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Abstract

As space-based imagery-intelligence systems become increasingly complex, process-

ing units are needed that can process the extra data these systems seek to collect. However,

the space environment presents a number of threats, such as ambient or malicious radia-

tion, that can damage and otherwise interfere with electronic systems. There is a need,

then, for processors that can tolerate radiation-induced faults, and that also have sufficient

computational power to handle the large flow of data they encounter.

This research investigates one potential solution: a multi-core processor that is

radiation-hardened and designed to provide highly parallelized MIMD execution of

applicable workloads. A variety of benchmarking programs are used to explore the

capabilities of this processor. Additionally, the source code is modified in an attempt to

enhance the processor speed and efficiency; the consequent improvements in performance

are documented.
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CHARACTERIZING AND OPTIMIZING THE PERFORMANCE

OF THE MAESTRO 49-CORE PROCESSOR

I. Introduction

1.1 Problem Statement

As space systems become increasingly complex, processing units are needed with enough

power to process the extra data that is being collected by these systems. One of the

difficulties of collecting data in space is that ambient radiation poses an interference threat

to electronic systems, especially digital systems. There is a need for data processing

systems that can either tolerate radiation-induced faults, or recover from them, and that

also have enough processing power — similar to a corresponding terrestrial system — to

handle the large flow of data they encounter.

1.2 Survey of Solutions

One possible answer to this problem is a Field Programmable Gate Array (FPGA)

processor. Atmel, for example, manufactures a rad-hard FPGA which is robust against

single-event upsets. [1] FPGAs, however, are limited to lower-complexity applications.

Another solution is the Application-Specific Integrated Circuit (ASIC), but is likewise

problematic due to its processing constraints. ASICs are designed for a single kind of

application and lack the versatility needed for general-use processing. A third possibility

is a multi-core processor, which can handle high-complexity operations with much more

efficiency than the previous options, the tradeoff being the difficulty in hardening a multi-

core processor against radiation upsets. Tilera has a family of multi-core processors, one of

1



which is the TILEPro64 (also referred to as the Tile64). It consists of 64 cores configured

in an 8×8 array. [2] These cores can operate in concert or independently.

In 2007, the DoD initiated a program called On-board Processing Expandable

Reconfigurable Architecture (OPERA) whose purpose was to use the Tile64 as a starting

point and build from it a radiation-hardened processor, ideal for space-based applications.

This effort involved, among other things, removing the outer layer of cores, leaving only

49 cores, arranged in a 7×7 array. This multi-core, radiation-hardened system is known

as the MAESTRO board. Figure 1.1 illustrates the theoretical (i.e., advertised) difference

between OPERA’s MAESTRO and the other processing solutions mentioned above.

Figure 1.1: Performance comparison of architectures [3]

According to engineers at Jet Propulsion Laboratory, “The OPERA Maestro processor

based on the Tilera TILE64 architecture shows potential to give high processing

2



performance at an error rate equivalent to current space deployed uniprocessor systems.” [4]

If this is an accurate assessment, then the MAESTRO warrants a thorough investigation into

its performance capabilities.

1.3 Hypothesis

The 49-core MAESTRO board exhibits computational performance that is commensurate

with that of the Tile64 board, with regard to certain space-based data processing

applications.

1.4 Research Objectives

The overarching goal of this research is to characterize the MAESTRO platform by

means of benchmarking suites that supply workloads representative of IMINT and SIGINT

applications; compare it to its parent, the Tile64 platform; and, if the MAESTRO should

prove to be inferior in terms of processing speed and efficiency, determine if there are

modifications that can be made to improve its performance as much as possible to match

that of the original Tile64 platform.

A secondary goal is to demonstrate that full advantage can be taken of the MAESTRO

parallelizable architecture without the need for a significant time investment. That is,

the level of required effort is rewarded by a sufficient increase in performance. If high

performance is achieved but only at an undue level of effort, the outcome fails to justify the

cost.

It is not within the scope of this effort to measure the fault tolerance of the MAESTRO

(which has already been examined by other researchers). Rather, the focus here is solely

on performance characteristics (e.g., execution times and efficiency).

1.5 Expectations

The expected outcome of this study is that the MAESTRO will exhibit faster execution

times and higher efficiency, per number of processors in use, compared to the Tile64,

3



when highly parallelizable workloads are executed. In particular, workloads involving

floating-point operations should be faster on the MAESTRO, because it has a Floating Point

Unit (FPU) built in to each core, whereas the Tile64 does not. However, an unparallelized

program, or an integer-based workload, should execute at similar speeds on both platforms

or perhaps somewhat faster on the Tile64.

1.6 Implications

If the MAESTRO satisfies the expectations described above and can be optimized toward

specific functionalities with a reasonable amount of effort, it would prove to be a viable

alternative to systems currently being used for space-based data processing.

1.7 Structure

Chapter 2 comprises a review of the literature relevant to this research. Chapter 3 describes

the methodology of how the experiment was designed. Chapter 4 presents the results of the

experiment. Chapter 5 provides analysis and interpretation of the results and describes the

impact and utility of this research.

4



II. Literature Review

2.1 Overview

This chapter summarizes the relevant literature and is organized in a top-down thought

process starting at the broad category of electronic warfare and concluding with the specific

details of the processor, how it can be benchmarked, and how it has been utilized so far.

2.2 Electronic Warfare

Electronic warfare capabilities, both offensive and defensive, are increasingly important

aspects of the Air Force mission. One of the key targets that offensive electronic warfare

seeks to undermine is the intelligence-gathering component, most of which occurs in space

by means of satellite data collection and communication. Because two of the biggest

space-borne functions that apply to electronic warfare are Signal Intelligence (SIGINT)

and Imagery Intelligence (IMINT), directed counter-intelligence attacks seek to disable or

disrupt systems performing SIGINT and IMINT operations. [5]

In addition to the logistics of how to get a satellite into position to conduct photo-

surveillance, there are complications associated with processing acquired imagery and

relaying it as needed to other platforms for further analysis. In some cases, the photographs

are physically transported from space back to earth. This is often true with high-quality

pictures that occupy such large amounts of digital storage that it is impractical to transmit

them through wireless communication channels. On the other hand, pictures that are

smaller and lower definition can be relayed wirelessly. [6] If the images can be processed

and analyzed by a local high-speed processor on the satellite itself, the relevant information

can be sifted out and relayed, rather than forwarding the entire data set which may be quite

large. In this way, the transmission cost can be mitigated and unnecessarily large amounts

of data are boiled down to what is truly noteworthy.
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There is little benefit in obtaining intelligence data if the digital medium on which it is

stored cannot survive its intended environment. The space environment, specifically, tends

to be hostile to electronic devices. In addition to environmental radiation (such as might

be emitted by a solar flare, for example), the mechanics of the satellite vehicle itself can

introduce radiation hazards, which are acute at the transistor level. [7, 8] Resistance to

electromagnetic interference is therefore a significant consideration when designing or

selecting components for use on a satellite.

2.3 Digital Signal Processing

Digital Signal Processing (DSP) is based on the idea that analog signals which are

continuous can be represented in a discontinuous, or digital, way such that the essential

information is still retained. The advantages of converting to the digital domain, to name

just a few, are that digitized signals are simpler; they generally occupy much less electronic

storage than do their analog counterparts; they are easily reproduced or copied; and they

can be manipulated, filtered, and otherwise processed by means of software rather than

hardware (as is necessary for analog processing). For this reason, digital data streams

allow for increased flexibility in terms of making changes to the processing tools. They can

be altered simply by changing the implementation code and uploading it to the processor.

Another critical element to signal processing is the transformation from a time-domain

representation of a signal to a frequency-domain representation. This is important because

some operations are quite complicated in one domain but trivial in the other. [9] Time and

resources can be saved by pursuing a process which could be described as “transform,

process, inverse-transform” to carry out such operations. In this way, three simple steps

can be substituted for the single complex step of intense processing. Therefore, algorithms

that facilitate these conversions (such as Fourier transforms) from one domain to the other

are at the heart of DSP.
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According to Oppenheim, the Discrete Fourier Transform (DFT) “plays a central role in

the implementation of a variety of digital signal-processing algorithms. This is because

efficient algorithms exist for the computation of the DFT.” [10] One of these efficient

algorithms, and perhaps the most widely used, is the Fast Fourier Transform (FFT). DSP

comprises the domain in which IMINT and SIGINT problems exist, and is the primary type

of application that will ultimately be running on the MAESTRO.

2.4 Multicore Processing

Both IMINT and SIGINT operations require large amounts of processing power at the chip

level. In the last ten years, however, uniprocessor speeds have failed to increase at the

same rate they did over the previous decade. [11] This is due to technical constraints that

prevent the operating frequency of individual processors from improving in a way that is

efficient in terms of power consumption and implementation cost. [11] As an alternative,

net processing speeds have been improved by using a larger number of processors

simultaneously. However, in order to derive the full benefit of multiple processors, they

all must be able to function simultaneously and without dependencies that might cause one

to wait on the others. Any amount of time spent waiting on another core’s output is wasted

and counteracts the desired gains in speed and efficiency. This confluence across cores

requires not only physical hardware that can accommodate hierarchical, parallel execution,

but also software that can be divided into multiple processing threads.

NASA has expressed an interest in using processors that are not only robust against

radiation, but also utilize this multi-core architecture. In the near future, flight computers

belonging to both NASA and the U.S. Air Force will rely primarily upon the capabilities

of multi-core processors to execute their ever-increasing computational loads for functions

like “autonomous landing and hazard avoidance.” [12] Higher processing speeds depend

on increased parallelization within each chip.
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2.5 Parallelization Theory

To derive the benefits from parallelized hardware, the software must be designed in such a

way that the workloads assigned to each processor are balanced, and so that each processor

is executing independent code that employs thread-level parallelism. In terms of hardware,

the microprocessor architecture known as Multiple Instruction, Multiple Data (MIMD) is

a critical design structure for taking advantage of thread-level parallelism. [11]

Table 2.1 contains two code sequences that illustrate the difference between non-

parallelized and parallelized algorithms.

Table 2.1: Example of non-parallel vs. parallel code

Non-parallelized code Parallelized code

b = a + 7 s = r + 5

c = 3b u = t − 4

d = c2 w = log(v)

The code segment in the left column would not run faster if each line were distributed

to three different cores, because the additional cores would remain idle waiting for the

previous one to complete its computation. The segment in the right column, however, could

be distributed three ways and executed simultaneously because there are no dependencies.

Intrinsic to the software design is the workload itself which also must be parallelizable.

For example, matrix workloads that rely on algorithmic techniques such as “divide and

conquer” in which the data set can be broken down into many smaller parts without creating

output dependencies between the processors are natural applications for parallelized

processing.

According to Amdahl’s Law, the speedup factor due to parallelized execution is

limited by the portion of the code that is actually parallelizable. Figure 2.1 shows the
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relationship between the speedup factor and the number of cores in use. [11] Clearly, the

percentage of an application that is parallelizable has a considerable effect on how much

improvement is possible. If, for example, only 50 percent of the code is parallelizable, the

maximum possible speedup factor will be 2, regardless of how many independent cores are

employed.

Figure 2.1: Speedup factor per processor (Amdahl’s Law)

The algorithms and computational techniques that are necessary for image processing

applications are linear filters which facilitate the removal of noise, Fourier transforms

which allow for frequency analysis of the image, and geometric and parametric

transformations which can provide skew correction and rotation. [13] Such algorithms are

most efficiently executed by means of matrix algebra. [14]
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2.6 Background of Tile64 & Maestro

The MAESTRO board consists of 49 processors (also referred to as tiles or cores) arranged

in a two-dimensional array in a 7×7 configuration. The processors are fabricated using

a 90nm Complementary Metal-Oxide-Semiconductor (CMOS) architecture. Each core

has its own L1 and L2 cache, as well as a floating point processor which is IEEE 754

compliant for both single and double precision arithmetic. Figure 2.2 shows the layout of

the MAESTRO architecture.

Figure 2.2: Layout of MAESTRO [3]

The MAESTRO board evolved from a commercial product called Tile64 which was created

by Tilera Corporation. Defense Advanced Research Projects Agency (DARPA), through

its Radiation Hardened By Design (RHBD) program, commissioned Boeing’s Solid State
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Electronics Development team to fabricate a single processor which would become the

building block of the MAESTRO. The OPERA program was then tasked with assembling

a board containing a 7×7 array of the radiation-hardened cores. (Figure 2.3 shows the

chronological evolution of the technology.)

Figure 2.3: Ancestry of MAESTRO [3]

The MAESTRO board was intended for space-based applications that require high-

performance processing capabilities, such as image and signal processing. The radiation

hardening aids in counteracting the threats that ambient space radiation presents to

electronic devices. Latch-up and Total Ionizing Dose radiation effects become less

prevalent as the transistor size decreases (see Figure 2.4). However, single event effects,

such as memory bit errors, become more likely with smaller transistor sizes. [15] As a

result, there is a need for architectures that are immune or resistant to such effects. The

MAESTRO was designed in an attempt to satisfy this need.

The most significant difference between the Tile64 and the MAESTRO is the reduction

of the number of processors from 64 to 49. Other distinctions include the addition of the

FPU with single and double precision capability, and minor changes to MAESTRO’s L1
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Figure 2.4: Types of radiation-induced faults [16]

instruction cache, its memory built-in self-test, and the DDR memory controllers which are

now compatible with both DDR1 and DDR2 memory. [17]

In addition to creating the MAESTRO board, OPERA also produced the MAESTRO

Development Board (MDB), pictured in Figure 2.5, to provide the peripherals needed for

interfacing with an external computer.

MAESTRO’s performance specifications are given in Table 2.2.

2.7 Benchmarking Theory

Benchmarking is an important part of determining the processing capabilities of the

MAESTRO board and independently verifying the manufacturer’s claims about its

performance. One area of interest is how the cache miss rate is affected by various

processing schemes. For example, by spreading code execution across several tiles, there

may be a notable payoff in performance in that the individual caches of each tile will be

less likely to overflow than if only one or two tiles were executing. The unused portion
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Figure 2.5: MAESTRO Development Board [16]

of the cache can be gauged by storing and retrieving different amounts of data to memory

until the memory access time suddenly increases, indicating a high cache miss rate.

Another item of interest is the performance of specific computational operations that

are used heavily in image and digital signal processing algorithms — adaptive filters, finite-

impulse response filters, Fourier transforms, and so forth. [18, 19] These can be executed

first on a single core to provide a basis measurement. Then the computations can be

threaded into a larger number of cores. This information can be presented graphically in

terms of “execution time” versus “number of cores in use” for a given input. Theoretically,

there is an ideal number of cores that yields a minimized ratio of processing time per

number of cores in use. There may also be a case where using too many cores results in
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Table 2.2: MAESTRO Specifications [16]

Parameter Performance

Clock Speed (nominal 80C, 1.0V+-5%) 342 MHz

GOPS (Peak) — 32 bit word 50

GFLOPS (Peak) — single or double precision 25

XAUI Interfaces (4) (errata: half duplex) 10 GBPS (each — half duplex)

DDR2 rate (4) 266 MHZ (each)

Power Dissipation (300 MHz, 80C, 1.0V) 21W

Processors (Tiles) 49

Temp. Range −40◦C to 125◦C

Area 30.6 × 25.6 mm

Reliability 100,000 POH

Yield (preliminary) 14%

inordinate overhead costs which exceed the corresponding benefit of the additional cores.

However, based on the observations of Dr. Ken Mighell, of the National Optical Astronomy

Observatory, of how MAESTRO executed the algorithms he provided, it is likely that the

results would be similar for other algorithms. That is, each additional tile (up to at least

45) should provide improved performance that would outweigh the additional overhead

cost. [17]

2.8 Previous Work

2.8.1 CRBLASTER.

The MAESTRO board was used in the implementation of a program called CRBLASTER

which was designed to import image-analysis algorithms (specifically, Laplacian edge

detection) into a parallel-processing environment [20].

14



Dr. Mighell notes that, while experimenting with CRBLASTER on the MAESTRO board,

he experienced problems with MAESTRO during certain long executions of code. The

board would crash and have to be rebooted before further operation was possible. It turned

out that the board was overheating due to overnight loss of air conditioning in the room

where it was running. The heat in the middle of the chip was so intense that it was randomly

changing the data stored in memory. Nevertheless, this accumulation of heat did not seem

to cause any lasting damage to the board. [20] The MAESTRO uses more than 20 Watts of

power and sources a significant amount of heat which needs to be monitored and dissipated

for proper functionality. MAESTRO’s degraded performance due to excessive heat must

be accounted for when considering this platform for use in a space environment, as many

cooling systems rely on airflow which is obviously not available in space. [21]

Overall, Dr. Mighell observed a maximum increase of 14 times the single-tile speed

when running his algorithm across 45 tiles. In other words, although each core executes at

only 342 MHz, he was able to use the MAESTRO at an effective operating frequency of

roughly 4.8 GHz.

He further demonstrated a significant improvement in MAESTRO performance by

allocating memory through all four of MAESTRO’s memory controllers, as opposed to

just one. Figure 2.6 shows his results, where the light blue diamonds represent the baseline

(unoptimized) algorithm, and the dark blue squares indicate the performance of his user-

defined memory allocation scheme.

According to Dr. Mighell, “The Maestro processor definitely has the potential to be

an enabling technology for the next generation of U.S. Government satellites and NASA

astrophysical missions.” [17]

2.8.2 Fault Tolerance.

MAESTRO has also been independently benchmarked for its fault-tolerance and fault-

rejection capabilities in a radiation environment. Such research is not immediately
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Figure 2.6: CRBLASTER performance optimization [17]

relevant to the present topic, but it has been noted both for sake of completeness and

for traceability if any subsequent work seeks to overlay fault-tolerance and performance

benchmarking. [22]

2.9 Summary

The literature considered here provides the necessary background information for

determining what work has already been done, exactly what remains to be tested, and how

to design the experiment so that useful results can be acquired from it.
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III. Methodology

3.1 Approach

There are a number of software programs available for benchmarking the performance of a

given system. Several of these programs have been selected for use in this research, based

on how well they can test the appropriate aspects of the MAESTRO board. Because these

benchmarks are software programs, they can be modified and tuned so as to conduct a

more thorough experiment. They will be implemented as equitably as possible on both the

MAESTRO and the Tile64. Not every suite discussed here is fully implementable on both

architectures. Despite this fact, they are listed in full to show that they were considered and

attempted, if not actually used.

3.2 System Boundaries

The System Under Test (SUT) is called the MAESTRO Development Board and consists of

the MAESTRO multi-core processor and a number of peripherals including power supply,

input/output interfacing, and on-board memory. Figure 3.1 shows the boundaries of the

SUT.

The Component Under Test (CUT) is the MAESTRO chip, consisting of the 49

processors, the on-board memory, the interface mechanism, and the two-dimensional mesh

network that connects the processors. Each processor has a core, a floating point unit, an

L1 and L2 cache system, and a tile switch.

3.3 Workload

A variety of benchmarking suites are utilized to examine different aspects of the processing

capabilities of each architecture.
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Figure 3.1: System Under Test

3.3.1 MPI Matrix Multiply.

MPI Matrix Multiply (referred to simply as MPI) is a benchmark that measures how

much execution time is required for the processor to perform a given matrix multiplication

operation. [23] The parameters from this suite that are varied are the input size of the matrix,

and the number and configuration of cores that are employed to process the workload.

3.3.2 HPL.

The High Performance Linpack (HPL) suite runs 64-bit, double-precision arithmetic to

generate solutions for dense linear systems. HPL measures the amount of time it takes

for the architecture to arrive at the correct solution, and computes the accuracy of the

calculations. The only active parameter used from this suite is the input size.
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3.3.3 SD-VBS.

The San Diego Vision Benchmarking Suite (SD-VBS) tests the single-core capabilities of

the host architecture in several different modes that represent vision-oriented applications.

(See Table 3.1.) [24]

Table 3.1: Contents of SD-VBS package

Disparity Map Motion, Tracking and Stereo Vision

Feature Tracking Motion, Tracking and Stereo Vision

Image Segmentation Image Analysis

Scale Invariant Feature Transform (SIFT) Image Analysis

Maximally Stable Regions (MSER) Image Analysis

Robot Localization Image Understanding

Support Vector Machines (SVM) Image Understanding

Image Stitch Image Processing and Formation

Texture Synthesis Image Processing and Formation

3.3.4 SPEC MPI2007.

The Standard Performance Evaluation Corporation (SPEC) Message Passing Interface

(MPI)2007 suite was designed specifically to exercise the performance of a parallel

architecture, as opposed to other benchmarking suites which recycle software that was

written for serial execution. According to the SPEC MPI2007 website, the suite tests the

following aspects of a system:

• the type of computer processor (CPU),

• the number of computer processors,

• the MPI Library,
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• the communication interconnect,

• the memory architecture,

• the compilers, and

• the shared file system. [25]

3.3.5 MILC.

The MIMD Lattice Computing (MILC) benchmarking software was designed for the

purpose of studying quantum chromodynamics on parallel processors that are running in

an MIMD configuration. This suite is quite complex in terms of both what it measures and

how it performs the measurements. Minimal documentation is available to describe the

plethora of input parameters or to interpret the metrics on the output. Consequently, MILC

was unusable.

3.3.6 OProfile.

OProfile is a Linux profiler that tests L1 and L2 cache miss rates and can be used to identify

the specific type of miss rate. This suite does execute on both chips, but it tends to stall

unpredictably when running on MAESTRO, so OProfile did not produce meaningful data

for this experiment.

3.3.7 BenchFFT.

BenchFFT runs an assortment of FFT implementations in Fortran as well as C. It uses both

real and complex transforms with as many as three dimensions. This suite represents typical

processes that MAESTRO would execute in an operational scenario. However, MAESTRO

compiler problems are to blame for lack of results acquired from this suite.

As specified above, these benchmarking programs contain many parameters that allow for

adjustment of the workload submitted to the system, including number of cores to use,

adjacency of cores, size of input matrix, not to mention a whole host of compiler options,

library flags, and other customizable factors (depending on which suite is in use).
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One aspect of the workload that is not intentionally varied as an independent parameter

but still important is the level of effort (i.e., number of man-hours) expended to create an

ideal workload that is compatible with the MAESTRO compiler. This is important when

viewed in conjunction with the output metrics. If the MAESTRO can be optimized to take

full advantage of the 49 cores (49x speed-up) but it takes an inordinate amount of time to

write the software, the outcome is not useful. The fact that the MAESTRO might generate

a 49x improvement in execution speed is noteworthy, but it should be recorded that the

corresponding level of effort is enormous.

3.4 Performance Metrics

The system performance is measured by means of the software itself, as opposed to an

external entity. When a particular program runs, it takes its own measurements of the

internal functionality of the system and reports those to the user upon completion of the

task. Not all performance metrics listed are applicable to all the suites.

3.4.1 Execution Time.

Because the goal is to determine the performance capabilities of the MAESTRO board,

execution time is an essential metric, as it directly correlates to the throughput capability of

the chip. If the processing speed is too slow, the other features of the system cannot fully

be taken advantage of and are wasted. Execution time is defined as the time between the

beginning of the first clock cycle of the first instruction and the end of the last clock cycle

of the last instruction of a given program. [26]

3.4.2 Efficiency.

To determine how well each processor is utilized, an efficiency calculation is made in terms

of the Single-Core Execution Time (SCET), Multi-Core Execution Time (MCET), and

number of tiles. Suppose a single processor can complete a task in x seconds. If two

processors can complete the same task in 0.5x seconds, then they are 100 percent efficient.
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However, if it takes them 0.6x, their efficiency would be 83 percent. Equation (3.1)

describes this relationship.

Efficiency =
S CET

MCET ∗ Tiles
(3.1)

The efficiency calculation indicates the percentage of the available computing power of

each processor that is being taken advantage of for a given task.

3.4.3 Accuracy.

The program can throw specific exceptions during processing to indicate a problem with

part of the matrix calculation. If this happens, the program will report that the accuracy

of the calculation is compromised. Accuracy is defined as number of correct (verified)

calculations divided by total calculations (see Equation (3.2)).

Accuracy =
Correct Calculations
Total Calculations

(3.2)

3.4.4 Cache Miss Rate.

Since the concept of cache miss rate is not completely independent of execution time (the

former influences the latter), it might seem redundant to take individual measurements

of the cache miss rates of the cores after having already measured overall execution

time. However, there is still interest in the cache by itself for two reasons: 1) because

of uncertainty as to how significantly it influences the execution time; and 2) because,

for a specific application, the cache might be likely to encounter high demands from the

processor, in which case it is important to know under exactly what circumstances the miss

rate starts to climb rapidly. This metric is defined as the number of times the cache does

not currently hold the requested data, divided by the total requests to the cache over a given

period of time.

22



3.5 System Parameters

1. Electromagnetic interference (ambient). There are several active cell phones and a

microwave oven in the room where MAESTRO is tested. The interference from them

is assumedly negligible with respect to the performance metrics of this research.

2. Board temperature. MAESTRO uses up to 25 Watts of power and produces a

significant amount of heat. Unless dissipated by the on-board fans, the heat does

cause the processors to fail. [20] MAESTRO is intended for use in space where

cooling by air convection is not possible, so some other means of cooling is required

when the system is deployed.

3. Other active system processes competing for resources. During this experiment, the

number of extraneous processes running on MAESTRO is not varied. However, in

an operational environment where there is competition for resources, this parameter

affects both execution time and cache miss rate since some of the resources may be

allocated to other programs.

4. Number of cores in use (workload parameter). If the code being executed is

parallelizable, then the number of cores assigned to execute the program is correlated

to the execution time. The system performance is highly sensitive to this parameter.

5. Adjacency of cores in use (workload parameter). MAESTRO executes processes

faster if the active cores are physically near each other because the communication

between the cores takes less time.

6. Size of input matrix (workload parameter). The volume of data supplied to the system

affects how much memory is available at run time.

7. Compiler optimization level (workload parameter). The compiler has three

optimization levels (0, 1, 2). In this experiment, the compiler uses level 2 exclusively,
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which corresponds to the highest optimization level (as opposed to level 0 which is

the lowest).

8. Compiler static library flag (workload parameter). This flag tells MAESTRO whether

to look in cache or in RAM for the necessary libraries. When this flag is set to 1,

more cache storage is used so as to improve execution time. When this flag is set to

0, execution time is slower but cache space is conserved. For this research, the flag

is always 1.

3.6 Factors

1. Number of cores in use. The number of cores is varied to test how much

benefit is achieved by adding more cores to the execution framework. This is the

most important factor because it exercises the critical aspect of the MAESTRO

architecture: parallelizability. Software designed to utilize only a single core

executes much slower than does software that is correctly designed to utilize many

cores. If code is written to take advantage of parallelization, two cores are faster than

one, and three cores are faster than two, given inherent parallelism is available in

the task. Also varied within this factor is the shape of the core conglomeration. For

example, 6×7: 40 yields a different shape of cores than does 7×7: 40. (See Table 3.2

for an itemized list of configurations to be used.)

2. Size of input matrix. Since the purpose of a multi-core processor in a functional

scenario is to process large volumes of data, it is necessary during testing to vary

the dimensions of the inbound data matrix to determine what effect this has on the

metrics of interest.

3.7 Evaluation Technique

This research utilizes a direct measurement evaluation technique on two different systems:

the Tile64, and the MAESTRO.
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Table 3.2: MPI Core Configurations

1×1: 1 5×5: 25

2×2: 2 5×6: 30

2×2: 4 6×6: 30

3×3: 8 6×6: 36

3×3: 9 6×7: 40

4×4: 10 7×7: 40

4×4: 16 6×7: 42

4×5: 20 7×7: 45

5×5: 20

The MAESTRO board (version 1.0) has a native Linux kernel, 1GB of memory, and

is connected via Ethernet (100 Mb/s) to a computer running the RedHat Enterprise

Linux operating system (OS), version 5.9. From the external Linux system, a particular

benchmarking suite is loaded onto the MAESTRO which then compiles the code locally

on the SUT.

The parallelizability of the MAESTRO is examined by running a given program on

a single core, then spreading that same program across two cores, then four cores, and so

forth. As more cores are added, the execution time improves (decreases) until the point at

which the overhead of using additional cores outweighs or counterbalances the benefit of

their use. There should be a knee in the curve representing the diminishing marginal utility

of employing additional cores.

The various benchmarking suites utilized in this research can take anywhere from a

few seconds to several hours to finish a single run. Upon completion of the program, the

benchmark software outputs the resulting measurements to the user. These are recorded for

analysis.
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The output metrics on the MAESTRO and the Tile64 are validated by comparing them

to each other and observing that the difference between them is within reason, especially

under circumstances in which the two systems are expected to generate similar results.

Further validation is performed by comparing the measurements to theoretical expectations

of a best-case scenario. For example, given a known number of operations to be executed

and the specific clock speed of the processor, the execution time of the program can be

roughly predicted.

The collected data is then analyzed using the R statistical software language, from

which boxplots, barplots, and other graphs are generated to depict the findings.

3.8 Experimental Design

A full factorial design is not feasible due to lack of pre-existing benchmarking suites that

allows all factors to be varied independently. Therefore the experiment consists of a partial

factorial design.

For the MPI suite, there are 17 variations on how the cores will be configured. The

three arguments that describe the configuration are number of rows, number of columns,

and number of cores. For example, 5×5:22 implies 5 rows, 5 columns, and 22 cores selected

(the maximum available in this case would be 25).

There are 17 different configurations and 30 repetitions of each, each boxplot on the

graph represents 510 executions. Table 3.3 specifies a sample data collection matrix for the

MPI suite. Similar matrices are used for the other suites as applicable. An example of how

the cores are assigned is shown in Figure 3.2.

These levels are chosen so as to generate a meaningful data trend across the full

spectrum of cores while keeping the complexity of the experiment as low as possible.

The confidence interval is set at 95 percent, as this is a generally accepted confidence

interval. [26]
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Figure 3.2: Sequential core assignment

3.9 Methodology Summary

The expected outcome of this study is that the MAESTRO will exhibit superior

performance, per number of processors in use, compared to the Tile64 when highly

parallelizable workloads are executed. In particular, workloads involving floating-point

operations should be faster on the MAESTRO, because it has a FPU, whereas the

Tile64 does not. However, an unparallelized program, or an integer-based workload,

should execute at similar speeds on both platforms or perhaps somewhat faster on the

Tile64. Several benchmarking suites are used to test the performance of the parallelized

architecture in terms of program execution time, core efficiency, and calculation accuracy.

The workload submitted is varied by changing the number of cores MAESTRO uses

to run a program and the size of the input matrices that the cores operate on. Output

values are validated by comparing them to theoretical expectations and observing similar

experimental results, within reason, between the two architectures. A partial factorial

design yields sufficient data to analyze MAESTRO’s performance.
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Table 3.3: Data collection matrix for MPI

Input Size

# Cores Metrics 60 125 250 375 500 625 750

1
Execution Time

Efficiency

2
Execution Time

Efficiency

4
Execution Time

Efficiency

8
Execution Time

Efficiency

...

45
Execution Time

Efficiency
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IV. Experimental Results

4.1 MPI

4.1.1 Baseline Characterization (Version 1).

Figure 4.1 shows the MCET versus the input size of the matrix for all configurations

simultaneously, with the Tile64 results displayed at the top and the MAESTRO results at

the bottom. Because there are 17 different configurations and 30 repetitions of each, each

boxplot on the graph represents 510 executions. As the input size grows from a 60×60

matrix to a 750×750 matrix, the execution time also increases. This is due to the fact

that there is more data to process, and the processors require more time to complete the

computations.

Figure 4.2 illustrates how the execution time changes with respect to the number of

processors that are used during the computation, and across all input sizes simultaneously.

The general trend of the graph demonstrates the expected behavior: that adding more

processors improves the execution time according to an exponential decay function.

Figure 4.3 shows how the efficiency is affected by input size. In general, it increases

with the size of the input and levels off at some upper boundary.

Figure 4.4 shows that processor efficiency diminishes as more and more processors are

added. This is the expected behavior, because the work cannot be divided into an infinite

number of pieces that execute simultaneously. At some point, there is no added benefit to

having more processors, namely, when the additional overhead needed to include them in

the computation equals or exceeds the time they save on the overall computation.

Figure 4.5 is a plot of the 98 p-values representing the Tile64 vs. MAESTRO

MCET comparison for every combination of input size and number of processors. The

red horizontal line marks the standard 0.05 significance level. Any value below that line

indicates high confidence that the data sets under comparison are statistically different. Of
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the 98 data sets, there is only one whose p-value rose above the 0.05 level. When the input

matrix size was 60×60 and 16 processors were used, the Tile64 and MAESTRO did not

exhibit statistically different behavior. In all other test configurations, however, the two

boards were clearly different.

Figure 4.6 shows the relative boxplots of the cumulative MCET data for all input sizes

and configurations of each board. The p-value for the t-test between them is 1.18 · 10−54

indicating that the two boards produced statistically different results.

4.1.2 Code Optimizations.

Several optimizations were made to the code in order to derive the full benefit of the

MAESTRO capabilities. A summary of the changes that constitute the various versions

of the code from Version 1 to Version 5 are given below.

Version 1:

• Added memory controller functionality. (Figure 4.7 illustrates how memory-tile

quadrants are allocated to individual memory controllers.)

• Matrices are now stored via mallocs.

• Makefile has more power.

Version 2:

• Renamed the program and moved it to the source directory.

• Split the program into multiple .c files.

• The master CPU no longer broadcasts unneeded data.

• All memory controllers are being used based on how many processes are being run

and the location.
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Version 3:

• For situations in which the matrix size per number of tiles is a non-integer, the

remainder portion is now handled by the first slave CPU, rather than by the master

CPU.

• Added more functions to the program to improve functionality.

• Added OProfile targets to the makefile.

Version 4:

• Added timer functionality so that each CPU can report timed results of individual

portions of the program.

• Updated the makefile.

Version 5:

• The calculate function no longer calls getters and setters.

• Each CPU now looks for data in its own cache before querying memory (notable

performance improvement).

4.1.3 Optimized Characterization (Version 5).

One feature of Version 5 that was not available in Version 1 is the ability to see the

functionality of the individual tiles, and to observe the amount of time they spend on

particular tasks, namely, allocating memory, sending and receiving data, and calculating

data. Figure 4.8 through Figure 4.13 illustrate this capability. The overall program does

not finish until all cores have completed their tasks, so the slowest core determines the

summary execution time as reported by the benchmark. These graphs demonstrate that

MAESTRO is indeed faster for input sizes 125 and 250 (because its slowest core completes

faster than Tile64’s slowest core), but slower for the remaining (larger) sizes.
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4.1.4 Analysis.

Clearly some execution speed and efficiency was lost in the initial creation of MAESTRO

from the Tile64. However, MAESTRO can be made superior to Tile64, at least for small

input sizes. Figure 4.15 displays a heat-map comparison of the median execution times

for the two boards for each variation in input. This map is based on the median of the

difference in MCET. Orange/red squares denote MAESTRO superiority. White squares

indicate equality between the boards. Blue squares imply Tile64 superiority.

The fact that the Version 5 heat map displays more red squares than that of the Version

1 demonstrates that MAESTRO was, in fact, improved for the smaller input sizes without

sacrificing its relative performance in the larger input sizes.

Equation (4.1) describes the formula used to calculate the data shown in Figure 4.14.

A smaller MCET value implies faster execution, so as the data on Figure 4.14 trends lower,

MAESTRO is improving. As data trends higher, MAESTRO performance is diminishing

relative to Tile64. The red horizontal line denotes zero. When the data is below that line

(i.e., negative), MAESTROis exceeding Tile64. When data crosses above zero, the Tile64

is excelling instead.

median(MAESTRO MCET) – median(Tile64 MCET)
median(Tile64 MCET)

(4.1)

4.2 HPL

Due to a limitation on the number of graphs allowed in a single chapter by the program

being used to publish this document, and because the HPL results are not directly analyzed

in this chapter, the HPL graphs have been moved to Appendix A. Figure A.1 and

Figure A.2 depict the GFLOPS as a function of input size and number of cores, respectively.

The Tile64 outperforms the MAESTRO, which is unexpected behavior. Because the
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MAESTRO has a FPU and the Tile64 does not, the former should be able to execute many

more FLOPS than the latter. No optimizations were performed on the HPL suite because

it is not easily modified. Potentially, this lack of optimization cripples the MAESTRO’s

functionality by making poor use of its memory architecture and therefore introducing a

bottleneck that inhibits its actual computational performance.

Figure A.3 and Figure A.4 describe the accuracy of calculations as compared to input

size and number of cores. As input size increases, the accuracy rate decreases. The same

is true as the number of cores increases, but to a lesser extent.

Figure A.5 and Figure A.6 portray the execution times. The results appear similar to

the baseline, unoptimized execution times of the MPI suite, in that Tile64 exhibits faster

performance.

4.3 SD-VBS

No optimizations were attempted on the SD-VBS benchmark, as it exercises only a single

core at a time and therefore does not provide much insight into the multi-core functionality

of MAESTRO. The characterization graphs are given in Appendix B (Figure B.1 through

Figure B.16).

4.4 Incompatible Suites

The MILC suite is quite complex in terms of what it measures and how it performs

the measurements. Minimal documentation is available to describe the plethora of input

parameters or to interpret the metrics on the output. Consequently, MILC was unusable.

OProfile does execute on both chips, but it tends to stall unpredictably when running

on MAESTRO, so this suite did not produce a complete set of data for this experiment.

MAESTRO compiler problems are to blame for lack of results acquired from the

BenchFFT suite. Perhaps this issue will be surmountable in future research.
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Figure 4.1: Version 1: Execution Time per Input Size
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Figure 4.2: Version 1: Execution Time per Processors in Use
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Figure 4.3: Version 1: Efficiency per Input Size
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Figure 4.4: Version 1: Efficiency per Processors in Use
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Figure 4.5: Version 1: Individual p-values for Tile64 vs. MAESTRO comparisons

Figure 4.6: Version 1: Conglomerate p-value comparing Tile64 vs. MAESTRO
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Figure 4.7: MAESTRO memory controller assignment example

Figure 4.8: Version 5: tile execution times; input size = 125
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Figure 4.9: Version 5: tile execution times; input size = 250

Figure 4.10: Version 5: tile execution times; input size = 375
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Figure 4.11: Version 5: tile execution times; input size = 500

Figure 4.12: Version 5: tile execution times; input size = 625
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Figure 4.13: Version 5: tile execution times; input size = 750
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Figure 4.14: Difference between Tile64 and MAESTRO median execution times as a ratio
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Figure 4.15: Heat Map comparison of MAESTRO and Tile64: Version 1 (top) and Version

5 (bottom). Orange/red = MAESTRO superiority. White = no difference. Blue = Tile64

superiority.
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Figure 4.16: MAESTRO percent improvement of Version 5 over Version 1
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V. Summary & Conclusions

5.1 Conclusions of Research

For the benchmarking suites as tested in their raw, unoptimized form, the MAESTRO board

exhibited computational performance and efficiency that were generally inferior to those of

the Tile64 board. These differences, however, were mitigated to some degree by modifying

the benchmarking suites so that the code could take advantage of all four available memory

controllers. Also, in the case of matrix multiplication operations, the software was able to

be modified to allocate only as much memory as each processor would actually use in its

calculations. For very large matrices, nearly two-thirds of the memory allocations per chip

were superfluous and could be eliminated.

After optimizations (primarily on the MPI suite), the MAESTRO still remained

inferior to the Tile64 for large input sizes and large numbers of cores, though to a

lesser degree than it did without the optimized implementation, but proved to be superior

otherwise. As input size increases, MAESTRO is comparatively slower due to memory

saturation. MAESTRO tends to excel at computationally intensive operations because of

its FPU. (Tile64 would probably dominate if the workload consisted of integer calculations

as opposed to floating-point operations.) MAESTRO’s limiting factors appear to be its

memory architecture and its inter-tile communication network.

All in all, the hypothesis has been confirmed. The 49-core MAESTRO board can be

made to exhibit computational performance that is commensurate with that of the Tile64

board for particular data-processing applications. Furthermore, it is possible to optimize

the MAESTRO with a reasonable amount of effort, at least for the types of applications

represented by the benchmarking suites used here.
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5.2 Significance of Research

These results allow the sponsor and other potential users to see clearly the advantages and

the drawbacks to using the MAESTRO for data processing. Workloads that are highly

parallelizable are ideal applications for it, but are feasible only if some thought goes into

managing the limited amount of memory on the board.

5.3 Recommendations for Future Research

Of interest for future research are the L1 and L2 cache miss rates. These characteristics

were immeasurable in this effort due to compatibility problems between the OProfile suite

and the MAESTRO. Similarly, the BenchFFT suite would provide additional understanding

of the functionality of the MAESTRO, especially because it exercises the hardware’s

ability to run the Fast Fourier Transform (FFT) operation, which is commonly used in

signal-processing applications. Also, the unexpected results from the HPL suite should

be investigated further to determine why the Tile64 can execute more FLOPS than the

MAESTRO.

Toward the end of this effort it became obvious that, for the MPI suite, a general

algorithm needed to be designed to yield an equitable distribution of the cores to each of

the four memory controllers. A simple slicing into quadrants does not always produce a

balanced distribution, especially when the number of rows or columns is an odd number.

One quadrant might be assigned four cores, whereas another could have nine. Also,

some experimentation is needed to determine if there are notable differences among the

various memory controllers. A quick and incomplete experiment suggested that the

individual cores may execute data differently depending on which memory controller they

are assigned to. In one case, when a core quadrant was assigned to different controllers,

it executed data faster when allocated to a controller that was on the opposite side of the

board than when assigned to the nearest controller. This may be worth investigating if

further optimizations are desired.
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Appendix A: HPL Graphs

Figure A.1: HPL: GFLOPS per Input Size
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Figure A.2: HPL: GFLOPS per Number of Cores
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Figure A.3: HPL: Accuracy per Input Size
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Figure A.4: HPL: Accuracy per Number of Cores
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Figure A.5: HPL: Execution Time per Input Size
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Figure A.6: HPL: Execution Time per Number of Cores
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Appendix B: SD-VBS Graphs

Figure B.1: Cycles per Input Size (Benchmark: Disparity Map)
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Figure B.2: Execution Time per Input Size (Benchmark: Disparity Map)
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Figure B.3: Cycles per Input Size (Benchmark: Robot Localization)
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Figure B.4: Execution Time per Input Size (Benchmark: Robot Localization)
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Figure B.5: Cycles per Input Size (Benchmark: Maximally Stable Regions)
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Figure B.6: Execution Time per Input Size (Benchmark: Maximally Stable Regions)
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Figure B.7: Cycles per Input Size (Benchmark: Multi)
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Figure B.8: Execution Time per Input Size (Benchmark: Multi)
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Figure B.9: Cycles per Input Size (Benchmark: Scale Invariant Feature Transform)
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Figure B.10: Execution Time per Input Size (Benchmark: Scale Invariant Feature

Transform)
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Figure B.11: Cycles per Input Size (Benchmark: Support Vector Machines)
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Figure B.12: Execution Time per Input Size (Benchmark: Support Vector Machines)
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Figure B.13: Cycles per Input Size (Benchmark: Texture Synthesis)

66



Figure B.14: Execution Time per Input Size (Benchmark: Texture Synthesis)
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Figure B.15: Cycles per Input Size (Benchmark: Feature Tracking)
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Figure B.16: Execution Time per Input Size (Benchmark: Feature Tracking)
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Appendix C: MDB Bugs

The following bugs, seemingly incorrect behaviors, and unexpected results were observed

on the Maestro Development Board:

1. The MDB occasionally freezes when left on for long periods of time. For example,

leaving MAESTRO on for several consecutive days without doing any work on it

causes it to become very slow and even unresponsive. This can be solved by either

doing a hard reset of the chip, or by running some sort of intense operation on all 47

cores. The MDB will eventually produce a stack dump and resolve soft lock-ups on

all the CPUs.

2. When using OProfile to profile a program using MPI, the MDB occasionally hangs,

or the profiled program hangs. For example, running a series of MPI MatrixMultiply

tests on a size 500 matrix with an MPI configuration of 3×3: 8 is likely to cause the

program to hang at some point. OProfile and MPI do not seem to be compatible

with each other. This is probably due to the fact many of the MPI routines are

not interrupt safe. [27] Since OProfile relies on non-maskable interrupts to collect

profile data, there seems to be a conflict between it and MPI. The problem occurs

at MPI Finalize(), some MPI processes never complete this function call. This is

probably due to unmatched MPI Send and MPI Recv calls. Also, the probability of

a program hang seems to increase when the size of the matrices or number of MPI

processes is increased.

3. Some of the default Opcontrol settings are suboptimal (i.e., buffer-size=131072,

buffer-watershed=[25% – 50%] * buffer-size, and cpu-buffer-size=8192). These

values sometimes cause numerous buffer overflows. However, they can be reset to

larger values, which in turn can reduce or even eliminate buffer overflows.
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4. The MDB uses an outdated version of OProfile. When running opcontrol –version,

it outputs version 0.9.3. However, that version was released in 2007. Version 0.9.8

included standard Tile64 support in 2012, and the newest version is 0.9.9, released

in 2013. This may not cause any problems, but it is noteworthy.

5. When connecting to the MDB using the tile-monitor command with –net option,

you must have a matching –resume. For example, tile-monitor –net 65.114.169.86

–resume. Without using the resume option, the tile-monitor will try to use an iso

instead of booting off the internal ROM. As a result, the MDB will attempt to write

a new image to the ROM.

6. When compiling Benchfft 3.1 with the MDB tile-cc, the benchmarks hang. However,

when compiling the library files with the Tile64 tile-cc and then compiling the

executables with the MDB tile-cc, some of the benchmarks will run. This could

have something to with compiler itself, and maybe optimization levels.

7. In the slides provided by Opera.isi, there is a description of a profiler tool called

mprof. According to the slides the mprof plugin in tile-eclipse can be accessed by

opening the mProf-p view within the OSA - Parallel Analysis Tools menu. However,

mprof-p did not appear in the menu. Not sure if it is just not loaded into tile-eclipse,

not complied, or even in the Opera-MDE directory.
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