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Abstract

Automatic target recognition (ATR) requires detecting and estimating distinguishing

characteristics of a target of interest. Radar data provides range and amplitude information;

range distinguishes location relative to the radar whereas amplitude determines strength of

reflectivity. Strong reflecting scattering features of targets are detected from a combination

of radar returns, or radar phase history (PH) data. Strong scatterers are modeled as

canonical shapes (a plate, dihedral, trihedral, sphere, cylinder, or top-hat). Modeling the

scatterers as canonical shapes takes the high dimensional radar PH from each scatterer and

parameterizes the scatterer according to its location, size, and orientation.

This thesis efficiently estimates the parameters of canonical shapes from radar PH data

using dictionary search. Target scattering peaks are detected using 2-D synthetic aperture

radar (SAR) imaging. The parameters are estimated with decreased computation and

improved accuracy relative to previous algorithms through reduced SAR image processing,

informed parameter subspace bounding, and more efficient dictionary clustering. The

effects of the collection flight path and radar parameters are investigated to permit pre-

collection error analysis. The results show that even for a limited collection geometry, the

dictionary estimates the canonical shape scatterer parameters well.
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IMPROVED DICTIONARY FORMATION AND SEARCH FOR SYNTHETIC

APERTURE RADAR CANONICAL SHAPE FEATURE EXTRACTION

I. Introduction

Parameterized scattering models for radar returns from target objects provide an

efficient way to describe a scene. This thesis utilizes a three-dimensional (3-D) scattering

model [1] to survey a scene. Observed radar returns are processed to estimated target

parameters in a scene. This thesis decreases the estimation calculations needed in [1] using

dictionary search from [2]. This thesis improves parameter estimation accuracy relative to

[2] with parameter initialization and bounding.

1.1 Problem Statement

SAR data provides all-weather, 24-hour target sensing capability. Analysts are not

able to keep up with the volume of captured data collections. ATR algorithms pre-process

data to point analysts to collections of interest.

Canonical shapes provide a compact way of representing a target. The canonical

shapes from [1] are shown in Figure 1.1. A notional example of a target and its canonical

shape representation is shown in Figure 1.2 [3]. Detecting canonical shape scatterers in a

scene and estimating their parameters provide inputs for ATR algorithms. This thesis aids

SAR ATR by accurately detecting and estimating estimating canonical shapes within radar

SAR data.
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Figure 1.1: Six canonical shapes for target identification [1]. The shapes are a (a) plate, (b)
dihedral, (c) trihedral, (d) cylinder, (e) top-hat, and (f) sphere.

Figure 1.2: Demonstrative grouping of canonical shapes that represent a target [3, 4].

1.2 State of the art

Parameterizated scatterer models have progressed from isotropic point scatterers to

two-dimensional (2-D) scattering models [5–10] to 3-D models [1–3, 11, 12]. The

parameterized models derived in [1] involve all aspects of shape geomtry. These models

account for the object location, size, and orientation, and the collection geometry of the

radar.
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The models from [1] are highly non-linear. Estimating the parameters directly using

a numeric solver can cause large errors without very accurate initial estimates. Dictionary

formation and search using a least-squares (LS) match between dictionary entries and

the observed data can make estimation tractable, as the discretized dictionary provides a

finite number of parameters to check. Limiting the finite set of parameters allows for fast

formation and search. The speed of search is improved over gradient descent methods

due to the finite set. Dictionary search was researched using a coarse dictionary sampling

[2]. This coarse sampling can lead to large estimation errors due to local minima in the

cost function across the parameter subspace. Attempting to sample the entire parameter

subspace with with fine resolution is limited by memory constraints. This thesis improves

the dictionary method bounding the parameter subspace using initial estimates and error

analysis prior to sampling. For the same memory constraints with a smaller parameter

subspace, finer parameter sampling is accomplished near the true values. The local minima

far from the true parameter values from coarse sampling the entire subspace are eliminated.

1.3 Objectives and Methodology

The primary objective of this research is to develop an improved dictionary formation

and search algorithm to obtain more accurate scatterer parameter estimates relative to [2].

The supporting objectives are to increase the accuracy of the estimates and to decrease the

number of computations. To improve accuracy, initial parameter estimates are made and

parameter error analysis is performed to limit the searchable parameter subspace. The

limited subspace allows for finer sampling, so final estimates are more accurate. The

dictionary method decreases the number of computations relative to gradient descent from

[1]. The bound parameter subspace decreases computation by limiting the number of

dictionary entries.

An overview of the full algorithm to detect and estimate the scatterers in a scene is

provided in Figure 1.3.
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Figure 1.3: Canonical shape estimation algorithm overall steps.

In Step 1 the radar return data is collected. The data collection parameters are analyzed

to pre-process the minimum and maximum possible errors. The collected data is processed

to form a images and detect scatterers in the scene. Section 2.1 provides the details of how

2-D SAR images are produced.

Step 2 makes initial parameter estimates. The location initialization uses the location

of the scatterers in multiple images formed from the SAR data. The size initialization uses

the length of the scatterer detected in the image, the location and radius relation on a 2-D

image, and the amplitude of the return. The orientation initialization uses a coarse-to-fine

dictionary formation and coherency match. Error analysis for each parameter based on

the collection flight path determines an upper and lower bound for each parameter. The

parameter bounds limit the dictionary sampling range for each scatterer.

Finally in Step 3, the dictionary is formed by sampling each parameter within the

bounds from Step 2. A two stage dictionary search using normalized maximum coherency

and LS cost relative to the observed PH provides the final estimate of parameters for each

shape.

1.4 Thesis Chapters

The thesis is organized by chapters. Chapter 2 is the literature review that provides a

technical overview of radar data collection, radar data analysis, and conversion of radar data

to 2-D SAR images. After the technical overview, parameterized scatter models used for
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efficient target identification are provided. Estimation techniques of the model parameter

rounds out the chapter.

Chapters 3, 4, and 5 walk through the steps to make final parameter estimates. Each

chapter addresses one of the three Steps from Figure 1.3. The Step’s methodology is

addressed first. To evaluate the methodology, each chapter includes results for specified

cases.

Chapter 3 addresses Step 1, data collection and pre-processing. The known collection

flight path and radar parameters are analyzed. The collection parameters are used to

determine the minimum and maximum error possible because the target shapes are not

known a priori. The data is collected and processed using 2-D SAR image formation.

Chapter 4 details how Step 2 makes the initial estimate of the shape type and

parameters of each canonical shape in a scene. Each shape has parameters of 3-D location,

size, and orientation. The initial estimates are combined with the error analysis from Step

1 to provide possible ranges of each parameter used in Step 3 for dictionary formation.

Chapter 5 shows how the parameter ranges are sampled to form dictionaries.

Dictionary entry uniqueness is evaluated using Gram matrices. A Gram matrix shows

the level of coherency in a dictionary by taking the inner product of each entry with the

others (DHD). The dictionary search is accomplished using maximum coherency and LS

comparison. The algorithm is assessed based on the final shape type choice and final

parameter estimate accuracies.

Chapter 6 is the conclusion and future works. The data-based findings from the thesis

are summarized, and logical extensions of this work are presented.

5



II. Background

This chapter presents background information regarding radar processing and outlines

specific radar scattering models. Section 2.1 gives a technical overview to describe the data

received by a radar, how the data is manipulated for analysis, and how a synthetic aperture

is formed from multiple pulses and is used for image formation.

Radar return parameterized scatterer models describe mathematically expected radar

return values. Section 2.2 describes the many parameter models derived for scatterer radar

returns. When using models for ATR, the parameters are not know a priori. Therefore, a

model is effective only if the parameters are determined from the received radar data.

The last scatterer model of this chapter is the 3-D model derived by Jackson [1].

Hammond estimates the model parameters with dictionary formation and search [2, 3].

This thesis improves the dictionary search to achieve more accurate parameter estimates.

2.1 Technical Overview

A radar transmits a pulse of energy and receives returns from all scatters in a scene.

The return is sampled in time and captures the amplitude and phase of the return. The return

data is then converted from the time domain to spatial frequency. When multiple pulses

from different geometries are converted to the spatial frequency domain and combined, the

combined set is called PH data.

To convert to PH, the return data is sampled and match filtered using the transmitted

waveform. The matched filter (MF) output is transformed into the spatial frequency

domain. The result is the scene PH. In this thesis, the PH is generated directly from

the model equations, so these steps are not utilized.

The PH data is used to get accurate range measurements of the scatterers in the

scene. Taking the inverse fast Fourier transform (IFFT) of the PH (spatial frequency)

6



outputs the range measurements of the scatterers. The range measurement is called a high

range resolution (HRR) profile. An HRR of a single pulse provides one-dimensional (1-D)

information in range. Scatterers are ambiguous in cross-range, which is perpendicular to

the radar pointing direction. From a given azimuth direction, φ̃, the HRR is expressed as

gp(u, φ̃), where u is the spatial range location and gp is the amplitude of the return.

SAR combines spatially separated radar returns to synthetically produce an aperture

larger than the aperture of the physical radar. Each radar location provides an HRR

measurement. Multiple HRRs collected along a flight path can be combined to produce

an image [13]. One method to produce a 2-D image of the combined HRRs is called

backprojection. Backprojection under the far field assumption is expressed as [13, 14]

b(xg, yg) =

∫ φ̃2

φ̃1

{∫ ∞

−∞

|U |Gp(U, φ̃)e j2πUudU
}

dφ̃. (2.1)

The amplitude of the scatterers in the ground plane for the 2-D image is b(xg, yg), where is

xg is the location in the x or range direction, and yg is the location in the y or cross-range

direction. The inner integral is the inverse Fourier transform (IFT) of |U |Gp(U, φ̃), where

|U | is the radar frequency, and Gp(U, φ̃) is the Fourier transform (FT) of the projection data

gp(u, φ̃).

The FT and IFT are subject to aliasing depending on the sample step size [15]. The size

of the image where no aliasing occurs is called the scene extent. The sampling in frequency

affects the range extent and the sampling in azimuth affects the cross-range scene extent.

The range scene extent is

Erange =
c

2δ f
, (2.2)

where c is the speed of light, and δ f is the frequency sampling step size. In the cross-range

direction, the scene extent is

Ecross−range =
λmin

2δφ̃
, (2.3)

where λmin is the minimum wavelength of the radar, and δφ̃ is the azimuth sampling step

size.
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Equation (2.1) produces a 2-D image integrating over azimuth angles and spatial

frequency. The collection geometry includes elevation, θ̃. Scatterers not in the ground

or image plane are projected into the image plane based on the angle or slant plane that

the flight path makes with the ground plane. This phenomena is called layover [13]. The

projection is perpendicular to the slant plane formed from the flight path due to the planar

wavefront assumption. Figure 2.1 shows a simplified model of how layover works. The

red target is projected perpendicular to the radar slant plane. The range to the scatterer and

projected location in the 2-D image ground plane are equivalent.

Figure 2.1: 2-D Layover example figure. The range to the scatterer and the projected point
on the image plane are equivalent under a far field assumption.

When the flight path varies in azimuth and elevation, the resulting layover projection

has layover in the range and cross-range directions [13]. Figure 2.2 shows a descending

flight path. The grazing angle caused by the azimuth still projects the target closer to the

radar in the range direction. The descent in flight path causes a tilt angle in the slant plane

that causes a shift in the cross-range direction when the target is projected. Therefore, the

resultant projection vector moves the target location in range and cross-range.

The layover projection angles in range and cross-range for 2-D SAR image formation

are dependent on flight path. This thesis utilizes the unique layover projections between

2-D images produced from different flight paths to estimate the 3-D location of scatterers.

The details of the location estimation are provided in Section 4.3.
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Figure 2.2: 3-D Layover example figure. The projected scattered has layover in both the
range and cross-range directions.

One factor affecting the accuracy of the 3-D location estimate is the accuracy of

the 2-D location estimate in each image. The 2-D location accuracy is determined by

the resolution. Resolution in the range direction for SAR images is determined by

bandwidth with resolutionrange = c
2B , where B is the radar bandwidth. Resolution

in the cross-range resolution is determined by azimuth extent of the flight path using

resolutioncross-range = λ
2∆φ̃

, where λ is the wavelength at the center frequency and ∆φ̃ is

the flight path azimuth extent.

2.2 Scattering Parametric Models

Each parametric scattering model involves utilization of SAR data. The diversity in

frequency and location combine to make location estimates. Historically, each scatterer in

a target scene is treated as an isotropic point scatterer. Mathematically, point scatterers are

most straight forward, as each is treated as a delta function. The scatterer, gpt, is described

mathematically using its location, (x, y, z), and amplitude, A, by [16]

gpt(x, y, z) = Aδ(x, y, z).
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The point target model is limited because the reflections from an extended object are aspect

dependent. The resultant reflection is not isotropic. The orientation of true objects varies

the amplitude of a scatterer depending on the collection geometry. The object orientation

is not captured by the point scatterer model.

Models are created in [5–8] to account for the physical size and orientation of

scatterers. 2-D parameter scattering models [5–8] were first introduced to aid object

identification in 2-D images. The location, size, and probable azimuth angle of scatterers

are estimated relative to the 2-D image scene. 3-D parameter scattering models [1, 17, 18]

utilize the full object geometry of objects. The 3-D models includes details regarding the

true 3-D position of an object, the estimated size, and 3-D pose angle of objects.

2.2.1 2-D Scattering Models.

Two-dimensional scattering model parameter initial estimation uses 2-D images. The

initial estimates are the initialization points for each parameter. The 2-D parameterized

model investigated in [5–10] is expressed as

s(ω, φ̃; Θ) =
∑

m

Am

(
j
ω

ωc

)αm

sinc
(
ω

c
Lm sin(φ̃ − φ̃m)

)
e−ωγ̃m sin φ̃e

(
j ω

c/2 (x̂m cos φ̃+ŷm sin φ̃)
)
, (2.4)

where s is the modeled receive PH signal; q is a counting index for each scatterer; A

is the amplitude; ω is the frequency where ω = 2π f and ωc is the center frequency;

α determines the shape frequency dependence; L is the length; φ̃ is the azimuth angle

of the radar and φ̃q is the azimuth pointing angle for each scatterer; γ̃ is the scattering

aspect dependence parameter; and x̂q and ŷq are the x and y locations in the image for each

scatterer. The variable Θ represents all the unknown scatterer parameters. The sum over

each scatterer denotes that the total received signal is the sum of the individual responses,

a valid approximation when λ << object size.

Automated algorithms to determine the parameters for each scatterer use initial

estimates and iterative minimization of a cost function. Different approaches are taken in
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the various publications [5–10]. All utilize the image domain to initialize the 2-D location

and size parameter.

[5–7], and [10] use maximum likelihood (ML) along with the maximum image pixels

to initialize parameters. The ML is conditioned such that the parameters produce the same

maximum pixel locations as the image. The comparison eliminates the majority of the

parameters allowing for a confined initial estimate. The ML formulation for the signal in

noise is

Θ̂ML = arg min
Θ

[Y − s(Θ)]HΣ†[Y − s(Θ)], (2.5)

where Y is the observed data; s(Θ) is a simplified representation of the received s(ω, φ̃; Θ);

the superscript H is the Hermitian operator; Σ is the covariance matrix of the noise; and (·)†

denotes the Moore-Penrose pseudoinverse.

In [8], the parameters per scatterer are estimated, and the resultant images are created.

The images are summed and compared to the SAR image to determine the best fit. This

method is computationally inefficient as image formation and comparison takes longer than

comparing PH data directly.

Overall, 2-D scattering models give insight into the response of scatterers projected

onto a 2-D image plane. The limitation of these methods is that the output does not

give the full physical geometry of the scatterers. The scatterer pose angle is not limited

to an azimuth direction. The location of a scatterer can be above the ground plane. To

parameterize the full geometry of a scatterer, a 3-D model is needed.

2.2.2 3-D Scattering Models.

Early parameter estimation in 3-D is done using canonical shape model equations in

[17, 18]. The parameters of each shape are given: Θi = [Θt
i,Θ

x
i ,Θ

a
i ,Θ

p
i ,Θ

r
i ], where Θt

i is the

shape type; Θx
i is the 3-D location; Θd

a corresponds to the maximum RCS; Θ
p
a is the pose

angle; and Θr
a is the radius of curvature. RCS is the apparent size of a target detected by a

radar in units of m2 [19].
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Each parameter is estimated through iterative ML estimation according to [17, Section

4.1]

Θ̂ML = arg max
Θ

log p(Y |Θ), (2.6)

where Y is the observed returns, and p(·) is the probability of the given quantity. At each

iteration, a new 2-D SAR image is formed, and the parameters estimates are updated. To

decrease computation, the parameters are estimated in steps per iteration. The expectation

maximization steps are in Table 2.1.

Table 2.1: The iterative steps for Richards’ expectation-maximization to estimate 3-D
parameters [18].

1. Form an image of the scene from an arbitrary flight path.
2. Use ML to estimate the pose angle. The amplitude, location and radius fixed.
3. Use ML to estimate the amplitude. The location and radius fixed.
4. Use ML to esitmate the location and radius.

The pose angle in Richards’ model consists of an azimuth and elevation angle of

maximum RCS [17]. Using three axial rotations to describe orientation gives more

specificity to a shape’s orientation. Jackson’s 3-D models specify how each parameter

affects the scattering response and accounts for all orientations of a shape [1].

Jackson derives 3-D parametric scattering models for canonical shapes in [1, Chapter

3]. The six shapes are shown in Figure 1.1. The models improve on Richard’s model by

including three angles for orientation to allow all possible shape orientations.

The models are derived using geometric optics (GO) and Geometric Theory of

Diffraction (GTD) [20] that describe how electro-magnetic (EM) waves impinging and

re-radiating from a flat, right-angle, and circular surfaces. The responses are combined to

model each shape’s features. The angles of reflection are determined by the orientation of

the shape and the location of the radar. The size of the shape determines the width of the

response in phase history as well as the amplitude of the return.
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In [1] the full bistatic model is derived. This thesis uses the simplified monostatic case

and presents the monostatic equations only. The known parameters are k, the wavenumber

k =
2π f

c ; Λ, the flight path to include the azimuth and elevation Λ = (φ̃, θ̃); and P, the

polarization(s) of the radar that is known only for each shape type. Using high frequency

approximations from the GTD [20], the PH model response, s, is a sum of scattering

responses and is given in Equation (2.8). The response can be a single value for a single

polarization or up to a 2 x 2 matrix for all polarizations from the polarization matrix

Pm(Λ; Θm) =

 Pvv Pvh

Phv Pvh

 , (2.7)

where v and h represent vertical and horizontal linear polarization, and two of those letters

together represent the transmitted and received polarization channels. For odd and even

number of bounces, the matrices are

Podd(Λ; Θm) =

 −1 0

0 1

 , and Peven(Λ; Θm) =

 −1 0

0 −1

 .
The response, s, is a sum of the responses from each scatterer in the scene described

by [1]

s(k,Λ; Θ) =
∑

m

Pm(Λ; Θm)MΓm(k,Λ; Θm)e jk∆R(Λ;Θm), (2.8)

where Θ contains the parameters of each object; MΓm is the scattering response given in

Table 2.3; Γ is the shape type, Γ ∈ [plate, dihedral, trihedral, sphere, cylinder, top-hat]; and

∆R is the distance from scene center.

The parameters for Jackson’s 3-D parameter model are Θ = [x, y, z, L,H, r, γ, θ, φ].

The parameters x, y, and z are 3-D location of the object; L, H, and r are the size parameters

of length, height, and radius; and γ, θ, φ are the orientation parameters of roll, pitch, and

yaw. The applicable parameters for each shape are given in Table 2.2. The scatterer

response M is different for each canonical shape type. Table 2.3 provides each equation.
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The size of the shape modulates the amplitude of the response. The amplitude in each

equation is denoted with the variable A, and its equations are also provided in Table 2.3.

Table 2.2: Applicable parameters for each shape type [1].

Shape x y z L H r γ θ φ

plate X X X X X X X X
dihedral X X X X X X X X
trihedral X X X X X X X
sphere X X X X
cylinder X X X X X X X X
top-hat X X X X X X X X

Table 2.3: Odd or even polarization bounces and amplitude response for each shape type
[1]. The magnitude of the amplitude is scaled by the shape size and is given with the
parameter A.

Shape Polarization
Bounce

MΓm(k,Λ; Θm) A

plate odd jk
√
π
Asinc(kL sin φ̃ cos θ̃)sinc(kH sin θ̃); θ̃ ∈ [−π2 ,

π
2 ], φ̃ ∈ [−π2 ,

π
2 ] LH

dihedral even jk
√
π
Asinc(kL sin φ̃ cos θ̃) ×

{
sin θ̃; θ̃ ∈ [0, π4 ]

cos θ̃; θ̃ ∈ [ π4 ,
π
2 ]

}
; φ̃ ∈ [−π2 ,

π
2 ] 2LH

trihedral odd

jk
√
π
A ×

{
sin(θ̃+ π

4−tan−1( 1√
2

)); θ̃ ∈ [0,tan−1( 1√
2

)]

cos(θ̃+ π
4−tan−1( 1√

2
)); θ̃ ∈ [tan−1( 1√

2
), π2 ]

}
×

{
− cos(φ̃− π4 ); φ̃ ∈ [− π4 ,0]
sin(φ̃− π4 ); φ̃ ∈ [0, π4 ]

} 2
√

3H2

sphere odd A
√
π; θ̃ ∈ [−π2 ,

π
2 ], φ̃ ∈ [−π, π] r

cylinder odd A
√

jk cos φ̃ sinc(kL sin φ̃ cos θ̃); θ̃ ∈ [−π2 ,
π
2 ], φ̃ ∈ [−π2 ,

π
2 ] L

√
r

top-hat even A
√

jk ×
{

sin θ̃; θ̃ ∈ [0, π4 ]

cos θ̃; θ̃ ∈ [ π4 ,
π
2 ]

}
; φ̃ ∈ [−π, π]

√
8r
√

2
H
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The distance from scene center, ∆R, is a function of the shape center location and

shape radius, where applicable. The combined relation is

∆R = ∆R0 + ∆Rr, (2.9)

where ∆R0 = 2(x cos(θ̃) cos(φ̃) + y cos(θ̃) sin(φ̃) + z sin(θ̃)) for an object centered at (x, y, z),

and ∆Rr is the additional distance to the surface of the object from the object center. The

equations for ∆Rr are in Table 2.4 (from [1, Section 3.4]).

Table 2.4: Distance from the scene center due to the radius parameter of the sphere,
cylinder, and top-hat [1]. The radius vector is added to the distance from scene center
due to the location of the object from scene center, ∆R0.

Shape ∆Rr

sphere 2r

cylinder 2r cos φ̃

top-hat 2r cos θ̃

In [1], the parameters are estimated from the PH data collected over a multiple passes

around the scene. Location and size are initiated from a regularized 3-D image formed

from sparsity-constraned imaging techniques from [21–23]. After initialization, each

parameter is estimated using gradient descent. The gradient descent uses the LS solution

[1, Chapter 5]

Θ̂m = arg min
Θm
||Y − s(Θm)||2, (2.10)

where Y is the observed data, s is the expected return response given parameters Θm

from Equation (2.8). The subscript m represents the scatterer index. Accurate results are

obtained from the gradient descent estimation subject to good initialization. The long flight

path captures a very large amount of PH data. The large data set requires more computation

than from a short flight path.
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This thesis follows from the work done by Hammond [2, 3] using the scattering models

derived in [1]. [2] decreases parameter estimation computations in two ways. A smaller

flight path is used that requires less data generation. And clustered dictionaries of PHs are

pre-allocated for each shape so parameter estimation is done on a finite set of parameters.

This thesis utilizes the work from [2] by limiting the flight path relative to [1] with an order

of magnitude less samples. This thesis also creates PH dictionaries using permutations of

samples shape parameters as done in [2].

A dictionary is a set of PHs and each entry is referred to as “atom”. Each atom is

produced using the 3-D SAR models from [1]. The parameter set of each atom is a unique

permutation of the sampled individual parameters. An atom is formed for each parameter

permutation and requires large memory for even small sampling. The large dictionary

occurs because the number of permutations grows geometrically with the number of

samples per parameter.

The dictionary size expression is [2]

Memory Required =

(
8

bytes
sample

)
·

(
2K

samples
atom

)
(N atoms) , (2.11)

where K is the number of samples per radar pulse, and N is the number of atoms in

a dictionary. The number of samples depends on the azimuth sampling, number of

polarizations collected and number of frequency samples. The number of samples is

K = # azimuths × # polarizations × # frequencies. Each dictionary atom entry is a

complex number so one atom is 2K elements long to account for the real and imaginary

components. The number of atoms is expressed as [2]

Natoms =

J∑
j=1

Q∏
q=1

S jq, (2.12)

where J is the number of shape types included in the dictionary, Q is the number of

parameters per shape type, and S is the number of samples per parameter.
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The large dictionary memory requirement is demonstrated for a plate using Equa-

tion (2.11). For a single shape, J = 1. There are Q = 8 parameters for a plate. The plate

dictionary is sampled at 10 locations in x, y, z, 10 lengths and heights, and 5 orientations in

roll, pitch, and yaw, giving Natoms = 1.25× 107 atoms. Each atom is sampled at 50 azimuth

locations, for a single polarizations, and at 20 frequencies, yielding K = 1000 samples per

pulse. Assuming each element uses 8 bytes of memory, the full plate dictionary requires

186 gigabytes of memory.

This thesis improves the sampling approach by estimating and bounding each

parameter prior to dictionary formation. Parameter bounds allows for fewer samples

per parameter, with finer resolution, thus decreasing the overall number of atoms while

improving accuracy of the final estimate.

After initial dictionary formation, [2] decreases estimation search time by first

clustering the dictionary atoms into “molecules.” Clustering is done using the coherency

between two normalized atoms. If the coherency between two atoms is greater than

the coherency limit, η, they are combined into a molecule. Mathematically, the test for

coherency is expressed as

|〈âi, â j〉| > η, (2.13)

where â is the normalized PH of an atom.

After the dictionary is formed and clustered, the observed PH is compared to the

molecule dictionary using LS. The atom within the chosen molecule is selected using LS.

Both the molecule and atom comparisons utilize LS under a sparsity constraint shown in

Equation (2.14). The sparsity constraint is applied to find the parameters of multiple shapes

in a single scene using

min ||w||1 s.t. ||Y − DΓ jw||22 < ε, (2.14)
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where DΓ j is the formed dictionary as a matrix with each column as the atoms, Y is the

observed radar PH, w is the vector of sparse dictionary coefficients: w = [w1,w2, ...wN]T ,

and ε is the sparsity constraint.

This thesis clusters the dictionary to reduce coherency more efficiently than calculating

the coherency between every atom pair. Coherency is calculated using normalized atoms.

Atoms with the height parameter only in the amplitude, A, (dihedral, trihedral, and top-hat)

are equal as the height parameter changes. Therefore, all atoms with the same parameters

except height are grouped into moleules.

The molecule dictionary is searched using a maximum coherency expressed as

Θ̂molecule = arg max
Θm
〈|Y |, |a(Θm)|〉, (2.15)

where a represents a molecule. Once the molecule is chosen, the closest atom in that

molecule is chosen using a LS approach similar to Equation (2.10). The difference for the

dictionary LS is that only the sampled parameter values in the dictionary are searched, so

the LS equation replaces the gradient descent signal s with the dictionary atoms aΓm(ΘΓm),

Θ̂atom = arg min
Θm
|| |Y | − |a(Θm)| ||2. (2.16)

Overall, this thesis utilizes better parameter scattering models than [17]. The models

in [1] account for any orientation. Computation time is decreased from [1] by removing

the iterative sparse regularization for the 3-D imaging and gradient descent. The dictionary

parameter ranges are smaller than in [2] because initial estimates are made on each

parameter. The smaller ranges allow for more precise sampling. Final parameter estimates

are more accurate than [2] due to the better sampling. This thesis clusters more efficiently

than [2] using the properties of the scattering model.

2.3 Background Summary

Chapter 2 provided a technical background for radar operation, including radar returns

at amplitude and phase, PH data as the spatial frequency version of the returns, and the HRR
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as the precise range measurement. SAR combines radar returns from multiple locations to

synthetically produce a large aperture. Backprojection takes SAR data and creates a 2-D

image (Equation (2.1)). Objects not in the ground plane in 2-D images are subject to

layover due to the geometry of the radar and the projection to a constant range plane.

Parameterized scattering models range from point scattering models to 2-D models to

3-D models. Estimation of the high dimension, non-linear models is non-trivial. Iterative

approaches, gradient-descent, and dictionary search all using ML and LS are in current

research.

Next, Chapters 3 - 5 provide a an overview of the proposed algorithm and results

for parameter estimation for the 3-D scattering model from [1]. The collection flight path

and radar parameters are pre-processed to determine the range of possible errors. Multiple

techniques are used to make initial estimates. The initial estimates are combined with the

pre-processed errors to limit the searchable parameter subspace for dictionary formation.

Efficient dictionary clustering, formation, and search provide the final parameter estimates.
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III. Data Collection and Pre-Processing

In Chapter 2 the technical background builds the foundation for radar operation and

SAR image formation. The 3-D canonical shape scattering model from [1] is selected

for this thesis. The collected data in this thesis are ideal returns generated from the

scatterer model equation from Equation (2.8). The planned collection flight path and

the radar collection parameters are known prior to a data collect. The shape types and

shape parameters are not known a priori. Determining the shapes and their parameters is a

detection and estimation problem. Three main steps are used to solve this problem and are

detailed in Chapters 3 - 5, respectively.

Chapter 3 details the Step 1 data collection and pre-processing. The steps within Step

1 are in Figure 3.1. The methodology of Steps 1A - 1C are presented in each subsection and

can be applied to any radar system. The methodology of Steps 1A - 1C are evaluated using

a specific collection flight path and specific radar parameters. The subsections provide the

evaluation results after each step of the methodology is explained.

Figure 3.1: Step 1 process flow diagram. A chosen flight path and radar from Step 1A are
analyzed to determine the errors that the system can produce in Step 1B pre-processing. If
sufficient, in Step 1C the data is collected and pre-processed for Step 2.
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Step 1A in Section 3.1 details how flight path diversity in azimuth and elevation is

evaluated and discusses how the radar parameters affect the precision of the collected data.

Step 1B in Section 3.2 specifies pre-processing of the collection parameters to determine

the posterior range of possible errors for parameter estimation used in Step 2. In Step 1C

in Section 3.3, the PH data is collected and pre-processed. The pre-processing includes

creating and segmenting 2-D SAR images, determining scattering locations in the images,

and estimating model order.

3.1 Step 1A: Collection Flight Path and Radar Parameters Analysis

A radar collects PH data that includes amplitude and phase information. Each sample

is stored as a complex value where the magnitude is the amplitude and complex angle is

the phase. The flown flight path and radar parameters determines the collection angles and

number of spatial frequency samples. Data is not available for all aspect angles and spatial

frequencies.

Once PH data is collected over a flight path, the path is partitioned into segments

with sufficient azimuth and elevation diversity as discussed in Section 3.1.1. The necessary

diversity for each shape is explained in Section 3.1.1.1 with mathematic support following

in Section 3.1.1.2. The collection flight path to support the needed diversity is discussed

in Section 3.1.1.3. A planned collection flight path diversity can be analyzed prior to

collection by calculating the grazing and tilt angles for each partition. The grazing and

tilt angles affect layover and are discussed prior in Section 2.1.

The radar collection parameters determine the resolution and size of the scene that

can be surveyed without aliasing. Section 3.1.2 provides the equations that determine the

relationships between radar parameters and collection.
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3.1.1 Collection Flight Path.

Diversity in the collection flight is necessary to produce a unique PH as discussed in

[1, Section 4.1]. The PH of a plate and dihedral, for example, have the same scattering

response for a single polarization for a level flight path.

Collection flight path diversity also provides unique layover angles when creating 2-D

images from unique partitions of the flight path. The unique layover is needed for 3-D

location estimation. An object’s 3-D location (x, y, z) is estimated using 2-D SAR images.

The LS mathematic solution for the 3-D location is in Section 3.1.1.2. To understand

the unique layover needed for each shape type, shape geometry and associated layover is

detailed first.

3.1.1.1 Shape geometry.

The geometry of each shape creates unique layover equations. Shape geometry and

flight path affect the location of the return. The flat shapes have the same layover equations

because the 3-D location is the center of their peak location in a 2-D image. The shapes

with radius are detailed individually since each has unique geometry with the radar return

coming away from the shape center.

The locations for the plate, dihedral, and trihedral in the image ground plane, (xg, yg)

are specified mathematically equivalently. The range and cross-range 2-D image locations

are determined by the 3-D location (x, y, z) according to [13, Section 2.5]

xg = x + z tanψ, (3.1)

and

yg = y + z tan η, (3.2)

where x and y account for the position offset relative to scene center and the second term

accounts for layover. The grazing angle ψ and tilt angle η are the range and cross-range

layover angles, respectively.
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The radius of the sphere, cylinder, and top-hat move the surface of the object closer to

the radar than the center location. The layover equations begin with the terms from the flat

shapes to get to the shape center. Two additional terms are added to account for the radius

with

xg = (x + ∆x) + (z + ∆z) tanψ, (3.3)

and

yg = (y + ∆y) + (z + ∆z) tan η, (3.4)

The radius moves the reflection point in the x − y plane as ∆x and ∆y from the object’s

center. The radius changes the reflection z-location by ∆z which affects the amount of

layover. The offset values for each radius shape are determined.

The sphere radius moves the reflection point further from the sphere center. The x

offset is ∆x = r cos θ̃ cos φ̃ and the y offset is ∆y = r cos θ̃ sin φ̃. The z offset is ∆z = r sin θ̃.

Figure 3.2: Shown with the red arrows, the sphere radius creates translation from the sphere
center in the x − y plate: ∆x = r cos θ̃ cos φ̃ and ∆y = r cos θ̃ sin φ̃. The vertical black arrow
shows the sphere radius increases in the z-location of ∆z = r sin θ̃.

Adding the radius offset terms, the sphere layover equations are

xg = x + z tanψ + r cos θ̃ cos φ̃ + r sin θ̃ tanψ; (3.5)

yg = y + z tan η + r cos θ̃ sin φ̃ + r sin θ̃ tan η. (3.6)
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The cylinder radius moves the reflection point from the cylinder center. The x offset

is ∆x = r cos θ̃. The z offset is ∆z = r sin θ̃. Adding the radius offset terms, the cylinder

Figure 3.3: Shown in red, the cylinder radius creates translation from the cylinder center
in the x direction by ∆x = r cos θ̃. The black arrow shows the cylinder radius increases the
z-location by ∆z = r sin θ̃.

layover equations are

xg = x + z tan θ̃ + r cos θ̃ + r sin θ̃ tanψ; (3.7)

yg = y + z tan η + r sin θ̃ tan η. (3.8)

The radius of the top-hat creates an offset from the location parameters (x, y, z) to the

incident surface for the radar return. The double bounce puts the reflection range at the

corner between the flat and upright position.The x offset is ∆x = r cos φ̃ and the y offset

is ∆y = r sin φ̃. There is no offset in the z direction. Adding the radius offset terms, the

top-hat layover equations are:

xg = x + z tan θ̃ + r cos φ̃; (3.9)

yg = y + z tan η + r sin φ̃. (3.10)
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Figure 3.4: The top-hat radius creates translation from the top-hat center in the x − y plate
by ∆x = r cos φ̃ and ∆y = r sin φ̃.

3.1.1.2 Mathematic solution.

For each shape, two or more distinct observed ground locations (xg, yg) for an object

creates a system of linear equations that may be solved to estimate the object’s 3-D location

(x, y, z) and radius, when applicable. The standard form of the equations is ν = χ[x y z]T

for the flat shapes or ν = χ[x y z r]T for the curved shapes. This section demonstrates

the vectors and matrices for two images, but ν and χ can be extended if more images are

included. The observations, ν = [xg1 yg1 xg2 yg2]T , are used to determine the unknowns.

The transfer function, χ, for each shape is found by combining two sets of the layover

equations, one from each of the two images. The combined transfer functions are

χplate,dihedral,trihedral =



1 0 tanψ1

0 1 tan η1

1 0 tanψ2

0 1 tan η2


; (3.11)

χsphere =



1 0 tanψ1 cos θ̃1 cos φ̃1 + sin θ̃1 tanψ1

0 1 tan η1 cos θ̃1 sin φ̃1 + sin θ̃1 tan η1

1 0 tanψ2 cos θ̃2 cos φ̃2 + sin θ̃2 tanψ2

0 1 tan η2 cos θ̃2 sin φ̃2 + sin θ̃2 tan η2


; (3.12)
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χcylinder =



1 0 tanψ1 cos θ̃1 + sin θ̃1 tanψ1

0 1 tan η1 sin θ̃1 tan η1

1 0 tanψ2 cos θ̃2 + sin θ̃2 tanψ2

0 1 tan η2 sin θ̃2 tan η2


; (3.13)

χtop−hat =



1 0 tanψ1 cos φ̃1

0 1 tan η1 sin φ̃1

1 0 tanψ2 cos φ̃2

0 1 tan η2 sin φ̃2


. (3.14)

The least-squares system solution is determined using the pseudoinverse as

ν = χ[x y z
... r]T .

χHν = χHχ[x y z
... r]T .

[x y z
... r]T = (χHχ)−1χHν. (3.15)

The
... r symbols indicate that the fourth entry is only used the sphere, cylinder, and top-hat.

For a square matrix, the pseudoinverse can be replaced by the matrix inverse shown to be

ν = χ[x y z
... r]T .

χ−1ν = χ−1χ[x y z
... r]T .

[x y z
... r]T = χ−1ν. (3.16)

The LS solutions is not viable if the transfer matrix χ or the matrix χHχ is singular.

In this case the inverse or pseudoinverse is undefined. Singularity is determined by the

flight paths for each shape type. Flight path analysis is provided in Section 3.1.1.3. Non-

singularity is achieved through diversity in azimuth and elevation which provide unique

grazing and tilt angles.

26



The needed diversity is demonstrated for the top-hat transfer matrix for two images.

A matrix is singular if its determinant equals zero. The top-hat transfer matrix determinant

is

det(χtop−hat) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 tanψ1 cos φ̃1

0 1 tan η1 sin φ̃1

1 0 tanψ2 cos φ̃2

0 1 tan η2 sin φ̃2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.17)

= 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 tan η1 sin φ̃1

0 tanψ2 cos φ̃2

1 tan η2 sin φ̃2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0 tanψ1 cos φ̃1

1 tan η1 sin φ̃1

1 tan η2 sin φ̃2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

= (sin φ̃1 − sin φ̃2)(tanψ1 − tanψ2) − (cos φ̃1 − cos φ̃2)(tan η1 − tan η2).

The determinant of χtop−hat is zero if the azimuth angles for both flight paths are equal

φ̃1 = φ̃2. This result is understandable geometrically. Diversity in azimuth provides unique

look angles in order to estimate the radius of the top-hat.

3.1.1.3 Flight Paths.

Section 3.1.1.2 provides the mathematic solution for estimating the 3-D location along

with the radius parameter. The example of top-hat demonstrates how the geometry of the

object requires certain diversity in the flight path. Different attributes of each canonical

shapes necessitate specific minimum flight path diversity.

In this thesis, partitions of a flight path for data collection in Step 1C are chosen to

achieve sufficient diversity in azimuth and elevation. The partitions are evaluated to ensure

they generate non-singular matrices for each shape type. The flight paths are in Table 3.1.

The corresponding layover grazing angles, ψ, and tilt angles, η, are in Table 3.2. The flight

paths are shown graphically in Figure 3.5. The shapes in a scene are not known a priori.
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Therefore, the combined data from all the flight segments are needed to estimate the scene

shapes and parameters.

Table 3.1: Flight path azimuth and elevation ranges. The specific shape reflection
geometries need specific flight path diversity for parameter estimation. Table 3.3 matches
the flight path to each shape.

Flight Path Imaging Segment 1 Imagining Segment 2

Up-down φ̃ ∈ [−10◦, 0◦], θ̃ ∈ [27.5◦, 32.5◦] φ̃ ∈ [0◦, 10◦], θ̃ ∈ [32.5◦, 27.5◦]
Disjoint φ̃ ∈ [−20◦,−10◦], θ̃ ∈ [27.5◦, 27.5◦] φ̃ ∈ [0◦, 10◦], θ̃ ∈ [32.5◦, 27.5◦]
Two-pass φ̃ ∈ [−5◦, 5◦], θ̃ ∈ [27.5◦, 32.5◦] φ̃ ∈ [−5◦, 5◦], θ̃ ∈ [37.5◦, 37.5◦]

Table 3.2: The grazing angles, ψ, and tilt angles, η, for each flight partition in the thesis.
The angles are those of the slant plant in the range and cross-range, respectively.

Flight Segment Grazing angle, ψ Tilt angle, η

Up-down 1 32.5◦ 31.6◦

Up-down 2 32.5◦ -31.6◦

Disjoint 1 26.8◦ -7.7◦

Disjoint 2 32.5◦ -31.6◦

Two-pass 1 30.2◦ 33.8◦

Two-pass 2 37.6◦ 0.0◦

The partitions chosen for each shape type are provided in Table 3.3. The determinant

of the transfer matrix for each shape type determines if the flight partitions can be used to

solve for the 3-D location.

The amplitude response equations from Table 2.3 correspond to the geometry of each

shape and determine why the flight partitions work. The plate, dihedral, and cylinder have

a small azimuthal specular response. The sinc function in the equations shows the narrow

response mathematically. The small range of specular response necessitates the flight paths

for each image be connected or overlap so both images capture specular.
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(a) “Up-down” flight path. (b) “Disjoint” flight path.

(c) “Two-pass” flight path.

Figure 3.5: Flight path partitions shown in azimuth and elevation. Unique tilt angles
produce unique layover projection angles in range and cross-range. Imaging segment one
is in black. Imaging segment two is in blue. The dotted portion of the Disjoint flight path
partitions include segment one from the up-down flight path. It is not used for calculations
of the Disjoint partitions.

The sphere, cylinder, and top-hat have a radius parameter. The radius estimate

improves for diversity in azimuth and elevation. Just as the top-hat requires azimuth

diversity, the cylinder requires elevation diversity. For large rotations, the diversity needs

can lie along a different flight path parallel to the shape curvature. The sphere needs

diversity in at least one direction for a sufficient radius estimate from the location estimate.

The Up-down flight path provides coverage for limited specular response in azimuth

and elevation. The Up-down is the only flight path that sees specular for the plate tested
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Table 3.3: The determinant of the flight path partition transfer matrix is shown. A
determinant of 0 means the matrix is singular. The chosen flight segments for each shape
type are bold and underlined. The disjoint partitions are not applicable for the plate,
dihedral, and cylinder due to their limited azimuth response width. There is a gap of 5
degrees in the disjoint flight path, so both formed images would not see the shape.

Up-down Disjoint Two-pass

plate 3.0 N/A 1.0

dihedral 3.0 N/A 1.0

trihedral 3.0 0.5 1.0

sphere 0 0.1 0

cylinder 0 N/A 0.01

top hat 0 0.1 0

in the simulations in Chapters 4 and 5. The Disjoint flight path provides the most diversity

for radius estimation. Disjoint is used for the sphere and top-hat to give the best radius

estimate. The Two-pass provides coverage for limited specular along the azimuth path

and also has diversity in elevation for radius estimate. Two-pass is used for the cylinder

to cover its limited specular and give diversity for the radius estimate. Although it has a

smaller determinant, the Two-pass is used over the Up-down flight path for the dihedral

and trihedral because it has diversity in both the grazing and tilt angles from Table 3.2.

The partitions of the collected PH that correspond these flight partitions are used in

Step 1C to form images. From the images, the shapes’ 2-D locations are determined for

3-D location estimation in Step 2B.

3.1.2 Collection Radar Parameters.

Along with the flight path, the radar parameters affect the collection data. The radar

parameters determine the range and cross-range resolution and the range and cross-range

scene extent. Resolution determines how close two objects can be in a scene and still be
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resolved. Scene extent discussed in the technical overview of Section 2.1 determines the

2-D size of the unaliased scene.

The generic equations are provided along with the chosen parameters for this thesis

in Equations (3.18) - (3.21). After the resolution and scene extent values are provided,

Table 3.4 is provided to summarize the radar collection parameters in this thesis.

The range resolution is

resolutionrange =
c

2B
=

3 × 108m/s
2(3 × 109 s−1)

= 0.05 m, (3.18)

where c is the speed of light, and B is the radar total bandwidth. A bandwidth of 3 GHz is

beyond the capability of most radars but is used to match the simulated target sizes of the

thesis.

The cross-range resolution is

resolutioncross−range =
λc

2∆φ̃
=

0.15m
2(10◦ · π

180◦ )
= 0.43 m, (3.19)

where λc is the center wavelength, and ∆φ̃ is the azimuth collection extent. The center

wavelength is the wavelength corresponding to the center frequency λc = c
f . The azimuth

scene extent of 10◦ is near that used by [2] so final estimation results can be compared.

The sample size in azimuth and bandwidth set the scene extent for 2-D SAR images.

The range scene extent is

Erange =
c

2δ f
=

3 × 108 m/s
2 · (3 × 109 s−1/128)

= 6.4 m, (3.20)

where δ f is the frequency sample size. The frequency sample size is determined by

dividing the bandwidth by the number of samples. The number of frequency samples is

chosen to produce a scene extent without aliasing. The objects simulated and estimated are

within the range and cross-range scene extent.

The cross-range scene extent is

Ecross-range =
λmin

2δφ
=

0.0857 m

2 ·
(
2◦ · π

180◦

) = 12.3 m, (3.21)
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where λmin is the minimum wavelength, and δφ is the sample size in azimuth. The azimuth

sampling is chosen to prevent aliasing like the frequency sampling choice.

Table 3.4: The simulated radar parameters are provided. The parameters are the radar
total bandwidth, the number of frequency samples, center frequency, the azimuth extent
per flight partition, and the azimuth sample step size. Each parameter affects the 2-D
imaging performance and are tied to specific equations with references provided. The
center frequency is used to determine the center wavelength and minimum wavelength for
the cross-range equations using λ = c

f .

Radar Parameter Parameter Determining
Parameter Value Determines ... Equation

Bandwidth, B 3 GHz range resolution Equation (3.18)
Frequency Samples 128 range scene extent Equation (3.20)
Center frequency, fc 2.5 GHz cross-range resolution Equation (3.19)

cross-range scene extent Equation (3.21)
Azimuth Extent 10◦ cross-range resolution Equation (3.19)
Azimuth Sample Size 0.2◦ cross-range scene extent Equation (3.21)

3.2 Step 1B: Error Analysis Pre-Processing

For radar data collection, the flight and radar parameters are known. These collection

parameters determine the ability to estimate parameters in a surveyed scene. A theoretical

flight path that collects over infinite bandwidth at all azimuth and elevation locations would

provide perfect information about a scene.

In reality, the collection flight path and radar collection parameters are limited.

The limited collection parameters determine the minimum and maximum errors in the

parameter estimates. In Step 1B, the collection parameters are tested over all shape types

and shape parameters to produce error bounds. With limited resources, testing over “all”

parameters is limited to a representative set. This pre-processing step finds the possible

range of errors for any estimate. The error ranges can be applied to initial estimates in Step

2 with no prior information of the objects in a scene.
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Using a representative set of parameters for each shape type, the range of possible

errors are determined for each parameter of location, size, and orientation. The

representative set of parameters is determined for the flight path in this thesis in

Section 3.2.1. The same set is used for the location and size error analysis. For the

orientation parameters, the combinations of orientation are coupled, so a Monte Carlo

simulation is used to find error ranges.

3.2.1 Representative Parameter Set.

In order to calculate the range errors possible, the estimation steps of the algorithm

are tested over “all” possible parameter combinations. Testing all combinations is

computationally impossible, so a representative set of parameters is tested. The

representative set includes the range of parameters that are detectable.

Step 1C detects scatterers in a scene from PH data. Detection is based on the amplitude

of the peaks detected in a 2-D SAR image. If the amplitude meets a certain threshold, it is

detected and its parameters are estimated. The user defined threshold chosen for this thesis

is 15 dB. The amplitude is measured relative to the peak response of each shape, which

occurs when the specular response occurs within the flight path.

For each shape type, the representative set includes the extrema of parameters that

the radar will detect. The location and size parameters are all on the order of 1 m, so the

representative set uses parameters near x = 1 m, y = 1 m, z = 1 m, L = 1 m H = 1 m, and

r = 1 m. The orientation angles are adjusted until the shape is not detected. The orientation

limits for each shape type in the representative set are in Table 3.5.
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Table 3.5: The representative parameter set orientation angles for each shape. The limits
are chosen for when the each shape type is still detected in a 2-D SAR image for the
flight parameters of this thesis. The detection limit is set to 15 dB from the peak specular
response.

Shape Size Orientation Bounds Result Figure

plate L = 1 m; H = 1 m [γ ∈ (−2◦, 2◦), θ ∈ (−30◦,−35◦), φ ∈ (−2◦, 2◦)] Figure 3.6

L = 2 m; H = 2 m [γ ∈ (−1◦, 1◦), θ ∈ (−30◦,−33◦), φ ∈ (−1◦, 1◦)] Figure 3.7

dihedral L = 1 m; H = 1 m [γ ∈ (−15◦, 17◦), θ = 0◦, φ ∈ (−8◦, 8◦)] Figure 3.8

trihedral H = 1 m [γ ∈ (−90◦, 90◦), θ ∈ (0◦, 90◦), φ ∈ (−45◦, 45◦)] Figure 3.9

sphere r ∈ [0.5, 3.0] N/A Figure 3.10

cylinder L = 1 m; r = 1 m [γ ∈ (−13◦, 13◦), θ = 0◦, φ ∈ (−5◦, 5◦)] Figure 3.11

top-hat H = 1 m; r = 1 [γ ∈ (−10◦, 10◦), θ ∈ (0◦, 60◦), φ = 0◦] Figure 3.12

Similar analysis may be performed for any flight path and object sizes. Thus, this

pre-processing step applies to general cases and can be tuned to expected targets in a scene.

3.2.2 Location Error Analysis.

Three-dimensional location error analysis is completed prior to data collection to find

the range of possible errors. The range of possible location errors is determined from the

errors of a representative set of shapes. The minimum and maximum errors measured from

the set are taken. The errors bounds are used in Step 2C to limit the location parameters

once an initial location estimate is made for an unknown scatterer.

The 3-D location (x, y, z) is estimated using 2-D SAR images. Section 2.1 and

Figure 2.2 detail how the flight path affects the imaging ground plane due to layover. The

mathematic solution for the 3-D location estimate is in Section 3.1.1.2.

The values for the parameters of the representative set for location error analysis are in

Table 3.7. The x and y location only translate an object in the 2-D image plane and do not

add error, so the representative location parameters are all for x = 0 and y = 0. The error
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Table 3.6: The representative parameter set for location error analysis is provided. The
limits are chosen for when the each shape type is still detected in a 2-D SAR image for the
flight parameters of this thesis. The detection limit is set to 15 dB from the peak specular
response.

Parameter Values Reasoning

x 0 No change in error for x location
y 0 No change in error for y location
z [1,4] Error increases with z location due to layover

L,H,r 1 Representative size for the simulations of this thesis
γ, θ, φ Table 3.5 Representative angles per shape type are used

occurs when the shape is projected into the ground plane, so the z parameter can effect the

error. Therefore, the z location parameter changes in the representative set.

The size parameters of the representative set use L = 1, H = 1, and r = 1 to coincide

with the order of magnitude of the targets in this thesis. One exception is that the plate

was also tested with L = 2 and H = 2. The orientation angles from the detection ranges in

Table 3.5. The orientation angle combinations tested for each shape type are provided on

each error plot legend in Figure 3.6-Figure 3.12. The errors are plotted as a function of the

z parameter because the error increases as z increases. The figures plot the measurement

errors, and the worst case of the possible errors are bounded using red dotted lines.
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(a) Z location for z estimate (b) Plate x error

(c) Plate y error (d) Plate z error

Figure 3.6: Location estimation errors for a plate of L = 1 m, H = 1 m at varying z-
locations. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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(a) Z location for z estimate (b) Plate x error

(c) Plate y error (d) Plate z error

Figure 3.7: Location estimation errors for a plate of L = 2 m, H = 2 m at varying z-
locations. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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(a) Z location for z estimate (b) Dihedral x error

(c) Dihedral y error (d) Dihedral z error

Figure 3.8: Location estimation errors for a dihedral of L = 1 m, H = 1 m at varying
z-locations. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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(a) Z location for z estimate (b) Trihedral x error

(c) Trihedral y error (d) Trihedral z error

Figure 3.9: Location estimation errors for a trihedral of H = 1 m at varying z-locations.
The points are the calculated errors at the sample points for the corresponding shape
orientations. The red lines are the bounds on the error.
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(a) Z location for z estimate (b) Sphere x error

(c) Sphere y error (d) Sphere radius error

Figure 3.10: Location and radius estimation errors for a sphere of r = (0.5, 1, 2, 3) m at
varying z-locations. The points are the calculated errors at the sample points. The red lines
are the bounds on the error.
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(a) Z location for z estimate (b) Cylinder x error

(c) Cylinder y error (d) Cylinder radius error

Figure 3.11: Location and radius estimation errors for a cylinder of L = 1 m, r = 1 m
at varying z-locations. The points are the calculated errors at the sample points for the
corresponding shape orientations. The red lines are the bounds on the error.
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(a) Z location for z estimate (b) Top-hat x error

(c) Top-hat y error (d) Top-hat radius error

Figure 3.12: Location and radius estimation errors for a top-hat of H = 1 m, r = 1 m
at varying z-locations. The points are the calculated errors at the sample points for the
corresponding shape orientations. The red lines are the bounds on the error.

42



Once an initial estimate is made in Step 2C, the pre-processed errors bounds from this

section are used to bound the possible range for each location parameter. The method of

applying the bounds is shown graphically in Figure 3.13 as an example. The figures for

the example are from the plate in Figures 3.6(a) and 3.6(b). The example is for an initial

estimate of z = 3 m; the true value is unknown. Figure 3.13(a) shows the possible range of

z locations for an estimate of z = 3 m. The error bounds relate an estimate of z = 3 m to a

possible true z value within z ∈ [2.6 m, 2.8 m].

The range of possible z values determine the error range to apply to the other location

parameters. This is demonstrated for the x parameter in Figure 3.13(b). The range of

z values denoted by the black dotted lines intersect the x error bars. The minimum and

maximum x errors on the graph are applied to the x estimate as xtrue ∈ [xest− xmax error, xest−

xmin error]. The parallel computation is done to find the range of the true y parameter and

the true r parameter, if applicable.

In the example in Figure 3.13(b), xerror ∈ [−0.2 m, − 0.1 m]. The range of true x

values are xtrue = [xest − (−0.1 m), xest − (−0.2) m], or xtrue = [xest + 0.1 m, xest + 0.2 m].
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(a) Plate z location estimate

(b) Plate x error

Figure 3.13: Graphical depiction of the 3-D location error bound calculations using the
error data. The 3-D location estimates are a function of the z location. The first step to
determining the range for the location and radius parameters is determining the z range.
Figure 3.13(a) takes the z estimate and finds the z range. Figure 3.13(b) shows how the z
range is used to find the x errors. The errors are applied to the initial x estimate to get the
x range. The z range is similarly used to find the y and radius ranges.
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3.2.3 Size Error Analysis.

The size parameters are length, height, and radius. Like the 3-D location error

bounding, the size parameter errors are pre-processed using a representative set of

parameter combinations. The radius parameter is coupled with the location so its error

bounds are already calculated with the location errors in Section 3.2.2.

The length parameter is estimated using the 2-D segment length in the 2-D image

from Step 1C. The details of the the estimation are in Section 4.4. The height parameter

estimate is calculated using the RCS estimates and other size parameters and is also detailed

in Section 4.4. For each representative shape tested, the size estimates and errors are

determined.

Table 3.7: The representative parameter set for size error analysis is provided. The limits
are chosen for when the each shape type is still detected in a 2-D SAR image for the
flight parameters of this thesis. The detection limit is set to 15 dB from the peak specular
response.

Parameter Values Reasoning

x 0 No change in error for x location
y 0 No change in error for y location
z 0 Minor changes in error for changes in the z location
L [0.2, 3.0] Full range of parameter used in this thesis
H [0.5, 3.0] Full range of parameter used in this thesis
r 0.5 Minor changes in error for changes in the radius

γ, θ, φ Table 3.5 Representative angles per shape type are used

The location has little effect on the size estimation error so the parameters are set for

the size error pre-processing. The length and height parameters are estimated using the

same detectable orientation angles from Section 3.2.2. The orientation combinations are

tested for lengths and heights in the range of [0.2 m, 3.0 m].

The length parameter estimate for the plate, dihedral, and cylinder is the measured

length of radar image segment. Segmentation is discussed in Step 1C in Section 3.3.
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A scatterer’s length causes the segment peak to spread in the 2-D image. The length is

measured using a threshold roll-off from the scatterer peak amplitude. The thresholds

discussed previously are provided in Table 3.8. The thresholds are chosen to achieve

minimum error for the standard orientation.

Table 3.8: Length estimate segment thresholds and standard orientations.

Shape plate dihedral cylinder

Threshold 1.2 dB 6.5 dB 6.5 dB

Standard Orientation (0◦,−32◦, 0◦) (0◦, 0◦, 0◦) (0◦, 0◦, 0◦)

Results Figure Figure 3.14 Figure 3.15 Figure 3.16

Each shape length is estimated for L ∈ [0.2 m, 3.0 m]. The other size parameters are

held constant at H = 1 m or r = 0.5 m.

The length error results and bounds are provided in Figures 3.14 - 3.16. The length

estimates in each figure show that the estimates do not go below 0.4 m for any shape. The

estimate minimum coincides with cross-range resolution of 0.43 m.
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Figure 3.14: Length estimation errors for a plate of L ∈ [0.2 m, 3.0 m]. The height is set
to H =1 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.

Figure 3.15: Length estimation errors for a dihedral of L ∈ [0.2 m, 3.0 m]. The height is set
to H =1 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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Figure 3.16: Length estimation errors for a cylinder of L ∈ [0.2 m, 3.0 m]. The radius is set
to r =0.5 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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The length estimate figures also demonstrate that the length estimate can increase as

the shape is skewed from the baseline orientation. As the orientation skews, the apparent

length increases along the flight path. This skew is demonstrated in Figure 3.17.

The orientation angle of a shape relative to the flight path can also decrease the length

estimate. The shape of the PH can widen if the flight path does not hit the peak. The Fourier

relation of widening in the PH domain transforms to narrowing in the spatial domain.

Figure 3.17: The actual length (black line) is shorter than the apparent length (red line)
when captured by the radar and projected into a 2-D SAR image.

The length parameter is bound using the maximum and minimum error bounds.

Calculating the length error is shown in Figure 3.18. The height parameter estimates and

errors found next are recorded the same way as the length estimates and errors; therefore,

the height error bounds for dictionary formation are done the same way as the length.
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Figure 3.18: The length error minima and maxima are used to bound the length parameter
from the initial length estimate. The plate example show that for an initial estimate of
L = 1 m, the length parameter is bound by L ∈ [0.2 m, 1.2 m]. The same procedure is used
for bounding the height parameter.

The height estimates for the plate, dihedral, trihedral, and top-hat are calculated using

the prior estimates of the other size parameters (length and radius) and the RCS estimate

and is discussed in Section 4.4. If the shape specular direction, or direction of maximum

reflectivity, and the flight path do not intersect, the peak RCS estimate is less than the true

peak RCS of the scatterer. Since the height estimation equations derived in Table 3.9 come

from the peak RCS equations in Table 4.6, a reduced RCS estimate results in a lower height

estimate.

Each shape height is estimated for H ∈ [0.5 m, 2.0 m] with the other size parameters

constant at L = 1 m or r = 0.5 m. The actual versus estimated height values are in

Figures 3.19 - 3.22. From an initial estimate, the height bounds are taken as the minimum

and maximum corresponding error. In this thesis, the height size is bound on the high
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Table 3.9: Height equations from the peak RCS, L, and r estimates. The height estimates
for each shape are provided in the results figures listed.

Shape Height equation Results Figure

plate
√

RCS ·λ2

4πL2 Figure 3.19

dihedral
√

RCS ·λ2

8πL2 Figure 3.20

trihedral
(

RCS ·λ2

12π

)1/4
Figure 3.21

sphere N/A –

cylinder N/A –

top-hat
√

RCS ·λ
√

2
8πr Figure 3.22

side by H = 2 m. This helps reduce the dictionary size to a reasonable size. The height

parameter, as with the others, can be tailored for a specific application.

As expected, as the shape is oriented further from specular, the height estimate

decreases. The farther the flight path is from specular, the smaller the RCS estimate due to

roll off of the return amplitude envelope.
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Figure 3.19: Height estimation errors for a plate of H ∈ [0.5 m, 2.0 m]. The length is set
to L = 2 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.

Figure 3.20: Height estimation errors for a dihedral of H ∈ [0.5 m, 2.0 m]. The length is set
to L = 2 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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Figure 3.21: Height estimation errors for a trihedral of H ∈ [0.5 m, 2.0 m]. The points are
the calculated errors at the sample points for the corresponding shape orientations. The red
lines are the bounds on the error.

Figure 3.22: Height estimation errors for a top-hat of H ∈ [0.5 m, 2.0 m]. The radius is set
to r = 0.5 m. The points are the calculated errors at the sample points for the corresponding
shape orientations. The red lines are the bounds on the error.
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The radius estimates for the cylinder and top-hat come with the 3-D location estimates

and are provided in Figures 3.11(d) and 3.12(d). The radius error figures show that there is

large error in the radius estimate from the orientations skew from the standard orientation of

(γ, θ, φ) = (0◦, 0◦, 0◦). The error occurs because of the apparent radius changes. Apparent

radius is demonstrated a with profile view of the top-hat. Figure 3.23(a) shows that the blue

top-hat at standard orientation has the correct radius, shown in red. Figure 3.23(b) shows

that as the top-hat is pitched (in black), the apparent radius (in red) is shorter than the true

radius (in black). The apparent 3-D location is moved as well.

(a) Top-hat at standard orientation. (b) Top-hat at a pitched orientation.

Figure 3.23: The top-hat true radius and apparent radius depends on the orientation. The
top-hat profile is shown. In (a) the blue top-hat is at standard orientation so the true radius
and apparent radius are the same (red). (b) shows the top-hat is pitched (black). The true
top-hat (black) is estimated at the standard orientation (green). The apparent parameters
are that of the green top-hat. The 3-D location changes and the radius decreases.

The sphere radius parameter could be bound with the 3-D location estimate; however,

the radius estimate can also be calculated using the peak RCS estimate and peak RCS

equation, RCS peak = πr2, from Table 4.6 in Section 4.4. The geometry of the sphere

provides peak RCS from any collection angle. In this thesis, the PH data is generated

from the scatterer model equations without error, so there is no error in the sphere radius
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estimate. If noise or other interference is added to the signal, error analysis can be done on

the RCS determined radius estimate and the location coupled radius estimate to determine

which method gives less error.

3.2.4 Orientation Error Analysis.

The orientation parameter possible error ranges are left to be determined. Unlike

the previous parameter error pre-processing, the orientation errors are more difficult to

determine in a linear fashion because they are coupled. Therefore the possible errors are

determined using a Monte Carlo simulation. The number of Monte Carlo trials per shape

type is 200.

For each trial, the orientation parameters are estimated and the errors are recorded.

The details of how the parameters are estimated is detailed in Chapter 4 in Section 4.5. The

location and size parameters used for the trials are provided in Table 3.10.

Table 3.10: The Monte Carlo random variable distributions for each parameter. The
location and orientation random variables are normally distributed to get estimates over
the range of the scene. The absolute value of the z parameter is taken to keep the shape
above the ground plane. The true size parameters are not random.

Shape Parameter Distribution

All x and y 3-D location N ∼ (µ = 0 m, σ = 1 m)

All z 3-D location |N ∼ (µ = 0 m, σ = 1 m)|

All Size L = 1 m, H = 1 m, r = 0.5 m

All except the plate Orientation N ∼ (µ = 0◦, σ = 10◦)

Plate Orientation N ∼ (µ = −32◦, σ = 1◦)

For each Monte Carlo trial the true orientation and 3-D location parameters are drawn

from a Gaussian random distribution, with the z value only chosen to be positive. The size

parameters are fixed. The orientation of the plate is limited relative to the other shapes

because its detection orientation is limited as shown in Table 3.5.
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For each Monte Carlo trial, the location and size parameters are estimated according

to the estimation methods in Chapter 4, Sections 4.3 and 4.4. The orientation angles are

estimated according the method detailed in Section 4.5. For each orientation estimate, the

errors are calculated relative to the true values. A summary of the errors are provided in

Table 3.11. The minimum error, maximum error, and standard deviation of the 200 trials is

recorded.

Table 3.11: The minimum error, maximum error, and standard deviation, σ, for all three
orientation parameters: roll (γ), pitch, (θ), and yaw (φ). Values are from 200 Monte Carlo
trials.

roll roll roll pitch pitch pitch yaw yaw yaw
Shape min max 1σ min max 1σ min max 1σ

error error error error error error

plate −0.1◦ 0.2◦ 0.06◦ −0.01◦ 0.02◦ 0.003◦ −0.01◦ 0.01◦ 0.005◦

dihedral −2.0◦ 7.5◦ 1.0◦ −9.2◦ 15.0◦ 4.7◦ −3.4◦ 7.5◦ 1.3◦

trihedral −63.2◦ 47.9◦ 10.4◦ −17.9◦ 3.3◦ 2.7◦ −35.4◦ 31.5◦ 6.3◦

sphere N/A N/A N/A N/A N/A N/A N/A N/A N/A

cylinder −2.7◦ 1.8◦ 0.4◦ −39.4◦ 32.5◦ 13.5◦ −10.5◦ 5.5◦ 2.6◦

top-hat −15.2◦ 11.7◦ 2.5◦ −8.8◦ 17.3◦ 2.7◦ −35.8◦ 66.1◦ 13.1◦

The errors and standard deviation for the plate are less than 1◦. The small errors

result from the small range of orientations from which the plate can be detected. Thus the

allowable orientation parameters are limited.

Table 3.11 demonstrates that shapes with symmetry about a given axis produce the

largest error for the orientation parameter coinciding with that axis. The dihedral and

cylinder have the largest error in pitch angle. For 0◦ roll angle, the dihedral has similar

shaped PH for any pitch angle and the cylinder PH is identical for any pitch angle. The

top-hat has the largest error in yaw angle. For 0◦ roll angle and pitch angles, the top-hat PH

is identical for any yaw angle.
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The orientation bounds for dictionary formation are chosen to be three standard

deviations from each parameter’s initial estimate. The 3σ values are in Table 3.12. An

example of how the orientation parameters are bound is shown in Equation (3.22) for a

dihedral with initial estimates of [γest, θest, φest] = [10◦, 10◦, 10◦].

[γbound, θbound, φbound] = [(γest, θest, φest) + (γ3σ, θ3σ, φ3σ)]. (3.22)

= [(10◦, 10◦, 10◦) + (±5.4◦,±12.9◦,±3.9◦)].

= [(4.6◦, 15.4◦), (−2.9◦, 22.9◦), (6.1◦, 13.9◦)].

Table 3.12: The 3σ error values of the orientation estimates are provided. The given values
bound the orientation parameters for dictionary formation.

Shape roll (γ) 3σ pitch (θ) 3σ yaw (φ) 3σ

plate ±0.18◦ ±0.01◦ ±0.02◦

dihedral ±3.1◦ ±14.0◦ ±3.9◦

trihedral ±31.3◦ ±8.2◦ ±18.9◦

sphere — — —

cylinder ±1.1◦ ±40.4◦ ±7.7◦

top-hat ±7.4◦ ±8.2◦ ±39.2◦

With the errors determined for each parameter, the pre-processing for parameter

bounding is complete. All of the error bounds are input into Step 2. Once parameter

estimates of a detected scatterers are made in Step 2, the error bounds are applied giving

the ranges of possible parameter values. The bound parameter are then used in Step 3 in

Chapter 5 for dictionary formation.

3.3 Step 1C: Data Collection, SAR Image Formation, and Pre-Processing

In Step 1A the collection parameters are chosen and analyzed. In Step 1B, the flight

path and radar parameters from Step 1A are tested for each shape type over “all” possible
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parameter combinations to determine the minimum and maximum error for any initial

estimate. The pre-collection processing is complete, and in Step 1C actual scene data

collection commences.

In general, radar returns are transformed into PH as discussed in Section 2.1.

This thesis generates simulated PH directly from the 3-D models in [1] according to

Equation (2.8). The data used for the entire thesis is generated directly from the scatterer

models; no noise, path attenuation, or clutter are added to the observed signals. Each

addition would introduce signal error that could affect the results as the signal-to-noise-

plus-interference ratio (SINR) degrades.

The complex returns are output as a vector of complex numbers. The complex data

PH is used directly for 2-D image formation. For coherency and LS calculations, the data

is stored in an atom as a vector of the real and imaginary parts to preserve the amplitude

and phase information shown as

a(k,Λ; Θ) =

 real(s(Θ))

imag(s(Θ))

 . (3.23)

After the PH data is generated, 2-D SAR images are formed using the backprojection

algorithm according to Equation (2.1) from the technical overview of Chapter 2. Once

the images are formed, the image peaks are segmented. The segments are detected and

grouped using the watershed algorithm discussed in Section 3.3.1 from [24]. The 2-D

SAR images and segments in the image plane are provided in Figures 3.24 - 3.35. The

images and segments are used for model order estimation, 2-D location estimation, and

peak association.

3.3.1 2-D SAR Image Formation and Segmentation.

The full flight path is partitioned in order to form multiple 2-D images, one image for

the PH of each partition. Flight path partition diversity discussed in Step 1A is required

to produce unique scatterer 2-D locations in the images. The diversity creates unique slant
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planes for each partition so the projection to the 2-D image ground plane are unique. The

mathematical solutions for sufficient flight path diversity is provided in Section 3.1.1.2.

Objects in a scene appear as peaks in the 2-D images. Each peak in an image

must be detected and segmented for parameter estimation. Peak detection is necessary

to determine the model order, or number of objects in the scene. The location estimation

in Section 4.3 uses the segment 2-D locations to triangulate the 3-D location. The 2-D

location is calculated using the center of mass of the segment in Section 3.3.3. The size

estimation in Section 4.4 uses the length of the segment in the image to estimate length.

The peaks are detected and segmented using a watershed algorithm from [25]. The

implementation of the watershed algorithm is taken from [24]. Three user defined

thresholds are used to accept or reject pixels, create initial segments, and combine

segments. This thesis keeps pixels that are within 20 dB of the peak pixel in the image for

segmentation. Initial segmentation starts from pixels that are a local maxima and includes

adjacent pixels that have an amplitude within 12 dB of the peak. Initial segments are

combined if the lowest pixel amplitude between the segments is within a threshold 12 dB

from the peak.

In this thesis, the flight partitions are established in Step 1A in Section 3.1.1.3. For the

PH to be generated and processed, truth scenarios are created. The algorithm performance

is evaluated using three scenarios. The scenarios range from a single shape to seven shapes.

The estimated parameters are compared to the true parameter values.

Scenario 1 parallels Hammond’s [2] scenario 1 where a single shape is in the

scene whose parameters correspond to one of the dictionary atoms. Scenario 2 likewise

parallels Hammond’s [2] scenario 2 with a single shape whose parameters are between two

dictionary atoms. Scenario 3 with seven shapes replicates the evaluated scenario in [1].

The results of the scenarios are compared directly to the result from [2] and [1].
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After the Scenario parameters are presented, the 2-D SAR images and segmented

peaks for those images are displayed in Figures 3.24 - 3.35.

Table 3.13: Scenario 1 plate parameters. The parameters are chosen to parallel Scenario
1 from [2]. All the parameters are chosen to be samples of the formed dictionary. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Shape x y z L H r γ θ φ

plate 0 0 0 1.0 1.0 – 0 -32 0

Table 3.14: Scenario 2 plate parameters. The parameters are chosen to parallel Scenario
2 from [2] where not all parameters are in the dictionary parameter samples. Each case
includes a different parameter off the dictionary sampling with Case 4 including a parameter
off dictionary for each parameter group: location, size, and orientation. The x, y, z, L, H, r
parameters are in meters, and γ, θ, φ are in degrees.

Case Shape x y z L H r γ θ φ

1 plate 0 0 1.05 1.0 1.0 – 0 -32 0

2 plate 0 0 0 1.05 1.0 – 0 -32 0

3 plate 0 0 0 1.0 1.0 – 0 -33.5 0

4 plate 0 0 1.05 1.05 1.0 – 0 -33.5 0

Table 3.15: Scenario 3 scatterer parameters. The parameters are from the evaluated scene
in [1]. The set of scatterers include shapes with parameters all in the dictionary and others
off dictionary. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Shape x y z L H r γ θ φ

plate -0.3 0 0.3 0.6 0.3 – 0 -30 0

dihedral1 0.25 0.5 0 0.6 0.2 – 0 0 0

dihedral2 0 1.1 2.5 0.6 0.30 – -10 0 0

trihedral 0.75 0 0.5 – 0.18 – 0 0 0

sphere -1.5 -1.0 0 – – 0.75 – – –

cylinder 0.5 2.0 0 .5 – 1.5 0 0 -5

top-hat 0.25 -1.5 0 – 0.4 0.6 0 0 0
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(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 2 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 2 image.

Figure 3.24: Scenario 1 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.25: Scenario 1 segment masks for the 2-D SAR images for each flight path
segment. 62



(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 1 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 1 image.

Figure 3.26: Scenario 2 Case 1 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.27: Scenario 2 Case 1 segment masks for the 2-D SAR images for each flight path
segment. 64



(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 1 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 1 image.

Figure 3.28: Scenario 2 Case 2 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.29: Scenario 2 Case 2 segment masks for the 2-D SAR images for each flight path
segment. 66



(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 1 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 1 image.

Figure 3.30: Scenario 2 Case 3 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.31: Scenario 2 Case 3 segment masks for the 2-D SAR images for each flight path
segment. 68



(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 1 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 1 image.

Figure 3.32: Scenario 2 Case 4 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.33: Scenario 2 Case 4 segment masks for the 2-D SAR images for each flight path
segment. 70



(a) Up-down flight path segment 1 image. (b) Up-down flight path segment 2 image.

(c) Disjoint flight path segment 1 image. (d) Disjoint flight path segment 2 image.

(e) Two-pass flight path segment 1 image. (f) Two-pass flight path segment 2 image.

Figure 3.34: Scenario 3 2-D SAR images for each flight path segment.
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(a) Up-down flight path segment 1 image segment

mask.

(b) Up-down flight path segment 2 image segment

mask.

(c) Disjoint flight path segment 1 image segment

mask.

(d) Disjoint flight path segment 2 image segment

mask.

(e) Two-pass flight path segment 1 image segment

mask.

(f) Two-pass flight path segment 2 image segment

mask.

Figure 3.35: Scenario 3 segment masks for the 2-D SAR images for each flight path
segment. 72



3.3.2 Model Order Estimation.

The number of scatterers in a scene is called the model order. Model order is estimated

using the number of segments detected by the watershed algorithm. As demonstrated

in Figures 3.26(b) and 3.27(b), a scatterer peak can split into two peaks in the image.

The split phenomena occurs when an object with a length parameter is skew to the radar

flight path and returns are summed in the backprojection equation. The pixel sums in the

backprojection equation at the front and back of the object’s length form higher peaks than

pixels at the center of the object. The splitting supports the need for flight path diversity to

capture the best return geometry. For example, a 1 m plate begins to split if the flight path

is offset from the specular direction by more than two degrees.

In this thesis, model order is the average number of segments in the images. A segment

is counted if it contributes at least 1% of the total energy in the scene. If there are 10 total

unique segments, but 6 have less than 1% of the total energy, the model order would be 4.

The model order estimates correctly identify a single scatterer in Scenario 1, each case of

Scenario 2, and seven scatterers in Scenario 3. The image segments shown in Figures 3.25,

3.27, ... , 3.35 have an average number of segments equal to the model order.

A more complicated algorithm for model order estimation is possible; [18] associates

peaks prior to model order estimation. Only scatterers that persist among each image are

counted. This method could discount plates because a plate does not persist over varying

flight segments due to its limited response extent. With that knowledge, the Scenarios in

this thesis only see the plate because its orientation is always aligned near the flight path.

3.3.3 2-D Location Estimation.

Peak segmentation allows for accurate 2-D location estimation. A peak location is

estimated using a center of mass calculation for the pixels included in the peak segment.

The center of mass in the x direction is

x̄ =
1

Atotal

∑
xgiAi, (3.24)
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where the index i is that of each pixel, A is the amplitude of the pixel, and xgi is the pixel

location in range. The same calculation is made in cross-range with

ȳ =
1

Atotal

∑
ygiAi. (3.25)

The 2-D locations are used to determine the 3-D location in Section 4.3 according

to the mathematic solution in Section 3.1.1.2. Tables 3.16 - 3.18 provide the “true” 2-D

locations and the 2-D center of mass results. The true 2-D locations are calculation using

the layover equations in Chapter 3, Equations (3.1) - (3.10). These equations use the flight

path grazing angle, ψ, and tilt angle, η. The derivation of these two angles for a flight path

is in Appendix A. The grazing angles and tilt angles for the flight partitions used in this

thesis are provided in Table 3.2.

Table 3.16: Scenario 1 2-D image segment true locations and center of mass calculated
locations. The locations are given for each flight segment from Table 3.1. The locations
are in meters.

Scenario/ Flight True Center of Mass
Case Segment 2-D Location 2-D Location

Scenario 1 Up-down 1 0.0, 0.0 0.0, 0.0
Up-down 2 0.0, 0.0 0.0, 0.0
Disjoint 1 0.0, 0.0 0.0, 0.0
Disjoint 2 0.0, 0.0 0.0, 0.0

Two-pass 1 0.0, 0.0 0.0, 0.0
Two-pass 2 0.0, 0.0 0.0, 0.0
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Table 3.17: Scenario 2 Cases 1-4 2-D image segment true locations and center of mass
calculated locations. The locations are given for each flight segment from Table 3.1. The
locations are in meters.

Scenario/ Flight True Center of Mass
Case Segment 2-D Location 2-D Location

Scenario 2/Case1 Up-down 1 0.67, 0.65 0.67, 0.72
Up-down 2 0.67, -0.65 0.67, -0.72
Disjoint 1 0.53, -0.14 0.53, -0.14
Disjoint 2 0.67, -0.65 0.67, -0.72

Two-pass 1 0.61, 0.70 0.61, 0.72
Two-pass 2 0.81, 0.00 0.81, 0.00

Scenario 2/Case2 Up-down 1 0.0, 0.0 0.0, 0.0
Up-down 2 0.0, 0.0 0.0, 0.0
Disjoint 1 0.0, 0.0 0.0, 0.0
Disjoint 2 0.0, 0.0 0.0, 0.0

Two-pass 1 0.0, 0.0 0.0, 0.0
Two-pass 2 0.0, 0.0 0.0, 0.0

Scenario 2/Case3 Up-down 1 0.0, 0.0 0.0, 0.0
Up-down 2 0.0, 0.0 0.0, 0.0
Disjoint 1 0.0, 0.0 0.0, 0.0
Disjoint 2 0.0, 0.0 0.0, 0.0

Two-pass 1 0.0, 0.0 0.0, 0.0
Two-pass 2 0.0, 0.0 0.0, 0.0

Scenario 2/Case4 Up-down 1 0.67, 0.65 0.67, 0.72
Up-down 2 0.67, -0.65 0.67, -0.72
Disjoint 1 0.53, -0.14 0.53, -0.13
Disjoint 2 0.67, -0.65 0.67, -0.72

Two-pass 1 0.61, 0.70 0.61, 0.73
Two-pass 2 0.81, 0.00 0.81, 0.00
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Table 3.18: Scenario 3 2-D image segment true locations and center of mass calculated
locations. The locations are given for each flight segment from Table 3.1. The shape types
are not known a priori but shown here as information only. The locations are in meters.

Scenario/ Shape Flight True Center of Mass
Case Type Segment 2-D Location 2-D Location

Scenario 3 plate Up-down 1 -0.11, 0.18 -0.10, 0.21
Up-down 2 -0.11, -0.18 -0.11, -0.20
Disjoint 1 -0.15, -0.04 -0.15, -0.34
Disjoint 2 -0.11, -0.18 -0.11, -0.20

Two-pass 1 -0.13, 0.20 -0.13, 0.20
Two-pass 2 -0.07, 0.00 -0.07, 0.01

Scenario 3 dihedral1 Up-down 1 0.25, 0.50 0.24, 0.49
Up-down 2 0.25, 0.50 0.25, 0.50
Disjoint 1 0.25, 0.50 -0.16, 0.22
Disjoint 2 0.25, 0.50 0.25, 0.50

Two-pass 1 0.25, 0.50 0.25, 0.49
Two-pass 2 0.25, 0.50 0.25, 0.50

Scenario 3 dihedral2 Up-down 1 1.59, 2.64 2.27, 2.35
Up-down 2 1.59, -0.44 1.58, -0.42
Disjoint 1 1.26, 0.76 2.21, 2.13
Disjoint 2 1.59, -0.44 1.58, -0.42

Two-pass 1 1.45, 2.77 1.44, 2.92
Two-pass 2 1.93, 1.10 1.91, 1.21

Scenario 3 trihedral Up-down 1 1.07, 0.31 1.06, 0.31
Up-down 2 1.07, -0.31 1.07, -0.31
Disjoint 1 1.00, -0.07 1.01, -0.07
Disjoint 2 1.07, -0.31 1.07, -0.31

Two-pass 1 1.04, 0.33 1.04, 0.33
Two-pass 2 1.14, 0.00 1.13, 0.00

Scenario 3 sphere Up-down 1 -0.61, -0.82 0.62, -0.83
Up-down 2 -0.61, -1.17 -0.61, -1.18
Disjoint 1 -0.68, -1.22 -0.68, -1.22
Disjoint 2 -0.61, -1.17 -0.61, -1.18

Two-pass 1 -0.63, -0.75 -0.63, -0.75
Two-pass 2 -0.55, -1.00 -0.55, -1.00

Scenario 3 cylinder Up-down 1 2.28, 2.46 1.55, 2.89
Up-down 2 2.28, 1.54 2.29, 1.63
Disjoint 1 2.18, 1.91 2.15, 1.57
Disjoint 2 2.28, 1.54 2.29, 1.63

Two-pass 1 2.23, 2.50 2.22, 2.32
Two-pass 2 2.39, 2.00 2.38, 1.84

Scenario 3 top-hat Up-down 1 0.85, -1.55 0.85, -1.55
Up-down 2 0.85, -1.45 0.85, -1.45
Disjoint 1 0.83, -1.66 0.83, -1.65
Disjoint 2 0.85, -1.45 0.85, -1.45

Two-pass 1 0.85, -1.50 0.85, -1.50
Two-pass 2 0.85, -1.50 0.85, -1.50
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The 2-D location results in Tables 3.16 - 3.18 demonstrate the principle of layover.

The plate in Scenario 1, Scenario 2 Cases 2 and 3, and dihedral1 from Scenario 3 all have

their center reflection point in the image ground plane. Therefore, each of these cases show

the same 2-D, non-projected location for each flight path.

Layover is demonstrated for the other objects not in the ground plane. Having their

scattering reflection point above the ground plane projects their location to the image

ground plane. The flight path partitions have different slant plane angles and accompanying

projection angles. The unique layover is evident in the 2-D SAR images and segments in

Figures 3.26 and 3.27. The plate is at (x = 0 m, y = 0 m, z = 1.05 m) Being above

the ground plane, each peak is projected to a unique location for each flight partition. The

true and calculated locations in Tables 3.16 - 3.18 show the relative layover numerically.

The Two-pass second segment is at the highest elevation; therefore, each range location is

closer than the others. The Two-pass first segment has the largest tilt angle producing the

largest cross-range 2-D locations.

The layover error occurs because the slant plane layover projection angles approxi-

mate the 2-D projection location in the ground plane. The backprojection integral in Equa-

tion (2.1) sums the return from each HRR. Each HRR is taken from a unique azimuth and

elevation angle. The projection vector for each HRR is slightly different than the slant

plane layover angles. Some offset can occur in the resultant sum of projected HRRs.

The layover error is evident in Scenario 3. The dihedral2 is the furthest from the

ground plane at z = 2.50 m. It has the second largest 2-D location errors, yg1,error =

0.15 m, yg2,error = 0.11 m. The reflection point of the cylinder is the next highest at

z ≈ 1.5 m sin(30◦) = 0.75 m and carries the largest errors, yg1,error = 0.18 m, yg2,error =

0.16 m. The approximation in the height calculation is because each flight path grazing

angle is slightly different. The errors in the 2-D locations are what cause the error in the
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3-D location estimates as will be discussed in Section 4.3 where the 3-D estimates are

provided.

The cylinder has a larger 2-D location error because the orientation yaw slightly tilts

the cylinder. The amplitude of HRRs to the direction of the pitch are higher so the 2-D

peak is slightly weighted. The center of mass calculation from Equation (3.25) shifts the

peak center so the 2-D location has more error.

3.3.4 Peak Association.

The peak locations are used to associate the peaks between each image pair.

Association is needed to pair the correct 2-D location set from the image to compute the

3-D location. The image peak locations are matched using the relative layover angles.

An object’s 2-D peak locations are used to estimate the 3-D location estimate. To make

the 3-D estimate for an object, the peak corresponding to that object must be distinguished

from the others in the scene. Association is the process of mapping the each peak in a scene

to each object.

Peak association is accomplished using the layover projection angles from each flight

partition. The derivation of the layover angles is provided in Appendix A. A flight partition

at a higher elevation will project an object closer to the radar. The angle of flight path

ascent or descent determines the angle of layover in the cross-range direction. The relative

layover angles between two images limit how far a peak can move between the images.

Association uses relative range and cross-range translation to match the peaks.

An allowable range translation example is given in Equation (3.27). The layover

angles from Two-pass segment 1 and segment 2 are (ψ = 30.2◦, η = 33.8◦) and

(ψ = 37.6◦, η = 0.0◦), respectively. Assuming a maximum object height of 4 m, the

range that a scatterer in Two-pass segment 1 can move relative to the location in segment 2

is xg1 ∈ [xg2 − 0.75m, xg2]. The cross-range that a scatter can move relative to the location
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in segment 2 is yg1 ∈ [yg2, yg2 + 2.68m]. The result is shown mathematically with

xg1 = x + z tanψ1

xg2 = x + z tanψ2

xg1 − xg2 = z(tanψ1 − tanψ2) (3.26)

= 4 m (tan(30.2◦) − tan(37.6◦))

= −0.75 m

xg1 = xg2 − 0.75 m.

and

yg1 − xg2 = z(tan η1 − tan η2) (3.27)

= 4 m (tan(33.8◦) − tan(0◦))

= 2.68 m

yg1 = yg2 + 2.68 m.

The example result is also shown graphically in Figure 3.36

In Figure 3.34 the different flight partition images show varying levels of amplitudes

for each scatterer. Also, splitting occurs for some scatterer peaks. The shapes are oriented

such that their specular is detected for their 2-D image pair from Table 3.3. Therefore, the

split peaks do not affect the 2-D location estimates needed for the 3-D location estimation.

The splitting demonstrates why some 2-D location estimates are very far from their

estimates. In Figure 3.34(c), the peaks for the sphere, top-hat, and trihedral do not split and

are estimated correctly, as shown in Table 3.18. The splitting causes poor peak matches

for the other shapes. Consequently the 2-D location estimates are poor. Splitting scatterer

peaks causing poor 2-D location estimates provides areas of future work to account for

splitting phenomena. The split peaks do not affect the results in this thesis, as all peaks are

correctly associated using their location in each 2-D SAR image.

In summary, Step 1A analyzes the collection flight path and radar parameters. Step

1B pre-processes the range of possible errors that will be used for bounding in Step 2.
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(a) Two-pass segment 2. (b) Two-pass segment 1.

Figure 3.36: Using the Two-pass images from Scenario 2 Case 1, peak association is
demonstrated. Starting with the peak location in segment 2 in Figure 3.36(a), the possible
area allowed for layover, given the difference in grazing and tilt angles, is boxed in red in
Figure 3.36(b). The red star denotes the peak location from segment 2 in Figure 3.36(a).
The plate is at z = 1.05, so the layover location is different and falls within the possible
layover range and cross-range.

By detecting the full range of possible errors, the estimates in Step 2 can be bound with

confidence that the true parameter lies within the bound.

In Step 1C, the PH data of the scene under test is collected. In this thesis the PH data

is generated accorinding the models from [1]. Two-dimensional SAR images are formed

from each flight partition and then segmented. The model order, 2-D peak locations, and

peak associations are all determined for use in Step 2.

The model order provides the number of scatterers to be estimated. The segment

size is used for length estimation. The peak associations are necessary for 3-D location

estimation. The 3 Scenarios will be carried through Chapters 4 and 5, so evaluation of each

algorithm step can be analyzed.
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IV. Initial Shape Type Estimation and Parameter Estimation and Bounding

Step 1 provides model order and image information necessary for parameter

estimation. In Step 2, multiple steps accomplish initial parameter estimation. The

estimation process is shown in Figure 4.1. Initial estimates are combined with preprocessed

error analysis to limit the possible parameter subspace. The error analysis is completed in

Step 1B using the chosen flight path in Step 1A for each shape type and multiple parameter

permutations. The permutations are chosen to determine the worst errors for any shape

parameter set that will be encountered; the scene scatterers and their parameters are not

known a priori. The limited parameter subspace is output from Step 2 and allows for

more accurate and efficient dictionary formation and search in Step 3, whose results are in

Chapter 5.

Figure 4.1: Steps to complete parameter estimation and bounding.
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The pre-processed possible error ranges from Step 1 are input into Step 2, but one pre-

estimation step is still needed. Step 2A spotlights the PH data to separate the PH data into

the PH of each individual scatterer. The separation allows for better RCS estimation, which

is used for size estimation in Section 4.4. The spotlight PHs allow for direct comparison

against dictionary PHs with less error due to other scatterers’ PHs. In this thesis, perfect

spotlighting is assumed and individual PHs are generated for each shape instead.

Estimation commences with the completion of all the pre-processing. In Step 2B,

The SPLIT algorithm [26] estimates the shape type using the frequency and polarization

responses of scatterer peak pixels in the 2-D images. In Step 2C, the 3-D location of

each scatterer is estimated using its 2-D image peak locations. Step 2D estimates the size

parameters using the length of the segments in the images, the RCS from the spotlight

PH, and the radius estimates found along with the location estimates. Step 2E estimates

the orientations parameters using a coarse-to-fine PH correlation. In Step 2F, the initial

parameter estimates from Step 2B are checked for feasibility. The final shape type estimates

with their corresponding parameter bounds are passed to Step 3 for final estimation via

dictionary formation and search.

4.1 Step 2A: Spotlight Partitioned Flight Path Phase Histories

Before estimating the shape type and object parameters, the 2-D images are used to

produce spotlight PH data. Spotlighting extracts the pixels for a single scatterer in an

image using a window function. Generally, a rectangular window function is used. The

image spotlight is transformed from the image domain back to the PH using an inverse

backprojection. Although the theory of spotlighting exists, code has not been written for

this data set to invert the backprojection integral in Equation (2.1).

In this thesis, the scatterer spotlight PHs are approximated by generating them

directly from the scattering model equations for each object. The spotlight PHs are

downsampled relative to the original collection sample sizes in frequency and azimuth.
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The downsampling accounts for the decrease in scene extent of the rectangle window used

to separate the peaks (see Equations (2.2) and (2.3)).

A window of 1 m in range and 2.5 m in cross-range appears to be the correct size for

the peaks in the images. This window relates to sample number decreases to 21 samples in

frequency and 11 samples in azimuth. The calculations for the number of samples are

Erange =
c

2δ f

δ f =
c

2Erange
(4.1)

=
3 × 108 m/s

2(1 m)

= 1.5 × 108 Hz

Nsamples, f =
B
δ f

+ 1

=
3 × 109 Hz

1.5 × 108 Hz
+ 1

= 21 samples.

And

Ecross-range =
λmin

2δφ

δφ =
λmin

2Ecross-range
(4.2)

=
0.0857 m
2(2.5 m)

= 0.017 radians ≈ 1◦

Nsamples,φ =
azimuth extent

δφ
+ 1

=
10◦

1◦
+ 1

= 11 samples.

The spotlighted PH serves two purposes. The squared magnitude of the maximum PH

sample gives an estimate of the RCS. The spotlighted PH prevents a separate object in the
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scene from adding significant energy to the maximum amplitude. The RCS is needed for

size estimation in Step 2D in Section 4.4.

The segregated spotlight PHs secondly allow easier PH comparison. The initial

orientation parameter estimation uses coherency matching against a single object’s PH in

Step 2E in Section 4.5. The final parameter estimates from dictionary search in Section 5.2

also compare PHs one object at a time. Correlation and LS fit of a single object are

inherently poor with multiple objects’ PH contributing.

The image data from Section 3.3 with the RCS and spotlighted PHs provide all the

information needed for initial estimates. The following sections detail how these pieces of

information are used for Steps 2B-2F from Figure 4.1.

4.2 Step 2B: Initial Shape Type Estimate - The SPLIT Algorithm

Shape type estimates decrease the number of computations needed. Without an

estimate of shape type, calculations would be needed to estimate the parameters for each

shape type. Later the estimated parameters would have to be examined to determine

feasibility of each shape type. Radar PH data does not provide shape type information

directly. Initial shape type estimates of each object are made using the spectrum parted

linked image test (SPLIT) algorithm from [26].

The SPLIT algorithm estimates shape type using the frequency response and

polarization response of the image data. The plate and sphere are classified together in

the SPLIT algorithm; all other canonical shapes are uniquely classified. The shape type

estimates include a confidence measure [26]. The confidence is a probabilistic measure of

how well the selected shape type matches the frequency and polarization response integer

values versus choosing the other shape types.

The frequency response is dependent on the curvature of an object. The response

proportionality is shown with the proportionality

M ∝ f α/2. (4.3)

84



The M variable represents the PH response from Table 2.3. The dependence is determined

from the GO and GTD. The alpha values for different shape types are given in Table 4.1.

Table 4.1: Frequency response values for each canonical shape type [1],[26, Sect. 2.2.1].

Scattering Geometry α

plate, dihedral, trihedral 2
cylinder, top-hat 1

sphere 0

The frequency dependencies are reflected in the canonical shape PH models from

Table 2.3. The frequency term the PH models is in the wavenumber, k =
2π f

c . The plate,

dihedral, and trihedral equations all include the frequency term to the 1st power (α = 2,

α/2 = 1). The cylinder and top-hat have k to the one half power. The sphere has no

dependency on frequency.

The polarization response predicts either odd or even bounce behavior according to

the number of radar wave reflections induced by the shape. Fuller [26, Sect. 2.2.3] uses a

Krogager decomposition of the Sinclair scattering matrix to estimate odd/even bounce. If

insufficient data is available for shape type determination, the odd or even bounce limits the

shape type estimate to the odd (plate, trihedral, sphere, cylinder) or even (dihedral, top-hat)

shapes.

In this thesis, the confidence measure is used as a threshold to determine whether or

not to accept the shape estimate. The threshold used for shape type acceptance is 0.90. The

exception is the trihedral that has a threshold of 0.80. The thresholds are set after running

multiple trials of the SPLIT code and desiring a negligible probability of false alarm. The

threshold was raised for each trial of a false positive. If the specific shape type does not

meet the threshold, the shape type estimate defaults to the odd or even bounce behavior.

The SPLIT code graphically displays the shape type estimates and polarization

bounce. The SPLIT image displays are shown in Figures 4.2 and 4.4. The shape
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type estimate results with confidence measurements and final shape type choices for the

scenarios are provided in Table 4.2. The even or odd polarization response are correct for

each shape type and are indicated in the images by the green and red pixels. The spread of

the polarization response occurs because the polarization response is tested per pixel. The

pixel response is spread with the peaks due to the cross-range resolution.

In Scenario 1, the SPLIT algorithm correctly detects a plate/sphere response but the

confidence does not meet the threshold so all odd shapes are estimated. In Scenario 2, Cases

1 and 2 correctly detect the plate/sphere with a confidence measure above the threshold a

plate/sphere is the estimated type. Cases 3 and 4 from Scenario 2 do not detect a shape

type, so all odd shape types are estimated.

In Scenario 3, all even or odd polarizations are correct. Only the trihedral, sphere, and

top-hat have detected shape types. All three have sufficient confidence measures and are

able to limit the shape type estimates as shown in Table 4.2.

Figure 4.2: Scenario 1 SPLIT shape type estimate and polarization bounce image.
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 4.3: Scenario 2 SPLIT shape type estimate and polarization bounce images for each
of the four cases.
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Figure 4.4: Scenario 3 SPLIT shape type estimates and polarization bounce image.
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Table 4.2: True shape types and SPLIT algorithm shape type estimates for each scenario.

Scenario 1
True shape type plate
Detected shape type plate/sphere
Confidence 0.87
Polarization odd
Shape Estimate plate, trihedral, sphere, cylinder

Scenario 2
Case 1 True shape type plate

Detected shape type plate/sphere
Confidence 0.91
Polarization odd
Shape Estimate plate, sphere

Case 2 True shape type plate
Detected shape type plate/sphere
Confidence 0.92
Polarization odd
Shape Estimate plate, sphere

Case 3 True shape type plate
Detected shape type –
Confidence –
Polarization odd
Shape Estimate plate, trihedral, sphere, cylinder

Case 4 True shape type plate
Detected shape type –
Confidence –
Polarization odd
Shape Estimate plate, trihedral sphere, cylinder

Scenario 3
True shape plate dihedral1 dihedral2 trihedral sphere cylinder top-hat

Detected shape – – – trihedral plate/sphere – top-hat
Confidence – – – 0.88 0.99 – 0.99
Polarization odd even even odd odd odd even

Shape Estimate plate, dihedral, dihedral, trihedral plate, plate, top-hat
trihedral, top-hat top-hat sphere trihedral,
cylinder, cylinder,
sphere sphere
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4.3 Step 2C: Initial Location Estimation and Bounding

The 3-D location estimate of a shape is solved using at least two peak locations in

2-D SAR images generated in Step 1C. The mathematic solution of solving for the 3-D

location is detailed in Section 3.1.1.2. In this thesis, the peak locations of two images are

used for each 3-D estimate. Each image is formed from a unique partition of the flight

path. The flight path partitions for 2-D location estimation of each shape type are included

in Table 3.3 with the previous discussion of the flight path analysis in Section 3.1.1.3.

The 2-D location estimates are provided in Section 3.3 in Tables 3.16 - 3.18. The 3-D

locations calculated from the 2-D locations and flight path parameters are in Tables 4.3 -

4.5 in the x, y and z columns Tables 4.3 - 4.5 show all the results for Step 2, although Steps

2D - 2F have not yet been completed. Providing the results in a single table shows the

initial estimation results more succinctly. The following sections refer back to the tables.

In the shape type column, all shape types listed are the initial shape type estimates from the

SPLIT algorithm in Step 2B. The shapes with a strikethrough are those removed in Step 2F

by the shape type check. The x, y, z columns are for this Step 2C. The L, H, r columns

are for the shape estimates in Step 2D. The γ, θ, φ columns are the orientation estimates

in Step 2E. Finally, the Shape Check column provides the reason why a shape is discarded

in Step 2F.

The accuracy of the 3-D location estimates are dependent on the location accuracy

of the 2-D estimates. As determined in Section 3.3.3, the 2-D location estimate accuracy

decreases as the location of a shape’s reflection point moves away from the ground plane.

Scenario 1, Scenario 2 Cases 2 and 3, and dihedral1 from Scenario 3 are all in the ground

plane. The resultant 3-D location estimates are within 0.01 m.

The 3-D location estimate errors increase for the plates in Scenario 2 Cases 1 and 4

and the other shapes in Scenario 3. In Scenario 2 Cases 1 and 4, the plates are at z = 1.05
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and the 3-D error increase to 0.12 m and 0.13 m, respectively. 3-D location estimation error

is expected since the 2-D image layover locations have an inaccuracy of yg,error = 0.07 m.

Scenario 3 shows the same relation between 2-D location estimate error and 3-D

location error when a shape reflection point is above the ground plane. Dihedral2 is the

furthest above the ground plane at z = 2.5 m, has a 2-D location error of yg1,error = 0.15 m,

and a 3-D location error of yerror = 0.11 m. The cylinder has the largest 2-D location

error of yg1,error = 0.18 m. As expected, the cylinder also has the largest 3-D location

error of xerror = 0.51 m. The cylinder 3-D location error is due to the layover and also

the rotated orientation (γ, θ, φ)cylinder = (0◦, 0◦,−5◦). As described in the size error analysis

in Section 3.2.3, a rotated orientation of the cylinder or top-hat creates an apparent 3-D

location and radius estimate offset from the true values. This phenomena is due to the fact

that the layover equations for the cylinder and top-hat are derived in Section 3.1.1.1 for the

non-rotated orientation.

Table 4.3: Scenario 1 scatterer shape true parameters, parameter estimates, and shape
check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Truth or Shape Parameter Shape
Estimate Type x y z L H r γ θ φ Check

Truth plate 0 0 0 1.0 1.0 – 0 -32 0 –
Estimate plate 0 0 0 0.97 0.99 – 0 -32.0 0 –

trihedral 0 0 0 – 0.75 – 24.7 30.9 27.4 –
sphere 0 0 0 – – 0.0 – – – r ≤ 0

cylinder 0 0 0 1.25 – 0.0 – – – r ≤ 0
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Table 4.4: Scenario 2 scatterer shape true parameters, parameter estimates, and shape
check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Shape
# Estimate Type x y z L H r γ θ φ Check

1 Truth plate 0 0 1.05 1.0 1.0 – 0 -32 0 –
Estimate plate -0.08 0.0 1.17 0.95 1.02 – 0.4 -32.0 0.0 –

sphere 0.12 -0.03 1.19 – – -0.19 – – – r ≤ 0

2 Truth plate 0 0 0 1.05 1.0 – 0 -32 0 –
Estimate plate 0 0 0 1.02 0.99 – 0.1 -32.0 0.0 –

sphere 0 0 0 – – 0.0 – – – r ≤ 0

3 Truth plate 0 0 0 1.0 1.0 – 0 -33.5 0 –
Estimate plate 0 0 0 0.70 1.24 – -4.8 -33.3 -0.8 –

trihedral 0 0 0 – 0.71 – 37.7 -26.4 49.2 –
sphere 0 0 0 – – 0.0 – – – r ≤ 0

cylinder 0 0 0 1.60 – 0.0 – – – r ≤ 0

4 Truth plate 0 0 1.05 1.05 1.0 – 0 -33.5 0 –
Estimate plate -0.08 0.0 1.18 0.72 1.25 – -3.8 -33.2 -0.79 –

trihedral -0.03 0 1.08 – 0.72 – 37.7 -26.4 19.3 –
sphere 0.16 -0.03 1.20 – – -0.21 – – – r ≤ 0

cylinder 0.44 0.0 1.36 1.62 – -0.54 – – – r ≤ 0
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Table 4.5: Scenario 3 scatterer shape true parameters, parameter estimates, and shape
check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Truth or Shape Parameter Shape
Estimate Type x y z L H r γ θ φ Check

Truth plate -0.3 0 0.3 0.6 0.3 – 0 -30 0 –
Estimate plate -0.32 0.01 0.33 0.60 0.30 – 0.0 -30.0 0.0 –

trihedral -0.29 0.01 0.28 – 0.32 – 17.2 32.4 18.8 –
sphere -0.80 -0.16 -0.20 – – -0.06 – – – r ≤ 0

cylinder -0.88 0.01 -0.06 1.15 – 0.68 -5.3 29.8 -5.5 –

Truth dihedral1 0.25 0.5 0 0.6 0.2 – 0 0 0 –
Estimate dihedral 0.26 0.50 -0.01 0.81 0.13 – 0.0 -0.1 0.0 –

top-hat -5.08 1.54 2.24 – 0.16 3.92 3.5 -26.6 -44.8 –

Truth dihedral2 0 1.1 2.5 0.6 0.3 – -10 0 0 –
Estimate dihedral -0.05 1.21 2.56 1.02 0.12 – 4.1 31.4 9.3 –

top-hat 13.67 -0.94 -2.36 – NaN -10.63 – – – r ≤ 0

Truth trihedral 0.75 0 0.5 – 0.18 – 0 0 0 –
Estimate trihedral 0.76 0.0 0.49 – 0.18 – 0.0 0.0 0.0 –

Truth sphere -1.5 -1.0 0 – – 0.75 – – – –
Estimate plate -0.80 -1.00 0.29 0.20 0.28 – – – – L ≤ 0.3

sphere -1.48 -1.00 0.01 – – 0.75 – – – –

Truth cylinder 0.5 2.0 0 0.5 – 1.5 0 0 -5 –
Estimate plate 1.26 2.27 1.03 0.22 0.72 – – – – L ≤ 0.3

trihedral 1.81 1.83 0.73 – 0.31 – 11.7 -2.7 1.3 –
sphere 0.63 1.98 0.05 – – -0.06 – – – r ≤ 0

cylinder -0.01 1.84 -0.33 0.61 – 2.10 -9.5 -18.4 -6.9 –

Truth top-hat 0.25 -1.5 0 – 0.4 0.6 0 0 0 –
Estimate top-hat 0.25 -1.50 0.01 – 0.33 0.60 -0.1 -0.7 8.9 –
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Once the initial location parameters are estimated, the error bounds from Step 1B in

Section 3.2, Figures 3.6 - 3.12, are applied to set the upper and lower bounds for dictionary

formation. The details of how the errors ranges are calculated and are applied to the initial

estimates here are provided in Section 3.2.2. The error ranges are what are passed to Step

3 for dictionary formation.

4.4 Step 2D: Initial Size Estimation and Bounding

The size paramaters are estimated after the location estimates are complete. The length

estimate is the measured length of the shape in the image segment. The height is calculated

using the RCS, length, and radius estimates plugged into the peak RCS equation for the

corresponding shape type. The height equations are provided previously in Table 3.9. The

radius for the cylinder and top-hat is estimated with the 3-D location estimate, and the

radius of the sphere is calculated using the RCS and peak RCS equation.

The length parameter is estimated from the image. The length parameter of the plate,

dihedral, and cylinder cause a proportional spread of the peak in the image of each object.

The length of the peak is measured using the length of the segment in the image. The

segment length is defined as all pixels within a threshold of the peak amplitude. The

chosen plate threshold is 1.2 dB, and chosen dihedral and cylinder threshold is 6.5 dB.

The user defined thresholds are chosen for this thesis to minimize the error when a shape

is at non-rotated orientation from Table 3.8.

The height parameter is estimated using the peak RCS and previous length and/or

radius estimates. The RCS is estimated is from the HRR PH data provided by the spotlight

algorithm from Step 2A in Section 4.1. The spotlight removes additional objects in the

scene; other objects can affect an object’s amplitude if at the same range in an HRR. The

true RCS peak values are calculated using the peak RCS equations from [1] and are given

in Table 4.6.
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Table 4.6: Peak RCS equation for each shape. The peak values corresponds to the power
received when collected at the specular direction from a shape. The specular direction is
determined from the shape geometry. Specular can be determined by finding the relative
angles to the radar that maximize the scatterer responses in Table 2.3.

Shape Peak RCS

plate 4πL2H2

λ2

dihedral 8πL2H2

λ2

trihedral 12πH4

λ2

sphere πr2

cylinder 2π
λ

rL2

top-hat 8πrH2

λ
√

2

For the Scenarios tested in this thesis, the RCS estimates from the HRRs are in

Table 4.7. The true values are provided from the peak RCS equations in Table 4.6.

Table 4.7: Shape true peak RCS values and measured RCS from the HRRs.

Scenario Case Shape True Peak RCS (m2) Estimated RCS (m2)

1 – plate 558.5 520.2

2 1 plate 558.5 520.2

2 plate 615.8 573.5

3 plate 558.5 417.2

4 plate 615.8 459.9

3 – plate 18.1 18.1

– dihedral1 16.1 11.9

– dihedral1 36.2 17.2

– trihedral 1.8 1.6

– sphere 1.8 1.8

– cylinder 15.7 14.8

– top-hat 11.4 7.9
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The radius parameter is estimated and bounded with the 3-D location estimates using

the peak location in the 2-D images. The radius is estimated at the previous step because

the radius changes the location of the peak in each image.

The radius of the sphere is estimated when the 3-D location estimate is made.

However, errors in the image can induce errors on the radius parameter. Therefore, the

radius for the sphere is calculated using the RCS estimate. The amplitude returned from

the sphere is constant, so the measured RCS is correct for any flight path.

The applicable parameters for each shape type and method of initial estimate are

summarized in Table 4.8.

Table 4.8: Information used to determine the size parameter for each shape type. Length
uses the peak segment width. Height is calculated from the peak RCS equation and other
size parameters. Radius is estimated with the 3-D location estimate based on the image
peak locations. In the case of the sphere, the radius is estimated using the peak RCS
equation.

Shape L H r

plate Image RCS

dihedral Image RCS

trihedral RCS

sphere RCS

cylinder Image Image

top-hat RCS Image

The methodology to estimate each size parameter is evaluated using the thesis

Scenarios. The estimated values are provided in Tables 4.3 - 4.5 with the true values in

columns L, H, and r. Scenarios 1 and 2 only have a plate in the scene. Scenario 1 and

Scenario 2 Cases 1 and 2 have length and height estimates within 0.05 m. The accuracy

of the length estimates are expected because the orientation of (γ, θ, φ)plate = (0◦,−32◦, 0◦)
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was used to set the peak width threshold. The plate height estimate is determined using

the peak RCS equation and is dependent on the RCS and length estimates for accuracy.

Both the length and RCS estimates are lower than their true values; the two offset since

H ∝
√

RCS
L such that the height estimate is within 0.02 m of the true value.

In Scenario 2 Cases 3 and 4, the pitch angle is increased to θ = −33.5◦. The change in

orientation angle changes the PH collection so that the peak is steeper in the image domain.

The steeper peak causes a shorter length estimate. The length error is worse than Cases 1

and 2 with Lerror ≈ −0.30 m. For Cases 3 and 4 the low RCS estimates are overcome by the

low length estimates so the calculated height estimate is greater than the true value with an

error of Herror ≈ 0.25 m for the two cases.

In Scenario 3, the same phenomena affect the size estimates as discussed in the size

error analysis in Section 3.2.3. The plate length estimate matches the true value because

the plate orientation angles are near the standard orientation of this thesis and within the

flight path. The length estimates of the dihedrals and cylinder are longer than the true value

because the shapes are skew to the flight path.

The radius of the sphere is calculated from the RCS value. The sphere estimate has no

error because the received RCS value from any orientation is the peak RCS. The cylinder

radius estimate is higher than the actual radius because the orientation is yawed creating a

larger apparent radius. The top-hat radius has negligible error because it is at its standard

orientation with the reflection point in the ground plane.

The height estimates are a function of the RCS estimate and other size estimates. The

plate length and RCS estimates and trihedral RCS estimate are close to the true values,

so their height estimates have near zero error. The dihedrals have low RCS estimates and

high length estimates. Both factors decrease the final height estimates so the final dihedral

height estimates are less than the true values with Herror = −0.07m. The top-hat radius

estimate has no error and lends no error to the top-hat height estimate. However, the RCS
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estimate is lower than the maximum, producing a low height estimate with an error of

Herror = −0.07m.

Like the location parameters, the initial size parameter estimates are combined with

the error analysis in Step 1B to bound the range of possible size parameters. The error

range data for the length and height are in Figures 3.14 - 3.22. And the radius error range

data for the cylinder and top-hat are in the location error analysis section in Figures 3.11(d)

and 3.12(d).

4.5 Step 2E: Initial Orientation Estimation and Bounding

With the location and size estimates initialized, the last parameters needed are

orientation. The three orientation parameter are roll (γ), pitch (θ), and yaw (φ). The

orientation parameters determine rotation of a canonical shape from its baseline orientation

in Figure 1.1. The roll, pitch, and yaw angles reference the right hand rule rotation about

the x-axis, y-axis, and z-axis, respectively.

Initial orientation parameter estimates are done through a coarse-to-fine PH coherency

match for each object in the scene. The initial 3-D location and size parameter estimates

from Steps 2C and 2D are used in the search. The spotlight algorithm PHs of each

scatterer are used so each scatterer can be estimated independently. Separating the PHs

makes estimation simpler and decreases estimation error because the combined observed

PH includes data for each scatterer. Both [1] and [2] search for the parameters iteratively

using a form of sparse reconstruction such as basis pursuit (BP) or basis pursuit denoising

(BPDN).

The coarse-to-fine coherency match is completed using the pseudo-code in Table 4.9
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Table 4.9: Pseudo-code for orientation angle coarse-to-fine parameter estimation.

Set x, y, z as the initial estimates from Step 2C.

Set L, H, r as the initial estimates from Step 2D.

Set S , the sample size for the γ, θ, φ.

Set C, the number of coherency matches per iteration.

Set γ, θ, φ to the maximum range:

γrange = [γmin, γmax]

θrange = [θmin, θmax]

φrange = [φmin, φmax]

Begin Coarse-to-Fine Iteration:

Form atom dictionary. Use S samples of γ, θ, φ with equal spacing.

Calculate coherencies: coherencyi = 〈|PH|, |ai|〉.

Choose C atoms with highest coherency: aset = {amax coh(1), ..., amax coh(C)}

Set new γ, θ, φ range to range of aset:

γrange = [γmin|aset, γmax|aset]

θrange = [θmin|aset, θmax|aset]

φrange = [φmin|aset, φmax|aset]

End iterations when the orientation ranges are within τ◦:

[(γrange & θrange & φrange) < τ◦]

Set γ, θ, φ initial estimates:

γest = 1
2 (γmin + γmax)

θest = 1
2 (θmin + θmax)

φest = 1
2 (φmin + φmax)

At each iteration the orientation parameters are sampled for S samples with equal

spacing. A dictionary is formed using the sampled orientation parameters. Therefore, the

dictionary has S 3 atoms. The C most coherency atoms are chosen. The minimum and

maximum parameters orientation paramters of the most correlated atoms are chosen to

bound the next iteration. The iteration ends when the range of each orientation parameter

is within a chosen threshold, τ.
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The number of orientation samples, S , and number of correlated atoms chosen, C,

per iteration are supplied in Table 4.10. The values chosen for S and C were chosen after

testing all values between 5 and 11 using the Monte Carlos simulations from Step 1B.

Values over 11 were not tested due to computation time constraints of running 200 trials

for each combination. The stopping threshold of τ = 1◦ is chosen. The stopping threshold

is chosen to be within the dictionary sampling size of 5◦ in Step 3A in Section 5.1.

Table 4.10: The number of samples and correlated atoms chosen for the coarse-to-fine
orientation angle search. The values were chosen after testing all combination between the
values of 5 and 11 using 200 Monte Carlo simulations. The values are those that gave the
smallest standard deviation of error.

Shape # Sample # Atoms

plate 10 7

dihedral 10 8

trihedral 11 7

sphere N/A N/A

cylinder 10 7

top-hat 11 7

The orientation estimates are provided with the 3-D location and size estimates in

Tables 4.3 - 4.5. For Scenario 1, the true orientation angles are estimated using the coarse-

to-fine correlation method. In Scenario 2, the worst case is Case 4 with a maximum error

of γerror = −3.8◦. For Scenarios 1 and 2, low orientation errors are expected because the

detectable orientation angles of the plate are limited.

Scenario 3 tests all the shape types. Again, the plate errors are limited due to the small

detection region; the plate orientation errors are less than 0.1 ◦. Dihedral1 and the trihedral

are both set at the standard orientation and have errors of less than 0.1 ◦ as well. The top-hat

exhibits minor errors in the roll and pitch parameter estimates of no more than 0.7◦. With
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those two parameters near zero, the larger yaw error of φerror = 8.9◦ is not unexpected since

the yaw angle is ambiguous for zero roll and pitch for a top-hat due to its geometry.

Dihedral2 and the cylinder have the largest orientation errors. The return of a dihedral

is ambiguous across an azimuth cut due to its geometry. Therefore, the largest orientation

error is for the pitch angle with θerror = 31.4◦. The coarse-to-fine correlation method

uses the previous estimates of 3-D location and size. Dihedral2 has errors in its location,

yerror = 0.11 m, and size, Lerror = 0.43 m,Herror = −0.18 m. The location and size

parameters estimates are used in the orientation angle estimates. The location and size

errors lead to the orientation errors.

The cylinder similarly has errors in its 3-D location and size estimates. The errors of

xerror = −0.51 m, yerror = −0.16 m, zerror = −0.33 m, Lerror = 0.11 m, and rerror = 0.60 m

all contribute to poor orientation estimates. The cylinder has error in the three orientation

parameters of (γ, θ, φ)error = (11.7◦,−2.7◦, 1.9◦).

The orientation initial estimates are bound using the 3σ error values from Step 1A in

Section 3.2.4. The bounds on the orientation angles are used in Step 3A in Section 5.1 for

dictionary formation.

4.6 Step 2F: Shape Type Check

The SPLIT algorithm in Step 2B may choose more than one shape type in Section 4.2

for a single scatterer. The size parameter estimates are used to determine if a shape type

estimate is possible.

A shape size parameter cannot be less than or equal to zero. If a shape size estimate

is zero or negative, the shape is discarded. This thesis utilizes the cross-range resolution

to determine if a length estimate is feasible. The cross-range resolution spreads the peak

width, which is used for length estimation. The cross-range resolution is 0.43 m, calculated

in Equation (3.19). A shape is discarded if the length is less than 0.3 m.
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The shape types selected from the SPLIT algorithm from Section 4.2 in Table 4.2

are investigated for discrepancies of their size estimates. The discarded shape types are

indicated in Tables 4.3 - 4.5 with a line through the shape type name in the “Shape Type”

column and a reason in “Shape Check” column.

In Scenarios 1 and 2, all the sphere and cylinder estimates are discarded because the

radius parameter are estimated as less than or equal to zero. In each of these scenarios,

the true scatterer is a plate. The 2-D locations are used to estimate the 3-D location. The

layover locations come to a point when estimating the 3-D location. A shape with radius

would have slightly different reflection points in 3-D to account for the look angle of the

unique flight paths. The closest estimate for the sphere and cylinder are to have a zero

radius estimate.

In Scenario 1 and 2, the trihedral cannot be discarded because the height parameter

estimate is calculated from the RCS estimate. The RCS estimate cannot be negative, so the

height cannot be negative.

In Scenario 3, the SPLIT algorithm correctly detects the trihedral, sphere, and top-hat.

The trihedral and top-hat are chosen as the final shape type. The sphere is ambiguous with

the plate in the SPLIT algorithm. The plate is discarded in the shape type because the

length estimate is only 0.20 m. The sphere does not spread in the image like the shapes

with a length parameter where return appear along the length of the object.

The other four shapes in Scenario 3 are only limited to the odd or even shape types.

The plate and cylinder are initially estimated for the odd shapes: the plate, trihedral, sphere,

or cylinder. Under the plate, the sphere is eliminated for having negative radius. Under

the cylinder, the plate is eliminated for have a length less than 0.3 m and the sphere is

eliminated for having a negative radius.
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The two dihedrals are initially estimated as the even shapes: the dihedral or top-hat.

The first dihedral check does not eliminate either shape type. The second dihedral shape

type check discards the top-hat for having a negative radius estimate.

The shape check limits the number of dictionary formations and searches needed in

Step 3. The shape type estimates not eliminated are passed to Step 3 along with the bounded

parameters for each. In Step 3, the final parameter estimates for each shape type are made.
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V. Dictionary Formation and Dictionary Search

Step 2 in Chapter 4 provides the bounds for each object’s parameters. Each parameter

is sampled within the bounds for dictionary formation. In Step 3, the dictionary formation

and search, performs the last functions to make the final shape type and parameter estimates

for each scatterer. A simplified flow diagram of Step 3 is in Figure 5.1.

Figure 5.1: Steps to complete dictionary formation and search. The process is completed
twice. The first round is for the molecule dictionary that takes into account ambiguities in
a normalized dictionary. The second round samples the parameters that are ambiguous for
the normalized molecule dictionary. In this second round, the ambiguity is removed by not
normalizing the atoms.

A dictionary is formed by creating the PH for each permutation of the sampled

parameters. The parameters of the dictionary PH that is most similar to the observed PH

are the final parameter estimates. Two rounds of Step 3 are accomplished. The first round

combines redundant atoms into single molecules. The second round searches the atoms

within the chosen molecule. The two stage approach decreases the number of needed

computations as compared to the algorithm in [2].

5.1 Dictionary Formation

The parameter bounds from Step 2 in Chapter 3 are used for dictionary formation. The

full range of possible errors is applied to the initial estimates to form the parameter bounds,
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so the true parameters must lie in this subspace. The bounds are extended by rounding the

maximum up and minimum down to the nearest sampling increment. The true parameter

falls in the error bounds for all Scenarios and Cases tested in this thesis.

Mathematically, the dictionary parameter range extension is demonstrated for the x

parameter. This thesis uses a sampling of 0.1 m, so the bounds are calculated using

xbounds = [(sample size) · b(xmin/(sample size))c, (sample size) · d(xmax/(sample size))e]

= [(0.1 m) b(xmin/0.1 m)c, (0.1 m) d(xmax/0.1 m)e]. (5.1)

Within the bounds each parameter is sampled to create a finite dictionary. The number

of samples within the range is based on user parameter resolution needs. For example,

for a 1 m bounded range with a desired 0.1 m resolution, eleven samples would be used.

Sampling is done for each parameter separately. The resultant sampling is finer than that

provided by Hammond [2] because the range is limited in Step 2. This provides more

accurate results. To achieve the same sampling fidelity in [2], the number of samples grows

by an order of magnitude. Sampling over a scene extent of 10 m at 0.1 m sample size would

require 101 samples. The sampling used for this thesis is provided in Table 5.1.

Table 5.1: Parameter estimate sampling size used to calculate the number of samples per
parameter for dictionary formation in this thesis.

Parameter Parameter Sampling

x location 0.1 m

y location 0.1 m

z location 0.1 m

Length 0.1 m

Height 0.1 m

radius 0.1 m

roll (γ) 5◦

pitch (θ) 5◦

yaw (φ) 5◦
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A two stage dictionary approach decreases the dictionary size. First, a molecule

dictionary is formed using normalized PHs. The normalization removes the amplitude

from the scatterer equation. The H parameter only occurs in the amplitude term, A, (except

for the plate where it is in the M term). Therefore, the two stages are used for the dihedral,

trihedral, and top-hat. The L and r parameters affect more than the amplitude so are not

ambiguous in a normalized PH. The L parameter is in the scatterer response, M, from

Table 2.3. The r parameter is in the ∆R phase term from Equations (2.8) and (2.9).

The atom dictionary is formed after the molecule dictionary is formed and searched.

For the plate, sphere, and cylinder, only a single dictionary is formed with no clustering.

Forming the molecule dictionary by excluding the height parameter samples is more

efficient than the clustering in [2]. In [2] coherency between every atom pair is calculated

to cluster. Removing the coherency by checking each atom pair removes on the order of

∼ N2K calculations, where N is the number of atoms, and K is the number of samples in

an atom.

Removing the ambiguous height parameter from the sample set in the molecule

dictionary is what decreases the dictionary size. The reduction is demonstrated for a

dihedral with S = 3 samples for each parameter Θdihedral = [x, y, z, L,H, γ, θ, φ] using

Equation (2.12). The sum runs to J = 1 because there is a single shape, and the product

has Q = 8 terms because the dihedral has 8 parameters. Combining all the permutations

requires 6561 atoms shown in

Ncombined =

1∑
j=1

8∏
q=1

(3), (5.2)

= 38,

= 6561,
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The two stage approach reduces the number of dictionary entries formed and searched

to 2190 shown with

Nmolecule+atom =

 1∑
j=1

7∏
q=1

(3)

 +

 1∑
j=1

1∏
q=1

(3)

 , (5.3)

= 37 + 3,

= 2190.

The molecule dictionary is formed, searched, and the most coherent molecule is

chosen using Equation (5.4) in Section 5.2. The chosen molecule retains its non-height

parameters: (x, y, z, L, r, γ, θ, φ). The atom dictionary is formed by sampling the height

parameter, H. The atom dictionary is not normalized, and it is searched using LS according

to Equation (5.5) in Section 5.2.

The two stage dictionary approach removes the redundant atoms in the normalized

dictionary. Figures 5.2 and 5.3 show Gram matrices for dihedral2 of Scenario 3. Figure 5.2

shows how sampling all of the parameters creates redundant atoms from the height

parameter. Figure 5.3 separates the molecule and atom dictionaries. Not only are less

entries created, but the inter-entry coherency decreases. All of the coherency is not

eliminated, as many off diagonal entries are still near 1.0.

5.2 Dictionary Search

The molecule dictionary is normalized and is searched using maximum coherency as

Θ̂ = arg max
Θm
〈|PH|, |a(Θm)|〉, (5.4)

where the Θ is the set of parameters of each atom; Θ̂ is the chose parameter estimates; PH is

the observed spotlight PH; a is the atom being tested; and m is the index of each parameter

set.
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(a) Full dictionary. (b) Redundant atoms of the full dictionary.

Figure 5.2: Forming a full dictionary with all the parameters sampled causes redundant
atoms. In (a) a full Gram matrix is provided for the dictionary formed from sampling all
the parameters. (b) shows the atoms pairs with a coherency of 1.0; the off diagonal points
give the redundant atoms.

(a) Molecule dictionary. (b) Redundant molecules.

Figure 5.3: Forming the molecule dictionary first removes redundant atoms due to height.
(a) gives the Gram matrix of the molecule dictionary. (b) shows the molecules with a
coherency of 1.0. No off diagonal coherency shows that there are no redundant molecules.
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The chosen molecule is sampled to form the atom dictionary. The atom dictionary is

not normalized and is searched using

Θ̂Final = arg min
Θm
|| |PH| − |a(Θm)| ||2. (5.5)

The final estimate of a scatterer is the parameters estimated for a given shape type.

The shape type check cannot always eliminate all but one shape type. For cases where

more than one shape type remains for a scatterer, the parameters are estimated for all shape

types. The selected PH atom of each shape type is compared to the spotlight PH using an

inner product according to

correlationΓ = 〈|PH|, |aΓ,Θ̂|〉. (5.6)

The shape type and its parameters with the maximum correlation is chosen as the final

estimate for the scatterer. The absolute value of observed and atoms is used because of the

location phase term in the model, e jk∆R. The phase term modulates the overall shape of

the scatterer response with high frequency. Small offsets in location can adjust the phase

such that there is destructive interference in the coherency calculation. The absolute value

maintains the scatterer response shape, M.

The final shape types and parameter estimates for each Scenario are provided in Tables

5.2, 5.3, and 5.5. The “Initial” estimates are the initial parameter estimates from Step 2 in

Chapter 4. The “Final” estimates are the parameters of the atom chosen after completing the

molecule and dictionary search. The “Coherency Check” column is the coherency measure

between the observed spotlight PH and the chosen dictionary atom. The coherency is

calculated using Equation (5.4).

In Scenario 1, the parameters of one of the dictionary atoms is that of the true

parameters. Because the parameters are the same, that atom is chosen with a final

coherency match of 1.0. The trihedral has a lower coherency of 0.87 with the observed
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Table 5.2: Scenario 1 scatterer shape true parameters, parameter estimates, and shape
coherency check. The initial parameter estimates are from Step 2 in Table 4.3. The final
estimates are the parameters of the atom chosen after the two stage dictionary search. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees. The final choice,
which is in bold font, is the plate over the trihedral because its coherency with the observed
PH is greater.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth plate 0 0 0 1.0 1.0 – 0 -32 0 1
Initial plate 0 0 0 0.97 0.99 – 0 -32.0 0 –
Final plate 0 0 0 1.0 1.0 – 0 -32 0 1.0
Initial trihedral 0 0 0 – 0.75 – 24.7 30.9 27.4 –
Final trihedral 0 0 0 – 2.0 – 40 40 50 0.87

PH so is eliminated as the final shape choice. The near flat PH response of a trihedral is

difficult to match to the sinc behavior of the plate PH.

The difference of the two PHs are show in Figure 5.4. Only the magnitude of the

imaginary portion of the PH of each is shown. The plate and trihedral PH amplitude

response M has only and imaginary component from Equation (2.8) detailed in Table 2.3.

The complex PH return includes both a real and imaginary component when the location

offset, ∆R, introduces a phase offset. The plate has no phase offset because it is centered at

the origin.

Scenario 1 can be compared to Scenario 1 from [2]. Both use a scatterer whose

parameters equal the parameters of a dictionary atom. The final result is equivalent; the

correct atom is selected.

In Scenario 2, each true parameter set is chosen such that the parameters cannot match

the parameters of a dictionary atom. In Cases 1 - 3, one parameter is changed from the list

of possible dictionary parameters. The atom chosen for the Cases 2 and 3 is the atom with

the parameters closest to the true parameters. Case 3 demonstrates the advantage of the

dictionary estimate over the initial estimates. The initial size estimates are poor with errors
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Figure 5.4: Scenario 1 plate and trihedral PHs chosen to match the spotlight PH of the plate
in the scene. The PH shows only the imaginary responses of each radar sample. The real
part is zero because the plate is centered at (x, y, z) = (0 m, 0 m, 0 m). The sinc behavior
of the plate cannot be replicated by a trihedral response. The response discontinuities are
from the flight path partitions.

of Lerror = −0.30 m, Herror = 0.24 m. The dictionary search compares all the PH history

information and is able to match the observed PH with the better final estimates such that

the size errors go to zero.

Scenario 3 Case 4 is more complicated because one parameter from each location,

size, and orientation parameter set is offset from the dictionary entries. In Cases 1 and

4, the dictionary search does not find the closest atom in parameter space, but the final

estimate does improve the parameter estimate for six of the eight parameters. For the two

cases where the parameter estimates are worse from dictionary search (x and z location),

the final parameters from the dictionary are the parameters closest to the initial estimates.

The initial x and z estimates of -0.08 m and 1.18 m are estimated at -0.1 m and 1.2 m,

respectively.

The reason for the location parameter choice of (−0.1 m, 0 m, 1.2 m) over the closer

atom with location parameters (0 m, 0 m, 1.1 m) can be attributed to the resultant ∆R. Recall
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Table 5.3: Scenario 2 scatterer shape true parameters, parameter estimates, and shape
coherency check. The initial parameter estimates are from Step 2 in Table 4.4. The final
estimates are the parameters of the atom chosen after the two stage dictionary search. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees. The final for choice
for each case is in bold font with a greater coherency with the observed PH.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

1 Truth plate 0 0 1.05 1.0 1.0 – 0 -32 0 1
Initial plate -0.08 0.0 1.17 0.95 1.02 – 0.4 -32.0 0.0 –
Final plate -0.1 0 1.2 1.0 1.0 – 0 -32 0 0.85

2 Truth plate 0 0 0 1.05 1.0 – 0 -32 0 1
Initial plate 0 0 0 1.02 0.99 – 0.1 -32.0 0.0 –
Final plate 0 0 0 1.1 1.0 – 0 -32 0 0.999

3 Truth plate 0 0 0 1.0 1.0 – 0 -33.5 0 1
Initial plate 0 0 0 0.70 1.24 – -4.8 -33.3 -0.8 –
Final plate 0 0 0 1.0 1.0 – 0 -33 0 0.99
Initial trihedral 0 0 0 – 0.71 – 37.7 -26.4 49.2 –
Final trihedral 0 0 0 – 0.7 – 65 -25 70 0.58

4 Truth plate 0 0 1.05 1.05 1.0 – 0 -33.5 0 1
Initial plate -0.08 0.0 1.18 0.72 1.25 – -3.8 -33.2 -0.79 –
Final plate -0.1 0.1 1.2 1.0 1.1 – 0 -33 0 0.89
Initial trihedral -0.03 0 1.08 – 0.72 – 37.7 -26.4 19.3 –
Final trihedral -0.1 0.1 1.2 – 0.7 – 65 -25 70 0.49

from Equation (2.9) that ∆R = ∆R0+∆Rr. ∆R0 = 2(x cos(θ̃) cos(φ̃)+y cos(θ̃) sin(φ̃)+z sin(θ̃),

and ∆Rr = 0 for flat shape. The ∆R is calculated for the parameter cases in Table 5.4. The

chosen atom provides the closest 3-D range location.

Table 5.4: Scenario 2 Case 4 ∆R consistency coherency check. The term “Closest” is in
terms of the parameter estimates individually. The ∆R accounts for the Euclidean distance
after combining the x, y, and z location vectors.

Parameters ∆R (m)

True 1.05
Chosen Atom 1.03

“Closest” Atom 1.10
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The trihedral shape type is discarded for Cases 3 and 4. The same analysis is made

from Scenario 1; creating a PH from the trihedral PH equation to match the observed plate

PH cannot be accomplished. In these two cases, the plate coherency of 0.99 and 0.82 are

much higher than the trihedral coherency of 0.58 and 0.49.

In Scenario 3, the plate, dihedral2, sphere, and cylinder all have parameters that match

the parameters of a dictionary atom. Each of these shapes is matched to the atom with

the parameters equal to the true parameters. In this set, the extra shape type estimates are

eliminated since their coherency is less than 1.0 of the chosen atom of the correct shape

type.

Dihedral1 chooses the atom with the closest parameters except the height and pitch.

The height parameter has an error of -0.1 m, which is one sample removed from the

true parameter. Similarly the pitch estimate is one sample away from the true parameter

estimating 5◦ instead of 0◦. Choosing a smaller height parameter decreases the amplitude

of the return. The dihedral pitch angle for zero roll angle only affects the amplitude as well

due to its symmetry. The pitch puts the specular closer to the flight path, increasing the

amplitude. The height underestimate and pitch increase in apparent amplitude offset.

The trihedral location and size choose the closest parameters in the dictionary. The

orientation of the trihedral produces near flat amplitude for any small flight path cut.

Therefore, little difference exists in the PH for many orientation angles. The coherency

of the trihedral spotlight PH is 0.8194 for the chosen atom with (γ, θ, φ) = (−15◦, 0◦,−10◦)

where as the expected parameters (γ, θ, φ) = (0◦, 0◦, 0◦) have a coherency of 0.8193. In

general, the trihedral orientation is difficult to estimate. In a real world situation with

signal errors, estimating the orientation via dictionary is much more difficult because the

coherency estimates are so close.

The top-hat dictionary parameter estimates are all within one dictionary sample from

the true parameters. The x location is not in the dictionary and the closest parameter is
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Table 5.5: Scenario 3 scatterer shape true parameters, parameter estimates, and shape
check. The initial parameter estimates are from Step 2 in Table 4.5. The final estimates are
the parameters of the atom chosen after the two stage dictionary search. The x, y, z, L, H, r
parameters are in meters, and γ, θ, φ are in degrees. The final for choice for each case is
in bold font with a greater coherency with the corresponding spotlight PH.

Truth or Shape Parameter Coherency
Estimate Type x y z L H r γ θ φ Check

Truth plate -0.3 0 0.3 0.6 0.3 – 0 -30 0 1
Initial plate -0.32 0.01 0.33 0.60 0.30 – 0.0 -30.0 0.0 –
Final plate -0.3 0 0.3 0.6 0.3 – 0 -30 0 1.0
Initial trihedral -0.29 0.01 0.28 – 0.32 – 17.2 32.4 18.8 –
Final trihedral -0.3 0 0.3 – 0.4 – 20 30 20 0.82
Initial cylinder -0.88 0.01 -0.06 1.15 – 0.68 -5.3 29.8 -5.5 –
Final cylinder -0.9 0 0.1 1.1 – 0.7 -5 30 -5 0.79

Truth dihedral1 0.25 0.5 0 0.6 0.2 – 0 0 0 1
Initial dihedral 0.26 0.50 -0.01 0.81 0.13 – 0.0 -0.1 0.0 –
Final dihedral 0.3 0.5 0.0 0.6 0.1 – 0 5 0 0.81
Initial top-hat -5.08 1.54 2.24 – 0.16 3.92 3.5 -26.6 -44.8 –
Final top-hat 0.6 0.6 0.5 – 0.6 0.5 -5 -30 -75 0.76

Truth dihedral2 0 1.1 2.5 0.6 0.3 – -10 0 0 1
Initial dihedral -0.05 1.21 2.56 1.02 0.12 – 4.1 31.4 9.3 –
Final dihedral 0 1.1 2.5 0.6 0.3 – -10 0 0 1.0
Truth trihedral 0.75 0 0.5 – 0.18 – 0 0 0 1
Initial trihedral 0.76 0.0 0.49 – 0.18 – 0.0 0.0 0.0 –
Final trihedral 0.7 0.0 0.5 – 0.2 – -15 0 -10 0.82
Truth sphere -1.5 -1.0 0 – – 0.75 – – – 1
Initial sphere -1.48 -1.00 0.01 – – 0.75 – – – –
Final sphere -1.5 -1.0 0.0 – – 0.75 – – – 1
Truth cylinder 0.5 2.0 0 0.5 – 1.5 0 0 -5 1
Initial trihedral 1.81 1.83 0.73 – 0.31 – 11.7 -2.7 1.3 –
Final trihedral 1.8 1.8 0.7 – 0.3 – 10 -5 0 0.65
Initial cylinder -0.01 1.84 -0.33 0.61 – 2.10 -9.5 -18.4 -6.9 –
Final cylinder 0.5 2.0 0 0.5 – 1.5 0 0 -5 1.0
Truth top-hat 0.25 -1.5 0 – 0.4 0.6 0 0 0 1
Initial top-hat 0.25 -1.50 0.01 – 0.33 0.60 -0.1 -0.7 8.9 –
Final top-hat 0.2 -1.4 0 – 0.3 0.7 0 5 0 0.92
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chosen. As discussed for Scenario 2, Cases 1 and 4, the location determines the phase

parameter of the PH model equation to get the correct range. The top-hat radius parameter

estimate may be offset to correct for the true range relative to sampled x location. The ∆R

for the chosen atom is closer to the true value than the “closest” atom as shown in Table 5.6.

Table 5.6: Scenario 2 Case 4 ∆R consistency check.

Parameters ∆R (m)

True 1.47
Chosen Atom 1.54

“Closest” Atom 1.39

The top-hat increase in the radius causes an increases in amplitude. The amplitude

is offset with a smaller height estimate. The top-hat pitch angle has a similar effect to

the dihedral for flight paths about zero azimuth. The combination of the height, radius,

and pitch angle of the chosen atom are approximately the same as the true amplitude;

|A|true = 0.37k and |A|chosen = 0.34k, where k is the wavenumber. Given the radius

was increased, if the height and pitch angles were estimated as the true parameters, the

amplitude would be even lower at |A|“closest” = 0.30k.

5.2.1 Dictionary Results Summary.

The location estimate is bound in Step 2. The 3-D location parameters only appear in

the PH equations for location offset from scene center in the ∆R variable. Within the bound

3-D location parameters subspace, the parameter combination with the most similar range

is chosen. Without the initial bounds, the 3-D location could be much farther from the true

location because constant range to the radar in 3-D is an entire plane.

The dictionary search size parameter estimates achieve at worst 0.1 m error relative

to the true parameter. The length parameter estimate is always correct because the

length determines the PH overall scattering response for the plate, dihedral and cylinder.
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Mathematically the scattering response is shown with the sinc function along the flight

path, M ∝ sinc(kL sin φ cos θ).

The height estimate scales the amplitude of the response. The accuracy of height

parameter depends on the orientation estimate. The estimated orientation affects relative

orientation of the shape specular direction to the flight path. A correct orientation estimate

will provide a correct height estimate so the return amplitude is correct. If the estimated

orientation points specular closer to the flight path, the height will decrease to compensate

for the actual amplitude observed.

The radius estimate is a balance of the amplitude response and true range to the object.

Like the 3-D location, the radius adjusts the range to the target from the ∆Rr term. The

radius is also in the scattering response amplitude A.

The orientation parameters are the most ubiquitous in the scattering models. The

orientation affects the specular direction relative to the flight path, so it affects the amplitude

of the response. The shape relative orientation to the flight path affects which parts of the

sinc function are observed as shown by the azimuth and elevation angles in the scattering

response models. Lastly, the orientation angles affect the length of the ∆Rr observed for

the cylinder and top-hat geometries. The correct orientation angles are selected if in the

dictionary atoms except when the angle has very little affect on the PH. Three cases of little

PH change with orientation angle are shown prior in Scenario 3.

The Scenarios evaluated in Chapters 3 - 5 are a subset of the parameter combinations

tested. The parameters of this subset are in Tables 3.13 - 3.15. Appendix B includes

additional cases of each scenario with results. The results found for each of these

additional Scenario and Case pairs follow the same analysis for each parameter found for

the Scenarios in Chapter 5.
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VI. Conclusions and Future Work

This thesis utilized derived canonical shape scattering models [1] to parameterize

high dimension radar return data. The overarching objective of this thesis is to improve

dictionary formation and search to deliver more accurate parameter estimates. This final

chapter outlines the methodology used to achieve the thesis objectives, summarizes the

results and analysis, and points to future work to improve upon the research foundation of

this thesis.

6.1 Objectives and Methodology

The two main objectives achieved in this thesis are decreased computation and

improved parameter estimates. Both objectives are achieved. The details of objective

satisfaction are discussed in terms of the methodology steps.

Step 1 decreases computation. The use of 2-D images for analysis decreases

computation time relative to [1] where regularized 3-D images are formed. A regularized

3-D image formation requires an extra dimension of interpolation to form the image in

the backprojection integral, requires more samples to reduce the point spread function

sidelobes, and requires additional calculations to regularize the image to remove the

majority of sidelobes with a sparsity assumption.

Step 2 decreases computation. This step preprocesses the error bounds based on

analysis of the collection flight path and radar operating parameters, estimates the shape

type and model parameter, and combines the two to limit the searchable parameter subspace

for dictionary formation. The error bounds are preprocessed once for a flight path and

add negligible computation when bounding parameters. Location and size parameter

estimation is faster than in [1] because only a few data values and simple calculations
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are used. Orientation initialzation does require more computation relative to [1] because of

the iterative dictionary search. Overall, the parameter estimation is faster.

Step 3 decreases computation time relative to both [1] and [2]. Sampled dictionary

formation and search is chosen relative to iterative gradient descent [1] for its improved

computation speed. This thesis greatly improves the computation time relative to [2]

by replacing the molecule dictionary formation using full dictionary coherency with the

efficient molecule formation based on known coherency in the model equations. The

full coherency search requires an inner product calculation for each dictionary pair:

computations ∼ 1
2 N2 ∗ 2K, where N is the number of dictionary atoms and K is the

number of sample points in a dictionary entry. Using the known coherency from the model

equations requires no calculations. The molecule dictionary in this thesis decreases the

number of dictionary samples on the order of the number of samples of the height parameter

as well.

Step 3 improves the final parameter estimates. Parameter estimation accuracy is

improved relative to [2] due to the parameter bounding. In [2], the dictionary is formed

using a coarse sampling based on computer memory constraints. The location and size

parameters are only able to be sampled to 5 m and 0.5 m resolution, respectively. The

orientation parameter is not sampled due to the memory constraint, so no ability to estimate

orientation is demonstrated.

6.2 Results and Conclusions

Chapters 3 - 5 provide estimates for each function used throughout the process Steps

1-3. The final shape type and parameter estimates showed accurate results. The final

shape type estimate after SPLIT initial estimates, a shape type check, and a final coherency

measure against the observed PH correctly chooses the correct shape type in each tested

Scenario and Case. The Scenarios showed the dictionary atom with parameters matching

the true parameters of a scatterer is always correctly chosen. For scatterers with parameters
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not all matched to the parameters of a dictionary atom, the worst estimates are one sample

away from the true parameters (Location: 0.1 m; Size: 0.1 m; Orientation: 5◦).

The errors in parameter estimates are determined through analysis of the model

equations. Attempting to match the correct range, ∆R, can cause error in the location,

radius, and orientation. Fitting the atom parameters to the sinc response behavior from

M can lead to incorrect the orientation parameters. Adjusting to the amplitude of the

observed PH, A, can cause error in the height, radius, and orientation parameters. Although

the parameters are adjusted slightly to fit the observed PH when the atom with the true

parameters is not in the dictionary, the final estimate is more accurate relative to [2].

Limiting the searched parameter subspace prevents gross errors from occurring.

The framework in this thesis can be used for any collection flight path and radar

parameters. The preprocessing error analysis can be done prior to collection so adjustments

can be made if needed. The dictionary sample resolution can be adjusted for user needs as

well, so flexibility exists to trade off computation time and increased accuracy.

6.3 Future Work

Many avenues exist to build on the framework of the thesis. The subsections for future

work focus on the three main Steps in the thesis as well as the overall system in the first

subsection.

6.3.1 Flight Path and System Analysis.

Flight path analysis. Simple flight paths were chosen to provide non-singular transfer

matrices, Θ, for each shape type. Increasing the diversity of the flight paths could provide

better data for location and radius estimates. Additionally, developing a strong flight path

algorithm to determine quality of target parameters would be helpful to a user of this

algorithm.

Add system noise, path attenuation, and/or clutter. The thesis was completed in an

idealized environment. Adding noise, path attenuation, and/or clutter will demonstrate
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which parameters are more susceptible to errors for a real world system. Larger errors in

estimates will cause larger bounds for each estimate and make dictionary formation and

search more difficult.

Account for scatterer peak splits. Not all flight paths and scatterer orientations remain

in a single segment during 2-D image formation. Developing a way to determine if a

scatterer peak in one image corresponds to more peaks in another image would provide

more 2-D location estimates and subsequent samples for 3-D location estimation.

6.3.2 Shape Choice and Parameter Estimation.

Flight path and PH. The directionality of PH responses could be incorporated into the

algorithm to more definitively discern the shape of each segment. For example, SPLIT does

not distinguish between a plate and a sphere. If the amplitude of the radar return through

flight path is constant, the segment is more likely to be a sphere than a plate. The PH

amplitude change over the flight path could be used to more finely determine shape type.

Orientation Estimates inform Location Estimate . The location parameter estimate

calculations for the sphere, cylinder, and top-hat all include the radius parameter. The

system of equations are derived for the baseline orientation of each of the three shapes.

Re-deriving the layover equations to include orientation geometry would correct for some

of the object location and radius error. The orientation estimates with error bounds would

provide feedback for more accurate location and radius parameter estimates.

Orientation/RCS refinement for Height Estimate. The height parameter calculation

uses the peak RCS equation. However, the maximum received PH amplitude does not

provide peak RCS unless the flight path geometry samples at the peak RCS location. The

orientation estimates can be used to determine the distance the flight path is from the peak

RCS direction. The PH equations can be resolved for the maximum potential RCS given

the flight path and orientation. The height parameter can then be calculated using the true

maximum RCS given the flight path and orientation.
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Appendix A: Grazing Angle and Tilt Angle Derivations

Appendix C of [13] derives the angles associated with the flight path and image plane

created from the collected PH. The coordinate systems to determine the angles are shown

in Figure A.1. The ground plane coordinates labeled (x, y, z), where the y coordinate points

to the center of the flight path projected into the ground plane. The slant plane coordinates

are labeled (x̂, ŷ, ẑ). The ŷ vector points to the middle of the flight path, and ẑ is orthogonal

to the flight path. All of the coordinates are unit vectors.

The coordinate system used for the targets in this paper have the positive x-axis at zero

azimuth and elevation, the y-axis orthogonal in the ground plane at 90◦ azimuth, and the

z-axis is vertical using the right hand rule convention. Using this as a reference, Jakowatz’s

vector components are found according to Figure A.1 with the following equations:

x = [sin(φ), cos(−φ), 0]T ,

y = [cos(φ), sin(φ), 0]T ,

z = [0, 0, 1]T ,

where φ is the azimuth angle in the midpoint of the flight path. An azimuth angle of zero

is orthogonal to the standard flight path.

Figure A.1: Slant Plane Coordinate System [13].
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The slant plane unit vectors are determined using the following equations:

ŷ =
[cos(φ) cos(θ), sin(φ) cos(θ), sin(θ)]T

|ŷ|
,

ẑ =
(vstart × vend)

|ẑ|
,

where vstart = [cos(φs) cos(θs), sin(φs) cos(θs), sin(θs)]T ,

vend = [cos(φe) cos(θe), sin(φe) cos(θe), sin(θe)]T ,

and x̂ =
ŷ × ẑ
|x̂|

.

The variable θ denotes the elevation angle, the operator ‘×’ denotes a vector cross product,

and the subscripts s and e denote the start and end locations of the flight path.

The unit vector, ẑ is orthogonal to the slant plane; the geometry is shown in Figure A.2.

Therefore, this is the direction of projection for a point onto the image plane. The grazing

angle and tilt angle are calculated as

ψ = arctan
(

ẑz

ẑx

)
,

η = arctan
(

ẑz

ẑy

)
.

The angles ψ and η are used to determine the orthogonal layover angles within the image.

The relationships between the scatterer location in 3-D and image location are given in

Chapter 3. The equation for each shape includes the layover angles.

Figure A.2: Cross product geometry for ẑ.
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Appendix B: Additional Results

The results in Chapter 4 provide outputs for a single baseline case for each scenario.

Appendix B provides outputs for cases involving all shape types. Scenarios 1 is evaluated

for each shape type for parameters that coincide with an entry in the dictionary.

Scenario 2 is tested for each shape type. For each shape type a case is run with

a location parameter offset from the dictionary entries, a size parameter offset from the

dictionary entries, and an orientation parameter offset from the dictionary entires. Each

shape type is tested with one of each of the parameters offset from the dictionary entries.

Scenario 3 is unique in its layout as to compare result to Dr. Jackson’s dissertation [1].

As such no additional cases are run for scenario 3.

B.1 Scenario 1

Scenario 1 is tested for each shape type with the parameters in the dictionary. For

completeness, the results of the plate from Chapter 4 are included.

B.1.1 Plate.

Table B.1: Scenario 1 plate SPLIT shape type estimates.

True shape type plate
Detected shape type plate/sphere
Confidence 0.87
Polarization odd
Shape Estimate plate, sphere, cylinder, trihedral

123



Table B.2: Scenario 1 plate shape check.

Truth or Shape Shape
Estimate Type Check

Truth plate –
Estimate plate –

trihedral –
sphere r ≤ 0

cylinder r ≤ 0

Table B.3: Scenario 1 plate scatterer shape true parameters, parameter estimates, and shape
check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth plate 0 0 0 1.0 1.0 – 0 -32 0 1
Initial plate 0 0 0 0.97 0.99 – 0 -32.0 0 –
Final plate 0 0 0 1.0 1.0 – 0 -32 0 1.0
Initial trihedral 0 0 0 – 0.75 – 24.7 30.9 27.4 –
Final trihedral 0 0 0 – 2.0 – 40 40 50 0.87

The algorithm correctly estimates the shape type as a plate for Scenario 1 as shown

previously in Chapter 4. Additionally, the correct parameters are chosen from the dictio-

nary.
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B.1.2 Dihedral.

No shape type estimate is made for the dihedral from the SPLIT algorithm.

Table B.4: Scenario 1 dihedral SPLIT shape type estimates.

True shape type dihedral
Detected shape type
Confidence
Polarization even
Shape Estimate dihedral, top-hat

Table B.5: Scenario 1 dihedral shape check.

Truth or Shape Shape
Estimate Type Check

Truth dihedral –
Estimate dihedral –

top-hat r ≤ 0

Table B.6: Scenario 1 dihedral true parameters and parameter estimates. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth dihedral 0 0 0 1.0 1.0 – 0 0 0 1
Initial dihedral 0 0 0 1.00 0.86 – 0.01 0.0 0.01 –
Final dihedral 0 0 0 1.0 1.0 – 0 0 0 1.0

The algorithm correctly estimates the shape type as a dihedral for Scenario 1. Addi-

tionally, the correct parameters are chosen from the dictionary.

.
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B.1.3 Trihedral.

Table B.7: Scenario 1 trihedral SPLIT shape type estimates.

True shape type trihedral
Detected shape type trihedral
Confidence 0.91
Polarization odd
Shape Estimate trihedral

Table B.8: Scenario 1 trihedral shape check.

Truth or Shape Shape
Estimate Type Check

Truth trihedral –
Estimate trihedral –

Table B.9: Scenario 1 trihedral true parameters and parameter estimates. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth trihedral 0 0 0 – 1.0 – 0 0 0 1
Initial trihedral 0 0 0 – 0.98 – 0.01 0.01 0.0 –
Final trihedral 0 0 0 – 1.0 – 0 0 0 1.0

The algorithm correctly estimates the shape type as a trihedral for Scenario 1. Addi-

tionally, the correct parameters are chosen from the dictionary.

.
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B.1.4 Sphere.

Table B.10: Scenario 1 sphere SPLIT shape type estimates.

True shape type sphere
Detected shape type –
Confidence –
Polarization odd
Shape Estimate plate, sphere, cylinder, trihedral

Table B.11: Scenario 1 sphere initial and final shape type estimates.

Estimate Detected Discard
Type Shape Reason
Truth sphere –
Estimate plate L < 0.2
Estimate sphere –
Estimate cylinder –
Estimate trihedral –

Table B.12: Scenario 1 sphere true parameters and parameter estimates. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth sphere 0 0 0 – – 0.5 – – – 1
Initial sphere 0.01 0 0 – – 0.49 – – – –
Final sphere 0 0 0 – – 0.5 – – – 1.0
Initial cylinder 0.04 0 0.03 0.52 – 0.45 -44.8 -22.4 -14.8 –
Final cylinder 0.6 0.1 0 0.5 – 1.0 -44 -63 -15 0.83
Initial trihedral 0.43 0 0.25 – 0.15 – 46.0 -15.2 21.1 –
Final trihedral 0.4 0 0.3 – 0.1 – 14 -24 41 0.93

The dictionary search on the sphere finds the correct parameters in the dictionary. The

SPLIT algorithm is not able to distinguish the sphere from the other odd bounce shapes.

The plate is discarded because the length estimate is less than 0.2 m. The cylinder and

trihedral orientations point the shapes such that returns are not detectable for the entire

flight path. Therefore, the sphere not only has the correct parameters but is the most feasible

shape type.

127



B.1.5 Cylinder.

Table B.13: Scenario 1 cylinder SPLIT shape type estimates.

True shape type cylinder
Detected shape type plate/sphere
Confidence 0.63
Polarization odd
Shape Estimate plate, sphere, cylinder, trihedral

Table B.14: Scenario 1 cylinder initial and final shape type estimates.

Estimate Detected Discard
Type Shape Reason
Truth cylinder –

Estimate plate –
Estimate sphere r ≤ 0
Estimate cylinder –
Estimate trihedral –

Table B.15: Scenario 1 cylinder true parameters and parameter estimates. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth cylinder 0 0 0 1.0 – 0.5 0 0 0 1
Initial plate 0.40 0.0 0.30 1.04 0.18 – -0.6 -35.0 0.0 –
Final plate 0.4 0 0.3 1.0 0.1 – 0 -35 0 0.92
Initial trihedral 0.44 0.0 0.25 1.04 0.18 – -0.6 -35.0 0.0 –
Final trihedral 0.4 0 0.3 1.0 0.1 – 0 -35 0 0.84
Initial cylinder -0.09 0.0 -0.05 1.00 – 0.60 0.0 19.7 0.0 –
Final cylinder 0.6 -0.2 0.2 1.0 – 0.1 0 20 0 1.0

The pitch parameter is also estimated poorly. The pitch parameter ambiguity is also

expected with a small roll angle as the cylinder is identical for all pitch angles with zero

roll.
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The algorithm is not able to discard the plate or trihedral in the shape type check. The

maximum coherency chooses the cylinder correctly.

B.1.6 Top-Hat.

Table B.16: Scenario 1 dihedral SPLIT shape type estimates.

True shape type top-hat
Detected shape type –
Confidence –
Polarization even
Shape Estimate dihedral, top-hat

Table B.17: Scenario 1 top-hat initial and final shape type estimates.

Estimate Detected Discard
Type Shape Reason
Truth top-hat –

Estimate dihedral –
Estimate top-hat –

Table B.18: Scenario 1 top-hat true parameters and parameter estimates. The
x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Estimate Shape Parameter Coherency
Type Type x y z L H r γ θ φ Check

Truth top-hat 0 0 0 – 1.0 0.5 0 0 0 1
Initial dihedral 0.50 0.0 0.0 0.55 0.39 – -52.4 -12.4 -41.1 –
Final dihedral 0.5 0 0 0.1 0.8 – -45 15 -50 0.63
Initial top-hat 0.0 0.0 0.0 – 0.84 0.50 -0.1 -0.7 8.9 –
Final top-hat 0 0 0 – 1.0 0.5 0 0 0 1.0

The shape type estimates after the shape type check keep the dihedral and top-hat.

After the final coherency check, the top-hat is correctly chosen and the parameter estimates

are correct.
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B.2 Scenario 2

Scenario 2 is tested for each shape type with the parameters in the dictionary. For

completeness, the results of the plate from Chapter 4 are included. To limit the number of

trials run, only the most complex combination, Case 4, for the additional shapes is tested.

B.2.1 Plate.

Table B.19: Scenario 2 plate SPLIT shape type estimates and shape type check.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth plate
Case 1 Estimate plate

Estimate sphere r < 0.01
Estimate cylinder r < 0

Case 2 Estimate plate
Estimate sphere r < 0.01
Estimate cylinder RCS

Case 3 Estimate plate
Estimate sphere r < 0.01
Estimate cylinder r < 0
Estimate trihedral

Case 4 Estimate plate
Estimate sphere r < 0.01
Estimate cylinder r < 0
Estimate trihedral
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Table B.20: Scenario 2 plate shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

1 Truth plate 0 0 1.05 1.0 1.0 – 0 -32 0 1
Initial plate -0.08 0.0 1.17 0.95 1.02 – 0.4 -32.0 0.0 –
Final plate -0.1 0 1.2 1.0 1.0 – 0 -32 0 0.85

2 Truth plate 0 0 0 1.05 1.0 – 0 -32 0 1
Initial plate 0 0 0 1.02 0.99 – 0.1 -32.0 0.0 –
Final plate 0 0 0 1.1 1.0 – 0 -32 0 0.999

3 Truth plate 0 0 0 1.0 1.0 – 0 -33.5 0 1
Initial plate 0 0 0 0.70 1.24 – -4.8 -33.3 -0.8 –
Final plate 0 0 0 1.0 1.0 – 0 -33 0 0.99
Initial trihedral 0 0 0 – 0.71 – 37.7 -26.4 49.2 –
Final trihedral 0 0 0 – 0.7 – 65 -25 70 0.58

4 Truth plate 0 0 1.05 1.05 1.0 – 0 -33.5 0 1
Initial plate -0.08 0.0 1.18 0.72 1.25 – -3.8 -33.2 -0.79 –
Final plate -0.1 0.1 1.2 1.0 1.1 – 0 -33 0 0.89
Initial trihedral -0.03 0 1.08 – 0.72 – 37.7 -26.4 19.3 –
Final trihedral -0.1 0.1 1.2 – 0.7 – 65 -25 70 0.49

B.2.2 Dihedral.

Table B.21: Scenario 2 dihedral SPLIT shape type estimates and shape type check.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth dihedral –
Case 4 Estimate dihedral –

Estimate top-hat r ≤ 0
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Table B.22: Scenario 2 dihedral shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

4 Truth dihedral 0 0 1.05 1.05 1.0 – 0 1 0 1
Initial dihedral 0.0 0.0 1.05 1.05 0.88 – 0.0 0.9 0.0 –
Final dihedral 0 0 1.1 1.1 0.9 – 0 10 0 0.99

B.2.3 Trihedral.

Table B.23: Scenario 2 trihedral SPLIT shape type estimates and shape type check.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth trihedral
Case 4 Estimate plate L ≤ 0.3

Estimate sphere r < 0.01
Estimate cylinder r < 0
Estimate trihedral –

Table B.24: Scenario 2 trihedral shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

4 Truth trihedral 0 0 1.05 – 1.05 – 0 1 0 1
Initial trihedral 0.0 0.0 1.05 – 1.03 – 0.0 1.0 0.0 –
Final trihedral 0.0 0.0 1.0 – 1.0 – -10 0.0 -10 0.71

B.2.4 Sphere.
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Table B.25: Scenario 2 sphere shape estimates.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth sphere
Case 4 Estimate plate L ≤ 0.3

Estimate sphere

Table B.26: Scenario 2 sphere shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

4 Truth sphere 0 0 1.05 – – 0.55 – – – 1
Initial sphere 0.04 -0.01 1.05 – – 0.55 – – – –
Final sphere -0.1 0.0 1.0 – – 0.55 – – – 0.98

B.2.5 Cylinder.

Table B.27: Scenario 2 cylinder shape estimates.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth cylinder
Case 4 Estimate plate

Estimate sphere
Estimate cylinder
Estimate trihedral
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Table B.28: Scenario 2 cylinder shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

4 Truth cylinder 0 0 1.05 1.05 1.0 – 0 1 0 1
Initial plate 0.33 0.0 1.46 1.05 0.19 – -0.4 -34.7 0.0 –
Final plate 0.4 0 .0 1.4 1.0 0.2 – 0 -35 0 0.92
Initial trihedral 0.43 0.0 1.30 – 0.33 – -11.6 -30.3 -0.8 –
Final trihedral 0.5 0.0 1.4 – 0.4 – 0 -30 0 0.54
Initial sphere -0.20 -0.30 0.63 – – 2.63 – – – –
Final sphere -0.1 -0.3 0.5 – – 2.6 – – – 0.51
Initial cylinder 0.0 0.0 1.05 1.05 – 0.49 0.0 19.7 0.0 –
Final cylinder 0.1 0 1.1 1.1 – 0.5 0 -20 0 0.97

B.2.6 Top-hat.

Table B.29: Scenario 2 top-hat SPLIT shape type estimates and shape type check.

Case Estimate Detected Discard
Number Type Shape Reason

All Truth top-hat –
Case 4 Estimate top-hat –

Table B.30: Scenario 2 top-hat shape true parameters, parameter estimates, and coherency
shape check. The x, y, z, L, H, r parameters are in meters, and γ, θ, φ are in degrees.

Case Truth or Shape Parameter Coherency
# Estimate Type x y z L H r γ θ φ Check

4 Truth top-hat 0 0 1.05 – 1.05 0.5 0 1 0 1
Initial top-hat 0.03 -0.01 1.04 – 0.93 0.47 -0.1 0.7 -5.5 –
Final top-hat -0.2 0.0 1.2 – 1.0 0.6 -5 0 -10 0.90
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B.3 Scenario 3

No additional cases are run for Scenario 3. The full results are in Chapter 4.
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