
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

A Recommender System in the Cyber Defense
Domain
Katherine B. Lyons

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Lyons, Katherine B., "A Recommender System in the Cyber Defense Domain" (2014). Theses and Dissertations. 612.
https://scholar.afit.edu/etd/612

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277527626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/612?utm_source=scholar.afit.edu%2Fetd%2F612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A RECOMMENDER SYSTEM IN THE CYBER DEFENSE DOMAIN

THESIS

Katherine B. Lyons, Second Lieutenant, USAF

AFIT-ENG-14-M-49

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-14-M-49

A RECOMMENDER SYSTEM IN THE CYBER DEFENSE DOMAIN

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Katherine B. Lyons, B.S.C.S.

Second Lieutenant, USAF

March 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-49

A RECOMMENDER SYSTEM IN THE CYBER DEFENSE DOMAIN

Katherine B. Lyons, B.S.C.S.
Second Lieutenant, USAF

Approved:

//signed//

Kenneth Hopkinson, PhD (Chairman)

//signed//

Maj Kennard Laviers, PhD (Member)

//signed//

Timothy Lacey, PhD (Member)

25 Feb 2014

Date

25 Feb 2014

Date

25 Feb 2014

Date

AFIT-ENG-14-M-49
Abstract

In the cyber domain, network defenders have traditionally been placed in a reactionary

role. Before a defender can act they must wait for an attack to occur and identify the

attack. This places the defender at a disadvantage in a cyber attack situation and it is

certainly desirable that the defender out maneuver the attacker before the network has

been compromised. The goal of this research is to determine the value of employing

a recommender system as an attack predictor, and determine the best configuration of a

recommender system for the cyber defense domain. The most important contribution of

this research effort is the use of recommender systems to generate an ordered list of cyber

defense actions.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

List of Symbols . x

List of Acronyms . xi

I. Introduction . 1

1.1 Overview . 1
1.2 Problem Statement . 1
1.3 Goals and Approach . 2
1.4 Contribution . 3
1.5 Summary . 4

II. Literature Review . 5

2.1 Overview . 5
2.2 Collaborative . 5
2.3 Content-based . 7
2.4 Knowledge-based . 9
2.5 Hybrid . 11
2.6 Attack Predictors . 14

2.6.1 Attack Graphs . 14
2.6.2 Attack Trees . 18
2.6.3 Machine Learning . 21

2.7 Summary . 22

III. Recommender System Design . 23

3.1 Overview . 23
3.2 Network Model . 23

3.2.1 Sensors . 23

v

Page

3.2.2 Database . 24
3.2.3 Modeler Algorithm . 26
3.2.4 Output . 28

3.3 Collaborative Recommender System . 29
3.4 Knowledge-based Recommender System 30
3.5 Summary . 32

IV. Methodology . 33

4.1 Problem Definition . 33
4.1.1 Goals and Hypothesis . 33
4.1.2 Approach . 33

4.2 System Boundaries . 34
4.3 System Services . 34
4.4 Workload . 35
4.5 Performance Metrics . 36
4.6 System Parameters . 37
4.7 Factors . 39
4.8 Evaluation Technique . 40
4.9 Experimental Design . 40
4.10 Summary . 42

V. Results and Analysis . 43

5.1 Overview . 43
5.2 Computation Time Results . 43
5.3 Accuracy Results . 45
5.4 Implications . 53
5.5 Summary . 54

VI. Conclusion . 62

6.1 Overview . 62
6.2 Results . 62
6.3 Contribution . 62
6.4 Future Work . 62
6.5 Summary . 63

Bibliography . 65

vi

List of Figures

Figure Page

1.1 John Boyd’s OODA loop . 2

2.1 User-Item Matrix . 6

2.2 Attack Graph [22] . 16

2.3 Attack Tree [22] . 17

2.4 Example of (a) Full Graph, (b) Predictive Graph, and (c) Multiple-Prerequisite

Graph [13] . 18

2.5 Example of Stratified Node Topology [7] . 19

3.1 Custom Snort rule [23] . 24

3.2 Flow of the IDS Information [23] . 25

3.3 Data Fusion of the Modeler [23] . 26

3.4 Format example of EXtensible Markup Language (XML) file output from

network modeler [23] . 28

3.5 Format example of XML file used by knowledge-base recommender system . . 31

4.1 The Recommender Defender System . 35

4.2 General cyber attacker process . 36

4.3 Virtual Network Topology . 41

5.1 Computation Time for Recommender System Algorithm: Attributes with no

IP association . 44

5.2 Computation Time for Recommender System 45

5.3 Computation Time for Recommender System 46

5.4 Computation Time for Recommender System Algorithm: Threshold Value 0 . . 48

5.5 Computation Time for Recommender System Algorithm: Threshold Value 0.5 . 49

5.6 Computation Time for Recommender System Algorithm: Threshold Value 0.75 50

vii

Figure Page

5.7 Computation Time for Recommender System Algorithm: Threshold Value 0.95 51

5.8 Algorithm Attributes with no IP association 52

5.9 Algorithm All Threshold Values . 53

5.10 Algorithm Threshold Value 0.15 . 54

5.11 Algorithm Threshold Value 0.18 . 55

5.12 Algorithm Threshold Value 0.2 . 56

viii

List of Tables

Table Page

3.1 List of basic actions that can be taken on client machines [23] 27

3.2 List of basic actions that can be taken on the firewall machine [23] 27

3.3 Example Model Output . 29

3.4 Example Similarity Results for Nodes on the Network 29

3.5 Example Predicted Value for Nodes . 30

4.1 Factor Levels . 39

4.2 Configuration of Virtual Machines . 41

5.1 Computation Time of Algorithms with Varied Threshold Values 47

5.2 The results of the ANOVA test on the computation times for the five algorithms 48

5.3 Welch Two Sample T-test Comparing Vulnerable and Non-vulnerable Machines 49

5.4 Root Mean Squared Error . 57

5.5 Root Mean Squared Error . 58

5.6 Root Mean Squared Error . 59

5.7 Recommended Cyber Defense Action . 60

5.8 Recommended Cyber Defense Action . 60

5.9 Recommended Cyber Defense Action . 61

ix

List of Symbols

Symbol Definition

IQR Inner Quartile Range

I set of all items

ra,i rating for item i by user a

rb,i rating for item i by user b

ra average rating for user a

rb average rating for user b

t threat level

o occurrence of event

n number of ratings of events

x rating for event

Subscripts

a user a

b user b

i item i

A event A

B event B

C event C

1 true value

x

List of Acronyms

Acronym Definition

ADVISE ADversary-driven VIew Security Evaluation

AFRL Air Force Research Laboratory

AFIT Air Force Institute of Technology

AI Artificial Intelligence

ANOVA ANalysis Of VAriance

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CUT Component Under Test

IDS Intrusion Detection System

IP Internet Protocol

INFERD INformation Fusion Engine for Real-time Decision-making

nDCG normalized Discounted Cumulative Gain

OODA Observe Orient Decide Act

OS Operating System

RAM Random Access Memory

RMSE Root Mean Square Error

SNT Stratified Node Topology

SSARE Security Situation Assessment and Response Evaluation

SUT System Under Test

TANDI Threat Assessment for Network Data and Information

TF-IDF Term Frequency-Inverse Document Frequence

WPAFB Wright Patterson Air Force Base

VLMM Variable Length Markov Model

xi

Acronym Definition

XML EXtensible Markup Language

xii

A RECOMMENDER SYSTEM IN THE CYBER DEFENSE DOMAIN

I. Introduction

1.1 Overview

In the cyber domain, network defenders have traditionally been placed in a reactionary

role. Before a defender can act they must wait for an attack to occur and identify the

attack. Clearly this places the defender at a disadvantage in a cyber attack situation and

it is desirable that the defender outmaneuver the attacker before the network has been

compromised. The defender must have some insight into how the attacker will execute

their attack to close off that attack vector. Attack predictors provide that information to the

defender by analysis of current known attack methods, the state of the network, and the

previous actions of the attacker.

1.2 Problem Statement

The Air Force relies on the availability, integrity, and confidentiality of the network

in order to function. Cyber defense has become a major concern for the Air Force. The

cyber defense domain has been accepted by the Air Force as another domain in which

we fight. Therefore, it is reasonable to apply conventional warfare strategic methods

to cyber defense. John Boyd’s OODA loop, shown in Figure 1.1, aligns with current

cyber defense practices. In order to develop better cyber defense systems new approaches

are being explored applying concepts from other domains. In this research effort, the

Intrusion Detection System (IDS) functions as the Observe and Orient aspect of the OODA

loop. Using recommender system techniques that have previously been used for helping

customers find products of interest, a new decision making technique can be used for a

1

cyber defense system. The human cyber defender performs the action step [2]. The IDS

and recommender system augment the human by providing increased situational awareness

and ranked recommendations for actions.

Figure 1.1: John Boyd’s OODA loop

Cyber attacks occur in stages (1) Information Gathering, (2) Scanning and Vulnera-

bility Assessment, (3) Intrusion, (4) Maintaining Access, and (5) Clearing Tracks. Under-

standing and anticipating the actions of the attack gives the cyber defender their opportunity

to overcome the advantages of the attacker. The cyber defender must create a faster OODA

loop process in order to out maneuver the attacker. The time between the start of the attack

and the counter action taken by the cyber defender must occur on the order of seconds.

Many cyber attacks often strike quickly, before the defender can counter the attack.

1.3 Goals and Approach

This research effort focuses on speeding up the defender’s OODA loop, specifically

the decision aspect. Already research has been done to create efficient IDS. In order to aid

the cyber defender in making their decision a recommender system can be implemented

to provide recommended actions. Recommender systems have commonly been used to

suggest items of interest to consumers. For example, Netflix uses a recommender system

2

to suggest movies for users to watch. Netflix takes in information about what movies the

user enjoys by asking them to rate movies on a 1 to 5 scale and what types of movies the

user enjoys based on genre. The exact algorithm implemented by Netflix is proprietary, but

it is easy to understand that if you give Die Another Day a high rating and enter that you

enjoy action spy movies that the algorithm would suggest other James Bond films. The

recommender system behind that decision uses large matrices that predict the rating a user

would give to a movie based on the information they have gathered about that user.

The recommender system uses the information about the network from the IDS

to predict the likelihood of certain events for particular nodes on the network. The

recommender system then presents a ranked list of actions to the cyber defender with the

highest ranked action mitigating the most events which have been predicted to occur. By

giving a cyber defender a list of recommended defensive actions they are able to chose

which action best suites their specific network. The recommender system is meant to

enhance human cyber defenders.

1.4 Contribution

Many different attack predictors have been created in the past. Previous attack

predictors present the cyber defender with a prediction of the attackers next action. The

recommender system is an attack predictor, but taken to the next level by presenting the

cyber defender with how to counter act the predicted action. Recommender systems have

been used extensively in the domain of recommending items to customers but have not been

applied to the cyber defense domain. The insight supplied by a recommender system holds

great potential for acting as recommending defensive cyber actions. No one has taken a

purely recommender system algorithm and implemented it to recommender cyber defense

actions.

3

1.5 Summary

Cyber defense is a technical issue that concerns all organizations which rely on

networks to function. Appropriately and quickly reacting to cyber attacks is the main

option for today’s cyber defender. The implementation of a recommender system as a

cyber defense decision making tool is an area that merits being explored. Recommender

systems have been studied for decades, but only in their original domain of retail customer

suggestions. The same algorithms and techniques could have value for other domains.

4

II. Literature Review

2.1 Overview

The four main types of recommender systems include collaborative, content-based,

knowledge-based, and hybrid. In this chapter the background of each type of recommender

system will be explored. Recommender systems are often used in the world of customer

buying preferences. The suggestions made by recommender systems are a form of Artificial

Intelligence (AI) which makes predictions based on previous actions of the customer,

knowledge of the problem domain, or survey of customer preferences. The majority of

the literature approaches recommender systems within the problem domain of suggesting

items to a customer.

2.2 Collaborative

The actions of existing users form the foundation of collaborative filtering for

recommendations. The system observes the actions of a new user and compares them with

the actions of existing users in order to find their nearest neighbor. Creating a suggestion

uses the ratings or actions of a previous user as a predictor for future actions of the new

user. Most collaborative filtering techniques employ a user-item matrix in order to generate

preferences for a user. A user-item matrix is shown in Figure 2.1. Collaborative systems

were first created in the 1990’s and since then their capabilities have been thoroughly

explored [10]. But the majority of these research efforts have been confined to the domain

of customer purchases [15].

One of the most common methods to calculate a rating is the Pearson’s correlation

coefficient. It assigns pairs of users a value from -1 to +1, with +1 being a very strong

positive correlation and a -1 is a very strong negative correlation. Users with high positive

correlation values are very similar in the items that they bought. Using the basic assumption

5

Figure 2.1: User-Item Matrix

for collaborative recommender systems, it follows that highly correlated users will be

interested in similar items. The items bought by one similar user and not by the other

should be recommended. The prediction value for the item is calculated based on how

close that neighbor is to the user’s average rating [15]. Pearson’s correlation coefficient

is one way to calculate similarity between users shown in Equation (2.1). The values are

summed for each item i from the set of all items I. The symbol ra,i is the rating for item i

by user a and the symbol ra is the average rating for user a.

similarity(a, b) =
∑

i∈I(ra,i − ra)(rb,i − ri)√∑
i∈I(ra,i − ra)2

√∑
i∈I(rb,i − rb)2

(2.1)

The concept that users will buy similar items to the items they have showed an

interest in and avoid items that they have no interest in drives item-based recommendation.

Item-based systems take input as a user-item matrix to determine relationships between

different items. Scalability is a challenge for user-based systems. When the user-item

matrix becomes very large, the matrix computations become time-consuming [25].

Analyzing the interaction of items generates a recommendation for a user. Item-based

algorithms outperform user-based algorithms, because the relationship between items is

more stable than the relationship between users. With a more stable relationship the time

consuming task of computation can be performed offline while still supplying accurate

6

predictions [25]. Using the similarity value calculated from the Pearson’s correlation

coefficient and the N nearest neighbor a predicted rating can be calculated, shown in

Equation (2.2).

prediction(a, i) = ra +

∑
b∈N similarity(a, b) ∗ (rb,i − rb)∑

b∈N similarity(a, b)
(2.2)

Real world data sets often lack large amounts of information which results in a

problem known as sparsity. Without enough information it is difficult to make accurate

recommendations for users. A similar problem, known as cold start, occurs when a new

user has only rated a few items and there is not enough ratings in the matrix to make good

predictions. Cold start also happens when there is a high item to user ratio, meaning that

it is difficult for the user to rate a large enough number of items for the recommender to

be able to make meaningful predictions [20]. Both problems stem from the difficulty in

matching a user with few ratings to similar neighbors. A pure collaborative approach is

to turn the matrix information into a graph and use a technique called spreading activation

to find relationships between users and items. The recommendations are based on how

close an item is from a user in the graph where distance is the number of edges from the

item to the user [12]. Another method uses probability and similar user ratings to generate

suggestions. By exploiting the information that does exist for the user the accuracy of

predictions improve [29]. The most straight-forward solution is to use a hybrid system

which gains insight into the recommendation using other sources of information such as

item attributes or demographic information.

2.3 Content-based

Content-based recommendation uses information about items and past actions of users

in order to make predictions. The thought process behind content-based recommenders

is that a user will buy future items which are similar to items they have bought in the

past. In order to determine the similarity of items certain attributes or features must be

7

associated with those items. Collecting the attributes about items, especially if the attributes

are qualitative, can be a difficult task. When an item lacks information it falls into a similar

issue of sparsity as found in collaborative recommendations. Content-based recommenders

do not need the large number of users or ratings of items by a user that collaborative

recommender systems demand, but must have item information.

Content-based recommendation not only uses the meta-data of features, but also the

actual content of documents. A vector is constructed using a 1 to represent if a word

is contained in a document and a 0 when the word is absent. Then the recommender

system compares the vector with other documents. The process is simple, but there are

many issues to this basic approach. The vector favors longer documents and does not

take into consideration the significance and frequency of the words in the document [15].

To overcome these issues documents are analyzed using the Term Frequency-Inverse

Document Frequence (TF-IDF) technique. Term frequency takes into account how often

a word appears in a document. Inverse document frequency helps to highlight the

difference between documents by giving higher weight to words which only appear in that

document [24].

To determine if an item would be of interest to a user, the recommender system needs

to have information of items that were previously of interest to the user and the similarity

between potential items. The recommender system tracks items the user found useful and

gathers a rating for items. The recommender system collects items into neighborhoods

using a similarity calculation. Each item the user bought, associated with a particular

neighborhood, counts as a vote for that neighborhood. If k of the nearest neighbors

were rated highly by the user, then that item should be recommended. In order to create

neighborhoods new items are compared to current items in the inventory taking into account

attributes and similar terms. Long-term profiles of users can be kept and analyzed in

order to give the best recommendation [1]. Short-term profiles can be used when a user

8

has frequent changes of interest. The k-nearest-neighbor technique is straightforward,

adaptable, and requires little data in order to give a good recommendation [15].

Content-based recommender systems perform well with many items and users, but

there are some issues when implementing a system. The information that can be associated

with items limits the abilities of content-based recommender systems. With text based

items, such as documents, news articles, and websites, recommender systems simply

analyze the words, but this neglects other attributes of items which are more subjective.

Features are difficult to extract when items are not text based. Manual entry of attributes

requires too high of a cost to be a viable solution. With few attributes for items,

content-based recommender systems suffer from their own form of sparsity. Content-based

recommenders focus on suggesting similar items to previous items of interest, but they can

begin to make suggestions which are too similar. A user is not interested in buying an item

if they already bought the item from a different company. To provide interesting by not

too similar items some diversity can be introduced to the system or a filter can be used

to eliminate items which are too similar [31]. Lastly, the cold start problem does effect

content-based recommender systems, but not as severely as collaborative recommender

systems. The content-based recommender requires only a few ratings or past action

information in order to make a prediction, unlike collaborative systems which require

mostly complete user-item matrix [15].

2.4 Knowledge-based

Knowledge-based recommendations do not require user-item data to make recom-

mendations for users. Instead knowledge-based recommenders use explicit rules about

the problem domain and attributes of items to generate predictions for users. Knowledge-

based recommender systems interact more intimately with users. Unlike collaborative and

content-based recommendations which track user actions and collect ratings, knowledge-

based recommendations collect specific requirements from the user in order to bring them

9

closer to items of interest. Therefore, with items that are not bought often, knowledge-

based recommenders can direct a user to an item without dealing with sparsity issues [3].

Constraint-based recommenders perform recommendations as a solution to a con-

straint satisfaction problem. By using the requirements given by a user as the constraints,

the attributes of products are compared in order to find items which are within the given

parameters [9]. A simple constraint solver is capable of finding items which satisfy the

requirements supplied by the user. Another way to perform constraint-based recommenda-

tions is to execute a conjunctive query over the database of items. The system constructs a

conjunctive query by connecting together the requirements for attributes given by the user,

then performs a database query which returns items which meet the constraints. Both con-

junctive query and constraint satisfaction solvers view the requirements from the user as

constraints, categorizing them as constraint-based recommenders.

Case-based recommendations are made from the similarities between items and the

requirements. McSherry defines a distance similarity for an item depending on the sum

of all the similarities of attributes weighted by the requirements. Other items are of

interest purely dependent on how far an attribute is from the given requirement. To find

similar items local similarity can be calculated based on the distance of the attribute

of the item from the desired attribute divided by the total range of the attribute [19].

Usually, the similarity calculations for case-based recommendations are used as an aspect

of utility-based recommender systems. Other case-based recommenders rely on a more

query-based paradigm. A purely query-based system can be very difficult if the user does

not have specific requirements. A different form of query-based recommendation guides

users to explore the space and give incremental critiquing in order to key into items of

interest. The user gives adjustments to the requirements throughout the search in response

to the items recommended to the user [3]. Both types of case-based recommendations

10

depend heavily on finding items which do not fulfill all the requirements of a user, but

instead offer items which are close to the desired traits.

Utility-based recommender systems find the overall utility of an item for a user after

gathering the weight or interest level the user has in a particular attribute. The weight can

also be determined by the system which significantly decreases the load on the user. The

total utility is calculated as the sum of all the item values, which is the weight multiplied

by the similarity function used in case-based recommendations. The result is a ranking of

items based on how similar the items are to the requirements set by the user [19].

Often knowledge-based recommenders are unable to satisfy all the requirements given

by a user. Instead of providing a null response the recommender system should guide the

user or automatically relax the constraints. By incrementally relaxing the constraints the

recommender system can find an item which is close to meeting the original requirements.

Another method is to identify conflicts between the requirements and potential items. Using

a divide-and-conquer algorithm QuickXPlain finds conflicts for given constraints [16].

After determining constraints that cannot be satisfied the recommender system must

suggest ways to repair requirements so that they can be met by the available items.

2.5 Hybrid

Hybrid recommender systems attempt to exploit the strengths of each of the three

main types of recommender systems. By pooling information from different approaches a

better representation of the problem can be created. The algorithms implemented and the

method of hybridization factor into the results. The algorithm’s solutions can be combined

at the end of separate calculations or the results of one algorithm can feed into the input of

a second algorithm [15].

Both collaborative and content-based recommenders share the problem of sparsity,

which makes them more suited for problems with a high density of information.

Knowledge-based recommenders do not suffer from sparsity, because the focus is

11

more on the problem domain than the people or items in the domain. Unfortunately,

knowledge-based recommenders are not capable of developing associations between

users and items, but instead function based on their understanding of the problem

domain [4]. Because of the dependence on users and items, collaborative and content-based

recommenders can react and learn as the needs of users change. Collaborative techniques

function well in domains where content-based techniques suffer, such as situations with few

attributes for items or where attributes of items are difficult for a machine to analyze [20].

Content-based recommendations require very few user-item ratings to make accurate

recommendations.

Weighted hybrid recommender systems perform multiple techniques on the same set

of data. Then post computation combines the information from the various techniques

in order to present the overall recommendations. Static weights must be able to give

valid results for all possible combinations. Some weighted hybrids adjust weights

depending on the shifting situation. Specifically, the P-Tango system employs a hybrid

recommender which adjusts the weights for each technique in order to find the most

accurate recommendation [6]. As users give feedback in the form of rating, the weights

are altered to reflect the best recommendations for users. A weighted hybrid recommender

attempts to balance the strengths and weakness of many different techniques by simply

giving a weighted value to the output.

A switching hybrid determines the best technique to use in a given situation and uses

that to compute a recommendation. The recommender determines which technique to

execute based on the user-item matrix and the acceptability of the technique’s results [15].

Sparsity could be addressed by using a knowledge-based recommender with new items,

then once enough users have bought or rated the item collaborative recommendation would

be chosen. Some switching hybrids function based on a default and only employ other

12

techniques when the default fails to give a valid result [27]. The decision of when to switch

can also be based on a probability which is determined by the quality of the prediction [4].

Feature combination combines collaborative and content-based recommendations in

another way to address the issue of sparsity. The collaborative results are used merely as an

additional feature for an item. The hybrid recommender relies mostly on content-based, but

does not lose the information that collaborative recommendations capture. Content-based

recommenders often cannot identify the connections between items which are not explicit

attributes, but that a collaborative recommendation would uncover because of the actions

of users [4]. Implementation of knowledge-based recommenders with another technique

using feature combination has not been widely explored [15], but may lead to a better

solution to the problem of sparsity.

Instead of running different recommendation techniques in parallel then combining

the output, cascade uses the output of one recommendation as the input for a different

technique. One combination uses a knowledge-based recommendation to sort the items

into different categories, then the second technique is applied to the items within each

category to give a more complete recommendation. Certain categories could be ignored

for the second search, if they are infeasible. For large data sets it could be very useful to

remove infeasible items from the pool, but in contrast it may not return enough items to be

useful. The second technique for a cascade recommender could simply be used to break ties

for the results of the first technique [4]. Cascaded hybrid recommenders prioritize items

and then aggregate the items into an overall recommendation.

Feature augmentation allows a different recommendation technique to refine the

results of the main technique. The first technique alters the attributes for the item input

before the second technique is applied. For example, in the content-boosted collaborative

filtering created by Melville et al. sparsity and first-rater problem are overcome using

both content and collaborative techniques [20]. They use a content recommender to create

13

pseudo user-ratings for items the user has not rated, then simply apply a collaborative

recommender using the Pearson correlation. The content recommender was used to

enhance the ability of the collaborative results.

By combining different methods of recommendation weaknesses in certain techniques

can be mitigated. Because both collaborative and content-based recommenders suffer from

the sparsity problem it may be redundant to use a hybrid of those two techniques. Generally,

using a knowledge-based recommender is good for countering the sparsity problem. The

order in which certain hybrid methods are implemented impact the outcome. For example,

feature combination using a collaborative then a content-based would be very different than

using a content-based then a collaborative recommender. Hybrid recommender systems

exploit the strengths of other recommendation methods by finding a balance between

different techniques.

2.6 Attack Predictors

The recommender system is used to anticipate the actions of an attacker and suggest

a course of action to mitigate the degradation of the network capabilities. Understanding

current methods to predict attacker actions plays a key role.

2.6.1 Attack Graphs.

Attack graphs create a Bayesian representation of attacker actions which can be

performed to compromise the network. Defenders use attack graphs to increase their

situational awareness of vulnerabilities in the network. By anticipating attacker course

of action a defender can counter the attacker before the attack exploits the network.

The ADversary-driven VIew Security Evaluation (ADVISE) method developed by

Lemay et al. analyzes attack graphs and returns results applicable to the specific attacker. In

order to answer a decision question about the network security a discrete event simulation

is run on a modeled system. The attacker is characterized from the utility of their attack,

the skill level the attacker is capable of executing, goal of the attacker, system knowledge,

14

and system access. The utility of potential attacks are calculated based on the cost for

the adversary, reward for the adversary, probability of a successful attack, and probability

of the adversary of being detected during the attack. Attacks are represented in different

states in a graph where each step of an attack is a different state. The system performs

the analysis based on a simulation which is only a representation of the actual system. In

a simulation only well understood attacks can be analyzed. The system does take many

attacker characteristics into consideration. Overall, ADVISE performs a comprehensive

analysis, but does not have the capability for analyzing complex systems [17].

The causal network developed by Qin and Lee takes attack graphs to the next level.

The approach has a more strategic level view which attempts to determine the goals and

intensions of the attacker. The system first correlates all the alerts clustering them into

attacks. Then the alerts are sorted based on priority. The priority is calculated taking

into account the defender’s mission objectives, and the severity of the attack. Using

Bayesian techniques the probability of different attacks are determined with consideration

for the configuration of the network. Additionally, statistical analysis is applied to find

relationships between alerts. Applying the alert information to the creation of the attack

graph forms an attack tree with branches including possible intrusions. The attack tree is

used to create a causal network with each node with a given probability. An example of

an attack graph in Figure 2.2 generated from an attack tree in Figure 2.3. Each node has

a binary value which updates as more alerts occur in the network. The Bayesian network

supplies the attack prediction for the defense network. Using the data set from DARPA’s

Grand Challenge Problem, the system was able to predict the correct attacker action and

goal. The major goal of this effort was to develop a systematic way to generate attack plan

graphs based on alerts from the network. Cyber defense has begun to shift in the direction

of understanding the strategic objectives of the attacker. The system created by Qin and Lee

15

accomplishes that task simply by analyzing intrusion alerts. By learning the objective of the

attacker, the cyber defender gains a clear advantage when choosing defensive actions [22].

Figure 2.2: Attack Graph [22]

For attack graphs to be practical they must scale well. The NetSPA system uses

a new type of attack graph called the multiple-prerequisite graph which enables it to

linearly increase to the size of any network. The system has significant capabilities

such as creating an attack graph to represent the attacker’s ability to maximally intrude

into the network, model attackers from different locations in the network, and quickly

builds the multiple-prerequisite graph. The multiple-prerequisite graphs forms a graphical

representation of an attacker’s possible sequence of actions to compromise the network.

An example of a multiple-prerequisite graph is shown in Figure 2.4. Information about

16

Figure 2.3: Attack Tree [22]

the vulnerability of the network is gathered through Nessus scans, system configuration

data, and reachability calculations. The vulnerability information feeds into the NetSPA

algorithm which using a breadth-first search forms the multiple-prerequisite graph. In

order to deal with scalability the system consolidates similar states and groups of nodes

behind bottlenecks. Recommendations are computed based on the key vulnerabilities

which allow the attacker to progress through the attack. Testing of the NetSPA system

was done with a simulation of 50,000 nodes and a field test of 250 nodes. For the field test,

the attack graph was generated in a matter of 0.5 seconds, but was too large for a person

to understand quickly. The system’s recommendations were more useful with such a large

graph. NetSPA is one of the few systems which addresses the issue of scaling and presents

17

recommendations for the defender instead of just predicting the next attack; which makes

it more practical for use in a real network [13].

Figure 2.4: Example of (a) Full Graph, (b) Predictive Graph, and (c) Multiple-Prerequisite

Graph [13]

2.6.2 Attack Trees.

Attack trees present a goal oriented attack with a multi-level graph. Attack trees

represent similar information to attack graphs in either an outlined textual format or

a graphical format with nodes, edges, and dependencies. Attack trees have additional

conditions of AND and OR for parent-child node relationships. Because of the distribution

and dependency, attack graphs which are analyzed using Bayesian techniques are not

possible. Therefore, other methods must be used for analysis of attack trees.

The framework that Daley et al. developed uses modified attack trees. The nodes in

the attack tree follow a certain classification called Stratified Node Topology (SNT). The

SNT labels nodes based on functionality, including application exploits, abstract attacks,

18

and attack goals. The graph has both implicit and explicit edges which represent an

indirect and direct connection to other exploits respectively. An example of SNT is show in

Figure 2.5. The attack trees are constructed in reference to specific host vulnerabilities on

the network. The SNT forms the framework for analysis of attacks. No specific technique

for determining likely attacks has been developed for the framework. SNT does present

the potential cyber attacks in a step by step format which enables the defender to observe

possible attack vectors [7].

Figure 2.5: Example of Stratified Node Topology [7]

The network is represented by a logical model which includes the system configura-

tion, vulnerabilities, and potential attackers. The nodes on the cyber terrain graph represent

hosts and include specific services and data metrics. The value of the node is represented

by a utility given to each service and data metric assigned 0 to 1, with 1 representing a

high valued service or data. A service tree is generated which maps vulnerabilities, alerts,

19

and privilege levels to specific services on the network. The edges of the terrain graph

include an access and band list. The behavior prediction process begins with filtering the

IDS alerts. Next a probability model is built based on the observed alerts using the finite

context model previously constructed from network analysis. Different orders of probabili-

ties, which are different levels of depth, are created with the blending of these orders called

Variable Length Markov Model (VLMM). Testing of the VLMM system was performed

on a virtual network with scripted attacks. The VLMM significantly outperformed the in-

dividual orders of probability with a 90% accuracy rate. The cyber terrain and VLMM

system take two very different approaches to predicting cyber attackers but provide a good

representation of an attacker’s possible behavior [8].

Yang et al. have designed a cyber fusion engine called INformation Fusion Engine

for Real-time Decision-making (INFERD) and Threat Assessment for Network Data and

Information (TANDI) to predict stages of a multi-state cyber attack. INFERD performs the

IDS alert correlation while TANDI determines threats to the network based on the output

from INFERD and network configuration. As alerts are generated on the network INFERD

associates each alert with an existing attack, then updates the severity of each on-going

attack. Influencing the decisions of both INFERD and TANDI is the Guidance Template

which is viewed as the expert for attacker modeling. TANDI determines threat levels taking

into account hacker’s goals, vulnerabilities, value of the target, and skill of the attacker.

The threat assessment algorithm weighs the information and determines likely targets for

the next attack. The system is limited by not being able to observe insider threats and being

unable to correlate coordinated attacks from different sources. INFERD was tested on a

virtual network by Air Force Research Laboratory (AFRL), while a set of cyber attacks

were designed by the researchers to test TANDI. Both demonstrated good performance,

but with limitations for understanding multi-stage cyber attacks. Both systems are limited

in their knowledge of possible attacker actions by the Guidance Template, which must be

20

created by someone with domain knowledge. Because of the dependence on the Guidance

Template the system has limited adaptability [30].

2.6.3 Machine Learning.

Machine learning encompasses a wide range of techniques which focus on presenting

the system with information and enabling the system to incorporate this information to

make future decisions. The tools included in this section did not fit into the previous

categories; therefore they are included in the wider discipline of machine learning.

Exploiting the knowledge about the previous actions of an attacker is a common

approach. The tool called Nexat uses machine learning techniques to predict the actions of

attackers on a cyber network. Nexat executes in phases starting with data extraction phases

where attack sessions from the IDS are placed in hash tables. Then the training phase is

performed which creates sets of targets with associated probability. The training phase is

followed by the prediction phase where Nexat uses the probabilities and weighted sums to

determine the most likely next attack. The Nexat tool was evaluated using a dataset from

a cyber competition and it performed with over a 94% average accuracy. Nexat requires

a workload to train and is limited in its knowledge based on the training. With a good

training dataset the system performs well and is able to scale to any size network [5].

Another technique was developed by Ning et al. to compute the strategy of an attack

based on the IDS alerts triggered by the attack. The technique is based upon an attack

strategy graph with nodes representing attacks, and edges representing order of attacks.

Using a subgraph isomorphic method the similarity to other attacks based on the IDS

alerts can be calculated. A correlation model is built from the IDS alerts, which shows

the dependencies of different attack vectors. The system is able to identify the attack

strategy when the IDS alerts are generalized and computes the similarity between different

attacks. The information obtained for the cyber defender gives them a strategic view on

the cyber attack, but little practical information. Understanding the goals of the cyber

21

attacker is important, but understanding exactly what vulnerabilities will be exploited is

more valuable [21].

2.7 Summary

Recommender systems process large martices of information in order to make

predictions. A wide range of methods can be used to obtain a utility of an item for a

user. Collaborative recommenders focus on grouping similar users, while content-based

recommenders create neighborhoods from the attributes of items. Knowledge-based

recommenders extract information from users then through relaxing requirements arrive

at a recommendation. Hybrid recommenders bring the other three techniques together

in order to create a well-rounded recommender. Each recommender must be carefully

designed to fit their specific problem domain.

The current methods for attack predictors: attack graphs, attack trees, and machine

learning, are well developed. The major problem with using current methods of network

analysis centers on scalability. A large network with many nodes makes the nodal model

very complex. The information presented to the network defender is overwhelming. Many

of the systems attempt to present the information in such a way as to aid the defender.

But these systems fall short compared to the capability of a recommender system, which

focuses on making meaningful suggestions to a user. The majority of the work in predicting

attacks has been with the goal of improving predictions. Knowing the next action of the

cyber attacker is useful but only if the defender knows how best to counteract the attacker.

A recommender system would be a more complete tool for the defender and holds the

possibility to act autonomously.

22

III. Recommender System Design

3.1 Overview

In this chapter the design of the recommender system and IDS are explained. The

IDS used in this experiment was designed by Captain Evan Raulerson. In the context of

the Observe Orient Decide Act (OODA) loop the IDS functions as the Observe and Orient

while the recommender system functions as the Decide. Finally, the Action part of the

OODA loop is performed by the cyber defender and has the potential to be automated.

3.2 Network Model

The Network Modeler functions as an IDS from the perspective of the recommender

system, but it gives significantly more information about the network than the average

Commercial-Off-The-Shelf (COTS) software. For the purpose of simplicity when referring

to the Network Modeler of the experimental system it will be called an IDS. The IDS has

three major sections: sensors, database, and modeler algorithm. The sensors are located on

each node of the network and send updates to the database. The modeler pulls information

from the database to classify the information. The database and COTS software run on the

sensor machine

3.2.1 Sensors.

There are a variety of types of sensors used to collect information about the network

status. To understand the overall network health the sensors view the network from different

aspects. Almost all of the sensors are COTS with the exception of the host monitoring

which was custom written. The creator of the IDS intended to use only COTS, because of

the availability and known success, but a compatible host monitoring system could not be

found for the scope of the IDS. Snort is used to observe the network traffic and alert to

known signatures of attacks. The rule set for snort is customized for the attacks that will be

23

executing on the network to ensure that an alert is generated. The Snort rules in Figure 3.1

was designed to alert to the netbios smb buffer overflow exploit. Another tool observing

alert tcp any any -> \$HOME_NET 445 (msg:"’ET NETBIOS Microsoft

Windows NETAPI Stack Overflow Inbound - MS08-067 (15)"’;

flow:established,to_server; content:"’|1F 00|"’; content:"’|C8 4F

32 4B7016 D3 01 12 78 5A 47 BF 6E E1 88|"’; content "‘|00 2E 00 2E

5C 00 2E 00 2E 00 5C|"’; reference: url, www.microsoft.com/technet/

security/Bulletin/MS08-067.mspx; reference:cve, 2008-4250;

reference: url, ww.kb.cert.org/vuls/id/827267; reference:url,

doc.emerginingthreats.net/bin/view/Main/2008705; classtype:

attempted-admin; sid:2008705; rev:5;)

Figure 3.1: Custom Snort rule [23]

the network is Nmap. Nmap scans the network to find hosts and determines the services

running on that host. The information gathered from Nmap is stored in the database on the

sensor machine using Perl scripts. The custom host monitoring software is a java based

program sending updates to the database on the sensor machine. The host monitoring

program gathers information about memory usage, CPU usage, bandwidth, and service

information. Additionally, the host monitoring program controls the anti-virus software for

each host. The anti-virus software used is AVG Anti-Virus 2013, because of the ease to

send commands and receive information through the command line [23].

3.2.2 Database.

A MySQL database located on the sensor machine acts as the storage for the sensors

on the network. Snort, Nmap, vulnerability scores, and host monitoring software are

the four databases used to store the information. The database acts as the collection of

24

information about the network as shown in Figure 3.2. The Snort database is created during

the Snort installation. The event table includes the key information for alerts with the

signature identifier, and timestamp. The other tables in the Snort database store signature

identifiers and specific information about events with foreign keys to the event table. The

Nmap database includes two tables: machines and services. The machines table stores

information about specific machines on the network such as Operating System (OS), and

Internet Protocol (IP) address. The services table stores data about services running on each

machine. The host monitoring database is where the host monitoring program running on

each machines sends the updates of the node’s status and anti-virus software results. The

vulnerability scores database stores the requirements for the host to meet in order to be

vulnerable to attacks found in the Snort alerts [23].

Figure 3.2: Flow of the IDS Information [23]

25

3.2.3 Modeler Algorithm.

The network modeler collects and classifies the information about the network in order

to build a better understanding of network health. The classification and assessment aspect

determines if there is a threat to the network based on the information gathered from all

of the sensors on the network. The flow of the modeler is summarized in Figure 3.3.

The designer of the IDS created his own scale and requirements to determine the level

of vulnerability for the network and labeled events based off of the ranking system. For

the purposes of the recommender system testing the vulnerability threat level assigned by

the IDS will not be considered. Another valuable contribution to the network picture

Figure 3.3: Data Fusion of the Modeler [23]

is the generation of possible actions that can be taken on each host using administrative

privileges. The modeler does not include an exhaustive list of all possible actions, but

functions as a demonstration of the capability of the modeler to perform such an action.

26

With such a functionally built into the system it is possible to expand to a more complete

list of possible actions to be taken on the network. Actions are assigned to hosts based on

known actions in the database and the host information gathered. The list of actions are

shown in Table 3.1 and Table 3.2. Actions are included on this list with no regard to what

is occurring in the network. Instead the modeler provides all actions that can be taken in

order to provide the cyber defender the option to react as they deem appropriate [23].

Table 3.1: List of basic actions that can be taken on client machines [23]

Action

Update operating system

Update application

Create user account

Delete user account

Reset user password

Disable port/service

Enable port/service

Table 3.2: List of basic actions that can be taken on the firewall machine [23]

Action

Block source IP address

Allow source IP address

Block destination IP address

Allow destination IP address

Block ICMP traffic

Allow ICMP traffic

27

3.2.4 Output.

The output from the modeling algorithm is an XML file which summarizes the

network health. Each host on the network has information about services running on the

host, user accounts, infections, and actions that can be taken for that host. The XML file

includes the information for all the hosts on the network. The tags used in the XML file are

show in Figure 3.4. The host will only have tags for events associated with that individual

host. For example only a host which is acting as a firewall will have firewall rules and only

a host with an infection detected from the anti-virus will have the infection tag [23].

<network>

<host>

[attributes]

<service>[attributes]</service>

<user>[attributes]</user>

<event>[attributes]</event>

<av_scan>

[attributes]

<infection>[attributes]</infection>

</av_scan>

<action>[attributes]</action>

<firewall_rule>[attribute]</firewall_rule>

</host>

</network>

Figure 3.4: Format example of XML file output from network modeler [23]

28

3.3 Collaborative Recommender System

The collaborative recommender system functions as the attack predictor. The

algorithm is the user-based nearest neighbor recommendation. First the similarity between

the nodes is calculated with the nodes replacing user and the attributes for each node

replacing the products. The Pearson’s correlation coefficient assigns similarity values from

−1, strong negative correlation, to +1, strong positive correlation. For each pair of nodes

the similarity is calculated using Equation (3.1) [15].

similarity(a, b) =
∑

i∈I(ra,i − ra)(rb,i − ri)√∑
i∈I(ra,i − ra)2

√∑
i∈I(rb,i − rb)2

(3.1)

For example, the output from the modeler shown in Table 3.3 results in the similarity shown

in Table 3.4. The prediction is calculated using the similarity values. Based on pilot studies,

five nearest neighbors were selected for the algorithms. The predicted value is found using

Equation (3.2) [15].

Table 3.3: Example Model Output

Machine IP OS Event Service User A Account

192.168.1.1 2 0 1 0

192.168.1.2 1 1 0 1

192.168.1.3 1 ? 0 1

Table 3.4: Example Similarity Results for Nodes on the Network

Machine IP 192.168.1.1 192.168.1.2 192.168.1.3

192.168.1.1 1 -0.17408 0.301511

192.168.1.2 -0.17408 1 0.57735

192.168.1.3 0.301511 0.57735 1

29

prediction(a, i) = ra +

∑
b∈N similarity(a, b) ∗ (rb,i − rb)∑

b∈N similarity(a, b)
(3.2)

Continuing with the earlier example the predicted values are shown in Table 3.5. The

prediction for the event occurring for the similar node is higher. Related to the cyber

defense domain the rational is that similar nodes will have similar vulnerabilities and

therefore similar attacks expected against them. The predicted rating for nodes are the

values used to determine vulnerabilities that the knowledge based recommender system

needs to consider when generating defensive actions.

Table 3.5: Example Predicted Value for Nodes

Machine IP OS Event Service User A Account

192.168.1.1 2 0 1 0

192.168.1.2 1 1 0 1

192.168.1.3 1 0.40693 0 1

3.4 Knowledge-based Recommender System

The knowledge based recommender system is the core element to making defensive

action recommendations. The knowledge-based recommender system paradigm chosen

is commonly referred to as a constraint-based recommender. A constraint-based

recommender system in the manner that it is implemented for the cyber defense

recommender system is a subset of knowledge-based recommender system. The

recommender system depends on pre-set knowledge about which actions mitigate or

counter which cyber attacks. It is reasonable to assume that there is a good understanding

of what actions counter certain attacks.

When the recommender system is first started it loads from an XML file all the actions

that it knows. The actions supplied by the IDS are the only ones considered for the scope

30

of the experiment. The IDS and recommender system could both be expanded to include

a significantly larger set of actions, but that is not the focus of this work. The XML file

only needs to be loaded at the initial start up which leads to an expectation that the first

computation time for the recommender system should be significantly larger than the other

computation times. An example of the XML file format is shown in Figure 3.5. Each

<attack>

<defact>

<name></name>

<exploit></exploit>

</defact>

</attack>

Figure 3.5: Format example of XML file used by knowledge-base recommender system

action may counter multiple exploits. Therefore, the action suggested should mitigate

as many of the predicted attacks as possible. The recommender system presents the

top 10 actions in order of the most number of possible attacks mitigated. Currently no

consideration is given for functionally of the network, but instead leaves the decision up to

the cyber defender. If a vital node is at risk the cyber defender may chose a more dramatic

reaction, than would be chosen if a non-vital node was under attack. The intention of

suggesting 10 defensive actions is to give the cyber defender options while presenting what

the recommender system has determined to be the best defensive action up front.

The knowledge-based recommender system considers all the possible actions that can

be taken to counter the current threats. Equation (3.3) is formed where events A, B, and C

are all events associated with the specific action.The t stands for threat level and o stands

31

for the occurrence of event. Once all the action values are calculated they are sorted in

descending order and presented to the cyber defender as recommendations.

value = (tA) ∗ (oA) + (tB) ∗ (oB) + (tC) ∗ (oC) (3.3)

3.5 Summary

In this chapter the design of the system used in the experiment was described in detail.

First, the inner workings of the IDS and network model were broken into parts. Second,

the collaborative recommender system algorithm was shown using an example network

model. Finally, the defensive action generation was described using the knowledge-based

recommender system algorithm.

32

IV. Methodology

4.1 Problem Definition

4.1.1 Goals and Hypothesis.

The application of recommender systems has been constrained to recommending

items of interest to users. The goal of this research is to determine the value of

employing a recommender system as an attack predictor, and determine the a configuration

of a recommender system for the cyber defense domain. Every implementation of a

recommender system must be designed to function efficiently in a given domain. The

research effort identifies the performance of five recommender system algorithms to predict

cyber attacks. It is expected that the recommender system will be a more accurate

predictor for cyber attacker actions than previously developed attack predictors. A hybrid

recommender system considers multiple aspects of the system to make a prediction, while

current attack predictors attempt to make decisions based on one dimension of the problem

domain.

4.1.2 Approach.

To determine the superior recommendation algorithm multiple types must be

observed. Hybrid recommender systems are comprised of collaborative, content-based,

and knowledge-based with different combinatorial techniques. Because of the nature of

cyber attacks, sparsity in collaborative and content-based recommender systems means

that a knowledge-based recommender must be used in the hybrid recommender. The

knowledge-based recommender is combined with a collaborative technique. Different

configurations of the recommender systems are used as an attack predictor for the same set

of cyber attacks. The accuracy of the different recommender systems will be compared.

The accuracy results of the experiment are analytically contrasted with current attack

33

predictor systems to determine if the recommender system is an effective cyber defense

tool.

4.2 System Boundaries

The testing environment includes a virtual network, a host server machine, an IDS,

and the recommender system. A system overview is shown in Figure 4.1. The host server

machine is the physical machine on which the virtual network exists. The virtual network

contains multiple virtual machines running both Windows and Linux operating systems.

Within the virtual network is a black hat machine which acts as the source of the cyber

attacks. The IDS is configured to alert based on the cyber attacks used for testing [23].

The information about the network health feeds into the recommender system from the

IDS. Therefore, the IDS must be able to identify the attack to give the recommender

system correct information about the network. The recommender system includes a hybrid

configuration with a knowledge-based recommender system in addition to collaborative

techniques. The hybrid technique used is limited to cascade hybridization. Instead

of running different recommendation techniques in parallel then combining the output,

cascade uses the output of one recommendation as the input for a different technique.

4.3 System Services

The system provides the service of recommending actions for a defender to counter

the current cyber attack. The virtual machines act as users and sensors for the network.

The IDS takes in information from the virtual network and correlates alerts to identify and

classify attacks on the network. The recommender system, using domain knowledge and

information from the IDS, predicts the attacker’s next action and gives the defender an

action to counter the attacker. Possible outcomes of the network service include: (1) the

cyber attack was not successful, (2) a loss of network traffic, and (3) the cyber attack was

successful. The IDS outcomes include: (1) correctly identifying an attack, (2) incorrectly

34

IDS

Recommender
System

Virtual
Network

Host Machine

Cyber
Attack
Script

Network
Traffic Configuration of

Client Machines

Configuration of
Recommender
System Machines

IDS
Alerts

Initial State of
Recommender
System

Recommender
System Algorithm

Response
Time

Accuracy

Figure 4.1: The Recommender Defender System

identifying attack, (3) no alert to attack, and (4) error. The recommender system outcomes

include: (1) correctly predicting the defense counteraction, (2) incorrectly predicting the

defense counteraction, and (3) error. A correct prediction of a defense attack is an action

which is appropriate for mitigating or stopping the next attack to be performed by the cyber

attacker. An error outcome includes a failure of the component or a null output from the

component. The recommender system is the focus of the experiment, therefore metrics are

defined to measure these three possible outcomes. A successful outcome for the system

occurs when the recommender system presents a correct defender counteraction for the

next attacker action.

4.4 Workload

The workload for the network includes the traffic from the attacker machine. The

traffic from the attacker machine varies to include multiple attacks. For each attack the

basic attacker principles are followed show in Figure 4.2 [26, 28]. Information gathering

35

1. Information Gathering - Collection of general information about the target.

2. Scanning and Vulnerability Assessment - Network scan performed to obtain infor-

mation about users and potential vulnerabilities on the network.

Nmap

3. Intrusion - Exploitation of vulnerabilities to gain access to the system.

ms08 067 netapi exploit

4. Maintaining Access - Deployment of a backdoor or other malicious software.

netcat

5. Clearing Tracks - Removal of the evidence of cyber attack.

alter register information

Figure 4.2: General cyber attacker process

does not include an attack tool, because it is usually not performed on the network directly,

but instead as a social networking attack. The attacks are from the suite of available tools

on the Linux Backtracking OS, specifically metasploit modules. Using different tools from

the metasploit framework attacks perform each step in the process. The order and types of

attacks performed is considered the workload for this system. The first attack is Nmap for

the scanning step, then ms08 067 netapi vulnerability from the metasploit modules for the

intrusion step.

4.5 Performance Metrics

The accuracy of recommender systems reveals the effectiveness of using a specific

recommender system in the cyber defense domain. The widely accepted metric used for

36

recommender systems is a calculation of Root Mean Square Error (RMSE) which requires

comparison between the utility assigned by the recommender system and the true utility

of an item [11, 14]. RMSE highlights the difference in the recommendation from the true

value, which shows how well the recommender can determine the attacker’s next action.

The accuracy of the system is not the only metric of interest. It is useful to know

how long it takes for the recommender system to determine a recommendation. The speed

of recommendation calculations determines if the recommender system can have practical

applications on a real network. For a recommender system to be useful on a real network it

must be able to compute an accurate recommendation within a reasonable amount of time.

Some recommender systems perform computation offline, but this is not an acceptable

solution for a cyber attack predictor [18]. The IDS performs the analysis of the system and

creates an output file which is sent to the recommender system. The computation time for

the recommender system begins when it receives the file from the IDS and ends when a

recommendation has been displayed to the defender. The time measurement includes the

processing of the IDS information into the matrix used by the recommender system. By

measuring the time from when the recommender system receives a new alert, it focuses the

metric on the recommender algorithm and is not affected by the performance of the IDS or

the virtual network.

4.6 System Parameters

The system parameters are characteristics of the system which affect the performance

of the system. The majority of these parameters are fixed.

• Configuration of client machines - The OS and the Random Access Memory (RAM)

for the machines on the network determine the services available on each machine

and the speed. The configuration influences the effectiveness of attacks. The

effectiveness of attacks are also directly related to the vulnerabilities on the user

machines which depend on the OS and service settings such as open ports.

37

• Configuration of recommender system machine - The recommender system machine

configuration affects the performance of the computation speed of a suggestion for a

defender’s reaction.

• IDS Alerts - The appearance of the attacks impacts the response from the IDS. The

IDS classifies and correlates information from the virtual network to generate updates

for the recommender system. The output from the IDS is the only information

the recommender system uses to create a suggestion of defense. Depending on

what the IDS presents as output greatly affects the recommendations made by the

recommender system.

• Initial state of recommender system before execution of algorithm - The accuracy of

the recommender system depends heavily on information from the IDS, and the state

of the user-item matrix. The current information from the IDS must be added to the

user-item matrix before executing the recommender system algorithm. The user-item

matrix relates attacker actions to a specific attacker with a utility value. The utility

value ranges between 0 and 1, where 1 means the attacker used the attack and all other

values represents the likelihood the attacker will use the attack. The results from the

recommender system are limited to the potential actions given for each machine by

the IDS output.

• Implementation of recommender system algorithm - The algorithm implemented for

the recommender system affects the speed and the recommendation generated. The

type of recommender system used would return different suggestions. The two

main types of collaborative and knowledge-based recommender systems all use very

different approaches to predicting the next action of the attacker. The output of the

system depends on the implementation specifics of the hybrid recommender. The

different types of recommender systems have different computational complexity

38

which depends significantly on implementation of the algorithm. Depending on

which one is implemented in the system the speed of the defender’s reaction is

significantly impacted.

Cascade Technique - Cascaded hybrid recommenders group items and then

prioritize within the groups to form an overall recommendation. The cascade

recommender algorithm must complete the first method before applying the second

method.

4.7 Factors

The factors for the system are the parameters and workload which are varied in the

experiment. The parameter which is varied for the experiment is the algorithm implemented

for the recommender system. All of the other parameters will remain constant to reveal the

effects of different recommender system algorithms in the cyber defense domain. The

factors are shown in Table 4.1.

Table 4.1: Factor Levels

Level Hybridization Algorithm 1 Algorithm 2 Variation

1 Cascade Collaborative Knowledge-based Attributes no IP association

2 Cascade Collaborative Knowledge-based Threshold 0

3 Cascade Collaborative Knowledge-based Threshold 0.5

4 Cascade Collaborative Knowledge-based Threshold 0.75

5 Cascade Collaborative Knowledge-based Threshold 0.95

Different cyber attacks are executed to show how the recommender system works

in two different situations. The objective of the attack will be to compromise a specific

user machine on the network. The attacks will target a machine on the network. The

recommender system should react to protect the target machine, but depending on the

39

information it has in the user-item matrix it may predict incorrectly. The cyber attacks

are scripted with different attacks which follow the basic principles of cyber methodology.

In order for the recommender system to be able to predict the attacker’s next action the

recommender system needs to understand attacker actions.

4.8 Evaluation Technique

Measurement of the virtual network is the main evaluation technique. The virtual

network functions as both a realistic network and good testing environment. Between

experiments, a virtual network snapshot can easily be taken at any stage and reverted back

to previous states.

The virtual network is located on a server with two 3.46 GHz CPU, 192.0 GB memory,

1.8 TB disk capacity, and a VMWare ESXi hypervisor 5.0.0. The topology of the virtual

network is show in Figure 4.3. For this experiment the machine with the IDS and the

recommender is labeled “sensor”. The recommender system code is written in java and

compiled using java version 1.6.024 OpenJDK (IcedTea61.11.5) (6b24−1.11.5−0ubuntu1−

12.04.1). As stated in the previous section the system is affected by the computation speed

of machines on the network. Table 4.2 shows the OS, Central Processing Unit (CPU), the

RAM, version, and function for each of the different machines on the network. The OS

corresponds to the label given in Figure 4.3 and the values in Table 4.2 apply to all of the

machines with the same OS.

4.9 Experimental Design

A full-factorial design is implemented with five different factors. The algorithm factor

uses five different algorithms. The number of experiments is 5 and with 30 replications that

results in 150 total experiments. Considering the deterministic nature of the recommender

system the variance is very low assuming that the IDS has valid output. With such a low

variance a 95% confidence level is achieved with only 30 replications of each. A statistical

40

Backtrack 5 r3
(Blackhat)

PFSense
(Firewall)

Windows Server 2008
(Internal Web Server)

Ubuntu Server 12
(FTP Server)

Windows 7
(Client)

Windows 7
(Admin)

Windows XP
(Client)

Windows 7
(Client)

Windows XP
(Client)

Ubuntu
(Sensor)

Windows 7
(Client) Windows 7

(Client)

Windows 7
(Client)

Windows XP
(Client)

Windows 7
(Client)

Windows 7
(Client)

s XPXPXPXPXPXPPPPPPXXXXPPXPXPPPPPPPPPPPPPPPPP

XPPPPP

Windows XP
(Client) Windows XP

(Client) Windows XP
(Client) Windows XP

(Client)

Windows 7
(Client) Windows 7

(Client)

Windows 7
(Client)

Windows 7
(Client)

Windows 7
(Client)

Windows 7
(Client)

Windows 7
(Client)

Windows 7
(Client)

Figure 4.3: Virtual Network Topology

Table 4.2: Configuration of Virtual Machines

OS CPU RAM Version Function

Ubuntu Desktop 12 3.46 GHz 4 GB 3.2.0-27-generic-pae Sensor

Windows 7 Enterprise 32-bit 3.47 GHz 1 GB SP1 Client

Windows XP Professional 3.47 GHz 512 MB SP2 Client

Ubuntu Server 12.04 LTS 3.46 GHz 1 GB 3.2.0-23-generic-pae Sever

Windows Server 2008 64-bit Enterprise 3.47 GHz 4 GB SP1 Server

PFSense 3.46GHz 1 GB 2.0.1 Firewall

difference in the algorithm’s performance can be seen in the 95% confidence interval even

at a low percentage of difference between the results. The levels chosen limit the factors to

a reasonable number of possibilities making full-factorial experiments practical.

41

4.10 Summary

This chapter describes the methodology implemented to determine the effectiveness

of recommender systems as an attack predictor in the cyber defense domain. The

workload designed simulates a realistic attacker methodology following the five step

process. The parameters include the configuration of the virtual network, IDS alerts,

the state of the recommender system, and the implementation of the algorithms. The

metrics of response time and accuracy are selected to observe the factors and levels of

recommender system algorithm implementation. A virtual network is used because it

enables multiple experiments to be conducted efficiently and still represent a realistic

network. A full-factorial experimental design is shown for that measurement technique.

42

V. Results and Analysis

5.1 Overview

In this chapter the results of the previously outlined test are presented, beginning with

the metrics from the experiments, followed by the statistical analysis of the results, and

ending the chapter with the implications of the experiment’s results.

5.2 Computation Time Results

The first experiment used the recommender system algorithm where each attribute was

not directly related to the IP address. The computation time for the individual run had a

max of 1.477 seconds and a minimum of 0.03843 seconds. The mean computation time

was 0.1425 seconds with a median of 0.09689 seconds. Figure 5.2 shows the many large

outliers from the computation time, which correspond to the peaks in Figure 5.1. The first

large peak is the maximum value and can be explained by the initialization which occurs in

the first run of the algorithm. The first time the recommender system runs it must load the

attack knowledge base. After the first run of the algorithm the same knowledge base is used

for the following runs. The other peaks in the computation time in Figure 5.1 occur when

the network is under attack. The computation time for the recommender system spikes

during an attack on the network because the knowledge based recommender section of the

algorithm must determine the best response. When the network is not under attack there

are no current attacks to react to, but depending on the threshold there maybe predicted

attacks on vulnerable nodes on the network.

The next set of algorithms were run in parallel. Each was subjected to the same attacks

with only the modification of different threshold values applied. The threshold value is the

number calculated for the attack event for each node. If the predicted value is above the

threshold value that node is viewed as being attacked for the purpose of determining the

43

Figure 5.1: Computation Time for Recommender System Algorithm: Attributes with no IP

association

counter action to be taken. The change in threshold value could affect the outcome of the

computation time because with more possible attacks different response actions must be

considered when the knowledge based recommender system determines the best defensive

action. In Table 5.1, the summary statistics for the four different algorithms are shown.

An ANalysis Of VAriance (ANOVA) test is performed on the computation times for

the five different algorithms to determine if there is a significant difference between the

computation times. The null hypothesis for the ANOVA test is that the mean computation

time is equal for all five of the algorithms. The results of the ANOVA test are shown in

Table 5.2. The outliers for the data makes a linear model questionable for the data. The very

44

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●

●
●
●

●

●

Figure 5.2: Computation Time for Recommender System

small p-value found for the ANOVA test shows that there is a significant difference in the

mean values. The box plots in Figure 5.2 and Figure 5.3 support the conclusion of different

mean values with the mean of the algorithm with attributes without IP association, with a

threshold of 0, and a threshold of 0.95 mean values that do not fall within the quartiles of

the algorithms with threshold values of 0.5 and 0.75.

5.3 Accuracy Results

The metric for determining the accuracy of the recommendation is RMSE. The

RMSE compares the predicted value calculated by the recommender system to the known

true value. Observing the specific attack performed on the Windows XP machine, the

recommender system should predict higher values for that same event occuring for other

Windows XP machines. For the purpose of these calculations the known true value for all

XP machines with the same vulnerability as the attacked machine were given a value of 1

for that attack, while all other machines were given a value of 0. The RMSE is calculated

45

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l
l

l

l

l

l

l

l

l

l

l

ll

l

ll
l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

Threshold 0 Threshold 0.5 Threshold 0.75 Threshold 0.95

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Computation Time for Recommender System

C
o
m
p
ut
at
i
o
n
Ti
m
e
(
s
e
c
o
n
d
s)

Figure5.3:ComputationTimeforRecommenderSystem

usingEquation(5.1).

(x−x1)2

n
(5.1)

TheRMSEforvulnerablemachineswassignificantlyhigherthantheRMSEresults

fornon-vulnerablemachines.Almostallofthepredictedvalueswerecloserto0than1but

thevaluesforthevulnerablemachineswerestatisticallyhigherthanthepredictedvalues

ofthenon-vulnerablemachines. A Welchtwosamplet-testwasperformedcomparing

themeanpredictedvaluefortheattackonthesetofvulnerablemachinesandtheset

ofnon-vulnerablemachines.The Welchtwosamplet-testwasperformedonallofthe

predictedvaluesforeachofthefiverecommendersystemalgorithms. Theresultsof

theWelcht-testfortherecommendersystemwithoutattributeassociationwasap-value

<2.2x10−16.whichissignificantlylessthanthealphavalueof0.05.The95%confidence

46

interval was between 0.06518022 and 0.09284223, which does not include 0 meaning that

there is a difference in the mean values of the two sets of data. The mean of the vulnerable

machines is at 0.12805207 and the mean of the non-vulnerable machines is at 0.04904085,

therefore the mean of the predicted values of the event for vulnerable machines is higher

than the mean for the non-vulnerable machines. The p-value is the same for all of the

algorithms, therefore the conclusions hold true for all of the algorithms tested and are

summarized in Table 5.3. Notched boxplots support these conclusions shown in Figure 5.8,

and Figure 5.9. All of the notched boxplots do not have overlapping notches which is strong

statistically evidence that the means are different for the vulnerable and non-vulnerable

predicted values. The notches are calculated using Equation (5.2), which is based off of

the same computations used for t-tests. With statistically higher values it shows that the

recommender system did predict that those vulnerable machines were possible targets for

a similar cyber attack.

1.58 ∗ IQR
√

n
(5.2)

Table 5.1: Computation Time of Algorithms with Varied Threshold Values

Threshold Minimum 1st Quartile Median Mean 3rd Quartile Maximum

0 0.04176 sec 0.1019 sec 0.1115 sec 0.2565 sec 0.2798 sec 3.548 sec

0.5 0.04153 sec 0.1480 sec 0.2497 sec 0.3392 sec 0.4181 sec 2.850 sec

0.75 0.04184 sec 0.1756 sec 0.2823 sec 0.4464 sec 0.5546 sec 3.236 sec

0.95 0.04121 sec 0.1020 sec 0.1301 sec 0.3146 sec 0.3623 sec 3.538 sec

47

Table 5.2: The results of the ANOVA test on the computation times for the five algorithms

Degrees of Freedom Sum Sq Mean Sq F-value Pr(>F)

group 4 5.7361x1018 1.4340x1018 12.711 4.579x10−10

Residuals 895 1.0097x1020 1.1282x1017

Figure 5.4: Computation Time for Recommender System Algorithm: Threshold Value 0

The recommender system algorithm gave the responses to the netbios attack shown

in Table 5.7. There were slight deviations from these responses for each of the five

algorithms. The first recommendation was made based on the fact that the knowledge-based

recommender system determined that it covered the largest number of threats to the

network. The number of threats could change based on the threshold value for each

48

Figure 5.5: Computation Time for Recommender System Algorithm: Threshold Value 0.5

Table 5.3: Welch Two Sample T-test Comparing Vulnerable and Non-vulnerable Machines

Algorithm Confidence Interval Mean of Vulnerable Mean of Non-Vulnerable

No Attribute Association 0.065-0.0927 0.127 0.049

Threshold 0 0.072-0.093 0.151 0.068

Threshold 0.5 0.140-0.160 0.151 0.001

Threshold 0.75 0.146-0.162 0.157 0.003

Threshold 0.95 0.145-0.160 0.156 0.003

algorithm. The predicted values for each other vulnerable node was so low they were

only included in the algorithm with a threshold value of 0.

49

Figure 5.6: Computation Time for Recommender System Algorithm: Threshold Value 0.75

Comparing the recommendations given by each algorithm to the correct cyber

response showed 100% correct selection of actions with varied calculated threat levels. For

the purpose of these experiments the firewall rule is the correct cyber defense response

from the knowledge base that was given to the recommender system. The correct

recommendation was generated, but only of the attacks that were above the threshold.

The recommender system algorithm with attributes not associated with IP addresses

resulted in the same 45 of 47 recommended actions with all 47 recommendations listed

having the same first response of a firewall rule to block the source IP address. The

defensive actions are shown in Table 5.8 which shows that the algorithm found vulnerable

machines and recommended a defensive action to resolve the threat.

50

Figure 5.7: Computation Time for Recommender System Algorithm: Threshold Value 0.95

Based on predicted values for vulnerable machines centering around 0.2 the threshold

values for the algorithms should be adjusted. Three more algorithms were tested with

threshold values of 0.15, 0.18, and 0.2. The recommendations for the thresholds of

0.15, 0.18, and 0.2 identified more threats and addressed them appropriately. The

recommendations are show in Table 5.9. The first recommendation of creating a firewall

rule, addresses the threat for all vulnerable machines. The following recommendations

suggests updating the OS for each vulnerable machine. For the threshold of 0.15, 37 of the

93 total recommended lists alerted to all 6 of the vulnerable machines and gave the correct

recommendation. For the threshold of 0.18, 29 of the 88 total recommended lists alerted to

all 6 of the vulnerable machines and gave the correct recommendation. For the threshold of

0.2, only 4 of the 93 total recommended list alerted to all 6 of the vulnerable machines and

51

Figure 5.8: Algorithm Attributes with no IP association

gave the correct recommendation. With a lower threshold there were some false positives,

meaning that non-vulnerable machines were identified as vulnerable machines. The break

down of false positives, true positives, false negatives, and true negatives are shown in

Figure 5.10, Figure 5.11, and Figure 5.12. Overall, a threshold of 0.15 appears to be the

best choice for the algorithm.

52

Figure 5.9: Algorithm All Threshold Values

5.4 Implications

The attack prediction algorithm was not as revealing as expected, but correct

actions were generated from weak predictions. With the adjusted threshold values the

recommendations improved significantly. At the same time the prediction results reveal

that more work needs to be done in this area. While, the computation time for a reasonably

sized network was on the order of millisecond with the longest time reaching only 3.5

seconds. The computation time shows the recommender system is a viable tool for network

security. The computation time for all of the algorithms are impacted by running on a

53

Figure 5.10: Algorithm Threshold Value 0.15

virtual machine sharing resources on the ESXi server. If the algorithm ran on a dedicated

physical machine it would run within reasonable time constraints.

5.5 Summary

In this chapter the computation time results were presented. The metrics for accuracy

were shown and analyzed. The implications for the data concluded that the recommender

system is a valuable tool for cyber defense, but requires refinement.

54

Figure 5.11: Algorithm Threshold Value 0.18

55

Figure 5.12: Algorithm Threshold Value 0.2

56

Table 5.4: Root Mean Squared Error

IP address True Value RMSE Attributes not associated by IP

192.168.1.6 0 0.00079

192.168.1.8 0 0.00052

192.168.1.9 0 0.00115

192.168.1.10 0 0.04348

192.168.1.11 0 0.00389

192.168.1.12 0 0.01872

192.168.1.13 0 0.00462

192.168.1.14 0 0.01872

192.168.1.15 0 0.00464

192.168.1.16 0 0.00156

192.168.1.17 0 0.02656

192.168.1.18 0 0.00118

192.168.1.19 0 0.00102

192.168.1.21 0 0.00340

192.168.1.23 1 0.84271

192.168.1.24 1 0.94085

192.168.1.25 1 0.88309

192.168.1.26 1 0.87494

192.168.1.27 1 0.86616

192.168.1.28 1 0.85244

57

Table 5.5: Root Mean Squared Error

IP address True Value RMSE Threshold 0 RMSE Threshold 0.5

192.168.1.6 0 0.00923 0.007414

192.168.1.8 0 0.00478 0.00438

192.168.1.9 0 0.00196 0.00227

192.168.1.10 0 0.10993 0.04345

192.168.1.11 0 0.00602 0.00324

192.168.1.12 0 0.00056 0.00065

192.168.1.13 0 0.00604 0.00424

192.168.1.14 0 0.00216 0.00279

192.168.1.15 0 0.00296 0.00380

192.168.1.16 0 0.00451 0.00049

192.168.1.17 0 0.00095 0.00110

192.168.1.18 0 0.00328 0.00500

192.168.1.19 0 0.00261 0.00057

192.168.1.21 0 0.00100 0.00122

192.168.1.23 1 0.85319 0.83878

192.168.1.24 1 0.86101 0.89111

192.168.1.25 1 0.86075 0.86134

192.168.1.26 1 0.85166 0.83917

192.168.1.27 1 0.84098 0.84757

192.168.1.28 1 0.85220 0.83877

58

Table 5.6: Root Mean Squared Error

IP address True Value RMSE Threshold 0.75 RMSE Threshold 0.95

192.168.1.6 0 0.00917 0.00944

192.168.1.8 0 0.00508 0.00525

192.168.1.9 0 0.00218 0.00525

192.168.1.10 0 0.10360 0.10585

192.168.1.11 0 0.00433 0.00484

192.168.1.12 0 0.00059 0.00059

192.168.1.13 0 0.00644 0.00642

192.168.1.14 0 0.00233 0.00223

192.168.1.15 0 0.00315 0.00290

192.168.1.16 0 0.00425 0.00465

192.168.1.17 0 0.00100 0.00116

192.168.1.18 0 0.00350 0.00338

192.168.1.19 0 0.00277 0.00268

192.168.1.21 0 0.00106 0.00131

192.168.1.23 1 0.84758 0.84751

192.168.1.24 1 0.86430 0.85682

192.168.1.25 1 0.84276 0.85681

192.168.1.26 1 0.84693 0.84678

192.168.1.27 1 0.83187 0.83537

192.168.1.28 1 0.84448 0.84736

59

Table 5.7: Recommended Cyber Defense Action

Rank Action Threat Level

1 Firewall Rule Block Source IP Address of Attack 1

2 Update Operating System for 192.168.1.22 1

3 Update Operating System for 192.168.1.23 0

4 Update Operating System for 192.168.1.24 0

5 Update Operating System for 192.168.1.25 0

6 Update Operating System for 192.168.1.26 0

7 Update Operating System for 192.168.1.27 0

8 Update Operating System for 192.168.1.28 0

9 Update Application 0

10 Disable Port 0

Table 5.8: Recommended Cyber Defense Action

Rank Action Threat Level

1 Firewall Rule Block Source IP Address of Attack 1

2 Update Operating System for 192.168.1.22 1

3 Update Operating System for 192.168.1.23 1

4 Update Operating System for 192.168.1.24 1

5 Update Operating System for 192.168.1.25 1

6 Update Operating System for 192.168.1.26 1

7 Update Operating System for 192.168.1.27 1

8 Update Operating System for 192.168.1.28 1

9 Update Application 0

10 Disable Port 0

60

Table 5.9: Recommended Cyber Defense Action

Rank Action Threat Level

1 Firewall Rule Block Source IP Address of Attack 6

2 Update Operating System for 192.168.1.22 1

3 Update Operating System for 192.168.1.23 1

4 Update Operating System for 192.168.1.24 1

5 Update Operating System for 192.168.1.25 1

6 Update Operating System for 192.168.1.26 1

7 Update Operating System for 192.168.1.27 1

8 Update Operating System for 192.168.1.28 1

9 Update Application 0

10 Disable Port 0

61

VI. Conclusion

6.1 Overview

This chapter highlights the results and the contributions of this research effort. Finally,

suggested future work is presented.

6.2 Results

The results for the experiment looked at computation time and accuracy. The

computation time for the algorithm fell on the order of seconds for the maximum and

milliseconds for the average time. The recommendations of defensive actions gave the

correct order of responses. The predicted values from the collaborative recommender

system algorithm had large residuals when compared to the actual values. Even with

weak prediction values the recommender system algorithm was able to present the defense

actions that mitigated the cyber attack.

6.3 Contribution

The most important contribution of this research effort was the use of recommender

systems to generate an ordered list of cyber defense actions. The test bed created for this

research can be used for future work. The IDS has been fully incorporated for all the

machines on the network. The size of the network makes any research performed on the

test bed network applicable to most real networks. Even very large enterprise networks

could be defended using the backbone of the network as nodes instead of all the machines.

6.4 Future Work

The recommender system did not appear to be significantly more insightful compared

to other attack predictors. With so many different recommender system algorithms in

existence, more algorithms need to be explored to determine their value as a cyber defense

62

tool. The value of using a recommender system as a cyber defense tool is the resulting

list of recommended actions. Instead of building a purely recommender system attack

predictor and action recommendation creator, a recommender system could be used to

augment a current attack predictor to generate a list of recommended actions. At the same

time recommender systems hold the potential to be a very useful attack predictor but needs

more development.

Instead of using the collaborative technique for making recommendations a content-

based approach could be taken. A recommender system to utilize information from dif-

ferent attackers with different styles viewing the attackers then comparing them to known

archetypes of attackers in order to predict their future attacks should be built. The attacker

would be the customer and the attack is an item. The recommender system would cal-

culate a rating for other attacks, acting as an attack predictor. Based on the prediction a

recommended list of actions can be generated.

Using some of the same recommender system algorithms from this research should be

further explored by focusing on the knowledge-base. The knowledge-base could easily be

expanded which may lead to more insightful recommendations. The next step would be to

add a learning aspect to the algorithm where it builds on the knowledge-base by viewing

how certain attacks are mitigated depending on the cyber defense action which is executed.

The similarity calculation performed by the recommender system could be very valuable

but more work should be done to focus on key attributes of each machine on the network.

The IDS provided a wide range of attributes, some of which should be given more weight

than others instead of the flat consideration given by the algorithms in this research effort.

With more refinement, a better attack predictor can be developed.

6.5 Summary

This research has shown that a recommender system can be used as an attack predictor

and cyber defense tool. The results show that a recommended list of cyber defense actions

63

can be quickly and accurately presented to the cyber warrior. The recommender system and

tests designed act as a foundation for more exploration into using recommender systems in

the cyber domain. There are many opportunities for continuing work in this area of study.

64

Bibliography

[1] Billsus, Daniel, Michael J. Pazzani, and James Chen. “A learning agent for wireless
news access”. Proceedings of the 5th international conference on Intelligent user
interfaces, IUI ’00, 33–36. ACM, New York, NY, USA, 2000. ISBN 1-58113-134-8.
URL http://doi.acm.org/10.1145/325737.325768.

[2] Boyd, John. “A discourse on winning and losing”, 1987.

[3] Burke, Robin. “Knowledge-Based Recommender Systems”. ENCYCLOPEDIA OF
LIBRARY AND INFORMATION SYSTEMS, 2000. Marcel Dekker, 2000.

[4] Burke, Robin. “Hybrid Recommender Systems: Survey and Experiments”. User
Modeling and User-Adapted Interaction, 12(4):331–370, nov 2002. URL http:
//dx.doi.org/10.1023/A:1021240730564.

[5] Cipriano, Casey, Ali Zand, Amir Houmansadr, Christopher Kruegel, and Giovanni
Vigna. “Nexat: a history-based approach to predict attacker actions”. Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC ’11, 383–392.
ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0672-0.

[6] Claypool, M., A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin.
“Combining Content-Based and Collaborative Filters in an Online Newspaper”.
SIGIR 99 Workshop on Recommender Systems: Algorithms and Evaluation. 1999.
URL http://web.cs.wpi.edu/∼claypool/papers/content-collab/content-collab.pdf.

[7] Daley, K., R. Larson, and J. Dawkins. “A structural framework for modeling
multi-stage network attacks”. Parallel Processing Workshops, 2002. Proceedings.
International Conference on, 5–10. 2002. ISBN 1530-2016. ID: 1.

[8] Fava, D., J. Holsopple, S. J. Yang, and B. Argauer. “Terrain and behavior modeling
for projecting multistage cyber attacks”. Information Fusion, 2007 10th International
Conference on, 1–7. 2007. ID: 1.

[9] Felfernig, A. and R. Burke. “Constraint-based recommender systems: technologies
and research issues”. Proceedings of the 10th international conference on Electronic
commerce, ICEC ’08, 3:1–3:10. ACM, New York, NY, USA, 2008. ISBN
978-1-60558-075-3. URL http://doi.acm.org/10.1145/1409540.1409544.

[10] Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry. “Using collabo-
rative filtering to weave an information tapestry”. Commun.ACM, 35(12):61–70, dec
1992. URL http://doi.acm.org/10.1145/138859.138867.

[11] Herlocker, Jonathan L., Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
“Evaluating collaborative filtering recommender systems”. ACM Trans.Inf.Syst.,
22(1):5–53, Jan 2004. URL http://doi.acm.org/10.1145/963770.963772.

65

http://doi.acm.org/10.1145/325737.325768
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564
http://web.cs.wpi.edu/~claypool/papers/content-collab/content-collab.pdf
http://doi.acm.org/10.1145/1409540.1409544
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/963770.963772

[12] Huang, Zan, Hsinchun Chen, and Daniel Zeng. “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering”. ACM
Trans.Inf.Syst., 22(1):116–142, jan 2004. URL http://doi.acm.org/10.1145/963770.
963775.

[13] Ingols, K., R. Lippmann, and K. Piwowarski. “Practical Attack Graph Generation for
Network Defense”. Computer Security Applications Conference, 2006. ACSAC ’06.
22nd Annual, 121–130. 2006. ISBN 1063-9527. ID: 1.

[14] Jahrer, Michael, Andreas Toscher, and Robert Legenstein. “Combining predictions
for accurate recommender systems”. Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’10,
693–702. New York, NY, USA, 2010. ISBN 978-1-4503-0055-1. URL http://doi.
acm.org/10.1145/1835804.1835893.

[15] Jannach, Dietmar, Markus Zanker, Alexander Felfernig, and Gerard Friedrich.
Recommender Systems: An Introduction. Cambridge University Press, New York,
NY, 2011.

[16] Junker, Ulrich. “QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems”. 167–172, 2004. URL http://dl.acm.org/citation.cfm?
id=1597148.1597177.

[17] LeMay, Elizabeth, Willard Unkenholz, Donald Parks, Carol Muehrcke, Ken Keefe,
and William H. Sanders. “Adversary-driven state-based system security evaluation”.
Proceedings of the 6th International Workshop on Security Measurements and Met-
rics, MetriSec ’10, 5:1–5:9. New York, NY, USA, 2010. ISBN 978-1-4503-0340-8.
URL http://doi.acm.org/10.1145/1853919.1853926.

[18] Linden, Greg, Brent Smith, and Jeremy York. “Amazon.com Recommendations:
Item-to-Item Collaborative Filtering”, 2003. URL http://www.cs.umd.edu/∼samir/
498/Amazon-Recommendations.pdf.

[19] McSherry, David. “Similarity and compromise”. Proceedings of the 5th international
conference on Case-based reasoning: Research and Development, ICCBR’03,
291–305. Springer-Verlag, Berlin, Heidelberg, 2003. ISBN 3-540-40433-3. URL
http://dl.acm.org/citation.cfm?id=1760422.1760448.

[20] Melville, Prem, Raymod J. Mooney, and Ramadass Nagarajan. “Content-boosted col-
laborative filtering for improved recommendations”. Eighteenth national conference
on Artificial intelligence, 187–192. American Association for Artificial Intelligence,
Menlo Park, CA, USA, 2002. ISBN 0-262-51129-0. URL http://dl.acm.org/citation.
cfm?id=777092.777124.

[21] Ning, Peng and Dingbang Xu. “Learning attack strategies from intrusion alerts”.
Proceedings of the 10th ACM conference on Computer and communications security,

66

http://doi.acm.org/10.1145/963770.963775
http://doi.acm.org/10.1145/963770.963775
http://doi.acm.org/10.1145/1835804.1835893
http://doi.acm.org/10.1145/1835804.1835893
http://dl.acm.org/citation.cfm?id=1597148.1597177
http://dl.acm.org/citation.cfm?id=1597148.1597177
http://doi.acm.org/10.1145/1853919.1853926
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://dl.acm.org/citation.cfm?id=1760422.1760448
http://dl.acm.org/citation.cfm?id=777092.777124
http://dl.acm.org/citation.cfm?id=777092.777124

CCS ’03, 200–209. ACM, New York, NY, USA, 2003. ISBN 1-58113-738-9. URL
http://doi.acm.org/10.1145/948109.948137.

[22] Qin, Xinzhou and Wenke Lee. “Attack Plan Recognition and Prediction Using
Causal Networks”. Proceedings of the 20th Annual Computer Security Applications
Conference, ACSAC ’04, 370–379. IEEE Computer Society, Washington, DC, USA,
2004. ISBN 0-7695-2252-1. URL http://dx.doi.org/10.1109/CSAC.2004.7.

[23] Raulerson, Evan. “Modeling Cyber Situational Awareness Through Data Fusion”,
2013.

[24] Salton, G., A. Wong, and C. S. Yang. “A vector space model for automatic indexing”.
Commun.ACM, 18(11):613–620, nov 1975. URL http://doi.acm.org/10.1145/361219.
361220.

[25] Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. “Item-based
collaborative filtering recommendation algorithms”. Proceedings of the 10th
international conference on World Wide Web, WWW ’01, 285–295. ACM, New York,
NY, USA, 2001. ISBN 1-58113-348-0. URL http://doi.acm.org/10.1145/371920.
372071.

[26] SonicWALL. “Anatomy of a Cyber-Attack”, 2012.

[27] Tran, Thomas and Robin Cohen. “Hybrid Recommender Systems for Electronic
Commerce”. In Knowledge-Based Electronic Markets, Papers from the AAAI
Workshop, 78–83, 2000.

[28] Walker-Brown, Andrew. “The art of the cyber war in six steps”, April 19, 2013 2013.

[29] Wang, Jun, Arjen P. de Vries, and Marcel J. T. Reinders. “Unifying user-based and
item-based collaborative filtering approaches by similarity fusion”. Proceedings of
the 29th annual international ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’06, 501–508. ACM, New York, NY, USA, 2006.
ISBN 1-59593-369-7. URL http://doi.acm.org/10.1145/1148170.1148257.

[30] Yang, Shanchieh J., Adam Stotz, Jared Holsopple, Moises Sudit, and Michael
Kuhl. “High level information fusion for tracking and projection of multistage cyber
attacks”. Inf. Fusion, 10(1):107–121, January 2009.

[31] Ziegler, Cai-Nicolas, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
“Improving recommendation lists through topic diversification”. Proceedings of the
14th international conference on World Wide Web, WWW ’05, 22–32. ACM, New
York, NY, USA, 2005. ISBN 1-59593-046-9. URL http://doi.acm.org/10.1145/
1060745.1060754.

67

http://doi.acm.org/10.1145/948109.948137
http://dx.doi.org/10.1109/CSAC.2004.7
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/1148170.1148257
http://doi.acm.org/10.1145/1060745.1060754
http://doi.acm.org/10.1145/1060745.1060754

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2013–Mar 2014

A Recommender System in the Cyber Defense Domain

Lyons, Katherine B., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-49

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

In the cyber domain, network defenders have traditionally been placed in a reactionary role. Before a defender can act
they must wait for an attack to occur and identify the attack. This places the defender at a disadvantage in a cyber
attack situation and it is certainly desirable that the defender out maneuver the attacker before the network has been
compromised. The goal of this research is to determine the value of employing a recommender system as an attack
predictor, and determine the best configuration of a recommender system for the cyber defense domain. The most
important contribution of this research effort is the use of recommender systems to generate an ordered list of cyber
defense actions.

15. SUBJECT TERMS

recommender system cyber defense

U U U UU 81

Dr. Kenneth Hopkinson (ENG)

(937) 255-3636 x4579 Kenneth.Hopkinson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	A Recommender System in the Cyber Defense Domain
	Katherine B. Lyons
	Recommended Citation

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Overview
	Problem Statement
	Goals and Approach
	Contribution
	Summary

	Literature Review
	Overview
	Collaborative
	Content-based
	Knowledge-based
	Hybrid
	Attack Predictors
	Summary

	Recommender System Design
	Overview
	Network Model
	Collaborative Recommender System
	Knowledge-based Recommender System
	Summary

	Methodology
	Problem Definition
	System Boundaries
	System Services
	Workload
	Performance Metrics
	System Parameters
	Factors
	Evaluation Technique
	Experimental Design
	Summary

	Results and Analysis
	Overview
	Computation Time Results
	Accuracy Results
	Implications
	Summary

	Conclusion
	Overview
	Results
	Contribution
	Future Work
	Summary

	Bibliography

