
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

Estimation and Coordination of Sequence Patterns
for Frequency Hopping Dynamic Spectrum Access
Networks
Curtis C. Medve

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Medve, Curtis C., "Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks"
(2014). Theses and Dissertations. 614.
https://scholar.afit.edu/etd/614

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/614?utm_source=scholar.afit.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

ESTIMATION AND COORDINATION OF SEQUENCE PATTERNS FOR

FREQUENCY HOPPING DYNAMIC SPECTRUM ACCESS NETWORKS

THESIS

Curtis C. Medve, Captain, USAF

AFIT-ENG-14-M-52

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

AFIT-ENG-14-M-52

ESTIMATION AND COORDINATION OF SEQUENCE PATTERNS FOR

FREQUENCY HOPPING DYNAMIC SPECTRUM ACCESS NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Curtis C. Medve, B.S.E.E.

Captain, USAF

March 2014

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-52

ESTIMATION AND COORDINATION OF SEQUENCE PATTERNS FOR

FREQUENCY HOPPING DYNAMIC SPECTRUM ACCESS NETWORKS

Curtis C. Medve, B.S.E.E.

Captain, USAF

Approved:

//signed//

LTC Robert J. McTasney, PhD (Chairman)

//signed//

Kenneth M. Hopkinson, PhD (Member)

//signed//

Maj Mark D. Silvius, PhD (Member)

6 Mar 2014

Date

28 Feb 2014

Date

28 Feb 2014

Date

AFIT-ENG-14-M-52
Abstract

In 2010, the Shared Spectrum Company showed in a survey of Radio Frequency (RF)

bands that underutilization of spectrum has resulted from current frequency management

practices. Traditional frequency allocation allows large bands of licensed spectrum to

remain vacant even under current high demands. Cognitive radio’s (CR) use of Dynamic

Spectrum Access (DSA) enables better spectrum management by allowing usage in times

of spectrum inactivity. This research presents the CR problem of rendezvous for fast

Frequency Hopping Spread Spectrum (FHSS) networks, and examines protocols for

disseminating RF environment information to coordinate spectrum usage. First, Gold’s

algorithm is investigated as a rendezvous protocol for networks utilizing fast frequency

hopping. A hardware implementation of Gold’s algorithm on a Virtex-5 Field

Programmable Gate Array (FPGA) is constructed to determine the resource requirements

and timing limitations for use in a CR. The resulting design proves functionality of the

algorithm, and demonstrates a decrease in time-to-rendezvous over current methods. Once

a CR network is formed, it must understand the changing environment in order to better

utilize the available spectrum. This research addresses the costs a network incurs to

coordinate such environment data. Three exchange protocols are introduced and evaluated

via simulation to determine the best technique based on network size. The resulting

comparison found that smaller networks function best with polled or time-division based

protocols where radios always share their environment information. Larger networks, on

the other hand, function best when a dispute-based exchange protocol was utilized. These

studies together conclude that the selection of a rendezvous algorithm or a protocol for the

exchange of environment data in a CR network are determined by the characteristics of

the network, and therefore their selection requires a cognitive decision.

iv

I dedicate to my Mother and Sister. Their never ending support helps guide me to push all
aspects of my life toward the better.

v

Table of Contents

Page

Abstract . iv

Dedication . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Acronyms . xii

I. Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Research Contributions . 4

1.4 Thesis Organization and Overview . 5

II. Related Work . 6

2.1 Frequency Hopping . 10

2.2 Problem of Rendezvous . 11

2.2.1 Previous Algorithms . 12

2.2.2 Limitations in rendezvous . 17

2.2.3 Sequence Estimation with Gold’s time of arrival algorithm 18

2.3 Environment Map Exchange Overhead . 19

2.4 Background Summary . 21

III. Methodology . 22

3.1 Hardware Implementation of Gold’s Algorithm 23

3.1.1 System Development . 23

3.1.1.1 Gold’s Algorithm VHDL Design 24

3.1.1.2 Initial Design Testing 25

3.1.2 Test methodology for Experiment 1 - Gold’s algorithm 25

3.1.2.1 Parameters/Factors/Levels 25

3.1.2.2 System Metrics . 28

vi

Page

3.1.2.3 Expected results . 29

3.2 REM Exchange Overhead . 29

3.2.1 REM exchange methods and model design 31

3.2.1.1 Polling Protocol . 31

3.2.1.2 Time Division Protocol 32

3.2.1.3 Exponential Backoff with Priority Contention Protocol . . 33

3.2.2 Test methodology for Experiment 2 - Network overhead 34

3.2.2.1 Experimental goal of simulation 34

3.2.2.2 System Under Test . 35

3.2.2.3 Parameters . 36

3.2.2.4 Factors . 39

3.2.2.5 Performance Metrics 44

3.2.2.6 System Workload . 45

3.2.2.7 Experimental design . 45

3.2.2.8 Expected results . 46

IV. Results and Analysis . 48

4.1 Gold’s Algorithm . 48

4.1.1 Timing Limitation . 48

4.1.2 Resource Requirements . 50

4.1.2.1 Register Utilization . 50

4.1.2.2 LUT Utilization . 51

4.1.2.3 Other report results . 52

4.1.3 Rendezvous Performance . 52

4.1.4 Effects of sequence interpretation for Dynamic Spectrum Access . . 53

4.1.4.1 Skipping on channel unavailability 54

4.1.4.2 Hold on channel unavailability 55

4.1.4.3 Modulus of available frequencies 55

4.2 Protocol Simulation . 56

4.2.1 Baseline Results . 56

4.2.2 Network throughput . 57

4.2.2.1 Polling and Time-Division Protocols 58

4.2.2.2 Priority Protocol . 62

4.2.3 Data dropped due to buffer overflow 65

4.2.4 Data dropped due to exceeding the retry limit 67

4.2.5 Retry attempts . 67

4.2.6 Packet delay . 68

4.2.7 Further Testing . 69

vii

Page

V. Conclusions . 71

5.1 Research Goals Acheived . 71

5.2 Research Contributions . 73

5.3 Future Work . 74

Appendix: Experimental Results . 75

Appendix: Gold’s algorithm . 141

Appendix: VHDL code . 155

References . 183

viii

List of Figures

Figure Page

2.1 Division of Spectrum Between Government and Non-Government 7

2.2 2.4GHz to 2.5GHz usage Vienna, VA . 8

2.3 Cognitive radio system function diagram . 9

2.4 Taxonomy of rendezvous algorithms . 12

2.5 Common Control Channel coordination . 13

2.6 REM as an integrated database . 20

3.1 Top-level system architecture . 23

3.2 Example Source LFSR PRNG . 24

3.3 REM Merger . 30

3.4 Polling Protocol for REM Exchange . 32

3.5 Time Division Protocol for REM Exchange 33

3.6 Exponential Backoff with Priority Contention Protocol for REM Exchange . . . 34

3.7 Real-World Scenario . 43

4.1 Register Usage vs LFSR bit length . 50

4.2 Register Usage vs Tap bits . 50

4.3 LUT Usage vs LFSR bit length . 52

4.4 LUT Usage vs Tap bits . 52

4.5 Decision chart for COD vs Gold’s algorithm 54

4.6 Baseline Network Throughput . 57

4.7 Correlation of Network Size and Interarrival Rate for Peak Throughput 58

4.8 Polling Protocol - Throughput for a 16 node network 59

4.9 Peak Throughput for Polling and Time-Division protocols 60

4.10 Percentage of Baseline Peak Throughput for Polling and Time-Division protocols 60

ix

Figure Page

4.11 Beacon Interval Throughput Comparison . 61

4.12 Priority Protocol - Throughput for a 36 node network 63

4.13 Priority Protocol - Peak Network Throughput (1 beacon/sec) 64

4.14 Priority Protocol - Percentage of Baseline Peak Throughput (1 beacon/sec) . . . 65

4.15 Data Drop due to Buffer Overflow, Time-Division Protocol, 81 nodes 66

4.16 Average Throughput, Time-Division Protocol, 81 nodes 66

4.17 Average Retry Attempts, Time-Division Protocol, 81 nodes 68

4.18 Average Retry Attempts, Time-Division Protocol, 81 nodes 69

4.19 Peak Throughput for Priority protocol (updated results) 70

x

List of Tables

Table Page

2.1 Mitola’s Characteristics of Radio Cognition Tasks 6

3.1 Summary of Parameters/Factors for Gold’s algorithm experiment 27

3.2 Node Attribute Settings . 36

3.3 Test Levels for REM exchange intervals . 40

3.4 Test Levels for Nodal Data Workload . 41

3.5 Test Matrix of simulation runs . 46

4.1 FPGA Maximum Clock Frequency (MHz) . 49

4.2 Advanced HDL Synthesis Report Macro Statistics 53

xi

List of Acronyms

Acronym Definition

AFIT Air Force Institute of Technology

CCC Common Control Channel

COD Code-of-the-Day

CR Cognitive Radio

DCF Distributed Coordination Function

DSA Dynamic Spectrum Access

FCC Federal Communications Commission

FFH Fast Frequency Hopping

FFT Fast Fourier Transform

FHSS Frequency Hopping Spread Spectrum

FPGA Field-Programmable Gate Array

FPSFH full-packet slow frequency hopping

HDL Hardware Description Language

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

LFSR Linear Feedback Shift Register

LUT Look-up table

MAC Medium Access Control

MTTR maximum TTR

NTIA National Telecommunications and Information Administration

OSI Open Systems Interconnection

PCF Point Coordination Function

PRNG Pseudo-Random Number Generator

xii

Acronym Definition

REM Radio Environment Map

RF Radio Frequency

SFH Slow Frequency Hopping

SMREM Suggested Master REM

SPSFH sub-packet slow frequency hopping

TTR Time-to-Rendezvous

VHDL Very High Speed Integrated Circuit Hardware Description Language

xiii

ESTIMATION AND COORDINATION OF SEQUENCE PATTERNS FOR

FREQUENCY HOPPING DYNAMIC SPECTRUM ACCESS NETWORKS

I. Introduction

C
ontinuing development of wireless systems causes increasing stress on the available

spectrum resources in the United States and other countries throughout the world.

The National Telecommunications and Information Administration (NTIA) and the

Federal Communications Commission (FCC) control the spectrum availability and usage

in the United States. NTIA controls frequencies assigned to federal agencies while the

FCC administers commercial and state use. In November 2010 the FCC released a notice

of inquiry focusing on dynamic spectrum access technologies to enable more efficient

utilization of the limited spectrum. The notice presented several federal and non-federal

programs that investigate possible solutions to alleviate the spectrum. One such

technology is referred to as Cognitive Radio (CR) [10].

The NTIA in [25] defines a CR system as “a radiocommunication system that is

aware of its environment and internal state and can make decisions about, and adjust, its

operating characteristics based on information and predefined objectives.”[25] CR is the

enabling technology for Dynamic Spectrum Access (DSA) which is the operation of

changing spectrum usage based upon the state of the Radio Frequency (RF) environment.

DSA is currently a topic of focus for researching bodies around the world to include the

Air Force Institute of Technology (AFIT). Research at AFIT investigates the use of DSA

for both civilian and military applications while advancing technology in the area of radio

communication.

1

1.1 Motivation

The Air Force relies heavily on wireless communication systems. Communication

between command centers, personnel, and other military platforms is vital for successful

operations. Twelve core functions comprise the US Air Force: Nuclear Deterrence

Operations, Special Operations, Air Superiority, Global Integrated ISR, Space Superiority,

Command and Control, Cyberspace Superiority, Personnel Recovery, Global Precision

Attack, Building Partnerships, Rapid Global Mobility and Agile Combat Support [31].

Each of these functions greatly depend on continuous and reliable communication. As

such, the Air Force has outlined the current state of capabilities, assessed projected

challenges, and presented a plan to address problems. This Air Force report discusses

“Frequency Agile Spectrum Utilization”, a sub-topic of DSA, as a potential capability

area [3].

Military radio requirements vary widely from commercial requirements due the

range of operational environments and higher reliability requirements. For instance,

Frequency Hopping Spread Spectrum (FHSS), used in many military systems, is a method

of transmission not commonly used by commercial radio systems due to the lower data

rates they provide. This addition of FHSS to the problem space brings separate challenges

to the study of CR for military use.

1.2 Problem Statement

The objective of this research is to investigate Gold’s algorithm as a rendezvous

method for FHSS radio systems utilizing DSA, and to evaluate the network performance

losses caused by exchanging radio environment data. Explored separately, research into

these topics areas expand upon previous AFIT cognitive radio research designed to

construct and evaluate a prototype CR.

For any network to begin functioning, the network itself must be established.

Rendezvous is the process of establishing a communication link between two or more

2

radios or radio networks. Current research on the rendezvous problem ignores the

functionality of FHSS within a DSA environment. The research in this document

addresses this missing consideration. It also investigates the hardware specifications and

timing limitations for implementing a unique rendezvous algorithm for FHSS on an

Field-Programmable Gate Array (FPGA) based development platform.

In addition to establishing a network connection, radios must coordinate a common

picture of the environment. The exchange of environment data requires additional data

transfers as overhead which reduces the overall performance of a network. Network

performance describes the transfer characteristics of non-control data to include

throughput, delay, and data drop rates. The exchange of environment data occurs when

needed or on a set schedule. This research investigates the overhead cost of performing an

exchange under different conditions. A lack of research into exchange protocol effects

suggest that no standard metrics exist to identify the efficiency of a protocol, nor do any

test data sets exist to represent real-world environments for testing of a protocol.

The specific goals of this research are to:

• demonstrate that Gold’s algorithm allows for successful rendezvous on a FHSS

radio network without dwell time or common control channel requirements.

• present resource requirements and timing limitations for an FPGA implementation

of Gold’s algorithm.

• analytically show that the above algorithm is capable of operating within the DSA

paradigm.

• evaluate the performance of three possible exchange protocols for transferring radio

environment data on a multi-nodal radio network via wireless network simulation.

3

1.3 Research Contributions

This research provides two distinct contributions to the study of DSA, and therefore

the field of CR. First, it establishes Gold’s algorithm as a valid rendezvous method for

Frequency Hopping DSA networks. Compared to traditional rendezvous methods such as

Code-of-the-Day (COD), Gold’s algorithm reduces joining time when higher hop rates are

required. Additionally, this research offers the first FPGA hardware implementation of

Gold’s algorithm providing timing and resource requirements for radio designers.

Second, this research demonstrates the impact to network performance for three

exchange protocols when radio channel availability data must be exchanged as part of

DSA operations. Examination of metrics such as data throughput, delay, and data drop

rates provide an estimation of network performance with varying network size under

different network non-control traffic workloads. A comparison of these metrics and their

correlations determine the exchange protocol that minimizes the overhead costs to the

network.

Two OPNET nodal models were developed to compare the exchange protocols.

Utilization of these models provide future researchers with advanced capabilities not

currently available. The first model expands the features of the Institute of Electrical and

Electronics Engineers (IEEE) 802.11b OPNET wireless model to incorporate the

transmission technique of FHSS. OPNET’s model provides frequency hopping as a

function option, but the feature was never implemented in the model. The improved model

is currently restricted to slow-hopping operations. The second model modifies the Point

Coordination Function (PCF) of IEEE 802.11b within the Medium Access Control (MAC)

process model. This modification allows PCF operation without the need of a dedicated

access point, and leverages the PCF operation for transfer of radio environment data only.

4

1.4 Thesis Organization and Overview

Chapter 2 examines related work on topics within cognitive radio, and provides

background information. It begins with an overview of cognitive radio and spectrum

allocation terminology. The chapter continues by providing an overview of frequency

hopping spread spectrum, then explores the problems of rendezvous and environment

mapping.

Chapter 3 presents the methodology for the research experiments on both Gold’s

algorithm and the network overhead cost simulations. First, it discusses the development

and experimentation of the custom Intellectual Property (IP) core implementation of

Gold’s algorithm to determine system physical and timing specifications. Secondly, the

chapter describes three potential exchange protocols for transferring environmental data,

and the methodology for testing these protocols for network performance using wireless

network simulation. Finally, the analysis approach and hypothesis of the experiments is

disclosed.

Chapter 4 presents and analyzes the results for the implementation of Gold’s

algorithm and network simulation experiments. The analysis for Gold’s algorithm

considers timing limitations, resource requirements, and expected rendezvous

performance. Additionally, a discussion on translating hop sequences to usable channels

in a DSA environment is presented. Thereafter, the chapter examines the network

simulation results, and presents their impact on performance.

Chapter 5 summarizes the conclusions of this research, discussing its contributions,

and providing suggestions for future work. Appendices containing experimental results, a

detailed explanation of Gold’s algorithm, an example of Gold’s algorithm, and Very High

Speed Integrated Circuit Hardware Description Language (VHDL) code are attached at

the end of the document.

5

II. Related Work

D
r. Joseph Mitola first introduced cognitive radio in 1998 as part of his doctoral

dissertation [23][24]. This dissertation defined the early concepts of cognitive

radio in terms of feature requirements and a possible architecture. As part of early

development, Mitola attempted to classify characteristics of radio cognition into the nine

levels shown in Table 2.1.

Table 2.1: Mitola’s Characteristics of Radio Cognition Tasks [24]

Level Capability Task Characteristics

0 Pre-programmed The radio has no model-based reasoning capability

1 Goal-driven Goal-driven choice of RF band, air interface, and protocol

2 Context Awareness Infers external communications context (minimum user involvement)

3 Radio Aware Flexible reasoning about internal and network architectures

4 Capable of Planning Reasons over goals as a function of time, space, and context

5 Conducts Negotiations Expresses arguments for plans/ alternatives to user, peers, networks

6 Learns Fluents Autonomously determines the structure of the environment

7 Adapts Plans Autonomously modifies plans as learned fluents change

8 Adapts Protocols Autonomously proposes and negotiates new protocols

Concept development using these levels progressed through the exceptional efforts of

researchers around the world. Vanu Bose with an alternate view of cognition described his

vision of a fully programmable radio to improve spectrum usage as ”dynamically adapting

the physical layer of the network to best meet the current environmental conditions,

network traffic constraints and application requirements, rather than a lowest common

denominator service that must accommodate the worst case.”[6] No matter the vision of

cognitive radio, common themes arose in areas of interest. The research presented in this

paper focuses on the concept of DSA to utilize the spectrum more efficiently. Level 6 best

6

represents DSA in Mitola’s characteristics. Putting DSA and CR into use first requires an

understanding of current spectrum management practices.

The FCC manages and regulates all domestic non-federal spectrum under Title 47

US Code 301. The FCC currently divides the spectrum into two categories, Unlicensed

Spectrum and Licensed Spectrum for Commercial Services. Unlicensed Spectrum are

frequencies designated as ”unlicensed” or ”licensed-exempt” where any user can operate

devices without the need of an FCC license, but must use certified radio equipment that

complies with FCC requirements. Since no license is required, operation in this spectrum

typically involves dealing with levels of interference. Frequencies such as in the

Industrial, Scientific and Medical (ISM) radio bands and the Unlicensed National

Information Infrastructure (U-NII) radio band fall under the unlicensed category [11].

Licensed Spectrum designated for commercial services allow exclusive ownership or use

of particular frequencies. Locality of transmission also affects the restricted use of

licensed spectrum.

As the controlling authority, FCC reports on a constant basis the allocations of

spectrum to different users. Figure 2.1 show a summary break down of the 300-3000 MHz

frequency span. The assignment of spectrum using this two category system does not

ensure optimal use of that spectrum; therefore, to make any improvements the current

usage must be understood.

Figure 2.1: Division of Spectrum Between Government and Non-Government [38]

7

Starting in 2004, the Shared Spectrum Company has collected spectrum data in

several US cities to investigate current usage [20, 21, 32]. These collection studies showed

many of the channels reserved as licensed spectrum are underutilized. Figure 2.2 shows

the reported the usage over time of 2.4 GHz to 2.5 GHz in the study of Vienna, VA. Under

utilization of the spectrum is a large catalyst for the development of DSA.

McLean et al. attempted to highlight the functions needed in implement a working

DSA radio system [22]. Specifically, they present a list of functions required for the

cognitive process to maintain communication. Figure 2.3 graphically represents these

functions.

Figure 2.2: 2.4GHz to 2.5GHz usage Vienna, VA [32]

8

Figure 2.3: Cognitive radio system function diagram [22]

9

2.1 Frequency Hopping

The term frequency hopping exists throughout cognitive radio research. This section

attempts to categorize the different types of frequency hopping in order to differentiate the

DSA scenarios.

Traditional frequency hopping describes any radio mode of operation where the

communication channel changes over time. For example, a radio may operate on

Channel #1, and increment its channel by one channel every minute. The act of

automatically changing frequencies according to a sequence or algorithm defines

frequency hopping; however, distinguishing the amount of information that can be

exchanged while occupying a single frequency divides frequency hopping into categories.

Radio communications developers use two common categories, Fast Frequency

Hopping (FFH) and Slow Frequency Hopping (SFH) [26].

In FFH, the hop rate (rate of frequency change) exceeds the symbol rate causing a

single data symbol to be cast over multiple frequency channels during transmission.

Although traditionally resulting in lower data transfer rates, FFH provides a level of bit

error correction based on the ability to compare a data symbol over the multiple

frequencies. For instance, if a data symbol is transmitted over five frequencies then the

received majority is likely to represents the true value that was transmitted.

A system is considered to be SFH if the hop rate is less than the data symbol rate.

Most commercial radios use this type of frequency hopping for use in IEEE 802.11 for

Wireless Local Area Networks and IEEE 802.15 for Bluetooth technologies. The

definition of SFH contains an ambiguity when classifying a radio transmission by the

quantity of data transferred. The definition covers a radio capable of transmitting as little

as a single data symbol or more than an entire packet before changing frequencies. As

such, a new division of SFH into more specific categories is needed. Distinguishing the

ability to establish reliable communication channel, typically a resulting from a

10

“handshake” protocol, produces a possible division point. This document provides

terminology to identify this division.

Let full-packet slow frequency hopping (FPSFH) define the case when all needed

traffic to establish a connection can be transferred during a single time slot, and let

sub-packet slow frequency hopping (SPSFH) define the case when the exchange can not

occur during a single time slot. The definitions of FFH, FPSFH, and SPSFH establish an

additional factor for determining the applicability of different DSA routing and

rendezvous protocols.

2.2 Problem of Rendezvous

Users within a CR network detect the presence of other users to establish

communications links thereby allowing for information exchanges to occur. The process

of two or more radios or radio networks establishing a communication link defines

rendezvous. Rendezvous requires that the users occupy the same channel at the same time

to establish a link. This fundamental task becomes increasingly more difficult as the

complexity of the communication medium and communication protocols change. For

instance, if a radio user (Radio A) can only operate on a single channel, then any other

radio user (Radio B) can easily perform a rendezvous by using the same channel.

As Radio A increases the number of available channels it operates on, Radio B’s task

of finding the correct channel increases too. Let Radio A select and remain static on one

of its N available channels. Radio B must, at most, search each of the N channels before

rendezvous occurs. Next, let Radio A change its operating channel according to a set

algorithm or sequence. Radio B must determine a way to rendezvous with increased

difficulty. This problem becomes non-trivial. Further adding cognitive abilities to a radio

brings the dynamic element of a changing number of available frequencies for each user.

This is the essence of the rendezvous problem for CR networks. For evaluation,

metrics provide the ability to compare different rendezvous algorithms against one

11

another. One important metric is Time-to-Rendezvous (TTR), which is defined as the

number of time slots required for a rendezvous to occur. However, since the TTR depends

on the specific channel order that the radios follows, the maximum TTR (MTTR) metric is

commonly used. MTTR is the TTR for the worst case scenario when applying a

rendezvous algorithm. The problem space for rendezvous within CR networks is vast, and

many algorithms have already been created to address differing applications.

2.2.1 Previous Algorithms.

Rendezvous algorithms can be categorized by the assumptions required for

operation, and by the extent which the algorithm’s effectiveness can be applied. Liu et al.

suggested a taxonomy for subdividing channel hopping rendezvous algorithms based on

the target environment [18]. Figure 2.4 displays a visual representation of this taxonomy.

Figure 2.4: Taxonomy of rendezvous algorithms [18]

12

The top level of the categorization splits by identifying algorithms based on the

topography of the system. These two systems are centralized and decentralized. In a

centralized system, a user requires a centralized controller (server) to assist users in the

rendezvous process. A decentralized system does not require server assistance to

rendezvous. Both types of systems may utilize a Common Control Channel (CCC). The

inherent limitations of a centralized system led research to focus on decentralized systems.

The failure of a server resulting in the crippling the entire network is one such limitation.

This research focuses on decentralized systems.

Using a dedicated CCC is the simplest way to coordinate rendezvous. The CCC

approach divides time into two intervals: control interval and data interval. During the

control interval, users coordinate and select an available channel for data transfer.

Figure 2.5 illustrates such an exchange using a CCC. The CCC is assumed to be reachable

by every CR (global) or to a select group of CRs (local), normally determined by a

clustering algorithm [42].

Figure 2.5: Common Control Channel coordination [15]

The use of a CCC causes inherent problems such as the coordination of the control

channel itself, the availability of the channel, and its susceptibility to malicious

interference. The lack of a CCC is typically addressed as a more complicated problem

13

known as blind rendezvous. When no CCC is needed, algorithms are further divided by

the need for time-synchronization on the systems to communicate. Lastly, a division

occurs between the environment models in which the algorithm applies. A symmetric

model describes the situation where each CR has the same available channels. The

asymmetric model represents all other cases.

Research toward the development of CR introduced a number of algorithms. In an

attempt to remain robust, research focused on decentralized systems for rendezvous

algorithms. A successful channel-hopping (CH) rendezvous protocol meets three basic

requirements: [5, 42]

1. Every pair of nodes should have a chance to meet every other node periodically

within a bounded interval.

2. All nodes should be able to rendezvous on every channel it is capable of using for

communication.

3. All channels should have the same probability to be utilized as the control channel.

More complicated scenarios were generated as algorithm development progressed. A

scenario driven view of many of the known rendezvous algorithms provides better

understanding of the algorithms and their functions. To establish different scenarios, a set

of global assumptions must be made about the network. First, any radio node being

considered as part of the system must share at least one channel with the other radios in

the system. This means the operational ranges of the radio in the network must overlap.

Second, at least one channel must be open within the overlapping channels for

communication exchange to occur. Third, radios must be capable of exchanging

information once co-existence on a channel occurs.

The simplest scenario within rendezvous is communication between only two radios

operating under the symmetric environment model (i.e. all nodes have the same open

14

channels). The Random Algorithm (RA), the first algorithm investigated, operated by

selecting at random an open channel from a list. Random algorithms cannot guarantee the

rendezvous of nodes in a bounded time; however, RA is considered the baseline from

which other algorithms developed.

Sequence based algorithm design is one method to ensure rendezvous. In [7],

DaSilva & Guerreiro proposed Sequence-based Rendezvous (SeqR) capable of linking

two radios with an MTTR of M(M + 1) time slots. The algorithm does not require

time-synchronization, but is limited to the symmetric model.

A second scenario exists by expanding the two node scenario to include the

asymmetric model conditions. Sequence rotation algorithms such as Modular Clock and

Modified Modular Clock (MMC) displayed the ability to work for both the asymmetric

and symmetric models [35]. These algorithms are based on a prime modulus function and

a randomly selected hop distance. The algorithms showed a bounded MTTR as long as

both the rate and prime number are not selected as the same value for more than one node.

A separate effort demonstrated applicability of these algorithms via hardware

implementation on the GNU radio test bed [30]. It also presented a comparison of MMC,

RA, and a modified MMC.

Expanding off the modular clock design, [17] proposed two ring-walk algorithms.

This algorithm added a separate time component where each node may or may not

perform a frequency change. The ability to hold on a channel eliminated the limitation

that the modular clock presented. As such, the ring-walk algorithm guaranteed rendezvous

of two users in a time slot without time-synchronization on both symmetric and

asymmetric models. More than two radios may visit the same operating channel in the

above scenarios, but the design of the algorithms did not ensure this event to occur.

Bian et al. in [5] demonstrated Quorum-based channel hopping (QCH). Novel to this

algorithm class was the insurance that rendezvous occurred on multiple channels within a

15

single sequence period. This meant that several chances to rendezvous occur. The paper

presented a comparison between QCH, RA, and SeqR to demonstrate the multiple

overlapping channels effect. Using the QCH approach, Bain et. al introduced three

distinct variations: M-QCH to minimize MTTR, L-QCH to minimizes the load on the

channels, and A-QCH to handle asynchronous operations.

The usefulness of only two radios communicating quickly loses its practicality when

developing complex scenarios. This caused researchers to expand into two different

multi-node scenarios, organized hop and multiple pairing. Lin et al. proposed the jump

stay (JS) algorithm which functions by dividing the hop sequence into two parts, an active

jump pattern and a passive stay pattern. The selection of jump moves are based on a

random step distance and starting point (through a modulus function). During stay period

a single channel is held. The sequence created is similar to the ring-walk algorithm;

however, the JS algorithm extended to multi-user scenarios where more than two nodes

can meet on the same channel. As such, [16] presented the organized hop method by

which many users can force synchronization of patterns when nodes meet. Two nodes will

adopt the same sequence when they rendezvous and hop as an organized unit. As more

rendezvous occur the organized pack grows. Since the JS algorithm is bounded it ensured

that all nodes eventually exist on the same pattern [16]. This method expands to almost all

previous algorithms. In a comparison of known algorithms, JS had the best overall

performance among single pair rendezvous algorithms covering both symmetric and

asymmetric models according to [18].

Zhang et. al in [42] focused on creating sequences allowing multiple pairings across

the spectrum to occur every time slot. In other words, node pairs rendezvous on many of

the available channels. The algorithm proposed requires pre-knowledge of the number of

nodes in the network and a homogeneous system view. This method also utilized by Xin

et. al in creating the Rendezvous with near-Optimal Performance (ROP) algorithm was

16

designed to distribute the rendezvous load over all available channels [41]. The benefit of

this multiple pairing method lays in the number of simultaneous connections which cause

the network throughput to greatly increase.

Wu & Wu found little attention had been shown to recognize the difficulties of

utilizing radios capable of measuring different spectrum spans [39]. As such, the last

significant scenario covers a specific situation using heterogeneous systems. A

heterogeneous system refers to radios in the system using different operating ranges, and

attempts to communicate. For instance, if radio A operates on frequencies 1 - 2 GHz and

needs to communicate with radio B, which operates at 1.5 - 2.5 GHz, then radio A and B

overlap operational frequencies in the 1.5 - 2 GHz range. This overlap allows rendezvous

to occur. In 2012, research papers began to focus on this new consideration for

rendezvous. Wu & Wu addressed this by presenting the interlocking channel hopping

(ICH) algorithm which utilizes the intersection of two frequency spans.

2.2.2 Limitations in rendezvous.

Most of the scenarios above allow communication to occur for only a fraction of the

operating time. Pre-determined frequency sequences for rendezvous do not allow for

constant communication. With the exception of the organized hop method, multiple radios

do not maintain an established connection for more than one time slot.

Furthermore, the researched algorithms described above presented common

assumptions by the authors. Most algorithms defined a rendezvous as successful when

“two nodes access a channel during a certain period of time which is long enough to

establish a reliable link.”[33]. [2], [4], [5], [35], and [39] expressed this in alternate

wording. This imposed the restriction of operating only within FPSFH.

As a focus point, this research investigates rendezvous for FHSS systems which may

operate at frequency rates defined by SPSFH and FFH. SPSFH is critical for the

17

application of military radio operation. As such, this effort explores a robust method of

rendezvous capable of supporting both slow and fast frequency hopping.

2.2.3 Sequence Estimation with Gold’s time of arrival algorithm.

Only two possibilities exist for rendezvous without the ability to establish a reliable

communication channel on a single frequency hop as with FPSFH. Either the the radio

must have complete foreknowledge of the network’s hopping sequence, or it must have

the ability to identify the current hopping sequence of the network. The first case

describes traditional radio operation using the COD method. For the latter case, Gold’s

algorithm provides a process to calculate the hopping sequence of a network by

monitoring a single communication channel.

Dr. Robert Gold created the algorithm as part of a Small Business Innovative

Research contract with the US Air Force Sensors Directorate, Air Force Research Labs,

Wright-Patterson AFB, OH [28][29]. Additionally, Robert Gold Comm Systems Inc

patented the algorithm [13]. No academic publications of this algorithm are known.

Golds algorithm functions by estimating the state of a Linear Feedback Shift

Register (LFSR) based Pseudo-Random Number Generator (PRNG) sequence. LFSRs are

commonly used to create the hop sequences of FHSS systems. The algorithm is designed

to measure the time differences between arrivals of a radio system transmission on a single

channel. The operation of the algorithm requires specific parameters of the target LFSR

system to be known. The parameters include the hopping rate of the target system, the bit

length of the LFSR, and which LFSR bits are used as feedback. Requiring knowledge of

the parameters limits cross design development; however, current radio systems that use

LFSR based PRNG sequences already operate with similar restrictions.

By monitoring a single channel for the arrival times, the algorithm calculates the

state of the LFSR bits for which all future states depend. This allows the algorithm to

serve as a rendezvous method for establishing communications with an existing SPSFH or

18

FFH network. A full packet exchange is not required for the algorithm to function.

Appendix B provides a full description and example of Gold’s algorithm functionality.

Due to the applicability of Gold’s algorithm toward current military radio systems,

this research establishes the algorithm as an implementable method for FHSS rendezvous

across all sub-categories. Additionally, the development of an FPGA implementation of

Gold’s algorithm within this research enables system hardware requirements to be

determined as well as support the creation of an FHSS DSA radio test platform for use by

the AFIT’s Cognitive Radio Laboratory.

2.3 Environment Map Exchange Overhead

For a DSA enabled radio to perform as part of a network, the radios must coordinate

a common picture of the environment in which they operate. The concept of the Radio

Environment Map (REM) was introduced to coordinate this environmental data.

Originally, an integrated database consisting of layers of radio environment domains

formed the REM concept. These domains included geographical features, spectral

regulations, radio location, activities of the radio, user policies, and past experiences [43].

Dedicated network sensors, a compilation of spectrum authority databases, and by the very

radios attempting to utilize the data funnel information to the REM. Figure 2.6 shows a

representation of data fusion to create a REM database. A separate or more specific REM

can exist on multiple levels. The REM concept contains a vast amount of information to

describe the environment; therefore, the cognitive radio community should research both

the methods of acquiring information for the REM and the distribution of that data.

Determining a sensor’s local RF environment is arguably the most impacting aspect

of developing a REM. REM creation requires transmission detection of other systems in

the vicinity of operation. Wellens and Mähönen presented an array of both practical and

theoretical spectrum sensing methods [37]. Additionally, [36] provided a comprehensive

19

Figure 2.6: REM as an integrated database [44]

summary of current methods of spectrum sensing. Shokri-Ghadikolaei and Fallahi sought

to determine an optimal sensing sequence to produce the greatest data throughput [34]. In

coordination with the sensing methods, the number of sensors control the accuracy of

representing the environment.

Faint et al. calculated the critical number of nodes are needed to create a REM that

properly represents an area. The value depended on the total area under investigation and

the locality of the sensor nodes [9]. Similarly, Hanif et al. investigated the performance of

CR networks when discrepancies exist between the REM being used for operation and the

true environment [14].

After local REM collection, the network must distribute the REM to the other nodes

in the area (decentralized system), or to a master node or database (centralized system).

Routing protocol research which utilizes REM information is found throughout recent

publications. [8] and [19] summarized over 30 different routing protocols showing a major

20

research focus on the routing of network information to achieve the best performance.

However, these routing protocols assumed that the neighboring network nodes already

share REM information. Little research addresses the physical dissemination of the REM

once collected by the sensor systems. Zhoa et al. in [44] compares REM dissemination

schemes on an ad-hoc network. The comparison addressed three schemes: a network

flooding scheme, an optimized link state routing protocol (OLSR) scheme, and an

application specific scheme. The study’s focus compared the average number of

retransmission of REM packets (overhead) transmitted per node versus number of nodes

in the network. Although measuring retransmission provides insight into extenuated

overhead, the study failed to address the effect of REM exchange to the average

throughput of non-control data on the network or the effects to system packet delay. This

research document intends to investigate this missing information.

2.4 Background Summary

This chapter presented research on issues inherent in cognitive radio development.

Specifically, it addressed the current state of rendezvous algorithms based on scenario

applicability, and presented known research in evaluation of network performance

overhead costs caused by implementing DSA. This study of previous related works

revealed an oversight in research for methods for rendezvous capable of operation under

both SPSFH and FFH. Additionally, it uncovered a lack of research into the the overhead

requirements involved with exchanging REM data on a constant contact network.

21

III. Methodology

T
his chapter is divided into two experimental sections to assist in organization

and presentation. The first section addresses an FPGA implementation of Gold’s

algorithm. The section begins by summarizing the development methods and initial

testing of the design. It then presents a test methodology for implementation of the

hardware design. The methodology describes, in a systematic way, the process of

investigating the implementation’s resource requirements and timing restrictions. The

second section of the chapter presents three different generalized REM exchange

protocols for investigation, and the proposed experiment. The experiment specifically

examines the effects of the REM exchange protocols on network overhead costs in

relation to network scaling and performance.

Through the above development of a hardware system and the experimentation, this

research investigates five questions about FHSS DSA cognitive radios:

1. What are the hardware requirements and timing restrictions for implementing

Gold’s algorithm on an FPGA based testbed?

2. To what extent does coordination of radio networks through hop sequence

estimation allow for quicker rendezvous versus current method of key

synchronization?

3. How does hop sequence estimation perform within the DSA paradigm regarding

rendezvous compared to current methods?

4. How do different REM exchange protocols affect the network overhead costs in

relation to network scaling and performance?

5. To what extent does network size limit the time interval between REM exchanges?

22

3.1 Hardware Implementation of Gold’s Algorithm

3.1.1 System Development.

A testbed is created to test the effectiveness of Gold’s algorithm. The design uses the

Xilinx ML507 development board, which does not have the ability to create radio

frequency transmissions. However, it does possess the ability to record and play audio. As

such, the audio peripheral is used instead of RF as an analogous medium [40]. An FPGA

platform is chosen for implementation for two reasons. First, FPGAs offer operation

speeds capable of supporting the computation level requirements of FHSS. Secondly, they

offer support for the rapid prototype development required by research. Note that all

current AFIT research efforts on CR are directed toward Rice University’s Wireless Open

Access Research Platform (WARP) which is an FPGA-based system [1].

Figure 3.1: Top-level system architecture

The testbed design consists of both a transmitter and a receiver. Figure 3.1 presents

the top level architecture of the system. The receiver will contain the implementation of

Gold’s algorithm. The transmitter design uses an LFSR with variable bit length to create

its hopping sequence. The bit length, L, as well as the bits selected for feedback determine

the period associated with the hop sequence. The capabilities and properties of LFSRs

have been well studied, and selection of feedback bits to create the longest period is

beyond the scope of this paper; however, it can be stated that the longest sequence period

possible of any LFSR is equal to L2 − 1 [27]. A representation of an LFSR PRNG is

shown in Figure 3.2. During operation, several bits within the LFSR are statically selected

23

as tap bits. The maximum number of operating frequencies, N, of the system determine

the number of tap bits needed where N = 2#taps. The tap bits control the audio frequency

(equivalent to RF channel) used for transmission.

The receiver serves as the acquisition device. Functionally, it listens for the audio

tones of the transmitter, estimates the sequence using Gold’s algorithm, and finally

synchronizes with the incoming sequence. To perform these actions, a data flow occurs.

First, an audio microphone collects the signals produced by the transmitter. This detected

audio passes to a Fast Fourier Transform (FFT) core that translates the signal into the

frequency domain. A comparator is attached to the output of the FFT core to detect when

a single selected frequency is present. The presence or absence of the frequency detection

signal represents the communication on a carrier frequency in RF. This detection signal

serves as input into the Gold’s algorithm IP core. The IP core detects the time of arrival

differences for the frequency, calculates the state of the transmitter’s LFSR, and

determines the appropriate tap bits to replicate the incoming sequence. Both the calculated

LFSR state and tap bit locations pass to the receiver’s LFSR. Upon successful estimation

of the hop sequence, the receiver produces verification of synchronization.

Figure 3.2: Example Source LFSR PRNG

3.1.1.1 Gold’s Algorithm VHDL Design.

The algorithm IP core consists of seven distinct computation processes, or blocks,

and a top-level wrapper for component coordination and control. Each block corresponds

24

with a phase of the matrix computations implemented within Gold’s algorithm.

Appendix B provides a detailed description of each block’s implementation in VHDL.

Appendix C contains the VHDL code for the algorithm core.

3.1.1.2 Initial Design Testing.

Determining hardware requirements and timing restrictions first requires verification

of the algorithm’s functionality when implemented in the design described above. As

such, a reasonable initial test is generated to determine the operation of Gold’s algorithm.

The test implements a radio pair capable of frequency hopping over 32 frequencies

according to a uniform distribution. This test therefore utilizes a 16-bit length LFSR with

five feedback taps and five frequency taps. The maximum sequence period for a 16-bit

LFSR is 65,535 cycles. The use of audio tones and the FFT limit the frequency hop rate.

For demonstration purposes, the hop rate is set to 6 Hz or six frequencies per second. A

successful demonstration is defined as proper function of the algorithm to synchronize the

receiver to the transmitting system. For system testing, it is assumed that no interference

tone or noise generators are present.

The scenario described ensured proper operational testing of the testbed design.

Upon implementation, the receiver proved the proper operation of Gold’s algorithm to

synchronize with the transmitting audio stream. The test was repeated for different

transmitter starting states, feedback bits, and tap bits parameters. This initial testing

verified that the algorithm IP core functions as expected.

3.1.2 Test methodology for Experiment 1 - Gold’s algorithm.

This section establishes the testing methodology for determining Gold’s algorithm’s

hardware system requirements and timing limitations.

3.1.2.1 Parameters/Factors/Levels.

Implementation of the algorithm depends on several parameters for system design.

Some parameters significantly affect the hardware resources required for implementation

25

as well as the maximum clock frequency for stable operation. These significant parameters

define the design factors, and are varied in this experimentation. Understanding the

resource requirements enables designers to properly select components based on desired

radio capabilities while the hardware design’s timing limitations restrict the operational

speed of the algorithm. The following parameters are considered in this experiment:

1. Frequency hop rate – defined as the speed at which frequency changes occur,

measured in hops per second. The maximum value for this parameter is limited by

the maximum operation speed of the algorithm itself when implemented in

hardware; however using modern processors the reaching this rate is unlikely. The

frequency hop rate is determined by the target device and remains constant. The rate

does not directly affect the required hardware resources or timing constraints, and

therefore is not to be considered a factor. This rate must be known for Gold’s

algorithm to function.

2. LFSR bit length – Bit length for the LFSR are selected as part of system design

requirements. As such, the length significantly affects the resource requirement

needed for implementation. The LFSR bit length is derived from the desired

sequence interval of the radio system where,

Sequence interval =
Sequence period

Frequency hop rate

Proper selection of the feedback bits can produce a maximum sequence period of

L2 − 1. For military applications, it is common to have the requirement that the

sequence interval be greater than 24 hours so that the hop sequence does not repeat

over within one day. Eight levels of bit length variation are examined: 8, 12, 16, 20,

23, 28, 32, 36. These levels allow sequence periods of 255 to 68.719 million cycles.

Using a sequence interval requirement of 24 hours, these levels correspond to a hop

rate range of one hop every 338 seconds to 795,364 hops per second. This wide

26

range covers known operational hop rates of modern systems. Four bit spacing

between levels is chosen to explore FPGA operations that allocate partial resources

such as using only 4-bits of an 8-bit register.

3. Feedback bits – Although feedback bits determine the period of the sequence, the

implementation design presented allows any combination of feedback bits to be

selected from the LFSR at system startup in software. As such, any change in the

selection of feedback bits does not affect the hardware resources or timing

constraints. This parameter is not considered a factor for this experiment.

4. Operational frequency range (Tap bits) – the maximum number of frequency

channels of the system determines the number of possible tap bits, N = 2#taps. For

proper operation, the receiver must have foreknowledge of the number of taps bits

used by the transmitter. The variation in taps significantly changes the logic

requirements of the system. Therefore, the number of tap bits affects the resource

requirements and timing limitations, and is considered a factor for this experiment.

Seven levels for the number of tap bits are examined: 4, 5, 6, 7, 8, 9, and 10. This

selection allows for systems utilizing from 16 to 1024 distinct frequency channels.

Table 3.1: Summary of Parameters/Factors for Gold’s algorithm experiment

Factor Levels

Frequency hop rate 6 Hz

LFSR bit length 8, 12, 16, 20, 24, 28, 32, 36

Feedback bits Constant in hardware (set in software)

Tap bits 4, 5, 6, 7, 8, 9, 10

27

3.1.2.2 System Metrics.

System metrics for this experiment focus on the resource requirements to implement

the Gold’s algorithm IP core, and timing limitations imposed by the implementation.

Implementation of a design to a FPGAs is both software and device specific. For this

experiment, Xilinx ISE v13.2, application O.61xd, synthesizes a netlist to target the Xilinx

ML-507 development board, revision A, which utilizes a Virtex-5, version xc5vfx7dt,

FPGA. Xilinx ISE v13.2 uses the Xilinx Synthesis Technology (XST) process by default,

but is capable of supporting the 3rd party synthesis tools of Precision from Mentor

Graphics Inc. and Synplify from Synplicity Inc. The default synthesis tool will be used.

This software produces a detailed report as part of the synthesis process which

include a listing of used resources. This report provides resource information at three

stages during synthesis as well as a final device utilization summary. The first stage’s

report covers the initial Hardware Description Language (HDL) synthesis before any

optimization occur. This stage is not useful since it contains many unneeded connections

and components. The second stage covers the advanced HDL synthesis. This stage’s

report presents the system resources needed in terms of macro statistics after a high level

optimization. The final stage covers the low-level optimization, and the report addresses

specific cell usage. The device utilization summary provides a global view of the resources

used for synthesis in terms of slice registers and slice Look-up tables (LUTs). A slice is

the principle programming resource unit of an FPGA. A single slice consists of both

LUTs and Flip-Flop/Latches. The number of each on a single size varies depending on the

FPGA. As such, this utilization summary is specific to the Virtex-5’s onboard resources,

and cannot be applied to all FPGAs; however, examination of utilization will show general

resource trends. Both the utilization summary and the advanced HDL synthesis report will

be examined and compared in this experiment. The Xilinx XST synthesis report also

addresses timing. The report provides expected timing restrictions of the VHDL design

28

implemented. Specifically, it establishes the minimum clock period, maximum clock

frequency, minimum input arrival time before clock, maximum output required time after

clock, and maximum combination path delay for an implemented system. Of these, this

experiment collects and analyzes the maximum clock frequency. This value represents the

highest clock frequency the algorithm can be utilized on the Virtex-5 to ensure stable

operation. Note that this value is not equivalent to the maximum frequency hopping rate.

3.1.2.3 Expected results.

FPGA implementations for designs typically require set resources for the complexity

of a system. This experiment investigates the several configurations of a working design.

As such, the hypothesis of this experiment is that the resources required to create the

working implementation of Gold’s algorithm can be estimated given LFSR bit length and

the number of tap bit. Additionally, an estimate of the the maximum clock speed should

be calculable using the same parameters. The estimations are based solely on using the

Xilinx XST synthesis tool and the Virtex-5 targeted device. Although other devices may

differ in results, one device under test should provide insight into implementations on

other devices.

3.2 REM Exchange Overhead

In a network of radios, a universal view of the environment must exist for radios to

coordinate changes. Different from the multi-dimensional REM concept presented in

Section 2.3, this experiment for simplicity utilizes a simple logic vector. This logic vector

represents each communication channel as available or unavailable using binary 1’s or 0’s

respectively. Each radio must coordinate its local REM with every other radio in the

network to ensure only common available channels are utilized. Figure 3.3 shows the

coordination of multiple nodes to create a shared REM. The dark sections represent

unavailable channels, and light sections represent available channels. The resulting vector

from coordinating multiple REMs across a network is the master REM or network REM.

29

Analyzing the methods of sensing the environment to create a node’s REM is outside the

scope of this research.

Figure 3.3: REM Merger [22]

After a system rendezvous occurs, the system must coordinate the information

required to maintain a stable connection. The specifics on exchange or distribution are

rarely described, and seem to be not well researched. As such, this thesis examines several

exchange protocols for transferring control or REM data among radios to determine the

expected overhead costs and scalability of the network. This thesis identifies and tests

three possible exchange protocols for a constant contact network.

The simulation models implemented in this research are modifications of the IEEE

802.11b Wireless Local Area Network (WLAN) computer communication specification.

WLAN, being one of the most widely used standards in the world, was selected as the best

starting point due to the readily available OPNET simulation wireless node models,

source code, and documentation. As background, IEEE 802.11b contains two primary

MAC coordination functions. Distributed Coordination Function (DCF) is the basis of the

standard CSMA/CA access scheme. For DCF, a transmitting node first listens to the

medium to determine if any other nodes are transmitting. To negotiate for the medium

with other nodes, a contention window is created. This contention window represents the

time in which the medium can be taken control of by a single node. To avoid colliding

during transmissions, each node selects a random backoff interval within the contention

30

window to stall before attempting a transmission. The first node to complete its backoff

time and determine that no other node is transmitting may take control of the medium.

DCF is considered the normal operating condition for WLAN [12].

The second primary function is the Point Coordination Function (PCF). PCF

provides a contention-free service to exchange information. The access point of the

network in IEEE 802.11b initiates the PCF period by using a broadcast beacon. Once

initiated, the access point controls the wireless medium. It then requests and sends data as

needed. The PCF period lasts until the access point relinquishes control, or a time limit is

reached. DCF operations start once PCF period ends. The existing implementation of

these functions in the OPNET wireless nodal model (802.11b) are leveraged to implement

the three exchange protocols for determining the impact of REM exchange overhead on

user, non-control, traffic.

These function are the foundations for the OPNET simulations models used in this

experiment. All network activity using WLAN is performed in-band since commercial

devices rarely contain more than one transceiver.

3.2.1 REM exchange methods and model design.

This experiment examines the affects of three general exchange protocols for

transferring REM information among the network.

3.2.1.1 Polling Protocol.

The Polling protocol is a centralized network design based on IEEE 802.11b’s PCF.

Polling requires a single radio to be assigned the position of ‘controller’ or ‘master’ for

each exchange. Theoretically, this control radio is determined through one of many

methods to include longest living member of the network, based on MAC serial number,

or even the most powerful radio in the system. For this research, the control radio is

selected prior to simulation. In this protocol, the control radio coordinates the local REM

from each radio in the network by leveraging the polling functionality of the PCF. Upon

31

protocol initiation to take control the medium, each radio in the network is ‘polled’ by the

controller as a request for the radio to send its local REM. All radios in the network are

polled individually during this modified PCF period. The control radio then computes the

master REM for all other radios. After computation, the control radio broadcasts the

master REM to the members of the network. Figure 3.4 graphically depicts the operation

of this method. Once all nodes receive the master REM, the network switches back to

normal operation using the DCF.

DCF B

PIFS RIFS

N1 poll

N1Rsp

SIFS

SIFS

N2 poll N2 poll

PIFS

N2Rsp

SIFS

SIFS DIFS

DCF

Polling Protocol:

No Response,
re-poll

Be
TIME

DCF

Control
Radio

Other
Radios

DCF

Figure 3.4: Polling Protocol for REM Exchange

3.2.1.2 Time Division Protocol.

The Time Division protocol focuses on a distributed network design where each

radio must communicate with all other radios in the network. Each radio collects the local

REMs of each neighboring radio and calculates the master REM for itself. This method

assumes that 1) every radio is within range, 2) every radio uses the same master REM

algorithm, 3) each radio interprets the usage of the master REM the same way, and 4) a

pre-coordinated execution time exists within the network. Figure 3.5 graphically depicts

the operation of this protocol. Time division is a common method of coordinating a

communication medium. For this protocol to work in REM exchange, each node must

know its precise order within the network to determine when to transmit. The Time

Division protocol also utilizes a control radio, but this radio only initiates the exchange

32

period. For simulation testing, the node order schedule is determined by their node

identification number.

DCF B

PIFS

SIFS SIFS

DIFS

DCF

SIFS SIFS SIFS SIFS
No Response,

skip

. . . DCF

Control
Radio

Other
Radios

Time-Division Protocol:

N1Rsp N2Rsp N8Rsp N10Rsp DCF
TIME

Figure 3.5: Time Division Protocol for REM Exchange

3.2.1.3 Exponential Backoff with Priority Contention Protocol.

Exponential Backoff with Priority Contention Protocol, referred to as simply the

Priority protocol, presents a reduced communication protocol to exchange REM

information among network radios. As with the other protocols, a control radio is selected

among the radios. The exchange Priority protocol works in three stages. First, the control

radio will distribute a Suggested Master REM (SMREM). The SMREM consists of the

controller’s local REM along with any other known restrictions/predictions to the

environment. In Stage 2 each non-control radio compare their local REM to the SMREM.

If a radio wishes to further limit the SMREM (i.e. a suggested open channel is detected as

unavailable), the radio updates the control node with the ‘dispute’ information. This

method functions similarly to DCF operations except that only REM information is

exchanged and a priority backoff system is used to maximize the reporting process. The

selection of which radio has priority to respond to the control node is performed by

reducing the contention window of each node as a percentage of disputes. Each node

adapts its contention window using the following equation.

New Window = Old Window × (1 − disputes

Size of REM
)

33

The control radio incorporates all received disputes transmitted from network radios.

The control radio waits for maximum elapse time to occur after a dispute to indicate all

disputes were reported. After the elapsed time, the control radio performs stage 3 which

posts a final master REM to be utilized by the network. Figure 3.6 graphically depicts the

operation of this method. A key attribute of this protocol is a non-control radio’s ability to

listen to the medium during this exchange period. This allows a radio to detect if another

radio reports a dispute which covers the listener’s disputes. If this occurs, the radio no

longer needs to report the dispute. In this protocol, it is possible that two nodes select the

same backoff period, and attempt to transmit at the same time. If this occurs, the

transmitting have no immediate indication that a problem occurred while all other nodes

will have detected the collision. These transmission error nodes will discover the problem

only if another node posts an dispute after the collision occurs upon which they will queue

another dispute response.

Be DCF B

PIFS

Rsp Rsp

DIFS

DCF

Rsp Rsp

Priority Protocol:

SIFS Detect no use

. . .
New contention time

DCF DCF

Control
Radio

Other
Radios

TIME

Figure 3.6: Exponential Backoff with Priority Contention Protocol for REM Exchange

3.2.2 Test methodology for Experiment 2 - Network overhead.

3.2.2.1 Experimental goal of simulation.

This simulation generates data used to evaluate the three methods of REM exchange

protocols explained above. In particular, the data is used to determine how the different

REM exchange protocols affect the overhead cost in relation to network scaling and

performance. Overhead data is the necessary exchange of environment data (REM data)

34

distributed between a group of nodes to facilitate future communication. This experiment

utilizes a simulated wireless network for evaluation of overhead data over many network

configurations. For these experiments, a network is considered ‘degraded’ when

throughput of normal data traffic (non-REM data) is reduced by a threshold of 10%. This

level is chosen due to the level of data loss acceptable for Voice over IP operations.

3.2.2.2 System Under Test.

The system under test consists a virtual network created using the Riverbed OPNET

modeler suite, version 15.0.A.PL1(build 8165). The network comprises of a number of

wireless nodal models designed to emulate the behavior of a DSA radio. A complete

nodal model contains the entire seven layers of the Open Systems Interconnection (OSI)

framework model (ISO/IEC 7498-1); however, to limit the external influences of each

layer, only the Network, Link, and Physical layer are implemented within the models of

this experiment. Each node transmits and receives both normal network traffic and REM

overhead data traffic; however only the amount of normal network traffic (non-control

traffic) is evaluated within the collected metrics. The transmission characteristics of each

node is modeled using OPNET’s IEEE 802.11 wireless suite. These models utilize a radio

transceiver pipeline consisting of a 13 step sequence to evaluate transmission delay,

antenna gains, propagation delay, background and interference noise, error detection and

correction, and signal-to-noise ratio requirements for transmissions between any two

nodes. For simplification of the problem space, each node is assumed to be within

transmission range of all other nodes within the network. All nodes in the network remain

stationary, and are located within a 100m by 100m grid. This research excludes any node

mobility due to the added scenario complexities that would be required. The grid shape

and dimensions were initially selected as a continuation of past research to create an RF

environment test set. Although the test set results proved not applicable for this

experiment, the layout ensures a consistent design for the simulated network.

35

The REM exchange protocol used is the component under test. For every simulation

setup, each node in the network uses the same nodal model with the only distinction

consisting of the selection of a master or control node among the nodes. Table 3.2 presents

the common critical OPNET attributes shared by all nodes. The transmission start time

describes when each node will begin attempting to transmit non-control data traffic. This

allows for spacing in the beginning of the simulations. Packet size for non-control data is

one parameter that directly affects the workload put on a network. This attribute is set so

that the average packet size is a fixed value among the network. The other attributes help

define characteristic features of the system under test. All the values presented are

common throughout all simulations in this study.

Table 3.2: Node Attribute Settings

Attribute Value

Transmission Start time (sec) exponential(1)

Packet Size (bytes) exponential(1024)

Data Rate 1 Mbps

Transmit Power 0.1 W

Retry limit 7

Buffer Size 256000 bits

Maximum Transmission Unit 1500 bytes

Destination address Random

3.2.2.3 Parameters.

The term parameter refers to any setting or environment variable that affects systems

performance. These parameters are divided into those specific to the system or to the

workload. System parameters change between different simulations, but remain constant

within a single simulation. The amount of user specified non-control data traffic placed on

36

a system defines the workload parameters. Workload parameters can vary during a single

simulation over time, and vary for different users. The following list defines the system

and workload parameters for the system under test.

• REM Exchange Protocol– The protocol under test that explains how the exchange

of REM information is executed among the nodes in a network.

• Network size – the network size describes the number of simulated nodes within a

simulation. Since each node is capable of transmitting data, every additional node

increases the overall data workload as well as the amount of overhead data required

for a network to coordinate REMs.

• REM Update Interval – The time interval between initialization of the REM

exchange procedure. This interval can occur at a set interval, or vary based on the

performance or state of network operation. As the interval decreases, the amount of

overhead data required to be processed by the network increases.

• Node Separation – the distance between any set of nodes. This experiment limits all

nodes within a 100m by 100m grid. The nodes are placed 10 meters apart (vertically

and horizontally) to create 100 possible locations (10 by 10) grid. The nodes are

placed in a growing square pattern.

• System Channels – A DSA radio system is limited by the spectrum its transceiver

can operate. The system bandwidth is divided into operating channels according to

the transmission protocol utilized. For instance, a home network router operating

according to IEEE 802.11 in North America operates in the 2400-2483.5 MHz

frequency range. This bandwidth is divided into 79 maximum possible transmission

channels for the standard. DSA coordination among radios will limit which

channels are considered usable. The maximum channel number dictates the length

of the REM required to represent the bandwidth. The simulations within this

37

experiment utilize a constant of 2048 possible channels to cover a larger range of

possible channels. This constant length of the REM creates a constant packet size

for control traffic used in the REM exchanges. Evaluating cross channel interference

is beyond the scope of this research, so each channel is assumed to be

non-overlapping and non-interfering.

• System Data Rate – the system data rate is the maximum rate at which data is

transferred within the system, typically measured in bits per second. This rate

impacts the time required to transmit and receive data transmissions thereby

affecting the system’s performance. As shown in Table 3.2, all nodes use a data rate

of 1 Mbps.

• Data Workload – the data workload is a measure of the amount of normal

(non-control) data traffic on the network. With OPNET, data workload is attributed

to the packet size and interval of arrival of data from a higher OSI layer to the MAC

layer. Both size of packets and the interval between packets can be modeled

according to random distributions or set as a constant value within OPNET. These

parameters impact the amount of normal traffic traversing the network. As displayed

in Table 3.2, all nodes are modeled using a data generation interarrival time with an

exponential distribution and an average packet size of 1024 bytes. The interarrival

rate between packets is considered a factor in this experiment, and is discussed in

the next section.

• REM similarity – the performance of an adaptive REM exchanging network can

vary with the similarity of local REMs between the nodes. This similarity between

REMs is based on the environment detected by the radios, and the threshold used to

determine the presence or absence of a signal on any channel. Similarity can be

attributed to locality to interference sources and node separation.

38

3.2.2.4 Factors.

Factors are a subset of the parameters that are varied in the experiment. Any

parameter not considered a factor remains a constant throughout the experiment. The

following factors varied within this study.

• REM Exchange Methods – This experiment evaluates three REM protocols:

polling, time division, and exponential backoff with priority contention. All three

are tested individually for a performance comparison.

• Network size – the network size will be varied to represent a network size of 4 to

100 nodes. As this number range creates a larger number of trials, the following

levels are chosen for this study: 4, 9, 16, 36, 49, 64, 81, and 100. These eight levels

allow for each trial to progressively grow in the number of nodes while maintaining

node separation intervals. Each network size forms a square grid resulting the

following configurations: 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9, and 10x10.

• REM Update Interval – The intervals selected for this experiment are selected

specific to each network’s size. Four or five test intervals were selected for each

network size. The number of nodes in a network directly affects the minimum

interval required for the network to function. The minimal interval is the maximum

time required to execute a REM exchange. Any interval smaller than this minimal

value produces a network condition where no non-control data would be transferred

resulting in an unusable network. A pilot study was performed to approximate the

needed values. The pilot study is further discussed in Chapter 4. Table 3.3 displays

the interval values used in the experiment based on network size.

• Data Workload – the data workload, like the REM update interval, is different for

each network size. The values selected for the experiment were determined from the

pilot study of a baseline network (a network operating without performing a REM

39

Table 3.3: Test Levels for REM exchange intervals

Nodes REM Update Interval (sec)

4 0.25, 0.5, 0.75, 1.0

9 0.25, 0.5, 0.75, 1.0

16 0.25, 0.5, 0.75, 1.0

25 0.25, 0.5, 0.75, 1.0

36 0.5, 1.0, 1.5, 2.0

49 0.5, 1.0, 1.5, 2.0

64 0.5, 1.0, 1.5, 2.0

81 0.5, 1.0, 2.0, 3.0

100 1.0, 2.0, 3.0, 4.0, 5.0

exchange). The identification of the peak data throughput for each network size in

the pilot study allows the experiment to narrow the number of test value. The values

in Table 3.4 represent the inter-arrival rate at each node to be used in the experiment.

The values are used as the average to an exponential distribution function.

• REM similarity - No viable existing data was found during review; therefore,

characterization scenarios were investigated based on different levels of REM

similarity. Four generic situations were created to provide bounding of the problem.

– In the first scenario, referred to as the Unique Scenario, all nodes contain at

least one unique channel that must be disputed (upper bound).

– In the second scenario, referred to as the Identical Scenario, all nodes contain

the exact same available channels (lower bound).

– In the third scenario, referred to as the Random Scenario, every channel in a

local REM is randomly selected as available or not available with a 50%

probability.

40

Table 3.4: Test Levels for Nodal Data Workload

Nodes Packet Interarrival Rate (msec) per node

4 20 to 150 with step size 10

9 100 to 200 with step size 10

16 200 to 300 with step size 10

25 340 to 450 with step size 10

36 500 to 800 with step size 20

49 720 to 1100 with step size 20

64 900 to 1800 with step size 50

81 1200 to 2300 with step size 50

100 1600 to 2100 with step size 50

– Lastly, a single scenario, referred to as the Real World Scenario, is constructed

to represent conditions found in the real-world operations. A simplified

representation of this scenario’s setup is shown in Figure 3.7, and described

below. The purpose of creating such a scenario is to establish plausible

situations that may be encountered by a working network.

The Real World Scenario consists of an array of interference towers

surrounding the network under test. Each of the 40 transmitter towers in

Figure 3.7 represent a cluster of ten separate interference sources at the

specified location for a total 400 transmitters. Each source within a cluster is

characterized by an activity setting parameter, an interference range parameter

and its location (the location of the cluster). The activity setting is the

probability of being an active transmitter. Specifically, the ten sources operate

with a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% channel

occupancy rate. No transmitters in the same location use the same probability

(i.e. each uses a different rate). At the beginning of each simulation, each

41

transmitter will randomly select an interference range with a value from 0 to

140. This distance along with the location of the transmitter determines which

radio nodes are affected by each transmitter. The colored circles in Figure 3.7

are an example of the interference range of three sources.

This Real World Scenario accounts for both spectrum variation over time,

and locality to interference sources. As such, it provides a reasonable set

plausible RF environments for the simulations. It is possible for a tower to

affect all nodes, no nodes or some nodes. As an added complexity, the design

pairs sources on either side of the grid to share frequencies (eg. a tower on the

north end uses the same channels as on on the south). Each source is assigned

a range of 10 channels to cover 2000 frequencies between the paired towers.

The 48 remaining channels represented in a REM are considered always

available. This design simulates a larger region where the outlying radios may

have different interference sources that operate on the same frequency channel.

At the start of each execution of the REM exchange protocol, every node in the

network builds its own local REM based on the condition of the interference

towers and its proximity to those sources which are active. If the node falls

within the interference range of an active transmitter, the 10 frequencies

controlled by that active tower will become unavailable.

42

Figure 3.7: Real-World Scenario

43

3.2.2.5 Performance Metrics.

The OPNET simulations report five network performance metrics for analysis. Each

metric provides insight into the functionality and costs associated with the REM exchange

methods. All metrics are measurements of the normal data (non-control) traffic moving

through the network.

Network Throughput - For this experiment network throughput is defined by data

generated, transmitted, and successfully received by the intended destination over time.

This metric represents only normal data traffic, and does not include the overhead of data

exchanged for the REM. For each simulation, a control node initiates the REM exchange

procedure. Each other node responds according to the protocol designated for the

simulation. Any packets transmitted for the purpose of coordinating REM data, including

the process initiation packet, will be considered an overhead packet. Network throughput

is measured in bits per second.

Data dropped due to buffer overflow - Each node is capable of queuing data before

transmission. Data packets arriving to the MAC layer of a node from the node’s internal

packet source must enter the queue before transmission. The hardware of a radio

transceiver limits the size of queue. Overflow occurs when the queue is at maximum

capacity, and the packet generator pushes the packet to the MAC layer. In such a case, the

new data packet is discarded by the MAC layer. The amount of data dropped due to buffer

overflow indicates a network’s ability to transmit the packets generated by each node.

Data dropped is measured in bits per second.

Data dropped due to exceeding retry limit - A wireless network contains the risk of

more than one node attempting to transmit data at a single time. This event is called a

transmission collision. If this occurs, each node can attempt to retransmit the packet at a

delayed time. A set maximum number of retries may be attempted before the data packet

is discarded by the MAC layer. The average amount of data dropped due to this retry

44

threshold is examined in this experiment to track the rate of successful delivery of network

traffic. Data dropped is measured in bits per second.

Retry attempts - in addition to data loss, the number of retransmission attempts to

successfully deliver a packet indicates the performance of a network. An increase in

retransmission attempts signifies a highly congestive network and can lead to

unacceptable performance.

Packet Delay - Measured in seconds, delay is defined as the time from packet

creation by the packet generator to the time the packet is successfully received at its

destination. Significant packet delay impacts the usability of a network for time dependent

transmissions.

3.2.2.6 System Workload.

For each simulation, a traffic load of normal data is generated for the network to

process. This workload is a function of the network size and the workload generated by

each node. The system workload holds constant for each simulation, but varies among

batches of simulations to characterize a networks ability to handle differing traffic loads.

The maximum load is defined as the rate of traffic generation that produces the peak

maintainable throughput rate for a network configuration. From the pilot study presented

in Appendix A, the throughput rates that occur at the maximum load points are negatively

correlated to the size of the network.

3.2.2.7 Experimental design.

A complete factorial design is used for this experiment. Each combination of

method, network size, traffic loads, REM update interval, and scenario is executed as a

single simulation. Varying the traffic load creates a simulation batch, and multiple batches

are executed for each required scenario. The Polling protocol and the Time-Division

protocol each require only a single scenario for characterization, while the Priority

protocol requires the four distinct scenarios presented above. Each separate simulation is

45

to be repeated 15 times utilizing a different seed value. The varying the seed value (values

1 to 15) changes the outcome of OPNET’s internal random number generators used for

both traffic load parameters and the REM creation of the Random Scenario. These

multiple runs allow the establish a 95% confidence interval for analyzing the collected

performance metrics. Table 3.5 displays a matrix of factor levels for the execution of a

single scenario. The testing of each scenario consists of 8,385 simulations. A total of

50,310 simulations are performed to characterize the three REM exchange protocols.

Table 3.5: Test Matrix of simulation runs

Network size Data Workload REM update

intervals

Seeds values total simulations

4 14 4 15 840

9 11 4 15 660

16 11 4 15 660

25 12 4 15 720

36 16 4 15 960

49 20 4 15 1200

64 19 4 15 1140

81 23 4 15 1380

100 11 5 15 825

Total – – – 8385

3.2.2.8 Expected results.

Considering the number of transmissions required by each node, the length of REM,

and system workload, it is reasonable to hypothesize that the Priority protocol for REM

exchange will prove to have the highest scalability among the protocols tested determined

by a 10% degradation from a baseline network in regards to network throughput.

46

However, the Time-Division protocol is expected to provide the best performance for a

small network. The Polling protocol and Time-Division protocol are expected to scale

poorly for two reasons. First, the amount of overhead traffic is expected to increase

linearly as the network size grows. Secondly, the pilot study demonstrated that network

throughput diminishes as network size grows due to higher probability of transmission

collisions. On the other hand, the performance of the Priority protocol is expected to

easily adapt to larger networks since not all nodes are required to transmit information

during each REM exchange. This hypothesis is formed from the expectation that more

nodes in a network does not increase the amount of REM traffic transmitted. The ability to

sense another node’s disputes to the suggested REM allows this assumption.

47

IV. Results and Analysis

T
his chapter presents the results and analysis of two experiments. Section 4.1 details

the results and analysis of implementing Gold’s algorithm on an FPGA. Section 4.2

describes the results and analysis for the REM exchange simulation experiment.

4.1 Gold’s Algorithm

An hardware implementation of Gold’s algorithms was constructed to determine the

timing constraints and resource requirements in various configurations. The experiment

synthesized 53 configurations of Gold’s algorithm for comparison. These configurations

varied in LFSR bit length and the number of tap bits. This section first presents the timing

constant results for the implementations, and then discusses the resource requirements.

Lastly, the performance of Gold’s algorithm as a rendezvous protocol is examined.

4.1.1 Timing Limitation.

The term timing limitations describes a restrictions caused by the routing and timing

of logic gates within an FPGA design. As any signal flows through logic gates and

through the routing between the gates, timing requirements must be meet to ensure proper

signal propagation. During analysis of the different possible signal, the path that requires

the most time to propagate through is defined as the critical path. This critical path is the

limiting factor for determining the maximum clock frequency that a system can correctly

operate. If the maximum clock frequency is exceeded during operation, the device may

not function as expected, and report invalid results. The maximum clock frequency

determined each tested configuration is displayed in Table 4.1. These timing results were

an output of Xilinx ISE v13.2 using the XST synthesis process.

The fastest maximum clock frequency occurred in the least complex configurations

while the slowest occurred in the most complex designs. Analysis of the timing data

48

Table 4.1: FPGA Maximum Clock Frequency (MHz)

Number of Tap bits

4 5 6 7 8 9 10

L
F

S
R

b
it

le
n
g
th

8 218.866 223.564 218.150 218.866 X X X

12 194.590 181.291 173.974 175.131 174.978 164.042 136.799

16 153.445 150.966 148.170 148.324 149.880 146.306 136.388

20 149.566 129.820 136.631 120.424 123.747 122.145 114.613

24 149.388 133.672 127.714 107.411 97.286 104.373 101.968

28 137.696 121.788 105.274 98.561 94.357 86.088 85.874

32 129.182 108.507 86.633 86.483 87.047 75.792 75.672

36 126.556 93.371 81.907 79.264 79.220 74.532 71.628

showed no linear or polynomial relationships between the two variables and the timing

results. A generic trend showed that increasing either variable caused a decrease in

maximum operational clock frequency. This was an expected trend for any hardware

system. Upon further investigation into the synthesis output files, it was shown that the

largest cause of timing is not the hardware elements themselves, but the routing of the

intermediate signals between logic elements. For instance, in the synthesis of the 36-bit

LFSR with 10 tap bits configuration, the timing restriction occurred in the Frequency Tap

stage. This signal delay consisted of 19.9% logic delay and 80.1% routing delay.

Therefore, improving the routing between elements of logic could increase the design’s

maximum clock frequency. The routing of the implemented design was determined by the

Xilinx ISE’s Map, Place and Route functions. These functions handle designs based on

either timing-driven constraints or cost-based constraints. The above results were

generated based on using timing-driven constraints; however, since no initial timing

requirements existed during development of the design no specific timing restraints were

fed to Xilinx to meet.

49

The timing restrictions collected represent the results produce by only one synthesis

tool. Other synthesis tools may produce different results based on the exact placement and

routing of logic gates and signals. Future work should consider extenuding this study to

use other synthesis tools for comparison.

4.1.2 Resource Requirements.

The Xilinx v13.2 using the XST synthesis tool reports utilization data for the

implementation of Gold’s algorithm on the Virtex-5, version xc5vfx7dt, FPGA. The

reports for each configuration include both register usage and LUT usage. A separate

analysis is performed for each of these two types of resources.

4.1.2.1 Register Utilization.

An analysis of the synthesis reports showed the number of used registers in the

design as a function of both the LFSR bit length and the number to tap bits. Figure 4.1 and

Figure 4.2 show the resulting register usage by varying each parameter independently.

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

7000
Slice Registers vs LFSR bit length

LFSR bit length

S
lic

e
R

eg
is

te
rs

4 Taps
5 Taps
6 Taps
7 Taps
5 Taps
9 Taps
10 Taps

Figure 4.1: Register Usage vs LFSR bit

length

4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000
Slice Registers vs Tap bits

Tap bits

S
lic

e
R

eg
is

te
rs

8 bit LFSR
12 bit LFSR
16 bit LFSR
20 bit LFSR
24 bit LFSR
28 bit LFSR
32 bit LFSR
36 bit LFSR

Figure 4.2: Register Usage vs Tap bits

The consistent shape of each line plot as a function of a single variable signified that

the cross interaction between the variables is minimal. This is verified with through the

use of MATLAB’s curve fitting toolbox (v3.2.1). Independently the above charts were

50

approximated by the following two equations:

Registers = 4 × L2 + 11.4 × L +C1, where L = LFSR bit length

Registers = 9.3 × T 3 − 151 × T 2 + 835.5 × T +C2, where T = number to tap bits

The values, C1 and C2, represent the true interactions between the two variables. For

simplification, any variable confounding was ignored to create a single simple equation to

approximate register usage.

Registers = 9.3 × T 3 − 151 × T 2 + 835.5 × T + 4 × L2 + 11.4 × L +C3

The value of C3 was determined to be −1371 to produce the best fitting regression. For

any regression, goodness of fit calculations determine the accuracy of the equation.

MATLAB reported three factors in judging goodness of fit.

MATLAB reported a Standard Square of Error (SSE) of 2.109e+04 which is a

measure of unexplained variation. MATLAB also reported R-squared value of 0.9999, and

a Root Mean Square of Error (RMSE) value of 20.14. These value hold higher

significance than SSE. R-squared, the coefficient of determination, is a measurement of

goodness ranging from 0.0 to 1.0 where 1.0 is a great fit while 0.0 is a bad fit. This meant

the approximation equation significantly defined the data points. RMSE corresponds to an

unbiased estimate of error’s standard deviation. Among the data points created by the

different configurations, the equations estimated within 2% of the true value for all all

except one outlying value.

4.1.2.2 LUT Utilization.

Figure 4.3 and Figure 4.4 represent the LUT usage of implementing Gold’s

algorithm. Although graphically similar to the register usage figures, the calculated

regression equations to describe LUT usage were not consistent over the data. As such, no

single form equation could be created to accurately estimate the hardware requirements in

terms of LUT usage. From the data presented in the Utilization Summary, it was

51

determined that LFSR bit length significantly influences the number of LUTs over that of

the number of tap bits. This influence is graphically shown by the steep exponential trend

displayed in Figure 4.3.

0 10 20 30 40
0

2000

4000

6000

8000

10000
Slice LUTs vs LFSR bit length

LFSR bit length

S
lic

e
LU

Ts

4 Taps
5 Taps
6 Taps
7 Taps
5 Taps
9 Taps
10 Taps

Figure 4.3: LUT Usage vs LFSR bit length

4 6 8 10
0

2000

4000

6000

8000

10000
Slice LUTs vs Tap bits

Tap bits

S
lic

e
LU

Ts

8 bit LFSR
12 bit LFSR
16 bit LFSR
20 bit LFSR
24 bit LFSR
28 bit LFSR
32 bit LFSR
36 bit LFSR

Figure 4.4: LUT Usage vs Tap bits

4.1.2.3 Other report results.

Examination of the Final Report’s cell usage provided a breakdown of Basic

Elements of Logic and Flip Flops/Latches required for implementing the algorithm. The

Advanced HDL Synthesis Report displayed consistent resource usage across the different

configurations. Table 4.2 summarizes the results of the Advanced HDL Synthesis Report

in terms of Macro Statistics. These macro statistic values do not differentiate the size of

each component. For instance, the multiplexer size for each configuration was based on

the LFSR bit length utilized. A full chart with results from each synthesis report is

included in Appendix A.

4.1.3 Rendezvous Performance.

The use of Gold’s algorithm is not always the best choice when selecting a

rendezvous scheme for FHSS networks. A comparison was performed on the estimated

time to rendezvous for both COD method and Gold’s algorithm. The COD method

demonstrated a faster synchronization time when initiated early in the code cycle, and also

52

Table 4.2: Advanced HDL Synthesis Report Macro Statistics

Macro Statistic Value or equation

Finite State Machines 1

RAMs 1

Adder/Subtractor L+11 (minus 1 if L is multiple of 16)

Counters 5

Latches L+1

Comparators 16 when T ≤ 6, else 17

Multiplexers 2

XORs L2 + 2 ∗ L + 1

when the system utilized a slow hopping rate. Figure 4.5 graphically represents a

cognitive decision curve for selecting between the two schemes. The FPGA configuration

with a 36-bit LFSR and 10 tap bits produced the slowest operational speed as shown in

Table 4.1. The figure represents such a system when utilizing its maximum clock

frequency of 71.628 MHz. To determine the optimal rendezvous scheme, a user or logic

program must determine an operational hop rate and the time of day in which rendezvous

is to occur. If intersection on the figure falls within the yellow shaded region, it is better to

use Gold’s algorithm. If the intersection falls within the green shaded region, the

traditional COD method is the better choice. This boundary curve incorporates the

average time of acquiring the needed samples for Gold’s algorithm to function, the time

needed to run the algorithm to determine the system parameters, and the time required to

catch up to the sequence of the transmitter.

4.1.4 Effects of sequence interpretation for Dynamic Spectrum Access.

The current design of the testbed and implementation was created to verify the

functionality of Gold’s algorithm. Gold’s algorithm was not designed to specifically

53

2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7

8

9

10
×104

H
o

p
R

at
e

(h
o

p
/s

ec
)

Time Since Code Issued (hr)

Comparison of E(TTR) (Clock Freq = 71.628 MHz)

Figure 4.5: Decision chart for COD vs Gold’s algorithm

function in a DSA environment. The application of DSA to FHSS functionally changes

the performance and applicability of rendezvous algorithms. As such, different DSA

incorporation methods are analytically examined in this section to determine their effects.

4.1.4.1 Skipping on channel unavailability.

The skip method describes the functional action taken by a MAC protocol when a

frequency change is required and the next frequency is unavailable for use. For instance,

imagine a system that uses an 8-bit frequency map. This system is capable of operating on

any of 28 (256) frequencies. Let Ci be the operating channel of sequence S at time slot i.

If currently in time slot i, the assigned channel for Ci+1 could be any channel. If the

desired channel Ci+1 is not available, the system will simply move to the next frequency in

the sequence, i + 2. This effectively removes channel Ci+1 from S . This skip method has

the benefit of maintaining both a constant network connection and its data rate. This

54

method, although valid, will break any implementation of Gold’s algorithm since it

effectively changes the time of arrivals between frequencies.

4.1.4.2 Hold on channel unavailability.

The hold method describes the functional action of not transmitting on an unavailable

channel, and not modifying the hopping sequence. In other words, if a radio hops to a

channel that is known to be unavailable, it will simply not transmit during the time slot.

This holding of transmission will continue until an usable channel is selected. Gold’s

algorithm is compatible with this method. The time of arrival calculations are not affected

by a failure to detect a signal (false negative), or absence of a signal (true negative). A

network utilizing the hold method may experience reduced data rates. Note that if using

FFH, a majority voting scheme can eliminate the data rate drop if unavailable channels in

the sequence do not occur one after another.

4.1.4.3 Modulus of available frequencies.

The modulus method describes interpreting the hop sequence based on the number of

known available channels. For example, say a radio determines that only 215 out of 256

operating channels are available. In this case, a frequency mapper re-interprets the next

raw frequency value, such as channel 222, as a function of modulus 215. This produces

222 mod 215 = 7. Therefore, the system would hop to channel 7. This method remaps

all possible outcomes of the a PRNG to the set of available channels. By this modulus

operation, channel usage does not remain uniformly distributed over the available

channels. Specific application of this method to Gold’s algorithm requires thought into the

application of the algorithm when no rendezvous is achieved. Using the modulus method

generates the case where multiple PRNG values being assigned to a single channel. These

creates a problem with the time of arrival calculations. Upon detecting that a single

channel has multiple assignments, a protocol would be required to dynamically change the

listening channel. This sets a requirement that N/2 + 1 channels must be available.

55

However, the modulus method remains a valid approach with this type of additional

protocol.

4.2 Protocol Simulation

This section discusses the wireless network simulation results used to compare three

possible REM exchange protocols. A total of 50,310 simulations were performed to

characterize the three protocols. Each simulation requires an average of 20 seconds to

execute resulting in a total run time of approximately 11.6 days. In this section, each

protocol is compared to a baseline network’s performance where the level of performance

is evaluated using five metrics: network throughput, data dropped due to buffer overflow,

data dropped due to exceeding retry limit, retry attempts and packet delay. These metrics

were taken for normal (non-control) data traffic transmitted on the network. The section

continues by presenting a series of representative examples in an attempt to condense the

volume of data. Appendix A contains the full set of collected results.

4.2.1 Baseline Results.

A baseline assessment of the simulation network’s performance was conducted for

each network size over several data workloads. The baseline metrics were extracted from

the pilot study and used to select several of the experiment factors. Figure 4.6 displays the

network throughput for several network sizes over changing data workloads. This baseline

throughput result is consistent with an exponential decrease in the peak average

throughput as a function of increasing network size. The peak throughput achieved while

using each of the exchange protocols will be compared to this decreasing exponential

trend.

The baseline data also displayed a near linear relationship between the network size

and the traffic workload required to achieved the peak throughput. Figure 4.7 graphically

represents this interaction. Using MATLAB’s curve fitting toolbox v3.2.1, the data in

56

Figure 4.7 produced a best fit curve estimate of

f (x) = 0.03254 ∗ x2 + 13.8 ∗ x − 14.81

A goodness of fit evaluation of this fit curve produced a standard error of 10.31 and an

adjusted R-square value of 0.9997 indicating a good representative fit. These consistent

trends over changing network size make network throughput an ideal metric for

determining the effects of REM exchange. Therefore, each of the three exchange

protocols were compared to these baseline results to determine the overhead costs of

distributing REM information.

0 500 1000 1500 2000 2500
2

3

4

5

6

7

8
x 105

Interarrival Rate (msec)

A
vg

 D
at

a
Th

ro
ug

hp
ut

 (b
it/

se
c)

Baseline Throughtput vs Network Size

N=4
N=9
N=16
N=25
N=36
N=49
N=64
N=81
N=100

Figure 4.6: Baseline Network Throughput

4.2.2 Network throughput.

Network throughput is a measure of the amount of data that can be transferred

through a network. Of all the metrics collected as part of this experiment, network

57

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Network Size

In
te

ra
rr

iv
al

 R
at

e
fo

r p
ea

k
th

ro
ug

hp
ut

 (m
se

c)

Beacon Interval every one second

Data
trendline

Figure 4.7: Correlation of Network Size and Interarrival Rate for Peak Throughput

throughput provided the most stable and useful properties for analysis. This section

examines the throughput achieved by each protocol, and how REM exchanges affect

performance compared to the baseline network.

4.2.2.1 Polling and Time-Division Protocols.

Both the Polling protocol and Time-Division protocol performed similarly in the

simulations. The two protocols required each node in the network to broadcast their local

REM during each exchange. The Polling protocol also included the need for a request

packet (poll) to be sent to each node causing additional overhead.

In examining throughput, the overhead costs increased as the beacon interval become

more frequent. Figure 4.8 shows the throughput changes for a 16 node network as a result

of varying the exchange interval. Other network sizes displayed similar results of

decreased throughput, but at different magnitudes of change. This behavior is to be

expected since the more exchanges that occurred allowed less normal traffic data to be

58

transmitted. As a bound, consider that the beacon interval must be greater than the time

required for an exchange to occur. For the simulations, any beacon interval more frequent

than this bound caused the simulation to crash. The examination of the 16 node network

was chosen over the other network sizes because of the clear separation of the data lines.

Figure 4.8 as a representative sampling of the other network sizes also showed a

non-linear relationship to the overhead costs as the interval changed. A linear relationship

would display a constant change in throughput for the interval rates tested. As described

in Table 3.3, the simulation of each network size used a unique set of exchange intervals

for testing. Each network size contained a beacon interval of one second to allow a direct

comparison of the REM protocols.

180 200 220 240 260 280 300 320
3.5

4

4.5

5

5.5

6

6.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure 4.8: Polling Protocol - Throughput for a 16 node network

Taking the peak throughput for each network size at a one second beacon interval

produced Figure 4.9. This figure displays a comparison of the peak throughput for the

Polling protocol and the Time-Division protocol against the baseline. As shown in the

figure, the use of the Time-Division protocol produced average throughput values higher

than the Polling protocol. The addition of the polling packets explains the difference in the

59

throughput levels. The deviation from the baseline performance increased as the number

of nodes in the network increased. Figure 4.10 shows this deviation as a percentage of the

baseline throughput. Note that both protocols function worse as the network size grew.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size

P
ea

k
A

v
g

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
se

c)

Peak Throughput at Beacon every 1 second

Baseline
Polling

Time-Division

Figure 4.9: Peak Throughput for Polling

and Time-Division protocols

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Network Size
P

er
ce

n
t

o
f

B
as

el
in

e
P

ea
k

T
h

ro
u

g
h

p
u

t

Percentage of Baseline Peak Throughput at 1 sec beacons

Baseline
Polling

Time-Division

Figure 4.10: Percentage of Baseline Peak

Throughput for Polling and Time-Division

protocols

A side-by-side comparison of three different beacon rates reinforced that deviation

from the baseline is minimized as the REM exchange interval increases. Figure 4.11

shows the deviations, and how both the Polling protocol and Time-Division protocol

performed similarly each situation.

60

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size
P

ea
k

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Peak Throughput at Beacon every 0.5 second

Baseline
Polling

Time-Division

Beacon at 0.5 second interval

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size

P
ea

k
A

v
g

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
se

c)

Peak Throughput at Beacon every 1 second

Baseline
Polling

Time-Division

Beacon at 1 second interval

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size

P
ea

k
A

v
g

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
se

c)

Peak Throughput at Beacon every 2 second

Baseline
Polling

Time-Division

Beacon at 2 second interval

Figure 4.11: Beacon Interval Throughput Comparison

61

4.2.2.2 Priority Protocol.

The simulations testing of the Priority protocol required testing four scenarios. The

other protocols only required a single scenario since every node was required to transmit

its individual REM during each exchange. The Priority protocol, however, functions based

on the similarity in the REMs of the network nodes. The four scenarios created upper and

lower boundaries of operation as well as provided two examples of possible operational

conditions. The Unique scenario was the lower bound scenario which represented a

situation when every node contained at least one unique channel restriction resulting the

most network activity. The Identical scenario was the upper bound scenario where all

nodes contained the same local REM requiring only minimal network activity. Lastly, the

Random and Real World scenarios represented two conditions where parts of the RF

environment are shared among nodes. As an representative example of the data collected

in simulation, Figure 4.12 displays the network throughput results for each scenario on a

36 node network. These graphics are presented to show the general differences produced

by the scenarios. Appendix A contains complete data charts for each network size tested.

The examination of the 36 node network was chosen over the other network sizes because

of the clear separation of the data lines, and to allow a direct comparison against the data

presented for the other protocols.

As with the Polling and Time-Division protocols, results for the Priority protocol in

each scenario explored the effects of the interval between beacons. Comparing the peak

average throughput of each scenario allowed for the expected operational range to be seen.

Figure 4.13 expresses this comparison at a beacon interval of one second. The figure

shows that the Unique scenario (lower bound) diverged from the baseline as the size of the

network increased. The Identical scenario (upper bound) converged to the baseline

throughput value as the network size increased. A major constraint in throughput arose as

more collisions occurred. For larger networks within the simulation, each node’s constant

62

450 500 550 600 650 700 750 800 850
0

1

2

3

4

5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 36 Nodes

Beacon= none
Beacon = 0.5
Beacon = 1
Beacon = 1.5
Beacon = 2
90% degraded

(a) Unique Scenario

450 500 550 600 650 700 750 800 850
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 36 Nodes

Beacon= none
Beacon = 0.5
Beacon = 1
Beacon = 1.5
Beacon = 2
90% degraded

(b) Identical Scenario

450 500 550 600 650 700 750 800 850
2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 36 Nodes

Beacon= none
Beacon = 0.5
Beacon = 1
Beacon = 1.5
Beacon = 2
90% degraded

(c) Random Scenario

450 500 550 600 650 700 750 800 850
2

2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 36 Nodes

Beacon= none
Beacon = 0.5
Beacon = 1
Beacon = 1.5
Beacon = 2
90% degraded

(d) Real World Scenario

Figure 4.12: Priority Protocol - Throughput for a 36 node network

and equal amount of traffic drove the collision rate. The amount of normal data traffic that

was sent during the REM exchange time was minimized due to the collisions, and this

explains the convergence of the the baseline and Unique scenario values. All simulations

in these experiments required each node in the network to share an equal traffic load. The

Random and Real World scenarios performed as expected. Each produced statistically

similar values for networks of small size, and tracked closer to the upper bound than the

lower bound. To better understand the amount of nodal interaction occurring within the

scenarios, the simulation collected additional information 100 node network size

simulations to determine the average number of packets (overhead) successfully

63

transmitted during a REM exchange. This value provided awareness of the REM

similarity that each scenario produced. The simulations for the Random scenario required

an average of 6.9 packets with a standard deviation of 0.34 packets. The simulations for

the Real World scenario required an average of 12.05 packets with a standard deviation of

2.24 packets. If collected, the Unique scenario would have produced a value of 100

packets, and the Identical scenario would have produced a value of zero packets. Together

these values show strong correlations to the loss in average throughput from the baseline.

Viewed as percentage of the baseline, shown in Figure 4.14, its clear that the Random

and Real World scenarios display a convergence to the baseline as the network size

increased. At a network size of 100 nodes, the peak average throughput of both scenarios

approach or exceed the 90% functionality threshold. The assumption that every node was

within communication range during simulation limited the number of packets required in

each REM exchange. However, since the design of the Real World scenario intended to

cover many of the possible RF environments, this gives confidence that the number of

exchanges in other real-world scenarios would also function with a limited number of

exchanges being required.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size

P
ea

k
A

v
g

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
se

c)

Peak Throughput at Beacon every 1 second

Baseline
Priority - Unique Scenario

Priority - Identical Scenario
Priority - Random Scenario

Priority - Real World Scenario

Figure 4.13: Priority Protocol - Peak Network Throughput (1 beacon/sec)

64

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network Size

P
er

ce
n

t
o

f
B

as
el

in
e

P
ea

k
T

h
ro

u
g

h
p

u
t

Percentage of Baseline Peak Throughput at 1 sec beacons

Baseline
Priority - Unique Scenario

Priority - Identical Scenario
Priority - Random Scenario

Priority - Real World Scenario

Figure 4.14: Priority Protocol - Percentage of Baseline Peak Throughput (1 beacon/sec)

4.2.3 Data dropped due to buffer overflow.

In the OPNET model, each node generated normal data traffic for the network to

process. The amount of data created by each node was defined by the size of each packet

and the interarrival rate of the node’s packet generator. As shown in Table 3.2, each node

consisted of a transmission buffer capable of holding 256K bits of normal (non-control)

data. The buffer fills as packet generation exceeds a nodes ability to transmit the data. If a

the data buffer is at max capacity, and if a new data packet arrives for the node, that new

packet is discarded. The amount of data discarded was tracked by the data dropped due to

buffer overflow metric.

For any REM exchange interval, the buffer drop rate maintained near zero packet loss

until the critical packet generation rate was reached. This critical point indicated that

maximum supported workload that the network could successfully process without loss

occurring. Additionally, examining this point of first overflow revealed a correlation in the

data workload to the occurrence of the peak throughput.

Figure 4.15 and Figure 4.16 display an example of this correlation. These figures

show an 81 node network operating with the Time-Division protocol. The figures,

65

showing four different beacon intervals and the baseline, demonstrate that the occurrence

of peak throughput and first buffer overflow correspond to the same network workload.

This correlation is found through the simulation results regardless of network size or

protocol. When more traffic is generated than the buffer can hold, the result is for the node

always to have data available for transmission.

1000 1200 1400 1600 1800 2000 2200 2400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105 Time Division Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

N=81,beac=none

N=81,beac=0.5

N=81,beac=1
N=81,beac=2

N=81,beac=3

Figure 4.15: Data Drop due to Buffer Overflow, Time-Division Protocol, 81 nodes

1000 1200 1400 1600 1800 2000 2200 2400
2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure 4.16: Average Throughput, Time-Division Protocol, 81 nodes

66

4.2.4 Data dropped due to exceeding the retry limit.

The data dropped due to the retry limit metric produced inadequate results for a

comparison analysis. For most simulations, the metric reported values of zero.

Investigation into the model’s code showed a possible reason for these results. In the

program code of the model, a normal data packet queued for re-transmission was dropped

if interrupted by a REM exchange. No metric monitored this dropped packet, and it was

lost in the system. The program assumed that the packet was properly handled resulting in

a reset of the retry counter. A relatively short REM exchange interval therefore restricted a

packet from reaching the maximum retry limit. Only packets reaching the limit were

counted as part of the metric. This problem is in the implementation of the model and

does not reflect the performance of the protocols. However, this zero value problem

eliminates the dropped data due to exceeding the retry limit metric, and is omitted from

further analysis of the results.

4.2.5 Retry attempts.

Attempting to track total retry attempts as a metric also proved problematic due to

the model code issue. For the retry attempts metric, the Polling and Time-Division

protocol displayed the most consistent results. Figure 4.17 illustrates the results of this

metric for the 81 node network simulation using the Time-Division protocol. This figure

verifies two expected characteristics for retry attempts. First, the maximum average retry

attempts should be similar among REM update intervals with the maximum value as a

function of network size. Second, as the exchange interval decreases, the workload

required to reach the maximum average attempts should also decrease. Unlike the Polling

and Time-Division protocol simulations, the Priority protocol produced results that were

inconsistent with the expectations of a network’s performance in terms of delay. Only a

small amount of retry attempts were recorded when utilizing the Priority protocol. This

was most likely due to the same model code as described above. Due to the inconsistency

67

in the reporting of the metric among protocols, the retry attempt metric was not

investigated further in this analysis.

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Time Division Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

N=81,beac=none

N=81,beac=0.5

N=81,beac=1
N=81,beac=2

N=81,beac=3

Figure 4.17: Average Retry Attempts, Time-Division Protocol, 81 nodes

4.2.6 Packet delay.

The delay metric collected the average amount of time to deliver a successful packet;

however, it did not track the number of packets that were successfully delivered. The REM

exchange interval and the protocol itself limit the total amount of traffic to successfully be

delivered as seen by the network throughput results. If the system successfully transmitted

only a single packet, then that one packet’s delay would be used in defining the metric

value. Even with this limitation in data collection, a useful insight can be gained.

Figure 4.18 corresponds the same 81 node network described in the Section 4.2.3. This

figure displays the alarming amount of delay that occurs in high workload network

conditions. The delay quickly exceeds any acceptable level of delay at the same workload

conditions that the buffer began to overflow. The coarseness of available data points do not

allow for analysis of the max delay before the precise workload that causes the delay to

rise; however, results before this critical workload seem to be similar to the results of the

68

baseline network. As such, the performance of the network is driven by the beacon

interval, and the amount of time needed to perform a REM exchange.

The Polling and Time-Division protocols displayed similar similar delay growth for

all network sizes. However, the Polling protocol required less of a workload to begin

increases in delay. The collection of the packet delay metric for the Priority protocol

resulted in inconclusive data which cannot be compared to the other protocols.

Specifically, the results suggested that almost no delay was recorded among packets which

indicates a problem in the collection methods. Packet delay may be a limiting performance

issue when Quality-of-Service is required for network operation, but the results of this

research do not provide the resolution needed to analyze such performance requirements.

1000 1200 1400 1600 1800 2000 2200 2400
−10

0

10

20

30

40

50

60

70

80

90
Time Division Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

N=81,beac=none

N=81,beac=0.5

N=81,beac=1
N=81,beac=2

N=81,beac=3

Figure 4.18: Average Retry Attempts, Time-Division Protocol, 81 nodes

4.2.7 Further Testing.

As stated above, several of the metrics could not be analyzed due to an error in

packet handling within the program code of the model. This code error was identified and

corrected. Data was then collected on this corrected model using the same methodology

as described in Section 3.2. The analysis of this data proved to be statistically inconclusive

69

due to the large variations of the confidence intervals. An example of variations in the

results are shown in Figure 4.19. The figure displays the peak throughput for the Priority

protocol under each of the four scenarios. As shown, the confidence intervals constructed

using 15 iterations of each simulation setup provides no statistical differences for

conclusions to be drawn. To properly analyze this updated model additional iterations are

required to reduce the 95% confidence intervals; however, due to time limitations these

iterations will not performed as part of this research effort, but should be considered in any

future work.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

×105

Network Size

P
ea

k
A

v
g

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
se

c)

Peak Throughput at Beacon every 1 second

Baseline
Priority - Unique Scenario

Priority - Identical Scenario
Priority - Random Scenario

Priority - Real World Scenario

Figure 4.19: Peak Throughput for Priority protocol (updated results)

70

V. Conclusions

This chapter summarizes the goals and conclusions of this research. Section 5.1

presents the goals and results of the studies. Section 5.2 outlines the significance of this

research. Lastly, Section 5.3 provides suggestions for future research into cognitive radio.

5.1 Research Goals Acheived

The first goal of this research was to demonstrate that Gold’s algorithm allows for

successful rendezvous on an FHSS radio network without dwell time or common control

channel requirements. Development and demonstration of the FPGA based algorithm, as

described in Section 4.1, showed successful rendezvous with Gold’s Algorithm. The

design proved that detection of a signal on a communication channel, regardless of dwell

time or specific channel, allows for rendezvous to occur. The system also includes

limitations in terms of operational applicability. The algorithm itself cannot handle false

positives within signal detection. A false positive requires the algorithm to reset since a

solution will not be found. This results in a possible jamming condition. Any reduction in

the number of detections required by the algorithm greatly increases its rate of success.

The second goal was to analytically show that the above algorithm is capable of

operating within the DSA paradigm. Section 4.1.4 discussed the advantages and

disadvantages of methods to interpret a hopping sequence. The analysis of the skip, hold,

and modulus methods showed that Gold’s algorithm performs to the same limitations as

the COD method of rendezvous for FHSS radio systems.

The third goal of this research was to present system hardware requirements for an

FPGA implementation of Gold’s algorithm. Research into Gold’s algorithm as shown in

Section 4.1 involved the development, testing, and analysis of an FPGA implementation

of the algorithm at different sequence period lengths (LFSR bit length) and number of

71

communication channels (tap bits). The experiment revealed that only a general trend

showing that increasing either variable causes a decrease in maximum operational clock

frequency. This clock limitation resulted from significant routing delay more than delay

due to logic. The resources required to build each system increase as system complexity

increased. Of the two main reportable FPGA resources, registers and LUTs, a general

equation was determined to predict the number of registers required. The LUT usage of

the system did not conform to a predictable pattern with reliable results. The hypothesis

was disproved in that all resources required are not directly calculable. These results are

specific to synthesis using Xilinx ISE 13.2 and the XST synthesis tool targeted to the

Virtex-5 FPGA.

The last goal of this research was to evaluate the performance expectations of three

communication methods for exchanging radio environment data on a multi-nodal radio

network via simulation. The OPNET simulation experiment revealed that both the Polling

and Time-Division protocols required less overhead costs to average network throughput

at small sized networks. These protocols maintained above 90% maximum throughput

upto a network size of approximately 35 nodes when the a REM exchange occurred every

1 second. As network size increases, the Priority protocol performed the best method of

the three tested under near real-world scenarios. The Real World scenario used in testing

never met the 90% threshold; however, extrapolation of trends show that any increase in

network size above the levels tested should meet the threshold. The experiment also

showed that the addition of nodes to a static network where all nodes are within

communication range did not increase overhead costs in larger networks when using the

Priority protocol. These results match that of the hypothesis. Each REM exchange

protocol displayed points of advantage and disadvantage as network traffic and network

size increase. No protocol performed best over all tests, and therefore the selection of the

exchange protocol becomes a factor within a cognitive system.

72

5.2 Research Contributions

This research provides two distinct contributions to the study of DSA, and therefore

the field of CR. First, this research establishes Gold’s algorithm as a valid rendezvous

method for Frequency Hopping DSA networks. Compared to traditional methods such as

COD, Gold’s algorithm reduces rendezvous time when higher hop rates are required or

significant time has elapsed since the key was issued. Additionally, this research offers the

first FPGA hardware implementation of Gold’s algorithm providing timing and resource

requirements for radio designers.

Second, this research demonstrates the impact to network performance for three

exchange protocols when radio channel availability data must be exchanged as part of

DSA operations. Examination of metrics such as data throughput, delay, and data drop

rates provide an estimation of network performance with varying network size under

different network non-control traffic workloads. Furthermore, a simulation test scenario to

estimate real-world conditions is presented due to the lack of actual real-world

representative test sets.

Two OPNET nodal models were developed to compare the exchange protocols.

Utilization of these models provide future researchers with advanced capabilities not

currently available. Therefore, these models can be considered minor contributions. The

first model expands the features of the IEEE 802.11b OPNET wireless model to

incorporate the transmission technique of FHSS. OPNET’s model provides frequency

hopping as a function option, but the feature was never implemented in the model. The

improved model is currently restricted to slow-hopping operations. The second model

modifies the PCF of IEEE 802.11b within the MAC process model. This modification

allows PCF operation without the need of a dedicated access point, and leverages the PCF

operation for transfer of radio environment data only.

73

5.3 Future Work

One of the most difficult problems developing this research was the lack of

environmental RF data to be used for experimentation. No open source data sets were

discovered to create a real-world operation simulation, and therefore a representative

scenario had to be created. One suggestion for future work includes the collection and

analysis of the RF environment to create a test set. This work would provide researchers

with realistic conditions for testing. It also could lead to studies in environment prediction

algorithms. Secondly, the simulations performed within this research were limited to

stationary nodal models within communication range. Future research into the affects that

mobility could cause in the exchange process is needed. Additionally, the inclusion of

existing routing protocols and application layer simulation would further the study of

reliability in a cognitive network.

Although network simulations provide needed insight into wireless network

performance, hardware implementation and testing is the ultimate goal. The custom IP

core for Gold’s algorithm needs to be transitioned to an RF capable platform for further

testing. The exchange protocols researched in this paper may also be implemented on a

development board for further testing. AFIT is dedicated to developing a physical

cognitive radio capable of dynamically selecting rendezvous methods, routing protocols,

and transmission waveforms to optimize performance. Each of these areas should be

explored and possibly implemented.

Continuing research into cognitive radio allows for better utilization of a limited

resource. Radios equipped with the ability to actively select the best operating parameters

provides flexible and reliable communication through a increasingly chaotic medium. For

military use, a cognitive system could make the difference between a successful mission

and complete failure. Future research by AFIT will assist in advancing our

communication technology for a stronger United States of America.

74

Appendix: Experimental Results

A.1 FPGA implementation Results

Macro Statistics
Taps Width # Slice Registers # Slice LUTS # of LUT FF pairs fully used Control sets IOs BUFGs RAMS Adder/Sub Counters Registers Latches Comparators Multiplexers XORs

4 8 500 801 969 332 36 52 4 1 18 5 220 9 16 3 81
4 12 865 1404 1748 521 44 56 4 1 23 5 404 13 16 3 169
4 16 1363 1962 2546 779 52 60 4 1 26 5 652 17 16 3 289
4 20 1983 2706 3595 1094 60 64 4 1 31 5 964 21 16 3 441
4 24 2731 3652 4905 1478 68 68 4 1 35 5 1340 25 16 3 625
4 28 3607 4713 6398 1922 76 72 4 1 39 5 1780 29 16 3 841
4 32 4617 5792 7977 2432 84 76 4 1 42 5 2284 33 16 3 1089
4 36 5749 7198 9942 3005 92 80 4 1 47 5 2852 37 16 3 1369
5 8 521 877 1044 354 37 53 4 1 18 5 236 9 16 3 81
5 12 886 1499 1842 543 45 57 4 1 23 5 420 13 16 3 169
5 16 1384 2051 2635 800 53 61 4 1 26 5 668 17 16 3 289
5 20 2005 2713 362 1116 61 65 4 1 31 5 980 21 16 3 441
5 24 2753 3718 4973 1498 69 69 4 1 35 5 1356 25 16 3 625
5 28 3628 4745 6432 1941 77 73 4 1 39 5 1796 29 16 3 841
5 32 4638 5942 8128 2452 85 77 4 1 42 5 2300 33 16 3 1089
5 36 5770 7277 10026 3021 93 81 4 1 47 5 2868 37 16 3 1369
6 8 557 1059 1220 396 38 54 4 1 18 5 268 9 16 3 81
6 12 923 1498 1841 580 46 58 4 1 23 5 452 13 16 3 169
6 16 1421 2131 2716 836 54 62 4 1 26 5 700 17 16 3 289
6 20 2041 2838 3731 1148 62 66 4 1 31 5 1012 21 16 3 441
6 24 2789 3822 5077 1534 70 40 4 1 35 5 1388 25 16 3 625
6 28 3665 4845 6530 1980 78 74 4 1 39 5 1828 29 16 3 841
6 32 4675 5980 8169 2486 86 78 4 1 42 5 2332 33 16 3 1089
6 36 5807 7453 201 3059 94 82 4 1 47 5 2900 37 16 3 1369
7 8 627 1110 1278 459 39 55 4 1 18 5 332 9 17 3 81
7 12 992 1638 1983 647 47 59 4 1 23 5 516 13 17 3 169
7 16 1492 2240 2823 909 55 63 4 1 26 5 764 17 17 3 289
7 20 2210 2955 3845 1220 63 67 4 1 31 5 1076 21 17 3 441
7 24 2858 3910 5167 1601 71 71 4 1 35 5 1452 25 17 3 625
7 28 3734 4969 6662 2041 79 75 4 1 39 5 1892 29 17 3 841
7 32 4744 6263 8453 2554 87 7 4 1 42 5 2396 33 17 3 1089
7 36 5876 7647 10398 3125 95 83 4 1 47 5 2964 37 17 3 1369
8 8
8 12 1126 1837 2182 781 48 60 4 1 23 5 644 13 17 3 169
8 16 1628 2416 3002 1042 56 64 4 1 26 5 892 17 17 3 289
8 20 2244 3146 4036 1354 64 68 4 1 31 5 1204 21 17 3 441
8 24 2992 4132 5388 1736 72 72 4 1 35 5 1580 25 17 3 625
8 28 3868 5197 6892 2173 80 76 4 1 39 5 2020 29 17 3 841
8 32 4878 6347 8534 2691 88 80 4 1 42 5 2524 33 17 3 1089
8 36 6010 8006 759 3257 96 84 4 1 47 5 3092 37 17 3 1369
9 8
9 12 1387 2159 2502 1044 49 61 4 1 23 5 900 13 17 3 169
9 16 1885 2830 3412 1303 57 65 4 1 26 5 1148 17 17 3 289
9 20 2505 3578 4470 1613 65 69 4 1 31 5 1460 21 17 3 441
9 24 3253 4647 5906 1994 73 73 4 1 35 5 1836 25 17 3 625
9 28 4129 5672 7369 2432 81 77 4 1 39 5 2276 29 17 3 841
9 32 5139 6875 9065 2949 89 81 4 1 42 5 2780 33 17 3 1089
9 36 6271 8392 11143 3520 97 85 4 1 47 5 3348 37 17 3 1369

10 8
10 12 1904 2762 3231 1435 50 62 4 1 23 5 1412 13 17 3 169
10 16 2402 3497 4116 1783 58 66 4 1 26 5 1660 17 17 3 289
10 20 3022 4211 5135 2098 66 70 4 1 31 5 1972 21 17 3 441
10 24 3770 5398 6732 2436 74 74 4 1 35 5 2348 25 17 3 625
10 28 4646 6491 8257 2880 82 78 4 1 39 5 2788 29 17 3 841
10 32 5656 7563 9819 3400 90 82 4 1 42 5 3292 33 17 3 1089
10 36 6788 9093 11902 3979 98 86 4 1 47 5 3860 37 17 3 1369

Device utilization summary HDL Synthesis Report
Slice Utilization Slice Distribution

Figure A.1: FPGA Device Utilzation Summary and HDL Synthesis Report

75

Final Report
Macro Statistics Cell Usage

Taps Width FSM RAMS Adder/Sub Counters Registers Latches Comparators Multiplexers XORs BELS FF/Latch RAMS Clock Buf IO buf RAM type
4 8 1 1 18 5 546 9 16 2 81 1058 500 1 4 52 RAMB18
4 12 1 1 23 5 910 13 16 2 169 1666 865 1 4 56 RAMB18
4 16 1 1 26 5 1407 17 16 2 289 2284 1363 1 4 60 RAMB18
4 20 1 1 31 5 2027 21 16 2 441 3034 1986 1 4 64 RAMB36_EXP
4 24 1 1 35 5 2775 25 16 2 625 3958 2731 1 4 68 RAMB36_EXP
4 28 1 1 39 5 3651 29 16 2 841 5058 3607 1 4 72 RAMB36_EXP
4 32 1 1 42 5 4660 33 16 2 1089 6232 4617 1 4 76 RAMB36_EXP
4 36 1 1 47 5 5792 37 16 2 1369 7585 5749 1 4 80 RAMB36_EXP
5 8 1 1 18 5 566 9 16 2 81 1136 521 1 4 53 RAMB18
5 12 1 1 23 5 930 13 16 2 169 1761 886 1 4 57 RAMB18
5 16 1 1 26 5 1427 17 16 2 289 2389 1384 1 4 61 RAMB18
5 20 1 1 31 5 2047 21 16 2 441 3022 2005 1 4 65 RAMB36_EXP
5 24 1 1 35 5 2795 25 16 2 625 4033 2753 1 4 69 RAMB36_EXP
5 28 1 1 39 5 3671 29 16 2 841 5150 3628 1 4 73 RAMB36_EXP
5 32 1 1 42 5 4680 33 16 2 1089 6440 4638 1 4 77 RAMB36_EXP
5 36 1 1 47 5 5812 37 16 2 1369 7609 5770 1 4 81 RAMB36_EXP
6 8 1 1 18 5 602 9 16 2 81 1322 557 1 4 54 RAMB18
6 12 1 1 23 5 966 13 16 2 169 1779 923 1 4 58 RAMB18
6 16 1 1 26 5 1463 17 16 2 289 2501 1421 1 4 62 RAMB18
6 20 1 1 31 5 2083 21 16 2 441 3150 2041 1 4 66 RAMB36_EXP
6 24 1 1 35 5 2831 25 16 2 625 4147 2789 1 4 70 RAMB36_EXP
6 28 1 1 39 5 3707 29 16 2 841 5260 3665 1 4 74 RAMB36_EXP
6 32 1 1 42 5 4716 33 16 2 1089 6347 4675 1 4 78 RAMB36_EXP
6 36 1 1 47 5 5848 37 16 2 1369 7866 5807 1 4 82 RAMB36_EXP
7 8 1 1 18 5 670 9 17 2 81 1392 627 1 4 55 RAMB18
7 12 1 1 23 5 1034 13 17 2 169 1939 992 1 4 59 RAMB18
7 16 1 1 26 5 1531 17 17 2 289 2635 1492 1 4 63 RAMB18
7 20 1 1 31 5 2151 21 17 2 441 3299 2110 1 4 67 RAMB36_EXP
7 24 1 1 35 5 2899 25 17 2 625 4257 2858 1 4 71 RAMB36_EXP
7 28 1 1 39 5 3775 29 17 2 841 5368 3734 1 4 75 RAMB36_EXP
7 32 1 1 42 5 4784 33 17 2 1089 6771 4744 1 4 79 RAMB36_EXP
7 36 1 1 47 5 5916 37 17 2 1369 8066 5876 1 4 83 RAMB36_EXP
8 8
8 12 1 1 23 5 1167 13 17 2 169 2164 1126 1 4 60 RAMB18
8 16 1 1 26 5 1664 17 17 2 289 2820 1628 1 4 64 RAMB18
8 20 1 1 31 5 2284 21 17 2 441 3501 2244 1 4 68 RAMB36_EXP
8 24 1 1 35 5 3032 25 17 2 625 4520 2992 1 4 72 RAMB36_EXP
8 28 1 1 39 5 3908 29 17 2 841 5617 3868 1 4 76 RAMB36_EXP
8 32 1 1 42 5 4917 33 17 2 1089 6762 4878 1 4 80 RAMB36_EXP
8 36 1 1 47 5 6049 37 17 2 1369 8411 6010 1 4 84 RAMB36_EXP
9 8
9 12 1 1 23 5 1427 13 17 2 169 2540 1387 1 4 61 RAMB18
9 16 1 1 26 5 1924 17 17 2 289 3268 1885 1 4 65 RAMB18
9 20 1 1 31 5 2544 21 17 2 441 3982 2505 1 4 69 RAMB36_EXP
9 24 1 1 35 5 3292 25 17 2 625 5105 3253 1 4 73 RAMB36_EXP
9 28 1 1 39 5 4168 29 17 2 841 6164 4129 1 4 77 RAMB36_EXP
9 32 1 1 42 5 5177 33 17 2 1089 7365 5139 1 4 81 RAMB36_EXP
9 36 1 1 47 5 6309 37 17 2 1369 8850 6271 1 4 85 RAMB36_EXP

10 8
10 12 1 1 23 5 1943 13 17 2 169 3216 1904 1 4 62 RAMB18
10 16 1 1 26 5 2440 17 17 2 289 4043 2402 1 4 66 RAMB18
10 20 1 1 31 5 3060 21 17 2 441 4742 3022 1 4 70 RAMB36_EXP
10 24 1 1 35 5 3808 25 17 2 625 5913 3770 1 4 74 RAMB36_EXP
10 28 1 1 39 5 4684 29 17 2 841 7093 4646 1 4 78 RAMB36_EXP
10 32 1 1 42 5 5693 33 17 2 1089 8137 5656 1 4 82 RAMB36_EXP
10 36 1 1 47 5 6825 37 17 2 1369 9640 6788 1 4 86 RAMB36_EXP

Advanced HDL Synthesis Report

Figure A.2: FPGA Advanced HDL Synthesis Report and Final Report

76

A.2 Baseline (Pilot Study) Results

0 500 1000 1500 2000 2500
2

3

4

5

6

7

8
x 105

Interarrival Rate (msec)

A
vg

 D
at

a
Th

ro
ug

hp
ut

 (b
it/

se
c)

Baseline Throughtput vs Network Size

N=4
N=9
N=16
N=25
N=36
N=49
N=64
N=81
N=100

Figure A.3: Baseline Throughput

77

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 4 Nodes

N=4,beac=none
N=4, degraded

Figure A.4: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−10

0

10

20

30

40

50
baseline Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.5: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10
×105 baseline Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.6: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
baseline Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.7: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5
baseline Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.8: N4 Packet Delay

78

80 100 120 140 160 180 200 220
3

3.5

4

4.5

5

5.5

6

6.5

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 9 Nodes

N=9,beac=none
N=9, degraded

Figure A.9: N9 Data Throughput

80 100 120 140 160 180 200 220
−100

0

100

200

300

400

500

600
baseline Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.10: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−2

0

2

4

6

8

10
×104 baseline Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.11: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
baseline Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.12: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2
baseline Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.13: N9 Packet Delay

79

180 200 220 240 260 280 300 320
3.5

4

4.5

5

5.5

6

6.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 16 Nodes

N=16,beac=none
N=16, degraded

Figure A.14: N16 Data Throughput

180 200 220 240 260 280 300 320
−500

0

500

1000

1500

2000

2500
baseline Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.15: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−1

0

1

2

3

4

5

6

7
×104 baseline Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.16: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
baseline Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.17: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5
baseline Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.18: N16 Packet Delay

80

320 340 360 380 400 420 440 460
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 25 Nodes

N=25,beac=none
N=25, degraded

Figure A.19: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000
baseline Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.20: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−1

0

1

2

3

4

5
×104 baseline Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.21: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1
baseline Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.22: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

1

2

3

4

5
baseline Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.23: N25 Packet Delay

81

450 500 550 600 650 700 750 800 850
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 36 Nodes

N=36,beac=none
N=36, degraded

Figure A.24: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
baseline Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.25: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
0

2

4

6

8

10
×104 baseline Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.26: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
baseline Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.27: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
0

2

4

6

8

10

12
baseline Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.28: N36 Packet Delay

82

700 750 800 850 900 950 1000 1050 1100 1150
3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 49 Nodes

N=49,beac=none
N=49, degraded

Figure A.29: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−2000

0

2000

4000

6000

8000

10000

12000

14000
baseline Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.30: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−1

0

1

2

3

4

5
×104 baseline Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.31: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
baseline Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.32: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−2

0

2

4

6

8

10

12
baseline Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.33: N49 Packet Delay

83

800 1000 1200 1400 1600 1800 2000
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 64 Nodes

N=64,beac=none
N=64, degraded

Figure A.34: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104 baseline Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.35: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15
×104 baseline Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.36: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
baseline Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.37: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15

20

25

30
baseline Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.38: N64 Packet Delay

84

1000 1200 1400 1600 1800 2000 2200 2400
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 81 Nodes

N=81,beac=none
N=81, degraded

Figure A.39: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104 baseline Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.40: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−2

0

2

4

6

8

10

12

14
×104 baseline Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.41: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
baseline Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.42: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20

25

30

35
baseline Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.43: N81 Packet Delay

85

1500 1600 1700 1800 1900 2000 2100 2200
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

baseline Average Data Throughput, 100 Nodes

N=100,beac=none
N=100, degraded

Figure A.44: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104 baseline Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.45: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104 baseline Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.46: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2
baseline Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.47: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20

25
baseline Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.48: N100 Packet Delay

86

A.3 Polling Protocol Results

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.49: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80
Polling Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.50: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10
×105 Polling Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.51: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Polling Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.52: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Polling Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.53: N4 Packet Delay

87

80 100 120 140 160 180 200 220
3

3.5

4

4.5

5

5.5

6

6.5

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.54: N9 Data Throughput

80 100 120 140 160 180 200 220
−100

0

100

200

300

400

500

600

700
Polling Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.55: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−5

0

5

10

15

20
×104 Polling Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.56: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Polling Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.57: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

3
Polling Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.58: N9 Packet Delay

88

180 200 220 240 260 280 300 320
3.5

4

4.5

5

5.5

6

6.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.59: N16 Data Throughput

180 200 220 240 260 280 300 320
−500

0

500

1000

1500

2000

2500
Polling Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.60: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−5

0

5

10

15

20
×104 Polling Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.61: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
0

0.2

0.4

0.6

0.8

1
Polling Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.62: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
Polling Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.63: N16 Packet Delay

89

320 340 360 380 400 420 440 460
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.64: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000

6000
Polling Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.65: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−0.5

0

0.5

1

1.5

2

2.5
×105 Polling Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.66: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Polling Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.67: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

2

4

6

8

10

12

14

16
Polling Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.68: N25 Packet Delay

90

450 500 550 600 650 700 750 800 850
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.69: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Polling Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.70: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−0.5

0

0.5

1

1.5

2

2.5
×105 Polling Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.71: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Polling Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.72: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
−5

0

5

10

15

20

25
Polling Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.73: N36 Packet Delay

91

700 750 800 850 900 950 1000 1050 1100 1150
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.74: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−5000

0

5000

10000

15000

20000
Polling Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.75: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−0.5

0

0.5

1

1.5

2

2.5
×105 Polling Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.76: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Polling Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.77: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−10

0

10

20

30

40
Polling Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.78: N49 Packet Delay

92

800 1000 1200 1400 1600 1800 2000
2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.79: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104 Polling Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.80: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105 Polling Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.81: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Polling Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.82: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−10

0

10

20

30

40

50

60

70
Polling Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.83: N64 Packet Delay

93

1000 1200 1400 1600 1800 2000 2200 2400
1.5

2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.84: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104 Polling Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.85: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×105 Polling Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.86: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Polling Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.87: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−20

0

20

40

60

80

100
Polling Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.88: N81 Packet Delay

94

1500 1600 1700 1800 1900 2000 2100 2200
2

2.5

3

3.5

4

4.5

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Polling Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.89: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−1

0

1

2

3

4

5
×104 Polling Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.90: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5
×105 Polling Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.91: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2

2.5
Polling Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.92: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−20

0

20

40

60

80

100
Polling Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.93: N100 Packet Delay

95

A.4 Time Division Protocol Results

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.94: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80

100
Time Division Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.95: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12
×105 Time Division Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.96: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Time Division Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.97: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Time Division Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.98: N4 Packet Delay

96

80 100 120 140 160 180 200 220
3

3.5

4

4.5

5

5.5

6

6.5

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.99: N9 Data Throughput

80 100 120 140 160 180 200 220
−200

0

200

400

600

800
Time Division Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.100: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−5

0

5

10

15

20
×104 Time Division Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.101: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Time Division Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.102: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2

2.5

3
Time Division Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.103: N9 Packet Delay

97

180 200 220 240 260 280 300 320
3.5

4

4.5

5

5.5

6

6.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.104: N16 Data Throughput

180 200 220 240 260 280 300 320
−500

0

500

1000

1500

2000

2500

3000
Time Division Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.105: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−5

0

5

10

15

20
×104 Time Division Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.106: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Time Division Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.107: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
Time Division Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.108: N16 Packet Delay

98

320 340 360 380 400 420 440 460
3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.109: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000

6000
Time Division Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.110: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−0.5

0

0.5

1

1.5

2

2.5
×105 Time Division Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.111: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Time Division Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.112: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

2

4

6

8

10

12

14
Time Division Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.113: N25 Packet Delay

99

450 500 550 600 650 700 750 800 850
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.114: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Time Division Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.115: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−0.5

0

0.5

1

1.5

2

2.5
×105 Time Division Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.116: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Time Division Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.117: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
−5

0

5

10

15

20
Time Division Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.118: N36 Packet Delay

100

700 750 800 850 900 950 1000 1050 1100 1150
3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.119: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−5000

0

5000

10000

15000

20000
Time Division Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.120: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−0.5

0

0.5

1

1.5

2

2.5
×105 Time Division Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.121: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.5

1

1.5
Time Division Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.122: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−5

0

5

10

15

20

25

30

35
Time Division Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.123: N49 Packet Delay

101

800 1000 1200 1400 1600 1800 2000
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.124: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104 Time Division Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.125: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105 Time Division Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.126: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Time Division Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.127: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−10

0

10

20

30

40

50

60
Time Division Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.128: N64 Packet Delay

102

1000 1200 1400 1600 1800 2000 2200 2400
2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.129: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104 Time Division Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.130: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105 Time Division Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.131: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Time Division Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.132: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−20

0

20

40

60

80

100
Time Division Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.133: N81 Packet Delay

103

1500 1600 1700 1800 1900 2000 2100 2200
2.5

3

3.5

4

4.5

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Time Division Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.134: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−1

0

1

2

3

4

5
×104 Time Division Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.135: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5
×105Time Division Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.136: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2

2.5
Time Division Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.137: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−10

0

10

20

30

40

50

60
Time Division Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.138: N100 Packet Delay

104

A.5 Priority Protocol Results

A.5.1 Unique Scenario.

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.139: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−10

0

10

20

30

40

50
Priority-Unique Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.140: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12

14
×105 Priority-Unique Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.141: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Priority-Unique Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.142: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5
Priority-Unique Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.143: N4 Packet Delay

105

80 100 120 140 160 180 200 220
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.144: N9 Data Throughput

80 100 120 140 160 180 200 220
−1000

−500

0

500

1000

1500

2000

2500
Priority-Unique Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.145: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−1

0

1

2

3

4

5

6

7
×105 Priority-Unique Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.146: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Priority-Unique Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.147: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2
Priority-Unique Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.148: N9 Packet Delay

106

180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.149: N16 Data Throughput

180 200 220 240 260 280 300 320
−500

0

500

1000

1500

2000

2500
Priority-Unique Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.150: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−1

0

1

2

3

4

5

6

7
×105Priority-Unique Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.151: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
−0.2

0

0.2

0.4

0.6

0.8
Priority-Unique Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.152: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5
Priority-Unique Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.153: N16 Packet Delay

107

320 340 360 380 400 420 440 460
0

1

2

3

4

5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.154: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000
Priority-Unique Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.155: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−1

0

1

2

3

4

5

6
×105Priority-Unique Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.156: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1
Priority-Unique Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.157: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

1

2

3

4

5
Priority-Unique Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.158: N25 Packet Delay

108

450 500 550 600 650 700 750 800 850
0

1

2

3

4

5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.159: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Priority-Unique Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.160: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−1

0

1

2

3

4

5

6
×105Priority-Unique Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.161: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Unique Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.162: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
0

2

4

6

8

10

12
Priority-Unique Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.163: N36 Packet Delay

109

700 750 800 850 900 950 1000 1050 1100 1150
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.164: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−2000

0

2000

4000

6000

8000

10000

12000

14000
Priority-Unique Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.165: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−1

0

1

2

3

4

5

6
×105Priority-Unique Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.166: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Unique Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.167: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−2

0

2

4

6

8

10

12
Priority-Unique Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.168: N49 Packet Delay

110

800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.169: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104 Priority-Unique Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.170: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−1

0

1

2

3

4

5

6
×105Priority-Unique Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.171: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Priority-Unique Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.172: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15

20

25

30
Priority-Unique Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.173: N64 Packet Delay

111

1000 1200 1400 1600 1800 2000 2200 2400
1.5

2

2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.174: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104 Priority-Unique Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.175: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×105Priority-Unique Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.176: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Priority-Unique Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.177: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20

25

30

35
Priority-Unique Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.178: N81 Packet Delay

112

1500 1600 1700 1800 1900 2000 2100 2200
1.5

2

2.5

3

3.5

4

4.5

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Unique Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.179: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104Priority-Unique Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.180: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−1

0

1

2

3

4
×105Priority-Unique Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.181: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2
Priority-Unique Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.182: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20

25
Priority-Unique Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.183: N100 Packet Delay

113

A.5.2 Identical Scenario.

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.184: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−10

0

10

20

30

40

50
Priority-Identical Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.185: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12

14
×105Priority-Identical Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.186: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Priority-Identical Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.187: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5
Priority-Identical Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.188: N4 Packet Delay

114

80 100 120 140 160 180 200 220
1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.189: N9 Data Throughput

80 100 120 140 160 180 200 220
−100

0

100

200

300

400

500

600
Priority-Identical Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.190: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−1

0

1

2

3

4

5

6
×105Priority-Identical Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.191: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Priority-Identical Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.192: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2
Priority-Identical Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.193: N9 Packet Delay

115

180 200 220 240 260 280 300 320
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.194: N16 Data Throughput

180 200 220 240 260 280 300 320
−500

0

500

1000

1500

2000

2500
Priority-Identical Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.195: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−1

0

1

2

3

4

5
×105Priority-Identical Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.196: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Priority-Identical Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.197: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5
Priority-Identical Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.198: N16 Packet Delay

116

320 340 360 380 400 420 440 460
2

2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.199: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000
Priority-Identical Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.200: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−1

0

1

2

3

4
×105Priority-Identical Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.201: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1
Priority-Identical Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.202: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

1

2

3

4

5
Priority-Identical Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.203: N25 Packet Delay

117

450 500 550 600 650 700 750 800 850
3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.204: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Priority-Identical Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.205: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−0.5

0

0.5

1

1.5

2

2.5
×105Priority-Identical Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.206: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Identical Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.207: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
0

2

4

6

8

10

12
Priority-Identical Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.208: N36 Packet Delay

118

700 750 800 850 900 950 1000 1050 1100 1150
3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.209: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−2000

0

2000

4000

6000

8000

10000

12000

14000
Priority-Identical Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.210: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−5

0

5

10

15
×104Priority-Identical Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.211: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Identical Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.212: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−2

0

2

4

6

8

10

12
Priority-Identical Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.213: N49 Packet Delay

119

800 1000 1200 1400 1600 1800 2000
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.214: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104Priority-Identical Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.215: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5
×105Priority-Identical Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.216: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Priority-Identical Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.217: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15

20

25

30
Priority-Identical Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.218: N64 Packet Delay

120

1000 1200 1400 1600 1800 2000 2200 2400
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.219: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104Priority-Identical Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.220: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20
×104Priority-Identical Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.221: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Priority-Identical Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.222: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20

25

30

35
Priority-Identical Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.223: N81 Packet Delay

121

1500 1600 1700 1800 1900 2000 2100 2200
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Identical Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.224: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104Priority-Identical Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.225: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−2

0

2

4

6

8

10

12
×104Priority-Identical Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.226: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2
Priority-Identical Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.227: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20

25
Priority-Identical Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.228: N100 Packet Delay

122

A.5.3 Random Scenario.

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.229: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−10

0

10

20

30

40

50
Priority-Random Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.230: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12

14
×105Priority-Random Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.231: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Priority-Random Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.232: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5
Priority-Random Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.233: N4 Packet Delay

123

80 100 120 140 160 180 200 220
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.234: N9 Data Throughput

80 100 120 140 160 180 200 220
−100

0

100

200

300

400

500

600
Priority-Random Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.235: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−1

0

1

2

3

4

5

6

7
×105Priority-Random Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.236: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Priority-Random Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.237: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2
Priority-Random Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.238: N9 Packet Delay

124

180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.239: N16 Data Throughput

180 200 220 240 260 280 300 320
−2000

−1000

0

1000

2000

3000

4000
Priority-Random Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.240: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−1

0

1

2

3

4

5

6
×105Priority-Random Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.241: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Priority-Random Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.242: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5
Priority-Random Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.243: N16 Packet Delay

125

320 340 360 380 400 420 440 460
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.244: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000
Priority-Random Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.245: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−1

0

1

2

3

4

5
×105Priority-Random Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.246: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1
Priority-Random Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.247: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

1

2

3

4

5
Priority-Random Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.248: N25 Packet Delay

126

450 500 550 600 650 700 750 800 850
2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.249: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Priority-Random Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.250: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105Priority-Random Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.251: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Random Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.252: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
0

2

4

6

8

10

12
Priority-Random Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.253: N36 Packet Delay

127

700 750 800 850 900 950 1000 1050 1100 1150
3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.254: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−2000

0

2000

4000

6000

8000

10000

12000

14000
Priority-Random Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.255: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−0.5

0

0.5

1

1.5

2

2.5
×105Priority-Random Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.256: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-Random Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.257: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−2

0

2

4

6

8

10

12
Priority-Random Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.258: N49 Packet Delay

128

800 1000 1200 1400 1600 1800 2000
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.259: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104Priority-Random Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.260: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5
×105Priority-Random Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.261: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Priority-Random Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.262: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15

20

25

30
Priority-Random Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.263: N64 Packet Delay

129

1000 1200 1400 1600 1800 2000 2200 2400
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.264: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104Priority-Random Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.265: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20
×104Priority-Random Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.266: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Priority-Random Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.267: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20

25

30

35
Priority-Random Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.268: N81 Packet Delay

130

1500 1600 1700 1800 1900 2000 2100 2200
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-Random Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.269: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104Priority-Random Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.270: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−2

0

2

4

6

8

10

12

14
×104Priority-Random Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.271: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2
Priority-Random Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.272: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20

25
Priority-Random Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.273: N100 Packet Delay

131

A.5.4 Real World Scenario.

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

7

8
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 4 Nodes

N=4,beac=none
N=4,beac=0.25
N=4,beac=0.5
N=4,beac=0.75
N=4,beac=1
N=4, degraded

Figure A.274: N4 Data Throughput

0 20 40 60 80 100 120 140 160
−4000

−2000

0

2000

4000

6000

8000

10000
Priority-RealWorld Average Drop due to Retry, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.275: N4 Retry Dropped Data

0 20 40 60 80 100 120 140 160
−2

0

2

4

6

8

10

12

14
×105Priority-RealWorld Average Drop due to Buffer, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.276: N4 Buffer Dropped Data

0 20 40 60 80 100 120 140 160
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Priority-RealWorld Average Retry Attempts, 4 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.277: N4 Retry Attempts

0 20 40 60 80 100 120 140 160
−0.5

0

0.5

1

1.5
Priority-RealWorld Average Delay, 4 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.278: N4 Packet Delay

132

80 100 120 140 160 180 200 220
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 9 Nodes

N=9,beac=none
N=9,beac=0.25
N=9,beac=0.5
N=9,beac=0.75
N=9,beac=1
N=9, degraded

Figure A.279: N9 Data Throughput

80 100 120 140 160 180 200 220
−4000

−2000

0

2000

4000

6000

8000

10000

12000
Priority-RealWorld Average Drop due to Retry, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.280: N9 Retry Dropped Data

80 100 120 140 160 180 200 220
−1

0

1

2

3

4

5

6

7
×105Priority-RealWorld Average Drop due to Buffer, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.281: N9 Buffer Dropped Data

80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1
Priority-RealWorld Average Retry Attempts, 9 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.282: N9 Retry Attempts

80 100 120 140 160 180 200 220
0

0.5

1

1.5

2
Priority-RealWorld Average Delay, 9 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.283: N9 Packet Delay

133

180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 16 Nodes

N=16,beac=none
N=16,beac=0.25
N=16,beac=0.5
N=16,beac=0.75
N=16,beac=1
N=16, degraded

Figure A.284: N16 Data Throughput

180 200 220 240 260 280 300 320
−2000

0

2000

4000

6000

8000

10000
Priority-RealWorld Average Drop due to Retry, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.285: N16 Retry Dropped Data

180 200 220 240 260 280 300 320
−1

0

1

2

3

4

5

6
×105Priority-RealWorld Average Drop due to Buffer, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.286: N16 Buffer Dropped Data

180 200 220 240 260 280 300 320
−0.2

0

0.2

0.4

0.6

0.8
Priority-RealWorld Average Retry Attempts, 16 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.287: N16 Retry Attempts

180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5
Priority-RealWorld Average Delay, 16 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.288: N16 Packet Delay

134

320 340 360 380 400 420 440 460
0

1

2

3

4

5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 25 Nodes

N=25,beac=none
N=25,beac=0.25
N=25,beac=0.5
N=25,beac=0.75
N=25,beac=1
N=25, degraded

Figure A.289: N25 Data Throughput

320 340 360 380 400 420 440 460
−1000

0

1000

2000

3000

4000

5000

6000
Priority-RealWorld Average Drop due to Retry, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.290: N25 Retry Dropped Data

320 340 360 380 400 420 440 460
−1

0

1

2

3

4

5

6
×105Priority-RealWorld Average Drop due to Buffer, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.291: N25 Buffer Dropped Data

320 340 360 380 400 420 440 460
0

0.2

0.4

0.6

0.8

1
Priority-RealWorld Average Retry Attempts, 25 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.292: N25 Retry Attempts

320 340 360 380 400 420 440 460
0

1

2

3

4

5
Priority-RealWorld Average Delay, 25 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.293: N25 Packet Delay

135

450 500 550 600 650 700 750 800 850
2

2.5

3

3.5

4

4.5

5

5.5

6
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 36 Nodes

N=36,beac=none
N=36,beac=0.5
N=36,beac=1
N=36,beac=1.5
N=36,beac=2
N=36, degraded

Figure A.294: N36 Data Throughput

450 500 550 600 650 700 750 800 850
−2000

0

2000

4000

6000

8000

10000

12000
Priority-RealWorld Average Drop due to Retry, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.295: N36 Retry Dropped Data

450 500 550 600 650 700 750 800 850
−1

0

1

2

3

4
×105Priority-RealWorld Average Drop due to Buffer, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.296: N36 Buffer Dropped Data

450 500 550 600 650 700 750 800 850
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-RealWorld Average Retry Attempts, 36 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.297: N36 Retry Attempts

450 500 550 600 650 700 750 800 850
−2

0

2

4

6

8

10

12
Priority-RealWorld Average Delay, 36 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.298: N36 Packet Delay

136

700 750 800 850 900 950 1000 1050 1100 1150
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 49 Nodes

N=49,beac=none
N=49,beac=0.5
N=49,beac=1
N=49,beac=1.5
N=49,beac=2
N=49, degraded

Figure A.299: N49 Data Throughput

700 750 800 850 900 950 1000 1050 1100 1150
−2000

0

2000

4000

6000

8000

10000

12000

14000
Priority-RealWorld Average Drop due to Retry, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.300: N49 Retry Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
−0.5

0

0.5

1

1.5

2

2.5

3
×105Priority-RealWorld Average Drop due to Buffer, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.301: N49 Buffer Dropped Data

700 750 800 850 900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Priority-RealWorld Average Retry Attempts, 49 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.302: N49 Retry Attempts

700 750 800 850 900 950 1000 1050 1100 1150
−2

0

2

4

6

8

10

12
Priority-RealWorld Average Delay, 49 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.303: N49 Packet Delay

137

800 1000 1200 1400 1600 1800 2000
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 64 Nodes

N=64,beac=none
N=64,beac=0.5
N=64,beac=1
N=64,beac=1.5
N=64,beac=2
N=64, degraded

Figure A.304: N64 Data Throughput

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3
×104Priority-RealWorld Average Drop due to Retry, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.305: N64 Retry Dropped Data

800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×105Priority-RealWorld Average Drop due to Buffer, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.306: N64 Buffer Dropped Data

800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2
Priority-RealWorld Average Retry Attempts, 64 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.307: N64 Retry Attempts

800 1000 1200 1400 1600 1800 2000
−5

0

5

10

15

20

25

30
Priority-RealWorld Average Delay, 64 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.308: N64 Packet Delay

138

1000 1200 1400 1600 1800 2000 2200 2400
2.5

3

3.5

4

4.5

5

5.5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 81 Nodes

N=81,beac=none
N=81,beac=0.5
N=81,beac=1
N=81,beac=2
N=81,beac=3
N=81, degraded

Figure A.309: N81 Data Throughput

1000 1200 1400 1600 1800 2000 2200 2400
−1

0

1

2

3

4
×104Priority-RealWorld Average Drop due to Retry, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.310: N81 Retry Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
−0.5

0

0.5

1

1.5

2

2.5

3
×105Priority-RealWorld Average Drop due to Buffer, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.311: N81 Buffer Dropped Data

1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5
Priority-RealWorld Average Retry Attempts, 81 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.312: N81 Retry Attempts

1000 1200 1400 1600 1800 2000 2200 2400
−5

0

5

10

15

20

25

30

35
Priority-RealWorld Average Delay, 81 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.313: N81 Packet Delay

139

1500 1600 1700 1800 1900 2000 2100 2200
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
×105

Interarrival Rate (msec)

A
v

g
D

at
a

T
h

ro
u

g
h

p
u

t
(b

it
s/

se
c)

Priority-RealWorld Average Data Throughput, 100 Nodes

N=100,beac=none
N=100,beac=1
N=100,beac=2
N=100,beac=3
N=100,beac=4
N=100,beac=5
N=100, degraded

Figure A.314: N100 Data Throughput

1500 1600 1700 1800 1900 2000 2100 2200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
×104Priority-RealWorld Average Drop due to Retry, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.315: N100 Retry Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20
×104Priority-RealWorld Average Drop due to Buffer, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

ro
p

R
at

e
(b

it
s/

se
c)

Figure A.316: N100 Buffer Dropped Data

1500 1600 1700 1800 1900 2000 2100 2200
0

0.5

1

1.5

2
Priority-RealWorld Average Retry Attempts, 100 Nodes

Interarrival Rate (msec)

A
v
er

ag
e

R
et

ry
A

tt
em

p
ts

(p
ac

k
et

s)

Figure A.317: N100 Retry Attempts

1500 1600 1700 1800 1900 2000 2100 2200
−5

0

5

10

15

20

25
Priority-RealWorld Average Delay, 100 Nodes

Interarrival Rate (msec)

A
v

g
D

el
ay

(s
ec

)

Figure A.318: N100 Packet Delay

140

Appendix: Gold’s algorithm

B.1 Theory and Example

Gold’s algorithm is based on the properties of a LFSR pseudorandom number

generator (PRNG). The LFSR consists of a linear shift register of length N, frequency

taps, and feedback taps. The number of frequencies taps is based on the number of

frequency possibilities that the generator is to produce (i.e. for 32 frequencies, log232 = 5,

so 5 frequency taps are required). The feedback taps are used to create the feedback

polynomial or reciprocal characteristic polynomial. The arrangement of taps for feedback

in an LFSR can be expressed arithmetically as a polynomial modulo 2. This means that

the coefficients of the polynomial must be 1s or 0s. This arrangement allows for the

creation of the pseudorandom nature of the generator. The selection of tap points has been

well studied and is out of the scope of this project. It should be noted that the selection of

the feedback taps directly impacts the period of the sequence.

Gold’s algorithm utilizes the linear relationship of the feedback and frequency taps.

The algorithm executes three key functions to join an existing, transmitting system: 1)

determination of a initial vector state for the receiver’s LFSR; 2) determination of the

register bits to use as frequency taps; and 3) recreation of and synchronization with the

transmitting system’s sequence.

To best understand the operation of Gold’s algorithm, an example is used. The

example was provided in the final report of the SIBR contract [28]. Understanding the

operation of the algorithm is vital for VHDL implementation. The transmitter, or source,

utilizes a 10-bit LFSR represented by Figure B.1. First, examine the changes in the LFSR

over time. Let the LFSR be described by a, a vector representing the feedback taps, and zi,

the state of the LFSR at time slot i. The required a priori knowledge of a is a limitation to

141

Figure B.1: Example Source LFSR PRNG

the algorithm.

a =
(
a1 a2 ... a10

)

zi =

(
zi zi+1 ... zi+9

)

For the example,

a =
(
1 1 1 0 1 1 0 1 0 0

)

With this knowledge of a, a transition matrix can be created for the LFSR such that

A =

⎛⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 a1

1 0 0 0 0 0 0 0 0 a2

0 1 0 0 0 0 0 0 0 a3

0 0 1 0 0 0 0 0 0 a4

0 0 0 1 0 0 0 0 0 a5

0 0 0 0 1 0 0 0 0 a6

0 0 0 0 0 1 0 0 0 a7

0 0 0 0 0 0 1 0 0 a8

0 0 0 0 0 0 0 1 0 a9

0 0 0 0 0 0 0 0 1 a10

⎞⎟⎟⎟⎠

(B.1)

This transition matrix is used to calculate the next state of the shift register, zi+1,

given zi. This can be shown by

(
z1 z2 ... z10

)
× A =

(
z2 z3 ... z11

)
(B.2)

142

where A is the transition matrix. Additionally, it can be shown that any future register state

can be calculated by using a known register state and the associative property of matrices.

zi+2 = zi+1 × A = zi × A × A = zi × A2 (B.3)

or zt = z0 × At where zt is the desired state, z0 is the original state, and t is the number of

time slots between the occurrence of the two states.

Gold’s algorithm functions by looking at the time of arrival of a single critical

frequency by a receiver. By recording the time occurrences, a deterministic system can be

created. For the example problem, the transmitter would create sequence

1011001101111111111000110001 at the two frequency taps. Let frequency 11 be the

critical frequency of interest, and let the first instance of the critical frequency occur at

t = 0. Therefore, in the above sequence the critical frequency occurs at

t = 0, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15. Let these occurrences of the critical frequency be

referenced as set Tn.

Then the matrices of interest are ATn =
{
A0, A4, A7, A8, A9, A10, A11, A12, A13, A14, A15

}
.

Note the algorithm requires N+1 occurrences of the critical frequency where N is the

length of the LFSR.

The linear relationship between tap points on the source allows for another

observation. Since the LFSR continues to shift the state left, a frequency tap of bit 4 and

bit 5 is equivalent the taps being located at bits 1 and 2. In general, only the space relation

between the frequency taps is critical, and as such the first tap can always be placed on bit

1 for the receiver. This aspect of recreating the LFSR solution allows us to show that all zt

share z1 for the occurrences listed above.

(
z1 z2 ... z10

)
× ATn(1) = z1 (B.4)

where ATn(1) is the first column of matrix ATn and the vector z is state of the LFSR at t = 0

(the first occurrence of the critical frequency).

143

Going back to the example, see that:

A4(1) =

⎛⎜⎜⎜⎝

0

0

0

0

1

0

0

0

0

0

⎞⎟⎟⎟⎠

A7(1) =

⎛⎜⎜⎜⎝

0

0

0

0

0

0

0

1

0

0

⎞⎟⎟⎟⎠

A8(1) =

⎛⎜⎜⎜⎝

0

0

0

0

0

0

0

0

1

0

⎞⎟⎟⎟⎠

A9(1) =

⎛⎜⎜⎜⎝

0

0

0

0

0

0

0

0

0

1

⎞⎟⎟⎟⎠

A10(1) =

⎛⎜⎜⎜⎝

1

1

1

0

1

1

0

1

0

0

⎞⎟⎟⎟⎠

A11(1) =

⎛⎜⎜⎜⎝

0

1

1

1

0

1

1

0

1

0

⎞⎟⎟⎟⎠

A12(1) =

⎛⎜⎜⎜⎝

0

0

1

1

1

0

1

1

0

1

⎞⎟⎟⎟⎠

A13(1) =

⎛⎜⎜⎜⎝

1

1

1

1

0

0

0

0

1

0

⎞⎟⎟⎟⎠

A14(1) =

⎛⎜⎜⎜⎝

0

1

1

1

1

0

0

0

0

1

⎞⎟⎟⎟⎠

A15(1) =

⎛⎜⎜⎜⎝

1

1

0

1

0

0

0

1

0

0

⎞⎟⎟⎟⎠

(B.5)

By collecting these columns together, the following equation emerges.

144

(
z1 z2 ... z10

)
×

⎛⎜⎜⎜⎝

1 1 1 1 0 1 1 0 1 0

0 0 0 0 1 1 0 1 1 1

0 0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1

1 0 0 0 1 0 1 0 1 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 1 0 0 1 0 1 0 0 1

0 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0 1 0

⎞⎟⎟⎟⎠

= 0 (B.6)

A transposition of the equation yields a system of equations to create the solution

space. ⎛⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1

0 1 1 0 1 1 0 1 0 0

1 1 1 1 0 1 1 0 1 0

1 0 1 1 1 0 1 1 0 1

0 1 1 1 0 0 0 0 1 0

1 1 1 1 1 0 0 0 0 1

0 1 0 1 0 0 0 1 0 0

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝

0

0

0

0

0

0

0

0

0

0

⎞⎟⎟⎟⎠

(B.7)

145

To solve the system of equations, binary row reduction is used to obtain the canonical

form. ⎛⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝

z1

z2

z3

z6

z7

z8

z9

z10

z4

z5

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝

0

0

0

0

0

0

0

0

0

0

⎞⎟⎟⎟⎠

(B.8)

which equates to [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10] =

[z5, z4 + z5, 0, z4, z5, z4, z5, z4, z5, z5, z5]

Note that the solution space depends on two variables, z4 and z5. The n independent

variables are directly related to the use of n frequency taps where n = 2 in this example.

Manipulating these variables creates the vector space of candidate solutions shown in

Table B.1.

z4 z5 z1, z2, z3, z4, z5, z6, z7, z8, z9, z10

0 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0 1 1, 1, 0, 0, 1, 1, 0, 1, 1, 1

1 0 0, 1, 0, 1, 0, 1, 1, 0, 0, 0

1 1 1, 0, 0, 1, 1, 0, 1, 1, 1, 1

Table B.1: Vector Space of Candidate Solutions

146

An all-zero solution is not a satisfactory solution since it always provides a feedback

of zero; therefore, only three possible solutions exist. Next, the algorithm identifies any

shift relationships among the solution candidates to determine which of the solutions is

the unique solution.

Examining shift relationships shows that solution (1, 0, 0, 1, 1, 0, 1, 1, 1, 1) is same as

the single left shift of (1, 1, 0, 0, 1, 1, 0, 1, 1, 1). To find the unique solution, this method of

shift comparison requires that n solutions (the same as the necessary number of taps) be

found within a single candidate vector. In this case, (1, 1, 0, 0, 1, 1, 0, 1, 1, 1) has proven

that itself and one other solution are contained within it, and therefore must be the unique

solution.

Additionally, the number of shifts required to create the other candidate solutions

indicates the frequency tap points. Specifically, the first bit in the unique solution is a

frequency tap since the unique solution matches itself. The second solution is created by

one shift; therefore, the second bit is also a frequency tap.

Through these calculations, two of the three functions of the algorithm have been

achieved: 1) determination of an initial vector state for the LFSR; 2) determination of the

register bits to use as frequency taps. The third function, recreation of and synchronization

with the transmitting system’s sequence, only requires loading the LFSR with the

calculated initial value and stepping through the same number of frequency changes that

the source progressed through since the first occurrence was recorded.

B.2 VHDL Implementation

The hardware implementation consists of a 16-bit length LSFR with 5 feedback taps

and 5 frequency taps. As such, the PRNG will generate a sequence spanning 32

frequencies according to a near uniform distribution. The register length and selection

feedback tap locations determine the period of a repeating pattern with in the sequence.

The maximum period for a 16-bit LSFR is 65,535 cycles. Gold’s algorithm, as written in

147

VHDL, consists of seven distinct computation processes, or blocks, and a top-level

wrapper used for component coordination and control. This code comprises the custom IP

core used in this research effort. The design requires as inputs: one clock operating at the

same rate which the transmitter is changing frequencies; one higher rate clock constrained

by timing requirements of the hardware implementation; a critical frequency detection

core; and software registers to control initial values and an asynchronous reset. Figure B.2

shows a graphical representation of the Gold’s algorithm custom IP core broken into

processing blocks.

Figure B.2: Gold’s algorithm custom IP core

B.2.1 Top-level.

The top-level wrapper coordinates block communication and provides control logic

for operations. First, the system determines when the critical frequency occurs. A

combination of a Xilinx FFT IP core and a simple signal comparison accomplishes this

task. When the frequency designated as the critical frequency is detected, the comparison

produces a trigger which is used by Block 2, as described in Section B.2.3 Two resets exist

for the system, a software register commanded reset and a hardware reset from Block 5.

The controls incorporated into the top-level wrapper primarily operate to allow the

system to correctly synchronize after a solution has been found. Since the system works

by calculating the LFSR at the first occurrence of the critical frequency, the number of

148

frequency changes beyond this t = 0 must be tracked. A counter (referred to as the

primary counter) tracks these changes. Once the system determines a unique solution, it

must progress through the same number of changes as the transmitter. The use of a second

counter tracks the LFSR changes in the receiver. Lastly, a comparator determines when

the two counters match. This comparator serves as a synchronization indicator.

Additionally, this synchronization indicator determines the clock rate used in Block 6, as

described in Section B.2.6

B.2.2 Block 1: Matrix power multiplication.

Block 1 of the VHDL code implements the transformation matrix multiplication once

for every rising edge of the frequency change clock. The transition matrix is created using

an input vector for a, as in Equation B.1. This vector loads from a software register

allowing for quick adaptation. An intermediate matrix is stored each clock cycle, and is

subject to a system reset input. Block 1 outputs a vector containing the first column of the

calculated matrix as shown in Equation B.5. This vector is used by Block 2. Block 1

executes in 1 cycle.

B.2.3 Block 2: Collection and transposition.

Block 2 collects the column vectors from Block 1 when a critical frequency is

detected. The frequency detection signal is externally triggered by an FFT. As this block

latches the column vector from Block 1, it also performs the transpose operation

converting each column into a row, and combining the rows into a square matrix which is

the output of the block. This operation produces results similar to Equation B.7. Once

Block 2 detects and collects N + 1 vectors, it triggers a finish flag to initiate Block 3.

Block 2 executes in 1 cycle.

B.2.4 Block 3: Matrix reduction.

Block 3 preforms a binary row echelon matrix reduction on the matrix from Block 2.

Since the matrix reduction process depends on the only the completion of Block 2, a faster

149

clock rate can be utilized. The faster clock rate is used on all further blocks in the system.

The reduction process uses a 7 state finite state machine (FSM) design. The output is a

row echelon reduced matrix similar to Equation B.8

State 0 is used as an initial load state, and is only used upon block initialization.

State 1 is used to detect the first occurrence of a 1 in the first column of the matrix.

The first entry (upper right of matrix) is examined to determine if it is a 1. If it is a 1 and

another 1 had not already been found, the entire row is stored as a temporary signal vector.

The stage will then rotate the whole matrix by one row (i.e. the first row is shifted to the

bottom and row 2 is moved to row 1). This rotation occurs for each row whether nor not

the row was selected as the temporary signal vector. Therefore, State 1 requires N cycles

to complete. After the completion of State 1, the hardware transitions to State 2.

State 2 is similar to State 1 in that it rotates through each row detecting when a 1

occurs in at the first entry of the matrix. The difference occur in the operation after

detection. If a row is detected to have a left most 1 then the row is compared to the

temporary signal vector. This test eliminates the ability to manipulate the row with the

first 1 occurrence. Other rows that contain a 1 will undergo a bitwise xor operation

between that row and the temporary signal vector. This serves to eliminate all but the first

1 in the first column of the matrix. State 2 requires N cycles to complete. After the

completion of State 2, the hardware transitions to State 3.

State 3 performs a row swap operation on the matrix. The operation swaps the row

that had the first 1 occurrence from Stage 1 with the top row. This stage requires 1 cycle to

complete.

State 4 rotates the matrix one more time by moving the top row to the bottom of the

matrix, and all other rows up by one. This stage requires 1 cycle to complete.

State 5 performs a matrix left rotate operation. Each row is individually rotated such

that its first bit becomes its last bit while all other bits shift left by one position. Stage 5

150

will run N times so that each column is examined by states 1 through 4. Therefore, if the

stage has executed less than N times the state is reset to state 1. Otherwise, the state is

progressed to State 6. Each execution of Stage 5 requires 1 cycle, but also controls the

re-execution of previous states.

State 6, the last state in the block latches the result from the intermediate matrix to

the output matrix to be used by the next block. It also sets a finish flag to initiate Block 4

to begin operations.

The total execution requirement of block 3 is 2N2 + 3N + 2 cycles, where N is the

size of the LFSR.

B.2.5 Blocks 4 and 5: Solution solver.

To decrease area usage and take advantage of internal block RAM, blocks 4 & 5 are

combined to form a single component.

Block 4 preforms the matrix solver process. This block takes the reduced matrix,

determines which bits are the independent variable, and creates a solution space based on

the possible solutions. The solving process uses a four state FSM design.

State 0 is used as an initial load state, and is only used upon block initialization.

State 1 determines which bits are the independent variables. In the matrix, any row

that contains all 0s is defined as an independent variable. As such, state 1 performs a

comparison on each row. The number of variables is equivalent to the number of

frequency taps. The bit location of each is tracked using a vector signal. State 1 requires

N + 1 cycles to complete. The extra cycle presets signals to be used in state 2.

States 2 and 3 work in combination to populate the solution space matrix based on

the permutations of the independent variables. For each possible combination (i.e. 0001,

0010, 0011, etc.) of the variable bits as determined by stage 1, the reduced matrix is

evaluated to produce a candidate solution for the solution space. The evaluation utilizes a

distinct combination of and and xor operations in sequence for each row. Each candidate

151

solution is loaded into the block RAM upon calculation. The all-zero combination is

removed giving 2 f reqtaps − 1 possible solutions in the solution space. State 2 requires 1 and

State 3 (N + 1) cycles to complete for each possible combination of the variable bits. At

the end of processing Block 4, the candidate solutions have been determined. This results

in the block RAM containing information similar to Table B.1.

Block 5 evaluates the solution space to determines if a unique solution exists. If a

unique solution cannot be identified, the block commands a system reset to the Gold’s

algorithm IP core. The unique solution solving process uses a six state FSM design.

State 4, a continuation from State 3 in Block 4, load temporary signals with initial

values, and is only executed upon block initialization. For initialization, the state loads the

first entry from block RAM to a temporary vector which will be used for comparisons.

This temporary vector is updated throughout allowing different values to be compared.

State 7 controls the value of vector as needed.

State 5 compares the bits of the temporary vector with each of the other candidate

solutions. The result of each row’s comparison are tracked by a separate vector to be

analyzed in State 6.

State 6 uses the comparison result vector from State 5 to perform two actions upon a

detected match. First, each candidate solution when evaluated uses a counter to determine

if the number of other solutions are equal to the number of frequency taps. As such the the

comparison vector indicates when to adds to the counter. Secondly, a position tracker

records which of the other solutions was the match. After the first occurrence of State 6,

the first candidate solution without any bit shifts has been loaded as the temporary vector

and compared to the other solutions. The counter results should indicate that the

temporary vector matched only itself. However, Gold’s algorithm requires each candidate

solution must compare left shifted versions of itself to the other possible solutions too.

The shifting process is controlled in State 7.

152

State 7 determines when the unique solution has been found, and controls the loading

of the temporary vector for further comparisons. The control state first determines if any

of the tested solutions already meet the requirement to be deemed unique (i.e. contains x

number of solutions within it, where x is the number of frequency taps needed). If a

solution has not been identified, the temporary vector is updated. Two conditions exist for

updating the vector. First, as stated, each solution must compare several left shifted

versions of itself to the other possible solutions. Each solution can be used to create N

possible shifted versions. A shift is created by using the known feedback information the

currently value to determine the need an extension bit. After each shifted version has been

tested and it is determined that the candidate solution is not the unique solution, then the

temporary vector is updated with the next candidate solution from the block RAM. After

each update to the temporary vector the state of the FSM is set back to State 5. If the

controller determines a unique solution exists at any time then no other solutions are

tested. The discovered unique solution along with the position vector for that solution are

latched to outputs vectors. The position vector represents the bit locations that must be

frequency taps. The unique solution output is directed to block 6 while the position vector

is routed to Block 7.

State 8 determines if the unique solution is valid. Error in validity can occur if the

system obtained a false positive or an error in calculations occurred. If the solution is not

valid, the reset signal is set; otherwise, a finish signal initiates Block 6.

In the worst case, a solution is not detected and this block must compare each

possible solution to each possible shift location for each solution. In this case, the block

requires a total of N ∗ (2 f reqtaps − 1) ∗ (2 f reqtaps + 1) + 3 cycles to complete.

B.2.6 Block 6: PN Sequencer.

Block 6 populates the PRNG which will recreate the sequence used by the

transmitter. As stated, Block 5 determined the unique solution. This unique solution

153

represents the LFSR’s value at t = 0 or when the first occurrence of the critical frequency

was detected. After the first detection, a counter tracks the number of frequency changes

the transmitter makes as explained in Section B.2.1. The block 6 clock can operate at one

of two frequencies. A fast rate clock allows for the generator to quickly process the

sequence until it has executed the same number of times as the transmitter counter has

progressed. When the sequences have progressed the same number of operations, the rate

changes to that of the transmitter. The output of Block 6 is the complete LFSR value.

B.2.7 Block 7: Frequency Tap.

Block 7 serves as the final process block. The block applies the frequency tap

locations determined in Block 5 and applies them to the register value of the newly

generated sequence from Block 6. Specifically, each bit located at the determined

frequency tap points are concatenated to create the output vector. This vector provides the

frequency values to be used by the receiver.

154

Appendix: VHDL code

C.1 Gold’s algorithm code wrapper

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 . ALL;

use i e e e . n u m e r i c s t d . a l l ;

use work . my package . a l l ;

e n t i t y GOLD wrapper i s

PORT(FREQ CLK : i n STD LOGIC ; −− f r e q u e n c y change r a t e c l k

FAST CLK : i n STD LOGIC ; −− bus c l o c k

FFT IN : i n STD LOGIC ;

ASYNC RST : i n STD LOGIC ;

FREQ OUT : o u t STD LOGIC VECTOR(4− 1 downto 0) ;

M a s t e r F e e d b a c k : i n STD LOGIC VECTOR (28−1 downto 0) ;

c a t c h u p o f f s e t : i n STD LOGIC VECTOR(3 downto 0) ;

s y n c e d o u t : o u t STD LOGIC VECTOR (0 t o 31)

) ;

end GOLD wrapper ;

a r c h i t e c t u r e B e h a v i o r a l o f GOLD wrapper i s

−−−
−− CONSTANTS

−−−
c o n s t a n t Master NumOfFreqTaps : i n t e g e r :=4 ;

c o n s t a n t Mas te r Wid th : i n t e g e r :=2 8 ;

c o n s t a n t o f f s e t : i n t e g e r :=0 ;

−−−
−− COMPONENTS

−−−
component BUFGMUX

p o r t (O : o u t STD ULOGIC ;

I0 : i n STD ULOGIC ;

I1 : i n STD ULOGIC ;

S : i n STD ULOGIC

) ;

end component ;

component m a t r i x p o w e r i s

155

g e n e r i c (Width : i n t e g e r := 16) ;

P o r t (r e s e t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f i r s t : i n STD LOGIC ;

i n d e x e r : o u t STD LOGIC VECTOR (7 downto 0) ;

c o l o u t : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end component m a t r i x p o w e r ;

component c o l l e c t t r a n s p o s e i s

g e n e r i c (Width : i n t e g e r := 1 6) ;

P o r t (f r e q c l k : i n STD LOGIC ;

d e t e c t F F T : i n STD LOGIC ;

r e s e t : i n STD LOGIC ;

c o l : i n STD LOGIC VECTOR (Width−1 downto 0) ;

i n d e x e r : i n STD LOGIC VECTOR (7 downto 0) ;

c o l o u t : o u t STD LOGIC VECTOR (Width−1 downto 0) ;

h a v e f i r s t : o u t STD LOGIC ;

m a t r i x o u t : o u t MATRIX;

o c c u r c o u n t : o u t STD LOGIC VECTOR (7 downto 0) ;

f i n i s h e d : o u t STD LOGIC ;

o c c u r i n d e x e s : o u t STD LOGIC VECTOR (127 downto 0)

) ;

end component c o l l e c t t r a n s p o s e ;

component m a t r i x r e d u c e 3 i s

g e n e r i c (Width : i n t e g e r := 1 6) ;

P o r t (m a t r i x i n : i n MATRIX;

s t a r t : i n STD LOGIC ;

r e s e t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

f i n i s h e d : o u t STD LOGIC ;

m a t r i x o u t : o u t MATRIX

) ;

end component m a t r i x r e d u c e 3 ;

component m a t r i x s o l v e r i s

g e n e r i c (NumOfFreqTaps : i n t e g e r := 5 ;

Width : i n t e g e r := 16

156

) ;

p o r t (r e s e t : i n STD LOGIC ;

s t a r t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

i n p u t s : i n MATRIX;

f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f i n i s h e d : o u t STD LOGIC ;

p u l s e : o u t STD LOGIC ;

f o r c e r e s e t : o u t STD LOGIC ;

o u t p u t : b u f f e r STD LOGIC VECTOR (Width−1 downto 0) ;

t a p s : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end component m a t r i x s o l v e r ;

component pn gen i s

g e n e r i c (NumOfFreqTaps : i n t e g e r := 5 ;

Width : i n t e g e r := 1 6) ;

p o r t (c l k : i n STD LOGIC ;

S h i f t E n : i n STD LOGIC ;

p u l s e : i n STD LOGIC ;

D a t a I N v e c t o r : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

p n o u t : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end component pn gen ;

component f r e q t a p i s

g e n e r i c (NumOfFreqTaps : i n t e g e r := 5 ;

Width : i n t e g e r := 1 6) ;

p o r t (PN seq : i n STD LOGIC VECTOR (Width −1 downto 0) ;

t a p s : i n STD LOGIC VECTOR (Width −1 downto 0) ;

f r e q o u t : o u t STD LOGIC VECTOR (NumOfFreqTaps − 1 downto 0)

) ;

end component f r e q t a p ;

−−−
−− INTERCONNECT S i g n a l s

−−−
s i g n a l s y s t e m r e s e t : STD LOGIC ;

−−power

157

s i g n a l p o w e r t o t r a n s p o s e v e c t o r : STD LOGIC VECTOR (Master Width −1 downto 0) ;

s i g n a l p o w e r c l k : STD LOGIC ;

s i g n a l p o w e r i n d e x : STD LOGIC VECTOR (7 downto 0) ;

−− c o l l e c t

s i g n a l t r a n s p o s e h a v e f i r s t : STD LOGIC ;

s i g n a l t r a n s p o s e t o r e d u c e m a t r i x : MATRIX;

s i g n a l t r a n s p o s e o c c u r c o u n t : STD LOGIC VECTOR (7 downto 0) ;

s i g n a l t r a n s p o s e c o l o u t : STD LOGIC VECTOR (Master Width −1 downto 0) ;

s i g n a l t r a n s p o s e f i n i s h : STD LOGIC ;

−− r e d u c e

s i g n a l r e d u c e c l k : STD LOGIC ;

s i g n a l r e d u c e t o s o l v e r m a t r i x : MATRIX;

s i g n a l r e d u c e f i n i s h : STD LOGIC ;

−− s o l v e r

s i g n a l s o l v e r t o e x t e n d e r m a t r i x : MATRIX sol ;

s i g n a l s o l v e r f i n i s h : STD LOGIC ;

−− e x t e n d e r

s i g n a l e x t e n d e r t o u n i q u e m a t r i x : MATRIX sol ext ;

s i g n a l e x t e n d e r f i n i s h : STD LOGIC ;

−−u n i q u e

s i g n a l u n i q u e c l k : STD LOGIC ;

s i g n a l u n i q u e t o P N v e c t o r : STD LOGIC VECTOR (Master Width −1 downto 0) ;

s i g n a l u n i q u e f i n i s h : STD LOGIC ;

s i g n a l u n i q u e c o m m a n d r s t : STD LOGIC ;

s i g n a l u n i q u e t o p n p u l s e : STD LOGIC ;

s i g n a l u n i q u e t a p s o u t : STD LOGIC VECTOR (Master Width −1 downto 0) ;

−−pn

s i g n a l p n c l k s e l : STD LOGIC ;

s i g n a l p n c l k : STD LOGIC ;

s i g n a l p n s e q o u t : STD LOGIC VECTOR (Master Width −1 downto 0) ;

−− c o u n t e r

s i g n a l t 0 c o u n t e r : STD LOGIC VECTOR (31 downto 0) ;

s i g n a l p n c o u n t e r : STD LOGIC VECTOR (31 downto 0) ;

c o n s t a n t z e r o s : STD LOGIC VECTOR (31 downto 0) := (o t h e r s=> ’ 0 ’) ;

s i g n a l synced : STD LOGIC ;

s i g n a l r e s e t c o u n t e r : STD LOGIC VECTOR (0 t o 7) ;

BEGIN −− a r c h i t e c t u r e

158

−−−
−− i n s t a n t i a t i o n s

−−−
BUFGMUX INSTANCE NAME : BUFGMUX

p o r t map (O => p n c l k s e l ,

I0 => FAST CLK ,

I1 => FREQ CLK ,

S => synced) ;

i n s t p o w e r : m a t r i x p o w e r

g e n e r i c map (Width => Maste r Wid th)

P o r t map (r e s e t => s y s t e m r e s e t ,

c l k => power c lk ,

f e e d b a c k => Maste r Feedback ,

f i r s t => t r a n s p o s e h a v e f i r s t ,

i n d e x e r => power index ,

c o l o u t => p o w e r t o t r a n s p o s e v e c t o r

) ;

i n s t t r a n s p o s e : c o l l e c t t r a n s p o s e

g e n e r i c map (Width => Maste r Wid th)

P o r t map (f r e q c l k => FREQ CLK ,

d e t e c t F F T => FFT IN ,

r e s e t => s y s t e m r e s e t , −−async r e s e t

c o l => p o w e r t o t r a n s p o s e v e c t o r ,

i n d e x e r => power index ,

h a v e f i r s t => t r a n s p o s e h a v e f i r s t ,

m a t r i x o u t => t r a n s p o s e t o r e d u c e m a t r i x ,

c o l o u t => t r a n s p o s e c o l o u t ,

o c c u r c o u n t => t r a n s p o s e o c c u r c o u n t ,

f i n i s h e d => t r a n s p o s e f i n i s h ,

o c c u r i n d e x e s => OPEN −−d e b u g t r a n s p o s e i n d e x

) ;

i n s t r e d u c e : m a t r i x r e d u c e 3

g e n e r i c map (Width => Maste r Wid th)

P o r t map (m a t r i x i n => t r a n s p o s e t o r e d u c e m a t r i x ,

s t a r t => t r a n s p o s e f i n i s h ,

r e s e t => s y s t e m r e s e t ,

c l k => r e d u c e c l k ,

159

f i n i s h e d => r e d u c e f i n i s h ,

m a t r i x o u t => r e d u c e t o s o l v e r m a t r i x

) ;

i n s t s o l v e r : m a t r i x s o l v e r

g e n e r i c map (NumOfFreqTaps=> Master NumOfFreqTaps ,

Width => Maste r Wid th)

P o r t map (r e s e t => s y s t e m r e s e t ,

s t a r t => r e d u c e f i n i s h ,

c l k => FAST CLK ,

i n p u t s => r e d u c e t o s o l v e r m a t r i x ,

f i n i s h e d => s o l v e r f i n i s h ,

o u t p u t => u n i q u e t o P N v e c t o r ,

f e e d b a c k => Maste r Feedback ,

p u l s e => u n i q u e t o p n p u l s e ,

f o r c e r e s e t => un ique command rs t ,

t a p s => u n i q u e t a p s o u t

) ;

i n s t p n g e n : pn gen

g e n e r i c map (NumOfFreqTaps=> Master NumOfFreqTaps ,

Width => Maste r Wid th)

p o r t map (c l k => p n c l k s e l ,

S h i f t E n => s o l v e r f i n i s h ,

p u l s e => u n i q u e t o p n p u l s e ,

D a t a I N v e c t o r => u n i q u e t o P N v e c t o r ,

f e e d b a c k => Maste r Feedback ,

p n o u t => p n s e q o u t

) ;

i n s t f r e q t a p : f r e q t a p

g e n e r i c map (NumOfFreqTaps=> Master NumOfFreqTaps ,

Width => Maste r Wid th)

p o r t map (PN seq => p n s e q o u t ,

t a p s => u n i q u e t a p s o u t ,

f r e q o u t => FREQ OUT

) ;

−−−
−− P r o c e s s e s

160

−−−
c l k s s i n c e t 0 p r o c : p r o c e s s (power c lk , s y s t e m r e s e t) −−− c o u n t e r f o r m a t r i x m u l t i p l i e r

b e g i n

i f s y s t e m r e s e t = ’1 ’ t h e n

t 0 c o u n t e r <=(o t h e r s = > ’0 ’) ;

e l s i f (r i s i n g e d g e (p o w e r c l k)) t h e n

i f t r a n s p o s e h a v e f i r s t = ’1 ’ t h e n

t 0 c o u n t e r <= s t d l o g i c v e c t o r (u n s i g n e d (t 0 c o u n t e r)+ 1) ;

end i f ;

end i f ;

end p r o c e s s ;

c l k s s i n c e A N S p r o c : p r o c e s s (p n c l k s e l , s y s t e m r e s e t) −− c o u n t e r f o r PN seq c a t c h u p

b e g i n

i f s y s t e m r e s e t = ’1 ’ t h e n

p n c o u n t e r <=(o t h e r s = > ’0 ’) ;

e l s i f (r i s i n g e d g e (p n c l k s e l)) t h e n

i f (s o l v e r f i n i s h = ’1 ’) t h e n

p n c o u n t e r <= s t d l o g i c v e c t o r (u n s i g n e d (p n c o u n t e r)+ 1) ;

end i f ;

end i f ;

end p r o c e s s ;

d e t e r m i n e s y n c p r o c : p r o c e s s (p n c o u n t e r , t 0 c o u n t e r , c a t c h u p o f f s e t) −−COMPARITOR

b e g i n

i f p n c o u n t e r = z e r o s t h e n

synced <= ’0 ’ ;

e l s i f (u n s i g n e d (t 0 c o u n t e r)<= u n s i g n e d (p n c o u n t e r)+ u n s i g n e d (c a t c h u p o f f s e t)) t h e n

synced <= ’1 ’ ;

e l s e

synced <= ’0 ’ ;

−− c o n s i d e r ad d in g o p t i o n

−− i f gone t o f a r

end i f ;

end p r o c e s s ;

d e t e r m i n e r e s e t p r o c : p r o c e s s (un ique command rs t , ASYNC RST)

b e g i n

i f ASYNC RST = ’1 ’ t h e n

r e s e t c o u n t e r <= (o t h e r s => ’ 0 ’) ;

161

e l s i f r i s i n g e d g e (u n i q u e c o m m a n d r s t) t h e n

r e s e t c o u n t e r <= s t d l o g i c v e c t o r (u n s i g n e d (r e s e t c o u n t e r)+ 1) ;

end i f ;

end p r o c e s s ;

p o w e r c l k <= FREQ CLK ;

r e d u c e c l k <= FAST CLK ;

u n i q u e c l k <= FAST CLK ;

s y s t e m r e s e t <= ASYNC RST ;

s y n c e d o u t (0 t o 3) <= synced & ’0 ’ & ’0 ’ & ’ 0 ’ ;

s y n c e d o u t (4 t o 7) <= (o t h e r s=> ’ 0 ’) ;

s y n c e d o u t (8 t o 15) <= r e s e t c o u n t e r ;

s y n c e d o u t (16 t o 23) <= t r a n s p o s e o c c u r c o u n t ;

s y n c e d o u t (24 t o 27) <= ’0 ’ & ’0 ’ & ’0 ’ & ’ 0 ’ ;

s y n c e d o u t (28 t o 31) <= s o l v e r f i n i s h&r e d u c e f i n i s h&t r a n s p o s e f i n i s h&t r a n s p o s e h a v e f i r s t ;

end B e h a v i o r a l ;

C.2 Block 1: Matrix power multiplication

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 . ALL;

use i e e e . n u m e r i c s t d . a l l ;

−−use i e e e . r e d u c e p k g . a l l ;

−−USE IEEE . s t d l o g i c a r i t h . ALL;

−−USE IEEE . s t d l o g i c u n s i g n e d . ALL;

−− l i b r a r y m y l i b s v 1 0 0 a ;

−− use m y l i b s v 1 0 0 a . my package . a l l ; −−ccm

use work . my package . a l l ; −−ccm

−−program t o r e d u c e a 16 x16 b i n a r y m a t r i x t o row e c h e l o n

e n t i t y m a t r i x p o w e r i s

g e n e r i c (Width : i n t e g e r := 16) ;

P o r t (r e s e t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f i r s t : i n STD LOGIC ;

i n d e x e r : o u t STD LOGIC VECTOR (7 downto 0) ;

162

c o l o u t : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end m a t r i x p o w e r ;

a r c h i t e c t u r e B e h a v i o r a l o f m a t r i x p o w e r i s

−− t y p e MATRIX i s a r r a y (15 downto 0) o f STD LOGIC VECTOR (15 downto 0) ;

−−
−− c o n s t a n t s s h i f t m a t : subMATRIX := ((” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ”) , −−row 15

−− (”100000000000000”) , −−row 14

−− (”010000000000000”) , −−row 13

−− (”001000000000000”) , −−row 12

−− (”000100000000000”) , −−row 11

−− (”000010000000000”) , −−row 10

−− (”000001000000000”) , −−row 9

−− (”000000100000000”) , −−row 8

−− (”000000010000000”) , −−row 7

−− (”000000001000000”) , −−row 6

−− (”000000000100000”) , −−row 5

−− (”000000000010000”) , −−row 4

−− (”000000000001000”) , −−row 3

−− (”000000000000100”) , −−row 2

−− (”000000000000010”) , −−row 1

−− (”000000000000001”)) ; −−row 0

s i g n a l s h i f t m a t : MATRIX := (o t h e r s => (o t h e r s => ’ 0 ’)) ; −− := ((” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ”) , −−row 15

−− (”1000000000000000”) , −−row 14

−− (”0100000000000000”) , −−row 13

−− (”0010000000000000”) , −−row 12

−− (”0001000000000000”) , −−row 11

−− (”0000100000000000”) , −−row 10

−− (”0000010000000000”) , −−row 9

−− (”0000001000000000”) , −−row 8

−− (”0000000100000000”) , −−row 7

−− (”0000000010000000”) , −−row 6

−− (”0000000001000000”) , −−row 5

−− (”0000000000100000”) , −−row 4

−− (”0000000000010000”) , −−row 3

−− (”0000000000001000”) , −−row 2

−− (”0000000000000100”) , −−row 1

−− (”0000000000000010”)) ; −−row 0

163

s i g n a l m a t i n t : MATRIX:= (o t h e r s => (o t h e r s => ’ 0 ’)) ; −− := ((” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ”) , −−row 15

−− (”1000000000000000”) , −−row 14

−− (”0100000000000000”) , −−row 13

−− (”0010000000000000”) , −−row 12

−− (”0001000000000000”) , −−row 11

−− (”0000100000000000”) , −−row 10

−− (”0000010000000000”) , −−row 9

−− (”0000001000000000”) , −−row 8

−− (”0000000100000000”) , −−row 7

−− (”0000000010000000”) , −−row 6

−− (”0000000001000000”) , −−row 5

−− (”0000000000100000”) , −−row 4

−− (”0000000000010000”) , −−row 3

−− (”0000000000001000”) , −−row 2

−− (”0000000000000100”) , −−row 1

−− (”0000000000000010”)) ; −−row 0

s i g n a l i n d e x e r i : STD LOGIC VECTOR (7 downto 0) := (o t h e r s=> ’ 0 ’) ;

b e g i n

p r o c e s s (c lk , r e s e t , f e e d b a c k) i s

v a r i a b l e temp row : s t d l o g i c v e c t o r (Width−1 downto 0) ;

v a r i a b l e temp row2 : s t d l o g i c v e c t o r (Width−1 downto 0) ;

v a r i a b l e a n d i n t : s t d l o g i c v e c t o r (Width−1 downto 0) ;

v a r i a b l e x o r b i t : s t d l o g i c := ’ 1 ’ ;

b e g i n

i f r e s e t = ’1 ’ t h e n

f o r i i n 0 t o Width−1 loop −− f o r each row

−− s h i f t m a t (i)<= s s h i f t m a t (i) & f e e d b a c k (i) ;

temp row := (o t h e r s => ’ 0 ’) ; −− s e t a l l t o z e r o

temp row (0) := f e e d b a c k (i) ; −− s e t l a s t c o l t o f e e d b a c k

i f i /= Width − 1 t h e n

temp row (i +1) := ’ 1 ’ ; −− f o r a l l b u t f i r s t row , c r e a t e i d e n t i t y m a t i r x

end i f ;

s h i f t m a t (i)<= temp row ;

164

temp row2 := (o t h e r s => ’ 0 ’) ; −− s e t a l l t o z e r o

temp row2 (i) := ’ 1 ’ ;

m a t i n t (i) <= temp row2 ;

end loop ;

−− c o l o u t <= (o t h e r s => ’ 0 ’) ;

i n d e x e r <= (o t h e r s = > ’0 ’) ;

e l s i f r i s i n g e d g e (c l k) t h e n

i f (f i r s t = ’ 1 ’) t h e n

f o r i i n Width−1 downto 0 loop −−rows

f o r j i n Width−1 downto 0 loop −− c o l s

f o r h i n Width−1 downto 0 loop

a n d i n t (h) := (m a t i n t (i) (h) and s h i f t m a t (h) (j)) ;

end loop ;

x o r b i t := ’ 0 ’ ;

f o r k i n Width−1 downto 0 loop

x o r b i t := x o r b i t xor a n d i n t (k) ;

end loop ;

m a t i n t (i) (j)<= x o r b i t ;

−− m a t i n t (i) (j) <=((m a t i n t (i) (1 5) and s h i f t m a t (1 5) (j))

−− xor (m a t i n t (i) (1 4) and s h i f t m a t (1 4) (j))

−− xor (m a t i n t (i) (1 3) and s h i f t m a t (1 3) (j))

−− xor (m a t i n t (i) (1 2) and s h i f t m a t (1 2) (j))

−− xor (m a t i n t (i) (1 1) and s h i f t m a t (1 1) (j))

−− xor (m a t i n t (i) (1 0) and s h i f t m a t (1 0) (j))

−− xor (m a t i n t (i) (9) and s h i f t m a t (9) (j))

−− xor (m a t i n t (i) (8) and s h i f t m a t (8) (j))

−− xor (m a t i n t (i) (7) and s h i f t m a t (7) (j))

−− xor (m a t i n t (i) (6) and s h i f t m a t (6) (j))

−− xor (m a t i n t (i) (5) and s h i f t m a t (5) (j))

−− xor (m a t i n t (i) (4) and s h i f t m a t (4) (j))

−− xor (m a t i n t (i) (3) and s h i f t m a t (3) (j))

−− xor (m a t i n t (i) (2) and s h i f t m a t (2) (j))

−− xor (m a t i n t (i) (1) and s h i f t m a t (1) (j))

−− xor (m a t i n t (i) (0) and s h i f t m a t (0) (j))) ;

165

end loop ;

end loop ;

i n d e x e r <= s t d l o g i c v e c t o r (u n s i g n e d (i n d e x e r i) + 1) ;

i n d e x e r i <= s t d l o g i c v e c t o r (u n s i g n e d (i n d e x e r i) + 1) ;

end i f ;

end i f ;

−− f i n i s h e d <= ’ 1 ’ ;

end p r o c e s s ;

g e t c o l : f o r k i n Width−1 downto 0 g e n e r a t e

c o l o u t (k)<=m a t i n t (k) (Width −1) ;

end g e n e r a t e ;

−− c o l o u t <=m a t i n t (1 5) (1 5) & m a t i n t (1 4) (1 5) & m a t i n t (1 3) (1 5) & m a t i n t (1 2) (1 5) & m a t i n t (1 1) (1 5) & m a t i n t (1 0) (1 5) &

end B e h a v i o r a l ;

C.3 Block 2: Collection and transposition

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 . ALL;

use i e e e . n u m e r i c s t d . a l l ;

−−USE IEEE . s t d l o g i c a r i t h . ALL;

−−USE IEEE . s t d l o g i c u n s i g n e d . ALL;

−− l i b r a r y m y l i b s v 1 0 0 a ;

−− use m y l i b s v 1 0 0 a . my package . a l l ; −−ccm

use work . my package . a l l ; −−ccm

−− c o l l e c t s ’ Width ’ o c c u r r e n c e s , combines t o c r e a t e a m a t r i x and t r a n s p o s e s m a t r i x f o r o u t p u t

e n t i t y c o l l e c t t r a n s p o s e i s

g e n e r i c (Width : i n t e g e r := 1 6) ;

P o r t (f r e q c l k : i n STD LOGIC ;

d e t e c t F F T : i n STD LOGIC ;

r e s e t : i n STD LOGIC ;

c o l : i n STD LOGIC VECTOR (Width−1 downto 0) ;

i n d e x e r : i n STD LOGIC VECTOR (7 downto 0) ;

h a v e f i r s t : o u t STD LOGIC ;

m a t r i x o u t : o u t MATRIX;

o c c u r c o u n t : o u t STD LOGIC VECTOR (7 downto 0) ;

166

f i n i s h e d : o u t STD LOGIC ;

−− f i r s t c o l : o u t STD LOGIC VECTOR (Width−1 downto 0) ;

o c c u r i n d e x e s : b u f f e r STD LOGIC VECTOR (127 downto 0) ; −−16* 8 b i t i n d e x

c o l o u t : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end c o l l e c t t r a n s p o s e ;

a r c h i t e c t u r e B e h a v i o r a l o f c o l l e c t t r a n s p o s e i s

−− t y p e MATRIX i s a r r a y (15 downto 0) o f STD LOGIC VECTOR (15 downto 0) ;

s i g n a l c s t a t e : i n t e g e r r a n g e 0 t o Width+1 := 0 ; −− s t d l o g i c v e c t o r (3 downto 0) := ” 0 0 0 0 ” ;

−− s i g n a l o c c u r i n d e x e s i : STD LOGIC VECTOR (127 downto 0) ;

b e g i n

p r o c e s s (r e s e t , f r e q c l k) i s

b e g i n

i f r e s e t = ’1 ’ t h e n

h a v e f i r s t <= ’0 ’ ;

f i n i s h e d <= ’0 ’;

c s t a t e <= 0 ;

m a t r i x o u t <= (o t h e r s => (o t h e r s => ’ 0 ’)) ;

o c c u r i n d e x e s <= (o t h e r s => ’ 0 ’) ;

e l s i f f a l l i n g e d g e (f r e q c l k) t h e n

i f d e t e c t F F T = ’1 ’ t h e n

i f c s t a t e = 0 t h e n

−− i g n o r e f i r s t o c c u r r e n c e

c s t a t e <= c s t a t e + 1 ;

h a v e f i r s t <= ’1 ’ ;

c o l o u t <= c o l ;

−− f i r s t c o l <= c o l ;

e l s i f (c s t a t e < Width+1) t h e n

m a t r i x o u t (c s t a t e −1) <= n o t (c o l (Width −1)) & c o l (Width−2 downto 0) ;

c s t a t e <= c s t a t e + 1 ;

c o l o u t <= c o l ;

o c c u r i n d e x e s <= o c c u r i n d e x e s (119 downto 0) & i n d e x e r ; −−w i l l s h i f t a l l c o l l e c t i o n s i n t o t h e v e c t o

−− o c c u r i n d e x e s i <= o c c u r i n d e x e s i (119 downto 0) & i n d e x e r ;

i f (c s t a t e = Width) t h e n

f i n i s h e d <= ’ 1 ’ ;

end i f ;

167

e l s e

f i n i s h e d <= ’ 1 ’ ; −− a l l have been f i l l e d

end i f ;

end i f ;

end i f ;

end p r o c e s s ;

o c c u r c o u n t <= s t d l o g i c v e c t o r (t o u n s i g n e d (c s t a t e , 8)) ;

end B e h a v i o r a l ;

C.4 Block 3: Matrix reduction

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 . ALL;

use i e e e . n u m e r i c s t d . a l l ;

−− l i b r a r y m y l i b s v 1 0 0 a ;

−− use m y l i b s v 1 0 0 a . my package . a l l ; −−ccm

use work . my package . a l l ; −−ccm

e n t i t y m a t r i x r e d u c e 3 i s

g e n e r i c (Width : i n t e g e r := 1 6) ;

P o r t (m a t r i x i n : i n MATRIX;

s t a r t : i n STD LOGIC ;

r e s e t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

f i n i s h e d : o u t s t d l o g i c ;

m a t r i x o u t : o u t MATRIX

) ;

end m a t r i x r e d u c e 3 ;

a r c h i t e c t u r e B e h a v i o r a l o f m a t r i x r e d u c e 3 i s

s i g n a l s t a g e : i n t e g e r r a n g e 0 t o 6 ;

s i g n a l c o l c a s e , row case , f i r s t o n e : i n t e g e r r a n g e 0 t o wid th ;

s i g n a l f l a g : s t d l o g i c ;

s i g n a l m a t i n t : MATRIX;

s i g n a l temp row : s t d l o g i c v e c t o r (width −1 downto 0) ;

b e g i n

168

p r o c e s s (c l k) i s

v a r i a b l e v a r v e c t o r : s t d l o g i c v e c t o r (width −1 downto 0) ;

v a r i a b l e v a r v e c t o r 2 : s t d l o g i c v e c t o r (width −1 downto 0) ;

v a r i a b l e va r swap : s t d l o g i c v e c t o r (width −1 downto 0) ;

b e g i n

i f r i s i n g e d g e (c l k) t h e n

i f r e s e t = ’1 ’ t h e n

−−m a t i n t <=m a t r i x i n ;

c o l c a s e <=0;

s t a g e <=0;

f l a g <= ’0 ’ ;

row case <=wid th ;

f i n i s h e d <= ’0 ’ ;

f i r s t o n e <= width −1;

e l s i f (s t a r t = ’1 ’) t h e n −− r e p e a t wid th t i m e s : 2n ˆ2+2 n

−− s t a g e 1 − f i n d f i r s t one , r e c o r d row number and v e c t o r −−wid th i t e r a t i o n s

−− s t a g e 2 − go t h r o u g h a l l v e c t o r s t o XOR i f i t has a one (i g n o r e t h e s e l e c t e d v e c t o r) −−wid th i t e r

−− s t a g e 3 − row swap −− 1 i t e r a t i o n

−− s t a g e 4 − row e l e m e n t s r o t a t e l e f t −− 1 i t e r a t i o n

−− s t a g e 5 −
−− s t a g e 6 − ho ld s t a g e , do n t do a n y t h i n g −− r e q u i r e s r e s e t

i f (s t a g e =0) t h e n

m a t i n t <=m a t r i x i n ; −− l o a d i n i t i a l v a l u e s

−− c o l c a s e <=0;

s t a g e <=1;

−− f l a g <= ’0 ’ ;

−− row case <=wid th ;

−− f i n i s h e d <= ’0 ’ ;

c o l c a s e <=0;

f l a g <= ’0 ’ ;

row case <=wid th ;

f i n i s h e d <= ’0 ’ ;

f i r s t o n e <= width −1;

e l s i f (s t a g e=1 or s t a g e = 2) t h e n

i f (row case >0 and s t a g e = 1) t h e n

i f f l a g = ’0 ’ and row case > c o l c a s e t h e n

i f m a t i n t (width −1) (width −1) = ’1 ’ t h e n

169

temp row <= m a t i n t (width −1) ;

f i r s t o n e <= row case −1;

f l a g <= ’1 ’ ; −−found a ’ one ’

end i f ;

end i f ;

v a r v e c t o r := m a t i n t (width −1) ;

row case <=row case −1;

e l s i f (row case >0 and s t a g e = 2) t h e n

i f ((row case −1 /= f i r s t o n e) and (m a t i n t (width −1) (width −1) = ’ 1 ’)) t h e n

v a r v e c t o r := m a t i n t (width −1) xor temp row ;

e l s e

v a r v e c t o r := m a t i n t (width −1) ;

end i f ;

row case <=row case −1;

end i f ;

i f (row case >0) t h e n

m a t i n t (width −1 downto 1) <= m a t i n t (width −2 downto 0) ;

m a t i n t (0)<= v a r v e c t o r ;

e l s e −− (r o w c a s e =0) t h e n

i f f l a g= ’0 ’ t h e n −− i f a one was n e v e r found

temp row <= (o t h e r s=> ’ 0 ’) ;

end i f ;

f l a g <= ’ 0 ’ ;

row case <=wid th ;

s t a g e <= s t a g e +1;

−− r o w c a s e <= wid th ;

end i f ;

e l s i f s t a g e = 3 t h e n

−−swap t o p row and f i r s t o n e

i f (f i r s t o n e /= Width −1) t h e n

va r swap := m a t i n t (width −1) ;

m a t i n t (width −1) <= m a t i n t (f i r s t o n e) ;

m a t i n t (f i r s t o n e) <= va r swap ;

end i f ;

s t a g e <= 4 ;

e l s i f s t a g e = 4 t h e n

v a r v e c t o r 2 := m a t i n t (width −1) ;

170

m a t i n t (width −1 downto 1) <= m a t i n t (width −2 downto 0) ;

m a t i n t (0)<= v a r v e c t o r 2 ;

f i r s t o n e <= width −1;

s t a g e <= 5 ;

e l s i f s t a g e = 5 t h e n

−− r o t a t e l e f t each row by one e l e m e n t

f o r i i n width −1 downto 0 loop

m a t i n t (i) (width −1 downto 1) <= m a t i n t (i) (width −2 downto 0) ;

m a t i n t (i) (0) <= m a t i n t (i) (width −1) ;

end loop ;

−− row case <= wid th ;

i f c o l c a s e < width −1 t h e n

c o l c a s e <= c o l c a s e +1;

s t a g e <= 1 ;

e l s e −−we have r o t a t e d t h r o u g h each e l e m e n t i n t h e rows

s t a g e <= 6 ;

end i f ;

e l s i f s t a g e=6 t h e n

m a t r i x o u t <=m a t i n t ;

f i n i s h e d <= ’1 ’ ;

end i f ;

end i f ;

end i f ;

end p r o c e s s ;

end B e h a v i o r a l ;

C.5 Blocks 4 and 5: Solution solver

l i b r a r y IEEE ;

use IEEE . STD LOGIC 1164 . ALL;

use i e e e . n u m e r i c s t d . a l l ;

−−USE IEEE . s t d l o g i c a r i t h . ALL;

−−USE IEEE . s t d l o g i c u n s i g n e d . ALL;

−− l i b r a r y m y l i b s v 1 0 0 a ;

−− use m y l i b s v 1 0 0 a . my package . a l l ; −−ccm

use work . my package . a l l ; −−ccm

−−use work . s t d l o g i c 1 1 6 4 a d d i t i o n s . a l l ;

171

−−program t o r e d u c e a 16 x16 b i n a r y m a t r i x t o row e c h e l o n

e n t i t y m a t r i x s o l v e r i s

g e n e r i c (NumOfFreqTaps : i n t e g e r := 5 ;

Width : i n t e g e r := 16

−−Max Combos : i n t e g e r := 31 −− 2ˆ NumOfFreqTaps −1

) ;

P o r t (r e s e t : i n STD LOGIC ;

s t a r t : i n STD LOGIC ;

c l k : i n STD LOGIC ;

i n p u t s : i n MATRIX;

−− i n p u t s : i n STD LOGIC VECTOR (255 downto 0) ;

−− f i n i s h e d : o u t STD LOGIC

−−o u t p u t s : o u t MATRIX sol −−31 s e t s o f 16 b i t s o l u t i o n s p a c e

−− s t a r t : i n STD LOGIC;−−
−−c l k : i n STD LOGIC;−−

−− i n p u t s : i n MATRIX sol;−−
f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f i n i s h e d : o u t STD LOGIC ;−−
p u l s e : o u t STD LOGIC ;

−− r e s e t : i n STD LOGIC;−−
f o r c e r e s e t : o u t STD LOGIC ;

o u t p u t : b u f f e r STD LOGIC VECTOR (Width−1 downto 0) ;

t a p s : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end m a t r i x s o l v e r ;

a r c h i t e c t u r e B e h a v i o r a l o f m a t r i x s o l v e r i s

−− t y p e MATRIX i s a r r a y (15 downto 0) o f STD LOGIC VECTOR (15 downto 0) ;

−− t y p e MATRIX2 i s a r r a y (31 downto 1) o f STD LOGIC VECTOR (15 downto 0) ; −−removed z e r o v e c t o r 31−1

t y p e FSM Sta tes i s (S0 , S1 , S2 , S3 , S4a , S4 , S5 , S6 , S7a , S7 , S8a , S8 , S9) ;

s i g n a l s t a g e : FSM Sta tes := S0 ;

s i g n a l r o w c a s e : i n t e g e r r a n g e 0 t o wid th := wid th ;

s i g n a l temp row : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

−− s i g n a l s o l m a s k : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ; −−mask t o show t h a t t h e s e a r e s e t

s i g n a l v a r l o c : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ; −−mash t o show t h e s e a r e t h e v a r i a b l e s

s i g n a l v a r v a l u e s : STD LOGIC VECTOR (NumOfFreqTaps−1 downto 0) := (o t h e r s = > ’0 ’) ;

−− t y p e sum type i s a r r a y (Width−1 downto 0) o f u n s i g n e d (4 downto 0) ;

172

−− s i g n a l sum : sum type := (o t h e r s=> (o t h e r s=> ’ 0 ’)) ; −− s e t t o max number o f 256 −−needs enough b i t s t o r

−− s i g n a l m a t r i x i n : MATRIX := (o t h e r s => (o t h e r s=> ’ 0 ’)) ;

s i g n a l r o w s t a t e : i n t e g e r r a n g e 0 t o 2** NumOfFreqTaps := 0 ;

s i g n a l s h i f t s t a t e : i n t e g e r r a n g e 0 t o Width := 0 ;

s i g n a l t e m p s m a l l : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

s i g n a l temp : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

s i g n a l o c c u r : STD LOGIC VECTOR (2** NumOfFreqTaps downto 1) := (o t h e r s = > ’0 ’) ; −−had t o add an e x t r a f r o n t

s i g n a l c o u n t : i n t e g e r r a n g e 0 t o NumOfFreqTaps := 0 ;

−− s i g n a l s t a g e : i n t e g e r r a n g e 0 t o 4 ;

s i g n a l p o s i t i o n : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

s i g n a l i n d e x : i n t e g e r r a n g e 0 t o 2** NumOfFreqTaps−1 := 0 ;

s i g n a l comp index : i n t e g e r r a n g e 1 t o 2** NumOfFreqTaps −1;

s i g n a l comp temp : STD LOGIC VECTOR (Width−1 downto 0) ;

s i g n a l comp ans : STD LOGIC ;

s i g n a l comp occur : STD LOGIC ;

c o n s t a n t z e r o s : STD LOGIC VECTOR (2** NumOfFreqTaps−1 downto 1) := (o t h e r s => ’ 0 ’) ;

−− c o n s t a n t z e r o s w i d t h : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s => ’ 0 ’) ;

c o n s t a n t z e r o s t a p : STD LOGIC VECTOR (NumOfFreqTaps−1 downto 0) := (o t h e r s => ’ 0 ’) ;

c o n s t a n t z e r o s w i d t h : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s => ’ 0 ’) ;

s i g n a l we : STD LOGIC := ’ 0 ’ ;

s i g n a l add r : i n t e g e r r a n g e 0 t o 2** NumOfFreqTaps−1 := 2** NumOfFreqTaps −1;

s i g n a l do : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s => ’ 0 ’) ;

s i g n a l d i : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s => ’ 0 ’) ;

c o n s t a n t en : STD LOGIC := ’ 1 ’ ;

s i g n a l RAM : MATRIX sol ;

a t t r i b u t e r a m s t y l e : s t r i n g ;

a t t r i b u t e r a m s t y l e o f RAM : s i g n a l i s ” b l o c k ” ;

b e g i n

p r o c e s s (c l k) i s

−− v a r i a b l e t r a c k i n g : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ; −−shows d u r i n g loop i f t h e v a l u e

v a r i a b l e c o u n t n : i n t e g e r r a n g e 0 t o Width :=0 ;

v a r i a b l e s o l v e c : STD LOGIC VECTOR (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

173

v a r i a b l e m a t r i x o u t b i t : s t d l o g i c := ’ 1 ’ ;

b e g i n

i f r i s i n g e d g e (c l k) t h e n

i f r e s e t = ’1 ’ t h e n

f i n i s h e d <= ’ 0 ’ ;

s t a g e <= S0 ;

r o w c a s e <= Width ;

f o r c e r e s e t <= ’0 ’; −− c r e a t e s t h e r e s e t p u l s e t h r o u g h t h e sys tem

p u l s e <= ’0 ’ ;

−− f i n i s h e d <= ’0 ’ ;

t a p s <=(o t h e r s = > ’0 ’) ;

o u t p u t <=(o t h e r s = > ’0 ’) ;

−− s t a g e <= 0 ;

e l s i f s t a r t = ’1 ’ t h e n

c a s e s t a g e i s

when S0 =>

−− i f s t a g e = 0 t h e n

−− t r a c k i n g <= (o t h e r s = > ’0 ’) ;

−−s o l m a s k <= (o t h e r s = > ’0 ’) ;

v a r l o c <= (o t h e r s = > ’0 ’) ;

m a t r i x o u t b i t := ’ 1 ’ ;

r o w c a s e <= Width ;

s t a g e <= S1 ;

when S1 =>

−− e l s i f s t a g e = 1 t h e n −−d e t e r m i n e s i f sum r e p r e s e n t s a known v a l u e o r v a r i a b l e

i f (r o w c a s e > 0) t h e n

i f (i n p u t s (row case −1) = z e r o s w i d t h) t h e n

v a r l o c (row case −1) <= ’ 1 ’ ;

end i f ;

r o w c a s e <= r o w c a s e − 1 ;

e l s e

s t a g e <= S2 ;

r o w c a s e <= Width ;

v a r v a l u e s <= (o t h e r s => ’ 1 ’) ;

−− t r a c k i n g <= s o l m a s k or v a r l o c ;

end i f ;

174

when S2 =>

−− e l s i f s t a g e = 2 t h e n

i f (v a r v a l u e s /= z e r o s t a p) t h e n −− l o o p s ove r 32

s o l v e c := (o t h e r s=> ’ 0 ’) ;

c o u n t n := 0 ;

f o r x i n Width−1 downto 0 loop

i f v a r l o c (x)= ’1 ’ t h e n

s o l v e c (x) := v a r v a l u e s (NumOfFreqTaps−1− c o u n t n) ;

c o u n t n := c o u n t n + 1 ;

end i f ;

end loop ;

temp row <= s o l v e c ;

s t a g e <= S3 ;

r o w c a s e <= 0 ;

we<= ’0 ’ ;

e l s e

s t a g e <= S4a ;

we<= ’0 ’ ;

addr <=2**NumOfFreqTaps −1;

end i f ;

when S3 =>

−− e l s i f s t a g e = 3 t h e n

i f (r o w c a s e < Width) t h e n

−− l oop ove r i 0 :15

s o l v e c := temp row and i n p u t s (r o w c a s e) ;

m a t r i x o u t b i t := ’ 0 ’ ;

f o r k i n Width−1 downto 0 loop

m a t r i x o u t b i t := m a t r i x o u t b i t xor s o l v e c (k) ;

end loop ;

i f (i n p u t s (r o w c a s e) /= z e r o s w i d t h) t h e n

temp row (r o w c a s e)<= m a t r i x o u t b i t ;

end i f ;

175

r o w c a s e <= r o w c a s e + 1 ;

e l s e

s t a g e <= S2 ;

−−RAM(t o i n t e g e r (u n s i g n e d (v a r v a l u e s))) <= temp row ; −−p o s s i b l y w r i t e t o bram

addr <= t o i n t e g e r (u n s i g n e d (v a r v a l u e s)) ;

d i <=temp row ;

we<= ’ 1 ’ ;

v a r v a l u e s <= s t d l o g i c v e c t o r (u n s i g n e d (v a r v a l u e s) − 1) ;

−− r o w c a s e <= Width ;

end i f ;

when S4a=> s t a g e <= S4 ; −−c a u s e e x t r a c y c l e f o r RAM r e a d

when S4 =>

−− e l s i f s t a g e=4+0 t h e n

−− i f s t a g e = 0 t h e n

−− s t e p 0 ;

s h i f t s t a t e <= Width −1;

r o w s t a t e <= 2** NumOfFreqTaps −1;

−− l o a d a e x t e n d e d row

t e m p s m a l l <= do ; −−RAM(2** NumOfFreqTaps −1) ;

p o s i t i o n <= (o t h e r s=> ’ 0 ’) ;

o c c u r <= (o t h e r s=> ’ 0 ’) ;

c o u n t <= 0 ;

s t a g e <= S5 ;

i n d e x <= 2** NumOfFreqTaps −1; −−31

when S5 =>

−− e l s i f s t a g e = 4+1 t h e n

−− s t e p 1

−−compare temp t o a l l o t h e r s h o r t s o l u t i o n s ;

i f (index >0) t h e n −− r e p e a t t h r o u g h a l l

comp temp <= t e m p s m a l l ; −− r e g v a l u e

−−comp index <= i n d e x ; −− r e g i n p u t i n d e x t o compare t o

addr<= i n d e x ;

index <= index −1;

e l s e

s t a g e <= S6 ;

−−addr<= r o w s t a t e ;

176

end i f ;

o c c u r (i n d e x +1) <= comp ans ;−− l o a d s v a l u e from l a s t compare

when S6 =>

−− e l s i f s t a g e = 4+2 t h e n

−− s t e p 2

−−d i d a match o c c u r

i f (comp occur = ’1 ’) t h e n −−o c c u r (2** NumOfFreqTaps−1 downto 1) /= z e r o s) t h e n

p o s i t i o n (s h i f t s t a t e) <= ’ 1 ’ ;

c o u n t <= c o u n t + 1 ;

e l s e

p o s i t i o n (s h i f t s t a t e) <= ’ 0 ’ ;

c o u n t <= c o u n t ;

end i f ;

−− p o s i t i o n (s h i f t s t a t e −1) <= comp occur ;

−− c o u n t <= c o u n t + t o i n t e g e r (comp occur) ;

s t a g e <= S7a ;

addr<= r o w s t a t e ;

when S7a => s t a g e <= S7 ;−−c a u s e e x t r a c y c l e f o r RAM r e a d

when S7 =>

−− e l s i f s t a g e = 4+3 t h e n

−− s t e p 3 −− c o n t r o l s e c t i o n

i f (c o u n t = NumOfFreqTaps) t h e n −−we have a s o l u t i o n , no more t o do

−−done ! ! !

o u t p u t <= do ; −−RAM(r o w s t a t e) ;

t a p s <= p o s i t i o n ;

p u l s e <= ’ 1 ’ ;

s t a g e <= S9 ;

e l s i f s h i f t s t a t e > 0 t h e n −−no s o l u t i o n ye t , s t i l l have more s h i f t s a v a i l a b l e

t e m p s m a l l <= temp ;

s h i f t s t a t e <= s h i f t s t a t e −1;

o c c u r <= (o t h e r s => ’ 0 ’) ;

i n d e x <= 2** NumOfFreqTaps −1;

s t a g e <= S5 ;

e l s e

s t a g e <= S8a ;

177

i f r o w s t a t e > 1 t h e n

addr<= r o w s t a t e −1;

end i f ;

end i f ;

when S8a => s t a g e <=S8 ; −−c a u s e e x t r a c y c l e f o r RAM r e a d

when S8 =>

i f s h i f t s t a t e = 0 and r o w s t a t e > 1 t h e n −−no more s h i f t s , b u t o t h e r rows

t e m p s m a l l <= do ; −−RAM(r o w s t a t e −1) ;

s h i f t s t a t e <= Width −1;−− r e s e t s h i f t

r o w s t a t e <= r o w s t a t e −1;

p o s i t i o n <= (o t h e r s=> ’ 0 ’) ;

o c c u r <= (o t h e r s => ’ 0 ’) ;

c o u n t <= 0 ;

i n d e x <= 2** NumOfFreqTaps −1;

s t a g e <= S5 ;

e l s e −−no more rows

−−no s o l u t i o n found

f o r c e r e s e t <= ’1 ’ ;

s t a g e <= S0 ;

end i f ;

when S9 =>

−− e l s i f s t a g e = 4+4 t h e n

i f (o u t p u t = z e r o s w i d t h) t h e n

f o r c e r e s e t <= ’1 ’ ;

s t a g e <= S0 ;

e l s e

−− s t e p 4 −−
p u l s e <= ’ 0 ’ ;

f i n i s h e d <= ’1 ’;

end i f ;

end c a s e ;

end i f ;

end i f ;

end p r o c e s s ;

p r o c e s s (c l k)

178

b e g i n

i f c lk ’ e v e n t and c l k = ’1 ’ t h e n

i f en = ’1 ’ t h e n

i f we = ’1 ’ t h e n

RAM(addr) <= d i ;

end i f ;

do <= RAM(addr) ;

end i f ;

end i f ;

end p r o c e s s ;

e x t e n d : p r o c e s s (t e m p s m a l l) i s

−− v a r i a b l e e x t e n d e d : STD LOGIC VECTOR (Width downto (0)) ; − − ((Width −1) downto (−1*(Width −1))) := (o t h e r s =

−− v a r i a b l e a d d i n g : s t d l o g i c v e c t o r (Width−1 downto 0) := (o t h e r s = > ’0 ’) ;

v a r i a b l e a d d b i t : s t d l o g i c := ’ 0 ’ ;

b e g i n

−−e x t e n d e d := t e m p s m a l l & ’ 0 ’ ;

−− f e e d b a c k t a p s on 3 , 5 , 7 , 1 1 , 1 3

−− f o r j i n Width−2 downto 0 loop

−−a d d i n g := f e e d b a c k and t e m p s m a l l ;

a d d b i t := ’ 0 ’ ;

f o r x i n Width−1 downto 0 loop

a d d b i t := a d d b i t xor (f e e d b a c k (x) and t e m p s m a l l (x)) ;

end loop ;

−−e x t e n d e d (0) := a d d b i t ;

−−end loop ;

temp <= t e m p s m a l l (Width−2 downto 0) & a d d b i t ;

end p r o c e s s ;

comp ans <= ’1 ’ when (comp temp = do) e l s e ’ 0 ’ ; −−RAM(comp index)) e l s e ’ 0 ’ ;

comp occur<= ’0 ’ when o c c u r (2** NumOfFreqTaps−1 downto 1) = z e r o s e l s e ’ 1 ’ ;

end B e h a v i o r a l ;

C.6 Block 6: PN Sequencer

−−The f o l l o w i n g i s example code t h a t imp lemen t s two LFSRs which can be used as p a r t o f pn g e n e r a t o r s .

−−The number o f t a p s , t a p p o i n t s , and LFSR wid th a r e p a r a m e r a t i z a b l e . When t a r g e t t i n g X i l i n x (V i r t e x)

−− a l l t h e l a t e s t s y n t h e s i s v e n d o r s (Leonardo , S y n p l i c i t y , and FPGA E x p r e s s) w i l l i n f e r t h e s h i f t

179

−− r e g i s t e r LUTS (SRL16) r e s u l t i n g i n a ve ry e f f i c i e n t i m p l e m e n t a t i o n .

−−
−−C o n t r o l s i g n a l s have been p r o v i d e d t o a l l o w e x t e r n a l c i r c u i t r y t o c o n t r o l such t h i n g s as f i l l i n g ,

−−p u n c t u r i n g , s t a l l i n g (a u g m e n t a t i o n) , e t c .

−−
−−Mike G u l o t t a

−−1 1 /4 /9 9

−−Rev i sed 3 / 1 7 / 0 0 : F ixed ” commented ” b l o c k d iagram t o match p o l y n o m i a l .

−−Adapted 7 /1 0 /2 0 1 3 by Capt C u r t i s Medve

l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use i e e e . n u m e r i c s t d . a l l ;

e n t i t y pn gen i s

g e n e r i c (NumOfFreqTaps : INTEGER := 5 ; −− # of t a p s f o r I c h a n n e l LFSR , i n c l u d i n g o u t p u t t a p .

Width : INTEGER := 1 6) ; −− LFSR l e n g t h (i e , t o t a l # o f s t o r a g e e l e m e n t s)

p o r t (c l k : i n STD LOGIC ;

S h i f t E n : i n STD LOGIC ;

p u l s e : i n STD LOGIC ;

D a t a I N v e c t o r : i n STD LOGIC VECTOR (Width−1 downto 0) ;

f e e d b a c k : i n STD LOGIC VECTOR (Width−1 downto 0) ;

p n o u t : o u t STD LOGIC VECTOR (Width−1 downto 0)

) ;

end pn gen ;

a r c h i t e c t u r e r t l o f pn gen i s

t y p e T a p P o i n t A r r a y i i s a r r a y (NumOfFreqTaps−1 downto 0) o f i n t e g e r ;

−− P a r a m e r a t i z e I LFSR t a p s . (e . g . I (x) = X**17 + X**5 + 1)

−− Plug i n I c h a n n e l t a p p o i n t s , i n c l u d i n g o u t p u t t a p 0 .

−− c o n s t a n t T a p i : T a p P o i n t A r r a y i := (1 3 , 1 1 , 9 , 5 , 3) ; −− r e l a t i v e i t 1 5 : 0 o r r e v e r s e o f 3 , 5 , 7 , 1 1 , 1 3

s i g n a l s r l i : STD LOGIC VECTOR (Width−1 downto 0) ; −− s h i f t r e g i s t e r .

s i g n a l p a r f d b k i : STD LOGIC VECTOR (Width−1+1 downto 0) ; −− P a r i t y f e e d b a c k .

s i g n a l l f s r i n i : STD LOGIC ; −− mux o u t p u t .

−− s i g n a l s t a r t f l a g : STD LOGIC ;

180

b e g i n

−−−
−−−−−−−−−−−−−−−−−− I Channel −−
−−−

S h i f t i : p r o c e s s (c lk , p u l s e , D a t a I N v e c t o r)

b e g i n

i f p u l s e = ’1 ’ t h e n

s r l i <= D a t a I N v e c t o r ;

e l s i f r i s i n g e d g e (c l k) t h e n

i f S h i f t E n = ’1 ’ t h e n

s r l i <= s r l i (Width−1−1 downto 0)& l f s r i n i ;

end i f ;

end i f ;

end p r o c e s s ;

p a r f d b k i (0) <= ’ 0 ’ ;

f d b k i : f o r X i n 0 t o Width−1 g e n e r a t e −− p a r i t y g e n e r a t o r

p a r f d b k i (X+1) <= p a r f d b k i (X) xor (s r l i (X) and f e e d b a c k (X)) ;

end g e n e r a t e f d b k i ;

−− l f s r i n i <= D a t a I n i when F i l l S e l = ’1 ’ e l s e p a r f d b k i (p a r f d b k i ’ h igh) ;

l f s r i n i <= p a r f d b k i (Width) ;

p n o u t <= s r l i ; −− PN I c h a n n e l o u t p u t .

−−−

end r t l ;

C.7 Block 7: Frequency Tap

l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use i e e e . n u m e r i c s t d . a l l ;

e n t i t y f r e q t a p i s

g e n e r i c (NumOfFreqTaps : i n t e g e r := 5 ; −− # of f r e q t a p s

Width : i n t e g e r := 1 6) ; −− l e n g t h o f i n p u t v e c t o r

p o r t (PN seq : i n s t d l o g i c v e c t o r (Width −1 downto 0) ;

181

t a p s : i n s t d l o g i c v e c t o r (Width −1 downto 0) ;

f r e q o u t : o u t s t d l o g i c v e c t o r (NumOfFreqTaps − 1 downto 0)

) ;

end f r e q t a p ;

a r c h i t e c t u r e b e h a v i o r a l o f f r e q t a p i s

b e g i n

g e t t h e m : p r o c e s s (PN seq , t a p s)

v a r i a b l e t e m p o u t p u t : s t d l o g i c v e c t o r (NumOfFreqTaps − 2 downto 0) := (o t h e r s = > ’0 ’) ;

b e g i n

f o r i i n Width−2 downto 0 loop

i f t a p s (i)= ’1 ’ t h e n

t e m p o u t p u t := t e m p o u t p u t (NumOfFreqTaps − 3 downto 0) & PN seq (i) ;

end i f ;

end loop ;

f r e q o u t <= PN seq (Width −1) & t e m p o u t p u t ;

end p r o c e s s ;

end b e h a v i o r a l ;

182

References

[1] “WARP Project”. URL http://warpproject.org.

[2] Abdel Rahman, Mohammad J, Hanif Rahbari, and Marwan Krunz. “Adaptive

frequency hopping algorithms for multicast rendezvous in DSA networks”. Dynamic
Spectrum Access Networks (DYSPAN), 2012 IEEE International Symposium on,

517–528. IEEE, 2012.

[3] Air Force Chief Scientist, Office of the. Report on Technology Horizons: A Vision
for Air Force Science & Technology During 2010–2030, 52–55, 60, 78–91. 2010.

[4] Bian, Kaigui and Jung-Min Park. “Asynchronous channel hopping for establishing

rendezvous in cognitive radio networks”. INFOCOM, 2011 Proceedings IEEE,

236–240. 2011. ISSN 0743-166X.

[5] Bian, Kaigui, Jung-Min Park, and Ruiliang Chen. “A quorum-based framework for

establishing control channels in dynamic spectrum access networks”. Proceedings of
the 15th annual international conference on Mobile computing and networking,

25–36. ACM, 2009.

[6] Bose, Vanu, David Wetherall, and John Guttag. “Next century challenges:

RadioActive networks”. Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, 242–248. ACM, 1999.

[7] DaSilva, L.A. and I. Guerreiro. “Sequence-Based Rendezvous for Dynamic

Spectrum Access”. New Frontiers in Dynamic Spectrum Access Networks, 2008.
DySPAN 2008. 3rd IEEE Symposium on, 1–7. 2008.

[8] De Domenico, Antonio, Emilio Calvanese Strinati, and M-G Di Benedetto. “A

survey on MAC strategies for cognitive radio networks”. Communications Surveys &
Tutorials, IEEE, 14(1):21–44, 2012.

[9] Faint, Stephanie, Oktay Ureten, and Tricia Willink. “Impact of the number of

sensors on the network cost and accuracy of the radio environment map”. Electrical
and Computer Engineering (CCECE), 2010 23rd Canadian Conference on, 1–5.

IEEE, 2010.

[10] Federal Communications Commission. Notice of Inquiry: Promoting More Efficient
Use of Spectrum THrough Dynamic Spectrum Use Technologies, FCC 10-198, Nov

2010.

[11] Federal Communications Commission. “FCC Encyclopedia”, December 2013. URL

http://www.fcc.gov/encyclopedia/accessing-spectrum.

183

[12] Gast, Matthew S. 802.11 Wireless Networks: The Definitive Guide, Second Edition.

O’Reilly Media, Inc., 2005. ISBN 0596100523.

[13] Gold, Robert. “Method and system for synchronizing and selectively addressing

multiple receivers in a wireless, spread spectrum communication system”, 06 2008.

[14] Hanif, Muhammad Fainan, Peter J Smith, and Mansoor Shafi. “Performance of

cognitive radio systems with imperfect radio environment map information”.

Communications Theory Workshop, 2009. AusCTW 2009. Australian, 61–66. IEEE,

2009.

[15] Htike, Zaw and Choong Seon Hong. “Neighbor discovery for cognitive radio ad hoc

networks”. Proceedings of the 7th International Conference on Ubiquitous
Information Management and Communication, ICUIMC ’13, 102:1–102:6. ACM,

New York, NY, USA, 2013. ISBN 978-1-4503-1958-4. URL

http://doi.acm.org/10.1145/2448556.2448658.

[16] Lin, Zhiyong, Hai Liu, Xiaowen Chu, and Yiu-Wing Leung. “Jump-stay based

channel-hopping algorithm with guaranteed rendezvous for cognitive radio

networks”. INFOCOM, 2011 Proceedings IEEE, 2444–2452. IEEE, 2011.

[17] Liu, Hai, Zhiyong Lin, Xiaowen Chu, and Y.-W. Leung. “Ring-Walk Based

Channel-Hopping Algorithms with Guaranteed Rendezvous for Cognitive Radio

Networks”. Green Computing and Communications (GreenCom), 2010 IEEE/ACM
Int’l Conference on Int’l Conference on Cyber, Physical and Social Computing
(CPSCom), 755–760. 2010.

[18] Liu, Hai, Zhiyong Lin, Xiaowen Chu, and Yui-Wing Leung. “Taxonomy and

challenges of rendezvous algorithms in cognitive radio networks”. Computing,
Networking and Communications (ICNC), 2012 International Conference on,

645–649. 2012.

[19] Marinho, José and Edmundo Monteiro. “Cognitive radio: survey on communication

protocols, spectrum decision issues, and future research directions”. Wireless
Networks, 18(2):147–164, 2012.

[20] McHenry, Mark A. “NSF spectrum occupancy measurements project summary”.

Shared spectrum company report, August 2005.

[21] McHenry, Mark A, Dan McCloskey, Dennis Roberson, and John T. MacDonald.

“Spectrum Occupancy Measurements: Chicago, Illinois”. Shared spectrum company
report, December 2005.

[22] Mclean, Ryan K., Mark D. Silvius, Kenneth M. Hopkinson, Bridget N. Flatley,

Ethan S. Hennessey, Curtis C. Medve, Jared J. Thompson, Matthew R. Tolson, and

Clark V. Dalton. “An Architecture for Coexistence with Multiple Users in Frequency

Hopping Cognitive Radio Networks”. Selected Areas in Communications, IEEE
Journal on, 32(3):To appear, 2014. ISSN To appear.

184

[23] Mitola, J. and Jr. Maguire, G.Q. “Cognitive radio: making software radios more

personal”. Personal Communications, IEEE, 6(4):13–18, 1999. ISSN 1070-9916.

[24] Mitola, Joseph III. Cognitive radio: An Integrated Agent Architecture for Software
Defined Radio. Ph.D. thesis, Royal Institute of Technology, May 2000.

[25] National Telecommunications and Information Administration. Manual of
Regulations and Procedures for Federal Radio Frequency Management, May 2013.

[26] Peterson, Roger L., Rodger E. Ziemer, and David E. Borth. Introduction to Spread
Spectrum Communications. Prentice Hall, 1995.

[27] Proakis, John. Digital communications. McGraw-Hill, Boston, 2008. ISBN

978-0-07-295716-7.

[28] Robert Gold Comm Systems Inc. Frequency Hopping Signal Prediction and
Countermeasures. Technical Report AFRL-SN-WP-TR-1999-1053, Air Force

Research Laboratory, December 1998.

[29] Robert Gold Comm Systems Inc. Modern Network Command and Control Warfare.

Technical Report AFRL-SN-WP-TR-2003-1148, Air Force Research Laboratory,

August 2003.

[30] Robertson, Andrew, Lan Tran, Joseph Molnar, and Er-Hsien Frank Fu.

“Experimental comparison of blind rendezvous algorithms for tactical networks”.

World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2012 IEEE
International Symposium on a, 1–6. IEEE, 2012.

[31] Secretary of the Air Force, Office of the. Fiscal Year 2010 Air Force Posture
Statement, Feb 2010.

[32] Shared Spectrum Company. “General Survey of Radio Frequency Bands (30 MHz to

3 GHz): Vienna, Virginia”. Shared spectrum company report, September 2010.

[33] Shin, Jongmin, Dongmin Yang, and Cheeha Kim. “A Channel Rendezvous Scheme

for Cognitive Radio Networks”. Communications Letters, IEEE, 14(10):954–956,

2010. ISSN 1089-7798.

[34] Shokri-Ghadikolaei, Hossein and Rajab Fallahi. “Intelligent Sensing Matrix Setting

in Cognitive Radio Networks”. 2012.

[35] Theis, N.C., R.W. Thomas, and L.A. DaSilva. “Rendezvous for Cognitive Radios”.

Mobile Computing, IEEE Transactions on, 10(2):216–227, 2011. ISSN 1536-1233.

[36] Wang, Beibei and KJ Ray Liu. “Advances in cognitive radio networks: A survey”.

Selected Topics in Signal Processing, IEEE Journal of, 5(1):5–23, 2011.

185

[37] Wellens, Matthias and Petri Mähönen. “Lessons learned from an extensive spectrum

occupancy measurement campaign and a stochastic duty cycle model”. Mobile
networks and applications, 15(3):461–474, 2010.

[38] Williams, John R. “U.S. Spectum Allocations 300-3000 MHz”. Federal
Communications Commission report, November 2002.

[39] Wu, Ching-Chan and Shan-Hung Wu. “On bridging the gap between homogeneous

and heterogeneous rendezvous schemes for cognitive radios”. Proceedings of the
fourteenth ACM international symposium on Mobile ad hoc networking and
computing, 207–216. ACM, 2013.

[40] Xilinx, Inc. ML507 Evaluation Platform User Guide. UG347. 2011.

[41] Xin, C., M. Song, L. Ma, and C.-C. Shen. “ROP: Near-Optimal Rendezvous for

Dynamic Spectrum Access Networks”. Vehicular Technology, IEEE Transactions
on, 62(7):3383–3391, 2013. ISSN 0018-9545.

[42] Zhang, Yifan, Gexin Yu, Qun Li, Haodong Wang, Xiaojun Zhu, and Baosheng

Wang. “Channel-Hopping-Based Communication Rendezvous in Cognitive Radio

Networks”. 2013.

[43] Zhao, Youping, Bin Le, and Jeffrey H Reed. “Network support–The radio

environment map”. Cognitive radio technology, 325–366, 2006.

[44] Zhao, Youping, Jeffrey H Reed, Shiwen Mao, and Kyung K Bae. “Overhead analysis

for radio environment map enabled cognitive radio networks”. Networking
Technologies for Software Defined Radio Networks, 2006. SDR’06.1 st IEEE
Workshop on, 18–25. IEEE, 2006.

186

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2013–Mar 2014

Estimation and Coordination of Sequence Patterns for Frequency
Hopping Dynamic Spectrum Access Networks

Medve, Curtis C., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-52

Dr. Vasu Chakravarthy
2241 Avionics Circle
WPAFB, OH 45433
vasu.chakravarthy@us.af.mil
937-528-8269

AFRL/RYWE

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

In 2010, the Shared Spectrum Company showed in a survey of Radio Frequency (RF) bands that underutilization of spectrum has resulted from current

frequency management practices. Traditional frequency allocation allows large bands of licensed spectrum to remain vacant even under current high demands.

Cognitive radio’s (CR) use of Dynamic Spectrum Access (DSA) enables better spectrum management by allowing usage in times of spectrum inactivity. This

research presents the CR problem of rendezvous for fast Frequency Hopping Spread Spectrum (FHSS) networks, and examines protocols for disseminating

RF environment information to coordinate spectrum usage. First, Gold’s algorithm is investigated as a rendezvous protocol for networks utilizing fast

frequency hopping. A hardware implementation of Gold’s algorithm on a Virtex-5 Field Programmable Gate Array (FPGA) is constructed to determine the

resource requirements and timing limitations for use in a CR. The resulting design proves functionality of the algorithm, and demonstrates a decrease in

time-to-rendezvous over current methods. Once a CR network is formed, it must understand the changing environment in order to better utilize the available

spectrum. This research addresses the costs a network incurs to coordinate such environment data. Three exchange protocols are introduced and evaluated via

simulation to determine the best technique based on network size. The resulting comparison found that smaller networks function best with polled or time-

division based protocols where radios always share their environment information. Larger networks, on the other hand, function best when a dispute-based

exchange protocol was utilized. These studies together conclude that the selection of a rendezvous algorithm or a protocol for the exchange of environment

data in a CR network are determined by the characteristics of the network, and therefore their selection requires a cognitive decision.

15. SUBJECT TERMS

Cognitive Radio, Frequency Hopping, Sequence Estimation, Dynamic Spectrum Access, Rendezvous

U U U UU 201

LTC Robert J. McTasney, AFIT/ENG

(937) 255-3636 x4460 robert.mctasney@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks
	Curtis C. Medve
	Recommended Citation

	Estimation and Coordination of Sequence Patterns for Frequency Hopping Dynamic Spectrum Access Networks

