 40% 50% 50%

purelin 35.5% 50% 64.5%

radbas 93% 100% 86.5%

radbasn 88.5% 99.5% 100%

satlin 93% 89% 90%

satlins 90.5% 97% 87%

softmax 50% 50% 50%

tansig 97.5% 97% 100%

tribas 98.5% 97.5% 96.5%
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Table B.8: MLP results for testing different activation functions with the top three

normalization methods and four hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 2 4 5 2 2] [4 2 4 5 2 2] [4 2 4 5 2 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 50% 71% 63%

hardlim 50% 50% 60%

hardlims 62% 50% 55%

logsig 45.5% 45% 83%

netinv 50% 50% 50%

poslin 50% 50% 50%

purelin 49.5% 50% 55.5%

radbas 86.5% 100% 98.5%

radbasn 91% 75% 86%

satlin 65.5% 92.5% 85.5%

satlins 75% 50% 82.5%

softmax 50% 50% 50%

tansig 50% 86% 67%

tribas 88% 98% 93%
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Table B.9: MLP results for testing different activation functions with the top three

normalization methods and four hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 3 1 2 2 2] [4 3 1 2 2 2] [4 3 1 2 2 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 45% 45% 35%

hardlim 50% 50% 50%

hardlims 50% 50% 50%

logsig 65% 75% 50%

netinv 50% 50% 79.5%

poslin 50% 50% 50%

purelin 50% 50% 50%

radbas 88% 87% 84.5%

radbasn 50% 50% 50%

satlin 50% 50% 55%

satlins 93.5% 55% 55%

softmax 50% 50% 50%

tansig 67% 73% 55%

tribas 83% 82% 95%
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Table B.10: MLP results for testing different activation functions with the top three

normalization methods and four hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 5 5 4 1 2] [4 5 5 4 1 2] [4 5 5 4 1 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 50% 80.5% 67%

ehardlim 50% 58% 57%

ehardlims 75% 50% 55%

elogsig 50% 85% 50%

enetinv 50% 50% 35%

eposlin 50% 50% 50%

epurelin 37% 50% 49.5%

eradbas 90% 91% 89.5%

eradbasn 50% 50% 50%

esatlin 92.5% 66.5% 95%

esatlins 98% 87.5% 65%

esoftmax 50% 50% 50%

etansig 100% 90% 99%

etribas 77% 81.5% 90%
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Table B.11: MLP results for testing different activation functions with the top three

normalization methods and five hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 5 4 4 1 5 2] [4 5 4 4 1 5 2] [4 5 4 4 1 5 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 97.5% 60% 64%

hardlim 65% 50% 95%

hardlims 50% 50% 72.5%

logsig 65% 95% 100%

netinv 45% 50% 56%

poslin 50% 50% 50%

purelin 45% 50% 45%

radbas 90% 90% 82.5%

radbasn 50% 50% 50%

satlin 78% 50% 86.5%

satlins 76% 68% 86.5%

softmax 50% 50% 50%

tansig 100% 100% 99.5%

tribas 81.5% 92.5% 70%
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Table B.12: MLP results for testing different activation functions with the top three

normalization methods and five hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 4 2 5 3 5 2] [4 4 2 5 3 5 2] [4 4 2 5 3 5 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 65% 75.5% 50%

hardlim 50% 50% 65%

hardlims 59.5% 60% 50%

logsig 89% 97.5% 70%

netinv 50% 50% 50%

poslin 50% 50% 50%

purelin 50% 50% 63%

radbas 90% 89.5% 78%

radbasn 50% 98.5% 50%

satlin 69.5% 94.5% 50%

satlins 88% 80% 98%

softmax 50% 50% 50%

tansig 50% 92.5% 97%

tribas 87.5% 50% 82.5%
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Table B.13: MLP results for testing different activation functions with the top three

normalization methods and five hidden layers

Normalization Method

Max Samps Area Unary Samps

[4 5 5 4 3 4 2] [4 5 5 4 3 4 2] [4 5 5 4 3 4 2]

A
ct

iv
at

io
n

Fu
nc

tio
n

compet 50% 50% 50%

elliotsig 67% 42% 99.5%

hardlim 69% 72.5% 55.5%

hardlims 70% 80% 50%

logsig 87.5% 75% 97%

netinv 50% 50% 50%

poslin 50% 50% 50%

purelin 62% 50% 70%

radbas 95% 95% 99%

radbasn 93% 50% 100%

satlin 88% 99% 93.5%

satlins 92.5% 97.5% 100%

softmax 50% 50% 50%

tansig 93% 97.5% 50%

tribas 93% 92.5% 87%
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Appendix C: Model Optimization Results: Training Function

Table C.1: MLP results from testing different training functions with one and two hidden

layers. All results are calculated using Equal Weighted Accuracy.

Topology

[4 1 2] [4 3 2] [4 5 2] [4 4 2 2] [4 4 5 2] [4 5 4 2]

Tr
ai

ni
ng

Fu
nc

tio
n traingdm 83% 92.5% 90% 85% 97% 89.5%

traingdx 74.5% 100% 88% 100% 99.5% 100%

trainlm 95.5% 100% 88% 95% 97% 98.5%

Table C.2: MLP results from testing different training functions with three hidden layers.

All results are calculated using Equal Weighted Accuracy.

Normalization Method

[4 1 1 5 2] [4 5 2 2 2] [4 5 4 2 2]

Tr
ai

ni
ng

Fu
nc

tio
n traingdm 70% 95.5% 94%

traingdx 72.5% 90.5% 95%

trainlm 95% 96.5% 95.5%
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Table C.3: MLP results from testing different training functions with four hidden layers.

All results are calculated using Equal Weighted Accuracy.

Normalization Method

[4 4 2 5 5 2] [4 4 4 3 5 2] [4 4 4 5 4 2]
Tr

ai
ni

ng
Fu

nc
tio

n traingdm 96.5% 70% 95%

traingdx 95% 97% 88%

trainlm 98% 100% 100%

Table C.4: MLP results from testing different training functions with five hidden layers.

All results are calculated using Equal Weighted Accuracy.

Normalization Method

[4 1 5 2 2 5 2] [4 2 5 5 1 1 2] [4 4 2 2 5 4 2]

Tr
ai

ni
ng

Fu
nc

tio
n traingdm 67.5% 92% 57%

traingdx 87.5% 90% 98%

trainlm 78% 97% 99.5%
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Appendix D: MLP and SVM Results for Testing All Three Groups

Table D.1: Neural network results for the first four POI of group one with the optimized

configuration.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 96% 100% 100% 100% 100% 100%

POI 2 96% 92% 100% 97.5% 100% 91.5%

POI 3 90% 83.5% 100% 81.5% 99.5% 99.5%

POI 4 85% 100% 100% 95% 73.5% 94.5%

Table D.2: Neural network results for the first four POI of group two with the optimized

configuration.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 93.8% 95% 88.1% 91.3% 98.1% 93.1%

POI 2 100% 100% 93.8% 98.1% 100% 100%

POI 3 100% 100% 100% 100% 100% 100%

POI 4 94.4% 85.6% 80.6% 81.3% 94.4% 91.3%
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Table D.3: Neural network results for the first four POI of group three with the optimized

configuration.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 100% 100% 83.3% 68.3% 93.3% 100%

POI 2 95% 83.3% 65% 50% 50% 93.3%

POI 3 88.3% 90% 53.3% 80% 98.3% 80%

POI 4 100% 70% 50% 83.3% 86.7% 100%

Table D.4: SVM Results for Group 1 with Linear Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 63% 63% 63% 63% 63% 63%

POI 2 50% 50% 51% 50% 51% 51%

POI 3 67% 67% 67% 67% 67% 72.5%

POI 4 54.5% 54.5% 54.5% 55% 54.5% 54.5%

Table D.5: SVM Results for Group 2 with Linear Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 2

POI 1 62.5% 62.5% 62.5% 62.5% 62.5% 62.5%

POI 2 56.3% 56.3% 56.3% 56.3% 56.3% 56.3%

POI 3 87.5% 87.5% 87.5% 87.5% 87.5% 87.5%

POI 4 56.3% 56.3% 56.3% 56.3% 56.3% 56.3%

Table D.6: SVM Results for Group 3 with Linear Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 3

POI 1 68.3% 71.7% 71.7% 73.3% 73.3% 71.7%

POI 2 83.3% 83.3% 83.3% 83.3% 83.3% 83.3%

POI 3 66.7% 66.7% 66.7% 66.7% 66.7% 66.7%

POI 4 68.3% 66.7% 66.7% 68.3% 66.7% 66.7%
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Table D.7: SVM Results for Group 1 with Radial Basis Function Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 63% 63% 63% 63% 63% 63%

POI 2 50% 51% 50% 51% 51% 50%

POI 3 67% 67% 67% 67% 67% 72.5%

POI 4 54.5% 54.5% 54.5% 54.5% 54.5% 54.5%

Table D.8: SVM Results for Group 2 with Radial Basis Function Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 2

POI 1 62.5% 62.5% 62.5% 62.5% 62.5% 62.5%

POI 2 56.3% 56.3% 56.3% 56.3% 56.3% 56.3%

POI 3 87.5% 87.5% 87.5% 87.5% 87.5% 87.5%

POI 4 56.3% 56.3% 56.3% 56.3% 56.3% 56.3%

Table D.9: SVM Results for Group 3 with Radial Basis Function Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 3

POI 1 73.3% 71.7% 70% 70% 73.3% 71.7%

POI 2 83.3% 83.3% 83.3% 83.3% 83.3% 83.3%

POI 3 66.7% 66.7% 66.7% 66.7% 66.7% 66.7%

POI 4 68.3% 66.7% 66.7% 68.3% 66.7% 66.7%

Table D.10: SVM Results for Group 1 with Polynomial Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 73% 73% 73% 66% 72.5% 72%

POI 2 55% 55% 55% 55% 55.5% 59.5%

POI 3 90% 90% 90% 90% 90% 90%

POI 4 51.5% 56% 61.5% 61.5% 56.5% 62.5%
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Table D.11: SVM Results for Group 2 with Polynomial Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 2

POI 1 91.9% 91.3% 91.9% 85% 91.3% 90.6%

POI 2 87.5% 87.5% 87.5% 87.5% 87.5% 87.5%

POI 3 93.8% 93.8% 93.8% 93.8% 93.8% 93.8%

POI 4 81.3% 81.3% 81.3% 81.3% 81.3% 81.3%

Table D.12: SVM Results for Group 3 with Polynomial Kernel

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 3

POI 1 68.3% 68.3% 68.3% 68.3% 65% 68.3%

POI 2 83.3% 83.3% 83.3% 83.3% 83.3% 83.3%

POI 3 66.7% 66.7% 66.7% 66.7% 66.7% 66.7%

POI 4 66.7% 66.7% 66.7% 68.3% 66.7% 66.7%
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Appendix E: MLP Results of Testing with Gaussian Noise

Figure E.1: MLP results of training with non noisy data and testing with noisy data for

Group 1

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 45.5% 55% 44.5% 50% 53% 49.5%

POI 2 50% 49% 48.5% 47% 47.5% 50.5%

POI 3 65% 66.5% 50% 60.5% 57% 65%

POI 4 43% 41.5% 35.5% 48.5% 52.5% 50%

Figure E.2: MLP results of training with non noisy data and testing with noisy data for

Group 2

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 2

POI 1 66.9% 36.9% 42.5% 51.9% 45% 63.1%

POI 2 34.4% 41.3% 48.8% 49.4% 49.4% 47.5%

POI 3 60.6% 46.3% 60.6% 44.4% 37.5% 47.5%

POI 4 49.4% 54.4% 52.5% 51.2% 56.3% 39.4%
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Figure E.3: MLP results of training with non noisy and testing with noisy data data for

Group 3

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 3

POI 1 45% 50% 53.3% 35% 46.7% 50%

POI 2 61.7% 53.3% 51.7% 48.3% 61.7% 46.7%

POI 3 48.3% 53.3% 55% 50% 35% 45%

POI 4 63.3% 45% 45% 60% 61.7% 53.3%

Figure E.4: MLP results of training and testing with noisy data for Group 1

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 1

POI 1 81% 77% 80.5% 82.5% 94% 86.5%

POI 2 83.5% 89% 84.5% 82.5% 84.5% 93%

POI 3 95% 85% 88.5% 85.5% 97.5% 94%

POI 4 90% 91.5% 86.5% 90.5% 89.5% 91%

Figure E.5: MLP results of training and testing with noisy data for Group 2

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 2

POI 1 86.9% 95% 86.3% 91.9% 75.6% 91.3%

POI 2 85.6% 87.5% 73.1% 78.8% 79.4% 91.9%

POI 3 94.4% 94.4% 71.9% 93.8% 91.9% 93.8%

POI 4 92.5% 69.4% 79.4% 91.9% 66.9% 86.9%
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Figure E.6: MLP results of training and testing with noisy data for Group 3

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 General

Group 3

POI 1 80% 88.3% 61.7% 66.7% 63.3% 75%

POI 2 83.3% 61.7% 83.3% 76.7% 80% 90%

POI 3 55% 75% 81.7% 78.3% 98.3% 88.3%

POI 4 91.7% 96.7% 83.3% 73.3% 85% 91.7%
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Appendix F: HSI Results

Figure F.1: Result of using the optimal feature set with l2 norm.

Figure F.2: Result of using the optimal feature set with normalization method 6
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Figure F.3: Result of using the new feature set (804 nm, 1137 nm, 891 nm, 1343 nm) with

normalization method 1.

Figure F.4: Result of using the new feature set (804 nm, 1137 nm, 891 nm, 1343 nm) with

l2 norm.
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Figure F.5: Result of using the optimal feature set with normalization 1 and a bigger

network size of one hidden layer and ten hidden nodes.

Figure F.6: Result of using the new feature set (804 nm, 1137 nm, 891 nm, 1343 nm) with

normalization method 1 network size of one hidden layer and ten hidden nodes.

88



Figure F.7: Result of using the new feature set (804 nm, 1137 nm, 891 nm, 1343 nm, 1285

nm, 1255 nm, 1564 nm, and 1695 nm) with normalization method 1 network size of one

hidden layer and ten hidden nodes.
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