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Abstract

A common remote sensing application is producing geolocation estimates for an ob-

ject of interest from multiple sensor platforms. Geolocation estimates are desired

to help improve situational awareness when dealing with space objects that do not

actively broadcast their location. A depiction of the error parameters are calculated

in conjunction with the positional estimates. Satellite based remote sensors often

use time of arrival (TDoA) or received signal strength (RSS) measurements in or-

der to perform the geolocation task. This paper presents an optimization algorithm

for multiple non-time coincident angle of arrival (AoA) measurements from different

sensor platforms. Problems occur when multiple measurements from a single sen-

sor are used to estimate a location due to correlations in sensor error. A non-linear

optimization approach is presented for determining geolocation estimates and their

associated error parameters. The error parameters directly reflect the error present

on the individual measurements used to produce the position estimates. Correlations

in errors are dealt with by augmenting the non-linear optimization with a covariance

intersection algorithm. Finally, the ability to account for correlated errors within the

optimization algorithm is analyzed using Monte-Carlo simulations. The ability to

describe an objects location with a given confidence helps aid in the analysis of the

system at large.
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NON-LINEAR OPTIMIZATION APPLIED TO ANGLE-OF-ARRIVAL

SATELLITE-BASED GEOLOCATION WITH CORRELATED

MEASUREMENTS

I. Introduction

1.1 Introduction

Military object localization often requires the use of multiple sensors to create

a single point estimate. Multiple point estimates in succession create an object’s

location. The act of determining an object’s path using external sensors with respect

to the earth is called geolocalization. An object can determine its location through

the use of the global positioning system (GPS) or other means of positioning including

but not limited to the use of inertial measurement units (IMUs), magnetometers, or

digital compasses [2]. However, geolocalization from remote sensors is desired when

an object is unable to relay its position to a controller. Objects in this category

include deactivated satellites, meteors, and general space debris. The information in

this chapter will discuss the motivation and background of the geolocation algorithm

with the scope of the applications for this research. The main topics of discussion are

object geolocalization and the error depiction of an object’s location. A system of

sensors being used to create an estimate can be accurately gauged and the certainty

in a localized position can be inferred when the error produced in the simulations

that is associated with an estimated object location is known. Therefore, current

sensor systems can be analyzed for any deficiencies in coverage, and a more complete

description of the objects within the space environment can be realized.

1



1.2 Background

In this section, the topics of localization, coordinate systems and the fusion of

data between coordinate systems, remote sensing, and the optimization process are

discussed.

Localization.

Localization refers to the practice of finding the local area that an object resides

in. The idea is synonymous to determining an object’s location; however, localization

more specifically refers to the determination of an entire object state. A state estimate

is composed of some combination of position, velocity, and acceleration of an object.

The purpose of localization is to describe an object using a set of given measurements.

Therefore a good localization algorithm is able to produce the best description of an

object given the information from a set of measurements.

Determining a position requires the use of a coordinate system. Every coordinate

requires a point of origin and a combination of distance and angular quantities to

determine the position with reference to the defined origin. Within three dimensions,

the most common coordinate systems are Cartesian, Cylindrical, and Spherical. The

variables describing the position using the three common coordinate systems are sets

of magnitudes and angles. In a Cartesian coordinate system, the three variables

describing a position are vector magnitudes, while a Spherical coordinate system uses

two angles and a magnitude. It is possible to translate a measurement from one

coordinate system into another coordinate system thus allowing for the ability to fuse

multiple measurements from different sensors into a single coordinate system.

When performing geolocalization, two major coordinate systems are the earth

centered earth fixed (ECEF) and earth centered inertial (ECI) systems. This research

will focus on the ECEF system, which uses Cartesian based coordinates [3]. This point

2



of origin in the ECEF coordinate system is the center of the Earth in space and not in

mass. The x-axis passes through the Greenwich meridian, the z-axis points north and

lies on the Earth’s axis of rotation, and the y-axis completes the coordinate system by

being orthogonal to the x and z axis forming the right-handed system. This system

is depicted in Figure 1.

Figure 1. Earth centered earth fixed coordinate system [1]

Having the x-axis defined by the Greenwich meridian, a location on earth is

uniquely defined by a given ECEF coordinate that does not change over time. This

is not true for celestial coordinate systems that use the vernal equinox as one of the

primary directions which causes a location’s coordinate on Earth to change due to

the Earth’s spin. The ECEF coordinate system is important for any object that may

end up entering Earth’s atmosphere because the coordinate system describes where

it will re-enter relative to Earth’s surface.

3



Sensors.

A sensor is any device that measures a physical quantity. To produce localization

estimates, information is gathered about an object through the use of multiple sensor

measurements. The more information gathered due to the increase in either quantity

or quality of sensor measurements, the more accurate depiction of an object state can

be formed.

For the purpose of geolocalization, sensors produce measurements describing an

object’s position and motion. A remote sensor produces a measurement at a distance

from the object of interest. A measurement in created by measuring the strength of a

signal received, or finding the direction at which a signal is emanating. The angle of

arrival (AoA) is the direction of the signal relative to the sensor’s reference. A mea-

surement taken is with respect to a sensor’s position; therefore, multiple sensors will

produce data in multiple coordinate systems. Assuming a sensor’s location is known,

multiple measurements can be translated from their original coordinate systems to a

single coordinate system and used to produce a single position estimate for the object

of interest.

Sensors have inaccuracies influenced by different quantities of error. Components

of a sensor and the environment of a sensor can cause errors in the measurements. A

common assumption for error in different applications is that each instance of error

in a measurement is unaffected by the previous instance of error and each instance

of error is based on a random probability distribution. This assumption is known

as independent and identically distributed (IID). If an instance of error is related

to the previous instance, the error is correlated and thus no longer considered IID.

When measurements contain error, there is no longer a unique solution for a calcu-

lated object state based on the measurements, requiring the use of an optimization

algorithm.
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Optimization.

One means of converging to an ideal solution given a set of measurements is opti-

mization. Error in sensors causes measurements to contradict one another; therefore,

a single solution to an object’s location based on the measurements may not exist.

Finding the solution that minimizes a cost function is defined as optimization [4].

Optimization generally requires finding either a local maximum or minimum to a set

of equations. When performing geo-localization, the intent of the optimization is to

find the minimum amount of error for an object’s position. The minimum error is

defined to be the estimate that best agrees with the measurements used to produce

the estimate.

Optimization can be performed iteratively to converge to a solution using the

gradients of the non-linear functions. For each iteration, the optimization technique

produces a solution closer to that of the optimal solution. Different algorithms con-

verge at different rates to the optimal solution. Examples of iterative optimization

algorithms are gradient of descent and Newton’s method. The iterative methods are

useful compared to direct methods of optimization because they are able to simplify

non-linear sets of equations.

1.3 Problem Statement

As stated in the introduction, this paper will concentrate on the localization from

data produced by remote sensors. The data, assumptions, and process of geolocal-

ization are presented in the following section. A measurement is captured passively

by sensing an electromagnetic signal emanating from the object of interest. With an

origin at the sensor’s location, the measurement is a collaboration of an azimuth θ

and elevation φ angle. The angles together constitute an AoA measurement as shown

in Figure 2. Using non-time coincident AoA data from sensors, the research will
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Figure 2. The azimuth θ and elevation φ angles that constitute an angle of arrival
measurement

investigate the possibility of producing accurate error estimates based on the opti-

mized geolocation estimate. AoA localization is commonly used in many localization

practices. Wireless sensor networks often use AoA measurements to create an accu-

rate map of each sensor node [5][6][7]. AoA measurements in the practice of wireless

sensor positions require antenna arrays and thus more infrastructure than time differ-

ence of arrival (ToA) or received signal strength (RSS) measurements. ToA and RSS

measurements are considered distance based measurements while AoA measurements

are considered direction based measurements [8]. Direction based measurements are

not as susceptible to the variabilities of propagation losses as distance measurements

[7] counteracting the additional infrastructure costs. Variations in propagation losses

can be due to changes in atmosphere, weather, or other particles and forces between

the sensor and the object of interest. Therefore, more accurate localization estima-

tions can be produced using AoA measurements, and error is better approximated.

Geolocalization using space based sensors is a common practice for a variety of ap-
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plications. One practice is the localization of ships using ToA measurements [9]. The

localization specifically uses the technique because the ships already relay a signal

using the automatic identification system. By measuring the arrival times of the

message transmissions, satellites are able to determine the ship’s location when GPS

signals are unable to be used. ToA measurements are common for many satellite

based localization schemes including GPS. Research in refining the localization meth-

ods using ToA and RSS is continuing to this day [10] [11]. Because these passive

measurements create a non-linear set of equations to solve, different numerical meth-

ods for solving the optimization problems are continually evolving. As computing

becomes faster and more relied upon, the amount of processing that can be done on

the signals becomes more comprehensive. Therefore, better estimates are able to be

achieved.

1.4 Methodology

Prior research using the optimization techniques of interest assumed errors on

sensors were IID. The over-simplified assumptions of error cause the estimated size

of error to be overly optimistic. By increasing the complexity of the simulations of

error on the sensors, more realistic analyses with respect to error representation on

the localization algorithms will be performed.

The geolocation algorithm will be adjusted to take into consideration the higher

complexity of the sensor error. The geolocation algorithm uses a weighted Gauss-

Newton algorithm to produce the geo-location estimate and the calculated error.

The weighting is derived from the expected amount of variation on the sensor’s AoA

measurements. Therefore, the geo-location algorithm is able to produce an expected

error for the position estimation based on the individual sensors that were used to

create the estimation.
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The analysis of the geolocation algorithm is done using the MATLAB environ-

ment. The research takes into consideration how best to simulate the remote sensors

along with the object being localized. Each simulation has some amount of random-

ness to accurately depict different real world scenarios.

Sensor simulations are set up such that each sensor is on-board an earth orbiting

satellite. Satellite generation is based on the expected orbital mechanics. Therefore,

the algorithm takes into consideration not only the dynamic object that is being

located, but also the system of moving sensors. To thoroughly analyze the algorithm,

the object of interest will be simulated in a variety of ways. The two main categories

of paths are called complex and simple. A complex path has changes in the forces

acting upon it over a given period of time. We predict the more complex a path is, the

more error will be incurred on the estimates. This is because assumptions concerning

the object of interest can break down when its path becomes too complex. An object

of interest is also simulated using a less dynamic orbiting path. The path is considered

simple because other than earth’s gravitational pull, no other forces are acting upon

the body. By creating different types of simulations, the localization algorithm is

evaluated to ensure it is able to produce accurate estimates when analyzing any

object it may encounter.

Monte-Carlo simulations are used to obtain statistical results on the ability for the

algorithm to locate an object. Simulations allow for the ability to know the absolute

truth of an object’s position. Therefore, the simulations can be analyzed using the

MSE and NEES.

1.5 Conclusion

The purpose of the research is to determine the ability to estimate the position

of an object while determining the confidence in each location estimate. The error in
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the research is assumed to no longer be IID. Therefore, adjustments to the current

geolocation algorithm are needed to produce accurate location estimates. This re-

search will analyze how correlated error can be accounted for within the geolocation

algorithm. The paper describes how to create a more realistic simulation of error us-

ing a bias on AoA measurements, the ability of the current NLO algorithm to localize

under the new simulations, and how the new additions to the NLO algorithm account

for the bias within the simulated error.

Chapter II discusses the background literature of the geolocation algorithm. Top-

ics include simulating sources of error on sensors, the Gauss-Newton algorithm used

for the NLO, the CI algorithm, and the use of transition matrices. Chapter III is the

methodology section of the thesis. It describes how the simulations are formed, how

the algorithms are formed, and how testing of the algorithms will occur. Chapter

IV is the data and results section detailing the analysis of the data and results as

described in Chapter III. Finally, Chapter V concludes the research based on the data

produced in the previous Chapter, and concludes with future work for the research.
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II. Literature

2.1 Introduction

The theoretical basis of the research in this paper is discussed in this chapter.

Sensor measurements always have an error associated with them. The focus of the

research is to create a localization algorithm that will take into account sensor un-

certainty due to errors, and minimize the uncertainty in the estimated position. Lo-

calization is the estimation of an object of interest’s position including tracking the

object over a period of time [12]. Remote sensing refers to the gathering of informa-

tion from a remote location. For this research, the remote sensing application refers

to satellite sensor’s line of sight (LOS) measurements in terms of their AoA. The re-

search focuses on the mitigation of error correlations through mathematical processes

and optimization. A review on the depiction of error concludes the chapter. Error

depiction in conjunction with the localization is the final goal of the research, with

the intent of creating a method for analyzing the ability for remote sensors to locate

an object’s position.

2.2 Estimation using Optimization

Optimization is the process of finding the optimal solution when multiple solutions

to a problem are present. Multiple solutions to a problem occur when measurements

have some amount of error induced on them. The error causes the measurements to

contradict one another, thus making multiple solutions a possibility. A depiction of

a possible contradiction between sensor measurements is shown in Figure 3.

With three different measurements being used to locate an object, when error

is induced on the true LOS, multiple object locations become apparent. Finding

an optimal solution from a set of measurements can be performed either directly or
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Figure 3. Resulting solutions for an object’s position due to line of sight error

iteratively. Direct methods of optimization do not always have solutions for non-linear

sets of equations. To account for this limitation, iterative optimization techniques are

used simplifying the calculations of computationally complex systems of equations.

The research focuses on NLO as the base algorithm for localization [1]. NLO is

based on Newton’s method. In this method, a set of non-linear functions is simplified

by a set of linear functions describing the non-linear functions at a given estimation

point. A solution is estimated from the linear set of functions and that solution is

used as the new estimate for another iteration of the method. A one-dimensional

example of Newton’s method is shown in Figure 4.

Starting from an initial estimate near the solution, Newton’s method finds the

next position from a tangential line for a function f laying on the initial estimation

point. Therefore, the relationship between the next point in the estimation x1 and

the initial estimation x0 can be described by the equation

f(x1)− f(x0) =
df(x0)

dx
(x1 − x0). (1)

Equation 1 is the point slope form of the tangent line at the initial estimate.
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Figure 4. Depiction of a single iteration of Newton’s Method

Modifying Newton’s method to account for multiple non-linear functions results

in the Gauss-Newton algorithm. The Gauss-Newton algorithm uses the Jacobian of

measurements with respect to the values being estimated in place of the derivative

of the function in the one dimensional case in equation 1. The Jacobian is used

because multiple variables are being optimized within the sensor measurements. As

with Newton’s method, the Gauss-Newton algorithm starts out with an initial esti-

mate for the optimal solution. The change from the initial estimate to the next best

estimate is found on each iteration, and the calculated change corrects the estimate

and the corrected estimate is used as the initial estimate in the next iteration of the

algorithm. The equation for the Gauss-Newton algorithm uses ∆Ω as the change

of the observations needed to produce the current position estimate from the initial

observations, 4P as the change of the new estimated positions from the initial po-

sition estimates, and J(Pinit) as the Jacobian matrix at the initial position estimate

producing

∆Ω = J(Pinit)∆P. (2)
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The Jacobian in equation 2 is a matrix of partial derivatives with respect to the vari-

ables calculated in the state matrix. Assuming only the position is being estimated,

the variables in the state matrix are the ECEF coordinates of the object of interest x,

y, and z. Therefore, the functions being differentiated producing the partial deriva-

tives are the equations for the azimuth and elevation angles from the variables x, y,

and z via

Ω(P) = [θ(P), φ(P)]> =

[
tan−1

(y
x

)
, tan−1

(√
x2 + y2

z

)]>
. (3)

The Jacobian is a 2M × 3 matrix where M is the number of AoA measurements used

to produce a single state estimate.

The optimal estimate for the given measurements is produced from the Gauss-

Newton algorithm. With each iteration of the Gauss-Newton algorithm, the estimate

converges the estimate on the true optimum for the given measurements. The amount

of change from one iteration to the next is given by ∆P. To solve for ∆P from

equation 2, a weighted least mean squares of the Gauss-Newton algorithm using a

weighting factor w and measurement covariance matrix ΣΩ is applied using

wJ(Pinit)4P =w4Ω,

J>w>wJ4P =J>w>w4Ω,

4P =(J>w>wJ)−1J>w>w4Ω,

4P =(J>Σ−1
Ω J)−1J>Σ−1

Ω 4Ω. (4)

w is a weighting factor that when multiplied by the transpose of itself defines the

inverse covariance matrix of the sensor AoA measurements Σ−1
Ω . The Jacobian term

J is based on the AoA terms from the previous iteration, and referencing Figure 4,

these terms will eventually converge on an optimal estimate when an accurate initial

13



estimate is used.

Let us consider an example where the NLO is being applied to two measurements

of azimuth and elevation from a single sensor. The J and Σ−1
Ω matrices for this

example are defined as

Σ−1
Ω =



1
V ar(θ1)

0 0 0

0 1
V ar(φ1)

0 0

0 0 1
V ar(θ2)

0

0 0 0 1
V ar(φ2)


,

J =



∂θ1
∂x

∂θ1
∂y

∂θ1
∂z

∂φ1
∂x

∂φ1
∂y

∂φ1
∂z

∂θ2
∂x

∂θ2
∂y

∂θ2
∂z

∂φ2
∂x

∂φ2
∂y

∂φ2
∂z


. (5)

Each measurement as stated previously, adds two rows to the J.

2.3 Error Calculation

Localization uses a given set of data to acquire a state estimate. We assume

the given data has determined whether an object is present or not; therefore, the

NLO needs to estimate the position along with any other attributes for the object of

interest from the data. Once an estimate is found, we analyze whether the NLO is a

good estimator for the given data using the Cramer-Rao lower bound (CRLB).

The CRLB gives the lower bound on the variance of an unbiased estimator given

the data used [13]. Using a set of data Ω, and estimating a state X, the estimator

first needs to satisfy the condition

E

[
∂ ln(p(Ω; X))

∂X

]
= 0 for all X. (6)
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Equation 6 states that the optimal estimator given a set of data is the local maximum

of the log-likelihood function. When the condition in Equation 6 is met, the lower

bound of the variance in the estimation is

var(X̂) >
1

−E
[
∂2 ln(p(Ω;X))

∂X2

] . (7)

The denominator of equation 7 is also known as the Fisher information. Therefore,

the CRLB can also be described as the reciprocal of the Fisher information [13]. Using

I(X) to represent the Fisher information matrix,

var(X̂) >
1

I(X)
. (8)

Describing the CRLB as the reciprocal of the information matrix, we can make the

statement that the more information given by the measurements, the less variance we

would expect in the estimation, thus the more confident we are in the calculated esti-

mate. An increase in information for this research can occur with due to an increase

in measurements, or a decrease in the variance assumed for a given measurements.

Because the variance on a measurement is dependent on the sensor used to create an

estimate, we can increase the number of measurements used or use sensors determined

to have lower measurement variances.

Knowing the CRLB for the NLO algorithm allows for the ability to determine the

amount of variation or known uncertainty for a given estimate. The CRLB for the

weighted Gauss-Newton method is known from [14][15] as

ΣX = (J>Σ−1
Ω J)−1. (9)

Equation 9 shows that the minimum amount of variance on an estimation using the

NLO is the first half of equation 4; therefore, we say that the CRLB is inherently
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calculated when estimating an object state. Because the CRLB represents the amount

of variance expected on the estimator, it can be used to mathematically represent the

amount of uncertainty we have in the state estimate.

Error on a sensor can be represented as the amount of variation on the mea-

surements from the truth. Therefore, error can be represented by a set of variance

values. Each measurement has two values, azimuth and elevation. The variances on

the measurements are set up in a covariance matrix ΣΩ where the values of the co-

variance matrix are dependent on the sensor itself and are seen as inherent qualities of

the sensor. Different sensors are described by different covariance matrices that stay

constant over time and are known prior to operational use. The multiple covariance

matrices are combined using equation 9 to find the amount of error on an estimate,

and the resulting covariance matrix is depicted for analysis on a given state estimate.

The depiction of a covariance matrix that represents the Gaussian distribution is

done using ellipsoids [16]. For this practice, the ellipsoid created from the covariance

matrix defines a confidence region g defined by

(X− X̂)>Σ−1
X (X− X̂) = g2. (10)

Equation 10 normalizes the difference between the true state X and the estimated

state X̂ using the inverse of the state’s covariance matrix ΣX . To produce a covariance

ellipsoid, we calculate multiple points on the ellipsoid such that each point yields the

same value for g. If we desire a 3-sigma ellipsoid, then we want to calculate the X

values that lie on an ellipsoid that yield a value of three for g.

To calculate a given confidence region, the covariance matrix ΣX is effectively

decomposed into two equal triangular matrices L using the Cholesky decomposition

Cholesky(ΣX) = LL>. (11)
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Cholesky decomposition is analogous to taking the square root of a scalar value, but

for a positive semi definite matrix. Based on equation 10, the covariance ellipsoids

are produced by first declaring multiple points on a sphere S via

S = Sphere(radius = 1). (12)

The group of points on the sphere S are then multiplied by the upper triangular

matrix L and scaled by a standard deviation value σ to contour the points into the

desired confidence region or covariance ellipsoid

= σSL. (13)

The standard deviation value σ defines how many standard deviations of error are en-

compassed in the covariance ellipsoid. Using equation 13, the state covariance matrix

calculated in equation 9 is visualized. The visualization of the state covariance matrix

as an ellipsoid allows us to represent the region that, with a desired probability, we

are confident an object resides in. Thus, we can be aware of any possible interactions

an object may have with its surroundings.

2.4 Geolocation Algorithms

In different scenarios an object of interest will display different characteristics.

Therefore, it is necessary to take into account different assumptions about the ob-

ject. For example, if an object is stationary, then over time the measurements on

the object can be assumed to remain constant. When using multiple non-time co-

incident measurements to create a single estimation. There is no need to translate

the measurements in time based on the dynamics of the object. Therefore, different

simulations may show different algorithms as more effective.
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NLO is an iterative algorithm that requires an initial state estimate to begin. For

the NLO to converge onto an estimate, it is imperative to have a good initial estimate

to avoid the possibility of divergence on the iterations [15]. One method of producing

an initial estimate is using a triangulation algorithm.

The triangulation algorithm is a non-iterative method that produces an estimate

based on the least mean squared error between the LOS vectors and an estimated

position as shown in Figure 5. The triangulation algorithm works to minimize a

Figure 5. Depiction of the triangulation algorithm from line of sight vector measure-
ments

squared distance D using N measurements, weights wn, and the associated distances

between the estimate and the LOS measurements dn via

D =
N∑
n=1

d2
nwn. (14)

The triangulation algorithm that minimizes D in equation 14 is similar to those used

in [17] and [18].

Using the initial estimate calculated from the sensor measurements, the next step
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is to calculate the change in the the measurements ∆Ω. To calculate the measure-

ments that would result in the initial estimation Ω is found from the measured position

Pmeas via

Ω(X) = [θ(X), φ(X)]> ,

=

[
tan−1

(
Pmeas(y)

Pmeas(x)

)
, tan−1

(√
Pmeas(x)2 + Pmeas(y)2

Pmeas(z)

)]>
. (15)

Therefore, ∆Ω is the difference between the actual measurements and the measure-

ment vector calculated from the estimated position.

When an object is assumed to be static, the resulting estimated position Pest is

related to the measured position Pmeas by the equality

Pmeas = Pest. (16)

Equation 16 assumes that an object is in the same position for every measurement

taken independent of the time it was taken at. The depiction of the assumption is

shown in Figure 6.

Figure 6. Visualization of the static non-linear optimization assumptions

If the localized object is moving at a constant velocity, then the position of the
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object is dependent on the time at which the measurement is taken at. Therefore,

when multiple measurements are used to produce a single estimate. Using Vest as

the velocity at the estimation time and τ as an electromagnetic propagation factor,

the measured position and the estimation position are related via

Pmeas = Pest −
∫ test

(tmeas−τ)

Vestdt,

Pmeas = Pest −Vest(test − (tmeas − τ)). (17)

Equation 17 shows that for Vest, the position of an object is related to the mea-

surement time tmeas, the estimation time test, and a time delay factor τ based on

the propagation delay of electromagnetic radiation [1]. The relation between the

measurement positions and estimated position are shown in Figure 7.

Figure 7. Visualization of the velocity non-linear optimization assumptions

To better understand the dynamics of an object, acceleration is included with the

position and velocity estimates within the state vector. Objects are influenced by

external forces, notably gravity. When forces act on an object in space, there will be

a corresponding acceleration associated with it. Therefore, if we no longer assume

constant velocity within a window of time, using Aest to represent the estimated
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acceleration, the dynamics of an object are described using the equations

Pmeas = Pest +

∫ (tmeas−τ)

test

Aestt+ Vestdt,

Pmeas = Pest + Vest((tmeas − τ)− test) + Aest

(
(tmeas − τ)2 − t2est

2

)
. (18)

Equation 18 assumes that over a window of time defining the measurements used to

create an estimation that the acceleration is approximately constant. Figure 8 depicts

the new path assumption of the object. It may not always be beneficial to increase

Figure 8. Visualization of acceleration and velocity non-linear optimization assump-
tions

the complexity of calculations with the Acceleration and Velocity NLO if the window

of measurements used to find an estimated position is small. The decrease in benefits

from the algorithm is due to the lack of acceleration experienced within a window of

time. The smaller the window, the smaller the change in position for an object can be

assumed because the difference in the estimation time and measured times makes the

acceleration and velocity insignificant. Therefore, it is necessary to take into account

the number of measurements over time and the dynamics of the object to determine

the most suitable algorithm for localization.
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2.5 Bias

Bias with respect to the research is a time correlated random process adding

an offset to a measurement. A bias is defined to be a constant offset on a given

estimation [13]. In this research, the term bias is used to define the random process

because within a small window of time, the error provides a relatively constant offset.

Different windows therefore have different biases dictated by our process. Because we

handle bias as a random process, the bias may change over time and is not necessarily

stationary. The typical way of depicting the error on a sensor for a localization

problem is to combine the bias error with a random process model by an IID zero

mean Gaussian distribution [19] referred to within the research as noise. For a remote

sensor, many possible sources contribute to a bias within a system.

One source of bias error on a remote sensor is the IMU. An IMU primarily consists

of a gyroscope and an accelerometer. These components have multiple types of errors

such as misalignments and scale factors, but more importantly bias errors [20][21].

There have been multiple attempts within either software or hardware to mitigate

the errors from these components by modeling the error with Markov models and

estimating the bias using a Kalman filter [22][23][24]. One limitation of modeling

the bias within an algorithm is that it does not account for calibrations of the bias

that might occur over the period an object is being localized. Calibrations are used

to correct the biasing errors that accumulate over time. The corrections may occur

at unknown times adding complexity to the bias estimation problem. A common

calibration method for satellite based remote sensors is to use star trackers [25] and

other processing means. In addition, the IMU measurements are integrated to esti-

mate the quantification used in this research making the output curve of the IMU

time correlated.

An accelerometer on an IMU is used to measure accelerations occurring on a
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remote sensor. The acceleration measurements are converted to positional values via

a double integration where εBias represents bias error at the measurement times and

Aerror references error in the acceleration measurement depicted mathematically as

εBias =

∫ tmeas

0

∫ tmeas

0

Aerrordtdt. (19)

Because a sensor system takes discrete samples from the accelerometer to produce

positional estimates, the positional bias in the measurements can be discretely defined

by the double summation of the number of samples N , via

εBias =
N∑
n=1

n∑
m=1

Aerror,m. (20)

Aerror follows a random distribution that accumulates over time. Every time a sample

of the accelerometer is taken, the analog signal passes through an analog to digital

converter (ATD) converter. Error is produced in the truncation of the analog signal

to a discrete value when quantizing in the ATD[26]. Figure 9 shows the effects of

quantizing on an analog signal.

Figure 9. Truncation of signal due to analog-to-digital quantization
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As described in Figure 9, the ATD changes the analog signal thus inducing error

equal to the amount of truncation within the measurements. A signal is assumed to

follow a uniform random distribution within the dynamic range of the ATD. There-

fore, if every quantization level has a voltage range Vdiff that is assigned to it, and

the error associated to every sample can be described by the distribution in Figure

10.

Figure 10. Probabilistic effects on error due to analog-to-digital quantization

From Figure 10, the induced error from the ATD converter can be represented

by a uniform distribution that ranges across a voltage difference. The error can be

mathematically described via

Aerror = U(−Vdiff/2, Vdiff/2). (21)

Equation 21 when paired with equation 20 determines the simulated bias for use with

the localization algorithms. Remote sensors are known to have some amount of bias

in the measurements due to the drifting IMU measurements. Because bias is known,

the sensors often calibrate themselves while in flight [27][28].

2.6 Covariance Intersection

One method of accounting for a bias in multiple measurements is assuming the

measurements are correlated with one another. When error is perfectly correlated
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between two measurements, the error on one measurement is the same as the error

on the next measurement. An algorithm known as CI is used to take this assumption

into account within the NLO. CI is intended for use when the amount of correlation

between measurements is unknown [29][30]. The CI algorithm introduced in 1997 uses

a generalized method of combining measurements without the loss of information. CI

works under the idea that if the correlation between two measurements is unknown

then no matter what the cross-correlation terms are, the true covariance ellipsoids

that results from the combination of the two measurements lies somewhere within

the intersection of the individual covariance matrices for the measurements. When

describing the covariance matrices geometrically as covariance ellipsoids, when the

cross-correlation terms are unknown, for the calculated covariance ellipsoids to con-

sistently encompass the true covariance ellipsoids, the calculated covariance ellipsoids

needs to encompass the intersection of the individual covariance ellipsoids. Figure 11

depicts how CI combines two individual covariance matrices represented by solid blue

ellipsoids into a single covariance ellipse represented by the dashed red ellipsoids that

encompasses all possible true ellipsoids.

Figure 11. Possible covariance ellipsoids (left) and the corresponding covariance ellipse
using CI (right)

Because all possible true covariance ellipsoids are within the intersection of the
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individual measurements covariance ellipsoids, a conservative estimate for the true

error is an ellipsoid that encompasses the entire intersection.

The geometric representation of a single measurement’s covariance ellipsoid cannot

truly be realized. A single measurement has two pieces of information, the azimuth

and elevation angle projecting from the sensor’s position, while an ellipse exists within

a three dimensional space. Therefore, a measurement’s error is depicted as a range

diverging from the true LOS due to a difference in angle as shown in Figure 12.

Figure 12. Resulting covariance ellipsoids (black) from two angle of arrival measure-
ments with depicted error (blue) on an angle of arrival measurement (red)

When using different cross correlation values in the covariance matrices, the Co-

variance Intersection algorithm is still able to engulf all possibilities as shown in Figure

13.

The intersection of the two measurements is the convex combination of the co-

variance matrices. Using Σc as the calculated covariance matrix, Σ1 to ΣN as the

individual covariance matrices, mc as the calculated mean, m1 to mN as the individ-

ual means, and ω1 to ωN as the scalar weighting factors, CI is described as

Σ−1
c =

N∑
n=1

ωnΣ
−1
n , (22)

Σ−1
c mc =

N∑
n=1

ωnΣ
−1
n mn. (23)

26



Figure 13. Resulting covariance ellipsoids (black) from two angle of arrival measure-
ments with depicted error (blue) on an angle of arrival measurement (red) when true
covariance ellipse has different amounts of correlations

Equation 23 shows that the mean value mc also changes depending on the amount of

correlation assumed within the measurements.

2.7 Path Optimization

Localization can refer to finding a single point estimation, but may also refer to

the calculation of multiple positions over a length of time. The multiple positions

as a group are referred to as the object’s path. Within the NLO, the desire is to

append a position to position transition matrix to the Jacobian matrix. The purpose

of the transition matrix is to optimize the continuity of the position and velocity

estimates in conjunction with the AoA measurements. For a given state estimate

with a position and velocity, the position of the next estimated state should be the

sum of the position and the distance traveled between the current and next states

based on the estimated velocity. Figure 14 shows position estimates from the NLO

in blue and estimated positions from the previous state in red.

From Figure 14, the position calculated from the values of the previous state may

not agree with the state estimate from the AoA measurements. The transition from
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Figure 14. Depiction of the transition matrix (red) compared to position estimates
based solely on measurements (blue)

one state to the next is expressed as

Pest1 + Vest1 ∗ (test2 − test1) 6= Pest2. (24)

Because an object following a given path will need to follow a kinematic model, the

NLO can acquire more accurate position estimation by optimizing the equation

0 ≈ Pest1 + Vest1 ∗ (test2 − test1)−Pest2. (25)

Equation 25 is the basis for the transition model being appended to the Jacobian in

the NLO. The transition model smooths anomalous estimates from imprecise mea-

surements to the rest of the estimated data points creating a continuous track. The

assumption is for a given time period, the object being localized has a continuous

velocity and acceleration.

2.8 Analysis

In order to test the localization algorithms, a number of simulations are randomly

created. The use of multiple random simulations in order to benchmark an algo-
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rithm is called a Monte-Carlo simulation (MCS). MCS are used to verify whether

the algorithms perform under a multitude of scenarios. Different parameters are held

constant as others fluctuate to analyze the effects the of different variables on an

algorithm. Several metrics of the MCS outputs can be used to measure the effec-

tiveness of the NLO algorithm. These include average normalized estimation error

squared (ANEES) [16], MSE, and average covariance ellipsoid size. Each of these are

described in more detail below.

The ANEES defines how well the estimated position and estimated state covari-

ance matrix agree with one another for the given set of MCS. The first part of cal-

culating the ANEES is finding the difference between the true object location X and

the estimated location X̂ as

X̃ = X− X̂. (26)

The difference in the true and estimated state is normalized to the estimated state

covariance matrix

εnees = X̃>Σ−1
X X̃. (27)

The ANEES is therefore the expected value of the NEES over a large amount of

random simulations, the MCS. The ANEES is important because if the number of

degrees of freedom nX is equal to the ANEES, the estimator is said to be consistent.

Mathematically this equality is described as

E[εnees] = nX . (28)

The ANEES is able to tell us if the estimated covariance matrix properly represents

the estimate that is calculated. The ANEES does not take into account the ability

of the estimator to produce the most accurate estimates, or decrease the sizes of the
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state covariance matrices as feasibility allows.

The next means of analyzing the localization algorithms is by calculating the MSE

of the estimates. Calculating the MSE for the MCS allows for the ability to compare

the average MSE. The MSE is calculated via

MSE = (X− X̂)>(X− X̂). (29)

The average MSE for the MCS is the expected value for all of the calculated MSEs.

The MSE is used to determine which algorithms produce the most accurate results

independent of the covariance matrix.

The final analysis of the algorithms is the calculation of the average covariance

ellipsoid size for each estimate. There are multiple ways to define the size of an

ellipsoid. For this application, we will look at the semi-major and semi-minor axes of

the ellipsoids. The semi-major and semi-minor axes depict the shortest and farthest

distances away from the estimate to the edge of the ellipsoids. If an ellipsoid is

stretched, this may not be apparent by calculating the volume of the ellipse; therefore,

it is beneficial to analyze the ellipsoid with the calculated axes. The semi-major

and semi-minor axes are calculated using a singular value decomposition (SVD)[4].

Assuming a 3× 3 covariance matrix ΣX its SVD is

ΣX = USB∗,

S =


Semi-Major Axis 0 0

0 3rd Normal Axis 0

0 0 Semi-Minor Axis

 . (30)

The matrices U and B are undesired matrices for the analysis from the decomposition,
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but represent the rotation of the ellipsoids.

2.9 Conclusion

The theoretical overview of the research focuses on localization along with the error

calculations for the remote sensors being used. The purpose for focusing on NLO is

the inherent ability for the calculation to produce the state estimation covariance

matrix from equation 13. To produce more accurate error estimations, the focus of

the research will use a transition matrix to localize an object along its entire path.

The assumption is that an object follows a kinematic model for its motion. The

Covariance Intersection method will be investigated in order to create error ellipsoids

that encompass the true error parameter on the position estimation. These methods

will be tested to see if they provide better results for an object’s localization compared

to previous localization techniques.
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III. Methodology

3.1 Introduction

The localization algorithm employs remote sensor AoA information. Previous

iterations of the algorithm relied on uncorrelated measurements from multiple sensors.

The focus of this research is to look at the case where sensor measurements have

correlated error. The research investigates how to deal with correlated error in an

attempt to quantify it within a covariance ellipsoid depicting confidence on a state

estimation.

Previous research in the localization algorithm assumed the error on the measure-

ments was due to random noise alone [1]. The problem with this assumption was that

measurements from a single sensor are often correlated. Error correlation is due to

sensor bias. A bias causes measurements from a sensor to have similar error; there-

fore, the expected value of error is not zero, and the measurements are correlated. If

the bias becomes the dominant source of error, the localization algorithm will produce

state estimates that are constantly shifted off the true state.

The investigation explores the data simulation with the data composed of true

AoA along with the apparent AoA that has the addition of error from random noise

and a bias. The AoA is generated from a simulated object path and simulated sensor

positions. The different variations of the localization algorithm are tested against

multiple simulated object paths and error quantities to compare the results with the

older variations of the algorithm. The intent of the evaluation is to determine how

the older variations of the NLO deteriorate in performance with the new simulations

along investigating how well the updates to the algorithm are able to mitigate these

effects.
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3.2 Theory

As discussed in Chapter II, the base algorithm for localization is called NLO. In

equation 4, the NLO is calculated using the Jacobian matrix of the measured AoA

values with respect to the state variables for a specified estimation time. The co-

variance matrix for the sensors used in the NLO is assumed to describe a Gaussian

distribution. No other distribution can be fully described using only a variance pa-

rameter. The assumption is no longer valid when there is correlation in a sensor’s

measurements.

Acceleration Estimation.

Three variants of the NLO exist in terms of the state vector being estimated. The

Static NLO estimates the Cartesian coordinates of an object, and the Velocity NLO

estimates the position vector along with the velocity vector, and the Acceleration and

Velocity NLO estimates the position, velocity, and acceleration vectors in Cartesian

coordinates space as shown in equation 31 where x, y, and z are the variables de-

scribing position, ẋ,ẏ, and ż are the variables describing the velocity, and ẍ,ÿ, and z̈

are the variables describing acceleration in the corresponding directions.

Xstat = [x, y, z]> , Xvnlo = [x, y, z, ẋ, ẏ, ż]> , Xavnlo = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]> . (31)

The state estimates are calculated over a window of time. The window is a subsection

of the overall object path; therefore, each state estimate uses a portion of the overall

measurements.

The calculations for the NLO require an initial estimate from the triangulation

algorithm. The triangulation algorithm estimates the position and not the velocity or

acceleration. A quick method of producing estimates for the velocity and acceleration
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is to calculate the change in position with respect to time t as

ẋest1 =
xest1 − xest2
test1 − test2

,

ẍest1 =
ẋest1 − ẋest2
test1 − test2

. (32)

The initial estimates therefore require at least the triangulation position estimates

created from different subsets of measurements.

The NLO requires the calculation of the Jacobian matrix. Each cell in the matrix

is the partial derivative of one of the measurement terms with respect to one of

the values in the estimated state vector. When calculating multiple derivatives with

respect to the acceleration values, it is more computationally efficient to estimate

the derivatives numerically. Because the derivatives are estimated, some amount of

error will be assumed within the calculations. The equation for the derivative of the

function f(x) is defined as

∂f(x)

∂x
= lim

h→0

f(x+ h)− f(x)

h
. (33)

When estimating the derivative of a function, the h term in equation 33 is set to some

small number instead of evaluating the limit. The estimate incurs an error on the

order of h via

hf ′′(x) +O(h2) [31]. (34)

This method of calculating derivatives creates relatively little error depending on the

value chosen for h. However, calculating the same number of points from the function

f(x) a more accurate estimate of the derivative can be calculated.

Instead of calculating the derivative using f(x) and a value a set distance away

34



f(x+ h), a better derivative estimate can be created using two points near f(x) as

∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
. (35)

The derivative estimate in this calculation has an error calculated by the equation

1

6
h2f ′′′(x) +O(h3) [31].

Equation 35 to calculate the derivative, the error is on the order of h2. When h is

less than one, the error in the estimation is lower than the error from the previous

method of calculating the derivative.

We perform the derivative estimate on equation 15 using the calculation of Pmeas

from equation 18. All partial derivatives for the Jacobian in the acceleration and

velocity NLO are populated using this method, simplifying the calculations for the

algorithm.

Covariance Intersection for Non-Linear Optimization.

CI is defined by the equations 22 and 23. The algorithm is set up in terms of

summations rather than the linear algebra format of the NLO in equation 3. CI

is used assuming that the correlation on the measurements is unknown. When the

measurement correlation is completely unknown, the CI algorithm can assume per-

fect correlation between measurements to create a conservative approximation of the

covariance ellipse.

First, we want to be able to translate the matrix multiplications into individual

summations that calculate individual matrix elements. An element in a matrix C will

be defined by its row m and column n where C is equal to the matrix multiplication
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of matrices A and B. Each cell is calculated by the equation

cmn =
N∑
i=1

amibin. (36)

Let a new matrix D be defined by the equation

D = B>AB = B>C. (37)

The transpose is used to reflect a matrix along the diagonal. Within the summation,

the reflection can be seen as a reference swap of the row and column indices. The

matrix elements of D can be written as

dmn =
M∑
i=1

bim

N∑
j=1

aijbjn. (38)

When the matrix A is known to be a diagonal matrix where all off-diagonal elements

are known to be zero, it can be said that

when m 6= i, ami = 0,

cmn =
N∑
i=1

amibik = ammbmn,

∴ dmn =
N∑
i=1

bimaiibin. (39)

In the previous example, B is used in place of the Jacobian matrix J, and A is in

place of the covariance matrix ΣΩ. For the NLO, equation 39 can be used to depict

the calculation of the localization error Σ−1
X . Substituting in the proper variables, the
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equation becomes

Σ−1
X = J>Σ−1

Ω J,

Σ−1
X (m,n) =

N∑
i=1

J(i,m)Σ−1
Ω (i, i)J(i, n). (40)

For equation 40, the elements referenced within each matrix are defined by the indices

within the parenthesis next to its corresponding variable.

To isolate the individual sensor measurements in equation 40, the equation can

be written as

Σ−1
X (m,n) =

2∑
i=1

J(i,m)Σ−1
Ω (i, i)J(i, n) +

4∑
i=3

J(i,m)Σ−1
Ω (i, i)J(i, n),

∴ Σ−1
X = Σ−1

X,meas1 + Σ−1
X,meas2 (41)

Applying weights to the individual covariance matrices on the right-hand side of

equation 41, the equation becomes identical to the first part of the definition of the

CI algorithm in equation 22 seen as

Σ−1
X = ω1Σ

−1
X,meas1 + ω2Σ

−1
X,meas2. (42)

In order to simplify the equation for use within MATLAB, equation 42 can be de-

scribed as

Σ−1
X (m,n) = ω1

2∑
i=1

J(i,m)Σ−1
Ω (i, i)J(i, n) + ω2

4∑
i=3

J(i,m)Σ−1
Ω (i, i)J(i, n),

Σ−1
X (m,n) =

2∑
i=1

J(i,m)ω1Σ
−1
Ω (i, i)J(i, n) +

4∑
i=3

J(i,m)ω2Σ
−1
Ω (i, i)J(i, n). (43)

A matrix W containing the individual weights of the two measurements will be defined
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as

W =



ω1 0 0 0

0 ω1 0 0

0 0 ω2 0

0 0 0 ω2


. (44)

Using this definition of W, equation 43 reduces to

Σ−1
X (m,n) =

N∑
i=1

J(i,m)W(i, i)Σ−1
Ω (i, i)J(i, n),

∴ Σ−1
X = J>(WΣ−1

Ω )J. (45)

Equation 45 provides a simple method to calculate the covariance matrix depicting

the localization error using the CI algorithm. Under the circumstance where errors

on the sensor measurements are assumed to be perfectly correlated, the weights are

defined as
N∑
i=1

ωi = 1. (46)

CI also requires the estimation of the mean under the same assumptions as the cal-

culation of the covariance matrix depicting the localization error. The equation for

∆x can be written as

∆x = ΣX(JΣ−1
Ω ∆Ω). (47)

The value for ΣX is the inverse of the matrix calculated in equation 45. Converting

equation 47 into summation form, the calculation of the individual elements in ∆X
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becomes

∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
M∑
j=1

(
K∑
k=0

J(k,m)Σ−1
Ω (k, j)

)
∆Ω(j, n)

)
,

when k 6= j,Σ−1
Ω (k, j) = 0,

∴ ∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
M∑
j=1

J(j,m)Σ−1
Ω (j, j)∆Ω(j, n)

)
. (48)

M in equation 48 represents the number of rows in the matrices J and ∆Ω. Every

two rows in these matrices correspond to a single sensor measurement because each

measurement contains an azimuth and elevation. Therefore, considering again with

the example of two sensor measurements, equation 48 can be written as

∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
2∑
j=1

J(j,m)Σ−1
Ω (j, j)∆Ω(j, n) +

4∑
j=3

J(j,m)Σ−1
Ω (j, j)∆Ω(j, n)

)

∆X = ΣX

(
J>Σ−1

Ω,meas1∆Ωmeas1 + J>Σ−1
Ω,meas2∆Ωmeas2

)
. (49)

Applying weights to equation 49 gives

∆x = ΣX

(
ω1J

>Σ−1
Ω,meas1∆Ωmeas1 + ω2J

>Σ−1
Ω,meas2∆Ωmeas2

)
. (50)

After constructing equation 50, we have an equation that is nearly identical to the

definition of CI in equation 22. To obtain the equation in a format that can be applied
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to data, we reduce the equation by

∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
ω1

2∑
j=1

J(j,m)Σ−1
Ω (j, j)∆Ω(j, n) + ω2

4∑
j=3

J(j,m)Σ−1
Ω (j, j)∆Ω(j, n)

)
,

∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
2∑
j=1

J(j,m)ω1Σ
−1
Ω (j, j)∆Ω(j, n) +

4∑
j=3

J(j,m)ω2Σ
−1
Ω (j, j)∆Ω(j, n)

)
,

∆X(m,n) =
N∑
i=1

ΣX(m, i)

(
4∑
j=1

J(j,m)W(j, j)Σ−1
Ω (j, j)∆Ω(j, n)

)
,

∆X = ΣX(J(WΣ−1
Ω )∆Ω),

∴ ∆X = (J>(WΣ−1
Ω )J)−1(J(WΣ−1

Ω )∆Ω). (51)

Equation 51 is the NLO algorithm using CI. The algorithm is used to estimate an

object’s state vector under unknown correlation of sensor measurements.

Transition Matrices.

The transition matrix is used to draw relationships between the multiple estimated

object states. Therefore, the transition matrix on each iteration is used to optimize

object positions over an entire path. Previously, the NLO algorithms optimized the

state of an object one position at a time. The idea behind the transition matrix is

that we are estimating the same object over a given period of time. Therefore, we

can assume that the state estimate at one position in time can be related to the state

estimate at the next position in time.

Previous NLO algorithms would produce multiple state estimates. When examin-

ing the overall path created for an object, the covariance ellipsoids would range in size

from state to state. If within a window of measurements we were unable to get mea-

surements from multiple different sensors or if all of the measurements came from a

similar location, large skewed ellipsoids would be produced. By relating an estimated
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state with similar states, each state estimate is incorporating information from both

the measurements used to produce its estimates, but also the measurements used to

produce other estimates. If a bias is assumed to be near zero over an entire path,

even though it may not be zero over a small window of time, the transition matrix

will lessen the effects of bias from estimate to estimate.

The transition matrix in one dimension x will follow the form:


0

0

0

 =


1 ∆t 1

2
∆t2 −1 0 0

0 1 ∆t 0 −1 0

0 0 1 0 0 −1





x1

ẋ1

ẍ1

x2

ẋ2

ẍ2


. (52)

In this matrix, the value of x is being calculated for the next estimation time given

the change in time ∆t and a kinematic model (KM). As described in equation 25, we

relate state one with state two by calculating the position, velocity, and acceleration

expected for state two and subtracting out what was actually calculated for state

two. Doing so, we update the state estimates based on this transition matrix. The

expected value that the equation will be optimized to is zero for all cases. The values

in this model, in order to work with the rest of the NLO, need associative variances

to weight the confidences in the KM. These weights in the simulations will be based

on the maximum expected values for an object’s velocity and acceleration. Therefore,

any state estimates that do not coincide within the realm of a realistic object will be

smoothed to fit the model. The amount of smoothing from one point to another is

dependent on the amount of error in a state estimate.

The transition matrix representing a kinematic model is concatenated to the Jaco-
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bian matrix within the NLO algorithm. Covariance values representing the expected

error in the model are also concatenated to the sensor measurement’s covariance ma-

trix. Within the NLO algorithm this can be described using Jtrans and Σtrans to

describe the transition matrix and transition covariance matrix respectively via

4X =

([
J

Jtrans

]> [
ΣΩ

Σtrans

]−1 [
J

Jtrans

])−1 [
J

Jtrans

]> [
ΣΩ

Σtrans

]−1

4Ω.

The transition covariance matrix uses values that represent the maximum acceleration

and velocity an object may exhibit. Because the values are large, Σtrans describes

the possible error for the KM as large. Therefore, the KM is not being used to fit the

position estimates to a given path that may describe only a specific set of objects.

However, the NLO algorithm is still dependent primarily on the measurements from

the sensors. One problem that may arise from using large covariance values is the

extra complexity added to the NLO algorithm.

3.3 Materials and Equipment

The simulations for this research are conducted primarily in the MATLAB en-

vironment. MATLAB enables us to create mathematical models for object paths,

and create measurements from sensors along the path. Sensors are modeled in MAT-

LAB with elliptical orbits around a fixed earth. The velocities for the sensors are

appropriated based on their elevation and the necessary velocity at the elevation to

correctly model the orbit. Sensors with a lower elevation therefore travel at faster

angular velocities. The object of interest is modeled in two different ways. The first

model is of a low earth orbit (LEO) object with the same equations as the modeled

sensors. This object model provides a basic path to localize with the NLO. Velocity

is constant, and the NLO is expected to produce more accurate results compared to
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an object with a more complex path. The second object model is meant to test the

limits of the NLO algorithm by having highly erratic motion. The erratic motion is

modeled using differential equations described by the forces that act on the object in

a real scenario. Solving for the differential equations required the ordinary differential

equations (ODE) solver in MATLAB. Using the differential equations, we are able to

simulate different amounts of force over time creating a path similar to the one shown

in Figure 15.

Figure 15. Object Path simulated using differential equations

Once the paths of the object and the sensors are created, the measurements are

simulated at different times along the path. For the simulations, the beginning and

end times are found for all of the paths. Visibility from the sensor to the object is

taken into consideration because the earth may eclipse the LOS from the sensor to

the object. Next, random measurement times following a uniform distribution are

created and assigned to the multiple sensors. Different points in the path are created
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at random measurement times. The random measurement times simulate gaps in

time where the object of interest may have only a few sensor measurements. The

gaps in time create estimates with greater amounts of error during the time period.

At the given measurement times, LOS vectors are created between the sensors and the

object. Each calculated vector is then assigned to the corresponding sensors, creating

an AoA measurement array. The measurements at this point in the simulation do

not have any error associated with them.

Sensor error in MATLAB is created in two parts. The first part of the error

contains the uncorrelated term, referred to as random noise. The random noise is

modeled using IID Gaussian noise. The noise with a known variance is then added to

the AoA components in the measurement. The second part of error is attributed to

the correlated term modeled with an accumulating bias. Modeled error is assumed to

be associated to the truncations of a signal in the accelerometer on the sensor used

to create the LOS vector. The truncation error is modeled by a uniform distribution

and is added onto the measured acceleration which is integrated twice to calculate

the position vector. Therefore, the truncation error on the accelerometer is integrated

twice to determine the positional error. The error calculated from the integrations is

considered to be the bias errors εθ,bias and εφ,bias. The apparent LOS is created using

the calculated errors for the simulations via

θapparent =θtrue + εθ,noise + εθ,bias,

φapparent =φtrue + εφ,noise + εφ,bias. (53)

The final step in describing the error is randomly generating calibration times that

occur less frequently than the sampling of the IMU. A simulation of the bias generated

in MATLAB is depicted in Figure 16 The figure above shows a bias randomly changing

over time similar to a random walk. Around the 150s mark, there is a noticeable
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Figure 16. Bias simulation with added random noise from bias and noise with no
measurements present

calibration to the error resulting in a value of zero radians of error before gradually

accruing more error. A random noise was also added to the error in the figure to

demonstrate what the final error being induced on the measurements will resemble.

With the multiple measurements for the multiple sensors created, the next step is to

apply the different methods of localization using the NLO for comparisons.

3.4 Procedures and Process

The analyzed NLO localization algorithms are:

1. Static NLO

2. Velocity NLO

3. Velocity NLO with CI

4. KM Velocity NLO with CI

5. KM Acceleration and Velocity NLO with CI.

The Velocity NLO is the benchmark localization method shown to be the most ef-

fective in the previous research for fast moving objects. The purpose of using the

Velocity NLO is to depict how the error would increase once the simulations account

for the correlated error by incorporating a bias. To account for the bias, the addition
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of the CI algorithm and the KM are implemented. Finally, acceleration is added to

the estimated state vector to investigate whether improves the ability to estimate

an objects position. These algorithms are evaluated using Monte-Carlo simulations

which allow for the calculation of the ANEES.

NEES, as the name suggests, is the error of the localization algorithm when com-

pared to the true object path normalized based on the calculated covariance matrix.

To determine whether a localization algorithm is over or under confident, the NEES

will be greater than or less than the number of variables calculated by the algorithm.

Because the state vector of the NLO will include position and velocity, the number

of variables calculated is six. A sample MCS without the inclusion of bias error is

shown in Figure 17.

Figure 17. Monte-Carlo simulation without simulating bias error

The simulation in Figure 17 shows an example scattering of points centered on

the origin when no bias is present in the measurement error. The locations represent

the differences in the estimated and true object location. The color of the point
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represents the associated NEES value of the estimation, where dark blue is an NEES

value less than one, light blue is a value less than three, green is a value less than six,

red is a value less than ten, and dark red is a value greater than ten. The average

NEES value is shown in the bottom right-hand corner. The NEES value does not

always represent more error as shown by red values near the center and blue values

on the edges. The NEES value indicates the error in the estimation in conjunction

with the confidence in the estimation. The larger the covariance ellipsoid for a given

estimation, the more allowable error there is for an estimate. A larger covariance

ellipse signifies an estimate calculated from measurements with less information. The

larger ellipsoids are due to measurements from only a few sensors, or measurements

taken from a similar location in space from multiple sensors. Therefore, an accurate

estimation is more difficult to calculate due to a lack of information.

CI is expected to create larger error surfaces when coupled with the NLO al-

gorithm. The intention for the addition is to create covariance ellipsoids without

over-confident bounds. A simulation of this test is shown in Figure 18.

Figure 18. Covariance ellipsoids along a path for the velocity non-linear optimization
and velocity non-linear optimization using Covariance Intersection
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Figure 18 depicts the estimated path from the covariance intersection method is

not significantly different from the velocity NLO without the covariance intersection

method. However, the main difference when using covariance intersection is the in-

crease in the covariance ellipsoid sizes encompassing the estimation points. Figure 19

shows the estimated paths without the depiction of the covariance ellipsoids.

Figure 19. True object paths (blue) and estimation paths (red) of the velocity non-

linear optimization and velocity non-linear optimization using Covariance Intersection

with associated total calculated error for the two different paths in meters

The error numbers shown on the bottom of the graphs in Figure 19 represent

the total error in meters between the estimated and true estimation points without

being normalized. The amount of error in a path is dependent on the amount of error

exposed into a system. Therefore, the total error in the simulation is arbitrary, and

the only significance of showing the values is to demonstrate that error is reduced

when using the CI algorithm for this case. Some of the outliers in the path were

corrected using the covariance intersection, but overall the error is not expected to

be greatly reduced.
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The second addition to the NLO algorithm is the use of a KM with the NLO. The

purpose of the KM Velocity NLO CI is to address the issue of outlying estimations

on an object path. Earlier versions of the velocity NLO estimate one point at a time

rather the entire path. The focus with the KM VNLO CI is to estimate the entire

path with a single iterative loop. Estimating the entire path at once allows the KM

Velocity NLO CI to optimize over the entire path rather than a single point. The

KM Velocity NLO CI requires large matrices that are more computationally intensive.

The computation time is greatly reduced with the use of sparse matrices in MATLAB.

However, the research is post-processing, the time it takes to run the algorithms will

be ignored.

3.5 Conclusion

The geolocation algorithms are based on NLO. Different algorithms estimate dif-

ferent state vectors of the same object of interest. The different state vectors include a

combination of position, velocity, and acceleration. The main contribution of this re-

search is the addition of the CI algorithm to the NLO algorithms. CI has been adapted

to the NLO algorithms in the scenario where the amount of correlation among sen-

sor measurements is unknown. In this scenario, we assume that the measurements

are perfectly correlated providing a conservative or under-confident estimate of the

covariance matrix. Covariance ellipsoids are produced from the covariance matrix to

visualize confidence in an estimated position. Chapter IV evaluates the performance

of the different algorithms in different scenarios; providing insight to the performance

gains of the additions to the NLO algorithms.

The NLO algorithms are tested using MCS. The MCS allow for the ability to

calculate the ANEES for each algorithm in each scenario. The different tests cover

added uncertainty to the measurements, different object paths and object path dy-
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namics, different uses of the algorithms with respect to the iterations performed, and

window sizes used to produce the estimations. For the general tests of the different al-

gorithms, the covariance ellipsoid sizes along with the MSE for the position estimates

are evaluated. The NEES is an amalgamation of the two metrics. When the NEES

is too high or low, we can examine whether it was due to a poor position estimate or

a poor covariance estimate.

CI assumes that measurements are perfectly correlated. The covariance matrix

produced from this algorithm is expected to produce lower values of the NEES by

increasing the ellipsoid sizes. The ANEES is expected to be less than the desired

ANEES of three when estimating positions. The estimates from the algorithm are

classified as under-confident because the covariance ellipsoids include more error than

expected from the sensors.

The addition of the kinematic model is expected to smooth outlying estimations

that are contrary to the overall object path. Outlying estimations may be due to

minimal sensor measurements, or measurements that come from only a few sensors.

Diversifying the sources of measurements used to produce an estimate also improves

estimate accuracy in this scenario, but this may not always be possible.

Finally, the addition of acceleration estimates within the state vector increases the

ability to describe an object within a window of measurements. Most benefits using

the Acceleration and Velocity NLO are expected to be realized when increasing the

window size used to produce individual estimates. By increasing the window sizes,

more measurements are used to produce estimated states. The more measurements

used to produce an estimated state, the larger the time gap is between the estimated

time and the measurement times. Therefore, if the velocity is changing over time,

the less we can assume that within a larger window that the velocity differences are

negligible between the estimated state and the state of the object at the measurement
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times.
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IV. Results

4.1 Introduction

In this section, the results and the analysis for the results are discussed. Testing

is performed on multiple algorithms and compared to the described triangulation

algorithm. The first algorithm discussed is the Static NLO, which assumes that

the non-time coincident data are generated from a stationary object, and thus, it is

inferred that all LOS measurements are referenced to the same position in space and

independent of their corresponding time stamp. Next, the Velocity NLO is analyzed

which assumes that an object may be travelling at a constant velocity; therefore,

within a window of time, the measurements used to find a single estimated point

are known to be pointing at different positions along an object’s path. Next, the CI

algorithm is implemented and the effects on the estimated position and covariance

matrix from the NLO are visualized for the instance when measurements are assumed

to be correlated when taken from a single platform. A kinematic form of the NLO is

also tested to analyze whether optimizing the NLO over an entire path with correlated

measurements affects the estimated states. The variances for the kinematic model

are based on the maximum values of an object’s position, velocity, and acceleration.

Finally, an Acceleration and Velocity NLO is formulated and tested to determine if

there is any impact on the position estimates when the velocity of an object is no

longer assumed constant. Two scenarios have been simulated to test the algorithms.

Simplistic object paths of earth orbiting objects with random altitudes within LEO

and inclinations are setup to determine how well the algorithms perform localization

of non-dynamic objects. The simulations allow for the ability to vary the speeds of

the object which effectively deteriorates the ability to localize for the algorithms that

do not assume a kinetic object. Other than the simplistic path, a staged path is
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generated such that an object has multiple stages at which forces acting upon the

object change.

All results are be evaluated using three main criteria. The first two criteria are the

MSE and ellipsoid sizes of the estimated positions and covariance matrices. The MSE

of the estimated position evaluates the effectiveness of the algorithms at producing

the most accurate position estimations. The ellipsoid sizes correspond to the MSE

such that the smaller the MSE for a given algorithm, the smaller we would expect

the ellipsoid sizes to be. The final criterion for evaluating the algorithms is the NEES

values. In order to determine the expected value of the NEES, which is referred to as

the ANEES, a MCS is used. The NEES is the most direct way of determining whether

the expected error in the estimations is properly represented by the calculated state

covariance matrices.

4.2 Results

MCS are used to analyze the estimations of the algorithms. Circular and complex

paths for the object are used, and the scattering is shown in Figure 20.

Figure 20. Monte-Carlo simulation of Static Non-Linear Optimization used on a cir-

cular path of an object
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Using color to depict the NEES values, the individual estimations reveal that

the difference between the true and estimated values directly influences the NEES.

This is shown by the tighter grouping of blue points near the center of the scatter.

The resulting average NEES for the MCS in Figure 20 is shown in the bottom right-

hand corner of the Figure. For the static NLO used on a circular path, the NEES

value is 8.5887, higher than the desired NEES. As described in equation 28, the

desired NEES for the scenario is three because of the three degrees of freedom in

a position estimation x, y, and z. The next algorithm tested on the circular path

MCS is the velocity NLO in Figure 21. The MCS for the Velocity NLO depicts a

Figure 21. Monte-Carlo simulation of Velocity Non-Linear Optimization used on a
circular object path

distribution that is centered around zero error. The majority of the points is colored

in blue representing a NEES less than or equal to the value three, and the ANEES is

just above three which is the desired value. Based on the information provided, the

algorithm has shown to be a good estimator for the given scenario. If the NEES based

on the metric from equation 28 has been met, then the CI algorithm is unneeded to

produce better estimates. Figure 22 shows the effects of the CI algorithm on the

circular path MCS.

The CI algorithm when used with the Velocity NLO produces a NEES value much
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Figure 22. Monte-Carlo simulation of Velocity Non-Linear Optimization with Covari-
ance Intersection used on a circular object path

less than the metric of three. This implies that the assumption of measurements from

a single sensor being perfectly correlated estimates a covariance matrix that is under-

confident with respect to the positional error of the estimate. Therefore, based on the

NEES, the Velocity NLO produces the best estimates of the position estimates and

the corresponding covariance matrices. Figure 23 graphically depicts the decrease in

NEES as more complexity is added to the NLO algorithm.

Figure 23. NEES values for the different algorithms on a circular path
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The KM Acceleration and Velocity NLO are also included to show their effects

on the NEES values. Using the circular path, the KM does not influence the NEES

results significantly. The final point representing the acceleration and Velocity NLO

shows a small decrease to the NEES value.

To fully understand the performance of the algorithms, the MSE and ellipsoid sizes

are also investigated. The MSE is compared to the MSE of the original Triangulation

Algorithm (TA) as shown in Figure 24.

Figure 24. MSE for the different algorithms on a circular path

Based on the MSE, only the static NLO and the Acceleration and Velocity NLO

outperformed the TA.

The final metric of analysis for the NLO algorithms is the average ellipsoid sizes

produced. Figure 25 shows the change in the semi-major axis of the covariance

ellipsoids using different NLO algorithms where a smaller ellipsoid is desired.
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Figure 25. Average ellipsoid sizes for the different algorithms on a circular path

The largest change in ellipsoid size occurs with the addition of the CI algorithm. In

the circular path simulations, the additional size is not needed to achieve the desired

NEES value of three. The smallest ellipsoids are produced from the static case of the

NLO. Because the NEES value for this algorithm shows that the algorithm was over-

confident, the covariance ellipsoid is determined to be too small for the amount of

error that was actually present in the system. However, the Velocity NLO produced

the smallest ellipsoids for the algorithms that produced acceptable confidence values

with a NEES value of 3.096 shown in Figure 23. In these aspects, the Velocity NLO

produced the best results. Looking at the MSE, the Acceleration and Velocity NLO

produced the best results.

The next set of MCS simulations describe an object based on multiple stages an

object may have. Figure 26 demonstrates the ability for the static NLO to produce

estimates on these simulations

With a dynamic object path, the Static NLO results are dramatically higher in

terms of NEES. The NEES for the Static NLO jumps from a value of 8.5887 in the
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Figure 26. Monte-Carlo simulation of the Static Non-Linear Optimization used on a
complex object path

circular simulations to a value of 33.166. An increase in the NEES is expected from

the Static NLO because it assumes an object is stationary. Next, Figure 27 shows

the results of the Velocity NLO against the staged path.

Figure 27. Monte-Carlo simulation of the velocity non-linear optimization used on a
complex object path

The NEES for the Velocity NLO increases for the staged path similar to the Static

NLO. A circular path the Velocity NLO produced the best results, but with the staged

path, the Velocity NLO’s performance degraded to that of the Static NLO used on

the circular path. The next simulation evaluates the CI algorithm to determine if it

can produce useful estimates with the staged path.
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Figure 28. Monte-Carlo simulation of the Velocity Non-Linear Optimization with
Covariance Intersection used on a complex object path

Using the CI algorithm with the NLO, the NEES drops to an acceptable level of

1.8305. The NEES in this case is once again less than the desired value of three. When

evaluating the NEES it is preferable to be under-confident resulting in a NEES less

than the desired value of three. The true covariance ellipsoid in the under-confident

circumstance is a subset of the calculated covariance ellipsoid; therefore, the true error

is accounted for. This is the expected outcome using the CI algorithm as described in

Chapter II. Using the two additional algorithms, a graph of the NEES values when

using a staged path MCS is shown in Figure 29.

In Figure 29 the only algorithms to perform at or lower than the NEES metric

are the algorithms including the CI algorithm. The addition of a transition matrix

does not significantly change the NLO algorithms’ performances with respect to the

overall NEES value. The Acceleration and Velocity NLO decreases the NEES value

as was the case with the simple path. In order to fully analyze the NEES results, the

next step is to investigate the MSE values and ellipsoid sizes to determine how the

NEES values were decreased. Figure 30 shows the MSE values for the MCS using a

staged path.

Using a staged path to evaluate the MCS, the MSE of all algorithms increases
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Figure 29. NEES values for the different algorithms on a staged path

significantly with the exception of the Acceleration and Velocity NLO. Because the

Acceleration and Velocity NLO takes into consideration the possibility for a changing

position within a window, it is able to produce similar comparable results to the

circular path case in Figure 24. The significantly smaller MSE when compared to

the other algorithms validates the smallest NEES value seen in Figure 29. Figure 31

shows the change in the semi-major axis of the covariance ellipsoids for the different

algorithms which inherently describes the size of the ellipsoids.

The ellipsoid sizes are consistent with the sizes seen in the circular path MCS.

The consistency in the ellipsoid sizes is because in both sets of simulations, the same

amount of information is used to produce the estimates. The ellipsoids are dependent

on the amount of information used and not the dynamics of the object. Regarding

equation 8, if the information matrix I(X) does not change, then the CRLB does not

change, thus the same covariance ellipsoid size is expected. Therefore, with exception

to the acceleration and velocity NLO, the increase in the NEES values is due to the

degraded ability for the algorithms to produce accurate estimated values.
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Figure 30. MSE for the different algorithms on a staged path

The next set of simulations analyze the Velocity NLO, Velocity NLO with CI, the

KM of the Velocity NLO with CI, and finally the KM of the Acceleration and Velocity

NLO with CI with varying parameters. The parameters that are of interest are the

variance in time measurements, the residual on the iterations of the NLO algorithms,

the speed of the object being localized, and finally the window size used to create the

individual position estimates.

Figure 32 depicts the NEES against an increasing uncertainty in the measurement

times. Adding small variations on the timing measurements simulates a scenario

where an unknown error is present in a system that is not taken into account by the

localization algorithms. The added error to the measurement times ranges from zero

to fifty milliseconds is shown in Figure 32.

Most of the degradation to the algorithms occurs when small amounts of timing

error are first introduced to the system. The velocity NLO with CI is nearly identical

to the KM velocity NLO with CI in this simulation along with the rest of the simula-

tions. When the CI is adapted to the NLO, the amount of degradation to the NEES

for the timing error is insignificant when compared to the amount of error assumed

with correlated errors.
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Figure 31. Average ellipsoid sizes for the different algorithms on a staged path

The next simulation analyzes how many iterations of the NLO are necessary to

converge onto a optimal estimate. The larger the residuals, the less iterations of the

algorithm that are performed. After one iteration, the rate of convergence to a given

residual is dependent on the path of the object. The results for the simulation are

shown in Figure 33.

When evaluating the algorithm based on the NEES, a single iteration is sufficient

to produce state and covariance matrices with values similar to fifty iterations. The

NLO more dependable converges onto a solution when given a good initial estimate

which for this research is given by the TA algorithm. The NLO takes the initial

estimate and fine tunes the state to better agree with the measurements; therefore,

only a few iterations are needed to get the final estimate. This incident has been

shown in prior literature [15]. The Acceleration and Velocity NLO in particular

exhibits little change in the NEES over multiple iterations. Figure 33 shows that the

NEES remains slightly above a value of 0.5 for all residual values.

The next simulation analyzes the algorithms against an object at different speeds.
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Figure 32. Time variance testing on the different algorithms for a circular path

Figure 33. Residual testing on the different algorithms for a circular path

A circular path is used so the speed of the object stays constant during its path of

motion. Therefore, the localized object does not exhibit any acceleration except when

examining the individual x, y, and z values. The results are shown in Figure 34

A commonality among all algorithms is the divergence that occurs as the object of

interest increases in speed. The difference in the algorithms is the rate at which they

diverge from their original NEES value. When an object is traveling slower than 2500

m/s, the Velocity NLO with CI has a lower NEES value than the Acceleration and

Velocity NLO. The Acceleration and Velocity NLO diverges more slowly than any of

the other NLO algorithms. Therefore, the speed of the object of interest dictates the
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Figure 34. Speed testing on the different algorithms for a circular path

effectiveness of the different algorithms.

The final simulation assesses the algorithms on their ability to handle larger win-

dow sizes. Window size is dictated by the number of measurements that are being

used to calculate an estimation point. The measurements are allocated over time

based on a uniformly random distribution. By increasing the number of measure-

ments, the size of the window increases to reach the number of measurements needed

to create an estimate. The greater number of measurements also increases the amount

of information for a single estimate which decreases the size of the expected covari-

ance ellipsoid. Because the measurements are also further separated, assumptions

about the object within a window of data are no longer valid. As an example, for a

dynamic object, an object’s path over a small window in time can be approximated

with a constant velocity. As the window increases, it becomes necessary to create a

better approximation of the object’s path.

The results of testing different window sizes is similar to the speed tests. Increas-

ing the window size increases the distance the outlying measurements are from the

estimated position. Increasing the speed of the object disperses the object’s positions

in space over a given window in time. Increasing the window size increases the num-

ber of measurements, but also increases the change in position between the first and
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last position. Therefore, a similar phenomenon is seen in Figure 35 as with the speed

test.

Figure 35. Window testing on the different algorithms for a circular path

The NEES value of the velocity NLO diverges much more quickly than the other

algorithms. However, the Acceleration and Velocity NLO’s NEES values do not

change based on the window size. The algorithm is able to properly describe the

object’s motion within the window, thus creating better estimates when more data

is present despite the fact the window size increases. In order to show that the

Acceleration and Velocity NLO in fact degrades in ability to estimate with larger

windows, Figure 36 depicts what happens when a window increases to a size large

enough to encompasses multiple stages of an object.

In Figure 36, the NEES value of the AVNLO holds its value much better than the

other algorithms, producing under-confident covariance matrices for the largest win-

dow sizes. Here, a another stage falls into the window creating the sudden divergence

past the desired NEES value.

Achieving a NEES value of three means that the estimate from the algorithm lies

within the 95% probability region of the estimated covariance matrix. Therefore, we

expect the majority of the estimates to fall within the 95% probability region when
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Figure 36. Windowing testing on the different algorithms for a complex path

plotting the individual NEES values over time for a circular path shown in Figure 37.

Because the NEES values follow a Chi-Squared distribution, the 95% probability

region for an estimator with three degrees of freedom is

χ2
3(0.95) = 9. (54)

The Velocity NLO has the closest ANEES value to three when using a circular path.

Figure 37 shows that roughly six out of one hundred estimates were greater than

nine, or 94% of estimates fell within the region validating the claim in equation 54.

When using a staged path to evaluate the algorithms, the resulting NEES from the

algorithms tend to have higher and more sporadic values as depicted in Figure 38.

For the Velocity NLO CI algorithm and the KM velocity NLO CI algorithm, the

ANEES values are well below three, but the NEES values between 150 and 160 are

much higher than nine. The reason for the outlying NEES values is most likely due

to a change in stages in the object at this point in time. Because all other values of

the NEES for the simulation are much lower, an ANEES much lower than three was
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achieved.

4.3 Conclusion

The base NLO algorithm with various adaptations has been tested under differ-

ent conditions. The NLO algorithms were tested and the ability to create position

estimates were evaluated by calculating the MSE, ellipsoid sizes, and ANEES.

The base NLO algorithm known as the Static NLO consistently produced the

highest values of the NEES. The NEES value provides a useful metric to analyze the

algorithms because the NEES values described how well the calculated covariance

matrix agreed with the true position error. Because the static NLO was sub-optimal

at estimating an object’s state, we used Velocity NLO to produce more accurate

estimates. The Velocity NLO produced better NEES values in certain conditions,

but was proven not to be consistent with a staged path. Once the CI algorithm was

applied to the NLO algorithms, the NEES values were much more consistent under

different scenarios at the cost of increasing the ellipsoid sizes. The acceleration and

velocity NLO using the CI algorithm produced the best overall results when using

all scenarios, and consistently produced the lowest MSE of all algorithms. The KM

addition to the algorithms did not produce significant benefits when compared to the

algorithms without the KM. The model was used with large variances relating to the

largest acceleration values that may be exhibited by an object. Because the variances

were so large, little if any change actually occurred within the estimations. The

simulations were based on object paths, different object speeds, uncertainty within

the system, the number of iterations, and window sizes of the algorithms.
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Figure 37. NEES values for multiple estimation points occurring over time on a circular
path
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Figure 38. NEES values for multiple estimation points occurring over time on a staged
path
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V. Conclusion

5.1 Introduction

In this chapter, the final analysis of the results from chapter IV are discussed. MCS

were used to produce scatterings of estimation errors which were used to produce

values for the ANEES. The ANEES values were used to produce general plots of

the different NLO algorithms to depict how well each algorithm was able to create

estimates. The algorithms used were the Static NLO, Velocity NLO, Velocity NLO

using the CI algorithm, the KM Velocity NLO using the CI algorithm, and finally the

KM Acceleration and Velocity NLO using the CI algorithm. Different scenarios were

used to determine how the different algorithms were able to perform in the different

circumstances.

Future work for the research is discussed in this chapter with focus on the initial

testing of the Expectation Maximization algorithm. The purpose of Expectation

Maximization is to create likelihood functions of the different stages in an object’s

path.

5.2 Simulations

The first set of simulations analyzes the different NLO algorithms on a given set

of parameters to find the general trends between the algorithms. All algorithms have

the same amount of simulated error with the variance of the bias and noise being held

constant.

When testing a circular path, each version of the NLO algorithm when adding

complexity achieves progressively lower NEES values. It was determined that the

Velocity NLO algorithm produced the expected ANEES value while the Static NLO

algorithm had an ANEES value above the desired value and all of the other algorithms
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produced lower ANEES values. The addition of the acceleration estimates within the

state vector had the lowest MSE while producing covariance ellipsoids that were

under-confident of the true covariance ellipsoid. Under-confidence signifies that the

covariance matrices represent at a minimum the true amount of error in a system.

Therefore, under-confidence is preferable to over-confidence.

Testing against a staged path produced different results when compared to the

circular path tests. The Velocity NLO no longer produced the desired ANEES values

as before, but was over-confident producing an ANEES similar to the Static NLO in

the circular path simulations. The Acceleration and Velocity NLO saw little decline

in performance between the two different simulated object paths.

The simulations also examined the possibility for errors from other sources. The

tests using different variances on time revealed that all of the algorithms with CI

had negligible effects on the NEES. The CI algorithm already produces a conserva-

tive estimate of error, so small sources of error were not able to cause significant

deviations in the NEES. Tests on the amount of iterations of the NLO also showed

minimal effects after the first few iterations of the NLO. The need for only a few

iterations of the algorithm was described in [15] which states that an accurate initial

estimate is necessary to converge; therefore, only a few iterations of the Gauss-Newton

method are necessary to further improve localization accuracy. Our results confirm

this statement.

The two analyses that produced the most significant results were the speed tests,

and the windowing tests. When the speed of the object of interest increased, degrada-

tion to the estimation’s accuracy in all algorithms with exception to the Acceleration

and Velocity NLO was exhibited. Similar results were seen with the windowing tests.

The Acceleration and Velocity NLO uses fewer assumptions about an object’s path

within a given window of time. Therefore, the Acceleration and Velocity NLO was

71



able to most accurately describe an object within a window of time. The KM Accel-

eration and Velocity NLO using CI is able to perform under the most conditions.

The CI algorithm consistently produced under-confident covariance matrices de-

picting error in the position estimates. When the CI algorithm was not used, it is pos-

sible to calculate covariance matrices that are accurate and produce smaller ellipses,

but these algorithms were exposed to be inconsistent in different tests. Therefore, the

CI algorithm is best used when the path and amount of correlated error is uncertain.

Later work may look into the possibility of assuming only partial correlations between

measurements rather than perfect correlation as in the tests for this research. Perfect

correlation within error was assumed in these tests because we assumed the total

amount of error is known, but the correlations in error were unknown other than the

total amount of error assumed on the measurements.

Using a transition matrix to describe a KM over an entire path proved to create

insignificant results when the variances used to describe confidence in the model were

too large. The reason for using larger variance terms was to ensure the estimates

were not being fit to a path. The assumption was that we were dealing with an

unknown object, and the desired covariance matrices depicting error described the

error from the sensors; therefore, this allows for the ability to analyze the potential

of the given sensors to produce estimates. The KM therefore was used to ensure that

viable estimations were being produced from the given sensor measurements. For

the given simulations, the transition matrices did not exhibit any significance, but if

the variances can be reasonably decreased the transition matrices may be shown to

produce better results.

Adding acceleration to the estimated state vector was able to increase the accuracy

of the position estimates as described by the calculated MSE values. The Acceleration

and Velocity NLO provided consistent results in terms of the NEES. The drawback
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of estimating acceleration is the increase in computational cost. Because of the more

complex computations, the Jacobian matrix for the algorithm is calculated using

estimated partial derivatives. The estimation method for the derivatives increases

the error, but the increased error was unnoticed within the test results.

5.3 Conclusion

In conclusion, the multiple algorithms for producing geo-localization estimates

performed differently depending on the scenario. In the circular path simulations,

the CI algorithms consistently produced under-confident estimates of the covariance

ellipsoids. The consistency may be desirable, but in some situations the Velocity NLO

without the CI algorithm produced the best results with respect to the NEES val-

ues. However, the inclusion of the Acceleration and Velocity NLO produced the best

results with respect to the MSE. The Acceleration and Velocity NLO consistently

produced under-confident covariance ellipsoids with only a single exception from the

tests. The exception occurred when single estimations were produced from windows

including measurements of the multiple stages an object may have. Overall, position

and covariance estimates can be produced for a geo-localization problem with mea-

surements that have correlations due to biasing by using a NLO algorithm based on

the Gauss-Newton method.

Future Work.

Future work on the subject may include partitioning measurements into multiple

paths based on the stages an object can have over time. We were able to observe that

when using a staged path, all of the geo-localization algorithms at some point are

unable to produce accurate estimates when a window includes measurements of an

object with multiple stages. Therefore, if a path can be divided into multiple smaller
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paths this problem can be mitigated.

One method of dividing data into multiple groupings are through the use of multi-

ple likelihood functions. A technique known as Expectation Maximization is used to

iteratively augment multiple likelihood functions on a set of data to produce the max-

imum expected value that all data points fall within a set of given likelihood functions

[32]. The assumption for the set of data is that the data is sampled from different dis-

tributions. Therefore, if we assume that all distributions are Gaussian, then on each

iteration of the Expectation Maximization algorithm, the likelihood functions change

their mean and variances to accommodate the different distributions composing the

data.

The idea for using the Expectation Maximization algorithm on the geo-localization

problem is that the different stages have different acceleration values attributed to

them. A stage is defined by a change in force on an object or a change in mass

therefore using Newton’s second law, we expect a change in acceleration on an object.

Using an Acceleration and Velocity NLO, we are able to produce initial estimates of

the acceleration that can be used with the Expectation Maximization algorithm.

The likelihood functions being calculated by the algorithm will have a mean value

associated to the mean of the acceleration over a given stage. A flowchart of the

combination of algorithms is depicted in Figure 39.
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Figure 39. Flowchart of NLO algorithm incorporating Expectation Maximization

The variance values from the Expectation Maximization likelihood functions may

also be used as the covariance term Σtrans within the transition matrix. Because

the variance terms used within the transition matrix are large, the KM does not

significantly change the current estimates. However, if the lower variance terms from

the Estimation Maximization algorithm are used, significant improvements to the

estimations may be seen.

An initial test of the Expectation Maximization algorithm has been performed on

the acceleration estimates to examine the ability for Expectation Maximization to

partition a given object path as depicted in Figure 40. The likelihood functions in

the figure are depicted by the ellipses of varying colors.
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Figure 40. Initial test of an Expectation Maximization algorithm on estimated accel-

eration values from a single path

The test of the Expectation Maximization algorithm exhibits the ability to create

likelihood functions from seemingly scattered acceleration values. The path of the

object that was used to run the Expectation Maximization test is shown in Figure

41. The points at which a change in likelihood functions changes has been marked,

and in this scenario, the Expectation Maximization algorithm produced seemingly

accurate estimations.
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Figure 41. Path of object used in initial Expectation Maximization test

Further analysis of the algorithm is needed to determine if Expectation Maximiza-

tion can consistently produce accurate sub-paths. If the paths can be consistently

produced, the next step would be to see if there is a significant impact on the ability

to produce position and covariance estimates.
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