
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2014

Firmware Modification Analysis in Programmable
Logic Controllers
Arturo M. Garcia

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Garcia, Arturo M., "Firmware Modification Analysis in Programmable Logic Controllers" (2014). Theses and Dissertations. 602.
https://scholar.afit.edu/etd/602

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/602?utm_source=scholar.afit.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


FIRMWARE MODIFICATION ANALYSIS

IN PROGRAMMABLE LOGIC CONTROLLERS

THESIS

Arturo M. Garcia Jr., Captain, USA

AFIT-ENG-14-M-32

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the United

States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.



AFIT-ENG-14-M-32

FIRMWARE MODIFICATION ANALYSIS

IN PROGRAMMABLE LOGIC CONTROLLERS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Arturo M. Garcia Jr., B.S.S.E.C.A.

Captain, USA

March 2014

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED



AFIT-ENG-14-M-32

FIRMWARE MODIFICATION ANALYSIS

IN PROGRAMMABLE LOGIC CONTROLLERS

Arturo M. Garcia Jr., B.S.S.E.C.A.

Captain, USA

Approved:

//signed//

Robert F. Mills, PhD (Chairman)

//signed//

Maj Jonathan Butts, PhD (Member)

//signed//

Juan Lopez Jr. (Member)

7 MAR 2014

Date

7 MAR 2014

Date

7 MAR 2014

Date



AFIT-ENG-14-M-32
Abstract

Incorporating security in supervisory control and data acquisition (SCADA) systems

and sensor networks has proven to be a pervasive problem due to the constraints and

demands placed on these systems. Both attackers and security professionals seek to

uncover the inherent roots of trust in a system to achieve opposing goals. With SCADA

systems, a battle is being fought at the cyber–physical level, specifically the programmable

logic controller (PLC). The Stuxnet worm, which became increasingly apparent in the

summer of 2010, has shown that modifications to a SCADA system can be discovered

on infected engineering workstations on the network, to include the ladder logic found in

the PLC. However, certain firmware modifications made to a PLC can go undetected due

to the lack of effective techniques available for detecting them.

Current software auditing tools give an analyst a singular view of assembly code, and

binary difference programs can only show simple differences between assembly codes.

Additionally, there appears to be no comprehensive software tool that aids an analyst

with evaluating a PLC firmware file for modifications and displaying the resulting effects.

Manual analysis is time consuming and error prone. Furthermore, there are not enough

talented individuals available in the industrial control system (ICS) community with an

in-depth knowledge of assembly language and the inner workings of PLC firmware.

This research presents a novel analysis technique that compares a suspected-altered

firmware to a known good firmware of a specific PLC and performs a static analysis of

differences. This technique includes multiple tests to compare both firmware versions,

detect differences in size, and code differences such as removing, adding, or modifying

existing functions in the original firmware. A proof-of-concept experiment demonstrates

the functionality of the analysis tool using different firmware versions from an Allen-

Bradley ControlLogix L61 PLC.

iv



“But let your communication be, Yea, yea; Nay, nay:
for whatsoever is more than these cometh of evil.” – Matthew 5:37

v



Acknowledgments

My sincere gratitude to my committee for their guidance and teamwork which made

this thesis possible. Dr. Mills – thank you for your patience, expertise, and understanding.

Mr. Lopez – for lending your technical expertise and spending time to ensure I succeeded.

Maj Butts – for the resources and opportunities to conduct my research. Capt Sonya – for

your advice and insight in software engineering. To my family, church, and friends – thank

you for your prayers, unwavering support, and motivation.

Arturo M. Garcia Jr.

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Cyber-Physical Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 PLC Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Hardware Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Firmware Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Programmable Layer . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 SCADA Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Previous Work on PLC Firmware Analysis . . . . . . . . . . . . . . . . . . 17

2.5 Current Firmware Analysis Tools and Techniques . . . . . . . . . . . . . . 22

2.5.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2.1 HxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



Page

2.5.2.2 VBinDiff . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2.3 IDA Pro . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Detecting Modifications . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1.1 Hashing the Firmware Files . . . . . . . . . . . . . . . . 31

3.1.1.2 File Size Comparison . . . . . . . . . . . . . . . . . . . 33

3.1.2 Characterizing the Nature of Modifications . . . . . . . . . . . . . 33

3.1.2.1 Opcode Histogram Comparison . . . . . . . . . . . . . . 34

3.1.2.2 Opcode Difference Comparison . . . . . . . . . . . . . . 37

3.1.2.3 Function Difference Comparison . . . . . . . . . . . . . 37

3.1.2.4 Call Graph Structure Selection . . . . . . . . . . . . . . 38

3.1.2.5 Displaying Results . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Scope, Assumptions, and Limitations . . . . . . . . . . . . . . . . 44

3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Programming Language . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Using a Custom Disassembler . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Validation and Pilot Testing . . . . . . . . . . . . . . . . . . . . . 48

3.2.4.1 Validating the Disassembler . . . . . . . . . . . . . . . . 49

3.2.4.2 Validating the Histogram Comparison . . . . . . . . . . 49

3.2.4.3 Validating the Opcode and Function Comparisons . . . . 49

3.3 PLC and Firmware Selection . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 PLC Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Firmware Selection Criteria . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Firmware Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV. Evaluation Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Control Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Single Bit Change Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Firmware Attack Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Function Difference Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V. Firmware Modification Analysis Results . . . . . . . . . . . . . . . . . . . . . . 58

5.0.1 Hash Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



Page

5.0.2 File Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.0.3 Opcode Histogram Comparison . . . . . . . . . . . . . . . . . . . 59

5.0.4 Opcode Difference Comparison . . . . . . . . . . . . . . . . . . . 61

5.0.5 Opcode Functionality Comparison . . . . . . . . . . . . . . . . . . 62

5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

VI. Future Work and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Complete Firmware Inventory . . . . . . . . . . . . . . . . . . . . 67

6.3.2 Additional Architecture Disassemblers . . . . . . . . . . . . . . . 68

6.3.3 Classifying Code vs. Data . . . . . . . . . . . . . . . . . . . . . . 69

6.3.4 Incorporating Thumb Instruction Analysis . . . . . . . . . . . . . . 69

6.3.5 Dynamic Firmware Modification Analysis . . . . . . . . . . . . . . 70

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



List of Figures

Figure Page

2.1 Pump Station to Sub-Master PLC Network [58] . . . . . . . . . . . . . . . . . 6

2.2 PLC Composition Layers [49] . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Khan’s FPGA/PLC Control Flow [30] . . . . . . . . . . . . . . . . . . . . . . 17

2.4 McMinn’s Passive Capture and Baseline Analysis Experiment [50] . . . . . . . 19

2.5 Basnight’s Firmware Reverse Engineering Process [3] . . . . . . . . . . . . . . 20

2.6 Sickendick’s Firmware Disassembly System [64] . . . . . . . . . . . . . . . . 21

2.7 HxDs Side-by-Side Code Comparison View [28] . . . . . . . . . . . . . . . . 25

2.8 HxD’s Hexadecimal Byte Histogram [28] . . . . . . . . . . . . . . . . . . . . 26

2.9 VBinDiff Program Comparing Two L61 PLC Firmware Files [43] . . . . . . . 27

2.10 IDA Pro Program Displaying a Disassembled L61 Firmware Function [25] . . . 28

3.1 Hash Test Done With Two Permutations of Opcodes . . . . . . . . . . . . . . . 32

3.2 Histogram Displaying Contrasting Opcode Counts for Two Firmware Files . . 34

3.3 Histogram of the Difference Between Base and Suspect Histogram Counts . . . 36

3.4 FMAT Call Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 FMAT Program Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Hashes of Single Bit Modification . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 File Size Comparison of Control Case . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Histogram Comparisons of Firmware Major Revision . . . . . . . . . . . . . . 60

5.4 Histogram Comparisons of Firmware Minor Revision . . . . . . . . . . . . . . 60

5.5 Difference Bar Comparison of Hardware Diagnostic Modification . . . . . . . 61

5.6 Side-by-side Opcode Comparison of Hardware Diagnostic Modification . . . . 62

5.7 Modification Comparison of Firmware Minor Revision . . . . . . . . . . . . . 63

5.8 Addition and Subtraction Comparison Views . . . . . . . . . . . . . . . . . . 63

x



Figure Page

6.1 Ladder Logic and PLC Firmware Roles . . . . . . . . . . . . . . . . . . . . . 68

xi



List of Tables

Table Page

3.1 Modification Decision Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Firmware Download Verification and Dates . . . . . . . . . . . . . . . . . . . 52

4.1 Single Bit Change Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Summary of Single Bit Test Results . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Summary of File Size Test Results . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Summary of Opcode Histogram Test Results . . . . . . . . . . . . . . . . . . . 61

5.4 Summary of Opcode Difference Test Results . . . . . . . . . . . . . . . . . . . 62

5.5 Summary of Function Difference Test Results . . . . . . . . . . . . . . . . . . 64

5.6 FMAT vs. Standard Tool Comparison . . . . . . . . . . . . . . . . . . . . . . 64

xii



List of Acronyms

Acronym Definition

ABI application binary interface

ANSI American National Standards Institute

ARM Advanced RISC Machine

ASCII American Standard Code for Information Interchange

B Branch (ARM instruction)

BIC Bit Clear (Arm instruction)

BL Branch with Link (ARM instruction)

BX Branch and Exchange (ARM instruction)

CMP Compare (ARM instruction)

COTS commercial off-the-shelf

CPU central processing unit

CRC cyclic redundancy check

CUT component under test

DOD Department of Defense

DF1 D1 (data transparency) + F1 (two-way simultaneous transmission with

embedded responses) based on ANSI X3.28-1976 specification

subcategories

FCC Federal Communications Commission

FMA firmware modification analysis

FMAT firmware modification analysis tool

FPGA field programmable gate array

FRN firmware revision number

GUI graphical user interface

HMI human machine interface

xiii



Acronym Definition

HxD Hexadecimal editor and Disk editor

IA information assurance

ICE in-circuit emulator

ICS industrial control system

IDA Interactive Disassembler

IDC Intaractive Disassembler scripting Code/Commands

IDS intrusion detection system

IPS intrusion prevention system

IT information technology

JTAG Joint Test Action Group

LAN local area network

LDC Load Co-processor from Memory (ARM instruction)

LDM Load Multiple (ARM instruction)

LDMDB Load Multiple, Decrement Before (ARM instruction)

LDR Load Register (ARM instruction)

MOV Move (ARM instruction)

MTU master terminal unit

MVN Move Negative (ARM instruction)

MB Mega Byte

ODA Online Disassembler

opcode operation (instruction) code

ORR Logical OR (Arm instruction)

OS operating system

PC personal computer

PLC programmable logic controller

xiv



Acronym Definition

PRO professional

RAM random-access memory

RISC reduced instruction set computing

ROM read only memory

RTU remote terminal unit

SCADA supervisory control and data acquisition

SHA Secure Hash Algorithm

SoC system on a chip

STM Store Multiple (ARM instruction)

STMFD Store Multiple, Full Stack Decrement (ARM instruction)

STR Store Register (ARM instruction)

SUT system under test

TCP/IP Transmission Control Protocol/Internet Protocol

TDMI 16 bit Thumb + JTAG Debug + fast Multiplier + enhanced in-circuit

emulator (ICE)

US United States

VBinDiff Visual Binary Difference

xv



FIRMWARE MODIFICATION ANALYSIS

IN PROGRAMMABLE LOGIC CONTROLLERS

I. Introduction

1.1 Background

Ancient and modern militaries have adopted the use of uniforms both to identify

themselves on the battle field and bolster pride and esprit-de-corps in their units. In modern

times they serve to provide concealment using camouflage. Uniforms have an added benefit

of aiding military commanders during inspections to quickly identify Soldiers who are out

of uniform, due to the standard appearance that is prescribed to uniformity. It is this theme

of uniformity that may provide a key to software modification detection.

Security is a cat-and-mouse game that is played asymmetrically. An attacker may be

one step ahead of security professionals in one aspect, and the security professionals may

be several steps ahead of the attacker in other aspects. In order for information technology

(IT) security to converge to a seamless barrier of protection, security professionals cannot

wait for attackers to breach a layer of security before addressing a problem. Security

professionals must assume that attackers have the knowledge, tools, and skills to conduct

viable attacks against an organizations defenses [47, 48].

Industrial control systems (ICS) have a blend of modern and legacy devices that

make up our modern manufacturing and energy producing landscape. Our society is

economically and physically dependent on this infrastructure for day-to-day operations.

Therefore, security techniques must thoroughly cover the limitations and safety concerns

inherent with ICS cyber-physical devices.

1



1.2 Motivation

Programmable logic controllers (PLC) are critical components to ICS and supervisory

control and data acquisition (SCADA) systems and are crucial to the ICS security aspect.

Though no current malware has been published for PLCs, this potential problem can have

devastating and long lasting consequences across a community or country. It must be

assumed that attackers have the capabilities to alter the firmware of these devices in order to

disrupt them and cause damage to SCADA systems found at critical infrastructure facilities

such as a water treatment plant or power plant. Efforts must be prioritized to meet these

potential threats.

Research in PLC security has grown in the past few years, but is slow due to the

complexities and difficulties surrounding it. Many have proposed security solutions aimed

at protection, but few have addressed the area of detection. Detecting security issues is the

foundation of information assurance (IA) and is key in building the security strategy for

protection, detection, response, and recovery capabilities for PLCs.

1.3 Research Goals

This research assumes that a facility with ICS has been compromised, and that a vector

of attack focused on altering PLC firmware. Since PLCs do not have built in software

security, attackers can potentially modify a PLC’s firmware and have full control of the

device while evading detection [3].

The goal of this research is to develop a technique that detects and analyzes PLC

firmware modifications. The main question asked is how can PLC firmware modifications

be detected and how does one characterize the nature of the modifications detected?

From this main question further questions are asked to answer the main question. Is a

modification made? What is added or deleted to the suspect file compare to the baseline

file? What opcode characteristics changed? Where is code changed in the firmware?

Finally, what functionality is modified, added, or deleted to the suspect file?

2



The technique that answers these questions is expressed as a software tool that

automates the analysis and compares a known-good baseline with a suspect firmware

file to determine if the suspect is modified. The tool then characterizes and displays the

differences analyzed including additions or deletions made to the suspect file compare to

the baseline. This software runs separately from the PLC or engineering workstation, and

does not introduce an additional attack vector into the PLC or SCADA system.

1.4 Approach

This research develops an automated technique for detecting and analyzing modified

PLC firmware. The technique uses several static analysis of differences methods between a

baseline firmware file and suspect firmware file of the same version. The major steps in the

firmware modification analysis technique are: (1) hash comparison, (2) size comparison,

(3) disassembly of both firmware files, (4) opcode histogram comparison, (5) opcode

difference comparison, (6) and function difference comparison. The first step detects

modifications made to the suspect, while the latter steps characterize the nature of the

modification if detected. Once these steps are performed, views are generated to indicate

how, and where the modifications were made at the opcode instruction level.

The technique is then tested using five test cases and one control case representing

various degrees of modifications. Both the baseline and suspect are obtained from the

manufacturer’s website. The baseline firmware remains unmodified, while three suspect

firmware test cases are modified. The remaining three test cases are unmodified, including

the control case. Once the firmware samples are obtained, the test cases are compared

to their baseline firmware file versions using the automated technique. The techniques

effectiveness is evaluated based on the test results which are validated by the a fellow

graduate student who performed the modifications on the suspect firmware samples.

3



1.5 Contributions

This research intends to provide a detection tool that identifies and displays the

modifications made to PLC firmware. This tool could be useful in aiding incident response

teams in identifying and confirming modifications made to firmware, and enable them to

ascertain the extent of the modification quickly and accurately.

1.6 Organization

The paper is organized as follows. Chapter II covers background research done with

SCADA security, PLC security, and PLC malware detection. It also covers the current

tools used in static analysis of PLC firmware and their limitations. Chapter III covers the

firmware modification analysis methodology and Chapter IV covers the test cases which

will evaluate the methodolgy. Chapter V covers results of the analysis, and Chapter VI

presents future work and concludes the paper.

4



II. Background

In this chapter, a brief example of SCADA device functionality is covered. Next,

general SCADA security issues is discussed, covering different aspects of the security

issues to give the reader an appreciation of the difficulty surrounding this topic. Further

focus is placed on PLC security and the research that has addressed this topic. Finally,

current tools and techniques used for reverse engineering firmware and detecting firmware

alterations are discussed.

2.1 Cyber-Physical Devices

Remote Terminal Units (RTU) and PLCs are small computerized systems deployed

at specific sites operating in a closed loop feedback system [6]. They provide the ability

to measure and control physical processes that form the backbone of ICS. These devices

collect data and interact with sensors, motors, valves, and other devices throughout an

industrial complex and integrate them into the industrial control system for streamlined

management and automation control. Industry uses these devices to operate power

plants, automobile manufacturing plants, water treatment facilities, and pharmaceutical

manufacturers. RTU and PLC devices are purposefully designed with limited on-board

computing resources and functionality such as microprocessors, minimal memory, sensor

inputs and outputs, and limited network capabilities to balance cost with efficiency. They

are required to work in rugged conditions and handle different types of sensory data

in real time, and work uninterrupted for an extended period of time. These systems

are designed to have an expected life cycle of at least 10 to 12 years [6], and system

engineers typically carry identical PLC spares in their inventory for ease of maintenance.

Due to modernization, demand for inter-connectivity with business enterprise networks,

and Internet accessibility, many closed and standalone SCADA systems are being

5



interconnected and integrated into these front end networks [6, 34]. The rapid growth on

interconnected SCADA systems coupled with improvements in performance requirements

of SCADA devices introduced security vulnerabilities that current information technology

security models could not adequately protect [8, 34, 71]. Figure 2.1 illustrates a typical

water pump station installation commonly deployed in a metropolitan neighborhood. The

SCADA system relies on PLCs to perform monitoring, control, and communications tasks.

Figure 2.1: Pump Station to Sub-Master PLC Network [58]

In the example shown in Figure 2.1, the PLC controls physical devices such as

pumps, flow meters, switches, relays, and solenoids found at a pump station. The PLC

operates autonomously and periodically receives updated commands issued through a

master terminal unit (MTU) further upstream in the system hierarchy. SCADA wireless

data communication links, like the ones shown in the example, are often unsecure or

vulnerable to attacks [51, 60]. The unsecure communication links provide an opportunity

6



for an unauthorized user to intercept and gain access to any of the PLCs through a wireless

connection. Anyone with the knowledge, skill, ability, and appropriate equipment can

communicate directly with the PLC and affect the physical devices being monitored and

controlled by the PLC.

2.2 PLC Composition

A PLC is essentially a miniaturized computer which receives inputs from physical

devices, performs computations and logic (e.g.,sequencing, timing, counting, and

arithmetic) based on the inputs, then produces outputs that further controls physical devices

[5, 6]. As shown in Figure 2.2 the PLC itself is composed of three layers as discussed by

McMinn et al. [49].

Figure 2.2: PLC Composition Layers [49]

7



2.2.1 Hardware Layer.

The PLC is a specialized computer systems architecture composed of a microproces-

sor, volatile and non-volatile memory (RAM and ROM), extended storage for ladder logic

(flash memory), power supply, and additional micro-controllers that manage input and out-

put devices connected to the PLC via a back-plane or communications interface [5]. The

controller itself may be stand alone or designed to fit on a rack with other devices.

2.2.2 Firmware Layer.

The firmware layer of the PLC represents the software that governs the PLC and the

control it has on input and output devices. It contains the operating system and software

drivers that control devices such as pumps, solenoids, robotics, and telemetry sensors. PLC

manufacturers custom design this software based on the capabilities and application of its

hardware. Some PLCs have hardware specifications that allow the operating system to

contain a Windows like interface, while other PLC firmwares have monolithic operating

systems and do not provide a human interface directly to the PLC environment. PLCs

operate under four scan cycles [6].

The first cycle involves administrative overhead functions such as I/O integrity and

hardware diagnostic validation. This scan also allows the watchdog timer to interrupt the

cycles (for safety reasons) in case the processor has locked up, or the device has faulted.

The second scan addresses inputs from input devices and writes data to the input memory

table. This records data or position feedback provided by sensors. The third scan cycle

performs the ladder logic which is discussed in the programmable layer section. The fourth

scan writes the results of the logic computations performed in the third scan and writes the

data to the output memory table, which is communicated to the output devices. These four

cycles repeat and is the essential operations of a PLC.

PLC firmware is upgradable and may be updated directly to the PLC typically using

an RS-232 serial cable or Ethernet connection. Other PLCs may require a proprietary cable

8



connection, such as the Allen Bradley Micrologix 1000. Normally this involves placing the

PLC in a programmable state, and using the manufacturer’s software interface and firmware

update package to perform the update.

2.2.3 Programmable Layer.

The programmable layer of the PLC is represented by ladder logic, which directs the

PLC to perform specific logic tasks. In the third scan cycle, data was written to the input

memory table. This data translates to inputs programmed into the ladder logic. The logic

will then dictate how that input is interpreted and what the resulting action will be. The

ladder logic specifies what type the input will be (e.g., valve or motor), what the value from

the input represents (e.g., on, off, true, false, time, count), and what the resulting value will

be placed to another specific device (e.g., light switched on). This programmable layer

bridges the operating system portion of the firmware to its device-specific driver software

[5, 6].

Ladder logic is typically designed using the manufacturers design software, and

uploaded to the PLC in a similar manner as the firmware update. This procedure details

differs from manufacturer to manufacturer, but essentially involves uploading the ladder

logic project from an engineering workstation to a PLC.

2.3 SCADA Security Issues

Some examples of cyber-attacks aimed toward ICS and industry include Stuxnet [44],

an Australian sewage treatment plant incident [1], and the industrial network breaches of

Slammer [16, 46] and Shamoon [7]. In March of 2000, the Maroochy Water Service Plant

in Queensland, Australia sustained a cyber-attack from a disgruntled prospect employee

over a period of three months [1]. Vitek Boden was not hired by the company most

likely caused by his prior strained relationship with a similar water service company named

Hunter Watertech. Wanting revenge, he used radio equipment to send commands at least

46 times to the Maroochy sewage equipment. The resulting actions caused approximately

9



800 thousand liters of raw sewage to spill into local parks, rivers, and on the grounds of the

Hyatt Regency Hotel located nearby [1, 65].

The Slammer Worm discovered in January of 2003 used a buffer overflow vulnerabil-

ity found in Microsoft SQL servers to infect servers and propagate over the Internet [16].

It did this indiscriminately, and consequently caused denial of service and general internet

traffic congestion around the world. The worm eventually found its way into the Davis-

Besse Nuclear Power Station in Oak Harbor, Ohio. The worm infected one of the plant’s

contractor computers, which consequently bridged a T1 connection from their computer

to the internal SCADA network of the plant. The worm infected an unpatched server in

the network and caused enough network congestion that it shutdown the Safety Parameter

Display System. The plant continued to operate, though it caused strain on the operators to

get the safety system back up while manually monitoring the safety indicators [16, 35].

Stuxnet became increasingly apparent in the summer of 2010 and is considered the

epitome of a sophisticated cyber-attack, carried out by a more formally-constituted, multi-

disciplinary “tiger team” [23]. It is the first attack of its kind to target ICS implementing

four zero-day exploits with two legitimate, stolen digital-certificates. Stuxnet propagated

as a worm through the internet and USB flash memory devices to targeted Iranian

nuclear uranium enrichment facilities, such as the Natanz facility. Besides a sophisticated

infection and information gathering strategy, the ultimate goal of Stuxnet was to infect the

Seimens Simatic S7 PLC, injecting altered ladder logic to ruin 1,000 uranium enrichment

centrifuges, all while evading detection [44]. Recent alleged siblings of Stuxnet include

Duqu (2011) [4] and Flame (2012) [53].

Shamoon targeted the state owned Saudi Aramco Energy Company, the world’s largest

oil company, in August of 2012 [7, 17]. This cyber-attack effectively wiped 30,000

computers from Aramco and disabled some of its internal networks for weeks. A hacker

group called the Cutting Sword of Justice and Arab Youth Group claimed responsibility for

10



the attack. It appears the only motive was to delete company data by erasing hard drives and

corrupting the master boot record of the infected computers, causing maximum disruption

along with replacing some files with pictures of a burning US flag [66]. Business processes

were affected, possible production was lost, and the virus spread to other oil and gas firms

such as RasGas [7]. Although this attack did not specifically focus on SCADA systems,

the target focus is on critical infrastructure.

All of these incidents highlight the necessity to drastically increase critical infrastruc-

ture protection. The United States Congress drafted the Cybersecurity Act of 2012 [38],

with the intent of fostering collaborative efforts between private industry and government

to solve an increasing vulnerability to the nation’s critical infrastructure. The act allows

for private sector industrial companies to voluntarily share information with the U.S. gov-

ernment in exchange for improved situational awareness of cyber-security threats across

critical infrastructure sectors. The legislation is intended to reduce the cyber threat knowl-

edge gap for critical infrastructure sectors and provide momentum towards solving these

issues collectively. Since many private sector companies historically do not report cyber-

attacks, the legislation is a mechanism that will incentivize reporting [67].

Later in the same year, former Secretary of Defense Leon Panetta addressed the

United States, particularly speaking to private businesses and industry about the growing

cyber-threat [67]. He highlighted that the United States cannot wait for an Electronic

Pearl Harbor to occur and do nothing to prevent it. Secretary Panetta spoke out to gain

private industry support for the cyber-security act, and to place pressure on law makers to

pass the legislation. Mcgraw and others [47, 52] emphasized that although government

and cyber-security policies around the world are making forward progress, network

complexity, extensibility, and connectivity will continue to abound with technology as a

whole. Additionally, as these factors increase, flaws in software will cause vulnerabilities

to increase as a result.

11



Industry has developed a variety of commercial off-the-shelf (COTS) products,

diverse protocols, and ubiquitous information technology (IT) security solutions to address

growing security threats; however security issues continue to persist. SCADA systems

remain difficult to secure because of a growing diversity of SCADA hardware platforms

and software protocols, the persistence of legacy systems which are vulnerable to newer

threats, and the limitations of security practices on the SCADA network due to resource

and demand constraints. Furthermore, it is estimated that there are currently 150 to 200

different SCADA protocols [29].

The large diversity of proprietary SCADA equipment and protocols appear to offer

security because an attacker would have to learn a variety of different protocols to be

able to affect an entire SCADA system. Notwithstanding, security through obscurity is

generally thought of as a weak security practice [47]. Industry is increasingly adopting

international open standard network protocols that negate the diversity paradigm [29]. This

consolidation of communication protocols results in a streamlined effort of protecting a

networked system, but also reduces the amount of familiarity with SCADA protocols

required by an attacker to penetrate a SCADA system[14, 56]. Considering the security

gaps created by diverse platforms and protocols, standardized and non-standardized

systems, and modern devices interconnected with legacy devices, it is clear that achieving

a comprehensive security program for critical infrastructure will prove difficult [11, 29].

Nevertheless, current security models do incorporate defense-in-depth strategies to

SCADA networks [10, 14, 20, 34]. Most SCADA security models include perimeter

defense (e.g., firewalls and proxies), network intrusion detection systems (IDS) and

intrusion prevention systems (IPS), workstation anti-virus products, computer use policies,

and physical security policies. The concept of defense-in-depth is based on the idea that

successive layers of protection will provide adequate protection for the system even if

12



the outside layer is breached [34, 41]. In defending computer networks, however, the

compromise of any element may result in the compromise of the entire system.

To compound matters, not all components of a SCADA network are capable of

being adequately secured with this current approach [8, 51, 71]. PLC and RTU devices

are vulnerable to security threats because of their inability to detect malicious activity

or prevent malicious actions from being passed to the cyber-physical components they

are connected to. A skilled attacker with minimal resources may be able to alter PLC

firmware, maintain a persistent presence on the network, and is capable of causing longer

lasting damage without their participation [3]. This also makes it difficult for security

professionals to ascertain the origin of the problem. Simply querying the PLC device is not

sufficient since it may contain modified code with the purpose of evading detection [49].

This problem would require an analysis of the firmware itself to determine if it has been

altered, to include investigating the specific effects of the modification.

Each organization has freedom to implement their IT strategy as they see fit. For

example, the Department of Defense (DOD) and private industry have similar but different

motivations that guide their decisions for implementing security. The DOD is mission

oriented and bases its security policies on national security and operational requirements

[18, 19]. Money is a factor for the DOD but not a driving one. With private industry,

money is a primary influential driving factor. Other factors that are catalysts for change

include safety, regulations, and legal liability [6, 31]. SCADA infrastructure is designed

to last for many years, possibly even decades before being upgraded or replaced, and is

expensive to maintain [6]. Another concern to industry is the long-term support to their

systems. As stated earlier, it is a general practice to keep a large stock of components

such as sensors and PLCs that will last the company many years. This unique situation

introduces the mixture of legacy systems with modern systems. Having a security solution

13



that spans modern and legacy systems is a pervasive security problem, since one solution

may not apply to all SCADA devices.

Another security issue that stems from legacy systems is long-term system support.

SCADA systems are long-term systems with embedded devices that use a particular

software application, operating system, or firmware for possibly a decade or longer. A

company who originally provided software support for upgrading and patch management

may no longer exist due to closing or absorption by another company who discontinues

support [6]. Another concern is that some software may continue to be supported, but a new

update may break support for legacy software, which in turn may cause the legacy software

to stop working. Due to the real-time demands of SCADA systems, system administrators

may choose to avoid patching their systems altogether to skirt this issue [34].

SCADA systems have seen an emergence of high bandwidth connectivity and network

throughput in recent years [9, 36]. Along with the demand of continuous operations,

system administrators have integrated their corporate local area networks (LAN) to their

SCADA networks. This is an effort to increase efficiency and productivity, but also

introduced another attack vector for attackers to gain a foothold into the corporate LAN and

eventually to the SCADA network [29]. In fact, between 2001 and 2006, 70% of security

incidents involving SCADA networks originated outside of the network [9, 29]. This is

a significant increase from previous years where that same percentage is due to inside

accidents and operator error. The Department of Homeland Security (DHS) Industrial

Control Systems Cyber Emergency Response Team (ICS-CERT) recently published in their

quarterly newsletter (October-December 2013) [27] that they had responded to over 200

cyber-incidents across all critical infrastructure sectors; with 53% of the incidents focusing

on the energy sector in just the first half of the fiscal year. This emergence of focused

targeted incidents, coupled with the shortage of qualified cyber-security professionals in

14



the public sector [62] and increased networking of cyber-physical devices, is a cause for

concern.

Another security concern is the unrestricted access to emerging wireless RTUs and

wireless field devices. Physical security is a concern particularly for unattended remote

sites, where an attacker can access the site and modify, add, or destroy equipment. With

wireless devices, an attacker can insert themselves in the traffic, or monitor the network

traffic to gain information. Although water towers operate under a licensed FCC frequency,

this does not inhibit someone from listening to those frequencies and learning information.

The protocols involved were designed with efficiency and backwards compatibility in mind,

not security and confidentiality. Data flows between wireless modems unencrypted. An

attacker can use a program such as Airsnort or Wireshark to sniff protocol packets and

decipher protocols and useful information such as user-names or passwords to computer

workstations or PLC devices.

The security issues discussed above is categorized and listed below to summarize

security weaknesses and their associated threats [11, 34]:

• External Network Defense:

Control – SCADA systems have entry attack vectors that include modems, wireless

devices, and the internal corporate LAN. A gateway translates modern TCP/IP

connections to SCADA protocols to allow access to the SCADA network remotely.

Many gateways do not have security features . Also, a lack of multi-factor

authentication allows attackers to crack the only defense of access control and

that is usually weak passwords. Attack vectors include: war dialing, wireless

jamming, man-in-the-middle attacks, brute-force password guessing or credential-

replay attacks [11].

Perimeter Defense – SCADA systems lack public-facing firewalls that are capable

of understanding SCADA protocols and filtering traffic accordingly. IDS/ IPS

15



devices currently cannot monitor suspicious SCADA protocols entering the network.

Attack vectors include: PLC/RTU spoofing, wireless device spoofing, wormhole

attacks which can lead to key-compromise and theft [56, 59].

• Internal Network Defense:– IDS/IPS devices placed in SCADA networks currently

cannot monitor suspicious SCADA protocols inside the network or below the

RTU/PLC layer. Attack vectors include: PLC/RTU spoofing, wireless device

spoofing, wormhole attacks, sybil attacks, replication, routing loops, denial of service

and information stealing [56].

• Cyber-Physical Devices, Servers and Workstations:

Protocol Security – SCADA protocols do not have built in security and can therefore

be spoofed and easily sniffed in plain-text (no encryption or authentication). Attack

vectors include: sybil attacks (forged identities), replication, routing loops, denial of

service, time-synchronization attacks, slander-attacks for role based authentication

schemes [12, 29].

Device and OS Security – Resource constraints placed on PLCs and RTUs makes it

difficult to apply security techniques that would defend against or recognize attacks

[11, 15]. Out-dated operating systems are vulnerable to known exploits and may be

made a pivot for a future attack [34, 54].

Though these threats are formidable, many of these attacks have been addressed

successfully in modern IT networks. The key to applying security solutions is to analyze

the threats based on their impact and appropriately implementing controls that give the

maximum amount of risk control for the organizations confidentiality, integrity, and

availability requirements [19, 34]. Another consideration is the placement of security

solutions based on their hardware/software trust relationship assumptions [14, 59]. New

hardware and software solutions will need realization to meet these unique problems.

16



PLCs, like any other computer device, assume hardware/software trust relationships that

must be understood and protected [55].

2.4 Previous Work on PLC Firmware Analysis

With respect to information assurance (IA) there have been few discussions and

security implementations regarding detection of malware or attacks on PLC firmware. One

researcher addresses external PLC firmware verification on an external device connected

to the PLC [30]. A field programmable gate array (FPGA) security appliance is loaded

with software that attests the validity of PLC firmware using a SHA1 hashing algorithm to

compare firmware hash signatures. Figure 2.3 illustrates this functionality below.

Figure 2.3: Khan’s FPGA/PLC Control Flow [30]

17



A secondary benefit to computing blocked hash checks is the ability to locate

mismatched-signature hash blocks, which narrows down the search for detecting modified

firmware. Though the appliance is not able to restore corrupted firmware, the FPGA is

able to prevent the PLC from executing modified firmware. Once the PLC is restored to

its original software, using outside methods from the security appliance, the restored PLC

firmware is re-validated and allowed to resume. The security device is attached directly to

the PLC and not in-line between the SCADA network and PLC. This research highlights

detection of modified code using an external device, and addresses the PLC firmware as

a possible attack vector. The author does concede that the security device’s inability to

restore modified firmware may be considered a form of denial-of-service and undermines

the availability of the PLC itself.

Another research effort developed software based firmware validation to verify

firmware updates being uploaded to a PLC from an engineer workstation [49]. Figure

2.4 illustrates the experiment set up. The hardware/software trust relationship above the

PLC is seen as an attack vector leading to the PLC and assumed to be compromised. The

security objective of the research is to identify modified firmware before it is downloaded

to a PLC during a firmware update. The proof of concept experiment utilized the

Allen-Bradley DF1 protocol. DF1 is a byte-oriented Allen-Bradley specific data-link

layer protocol that combines features of data transparency and two-way simultaneous

transmissions with embedded responses of the ANSI x3.28 specification [2]. The validation

software incorporates a firmware hash validation mechanism to verify the firmwares hash

signature while in-transit. The software is trained with an original firmware file and then

determines if a suspect firmware file is modified while the suspect firmware is uploaded.

This approach contributes PLC firmware modification detection using a binary detection

classifier: (Yes/No) classification prior to a PLC firmware update.

18



Figure 2.4: McMinn’s Passive Capture and Baseline Analysis Experiment [50]

Basnight et al. [3] took a deeper look at PLC firmware modification by using

reverse engineering techniques to determine the firmware’s security protection schema for

detecting firmware modifications. They argue that security in the PLC is non-existent, and

that a check-sum algorithm in the firmware only serves to ensure that the firmware is not

corrupted, and is incapable of preventing or detecting an intentional modification to the

firmware. Basnight’s reverse engineering technique to identify vulnerabilities associated

with the firmware update process resulted in a successful exploit. The reverse engineering

process for firmware is illustrated in Figure 2.5 below. The firmware is wrapped in an

executable file provided by the manufacturer’s website is then extracted and analyzed. The

technique used to analyze the ControlLogix L61 PLC provided useful details concerning

the L61 firmware structure, functionality, and the language of the processor. Once the

19



firmware is analyzed and an attack vector is selected based on the upload process, they

successfully altered Allen-Bradley PLC firmware version number, recalculated the check-

sum and CRC codes, and then successfully installed the modified firmware onto the PLC

using only commercially available tools from the manufacturer. This proof of concept

strengthens the argument for the need to improve critical infrastructure protection. At

this juncture, two research techniques demonstrate that modification to PLC firmware is

detectable and that firmware modification is feasible. However, these approaches do not

provide insight as to the nature of the firmware modification.

Figure 2.5: Basnight’s Firmware Reverse Engineering Process [3]

Sickendick [64] researched file carving and statistical analysis techniques which detect

and classify file types and firmware architectures. Using a firmware disassembly algorithm,

Sickendick determined that the L61 PLC firmware is uncompressed and that the majority

of the firmware is instruction code, with little data. Several classifier algorithms and file

segmenter algorithms are tested in a system to determine the most efficient and accurate

algorithms that will be used in an automated firmware disassembly and file identification

method. The firmware disassembly system is then evaluated as a whole system via

20



simulation in order to validate the system and characterize real world PLC firmware. The

firmware disassembly system and parameters are shown in Figure 2.6 below.

Figure 2.6: Sickendick’s Firmware Disassembly System [64]

A notable metric of the classifiers tested is their accuracy, which is measured using

true positives, true negatives, false positives, and false negative rates. Furthermore, the

time required to train each classifier is considered as well. For example, the normalized

compression distance (NCD) algorithm file type classifier, only achieved a true positive

rate of 11.1% overall. In a case where all 12 file types needed to be classified, the algorithm

required approximately 76 days of training on data prior to classification [64]. Single

file type classification training ranged from three to seven days. Time and accuracy were

considered for selecting the firmware dissassembly system algorithms. This research steps

closer toward firmware analysis with respect to opcode and file type classification. It is

important to PLC firmware reverse engineering by providing a technique for classification

21



and its capabilities are useful for firmware modification analysis when dealing with

unknown firmware file types.

Lim & Lee [39] created a methodology for forensic analysis of embedded systems.

They proposed a two prong approach that involves hardware component and trace analysis

along with software comparison analysis based on manufacturer specifications. The

software analysis focuses on comparisons of firmware revision numbers (FRN), computer

system configurations, directory configurations, file/firmware formats, log files, time-lines,

meta data, and others with the manufacturers specifications. Once changes have been

identified, the analyst can investigate the changes made in a specific category. Although

this research provides a framework for understanding forensic analysis of embedded

systems, there is a critical assumptions made on the reliance of input from industry.

They admit that their software analysis approach assumes industry cooperation to provide

proprietary data sheets and functionality inventories of the code, which focuses the analysis

scope at structured code layers above the operating system or firmware level to the

application and file system level. Without this assumption, the software analysis process is

constrained to operate a reverse engineering perspective which must be accomplished at the

assembly instruction level first, then abstracting upwards towards understanding the syntax

differences of the application and operating system equivalents. Although Lim and Lee’s

research provides an overarching starting point of forensic analysis for embedded systems,

however a technique for firmware modification analysis is not presented.

2.5 Current Firmware Analysis Tools and Techniques

Software is normally written in high level languages such as Python, C++, and Java,

and then converted into low level machine code for the computer processor to execute.

Other programs that require speed and efficiency (e.g., firmware) are written in lower level

assembly languages for microprocessor architectures such as ARM, PowerPC, and Intel

and subsequently converted into machine code. These lower level languages require more

22



in-depth knowledge of the computer system architecture compared to high level languages,

which abstracts these aspects away from the programmer, and require specialized tools and

techniques [21, 22, 26]. If the source code and binary mapping of the firmware is provided

to the analyst, the analysis of the software is straight forward, and the analyst may view

the source code using an appropriate program language editor/viewer. In the event that

the architecture or binary mapping of the firmware is unknown, reverse engineering tools

and techniques are utilized first to ascertain the architecture and map the functionality of

the firmware and its salient features [68]. Once this step is complete, the analyst can then

proceed to determine the firmware’s software behavior and structure. Reverse engineering

tools specifically focused on assembly code and binary files are discussed along with the

techniques that implement them.

2.5.1 Techniques.

The goals of reverse engineering techniques are to derive approximations of software

behavior and source code syntax [68]. Not having the original source code implies the

need to reverse the process to derive original source code from machine code; from a low

level language to high level language again. Software contains both syntax, which dictates

instructions to be carried out by the microprocessor; and semantics, which governs the

software’s intended states of behavior [22, 68]. These two aspects are discovered using

static and dynamic analysis techniques.

2.5.1.1 Static Analysis.

Static analysis of a binary file seeks to uncover the syntax structure of the file without

executing the program code [68]. Many aspects of the file are determined such as the

language of the architecture (e.g., ARM instructions), determining encoded files and data

such as pictures or video that are embedded in the file, and mapping functionality and

program flow. Control flow graphs and call graphs may be created, in order to build upon

for dynamic analysis. Static analysis is generally performed first, especially if the file

23



details are not known prior to analysis. The analyst must ascertain all of the possible states

of the source code before the behavior can be understood [22, 68]. The end state of static

analysis is to derive a facsimile of the original source code.

2.5.1.2 Dynamic Analysis.

Dynamic analysis of a binary file seeks to uncover its behavior by executing the

program code. This technique seeks to determine how the states of the program changes

from one execution point to the next [68]. It takes into consideration the change in data

values and how that alters the flow of the program. With the static analysis all flow paths

were given as possible paths, however in dynamic analysis only one flow path will be

taken based on the execution of register values and data conditions. Dependencies can

be discovered, which may lead to uncovering vulnerabilities as a result. This technique

captures the conditional relationship between states [68].

Both techniques allow the analyst a method for reverse engineering software to extract

its original intended source code and understand its behavior. This task is considered

non-trivial [21]. This research, limits the scope of firmware comparison to static analysis

because it is non trivial, and because of the additional task of performing these techniques

simultaneously while comparing the files side-by-side for differences.

2.5.2 Tools.

The tools presented below, perform aspects of static analysis on binary firmware files.

They are not all inclusive in terms of representation, but are common examples. Some are

more versatile than others and each has unique functions and capabilities. A single tool is

adequate for the task when performing static analysis on a single file; however, comparing

two firmware files may require multiple tools to aid the analyst in the comparison.

2.5.2.1 HxD.

HxD [28] is a free versatile hexadecimal code viewer and editor. Its main purpose is to

display hexadecimal code and data from a file, and displays its ASCII equivalent side-by-

24



side with the hex code on a single screen. Providing the ASCII equivalent characters near

the hexadecimal values provides an indication of human-readable string texts in the file.

HxD is also an editor, which means the data file is writable, regardless of file type, since it

is written back to the file in binary format. This tool is capable of comparing binary files

side-by-side (Figure 2.7), and also performs statistical frequency analysis for individual

hexadecimal bytes (Figure 2.8). If an analyst were to use this tool for file comparison,

they must scroll through the code and determine how the programs differs manually; the

tool does not indicate differences. The frequency histogram shown in Figure 2.8 provides

a hexadecimal fingerprint for a file at the byte level. Each byte is comprised of two letters

like 0xA0 and is counted for each instance in the file, accounting for bytes ranging from

00 to FF. When a specific histogram bar is hovered over, the histogram bar turns red and

displays the count for that particular byte.

Figure 2.7: HxDs Side-by-Side Code Comparison View [28]

25



Figure 2.8: HxD’s Hexadecimal Byte Histogram [28]

2.5.2.2 VBinDiff.

Short for Visual Binary Difference [43], this is a free command-line program that is

supported by Linux, Mac, and Windows. It has two features: (1) display a single file in its

hexadecimal form, and (2) compare two binary files. The byte differences are highlighted

in red as shown in Figure 2.9. This tool provides a visual difference view similar to HxD.

One effect worth noting is the comparison of two files who have a displacement difference

(e.g., additions or subtractions). If code were inserted into one file contrary to the other,

all of the data to the right of the insertion would show red inclusively. This is due to byte

alignment comparison.

26



Figure 2.9: VBinDiff Program Comparing Two L61 PLC Firmware Files [43]

2.5.2.3 IDA Pro.

IDA Pro [25] is a versatile and robust disassembler viewer and debugger, which

displays hexadecimal code and the actual instructions based on architecture specifications.

IDA Pro is commercially licensed software. It contains scripting command language, IDC,

which allows the user to expand the functionality of the program with custom scripts to

aide in file processing. One example of the usage of scripts is to identify functions in the

PLC firmware. The program effectively disassembles the firmware (Figure 2.10), but it

cannot anticipate every binary file format layout. When the L61 firmware is opened, IDA

Pro is not able to resolve the function names of the program and created automatically

numbered names. An analyst may not recognize the intent of a function if the function

name is replaced by a number. With the script command-line, a script can be created

to identify each function and re-display the firmware file with the newly found function

names. Firmware analysis can begin after the code is prepared to gain as much information

as possible. VBinDiff and HxD can be used in conjunction with IDA Pro to investigate

27



changes in a suspected firmware file from the original. IDA Pro does not allow side-by-

side file comparison, and only allows a single program to be analyzed.

Figure 2.10: IDA Pro Program Displaying a Disassembled L61 Firmware Function [25]

2.6 Summary

This chapter covered an introduction to PLC functionality along with general SCADA

security issues and PLC security issues. Industry is reluctant to adopt some IT security

standard practices because they disrupt safety and availability of data and services in

these systems. This is caused by the misalignment of IA objectives between Industry

and the generic IT solutions. In order to achieve a comprehensive security solution for

PLCs, a strategy must be developed for detecting security threats, reacting to threats,

preventing threats, and restoring services from disruptions in a way that addresses PLC

availability and integrity of data. The related works covered PLC firmware classification,

firmware modification detection, and PLC security vulnerabilities. Assuming a PLC is

28



compromised, firmware reverse engineering tools and techniques are required to perform

modification analysis to uncovering intentional/unintentional modifications. This type of

analysis is currently a manual process with specific tools and techniques which aide and

shape the process. Tools that automatically compare files highlight changes made and

characterize the differences at the hexadecimal byte level. Chapter 3 describes how this

research implements a technique that detects and characterizes firmware modifications,

while Chapter 4 describes how this research validates its results.

29



III. Methodology

In this chapter, the methodology of firmware modification analysis is covered. The

research goals, experimental setup, and firmware selection criteria are explained. The

scope, assumptions, and limitations are covered under research goals, and validation and

approach are covered under the experimental setup section. Chapter four will cover the

specific test cases that will evaluate the technique.

3.1 Research Goals

Much of the research and issues discussed in chapter two applies to defense-in-

depth strategies that prevents malware or disruptions from eventually effecting the PLC’s

operations. Assuming that security has failed to protect the PLC, it is conceivable that

an attacker may install modified firmware onto a PLC once inside the SCADA network.

Acting on this assumption, the main goal of this research is to develop a technique that

detects and characterizes PLC firmware modifications. Therefore, the main research

question asked is how can PLC firmware modifications be detected and how does one

characterize the nature of the modifications?

From this main question, additional questions are asked to further illicit details

regarding detection and characterization. With respect to detection two questions are asked:

(1) Was a modification made?, and (2) does the size comparison of the two files differ?

These two questions relate to the first part of the main research question.

Concerning characterization, several questions are asked to understand the nature of

the modification, if it has occured: (1) What is added or deleted to the suspect firmware

file compare to the baseline?, (2) What opcode characteristics changed?, (3) Where is code

changed in the firmware?, and finally (4) what functionality is modified, added, or deleted

30



to the suspect file? These two questions relate to the second part of the main research

question.

The overall approach to detect and characterize modified firmware is to compare a

suspect firmware file to a baseline firmware file. This baseline is the known-good standard,

and the suspected firmware represents firmware that may have been modified on a PLC.

Both files undergo several tests that compares the tests’ results. Next, strategies that answer

the specific questions are discussed.

3.1.1 Detecting Modifications.

To detect modifications made to the suspect file two tests are performed. The first test

hashes the base and suspect files separately, then compares the hashes to determine if they

differ. This test is performed twice using two hashing methods. The second test is the file

size comparison and displays the file sizes of both files, and indicates if the files are the

same size or different sizes, and which file is larger or smaller. Each test is explained in

further detail.

3.1.1.1 Hashing the Firmware Files.

The process of hashing involves a bit-wise operation on fixed blocks of an entire file,

producing a smaller fixed-length digest represented as hexadecimal characters [70]. In

effect, hashing produces a unique signature for a given file. Different hashing algorithms

have different advantages and disadvantages to their use. The hash test performed uses

cryptographic hashing, since the algorithm consistently produces unique hash signatures

for different inputs [70]. It is possible, though rare, that identical digests (collision) can

result from hashing two different files, but with most cryptographic hashes this is not a

concern since the possibility is so remote. This is not to confuse the fact that an attacker

would try to create a modified file, such that hashing it would produce an identical digest

to the hashed original file; this possibility is even more remote than a random collision [70,

31



p.219]. Using two separate hash techniques on each file ensures that this issue would be

reduced to a remote possibility, and that modification detection is almost certain.

It seems that having the same SHA algorithm with different hash lengths could

potentially be circumvented if a collision is found for one method, say SHA256, and

produces the same resulting hash for the SHA512 method. This is not the case, since

SHA256 and SHA512 have different key space sizes. A collision found for SHA256 does

not produce the same collision for SHA512, though they use the same algorithm to compute

the hash. An alternative method of using two different cryptographic hashing algorithms

would have the same effect.

Hashing is permutation-sensitive, meaning that rearranging the same combination of

opcodes in a different order produces different hashes. This property is tested in Figure

3.1 below. Four instructions are hashed, and then rearranged in a different order and

hashed again. Both hashes turn out to be different. This is critical to the initial step of

detecting differences in the base and suspect firmware, and later in the difference analysis

process, where functions are hashed to retain their identity even if it is shifted in the suspect

firmware. Matching the order of the data in both binary files is important in determining

modification detection, and is proven effective using cryptographic hash functions.

Figure 3.1: Hash Test Done With Two Permutations of Opcodes

32



The first comparison done with the two firmware files is a hash comparison. Two

binary files are hashed separately using SHA256, their digests compared, then the files are

hashed a second time using SHA512 and their digests compared again. If digests match

both times, the files are identical; if they do not match even once, the suspect firmware file

has been altered. This method is a quick and effective way of determining if the two files

are identical without going through the entire analysis process. This test saves precious

time if the files prove to be identical since no further testing would be required.

3.1.1.2 File Size Comparison.

Both baseline and suspect files are sized using bytes as the standard measurement. It

seems that kilobytes is a sufficient standard measurement to compare the files, however

it is foreseeable that a simple four byte addition to a larger file may be missed due to

rounding. Once each file is sized separately, their sizes are compared and determined to be

equal or different, where the suspect file is larger or smaller than the baseline. Knowing

this information may yield clues later in determining the nature of the modification with

respect to their size difference. The sizes of the firmware files is used as inputs to the

opcode comparisons and functionality comparison steps later on. Assuming the hash test

concludes that the suspect differs from the baseline, file size indicates only four possible

characterizations: (1) modifications to the suspect only, (2) additions to the suspect, (3)

deletions to the suspect, and (4) a combination of all or some additions, deletions, and

modifications.

3.1.2 Characterizing the Nature of Modifications.

Once modification is detected between the baseline and suspect firmware, other

tests will characterize the nature of the modification in terms of opcode characteristics,

opcode differences, and functionality differences. At this point, only details about the

differences are ascertained. No effort is made to classify the differences as malicious or

intentional. Prior to characteristic comparison, disassembling the baseline and suspect

33



firmware files is required. The disassembly will produce instructions or opcodes in the

launguage of the microprocessor architecture, then the characteristics can be compared at

the instruction level. It is believed that comparing the instructions from the baseline and

suspect enables the characterization of modification. After all, executable firmware files

contain a combination of instructions and data in binary format that are interpreted and

executed by the microprocessor of the PLC. The characterization methods are described

below.

3.1.2.1 Opcode Histogram Comparison.

Like a file’s unique signature given by a digest, each firmware version in a specific

architecture contains specific amounts of instructions. Not all files contain every instruction

found in the instruction set; rather a file is uniquely identified by the varying amounts of

instructions and amounts of each instruction type. Note that the entire binary file image

is not solely assembly instructions, and contains a mixture of assembly instructions and

data, such as strings. The ARM7TDMI instruction set for example contains 48 different

instructions with numerous combinations of 32 bit opcodes based on the placement of

registers, addresses, and conditions after the instruction [26, 40]. The opcode counts

indicate the extent to which the two firmware differ. Figure 3.2 illustrates this concept.

Figure 3.2: Histogram Displaying Contrasting Opcode Counts for Two Firmware Files

34



As each file is disassembled, a running count of each instruction decoded is tabulated.

A single array holds the tabulated counts for each instruction and is representative of every

instruction found in a particular instruction set. This proof of concept model only contains

one instruction set, namely ARM. That means that the histogram chart represents all 48

instructions and contains a count of each instruction as the file is disassembled. Once an

entire file is disassembled, the final count creates the histogram chart in Figure 3.2.

The opcode histogram comparison represents the opcode characteristics of the

baseline and suspect firmware in terms of opcode combinations. The destination registers,

source registers and other conditions found in the parsed instruction are not accounted for

in this method but are accounted for in the opcode comparison portion. This comparison

visualizes the opcode combination differences; whether it is a single instruction change, or

many instruction changes. This also gives an indication of the extent of the modification

made to the firmware.

The histogram bars become difficult to differentiate visually as the number of opcodes

increases. As opcode counts reach into the thousands, scaling becomes a problem, and

minute differences may be missed. A second histogram solves this issue by subtracting

the base histogram counts from the suspect histogram counts. This histogram delta,

or difference, allows a visualization of opcode differences that is scaled for improved

difference-recognition. For this histogram chart, equal baseline and suspect histogram

counts results in zero counts for each opcode instruction in the array. Any differences

between the base and suspect will result in a positive or negative histogram bar. A

positive histogram bar count indicates that the suspect has more instructions, and a negative

histogram bar count indicates that the base has a higher instruction count for that particular

opcode. Figure 3.3 illustrates the delta histogram.

35



Figure 3.3: Histogram of the Difference Between Base and Suspect Histogram Counts

There are two instructions that distinguish subroutines and functions [26], and their

histogram differences may indicate additions or deletions between the suspect and baseline.

The Store Multiple (STM) and Load Multiple (LDM) opcodes are the prologues and

epilogues to individual functions found specifically in the L61 firmware. These opcodes

are used to save and restore registers on and off the stack. If there is a difference in

these two specific instruction counts, it may indicate functionality differences, though their

counts being identical does not counter the indication. Some functions do not contain these

instructions at all.

In conjunction with this type of alteration, Branch instructions (B) are modified

in order to reference added functions, or to prevent functions from being executed. If

branching instructions are modified, it may indicate that an attacker used hooks to reroute

functionality to their custom functions and then return the flow of control to the original

function. The histogram count cannot solely determine subroutine modifications because of

non-standard code structure. However, it does offer opcode characteristics comparisons for

36



opcode combinations, and may be used in conjunction with other comparisons to ascertain

the nature of the modification.

3.1.2.2 Opcode Difference Comparison.

Comparing two files side-by-side to determine instruction differences is a straight

forward comparison. If the baseline and suspect are identical, there should be no difference

between each instruction at each specific address. To achieve this comparison, each

file is disassembled into opcode instructions that contain specific source and destination

registers, or immediate values, depending on the type of instruction. A list stores the

entire disassembled instructions for each file and includes the address (e.g., 0x000008),

raw four-byte hexadecimal data, opcode type (e.g., ’B’) , and the entire disassembled

instruction (e.g., BEQ &24C9F8). The opcode type field in the list is used in the histogram

comparison done earlier. All of the list items are collected for display purposes, and

the actual comparison is done between the raw bytes at each address. A separate list

is kept to annotate the differences between lists, appends both lists together, and adds a

True/False indication at the end of the list after the instructions are compared. This way, the

display is able to highlight the differences in red based on the T/F indicator and display the

information from the baseline and suspect files, side-by-side. This technique is similar to

the technique used by VBinDiff, with the difference being that this technique disassembles

hexadecimal bytes into opcodes and compares at the instruction-level vice byte-level.

3.1.2.3 Function Difference Comparison.

Though comparing instruction differences is straight forward, comparing functionality

differences is more complex. Utilizing the same baseline list and suspect list from the

disassembly, this comparison technique builds another data structure similar to a call-graph

for the base and the suspect, then compares the data in a way that determines how the

program flow differs. The selection of the call-graph structure along with the process for

determining modifications is described below.

37



3.1.2.4 Call Graph Structure Selection.

Call-graphs represent the flow of a program from the main program to its functional

components, between functions, and functions returning to the main program again.

The code must be traversed in order to identify functions and the control flow. Once

these features have been identified they must be cataloged and then compared. Branch

instructions and their address references are cataloged and cross-checked between suspect

and base files to determine which functions may have been modified, removed, or added.

It may also be the case that subroutines, not functions were modified. Subroutines behave

differently because they have simple branch instructions leading in and out of the subroutine

rather than containing a prologue and epilogue. The main program also behaves like a

subroutine in that it has unconditional branches to other sections of code and does not have

indicators of start and stop code blocks. This challenge weighed heavily on the selection

criteria of the data structure.

There were several data structures to choose from: the lattice, the graph, and the tree.

The data structure selected to perform the function difference analysis for this comparison

is a call-tree. This structure is selected based on the flexibility and speed it offers for

firmware traversal. All three structures have a similar approach in traversing software code.

Call-graphs are quite common in analyzing software. Knupfer and Nagel have discussed

using complete call graphs for post-mortem analysis of software programs [32]. Their data

structure utilizes a graph in order to annotate differences made to a single program over time

for change analysis. A graph is predominately cyclical, meaning that a node in the graph

may have children who can potentially point back to the parent node using another vertex or

have children who point back to the child’s parent, creating a cycle or loop. Consequently,

Knupfer and Nagel only focused their research on higher level programming languages

such as Java, and did not extend their work to cover low level programming languages, like

the ones used to write firmware.

38



Li and Sun discussed combining lattices and graphs in order to conduct impact

analysis on software programs [37]. Their technique uncovers unexpected and potential

side effects caused by software changes. Consequently, [32, 37] both focused on high level

programming languages to conduct their research. These data structures and techniques

are capable of traversing high level program code because of their structured nature. Each

function and subroutine have set epilogues and prologues after they are compiled. This

level of detail is abstracted away since the assembly code does not need to be considered,

only the syntax of the higher level language; which makes the start and stop of functions

very clear and structured. This is not the case with PLC firmware or modified firmware. An

attacker is not bound by compiler rules, and can modify opcodes to suit their purpose and

evade or stifle analyzers.

Maurer eludes to this concept and offers a solution for rearranging low level code

programs to become generalized structured programs [45]. He argues that high level

languages abstract away the details that low level programs implement. Low level programs

are difficult to represent using graphs and lattices because of their high cyclical structure,

and lack of defining code structure like high level programs. He proposes representing

the low level programs using tree structures that take into consideration the loops and

replacing them with artificial nodes (dead branches) that do not cycle, and then reorganize

the program using the tree in order to eliminate the cyclical flow, and continues to maintain

the intended program flow. He states that:

...every rooted graph may be reordered in such a way that, with respect to

the new order, the only reverse edges are loopbacks. This may be done by

removing all loopbacks, at all levels, from a graph G; it is then not difficult

to show that the resulting graph must be acyclic...which will be useful in

developing a compact representation for loop trees. (Maurer, 2006:231)

39



This indicates that deleting loopbacks from a graph essentially creates a tree.

Walkinshaw confirms the use of trees to represent assembly program code flow, and

discusses the limits of static and dynamic analysis techniques [68]. Although it appears

that trees have not been used before to conduct firmware modification analysis, the data

structure is suited for assembly language level programs.

Starting with the base firmware, a tree node is created as the root and the first

instruction of the firmware is inspected. Consequently, the first instruction for the L61

is a branch instruction, which immediately causes the program to populate the tree node

fields for the root and initiates the call tree process. Not all firmware have this format, and

may have the initial entry point further into the file. If firmware from another PLC type

does not have this same format, the technique can easily be modified to traverse the file

until the initial entry point is located. The branch instruction address is calculated in order

to jump to the specific instruction. Figure 3.4 illustrates the creation and structure of the

tree nodes and the information that each tree node contains.

Figure 3.4: FMAT Call Tree Structure

40



A tree node is created when the program encounters a control flow instruction such as

a Branch (B), Branch with Link (BL), or Branch and Exchange (BX) instruction. The tree

node address fields TO and FROM are updated to reflect the address where the control flow

instruction is calling from, and the address the instruction points to. Other fields in the tree

node such as the HASH, are calculated later once the tree is completely built. Once this

creation occurs another instance of the tree node function is called, becoming a recursive

event. The instruction that the previous control flow instruction pointed to is read and

determined if it is also a control flow instruction. If it is, another tree node is created and

linked to its parent, and fields updated as before, then recursively calls another instance of

the tree node function.

If the next instruction is not a control flow instruction, the program counter is

incremented, and the next instruction from that function is read. Once a function is

complete, it returns control back to its parent with a return instruction. This returns

control to the previous tree node function and continues to step through its function

until it requests a return and so on. This is equivalent to a push and pop instruction

for manipulating the stack. Subroutines, however, are not bound by this structure and

do not necessarily have prologues or epilogues. Subroutines may terminate with return

instructions or unconditional control flow instructions, so the technique accounts for these

differences by recognizing the different program flow instructions and.

In order to keep the tree acyclic, any branches that point to a previously executed part

of code is given a dead branch. This dead branch is a tree node, but the program does

not jump to the instruction, instead the program completes the STOP field with the same

address as the FROM and START field, and updates the SIZE field with an instruction count

of 1 (just the instruction itself). If cycles were allowed, the program would become trapped

in an infinite loop and would crash the program. Not allowing the program to jump through

previously executed code is essential for this method to work. Pilot studies indicated that

41



the entire program terminates when the last dead node (branch to self) is encountered. Once

the last dead node is encountered, return of control is returned to the last function which

terminates the tree node traversal and completes the tree.

At this point, the tree data structure is completed, with the exception of the tree nodes’

HASH fields. This field is filled on a second traversal of the tree. The hash is calculated for

each node by using its START and STOP fields to iterate over an existing list of instructions

and updating the hash for each instruction until it reaches the STOP field. Each tree node

is visited and its hash field updated.

After the tree structure and its nodes are completed, the tree data structure is flattened

into a dictionary for faster comparison. Tree node comparisons done with a tree data

structures would be time consuming due to tree traversal timing. Comparing tree structures

would also be time consuming due to the complexity of comparing different tree paths.

This comparison is akin to comparing apples to oranges. Instead, the tree is flattened into a

dictionary, with each tree node being an item entry in the dictionary. A separate dictionary

is created with the entries of the tree nodes added to it. Each node is visited starting with

the root. A parent node is visited and checked if it has children. If the node has children,

the node is added to the dictionary first, then the child are visited. This is done until all

nodes are visited on the tree and the separate dictionary contains all of the tree nodes.

The dictionary data structure is composed of keys and values, and each tree node

represents a key/value set. The key is the unique FROM fields, which is the unique address

each branch instruction originated from. The values associated with the key are the values

of the tree node contained in a tuple (START,HASH). The rest of the tree node fields STOP

and SIZE are omitted from the value set due to constraints.

Once the baseline and suspect files are converted to trees, then flattened to dictionaries,

the functionality of the base and suspect is compared. The Keys and values are compared

to determine how the firmware has been modified at the function-level. Table 3.1 represents

42



the decision matrix for determining modification type based on comparing function

similarities and differences (intersecting keys and difference keys).

Table 3.1: Modification Decision Matrix

From Address Start Address Hash Comparison Implication
1 1 1 Identical

1 1 0 Function Modified

1 0 1 Shifted (same function)

1 0 0 Control Flow Modified

0 1 1 Control Flow Modified

0 1 0 Control & Function Modified

0 0 1 Control Flow Modified & Shifted

0 0 0 Added,Deleted, or Modified *

1 = Same, 0 = Different, *depending on dictionary

Rows one through four of Table 3.1 represent the intersection of keys from the base

and suspect firmware. This means that control flow is initiated at the same FROM address

locations. Since the FROM fields are the same, the START field is analyzed. If the START

fields are the same, it indicates that they point to the same address location where the

function started. The Hash field is then checked to determine if the functions are identical,

with respect to the base. If they are identical, then the suspect function is identical to the

base in three aspects: the same FROM-call address, the same function-START address,

and the same function-HASH. Therefore, the control flow for this portion is identical, with

identical functionality. If the hashes are different, it indicates that the suspect firmware has a

modified function (callee) at the same start location compared to the base. Hash differences

have implications that affects the decision of the analyzer later in the program. The next

two comparisons from intersecting keys, reveals that the start addresses are different and

are either the same function or are different functions. Both present unique cases since a

shift indicates added code or added functionality somewhere else in the program. Having

43



different locations and different functionality indicates at a minimum that the flow has been

altered for the caller function. The callee function is modified if the hash is different.

3.1.2.5 Displaying Results.

Once all the differences are categorized, they are displayed in separate side-by-side

opcode comparison windows. There are a total of four displays for difference analysis.

The Difference Analysis HEX view visually depicts the comparison of the firmware files

from start to finish. The Added functions to SUSPECT text view displays additions to

the suspect only, Deleted functions to BASE text view displays deletions to the base only,

and the Modified functions SUSPECT—BASE text view displays the modifications made,

comparing suspect and base side-by-side.

3.1.3 Scope, Assumptions, and Limitations.

The scope of this research is limited to static firmware analysis and not dynamic

analysis. Additionally, time constraints allowed for only one architecture to be explored

for analysis, which is ARM7TDMI (also called ARMv4T). The physical components of the

PLC such as controllers, Ethernet modules, input or output modules are not investigated.

Additionally, it is outside the scope of this research to compare firmware from different

manufacturers and PLC models.

Concerning assumptions, it is assumed that a PLC firmware has been compromised

and extracted from the PLC for comparison to a known good baseline firmware. The

baseline firmware is taken from the original manufacturer website and it is assumed that

it has not been altered from the manufacturer while downloading to the test computer

environments. Downloaded firmware from the manufacturer’s website on different dates

and then comparing them to ensure they are identical at least proves consistency of working

with the same firmware from the website.

As for limitations, the software tool developed for this research is a proof-of-concept

of the technique. The functionality difference comparison may not account for all possible

44



combinations of function or subroutine instruction epilogues or prologues. This technique

along with the histogram technique provide a guide to the analyst for further investigation.

Also, the disassembler makes no attempt to distinguish code from data and disassembles

each four-bytes read as instructions.

3.2 Experiment Setup

In order to test the effectiveness of the technique outlined in the research goals a

software program is written with the methods described to automate the detection and

characterization process, and allows for the technique to be evaluated. The process of the

experiment is reviewed, followed by a description of the environment that the experiment

runs on. Technical aspects of the experiment are discussed such as the programming

language used for the software program, the reason for using a custom disassembler, and

how the software is tested and validated. Finally a discussion on how the firmware file

is obtained is detailed. The next section covers the selection criteria for the PLC and its

firmware versions.

The baseline and suspect firmware are compared using the following steps: (1) a hash

comparison, (2) file size comparison, (3) fingerprint histogram comparison, (4) opcode

difference comparison, and (5) function difference comparison. Each step is covered in

greater detail, and the flow diagram outlining these steps are in Figure 3.5 below.

45



Figure 3.5: FMAT Program Flow Chart

The firmware files are saved to a computer running the Firmware Modification

Analysis Tool (FMAT) software. The tool is given the target files to compare and is

initiated. At that point, the tool executes the steps outlined above and proceeds to analyze

and compare the firmware files. As each step is completed, information is displayed

either in the standard output screen or a separate window which the program created. The

program completes and analysis from the analyst may evaluate the results.

3.2.1 Environment.

The testing environment for this research is done using two computers. One computer

is a desktop and the other is a laptop. The desktop computer is configured with the Windows

7 Enterprise (x64) OS, Intel i7-3770 CPU processor, and 32 GB of DDR3 1333 MHz RAM.

To validate the test results the same experiment is performed on a Dell Precision M4500

46



laptop computer configured with the Windows 7 Enterprise (x64) OS, Intel i7-M640 CPU

processor, and 8 GB of DDR3 800 MHz RAM.

Python 3.3 x64 is is needed to run the FMAT software and is installed on both

computers. Additional packages are installed in Python in order to display graphs in the

tool:

• matplotlib-1.3.1.win-amd64-py3.3.exe with five dependencies:

- numpy-MKL-1.7.1.win-amd64-py3.3.exe

- pyparsing-2.0.1.win-amd64-py3.3.exe

- python-dateutil-2.1.win-amd64-py3.3.exe

- pytz-2013.7.win-amd64-py3.3.exe

- six-1.4.1.win-amd64-py3.3.exe

3.2.2 Programming Language.

Python 3.3 (x64) is selected as the programming language to code the FMAT software.

It is anticipated that the techniques written would need validation and testing at each

step, which Python is suited to handle. Python can be described as a general-purpose

programming language that blends procedural, functional, and object oriented paradigms

[42]. Its capabilities for graphical user interfaces (GUI), scripting, system programming,

rapid prototyping, and numeric programming are a few examples of why it is selected.

The code produced in Python does not need to be compiled or made into an executable to

run, nor does the entire program need to be syntactically correct to run. Each function in

the program can be tested separately and controlled from a separate script running in the

execution environment. These features accelerated the software development process for

this tool.

3.2.3 Using a Custom Disassembler.

A custom disassembler is written to provide the disassembly capabilities to the

analysis tool. Interfacing with IDA Pro or another software program is considered as an

alternative option. However, IDA Pro is not selected. It is believed that the overhead of

47



the requests for each instruction would make the program inefficient. Another reason is the

complexity of IDA Pro. There are many options for disassembly in IDA, and the process

of a disassembly requesting is non-trivial when interfacing python with the IDC scripting

language in IDA. This reinforces the belief that using IDA in conjunction with Python

would increase time to the disassembly process. Interfacing Python to disassemblers

written in other programming languages raises the same issues discussed above.

The disassembler is written in Python with the histogram and opcode difference com-

parisons in mind. Although the custom disassembler produces disassembly instructions

like any other disassembler, it produces the instruction in one pass and two parts. The first

part takes in four hexadecimal bytes and provides the opcode instruction type, such as ’B’,

while the next part produces the entire instruction, like ’BEQ &27BC9F’. This prevents

additional overhead by parsing the instruction later to ascertain if it is truly a branch type

instruction. One instruction that is confused with a branch using the parsing technique is a

Bit Clear instruction (BIC) which performs a different operation. Parsing this incorrectly

introduces false positives. At a minimum, parsings instruction strings still incurs excess

overhead.

3.2.4 Validation and Pilot Testing.

Validating the software tool relies on existing tools such as IDA Pro, Radare, the

Online Disassembler (ODA), VBinDiff, and HxD. Pilot testing is needed to test the

feasibility of implementing the techniques and ascertain the likelihood of successful

validation. Validation is performed for the disassembler, histogram comparisons, and

opcode and function comparisons. For the specific attack firmware samples, coordination

and validation is done with the originating author. No prior knowledge is given about the

details of the firmware attacks. Once the analysis is run on the attack firmware, the details

are communicated back to the author and verification of the results is compared.

48



3.2.4.1 Validating the Disassembler.

The custom disassembler is validated against IDA Pro, Radare, and ODA. Each

opcode type for ARM7TDMI is tested, along with all conditions for each opcode type

are tested. Conditions include the condition code field, destination register, source register,

operand, immediate operand, shift registers, rotate registers, condition flags, and specific

bit fields. Disassembly instructions from the custom disassembler are then cross checked

with ODA and Radare for consistency of displaying the address operands, since IDA Pro

uses additional custom address methods.

3.2.4.2 Validating the Histogram Comparison.

Histogram counts are validated with string searches done in IDA Pro, using a sample

of the opcode types. For instance, three opcodes are chosen randomly for a cross

comparison. The histogram count for those specific opcodes are compared with counts

found in IDA Pro. Note that IDA Pro and other disassembly programs cannot distinguish

code from data 100% definitively. This is a known difficult problem [69]. This affects

the accuracy of IDA Pro’s opcode count, and the custom disassembler’s as well. Since

the custom disassembler is four-byte aligned as it decodes, this provides a degree of

consistency for the opcode histogram and its comparisons. Therefore, this histogram

comparison method serves only as a guide.

Pilot testing for the histogram comparison revealed a scaling issue between the opcode

types. It is difficult to understand opcode differences between both histogram sets with

large opcode counts. The delta histogram solves this need to differentiate by displaying the

histogram differences, which are significantly less that the overall opcode counts.

3.2.4.3 Validating the Opcode and Function Comparisons.

Opcode differences are validated with VBinDiff on all test cases, at the byte-level.

Like the disassembler validation this is a straight forward comparison that matched results.

Like the histogram comparison the function comparison is not 100% definitive. IDA Pro is

49



used to analyze the static program-flow for call graphs, however comparing each call graph

with IDA Pro is a manual comparison and can be error prone. Additionally, the call-tree

function analysis can only be as accurate as the disassembly and differentiation of code

and data. Knowing that every function is correctly outlined is not exact, even for IDA Pro.

Therefore, this function difference method only serves as a guide for further investigation.

3.3 PLC and Firmware Selection

A PLC and its firmware must be selected, in order to evaluate the effectiveness of the

technique. Below the criteria is discussed for selection. A PLC is selected first, then the

firmware selection follows.

3.3.1 PLC Selection Criteria.

PLCs have a variable costs, but range in the thousands. The school provided several

PLC options at no cost to the student. The PLCs considered are Allen Bradley, Seimens,

and Omron. The Allen Bradley ControlLogix 1756-L61, B Series, Controller Module is

selected based on prior research conducted by Basnight [3].

3.3.2 Firmware Selection Criteria.

The L61 PLC has over a dozen firmware files to choose from the Allen Bradley

website [61]. The firmware update software is available with a simple user registration.

Each firmware update has a corresponding release notes which indicates when the firmware

update is released. Reviewing the update release notes revealed a disparity between

revisions and the dates released. Some firmware revision numbers (FRN), both major and

minor, are periodically updated and their original dates are then superseded with a current

release. For example, FRN 20.13 has a release date of October 2013 with a supersede date

of May 2012, while FRN 16.23 has a release date of October 2013 with a supersede date

of August 2013. By this comparison it seems as though FRN 16.23 is newer than FRN

20.13. Comparing the two firmware in terms of features revealed that FRN 20.13 is the

50



latest firmware release. Therefore major and minor revision numbers are selection criteria,

and date release is not.

Three firmware versions were selected. FRN 20.13 is selected because it is the latest

firmware version for the L61. FRN 19.15 is selected due to a fellow graduate student

working on malware samples for the L61 firmware [63]. FRN 20.12 is selected as a minor

comparison to 20.13. The major firmware comparison is performed between 20.12 and

19.15, which completes the selection of firmware samples. To review, FRN 19.15 and

20.12 are a major revision apart, while 20.12 and 20.13 are a minor revision apart. Test

cases are discussed in the next chapter which will utilize these three firmware versions.

3.3.3 Firmware Extraction.

There are two methods for obtaining the L61 PLC firmware file. One method involves

downloading the firmware file from the manufacturer’s website, and the other method

involves extracting the file from the PLC using a hardware debugger. Both methods are

covered by Basnight [3] in greater detail. The method chosen for this experiment is the

website method since it is quicker. The process of extracting the firmware binary file is

discussed, then the process of verifying the file. The next chapter covers the test cases.

The firmware file for the L61 PLC is contained in an executable installer that is

downloaded from the manufacturer’s website. After the firmware package is downloaded

the executable must be installed to the local computer. Running ControlFlash.msi starts

the installation. Another software program called RSLogix is needed to upload the file to

the actual PLC. This process is skipped since uploading the firmware to the PLC is not

necessary for this experiment. Besides this, the installer still installs the firmware directly

to the local hard drive of the computer, regardless if RSLogix is installed or not. Once the

installer finishes it reports an error and closes. Searching through the file path after the

installer runs: C:\Program Files (x86)\ControlFLASH\0001\000E\0036\, yields the .bin

file which is the firmware file for the L61 PLC.

51



To ensure that the baseline firmware file samples are unaltered from the website,

each firmware version is downloaded twice on separate dates. A week was chosen to be

sufficient time between downloads. Each firmware version was downloaded on different

dates, and their second download was spaced one week apart for each version. Each version

is extracted to a separate folder and labeled. To test that each firmware version is unaltered

a hash test is performed on the same versions from different download dates. Table 3.2

displays the verification of the files with their corresponding download dates.

Table 3.2: Firmware Download Verification and Dates

Firmware Version Date 1 Date 2 Hash Difference
19.15 2013-10-05 16:23:03 2013-10-12 09:14:52 No

20.12 2013-10-06 10:15:47 2013-10-13 11:07:01 No

20.13 2013-10-07 21:26:05 2013-10-14 14:50:16 No

3.4 Summary

This chapter provides a methodology for firmware modification analysis in PLCs.

There are five techniques used to determine modifications to include hashing, file

size comparison, opcode finger-printing (histogram) comparison, opcode difference

comparison, and function difference comparison. These five techniques address the

goals of determining if firmware has been modified, and characterizes the nature of

the modification. Details regarding the experiment set up, programming language used,

disassembler selection, code verification, and scope are detailed. The next chapter covers

the five test cases and one control that will measure the effectiveness of the tool. These

tests cases offer a range of modification conditions.

52



IV. Evaluation Test Cases

This chapter describes the test cases chosen to evaluate the software tool. There are

five test cases and one control case. Of the five cases one contains a single bit modification,

two others are firmware attacks worked on by a fellow graduate student, and the other two

cases are unmodified legitimate firmware versions (major and minor apart). The details of

the test cases and the control case are discussed below.

4.1 Control Case

Similar to the firmware version validation test performed after the firmware package

is downloaded from the manufacturer’s website, the control test case baselines the FMAT

detection capabilities. Two copies of the FRN 20.013 file are tested. The FMAT should

detect that the firmware files are identical. The tool is designed to exit the tests if the

firmware hashes match during the first test, however this functionality is suppressed to

allow the tool to further analyze the other comparison functions in the tool. The histograms

comparison should yield no difference in the characteristics chart and zeros across the delta

chart. The opcode difference comparison should yield identical disassembled code side-by-

side, and the function difference comparison should indicate that there are no modifications

to the functionality of the suspect.

4.2 Single Bit Change Case

There is one simple modification test case to evaluate the FMAT. A single bit is

changed in firmware 20.013 to test the FMATs capabilities of detecting the smallest change

possible. Using HxD to make the modification, an instruction is selected at address

0x24C244. This instruction is located in the function immediately called from the initial

entry point when the PLC is turned on. The opcode at the address, in little-endian format,

is 50 1E 81 E3, which is disassembled as ORR R1, R1, 0x500. One bit is changed to

53



the opcode such that the ORR instruction become a BIC instruction. ORR as its name

suggests, performs a logical OR operation between register 1 (R1) and the value 500 (in

hexadecimal), and then stores the result back to R1. Changing a single bit in the tenth

binary position (Big-endian format) transforms this instruction into the BIC instruction.

BIC is also a logical instruction, but different in purpose. BIC stands for Bit Clear, and

performs a logical AND between R1 and the inverted value of 500 which is 0xFFFFAFF

(32 bit fixed-width value), and the result is then stored back to R1. If this modification

were successfully uploaded to the PLC, introducing this single bit change will cause latent

instability in the entire program execution. Table 4.1 shows the changes made at the binary

level and the change represented in hexadecimal and at the instruction level. The change

made is emboldened in each view.

Table 4.1: Single Bit Change Views

Binary View* Hex View* Instruction View
11100011100000010001111001010000 E3 81 1E 50 ORR R1,R1, 0x500

11100011110000010001111001010000 E3 C1 1E 50 BIC R1,R1, 0x500

* Views shown in Big-endian format for easy left-to-right viewing

Note that this simple change results in the firmware being rejected by the PLC if it

were uploaded, since it calculates a cyclic redundancy check (CRC) and check-sum of

the firmware prior to accepting it. This test ignores this fact in order to test the FMAT’s

sensitivity. The tool should detect that the firmware files are not identical. The hash test

should indicate that a modification has occured and two sets of different hashes should be

displayed. The histograms comparison should yield a difference in the characteristics chart

based on the opcode being changed, and a one-for-one swap of opcodes for the delta chart.

The opcode difference comparison should yield a single difference for the disassembled

code side-by-side, and the function difference comparison should indicate that there is

54



modification made to the functionality of the suspect in terms of additions, subtractions,

or modifications.

4.3 Firmware Attack Cases

There are two cases that represent legitimate firmware attacks. Both were written by

a fellow graduate student. These modifications take the CRC and check-sum alteration

into account. Both malware sample are for FRN 19.15. The first firmware attack sample

bypasses the PLC’s hardware diagnostic routine. No additions or deletions of code were

made to this firmware, only opcode alterations were made to the original firmware. These

alteration change the program flow of the program (overstepping the diagnostics) and

zeroes the diagnostic routine.

A second malware sample represents an attack on the PLC’s logging and reporting

function. This change essentially reroutes the program to jump to another function, which

has been altered. The hardware diagnostic routine is also zeroed-out. The malware payload

attacks the mode switching caused by attempts to update the PLC. In order for this to

happen, a physical key at the front of the PLC must be switched from run to program

mode and vice-versa. The program mode routine checks for either a serial cable update, or

remote update and logs the event. Originally, a hardware interrupt would have moved to the

routine, however the suspect firmware modified the flow of control to jump to the altered

hardware diagnostic section, which causes the program to go into an infinite loop after

it recognizes that a switch has occurred multiple times. Once this threshold is reached,

the malware forces an infinite loop which faults the PLC and shuts down. This attack

essentially causes a denial of service.

These test cases represent possible malware created by a single attacker with limited

resources, or who is part of an organization with limited resources. This attacker

lacks access to the manufacturer’s proprietary specifications to the firmware binary file

organization, such as the ARM Binary Interface (ABI) for the L61. The tool should

55



determine that both cases are not identical to their baseline firmware file. The hash test

should indicate that a modification has occured and two sets of different hashes should

be displayed. The histograms comparison should yield a difference in the characteristics

chart based on the opcode being changed, and the delta chart should display the differences

in opcode changes. The opcode difference comparison should yield differences for the

disassembled code side-by-side, and the function difference comparison should indicate

that there is modification made to the functionality of the suspect in terms of additions,

subtractions, or modifications.

4.4 Function Difference Cases

These two test cases evaluate the specific function-difference-comparison aspect of

the FMAT. These two test cases take into consideration the fact that there is currently no

malware samples available for PLCs, and that the firmware attacks may not contain enough

modifications to test the function difference aspect of the tool. These test cases involve

legitimate FRN comparison between minor revisions (20.013 compared to 20.012), and

major revisions (19.015 compared to 20.012).

These test cases represent a comprehensive test of differences between firmware at all

the test levels. It is representative of a possible PLC firmware alteration made by a Nation-

State with large resources and man-power. It is conceivable that this type of threat actor

would have access to knowledge of the firmware executable layouts, and tools available to

compile it like the manufacturer.

The hash test should indicate that a modification has occurred and two sets of different

hashes should be displayed. The size comparison may yield different file sizes and will

be displayed. The histograms comparison should yield a difference in the characteristics

chart based on the opcode being changed, and the delta chart should display the differences

in opcode changes. The opcode difference comparison should yield differences for the

disassembled code side-by-side, and the function difference comparison should indicate

56



that there is modification made to the functionality of the suspect in terms of additions,

subtractions, or modifications.

4.5 Summary

This chapter covered test cases that evaluate the techniques effectiveness. Five test

cases and one control case are discussed. Each test case is detailed, and focus on different

aspects of the tool comparison functions. Next the results of the tests are discussed.

57



V. Firmware Modification Analysis Results

In this chapter the results of the evaluation test cases are discussed. Each section

covers each test performed and the results for each test case are summarized. For example,

the hash comparison function is evaluated and the results for the five test cases and control

case are summarized under that section.

5.0.1 Hash Comparison.

Below is a summary of results for the hash comparison technique. Figure 5.1 displays

the hash test performed on the single bit change to illustrate what the tool displays. Table

5.1 summarizes the results of all five tests and the control test.

Figure 5.1: Hashes of Single Bit Modification

Table 5.1: Summary of Single Bit Test Results

Base Version Suspect Hash Difference Success
19.15 Hardware Diagnostic Attack Yes Yes

19.15 Logging Reporting Attack Yes Yes

19.15 20.12 (Major Version) Yes Yes

20.12 20.13 (Minor Version) Yes Yes

20.13 20.13 Control Case No Yes

20.13 Single Bit Change Yes Yes

58



The hash comparison technique of the FMAT is successful in identifying modifications

made to all five test cases and the control case.

5.0.2 File Size Comparison.

Below is a summary of results for the file size comparison technique. Figure 5.2

displays the file size test performed on the control case to illustrate what the tool displays.

Table 5.2 summarizes the results of all five tests and the control test.

Figure 5.2: File Size Comparison of Control Case

Table 5.2: Summary of File Size Test Results

Base Version Suspect Base Size Suspect Size Detect Size Diff.
19.15 Diagnostic Attack 2,546,464 bytes 2,546,464 bytes Equal

19.15 Logging Attack 2,546,464 bytes 2,546,464 bytes Equal

19.15 20.12 (Major) 2,546,464 bytes 2,809,528 bytes Suspect Larger

20.12 20.13 (Minor) 2,809,528 bytes 2,810,008 bytes Suspect Larger

20.13 20.13 Control Case 2,810,008 bytes 2,810,008 bytes Equal

20.13 Single Bit Change 2,810,008 bytes 2,810,008 bytes Equal

The file size comparison technique of the FMAT is successful in comparing file sizes

for all five test cases and the control case.

5.0.3 Opcode Histogram Comparison.

Below is a summary of results for the opcode histogram comparison technique. Figure

5.3 displays the histogram test performed on the major revision case, and histogram delta

59



test performed on the minor revision case to illustrate what the tool displays. Table 5.2

summarizes the results of all five tests and the control test.

Figure 5.3: Histogram Comparisons of Firmware Major Revision

Figure 5.4: Histogram Comparisons of Firmware Minor Revision

60



Table 5.3: Summary of Opcode Histogram Test Results

Base Firmware Version Suspect Detect Opcode Char. Shift
19.15 Diagnostic Attack Yes (Modifications only)

19.15 Logging Attack Yes (Modifications only)

19.15 20.12 (Major Version) Yes (Additions, Deletions)

20.12 20.13 (Minor Version) Yes (Additions, Deletions)

20.13 20.13 Control Case No (Equal)

20.13 Single Bit Change Yes (Modifications only)

The opcode histogram comparison technique of the FMAT is successful in identifying

opcode characteristic changes for all five test cases and the control case. The two

firmware attacks and the single bit change case had the same file size, so the modifications

represented one-for-one opcode swaps. The control case did not detect a shift in opcodes

which is correct, and the major and minor cases had different file size comparisons so they

represented a mixed combination of additions, deletions, and one-for-one code swaps.

5.0.4 Opcode Difference Comparison.

Below is a summary of results for the opcode difference comparison technique. Figure

5.4 displays the opcode difference test performed on the hardware diagnostic firmware

attack, including the difference bar chart to illustrate what the tool displays. Table 5.4

summarizes the results of all five tests and the control test.

Figure 5.5: Difference Bar Comparison of Hardware Diagnostic Modification

61



Figure 5.6: Side-by-side Opcode Comparison of Hardware Diagnostic Modification

Table 5.4: Summary of Opcode Difference Test Results

Base Firmware Version Suspect Detect Opcode Differences
19.15 Diagnostic Attack Yes (3 areas)

19.15 Logging Attack Yes (4 areas)

19.15 20.12 (Major Version) Yes (Entire File)

20.12 20.13 (Minor Version) Yes (Entire File)

20.13 20.13 Control Case No

20.13 Single Bit Change Yes (1 area)

The opcode difference comparison technique of the FMAT is successful in identifying

opcode differences at each address for all five test cases and the control case. The two

firmware attacks and the single bit change case had opcode differences at a few locations,

whereas the major and minor cases had differences throughout the entire file. The control

case did not have any differences, and the tool was able to display no difference.

5.0.5 Opcode Functionality Comparison.

Below is a summary of results for the function difference technique. Figure 5.5

displays the opcode function test performed on the minor firmware revision, to including

62



the modifications, additions and subtractions windows to illustrate what the tool displays.

Table 5.5 summarizes the results of all five tests and the control test.

Figure 5.7: Modification Comparison of Firmware Minor Revision

Figure 5.8: Addition and Subtraction Comparison Views

63



Table 5.5: Summary of Function Difference Test Results

Base Firmware Version Suspect Detect Function Differences
19.15 Diagnostic Attack No (Fail)

19.15 Logging Attack No (Fail)

19.15 20.12 (Major Version) Yes (1478)

20.12 20.13 (Minor Version) Yes (1478)

20.13 20.13 Control Case No (Success)

20.13 Single Bit Change Yes (1)

The function difference comparison technique of the FMAT is partially successful in

identifying function differences for four out of the five test cases, including the control

case. The two firmware attacks were not successfully detected. Clues were learned from

the graduate student about the nature of the failure. The modifications made to the attack

firmware are not accounted for in the call tree. This means that there are functions in

firmware that are not called by the main program. This highlights a limitation of the

function difference process using just the call tree analyzer. The L61 PLC instead utilizes

registers to jump from the main program to the hardware diagnostic attack and the logging

attack, which is the reason the FMAT did not detect the change.

5.1 Analysis

The FMAT performed as expected with the exception of missing function differences

in the firmware attack cases. Below is a table which compares metrics which summarizes

feature comparisons with the reverse engineering tools mentioned in chapter 2.

Table 5.6: FMAT vs. Standard Tool Comparison

Metric IDA Pro VBinDiff HxD FMAT
Syntax Comparison None Auto, Byte Manual, Byte Auto, Instruction

Semantic Comparison None None None None

Opcode Histogram None None Byte-level Instruction-level

64



As seen in the results, the FMAT unifies views like the ones found in IDA Pro,

VBinDiff and HxD into a single view and tool. Automating the task reduces the time

required to annotate all the firmware differences with a suspect binary file, and allows

analyst to shift their focus towards researching the semantic meaning of the differences.

Each analysis took the computer program under two minutes to complete the analysis, and

took the analyst about 20 minutes to run through all the changes and begin to understand

what the changes meant. The FMAT is not a stand alone tool, but is meant to be used in

conjunction with current tools to provide a complete summary of the differences between

two firmware files. As with all tools, the FMAT’s limitations stem from the uniqueness of

the code structure for PLCs and limits of static analysis.

5.2 Summary

In this chapter, the FMAT results are summarized to evaluate the FMAT detection

technique for five test cases and one control case. The tool shows that it can successful

identifying modifications made to firmware in every case and can characterize the nature of

the modifications for four of the six cases given (two failed to detect function differences).

Next the paper is concluded, and future work is discussed based on the set and discovered

limitations.

65



VI. Future Work and Conclusion

6.1 Conclusions

This research outlined a technique for automating modification analysis for PLC

firmware. It addresses PLC security concerns dealing with firmware modification

detection. This technique provided a single tool which unifies capabilities from multiple

tools currently provided, introduced new techniques for viewing and analyzing modified

code, and automated the syntax analysis process. The tool focused on identifying

modifications made to firmware at an architecture level and did not determine if

modifications were malicious, instead an objective analysis of all differences made to the

assembly code is provided. The tool compares a known good baseline firmware file to a

suspected, compromised firmware file and conducts a static analysis of difference test. five

tests are conducted to detect and characterize the nature of the modification. These tests

are the evaluated using five test cases and one control test. These five test cases and control

case validated the FMAT and uncovered unexpected limitations inherent to analyzing PLC

firmware. Although the function differences were not detected in the firmware attack cases

the other other tests performed before it detected the opcode differences.

6.2 Impact

Current security auditing tools focus on protection and recovery capabilities and focus

less on detection. This PLC security technique provides thorough detection capabilities

for static code analysis in PLC firmware and characterizes the nature of the modification.

Being able to detect static code modifications sets the foundation for more precise analysis

techniques and thorough protection and recovery capabilities. Automating the analysis

process and providing a singular difference view reduces the skill set and tools needed

to perform syntax analysis, while reducing the errors made in the analysis process. The

66



FMAT performs this code difference analysis in just a few minutes with a singular view.

Automating the analysis task shifts the focus to semantic code analysis, which may save a

forensic security teams time. Adding the unique opcode histogram view at the instruction

level-instead of the hex byte level-gives meaning to the opcode differences, and provides

another method of fingerprinting malware.

This technique is applicable to industrial security as a whole, and has practical uses

in forensic analysis and future industrial security developments. It may also be used to

conduct future research in understanding firmware version changes. Private industry and

government agencies alike could benefit from using this tool to respond to current threats

and is a foundation in developing dynamic analysis for firmware modification. Having this

technique provides options for detecting firmware modification, and narrowing the search

for other possible security breach vectors.

6.3 Future Work

The FMAT proved to conduct firmware modification analysis effectively. However,

the scope, limitations, and constraints addressed provides a wealth of future work for

improvement and the expanded research area of firmware modification analysis.

6.3.1 Complete Firmware Inventory.

A limitation of the FMAT is the static analysis approach. The limits of static analysis

are reached and made apparent when conducting function difference analysis. The two

firmware attack cases performed on the L61 firmware revealed limited branch paths in the

entire firmware file. Clues in the tests revealed that many of these drivers had functions

that were not referenced from the main program and did not have return addresses to the

main program either. References to addresses outside the firmware address range were

also observed. Although the correct percentage of code and data for this specific PLC

firmware is not shared by the manufacturer, or readily known by conducting modification

analysis, the low percentage of code reached through the call trees suggests that the ladder

67



logic bridges the gap between the main program and its functions with the exception of

interrupts. Figure 5.1 illustrates this limitation.

Figure 6.1: Ladder Logic and PLC Firmware Roles

As seen in the attack firmware cases, the malware is able to run without ladder logic

because the attacks relied on hardware and software interrupts or register values, which

were not detected by the call tree analyzer. This limitation may be overcome with additional

methods that account for functions outside the call tree. Since a complete inventory of

opcodes is retained in the data structures of the FMAT, it takes less effort to construct

other analyzer functions. The function inventory would be complete and the function

difference analysis detection would improve. Completing the function inventory improves

the accuracy of detecting function differences.

6.3.2 Additional Architecture Disassemblers.

This research technique utilized a single custom made disassembler (ARM7TDMI) to

evaluate firmware. Future research should include multiple ARM architecture versions and

68



other architectures such as MIPS, PowerPC, Intel, and Motorola. Incorporating additional

disassemblers would require an architecture selection option, and a best guess algorithm

that selects a architecture type based on opcode heuristics. The second option would

prove useful in assisting the analyst if the architecture type is unknown. Sickendick [64]

proposed that Kolter and Maloofs boosted decision tree algorithm [33] is most efficient at

determining architecture types and should be considered.

6.3.3 Classifying Code vs. Data.

Another area of consideration is the automation of classifying code from data. As

mentioned previously, the FMAT tool does not attempt to distinguish code from data, but

takes advantage of the fixed four byte opcode/data alignment to decode the entire firmware

file as-is. An experienced analyst can decipher portions of code from data and use the

ASCII character window to aide in making decisions, but it is not error-proof. Code

classification becomes crucial when attempting to correctly disassemble variable length

opcodes found in Complex Instruction Set Computing (CISC) architectures such as Intel,

since the reader will have to step through variable lengths of opcodes. Wartell et al.

[69] proposed a method for this type of classifications for Intel, and may prove useful in

incorporating this technique along with adding multiple disassemblers. It should be noted

that embedded devices use RISC architectures almost exclusively, so adding the CISC

architecture would broaden the tools search beyond PLC firmware to general computer

architecture platforms, or future PLC platforms that would include CISC architectures.

6.3.4 Incorporating Thumb Instruction Analysis.

The FMAT limited its instruction analysis and disassembly to regular fixed-length

(32 bit) ARM instructions and did not analyze or disassemble 16 bit fixed-length Thumb

instructions. This process requires a separate pass through the file to analyze potential

Thumb instructions. This step is necessary for completing the static analysis capability of

69



the FMAT and the ARM disassembler, and provides the needed foundation for dynamic

analysis.

6.3.5 Dynamic Firmware Modification Analysis.

The static differences in code were made readily apparent, but analysis of the semantic

differences is left to the analyst to evaluate. Dynamic analysis is needed to understand

the semantics of firmware modification. A scenario is proposed to build a test case

for determining behavioral differences between a suspect and base firmware. First a

specific ICS system must be selected and engineered to specification, unless it is able

to be simulated through software means. A working PLC base firmware and ladder

logic program is chosen based on the scenario and data is then collected which captures

the time and states of the PLC and the devices attached to it. The system under test

would be the dynamic firmware modification analyzer which records a baseline pattern

of static and dynamic data. Later an attack firmware and identical ladder logic program

is recorded and then analyzed by the dynamic firmware modification analyzer to detect

the dynamic changes made to the firmware. The dynamic firmware modification analyzer

coupled with the static firmware analyzer create a picture which is compared for syntax and

semantic differences. This would address the shortfalls of the static analysis and provide

an automated approach for understanding semantic behavior differences. Additional

information regarding semantic and dynamic analysis is discussed in Christodorescu et

al. papers [13, 24, 57].

6.4 Concluding Remarks

Detecting security threats is the cornerstone of information assurance. This research

demonstrates a technique that aides analysts in finding differences between altered firmware

and a known good firmware baseline quickly and efficiently. Automation of complex tasks,

while keeping the analysis simple and straightforward, ensures that a variety of experience-

level analysts can use this technique effectively. More critical is the presentation of the

70



firmware modification analysis technique as a foundation for further detailed and complex

analysis techniques that focus on semantics rather than syntax.

71



Bibliography

[1] Abrams, Marshall and Joe Weiss. “Malicious Control System Cyber Security

Attack Case Study–Maroochy Water Services, Australia”. McLean, VA: The MITRE
Corporation, 2008.

[2] Allen-Bradley. “DF1 Protocol and Command Set Reference Manual”. 1996.

[3] Basnight, Zachry, Jonathan Butts, Juan Lopez Jr, and Thomas Dube. “Firmware

Modification Attacks on Programmable Logic Controllers”. International Journal of
Critical Infrastructure Protection, 6:76–84, 2013.

[4] Bencsáth, Boldizsár, Gábor Pék, Levente Buttyán, and Márk Félegyházi. “Duqu:

Analysis, detection, and lessons learned”. ACM European Workshop on System
Security (EuroSec), volume 2012. 2012.

[5] Bolton, William. Programmable logic controllers. Newnes, 2009.

[6] Boyer, Stuart. SCADA: Supervisory Control and Data Aquisition 4th Edition.

International Society of Automation, NC, USA, 2010.

[7] Bronk, Christopher and Eneken Tikk-Ringas. “The Cyber Attack on Saudi Aramco”.

Survival, 55(2):81–96, 2013.

[8] Burmester, Mike, Emmanouil Magkos, and Vassilis Chrissikopoulos. “Modeling

security in cyber–physical systems”. International Journal of Critical Infrastructure
Protection, 5(3):118–126, 2012.

[9] Byres, Eric, David Leversage, and Nate Kube. “Security incidents and trends in

SCADA and process industries”. The Industrial Ethernet Book, 39(2):12–20, 2007.

[10] Carcano, Andrea, Alessio Coletta, Michele Guglielmi, Marcelo Masera, Igor Nai

Fovino, and Alberto Trombetta. “A multidimensional critical state analysis for

detecting intrusions in SCADA systems”. Industrial Informatics, IEEE Transactions
on, 7(2):179–186, 2011.

[11] Cardenas, Alvarado A., Tanya Roosta, and Shankar Sastry. “Rethinking security

properties, threat models, and the design space in sensor networks: A case study

in SCADA systems”. Ad Hoc Networks, 7(8):1434–1447, 2009.

[12] Chandia, Rodrigo, Jesus Gonzalez, Tim Kilpatrick, Mauricio Papa, and Sujeet Shenoi.

“Security strategies for SCADA networks”. Critical Infrastructure Protection, 117–

131. Springer, 2007.

72



[13] Christodorescu, Mihai, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E

Bryant. “Semantics-aware malware detection”. Security and Privacy, 2005 IEEE
Symposium on, 32–46. IEEE, 2005.

[14] Coates, Gregory M, Kenneth M Hopkinson, Scott R Graham, and Stuart H

Kurkowski. “A trust system architecture for SCADA network security”. Power
Delivery, IEEE Transactions on, 25(1):158–169, 2010.

[15] Cui, Ang, Michael Costello, and Salvatore J Stolfo. “When firmware modifications

attack: A case study of embedded exploitation”.

[16] Dacey, Robert F. “Critical Infrastructure Protection: Challenges and efforts

to secure control systems (Testimony Before the Subcommittee on Technology

Information Policy, Intergovernmental Relations and the Census, House Committee

on Government Reform)”. 2004.

[17] Dehlawi, Zakariya and Norah Abokhodair. “Saudi Arabia’s response to cyber

conflict: A case study of the Shamoon malware incident”. Intelligence and Security
Informatics (ISI), 2013 IEEE International Conference on, 73–75. IEEE, 2013.

[18] Department of Defense Directive 8500.01E. “Information Assurance”, April 2007.

[19] Department of Defense Instruction 8500.2. “Information Assurance Implementation”,

February 2003.

[20] Department of Homeland Security. National Infrastructure Protection Plan.

Technical report, 2009.

[21] Eilam, Eldad. Reversing: secrets of reverse engineering. John Wiley & Sons, 2011.

[22] Erickson, Jon. Hacking: The art of exploitation. No Starch Press, 2008.

[23] Falliere, N., L.O. Murchu, and E. Chien. “W32. stuxnet dossier”. White paper,
Symantec Corp., Security Response, 2011.

[24] Fredrikson, Matt, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng

Yan. “Synthesizing near-optimal malware specifications from suspicious behaviors”.

Security and Privacy (SP), 2010 IEEE Symposium on, 45–60. IEEE, 2010.

[25] Hex-Rays. “Interactive Disassembler Professional”, October 2013.

[26] Hohl, William. ARM Assembly Language: Fundamentals and Techniques. CRC

Press, Inc., 2009.

[27] of Homeland Security, Department. “ICS-CERT Monitor Newsletter”. December

2013.

[28] Horz, Mael. “HxD – Freware hex editor and disk editor”, 2013.

73



[29] Igure, Vinay M., Sean A. Laughter, and Ronald D. Williams. “Security issues in

SCADA networks”. Computers and Security, 25(7):498–506, 2006.

[30] Khan, Arindam, Mukesh Kr. Sharma, G Ganesh, SD Dhodapkar, BB Biswas, and

RK Patil. “A cryptographic primitive based authentication scheme for run-time

software of embedded systems”. Reliability, Safety and Hazard (ICRESH), 2010 2nd
International Conference on, 500–504. IEEE, 2010.

[31] Kilman, Dominique and Jason Stamp. “Framework for SCADA security policy”.

Sandia National Laboratories report SAND2005-1002C, 2005.

[32] Knupfer, Andreas and Wolfgang E. Nagel. “Construction and compression of

complete call graphs for post-mortem program trace analysis”. Parallel Processing,
2005. ICPP 2005. International Conference on, 165–172. 2005.

[33] Kolter, J Zico and Marcus A Maloof. “Learning to detect and classify malicious

executables in the wild”. The Journal of Machine Learning Research, 7:2721–2744,

2006.

[34] Kuipers, David and Mark Fabro. Control systems cyber security: Defense in depth
strategies. United States Department of Energy, 2006.

[35] Kuvshinkova, S. “SQL Slammer worm lessons learned for consideration by the

electricity sector”. North American Electric Reliability Council, 2003.

[36] Leverett, Eireann P. “Quantitatively assessing and visualising industrial system attack

surfaces”. University of Cambridge, Darwin College, 2011.

[37] Li, Bixin, Xiaobing Sun, and Hareton Leung. “Combining concept lattice with call

graph for impact analysis”. Advances in Engineering Software, 53:1–13, 2012.

[38] Lieberman, Joseph. “Floor Statement for Sen. Joseph Lieberman, Introduction of

Cybersecurity Act of 2012, Washington, DC, February 14, 2012”, 2012.

[39] Lim, Kyung-Soo and Sangjin Lee. “A methodology for forensic analysis of embedded

systems”. Future Generation Communication and Networking, 2008. FGCN’08.
Second International Conference on, volume 2, 283–286. IEEE, 2008.

[40] Limited, ARM. “ARM7TDMI Instruction Set”, 2010.

[41] Lippmann, Richard, Kyle Ingols, Chris Scott, Keith Piwowarski, Kendra Kratkiewicz,

Mike Artz, and Robert Cunningham. “Validating and restoring defense in depth using

attack graphs”. Military Communications Conference, 2006. MILCOM 2006. IEEE,

1–10. IEEE, 2006.

[42] Lutz, Mark. Learning python. ” O’Reilly Media, Inc.”, 2013.

[43] Madsen, Christopher J. “Visual Binary Difference”, March 2013.

74



[44] Matrosov, Aleksandr, Eugene Rodionov, David Harley, and Juraj Malcho. “Stuxnet

under the microscope”. ESET LLC (September), 2010.

[45] Maurer, Ward Douglas. “Generalized structured programs and loop trees”. Science
of Computer Programming, 67(2):223–246, 2007.

[46] Maynor, David and Robert Graham. “SCADA security and terrorism: Were not crying

wolf”. Black Hat, 2006.

[47] McGraw, Gary. “Software security”. Security & Privacy, IEEE, 2(2):80–83, 2004.

[48] McGraw, Gary. “The 7 Touchpoints of Secure Software”. 2005.

[49] McMinn, Lucille, Jonathan Butts, David Robinson, and Billy Rios. “Exploiting the

critical infrastructure via nontraditional system inputs”. Proceedings of the Seventh
Annual Workshop on Cyber Security and Information Intelligence Research, 57.

ACM, 2011.

[50] McMinn, Lucille R. External Verification of SCADA System Embedded Controller
Firmware. thesis, Air Force Institute of Technology, March 2012.

[51] Morris, Thomas, Anurag Srivastava, Bradley Reaves, Wei Gao, Kalyan Pavurapu, and

Ram Reddi. “A control system testbed to validate critical infrastructure protection

concepts”. International Journal of Critical Infrastructure Protection, 4(2):88–103,

2011.

[52] Morrisett, Greg. “Attacking Malicious Code: A Report to the Infosec Research

Council”. IEEE Software, 14(3):342–351, 2000.

[53] Munro, Kate. “Deconstructing Flame: the limitations of traditional defences”.

Computer Fraud & Security, 2012(10):8–11, 2012.

[54] Nai Fovino, Igor, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. “An

experimental investigation of malware attacks on SCADA systems”. International
Journal of Critical Infrastructure Protection, 2(4):139–145, 2009.

[55] Papa, Stephen, William Casper, and Suku Nair. “Placement of trust anchors in

embedded computer systems”. Hardware-Oriented Security and Trust (HOST), 2011
IEEE International Symposium on, 111–116. IEEE, 2011.

[56] Pollet, Jonathan. “Developing a solid SCADA security strategy”. Sensors for Industry
Conference, 2002. 2nd ISA/IEEE, 148–156. IEEE, 2002.

[57] Preda, Mila Dalla, Mihai Christodorescu, Somesh Jha, and Saumya Debray.

“A semantics-based approach to malware detection”. ACM SIGPLAN Notices,

volume 42, 377–388. ACM, 2007.

75



[58] Ralston, Jim. “From VHF to wireless ethernet: modernization without compromise”,

February 2005.

[59] Reeves, J., A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith. “Intrusion detection

for resource-constrained embedded control systems in the power grid”. International
Journal of Critical Infrastructure Protection, 5(2):74–83, 2012.

[60] Robles, Rosslin John and Min-Kyu Choi. “Symmetric-Key Encryption for Wireless

Internet SCADA”. Security Technology, 289–297. Springer, 2009.

[61] Rockwell Automation. “Firmware Updates”, 2013. URL http://www.

rockwellautomation.com/support/firmware/overview.page.

[62] Rowe, Dale C, Barry M Lunt, and Joseph J Ekstrom. “The role of cyber-security

in information technology education”. Proceedings of the 2011 conference on
Information technology education, 113–122. ACM, 2011.

[63] Schuett, Carl. Programmable logic controller modification attacks for use in detection
analysis. thesis, Air Force Institute of Technology, March 2014.

[64] Sickendick, Karl A. File carving and malware identification algorithms applied to
firmware reverse engineering. thesis, Air Force Institute of Technology, March 2013.

[65] Slay, Jill and Michael Miller. Lessons learned from the maroochy water breach.

Springer, 2007.

[66] Symantec. “The Shamoon Attacks Continue”, 2012. URL http://www.symantec.com/

connect/blogs/shamoon-attacks-continue.

[67] Thompson, Mark. “Panetta Sounds Alarm on Cyber-War Threat”, October 2012.

URL http://nation.time.com/2012/10/12/panetta-sounds-alarm-on-cyber-war-threat/.

[68] Walkinshaw, Neil. “Reverse-Engineering Software Behavior”. Advances in
computers, 91:1–58, 2013.

[69] Wartell, Richard, Yan Zhou, Kevin Hamlen, Murat Kantarcioglu, and Bhavani

Thuraisingham. “Differentiating code from data in x86 binaries”. Machine Learning
and Knowledge Discovery in Databases, 522–536. Springer, 2011.

[70] Washington, Lawrence C and Wade Trappe. Introduction to cryptography: with
coding theory. Prentice Hall, 2006.

[71] Xiao, Kun. “Retrofitting Cyber Physical Systems for Survivability through External

Coordination”. 465–473. 2008.

76



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2013–Mar 2014

Firmware Modification Analysis
In Programmable Logic Controllers

Garcia Jr., Arturo M., Captain, USA

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-32

Department of Homeland Security ICS-CERT
POC: Nick Carr, DHS ICS-CERT Technical Lead
ATTN: NPPDCS&CNCSDUS-CERT
Mailstop: 0635, 245 Murray Lane, SW, Bldg 410, Washington DC 20528
Email: ics-cert@dhs.gov; Phone: 1-877-776-7585

DHS ICS-CERT

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Incorporating security in supervisory control and data acquisition (SCADA) systems and sensor networks has proven to be a pervasive problem due to

the constraints and demands placed on these systems. Both attackers and security professionals seek to uncover the inherent roots of trust in a system to

achieve opposing goals. With SCADA systems, a battle is being fought at the cyber–physical level, specifically the programmable logic controller (PLC).

The Stuxnet worm, which became increasingly apparent in the summer of 2010, has shown that modifications to a SCADA system can be discovered on

infected engineering workstations on the network, to include the ladder logic found in the PLC. However, certain firmware modifications made to a PLC can

go undetected due to the lack of effective techniques available for detecting them.

Current software auditing tools give an analyst a singular view of assembly code, and binary difference programs can only show simple differences between

assembly codes. Additionally, there appears to be no comprehensive software tool that aids an analyst with evaluating a PLC firmware file for modifications

and displaying the resulting effects. Manual analysis is time consuming and error prone. Furthermore, there are not enough talented individuals available in

the industrial control system (ICS) community with an in-depth knowledge of assembly language and the inner workings of PLC firmware.

This research presents a novel analysis technique that compares a suspected-altered firmware to a known good firmware of a specific PLC and performs a

static analysis of differences. This technique includes multiple tests to compare both firmware versions, detect differences in size, and code differences such

as removing, adding, or modifying existing functions in the original firmware. A proof-of-concept experiment demonstrates the functionality of the analysis

tool using different firmware versions from an Allen-Bradley ControlLogix L61 PLC.

15. SUBJECT TERMS

Firmware, Modification, Analysis, Detection, PLC Security

U U U UU 93

Dr. Robert F. Mills (ENG)

(937) 255-3636 x4527 robert.mills@afit.edu


	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	Firmware Modification Analysis in Programmable Logic Controllers
	Arturo M. Garcia
	Recommended Citation


	Firmware Modification Analysis In Programmable Logic Controllers

