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Abstract

To date, much effort has been spent on improving the detection of space objects;

however, the ability to track and catalogue space objects remains only as good as the ability

to determine the object’s position and angular rate. The foundation of space situational

awareness (SSA) is the ability to detect a space object and to predict its location in

the future. In order to accomplish SSA for Geosynchronous Earth Orbit (GEO) space

objects, the Defense Advanced Research Projects Agency (DARPA) developed the Space

Surveillance Telescope (SST) to enable ground-based, broad-area search, detection and

tracking of small GEO objects in space. In general, the SST tracks along the sky at the

sidereal rate where the stars will appear to be stationary, while objects within space not

moving at this rate will appear to move across the focal array from data frame to data frame.

As the time between each frame is known and the position of the detected object can be

determined in the focal array, it is possible to measure the angular position and angular

rate of a detected object. The two main types of detection algorithms used in this thesis

are the binary hypothesis test (BHT) and the multi-hypothesis test (MHT), which both rely

on a log-likelihood ratio (LLR); however, the MHT algorithm adds an additional step to

correlate nine system point spread functions, or hypotheses, with the image data. These

detection algorithms lead to varying degrees of accuracy and precision in determining the

position and angular rate for a detected space object. The research within this thesis shows

that the MHT algorithm is more accurate and precise than the BHT algorithm.
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MEASURING ANGULAR RATE OF CELESTIAL OBJECTS USING THE SPACE

SURVEILLANCE TELESCOPE

I. Introduction

1.1 Space Situational Awareness

Since the launch of Sputnik in 1957, the need for Space Situational Awareness (SSA)

has become an ever more important task in conducting space operations [17]. SSA is

predominantly concerned with characterizing and tracking human-created objects in Earth

orbit. In its most basic sense, SSA is the ability to detect a space object and predict its

location in the future; this data is known as the metric data of an Earth orbiting object [17].

In addition to the metric data, SSA seeks to characterize objects in space and the space

environment.

In order to perform SSA using electro-optics systems, three steps must occur in

sequential order: 1) the detection of an Earth orbiting object, 2) the determination of the

object’s angular position and rate, and 3) the steps to determine the object’s orbit (orbital

determination) from the calculated angular position and rate data. The detection of an Earth

orbiting object has traditionally been done with three main types of sensors: ground-based

radar, ground-based electro-optics (EO), and space-based sensors [17]. In order to improve

SSA, the detection of an object must be accompanied by at least some degree of position

information on that object.

The detection of Near Earth Asteroids (NEAs) is another important activity that

ground-based electro-optics are used for. While not technically part of SSA, the detection

techniques used to detect satellites and other man-made debris for SSA are nearly identical.
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1.2 Electo-Optics

The data used in this thesis was primarily gathered from the Space Surveillance

Telescope (SST), which is an EO system developed by Defence Advanced Research

Projects Agency (DARPA). The main advantage of EO systems over radar systems for

SSA is their ability to more easily detect objects around 36,000 km often associated

with geosynchronous orbits [17]. While radars have the ability to determine range and

range rate information which EO systems do not, it requires significant power SSA radars

to search for objects above 5,000 km [17]. Passive EO systems collect light reflected

to Earth and are not limited by the same power restrictions. With an increasingly

crowded geosynchronous orbit, which contains many military satellites that provide critical

capabilities to warfighters, protecting them from collision with space debris, meteors and

microsatellites has become a top priority [19].

In general, EO systems work by collecting and focusing electromagnetic radiation

in the light spectrum reflected by an orbital object into an image. This means that SSA

EO systems only work when the target is illuminated by the sun and the telescope is

in darkness [17]. This constraint primarily affects the detection aspects of SSA. Most

detection algorithms work by finding contrasts in light intensity from the background light

levels. This is why daylight detection remains difficult as the contrast between daylight

light levels and objects trying to be observed is very small. Most often, observations made

by EO systems are only made during the local nighttime.

1.3 The Space Surveillance Telescope

Most Earth-based telescopes are unable to see objects such as micro-satellites and

space debris that threaten military satellites. The SST was developed by DARPA beginning

in 2002 to overcome these limitations by enabling ground-based, broad-area search,

detection and tracking of small objects in deep space for purposes such as space mission

assurance and asteroid detection [2]. The US Congress mandated that National Aeronautics

2



and Space Administration (NASA), with the help of the Department of Defense (DoD), to

catalog by the year 2020 at least 90 percent of comets and asteroids larger than 140 meters

that are in Earth orbit or come within close proximity of Earth [4]. The SST was designed

to scan space to detect and correlate unknown space objects rather than dwell on stellar

objects over relatively long periods of time [20]. The SST uses a 3.5 meter aperture which

allows for significantly better performance for detecting dim objects in space over other

current SSA optics. Additionally, the large aperture allows for the SST to have a wide field

of view allowing the SST to provide full sky coverage with frequent revisit times in the

hopes of detecting and cataloging Earth orbiting objects and NEAs within its field-of-view.

In general, the SST tracks along the sky at the sidereal rate; this means stars appear to be

stationary, while objects within the solar system appear to move across the Charge-Coupled

Device (CCD) array from frame to frame. As the time between each frame is known and

the position can be determined in the CCD array, it is possible to measure the angular

position and angular velocity of a detected object. Of note, the data used in this thesis was

gathered as the SST was in a test mode which tracked a communications satellite, ANIK-

F1, in geostationary orbit. In this case, the stars appeared to move across the sky at the

sidereal rate [20].

Many of the current SSA telescopes have difficulty finding and tracking small objects

across wide tracks of sky [7]. The SST was designed with these two limitations in mind to

look primarily for objects in geosynchronous orbit and to provide a much wider angle (6

square degrees) field-of-view from which to view the wide tracks of the sky. The SST is a

3-mirror Mersenne-Schmidt type telescope with a 3.5 m primary mirror with a short focal

ratio of F/1.0 [19]. Additionally, there is a 1.75 m secondary mirror; this secondary mirror

acts like a stop making the aperture of SST appear donut shaped with an outer diameter of

3.5 m and in inner diameter of 1.75 m. Figure 1.1 shows the layout of SST’s 3 mirrors. The

compact layout of the SST ensures a highly agile pointing system.

3



Figure 1.1: Optical layout of the SST [19].

The SST also has a 6 square degree curved CCD focal array to match the telescope’s

inherently curved focal surface [19]. As the telescope has an extremely short focal ratio,

F/1.0, with a relatively large field-of-view, the curved CCD focal array allows for light

entering at any angle within the 6 square degrees FOV to be focused properly at the 3.5m

focal length of the telescope. The 6 square degree FOV is composed of 3× 2 degrees FOV;

to capture this FOV, the curved CCD focal array is 12288 × 8192 pixels [19]. Each pixel is

a square 15µm; thus the CCD array is approximately 18.43cm × 12.29cm.

Note, the terms pixel, CCD, and photodetector are used interchangeably throughout

this thesis and refer to the same thing. Additionally, the terms intensity and irradiance

are also used interchangeably throughout this thesis and are considered equivalent for the

purposes of this research.

1.4 Detectors

There are two main types of detection algorithms used in this thesis. The first type

uses a Binary Hypothesis Test (BHT), which computes a Log-Likelihood Equation (LLE)

to form a ratio, often referred to as the Log-Likelihood Ratio (LLR), for each pixel in an

image [20]. The LLR is the ratio of an object’s likelihood of being in a pixel, denoted as

4



hypothesis H1, to the likelihood that an object is not in a pixel, denoted as hypothesis H0.

Each hypothesis is given equal likelihood of occurring. If the LLR is above a specified

threshold τ, then H1 is considered to be more likely for a particular pixel, and vice-versa, if

the LLR is below τ, then H0 is considered to be more likely. The probability of detection,

Pd, forms an inverse relationship with the probability of false alarm, P f a, in that if the

threshold value that determines if H1 or H0 is more likely is set too low, then the P f a

increases. For this reason, τ is often set higher than 1 in order to reduce the P f a to 6-sigma.

Currently, the BHT is the detection method being used on the SST. Section 3.3.1 of this

thesis describes the BHT method in greater detail.

The second type of detection algorithm uses a Multi-Hypothesis Test (MHT). The

MHT is identical to the BHT method in that the same LLR array of values for a given image

are computed; however, the MHT adds an additional step to correlate nine hypotheses with

the image data [20]. Each hypothesis is a sampled Point Spread Function (PSF). The use of

nine PSFs arise from the fact that an object being observed is not always focused perfectly

in the center of a pixel. If an observed point source of light is focused to the middle of

two pixels, the intensity profile will be integrated over both pixel areas and the resultant

PSF will be appear different from the PSF that is formed if the observed point source is

focused and integrated over the area of only one pixel. The nine PSFs are generated from

the various combinations of shifting the observed point source up, down, left, and right by

half a pixel from the center.

In the MHT, the nine hypotheses are then correlated with the LLR values. The nine

generated hypotheses provide a more accurate representation of an object being observed

by an EO system and can thus provide a more confident assertion as to whether an object

is detected or not. Additionally, the hypothesis with the strongest correlation values can be

assumed to represent the actual observed position most accurately. This additional piece of

position data is a key piece of information that the MHT provides and can be used to more

5



accurately determine the angular position of an observed object. Section 3.3.2.2 also refers

Multi-Hypothesis Test with Outlier Removal (MHTOR), which contains a slightly different

method from MHT in computing the background noise levels that shows some additional

improvement over the more traditional MHT. Section 3.3.2 contains more details on the

MHT methods. Section 3.2 describes the optical model of the SST and the generation of

the nine PSFs in more detail.

1.5 Determining Position

Once an object is detected, then step 2 of the SSA process can occur, which is to

determine the angular position and rate of a detected object. The algorithm currently used

on the SST to determine the position of the detected object is to centroid the binary map

of ones and zeros determined by the BHT. This thesis also examines two other options for

determining the position of the detected object. The first alternate option is to use a Center

of Intensity (CoI) algorithm. This option uses the binary map of the image determined by

the BHT and maps the detection points back to the intensity values of the original image. A

centroiding operation is then performed on the intensity values to determine the CoI. This

approach has shown some improvement in determining position over centroiding the binary

map determined by the BHT. The approach taken with MHT methods is to centroid the

Signal to Noise Ratio (SNR) values. Only four of the hypotheses from the MHT were

used when scanning through an image as some of the hypotheses are redundant. The

corresponding correlation values for the four hypotheses were then input into a matrix

that was double the length and width of the original image. The centroiding operation

was then performed on this large matrix which has all the correlation values from the four

hypotheses. The results from this last method seemed to provide the most accurate position

information. Section 3.4 discusses the position algorithms in more detail.
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1.6 Measuring Angular Rate

Once the position data has been determined, it is possible to determine the angular

rate of a detected object. This is done by measuring the amount of change in an object’s

position from one frame to the next which is measured in ∆ pixels per frame. Using the

focal length of the optics and size of each pixel, it is possible to determine what each pixel

represents in radians. This ratio is then used to convert ∆ pixels per frame into radians per

frame. As the time between each frame is known, the angular rate in radians per second

can be determined. Section 3.5 describes this process of determining the angular rate of a

detected object in more detail.

This thesis primarily uses the angular rate of stars, which have a well known angular

rate. Stars appear to orbit the Earth at the sidereal rate. In truth, even the closest stars

are over at least 4.4 light years away and their position does not change with respect

to Earth’s rotation. However, as the Earth rotates once per sidereal day, the stars from

a topocentric observation point, appear to orbit the Earth once per sidereal day or 2π

radians per 23.9344696 hours. This angular rate is well known to a high degree of

precision and accuracy and can then be considered as the truth data by which angular rates

calculated as part of this research can be compared against. The least squares method was

used to determine a mean and variance for each comparison. Section 3.6 describes the

determination of the mean and variance using the least squares method in more detail.

1.7 Errors in Measuring Position

Additionally, EO systems are highly subject to atmospheric conditions that introduce

phase aberrations to the propagated wavefront. Specifically, the tilt phase error is the

strongest phase error introduced by the atmosphere and has the greatest affect on the

observed object’s pixel position [15]. The determination of position underlies the ability to

determine angular rate and must be considered. Subsection 3.7.1 of this thesis discusses in

more detail the effects of the tilt phase error has on the position data gathered by the SST.

7



1.8 Problem Statement

In a purely deterministic system, the current orbital dynamics of an observed space

object are presumed to perfectly known [18]. Based on these orbital dynamics, it is possible

to know exactly where an object will be in the future. Under this ideology, measurements

of where a space object is are presumed to be perfect. However, atmospheric turbulence

and imperfect optics cause errors in the observed position of an object. With atmospheric

turbulence being a random phenomenon and the inexact measurement of optical aberrations

in optics system, an observation uncertainty when measuring the position of an observed

object must be taken into account. Based on the observation uncertainty, an observed

position becomes a probability that the object is at a position. This observation uncertainty

propagates when trying to predict the future location or track of an object [18]. Therefore,

when measuring the position of an object, the precision and accuracy of the measurement

are very important parameters for determining the position of an object in the future. In

order to improve SSA, it is necessary to reduce the observation uncertainty by improving

the accuracy and precision of the measurement.

1.9 Research Objectives and Focus

The primary research objective of this research is to determine which detector from

both the point detector BHT and MHT in combination with a centroiding operation are

better at determining the position of a detected space object. While research has been done

in [20] to show that the MHT is a better detector, no research has been done to determine

which detector is better able to provide single frame position information from which

angular rate can be calculated when looking at changes in position over multiple frames.

The research will focus on determining the angular rate of a star. The primary reason for

determining the angular rate of a star is because a star has a very precise and known angular

rate providing accurate truth data. As each algorithm will measure an angular rate, it can

be compared to the known angular rate to determine which algorithm is most accurate.
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As each algorithm has some measured error from the actual position, the determination of

which algorithm will be done by statistical methods - specifically, the mean and standard

deviation will be determined by comparing the measured data against the truth data. Once

a particular algorithm is determined to be the most accurate in determining the angular rate

of a star, then it can then be used to determine the angular rate of orbiting objects that do

not have a known angular rate.

1.10 Assumptions and Limitations

The main limitation for the algorithms developed in this research are that they were

developed by windowing the data from the SST to only a single space object per image

frame. As the centroid operation used in this research to determine position would be

inaccurate if two or more objects were detected in a particular window, it is necessary to

window the detected object to a single object. There are clustering operations that can

separate multiple objects and thus determine position and angular rates of multiple objects;

however, it is outside the scope of this research.

Additionally, as the algorithms for determining position were only verified using the

angular movement of stars, which have a known angular rate, it is assumed that the position

algorithms as proposed in this research will also function properly in determining the

angular rate of an object that has an unknown angular rate.

1.11 Implications

The SST uses the pixel location of three positive detection decisions to build an orbital

track of the object which can then be used to predict the future position of the object [20].

The SST currently uses the integer pixel location of points detected using the BHT. This

approach does not have sub-pixel location from which to create the track of the detected

object; this can lead to large errors in determining the track of the object. The improvements

in the detection capability using the MHT have been documented in [20]; however, this
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detection technique also allows for sub-pixel location data. With a more accurate position

algorithm, as proposed in this research, it is possible to reduce the position error of each

observation. This in turn, reduces the covariance matrix and thus better estimates of the

track can be made.

1.12 Preview

This research aims to demonstrate that the MHT method provides better position

information on a detected space object. The position information is used to calculate

the angular rate of the detected object; thus, the better position information will lead to

determining better tracks of space objects. This research will add to the research that has

already been done in [20] to show that the MHT is a superior detector over the currently

used BHT on the SST by demonstrating that the MHT can be used to provide better position

information as well. Chapter 2 describes the process of how the SST is modeled, the

setup of both the BHT and MHT methods to process data from the SST, the description

and setup of the position algorithms used in this research, the method for determining

angular rate from the position data, and the method for determining which set of algorithms

best determined the angular rate from a statistical perspective. Chapter 3 will interpret

the results of the analysis and tests run using the position algorithms on the SST data.

Chapter 4 discusses the validity of the proposed position and angular rate algorithm based

on comparison to the current method being employed on the SST.
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II. Literature Review

2.1 Chapter Overview

This section of the paper provides a survey of some of the relevant literature that has

been written concerning the topics of 1) detecting whether an object is present or not in

an image and 2) determining the error associated with making dynamics measurements

using topocentric measurements of Earth orbiting objects. Topic 1) is written about

by Zingarelli, Pearce, Lambour, Blake, Peterson, and Cain in Improving the Space

Surveillance Telescope’s Performance using Multi-hypothesis Testing. Topic 2) is written

by Maruskin, Scheeres, and Alfriend in Correlation of Optical Observations of Objects in

Earth Orbit.

2.2 Detection Techniques

The Zingarelli, et al. paper describes the purpose of the SST, the BHT detection

algorithm, and the MHT detection algorithm and is foundational to much of the research

done in this paper. The point of the experiment run in the Zingarelli, et al. paper is to

determine which type of algorithm from the BHT or the MHT is best at detecting dim

unresolvable objects in space on a single frame basis. In order to run the experiment in

the Zingarelli, et al. paper, a satellite, ANIK-F1, in geosynchronous orbit that is gradually

going into the eclipse behind the Earth was chosen. This allows the unresolvable satellite

to experience a near-continual decrease of solar illumination, thus providing a continuum

of irradiance values over which to test the performance of the BHT and the MHT. The

results of the experiment run in the Zingarelli, et al. paper show that the MHT method

improved the probability of detection Pd by as much as 50 percent over the point detector

BHT, which is detection algorithm currently run on the SST.
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2.2.1 Relevant Research: Detection Techniques.

The SST uses at a minimum, three sequential detections to determine a track which

can be used to predict the future position of an object. The track of an object is based

on the position of the object at each detection. Therefore, providing the most accurate

position data becomes a critical piece of information in being able to predict the future

position of the detected space object. As will be seen in this research, the additional sub-

pixel information provided by the MHT will provide a significant advantage in determining

the pixel position information over the BHT. This information can then be used to measure

the angular position and angular rate of an object which is the primary purpose of this

paper. Much of the work in the Zingarelli, et al. paper was primarily aimed at increasing

the detection capability of the SST by using the MHT whereas the primary purpose of this

research shows that while the MHT increases detection capabilities, it also provides better

position information of the detected space object from which better predictions of angular

position and angular rate can be made.

2.2.2 The BHT Detector.

Currently, the SST uses a BHT algorithm to detect space objects in a single image

[20]. This approach is called the baseline point detector; the other BHT analyzed in the

Zingarelli, et al. paper is the matched-filter technique (i.e. correlation detector). Both the

point detector test and correlation detector are derived in terms of SNR. The correlation

detector was not analyzed in this thesis; while the correlation detector is shown to increase

the probability of detection, it does not provide sub-pixel location information. As the

primary purpose of this thesis is to measure the angular rate of a detected space object, the

correlation detector is not analyzed.

The BHT algorithm works by setting two hypotheses for a given pixel in an image.

The null hypothesis H0 is the hypothesis that a space object is not in a pixel. The alternate

hypothesis H1 is that a space object is in a pixel. If the H1 hypothesis is more likely for three
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successive frames, then an image is considered detected. Additionally, the pixel location

of the three positive detection decisions is used to build an orbital track of the object which

can then be used to predict the future position of the object. The use of three successive

positive detections helps eliminate non-Gaussian noise sources such as cosmic rays and

data communication errors arising from the photo-detector, thus reducing the false alarm

rate when detecting an object.

The baseline point detector used in the SST can be derived from a Likelihood Ratio

Test (LRT) [20]. The BHT is derived in terms of two hypotheses. The hypothesis H1 is a

likelihood that an object is present in the pixel of interest; H0 is the hypothesis that an object

is not present in the pixel of interest. P(d(x, y)∀(x, y) ∈ [1,Md]|Hi) is the joint conditional

probability of the data given that Hi, i ∈ {0, 1} is true. Therefore, in the BHT, the LRT

becomes a ratio of the hypotheses probabilities. In order to minimize the probability of

false alarm, this ratio is not given equal weighting; instead, this ratio must be greater than

a threshold value of six in order for the H1 hypothesis to be considered more likely.

2.2.3 Calculating the Probability of False Alarm for the BHT.

The threshold value inherently sets the probability of false alarm PFA [20]. While a

Poisson distribution is a more accurate representation of background noise, a Gaussian

distribution can be used to approximate the image noise. In the case of the SST, the

threshold γ = 6 is chosen. Thus, the PFA for the SST is defined as the chance that a

pixel that only contains background light (no object) will produce a detector output that

exceeds the threshold value of 6 [20]. When an object is not present in a pixel, the ratio

produces a unit variance, zero mean Gaussian random variable; therefore, the probability

of false alarm per pixel (ignoring non-Gaussian forms of noise) is

PFA = P(S NRbaseline ≥ 6|H0) =

∞∫
6

1
√

2π
e
−t2

2 dt = 9.87e − 010. (2.1)
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Table 2.1: Alternative Hypothesis Sub-pixel Shifts

Alternative(a) Horizontal Shift(αa) Vertical Shift(βa)

1 0 0

2 0 -15µm

3 0 +15µm

4 +15µm 0

5 -15µm 0

6 +15µm -15µm

7 +15µm +15µm

8 -15µm -15µm

9 -15µm +15µm

2.2.4 The MHT Detector.

In the Zingarelli, et al. paper, another matched filter method, the MHT, is proposed for

single frame detection. The primary rationale for the introduction of the MHT is because

the image of a space object does not always get focused in the center of a pixel. As the

shape of a sampled PSF changes depending on where the object is imaged on the CCD

array, the correlation with a system PSF with the image data may not correlate strongly.

In order to account for the possibility that the space object may be focused off-center of

a pixel, a multiple-hypothesis strategy is considered. Each hypothesis is a sampled PSF

which is generated by shifting the PSF by plus and minus a half-pixel (which is 15µm in

the SST CCD array) horizontally and vertically as described in Table (2.1); the system PSF

is then sampled to create the nine hypotheses. Each hypothesis Hi is then correlated with

the data in each pixel. The MHT method selects from nine hypotheses (H1 − H9) and the

null hypothesis H0 to determine whether the image is in the center, a corner, or a side of
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a pixel. The Multi-hypothesis decision to select one hypothesis, Hk, over another one of

the other nine hypotheses, Hi, is based on uniform cost and equal priors using conditional

probabilities [20].

2.2.5 Calculating the Probability of False Alarm for the MHT.

While the goal of this thesis is not specifically in increasing the detection of space

objects, it is important to consider the probability of false alarm of the MHT. Using the

Eq. (2.1) and considering each hypothesis to be mutually exclusive from one another and

also assuming that the result of each individual sub-MHT to be statistically independent of

each other, the PFA is ≈ 4x9.87e− 10 = 3.94e− 9 [20]. The estimated PFA is higher for the

MHT than for the BHT; however, the PFA can be reduced by raising the detection threshold

γMHT = 6.2212, which yields a PFA = 9.87e − 10.

2.2.6 MHT With Outlier Removal.

The Zingarelli, et al. paper also proposes a separate method for computing the

standard deviation, σ, of the background noise as listed in Eq. (3.20). This method rejects

any noise sample in the window surrounding the pixel to be tested whose values are outside

those predicted by Gaussian statistics. This has the effect of eliminating extremely high

noise or nearby stars in the calculation of background noise.

2.2.7 Modeling the Point Spread Function for the SST.

In the Zingarelli, et al. paper, a modeled system PSF is used to characterize the SST’s

impulse response, hoptics(x, y). The SST’s optics are modeled as linear and shift invariant.

The light propagating from a distant point source such as a star or Earth orbiting object is

assumed to be temporally incoherent light. The Zingarelli, et al. paper describes a method

for generating the system PSF by taking the inverse Fourier transform of the product of the

optics, sampling, and atmospheric transfer functions. This method is also utilized in this

research.
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2.2.8 Summary and Relation to this Research.

The Zingarelli, et al. paper provides the method for implementing the BHT, the MHT,

and creating a system PSF. The paper also states that the MHT improved the detection

capability of the SST over that of the currently employed point detector test while also

providing sub-pixel position information. This research utilizes much of this paper to

implement the BHT and MHT. Additionally, this research builds upon the research of

this paper by utilizing the sub-pixel position information to determine the angular rate of

a space object. By utilizing the better position information of the MHT, this research also

shows that the track information that the SST calculates could be improved by utilizing the

MHT method.

2.3 Determining the Error Associated with Making Orbital Dynamics Measure-

ments

The Maruskin, et al. article describes a method for determining the orbits of medium

to high Earth orbiting objects by determining the intersection of two orbital tracks from two

observation points. Due to the large uncertainty associated with measuring and estimating

range and range rate values of a detected object, orbital determinations based on these

estimates will likewise also have large uncertainties. The Maruskin, et al. article devises

an algorithm which does not rely on estimates of range and range rate to perform the initial

orbit determination.

From a mathematical perspective, once the angular rates and accelerations are

measured for both the right ascension, α, and declination, δ, angles, it is possible to

determine the range, ρ, and range rate, ρ̇ [11].

2.3.1 Determining the Error in Measuring Angular Position, Rate, and Accelera-

tion and the Observation Uncertainty.

The main value gained from the Maruskin, et al. article is in determining the errors in

measuring the angular position, rate, and acceleration of a space object due to observation
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uncertainties. Assuming that the angular motion can be modeled kinematically and that

the orbit of the detected space object is deterministic in nature, then it is possible to fully

determine the orbit of an object [11]. However, from a practical perspective, there is a

large uncertainty in measuring the angular position, rate, and acceleration of an orbital

object which translates into a large uncertainty in estimating the range and range rate [11].

By using the equations described in the Maruskin, et al. article and further elaborated

on in section (3.7.2), it is possible to determine the error associated with measuring

angular position, rate, and acceleration using the SST. The calculation of the observation

uncertainty parameter used in the calculation of the errors in the angular parameters is

elaborated further in section (3.7).

2.3.2 Maruskin: Summary/How my research is different.

While the determination of the orbit of a detected object for the purposes of cataloging

the object is one of the primary goals of SSA, the method of correlating multiple optical

observations as described in the the Maruskin, et al. article is still a new and relatively

untried method. Additionally, the method described in the article relies on optical

observations that are several minutes apart and from multiple observation points; this

is a departure from how the SST operates by taking multiple sequential measurements

separated by as little as 0.675 seconds [19]. For these reasons, the orbital determination

method described in this article was not utilized in this research. However, the method

for calculating the error in the angular parameters is very applicable to the research of this

paper.
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III. Methodology

3.1 Chapter Overview

The key purpose of the research in this thesis is determining the angular rate of a space

object, thus determining the most accurate pixel position of an object detected by one of the

matched-filter tests is imperative. The SST currently uses the point detector BHT to detect

a space object [20]. As the BHT name indicates, the pixels that an object is detected in are

indicated with a 1, while the pixels that no object is detected in are indicated with a 0, thus

creating a binary map of the sky. If a single space object detected covers more than one

pixel, then a centroid operation is used to determine the position of that object; otherwise,

the integer value of the detected pixel is the position of the object. This method fails to take

into account the intensity or SNR values of a detected object therefore introducing errors

into the calculation of position of a detected object. Furthermore, the error in position

measurement degrades the accuracy from which the track of the object is determined from

the position information of three subsequent positive detections.

Two other methods were analyzed in this research and tested with data from the SST

to determine the position of an object; these included performing a CoI algorithm on the

BHT and using the SNR values from MHT and centroiding these values. The CoI method

maps the detection points from the BHT method back to the original data which contains

the intensity values. The intensity values of the pixels immediately adjacent to the detection

point were then centroided to determine the CoI and position of the detected object. The

other method utilized in this research to determine the position of a detected object is

based on the MHT method. The results in the Zingarelli, et al. article show that the MHT

method can increase the probability of detection of a space object over the BHT while

also providing sub-pixel location data. In the MHT method for determining position, the

hypothesis with the highest SNR is selected as the most probable hypothesis. The method
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of centering the SNR values, referred from this point onward as Center of SNR (CoS),

relies on taking the array of SNR values as calculated from each of the hypotheses in the

MHT, mapping these to a master array of SNR values from four of the hypotheses, and

then performing a centroid operation on the master array to find the position.

The following sections in this chapter explain: 1) the modeling of the system PSF

for use in the MHT method, 2) the setup of the BHT and MHT detectors, 3) the methods

for determining position of a detected object using the centroid operation on the binary,

intensity, and SNR values as determined from the BHT and MHT methods, 4) the method

for measuring angular rate, 5) the statistical method to compare each of the angular rate

determination methods against each other, and 6) the method for measuring the observation

error of the SST and the errors associated in measuring the angular position and rate of a

detected object.

3.2 Modeling the PSF of the Space Surveillance Telescope

To create the simulated PSFs, the SST system is modeled in Matlab by using the

aberration free (diffraction-limited) incoherent Optical Transfer Function (OTF) of the SST.

The phase aberrations, which are departures from an ideal spherical wavefront form due to

imperfections in the optics of the SST, were then added to the idealized pupil function to

create the generalized pupil function, P(x, y). The phase aberrations were modeled using

Zernike polynomials and were provided by the MIT Lincoln Labs. The resulting intensity

PSF is then integrated over the area of a pixel and downsampled to the SST’s actual pixel

size. This last step creates a pixelated version of the PSF known as the sampled PSF in this

research.

The ability to accurately model the PSF of the SST is crucial to being able to run the

MHT, which is a matched-filter test relying on the cross-correlation of multiple hypotheses.

These hypotheses are alternately sampled PSFs, with the image data from the SST. The

underlying assumption for the MHT to be considered valid is that most objects detected by
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the SST are far enough away and small enough that they can be treated like a point source

when observed from the SST. If this assumption is valid, then the data gathered from the

SST can be treated as if it is from a point source; therefore, the cross-correlation of the data

and the hypotheses is valid. In order to show that detected objects can be treated as a point

source, a simple comparison of two similar triangles as in Figure 3.1 is used. In the figure,

3.5m is the focal length of the SST, 30µm is the effective pixel size, and 36,000km is the

approximate distance to geosynchronous orbit. Therefore, the approximate maximum size

that a space object at geosynchronous orbit can be and still fit within one pixel is 308.6m.

As most space objects that SST is trying to detect are at geosynchronous orbit are smaller

than 308.6m, it can be assumed that most objects can be treated simply as a point source.

While some asteroids may be much larger than 308m, they are at a much higher altitude

than geosynchronous orbit, and thus still remain within the requirements for being treated

as a point source. Without this assumption, the cross-correlation of an imaged space object

Figure 3.1: Using similar triangles to calculate maximum size of a space object. Note, the

figure is not to scale and is drawn for clarification.

and the SST PSF would not be valid.
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Now that it can be assumed that a detected object can be considered to be a point

source, the determination of the system PSF for the SST can be considered. In the

Zingarelli, et al. paper, a modeled PSF is used for the characterizing SST’s impulse

response, hoptics(x, y) and is considered the optical PSF. The SST’s optics are modeled

as linear and shift invariant. The light propagating from a distant point source such as a star

or Earth orbiting object is assumed to be temporally incoherent light.

Based on a linear and shift-invariant model for the optical system, the image

irradiance, i(x, y), in the CCD array plane with coordinates (x, y), of the continuous image is

the convolution of a point source, mathematically expressed as a delta function, δ(x, y), with

a telescope’s impulse response, hoptics(x, y) [20]. To most accurately model a system’s PSF

it is necessary to take into account the wavefront errors introduced by the optics aberrations

into pupil function, A(u, v), where u and v represent coordinates in the pupil plane. The

wavefront errors are represented mathematically as the first N Zernike polynomials, φ2−φN ,

where N is the maximum number of polynomials needed for a given telescope [20].

The wavefront error is then captured by scaling the Zernike polynomials with a Zernike

coefficient, Z2 − ZN . The total wavefront error, E, is then

E(u, v) = Z2φ2(u, v) + ... + ZNφN(u, v). (3.1)

The generalized pupil function taking into account telescope aberrations is then represented

by

P(u, v) = A(u, v)e[ j·E(u,v)]. (3.2)

To determine the incoherent PSF, the field at the pupil is then propagated using a Fraunhofer

propagator to the CCD array, the square of the field is then taken to determine the irradiance

[20]. The irradiance is the physically measurable attribute of an optical wavefield [9]. The

irradiance pattern is the PSF of the system, which is mathematically represented by

hoptics(x, y) =

∣∣∣∣∣∫ ∫
P(u, v)e

j2π(xu+yv)
λ̄z dudv

∣∣∣∣∣2 , (3.3)
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where z is the propagation distance and λ̄ is the mean wavelength of the light wave [9].

The optical transfer function, Hoptics( fx, fy), is then computed by performing a Fourier

transform, F ,

Hoptics( fx, fy) = F
{
hoptics(x, y)

}
. (3.4)

The resulting PSF must then be sampled to account for finite square pixels of the SST,

which are a = 30µm [20]. Each pixel is represented by a rectangle function. This allows

the irradiance pattern, which describes the number of photons arriving at a location (u, v)

in the CCD array, to be integrated over the square pixel. The total power P incident on

the surface area of a photodetector is a function of the responsivity of the detector and the

direction of power flow ~k [9]. This is represented mathematically as

P =

∫ ∫
A

p(u, v)
~k · n̂

|~k|
dudv, (3.5)

where n̂ is a unit vector pointing into the surface of the detector and A is the area of

the photodetector. When ~k is nearly normal to the surface, as is the case with the SST,

P is simply the integral of the power density p over the detector area [9]. The P then

represents the total amount of photons that arrive over a surface area A over a given amount

of time. The operation can be represented by a transfer function,Hpixel, which is the Fourier

transform, F , of the rectangle function

Hpixel( fx, fy) = F {rect(ax, ay)} . (3.6)

Additionally, atmospheric turbulence affects the irradiance pattern. As the integration

time used on the SST is greater than 25ms, a long-exposure atmospheric transfer function

is an acceptable model for atmospheric effects [20]. The atmospheric transfer function is

Hatm( fx, fy) = exp
{
−3.44

(
λ̄ · z · υ

r0

)5/3}
(3.7)

where the radial frequency υ = ( f 2
x + f 2

y )1/2 and r0 is the atmospheric coherence diameter

or seeing parameter [8].
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The overall system impulse response, hmodel(x, y) centered on a pixel is then the inverse

Fourier transform of the product of all the individual transfer functions:

hmodel(x, y) = F −1
{
Hoptics( fx, fy)Hpixel( fx, fy)Hatm( fx, fy)

}
. (3.8)

A Nyquist sampled PSF would not change the shape of the image irradiance pattern as

a function of a sub-pixel shift, ∆x [20]. However, as the SST is undersampled and the point

source is not always focused in the center of a pixel, the irradiance pattern does change as a

function of where the point source is focused. To model these different irradiance patterns,

the modeled PSF is down-sampled using the ratio L between the 30µm pixels of the SST

and the Nyquist pixels size from Eq. (3.3). The shifted and down-sampled PSF is

hsamp(m,∆x, n,∆y) =

∫ ∫
hmodel(x, y)δ(Lm − x − L∆x, Ln − y − L∆y)dxdy, (3.9)

and the sampled irradiance is

isamp(m,∆x, n,∆y) = θhsamp(m,∆x, n,∆y) + B, (3.10)

where B is the background light, and θ is the total number of photons emitted from the

object per integration time, and m is the integer value for each pixel location in the CCD

array [20]. Using the shifts as described in Table (2.1), the nine different hypotheses used

in the MHT in Eq. (3.30) were determined.

In general, the method for generating the system PSF in this research is left unchanged

from what is done in [20]. This method for generating the system PSF is based on

multiplying the optics, atmospheric, and sampling transfer functions together to form the

total system PSF; this is summarized in the following equation:

hmodel(x, y) = F −1
{
Hoptics( fx, fy)Hpixel( fx, fy)Hatm( fx, fy)

}
. (3.11)

Eqs. (3.4), (3.6), and (3.7) are used to create the total system impulse response hmodel(x, y);

this is the total system or modeled PSF.
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The pupil function, P(u, v), used in Eq. (3.3), is created in MATLAB by creating a

2400 × 2400 array of ones and zeros to represent the aperture of the SST where the ones

represent the aperture opening. The aperture of SST is donut shaped with a 3.5m outer

diameter and a 1.75m inner stop; Figure (3.2) depicts the aperture of the SST as represented

in MATLAB.

Figure 3.2: The aperture of SST in a 2400 × 2400 array.

The size of the aperture has a diameter of 1200 samples, which is half of the area the

total array. The sampling size is set at 2400 × 2400 samples to meet Nyquist sampling

requirements to avoid aliasing. However, the Fourier transform of a circular aperture, as is

the case with the SST, will result in a Bessel function J1 of the first kind represented by

F {circ(r)} =
J1(2πρ)
ρ

, (3.12)

where r represents the radius in the (x, y) plane and ρ is the radius in the two-dimensional

spatial frequency plane (u, v) [8]. That being said, the cutoff frequency, fc, is set by the

diameter, D, of the aperture, the focal length, z f , and the mean wavelength λ̄ of the light

being reflected or emitted in the following relationship [9]:

fc =
D
λ̄z f

. (3.13)
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According to Nyquist sampling theorem, the sampling frequency must be at least twice that

of the cutoff frequency ( fs ≥ 2 fc). Therefore, the sampling frequency fs is:

fs =
2D
λ̄z f

. (3.14)

To satisfy the Nyquist sampling theorem, a 2400 × 2400 sampling array is selected, which

is twice the aperture diameter of 1200 samples. It is also worth noting that by using a

λ̄ = 500nm and given that z f = D = 3.5m for the SST, the sampling period Ts is 0.25µm.

For the SST, which has an effective pixel size of 30µm, this means that there are 120

samples per pixel per a given coordinate axis. In general for the SST, the given window

that the background noise, B, is calculated from is about a 20 × 20 pixel window. When

considering the 2400× 2400 sampling array used for the P(u, v) is divided by 120 in either

coordinate direction, it translates nicely into a 20 × 20 pixel window. This was purposely

set to meet the requirements of Whittaker-Shannon sampling theorem, which implies that

the exact recovery of a bandlimited function can be achieved from an appropriately spaced

rectangular array of its sampled values [9]. The two-dimensional Fast Fourier transform

was then performed in MATLAB on the 2400× 2400 array representing the pupil function,

P(u, v), of the SST to determine the diffraction limited OTF, Hoptics.

Next, in order to create an accurate model of the system PSF, the aberrations or

errors in the wavefront due to imperfections in the optics are included. An aberration

is any deviation from the ideal, diffraction-limited imaging performance of a lens [1].

Additionally, the Fraunhofer approximations most significantly impact the phase factor

of the spherical wave being propagated by approximating them to parabolic wavefronts

[9]. Mathematically, lens aberrations can be described by Zernike polynomials, which

help express the exit-pupil wavefront of the light being propagated [3]. According to the

Woods, et al. paper, the SST’s Zernike coefficients for the first twelve Zernike polynomials

were estimated using the DONUT algorithm, which generates an estimate of the wavefront

aberrations by directly fitting a model of the aberrated image to an observed defocused star

25



Table 3.1: Mean of 36 DONUT Algorithms Run on the SST [19].

Noll index (j) order (n) frequency (m) Classical name Mean Zernike Coefficient

1 0 0 piston 2.0877

2 1 -1 x-tilt -5.9517

3 1 1 y-tilt -5.2999

4 2 -2 defocus 6.8849

5 2 0 y-astigmatism 1.2598

6 2 2 x-astigmatism -0.2782

7 3 -3 y-coma 0.2755

8 3 -1 x-coma -0.7279

9 3 1 y-trefoil 0.3548

10 3 3 x-trefoil -0.4818

11 4 -4 spherical -0.1567

[19]. The DONUT method was performed on thirty-six defocused stars; the mean of these

36 tests is used as Zernike coefficient. Table (3.1) contains the mean Zernike coefficient

for each Zernike polynomial. The equation to model the Zernike polynomials is based

on a pyramid where the rows, κ, are the order and the columns, η, are the frequency. The

polynomials are defined as

Zeven j =
√
κ + 1Rη

κ(r)
√

2cos(ηθ) η 6= 0

Zodd j =
√
κ + 1Rη

κ(r)
√

2sin(ηθ) η 6= 0

Z j =
√
κ + 1R0

κ(r), η = 0

(3.15)

where

Rη
κ(r) =

(κ−η)/2∑
s=0

(−1)s(κ − s)!
s! [(κ + η)/2 − s]! [(κ − η)/2 − s]!

rκ−2s (3.16)
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Figure (3.3) represents the phase error listed in Eq. (3.1) pictorially. Figure (3.4) shows the

non-downsampled PSF from the SST; this is the irradiance pattern of Eq. (3.3), which only

takes into account the pupil function and the phase errors of the SST.

Figure 3.3: The optics phase error φerror as modeled by Zernike polynomials.

Next, the atmospheric transfer function, Hatm( fx, fy), is modeled for the data from

the SST using Eq. (3.7). The seeing parameter, r0, for the data used in this research is

determined using a phase retrieval method described in Jeon’s research [10]. Table (3.2)

lists the r0 values for the data used in this research.

Depending on where the point source is focused on the CCD array, the system PSF

will change. To capture these changes in shape of the system PSF, the convolved PSF

must be shifted and then resampled at increments of 120 samples. As one pixel consists of

120 samples, this research shifts the convolved PSF by 60 samples up, down, left and right.

This is consistent with the Zingarelli, et al. paper and table (2.1). However, in this research,
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Figure 3.4: Zoomed in image of the SST non-downsampled psf (2400× 2400 sample size).

Table 3.2: Seeing Parameters for the Data from the SST

Day Seeing parameter (cm)

73 5.9

74 6.1

75 5.6

81 3.5

82 4.8

83 6.4

the shifts are done in a different order which is reflected in Table (3.3). These shifted

system PSFs represent the nine hypotheses that are used in the MHT; these hypotheses are

shown in Figure (3.5). Theoretically, an infinite number of hypotheses could be created by
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Table 3.3: Alternative Hypothesis Sub-pixel Shifts

Hypothesis (Hi) Horizontal Shift (samples) Vertical Shift (samples)

1 -60 -60

2 0 -60

3 60 -60

4 -60 0

5 0 0

6 60 0

7 -60 60

8 0 60

9 60 60

dividing the pixel into smaller and smaller shifts; however, in this research, nine hypotheses

are chosen in order to keep computation times at a reasonable level.

3.3 Setup of Detection Algorithms in Matlab

The two main detection theories used in this research are the point detector Binary

Hypothesis Test (BHT) and the Multi-hypothesis Test (MHT). Both these detection

algorithms are considered matched-filter tests and are based on a signal-to-noise-ratio

(SNR) that is compared to a threshold value, τ. Essentially, the basic equation for both

tests are equivalent. In the BHT, it is a ratio of whether the H0 hypothesis, which is the

likelihood that no object is present in a pixel, as compared to the H1 hypothesis, which is the

likelihood that an object is in a pixel. The MHT takes this one step further by replacing the

H1 hypothesis with multiple hypotheses, each of which are compared to the H0 hypothesis.

Each comparison in the MHT returns a SNR; the highest valued SNR is considered the
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Figure 3.5: Nine hypotheses (H1 − H9) used in the MHT method

most likely. As each hypothesis in the MHT is created by shifting the focal point on the

CCD array, this also has the additional benefit of providing sub-pixel position information

for the detected object.

3.3.1 Binary Hypothesis Test.

The baseline point detector used in the SST can be derived from a BHT; it is expressed

in a likelihood ratio test (LRT) as follows:

Λ =
P(d(x, y)∀(x, y) ∈ [1,Md]|H1)
P(d(x, y)∀(x, y) ∈ [1,Md]|H1)

H1
>

<
H0

1, (3.17)

where d(x, y) is the image data, x and y are the pixel coordinates and Md is the number

of pixels in one dimension of a chosen square window in the CCD array plane [20]. The

hypothesis H1 is a likelihood that an object is present in the pixel of interest and H0 is the

hypothesis that an object is not present in the pixel of interest. P(d(x, y)∀(x, y) ∈ [1,Md]|Hi)

30



is the joint conditional probability of the data given that Hi, i ∈ {0, 1} is true. Therefore; in

the BHT, the LRT becomes a ratio of the hypothesis probabilities.

Using a Gaussian noise distribution to represent the probability P[d(x, y)|Hi] given

hypothesis H1 or H0, the BHT LRT becomes

ΛG =
P[d(x, y)|H1]
P[d(x, y)|H0]

=

Md∏
w=1

Md∏
z=1

1
√

2πσ
e{−

1
2σ2 [d(w,z)−B−θh(w,z)]2}

Md∏
w=1

Md∏
z=1

1
√

2πσ
e{−

1
2σ2 [d(w,z)−B]2}

H1
>

<
H0

1, (3.18)

where w and z are pixel locations in the window, and the PSF is h(w, z) [20]. The joint

conditional probabilities are modeled using a Gaussian noise distribution; though the H1

joint conditional probability would be more accurately modeled by a Poisson random noise

distribution [20]. This is due the noise which limits detection performance is the photon

noise of the stars, optical background, and target [14]. As the amount of photons arriving at

a target is discrete, yet random, it is most accurately modeled using a Poisson distribution.

However, as research in [13] showed that both the Gaussian and Poisson algorithms should

have close to the same level of performance if the background master image is flat and

small; this allows the master image term to be pulled out of the summation and distributed

through the denominator. This results in the same expression for SNR for both the Gaussian

and Poisson distributions used for photon statistics [13]. As the SST does not use a master

background image, its background noise distribution can be considered flat; therefore, a

Gaussian distribution can be used. The value Md is the total number of pixels in the window

of the image [20]. The value B is the background noise level, which is computed as the

local sample median of the data. The θ is the space object’s irradiance and σ is the standard

deviation of the noise and E[] is the statistical expectation operation.

B = median[d(w, z)] ∀ (w, z) ∈ [1,Md] (3.19)

σ =
√

E[d2(w, z)] − E[d(w, z)]2 =

√√√√√√ Md∑
w=1

Md∑
z=1

(d2(w, z) − B)2

M2
d

(3.20)
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To simplify Eq. (3.18), the natural logarithm of is taken; this reduces Eq. (3.18) to the

following

log(ΛG) =

Md∑
w=1

Md∑
z=1

1
√

2πσ
[−2B · θh(w, z) + 2d(w, z) · θh(w, z) − (θh(w, z))2]

H1
>

<
H0

0. (3.21)

This can further rearranged and simplified to

Md∑
w=1

Md∑
z=1

(d(w, z) − B)h(w, z)
σ

H1
>

<
H0

θ

2

Md∑
w=1

Md∑
z=1

h2(w, z)
σ

, (3.22)

where the selection of θ will be chosen to achieve the desired threshold γ [20]. To convert

Eq. (3.22) into an equation defined in terms of SNR, a new random variable d2 must be

defined. SNR is defined as the ratio of the mean divided by the standard deviation. The

new random variable d2 is the background suppressed data and must have a zero mean in

the H0 case. The random variable d2 is defined as

d2(w, z) = d(w, z) − B. (3.23)

The correlation of the system PSF, h(w, z), with the background suppressed data then

becomes

Md∑
w=1

Md∑
z=1

d2(w, z)h(w − cx, z − cy) (3.24)

where cx and cy are the coordinates of the pixel being tested [20]. It can be shown that the

H0 case has a mean µ2 of zero by

µ2 = E

 Md∑
w=1

Md∑
z=1

d2(w, z)h(w − cx, z − cy)


=

Md∑
w=1

Md∑
z=1

E[d2(w, z)]E[h(w − cx, z − cy)] = 0,

(3.25)
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and a variance, σ2
2, of

σ2
2 = E


 Md∑

w=1

Md∑
z=1

d2(w, z)h(w − cx, z − cy)


2

= E

 Md∑
w=1

Md∑
z=1

d2(w, z)h(w − cx, z − cy)
Md∑

w=1

Md∑
z=1

d2(m, n)h(w − cx, z − cy)


=

Md∑
w=1

Md∑
z=1

Md∑
m=1

Md∑
n=1

E[d2(w, z)]E[d2(m, n)]h(w − cx, z − cy)h(m − cx, n − cy).

(3.26)

Using two cases, Eq. (3.26) can be solved. The first case is when w 6= m and z 6= n; the

second case involves using the Dirac delta function, δ(w−m, z−n), and is valid when w = m

and z = n. Evaluating Eq. (3.26) using these two cases, it reduces to

σ2
2 = σ2

Md∑
w=1

Md∑
z=1

h2(w, z). (3.27)

The standard deviation of the normalized data correlated with the total system PSF is simply

the square root of Eq. (3.27). Using the standard deviation, it is now possible to express

the LRT in terms of SNR [20]

S NRcorr =

Md∑
w=1

Md∑
z=1

(d(w, z) − B)hcorr(w − cx, z − cy)

σ

√
Md∑

w=1

Md∑
z=1

h2
corr(w, z)

H1
>

<
H0

θ
2

Md∑
w=1

Md∑
z=1

[
(hcorr(w, z))2

]
σ

√
Md∑

w=1

Md∑
z=1

h2
corr(w, z)

= γ. (3.28)

The PSF hcorr(w, z) is the sampled PSF [20]. In the case of the baseline point detector BHT,

hcorr(w, z) is one pixel represented as a delta function, δ(w − cx, z − cy); this reduces Eq.

(3.28) to

S NRbaseline =

Md∑
w=1

Md∑
z=1

(d(w, z) − B)δ(w − cx, z − cy)

σ

√
Md∑

w=1

Md∑
z=1
δ(w, z)

=
(d(cx, cy) − B)

σ

H1
>

<
H0

γ. (3.29)

3.3.2 Multi-Hypothesis Test.

There are two forms of the MHT used in this research. Both forms rely on using nine

hypotheses, H1 − H9, that are then correlated with the image data. The only difference
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between the two methods is in the calculation of the standard deviation of the background

noise. In the basic MHT, the noise is simply the standard deviation, σ, of the background,

B. In the MHT plus method, the outliers in the background noise, such as bright stars, are

removed; this has the effect of lowering the background noise standard deviation, referred

to as ζ in the MHT plus method. Being in the denominator of the MHT equation, this

increases the SNR in cases where there are strong noise outliers in the observed image.

3.3.2.1 Basic Multi-hypothesis Test.

The SNR equation for the MHT is

S NRa =

Md∑
w=1

Md∑
z=1

(d(w, z) − B)hsamp(w − cx − αa, z − cy − βa)

σ

√
Md∑

w=1

Md∑
z=1

h2
samp(w, z)

Ha
>

<
H0

γMHT , (3.30)

where αa and βa represent the half-pixel horizontal and vertical shifts respectively of the

sampled PSF. This allows the MHT to provide both detection information as well as sub-

pixel position information. The MHT is in contrast to the BHT which only tests whether

an object is in a pixel or not. Theoretically, more hypotheses would provide a greater

level of sub-pixel location and increase detection performance; however, a finite amount of

hypotheses were picked in order to make the test numerically practical. In performing the

MHT method, the hypothesis that maximizes the SNR, while at the same time, increasing

the probability of detection is chosen. The choice of the hypothesis with the highest SNR

also provides sub-pixel position information on the image location [20].

This article describes three detection strategies that could be used on the SST. The first

technique, which is currently being employed on the SST, is the baseline point detector

[20]. The second detection method that is described is the correlator or matched filter

detector. Both of these methods are considered BHTs. The last method that is proposed

is the MHT method. Of these various methods, the MHT is the method that is proposed

to improve the detection performance of the SST. Results have shown that the probability
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of detection by using MHT improved by as much as 50 percent over existing detection

algorithms.

The two BHT methods and the MHT are based on testing one hypothesis against

another in terms of SNR [20]. The first hypothesis is known as H0 and theorizes that a

space object’s image is not in a pixel. The alternative hypothesis, H1, supposes that there is

a space object’s image in a pixel. The MHT method further divides a pixel into sub-pixel

hypotheses, (H1−H9), and compares them to the H0 hypothesis. The MHT method gives an

advantage by mitigating some of the aliasing caused by the undersampled SST observation

images. In the MHT method, the hypothesis that maximizes SNR while increasing the

probability of detection (Pd) is chosen thereby providing sub-pixel position information

while increasing the Pd over both BHT methods [20]. In determining the precise location of

a space object, from which angular rate can be determined over subsequent image frames,

the sub-pixel location provided by the MHT method provides a significant advantage over

the other detection methods.

The MHT is favored over the correlator detector because the shape of the sampled PSF

changes depending on where the object is imaged on the observation pixel array [20]; the

correlator detector does not take this into account. In the MHT, the sampled PSF changes

depending on the location in the pixel array. These various sampled PSFs give rise to the

various hypotheses in the MHT detector. The SNR for the MHT is defined as

S NRa =

∑Md
w

∑Md
z (d(w, z) − B)hsamp(w + cx − αa, z + cy − βa)

σ ·
√∑Md

w
∑Md

z h2
samp(w, z)

Ha
>

<
H0

γM−ary. (3.31)

In equation (3.31), αa and βa are the horizontal shift and vertical shift respectively that

correspond to a sub-pixel location; the nine hypotheses are derived from combinations of

±15µm and 0µm shifts in αa and βa [20]. These hypotheses, hsamp, are then correlated

with the image data, d(w, z) minus the background noise, B. The square root portion of

the denominator in equation (3.31) normalizes the correlation. The σ denotes the noise

standard deviation. Each SNRa corresponds to a hypothesis, Ha; from this, it is deduced
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that the maximum SNRa corresponds to the hypothesis that most accurately reflects the

sub-pixel location. The maximum SNRa is considered the true SNR of the detected object.

S NRM−ary = max(S NRa) (3.32)

The γM−ary denotes the threshold value that the SNRM−ary must be greater than in order for

an object to be considered as detected [20]. Mathematically, a low threshold value increases

the probability of false alarm, PFA; for this reason, the threshold value is generally increased

in order to minimize the PFA. For SST, the threshold value is set to 6.2212 so that the PFA

is 9.87e-10.

By using the MHT, it is hoped that both the detection of earth orbital objects will

increase as well as provide additional sub-pixel location information by which more

accurate angular rates of orbital objects can be made.

3.3.2.2 Multi-hypothesis Test with outlier removal.

The Zingarelli, et al. paper also proposes a separate method for computing the

standard deviation, σ, of the background noise as listed in Eq. (3.20). This method rejects

any noise sample in the window surrounding the pixel to be tested whose values are outside

those predicted by Gaussian statistics [20]. This has the effect of eliminating extremely high

noise or nearby stars in the calculation of background noise. In this alternative method, the

background noise, B, is still computed as in Eq. (3.19). The squared deviations, D, from

the background within the window are computed by

D(m) = (d(m) − B)2, (3.33)

where m is a pixel in the window around the pixel being tested [20]. The mean, M, of the

squared deviation D is

M = E[D(m)], (3.34)
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with a standard deviation of S computed as

S =
√

E[D2(m)] − E[D(m)]2 =

√√√√√√ Md∑
m=1

D2(m)

M2
d

− M2. (3.35)

The new noise standard deviation, ζ, is then computed by excluding any pixel, m, that is

outside three standard deviations from the mean; mathematically, this excludes any pixel, m

where D(m) ≥ (M +3 ·S ). The new standard deviation implemented in the MHT has shown

to improve detection performance by lowering the normalizing factor, thus increasing the

SNR. This is implemented in Eq. (3.30) by replacing σ with ζ [20].

3.4 Setup of Position Algorithms in Matlab

The position algorithms used in this research are based on the results of the BHT and

MHT detection algorithms. There were three types on position algorithms used in this

research. The first method, referred to as the centroid method, takes the results of the BHT,

which are ones and zeros, and centroids these. In most cases, the BHT identifies a single

pixel as a detection. In this case, the integer value of the pixel is used as the position of the

detected object. This position algorithm is currently the method employed on the SST. The

next method used in this research is the Center of Intensity (CoI) algorithm. This method

maps the detected points back to the original data, d(cx, cy). The intensity values around

and including the detected point are then centroided to get a more accurate position. The

last method uses the SNR values from the MHT. In this method, four of the hypotheses’

SNR values are recorded in a master array. A centroid operation is then performed on

the master array to determine the position. This method has calculated the most accurate

position information for a detected space object.

3.4.1 Centroid Algorithm.

The detection of an object in the BHT is done by simply noting in an array whether an

object is detected (set to a value of 1) or not detected (set to a value of 0) in the detection

array, D(x, y). Occasionally, a detected object is bigger than a single pixel. In this case, a
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Figure 3.6: Image of star viewed by the SST.

centroid algorithm is used to determine its pixel location. The centroid algorithm for xcenter

(ycenter is identical) coordinate in the detection array,D(x, y), of 20 by 20 pixels:

xcenter =

∑20
x=1

∑20
y=1D(x, y) · x∑20

x=1
∑20

y=1D(x, y)
(3.36)

The detection array is simply an array of ones and zeros marking the detection of objects

with the value one. The location in the array of the value corresponds to the pixel location

in the actual image frame. Figure (3.6) shows a star observed by the SST. The BHT run

on this particular frame of data, shows that four center pixels each met the point detection
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Figure 3.7: Detection array,D(x, y), from the BHT of star viewed by the SST.

threshold and thus were marked with a value of one; the results of the BHT are shown

in Figure (3.7). Using Eq. (3.36) on this figure would yield a position of (11.5, 11.5) as

the position of this detected space object. Looking at Figure (3.6), the brightest pixel is

(12, 12). It is assumed in this research that the actual position of the object is closer to the

(12, 12) pixel; however, as the point detector BHT assigns an equal weighting to detection

points and does not take into account the intensity values, that there is an inherent error in

the position measurements of the centroid method.
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Table 3.4: 4 x 4 array of intensity values, dS S T (x, y). In this example, the position of the

intensity values would would align with the detection points in Figure (3.7).

Pixel 10 11 12 13

10 0 0 0 0

11 0 30158 43352 0

12 0 30712 65535 0

11 0 0 0 0

3.4.2 Center of Intensity Algorithm.

The center of intensity takes the centroid operation one step further. Instead of

performing the centroid operation on the detection array

D(x, y)

, the centroid operation is performed on the actual intensity values of the SST data,

dS S T (x, y). The array of intensity values is determined by multiplying detection array by

the original data frame from the SST; this effectively, multiplies by zero anything that does

not meet the threshold of the BHT. Figure (3.8) shows an image of dS S T (x, y) after it has

been multiplied by the detection array D(x, y). The centroid operation is performed using

Eq. 3.37. Table (3.4) contains the intensity values of the dS S T (x, y) that are used in the

centroid example in section 3.4.1.

xcenter =

∑3
x=1

∑3
y=1 dS S T (x, y) · x∑3

x=1
∑3

y=1 dS S T (x, y)
(3.37)

Using the center of mass equation for the data in table (3.4), the center of intensity is

(11.641, 11.567). Based on an observation of the intensity pattern figure (3.8), it should be
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Figure 3.8: The BHT detection points mapped back to intensity values of star viewed by

the SST.

more clear that the position of the detected object is weighted and closer to the brightest

pixel, which at (12, 12).

3.4.3 Center of SNR Values Algorithm.

The center of SNR (CoS) relies strictly on the results of the MHT method. Each

hypothesis is correlated with the underlying SST data. In the correlation operation, the

PSF is slid through data and each pixel returns a SNR value. Some of the hypotheses

in the MHT have identical intensity patterns, but are shifted in position. For example, in
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Figure 3.9: The four hypotheses of the MHT mapped to the SNR master matrix.

Figure (3.5), H1,H3,H7, and H9 are identical in their intensity patterns, but are shifted

in position. This is true for H4 and H6, as well as, H2 and H8. Due to the correlation

operation sliding the PSF through the data, these identical PSF intensity patterns will

produce identical correlation values with the SST data. For this reason, only H5, H6,

H8, and H9 are used in this research.

To determine the position using the CoS method, the four hypotheses’ SNR values are

mapped to a matrix that is double the size of the original data window. Figure (3.9) shows

the SNR master matrix values for same example used in the centroid and CoI sections.

The position of the object is found by performing a centroid operation on the SNR master

matrix and dividing by two, which accounts for the SNR master matrix being twice the

size of the original data matrix. Performing the centroid operation on this example would

give a position of (3.2554, 3.1771) on the 6 × 6 SNR matrix and (1.6277, 1.5886) on the

original 3×3 set of observation data. Each of the four hypotheses correspond to a sub-pixel

position. The sub-pixel position of the object is then weighted by each of the SNR values
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Figure 3.10: The difference in position between the MHT position algorithms and the

centroid and CoI algorithms.

from each of the hypotheses. In this example, the H9 hypothesis has the strongest SNR

values. The H9 hypothesis corresponds to the bottom, right corner of a pixel. Therefore, in

this example, the sub-pixel position is weighted most strongly to the H9 sub-pixel position.

This approach is performed with both the MHT and MHT plus methods.

It is worth noting that the MHT methods introduce a bias as a result of combining all

the SNRs into one master matrix. Figure (3.10) shows an example of this bias in position

over several frames of data between the MHT position algorithms and the centroid and CoI

position algorithms. As the angular rate is measured by the change in pixel position from

frame to frame, the actual position information does not affect the angular rate calculations;

however, in this research, a constant is added to the MHT position results to bring the

position back in line with the CoI method.

3.5 Measuring Angular Rate from Position Data

Measuring the angular rate from the position data requires at least two sequential

frames of data where a space object is detected. Once the position is known in the two
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frames of data, then it becomes a mathematical operation to measure the change in position

over a period of time. As the range of a detected space object is generally unknown, only the

angular rate of the detected object can be surmised. Each pixel in the focal array represents

an angle in radians of the field-of-view.

3.5.1 Determining Velocity from Position Data.

The next step in this project after detecting an object is to determine an object’s

velocity in pixels per second. To do this, it involves measuring the change in position

(pixel location) between two subsequent frames of the detected object. In this research, the

changes is in the x pixel position, represented as ∆x and the changes in y, denoted as ∆y,

are done separately. Figure (3.11) shows an example of the calculated angular rate in the

x − coordinate direction; note that the angular rate in this figure is in radians per frame of

data. This is a simple measurement of change between two positions as described by:

∆x = x2 − x1,

∆y = y2 − y1.

(3.38)

From the total magnitude of the change in pixel position, ∆xy is also determined using the

following equation:

∆xy =

√
∆2

x + ∆2
y . (3.39)

In this research, only the magnitude ∆xy is considered. While the direction portion of

the change vector is important for determining the correct orbit, this research is focused

on determining which angular rate algorithm is most accurate. The measurement of the

angular rate of a star, which has a well known and precise ∆xy, is used to determine which

angular rate algorithm is most accurate.

3.5.2 Transforming Change in Pixel Position into Angular Rate.

In order to determine the angular rate, it is necessary to determine what each pixel

represents in terms of radians. This is done by taking the tangent of the size of each pixel,
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Figure 3.11: Example of calculated angular rate in radians per frame

psize, in the SST divided by the focal length, f , of the SST. The pixel size of the SST

is 15µm × 15µm; however, the pixels are binned together in a two by two set effectively

creating a 30µm × 30µm pixel. The focal length of the SST is 3.5m. Thus the equation for

determining what each pixel represents in radians for the SST is:

∆θ = tan
(

psize

f

)
= tan

(
30µm
3.5m

)
= 8.571µrad/pixel. (3.40)

The simplest expression for determining the angular rate is ∆θ divided by the interval of

time, t, over which the change occurs. The frames of data used in this research from the

SST are taken at 1 second intervals. The angular rate, θ̇, of an objects is then:

θ̇ =
∆θ · ∆xy

t
radians
second

. (3.41)

Figure (3.11) is an example of the total magnitude of the angular rate of a star measured in

radians per frame.
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3.6 Determination of Statistics

The method for comparing which angular rate algorithm is the most accurate in

determining the angular rate is based on statistical analysis. For this research, stars, which

have a highly precise and constant angular rate, are used as a way to compare a calculated

angular rate with a known angular rate.

Stars appear to make one revolution, 2π radians, of the Earth per sidereal day which

is 23.9344699 hours [6]. To calculate the angular rate in radians per second, denoted as θ̇T ,

where T represents the true angular rate. The true angular rate of a given star is

θ̇T =
2π

(23.9344699hrs · 3600sec)
= 72.921µrad/sec. (3.42)

To simplify the interpretation of the data, the calculated angular rate was divided by the

true angular rate of a star. As only stars are used in this research, the ratio of calculated

angular rate divided by the true angular rate should be approximately equal to one. Figure

(3.12) shows an example plot of this ratio; as can be seen in the plot, the angular rate hovers

around 1.

There are two ways to compare the three angular rate algorithms, centroid, CoI, and

CoS, used in this research. The first method involves determining the average of the angular

rate measurements. Mathematically, this is simply the expected value, E[], of all calculated

angular rates, E[X], where X is the data set consisting of the angular rate measurements at

each point, (θ̇N−1, θ̇N−2, ..., θ̇2, θ̇1), and N represents the number of sequential frames where

a star is detected. The angular rate algorithm with expected value closest to a value of

one can then be considered the most accurate method. A concern about using this method

is that there can be large variances in the calculated angular rate while still having an

expected value close to one. The SST builds its tracks for a detected object from only three

detections; therefore, the variance of the angular rate becomes a significant factor.
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Figure 3.12: Example of calculated total magnitude of angular rate in radians per frame

divided by sidereal rate

To calculate the variance of the angular rate, the standard mathematical expression for

variance is used; the variance is

σ2 = E
[(

X − E[X]
)2]

. (3.43)

The angular rate algorithm that has the smallest σ2 can be considered the most consistent

algorithm.

The comparison of angular rate algorithms can then be made on two bases. First, the

output of the most accurate angular rate algorithm can be made on the comparison with

the true angular rate, θ̇T , by determining the expected value of the observation data set,

X. Second, a judgment on the consistency of measurement of the angular rate calculation

based on the variance of the observation data set can be measured.

3.7 Error Estimation

The two primary sources of phase errors on a light wave as it propagates from the

source in space to the SST are atmospheric turbulence and the optics of the SST [15].
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These phase errors in the wavefront have an effect on measuring the position of a detected

object. As the Zernike coefficients used to model the SST are based on a mean of 36

DONUT algorithms run, it is assumed that these are most accurate method to determine the

Zernike coefficients, therefore this section will not discuss this type of phase error in more

detail. The tilt phase aberration due to atmospheric turbulence, which causes an object

to be shifted in position in the observation plane, is the most significant error associated

with atmospheric turbulence; therefore, this section will deal primarily with analyzing the

effects due to tilt. The error associated with making measurements of position using an

optics system is called the observation uncertainty. The first part of this section will deal

with determining the observation uncertainty for the SST based on various tilt phase errors.

The second part of this section will deal with how the observation uncertainty affects the

measurements of angular position, rate, and acceleration.

3.7.1 Lower Bound on Position Error Due to Atmospheric Tilt.

Atmospheric tilt phase error affects the performance of the SST by changing the

geometric position of the target on the detector plane. The long exposure tilt is often treated

as a Gaussian random variable with a zero mean and unit variance [15]. Figure 3.13 shows

an example of the Gaussian shape and blurring effects on a long exposure image. However,

at any given instant in time, tilt only causes a translation or shift in the geometric position

of the observed object. The observed images at these instants in time are often referred

to as short exposure images. Figure 3.14 shows an example of the diffraction limited PSF

generated by the SST. Notice that the PSF is slightly off the center point of (600, 600) in

the image; it is actually closer to the (609, 600). The short exposure PSF example shows a

translation due to atmospheric turbulence, but no blurring due to atmospheric turbulence.

These data used in this project from the SST have an exposure or integration time of

100ms. This integration time has characteristics of both a long and short exposure image.

In order to model SST, the 100 ms integration time is divided evenly into 1 ms increments.

48



500 550 600 650 700

500

520

540

560

580

600

620

640

660

680

700

Figure 3.13: Long exposure with r0 = 15cm
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Figure 3.14: Short exposure with r0 = 15 cm

A phase screen is generated for each 1 ms increment and a corresponding PSF is generated

from each phase screen. The 1 ms increment is chosen in order to eliminate the effects of
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any time averaging of the image due to the atmosphere continually and rapidly changing

with time. The general guideline that a short exposure image is somewhere between 0.01

and 0.001 seconds or shorter depending on the wind velocity [8].

Fried’s seeing parameter, r0, is used to generate each phase screen and was considered

to stay constant over the 100 ms integration time. Each phase screen that is generated is

statistically correlated with the preceding phase screen in order to accurately model the

temporal behavior of the atmosphere [15]. The atmospheric phase screen is assumed

to evolve in time via Taylor’s frozen flow hypothesis [15]. Taylor hypothesized that

temporal variations of turbulent eddies at a point are produced by the horizontal transport

of atmospheric properties of these turbulent eddies by the mean wind speed flow and not

by changes in the turbulent eddies themselves [5]. The time scale associated with temporal

variation of the turbulent eddies due to wind is typically on the order of 1 second, whereas

the temporal variations of the eddy turnover is much slower, typically on the order of 10

seconds [5]. The effect of the wind on the turbulent eddies is to translate the phase screen

a distance in the horizontal and vertical directions equal to the wind velocities, vx and vy,

multiplied by the time between the sample images ∆t [15]. In this research, ∆t was 1 ms.

The relationship between the phase errors and wind speed at times t1 and t2 under Taylor’s

frozen flow hypothesis is equal to Eq. (3.44) [15] where the atmosphere is considered

statistically homogeneous [5].

θatm(w, s, t1 + ∆t) = θatm(w + vx∆t, s + vy∆t, t1) (3.44)

The statistical correlation between each phase screen is defined by the phase structure

function for Kolmogorov turbulence

Dθ(τx, τy) = 6.88
(τ2

x + τ2
y

r2
0

)5/6
(3.45)

50



where τx = w2−w1 and τy = s2−s1 represent the spatial frequencies in the x and y directions

respectively. Equation 3.45 is then used to determine the phase structure function

Dε(∆t) =

∫ +∞

−∞

Pε(τx, τy)[Dθ(τx + vx∆t, τy + vy∆t) − Dθ(τx, τy)]∂τx∂τy (3.46)

where Pε is the aperture function [15]. The phase structure function Dε(∆t) is then used to

compute the tilt correlation Dε(∆t) through the following relationship:

Dε(∆t) = 2Rε(0) − 2Rε(∆t). (3.47)

Rε(0) is equal to the variance of the horizontal tilt σ2
ε and the vertical tilt σ2

β. Both σ2
ε and σ2

β

are considered equal and are related to the aperture diameter Dr and the seeing parameter

r0 through the following equation [15]:

σ2
ε = σ2

β = Rε(0) = 0.448
(Dr

r0

)5/3
. (3.48)

Equation 3.48 is the Zernike-Kolmogorov residual error for the tilt phase errors ε and β

developed by Noll [12]. Rε(∆t) is the temporal autocorrelation and is the expected value

of the product of the tilt at two different times. This is mathematically expressed as:

Rε(∆t) = E[ε(t1)ε(t2)] [15]. Once Rε(∆t) is known, the conditional probability of the tilt at

time t1 + ∆t given the tilt at time t1 is a Gaussian random variable with a mean equal to [15]

E[ε2|ε1] = ε1
Rε(∆t)
σ2
ε

. (3.49)

The conditional variance is for the Gaussian random variable is

E
[(
ε2 − ε1

Rε(∆t)
σ2
ε

)2
|ε1

]
=
σ4
ε − R2

ε (∆t)
σ2
ε

. (3.50)

Once the conditional mean and variance are known, new phase screens can be generated.

The new conditional tilt value ε2 (the same equations apply to β2) is given by

ε2 = ε1
Rε(∆t)
σ2
ε

+ σεg2 (3.51)
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where g2 is a normally distributed pseudorandom number [15]. The new tilt phase error is

θatm2(u, s) = ε2(u/Dr) + β2(v/Dr). (3.52)

The atmospheric transfer function Hatm(u, v) is then equal to e jθatm2 (u,v). The total transfer

function is Htot(u, v) = Hatm(u, v)Hoptics(u, v) [15]. Hoptics(u, v) is the optical transfer

function of the SST and includes the SST’s optical aberrations defined by Zernike

polynomials 2 through 12. Htot(u, v) is then used to create a new random conditional PSF

for each 1 ms increment.

In this research, only one phase screen per 1 ms increment is used to model the effects

of the atmospheric turbulence. Propagation along a slant or vertical path requires an index

of refraction structure parameter, C2
n(h), that changes as a function of altitude (h) [5]. The

size of an object and the distance that the light propagates from that object forms an angle

θ. If this angle is less than the isoplanatic angle, then the atmospheric turbulence can be

modeled with a single phase screen because the angle over which atmospheric turbulence

is modeled is essentially unchanged [5]. One of the most popularly used atmospheric

turbulence models to express the C2
n(h) parameter is the Hufnagel-Valley (H-V) model.

This is mathematically described in equation 3.53 where h is in meters [m], w is the rms

windspeed in m/s and A is a nominal value of C2
n(0) at the ground in m−2/3 [5].

C2
n(h) = 0.00594(w/27)2(10−5h)10e−h/1000 + 2.7 · 10−16e−h/1500 + Ae−h/100 (3.53)

An often used version of Hufnagel-Valley is determined by setting w = 21m/s and

A = 1.7 · 10−14m−2/3; this is commonly referred to as H-V5/7 [5]. For a wavelength

λ = 0.5µm, the 5 in H-V5/7 means that a value of 5cm is calculated for the atmospheric

coherence diameter and the 7 refers to a 7 µrad isoplanatic angle [5]. Considering H-V5/7,

about the largest object that can be observed at geosynchronous orbit (36,000 km) and still

meet the criteria under H-V5/7 for the 7 µrad isoplanatic angle is 252.0m; see Figure 3.15.

It can be assumed that most of the objects observed by the SST are smaller than 252.0m
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and therefore meet the criteria of being isoplanatic. Therefore, the use of only one phase

screen to model the phase error from atmospheric turbulence is valid.

Figure 3.15: Isoplanatic Angle, θ. Note, the figure is not to scale.

The final step to create a representative 100ms exposure image from SST is to average

all 100 short exposure 1 ms PSFs together to create a mean PSF. The mean PSF is

considered to be an accurate representation of an image generated by the SST over the 100

ms integration time. The mean PSF is then downsampled and integrated using Eq. (3.6)

over each pixel to create a sampled PSF. Figure 3.16 shows an example of a simulated 100

ms image by SST.

In order to measure the amount of translation for each mean PSF, the center of

intensity algorithm described in Section 3.4.2 is implemented to find the position of the

sampled PSF. The translated position is then compared to a ”true” PSF where no tilt

was introduced and the magnitude of its difference is recorded. To find the magnitude

of the difference, G, between the two center of intensity points, a simple vector magnitude

equation was used as described in Eq. (3.54).

|G|=
√

(ycenter2 − ycenter1)2 + (xcenter2 − xcenter1)2 (3.54)

The magnitude of the difference could then be thought of as an the error in observed pixel

location from the true pixel location.
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Figure 3.16: Simulated 100ms image as seen by SST

The phase screen generated for each r0 is generated by a statistical random process.

It is possible to find a statistical mean and variance for this random process. To do the

statistical analysis, 30 repetitions are run for a particular r0 and wind velocity and the

magnitude of position error is recorded for each repetition. The mean value of the position

error is expected to be near 0 for each r0 value as the tilt phase error is random process that

is based on a zero mean Gaussian distribution. The standard deviation of the position error

over the 30 repetitions is the key statistical parameter that is trying to be determined in this

research. The standard deviation can be thought of as an error in pixel position for a given

r0 and wind velocity for the SST.

In this research, 394 simulations were run without Poisson noise. Another 197

were run with the inclusion of Poisson noise added to the sampled PSF. The numbers

of simulations run was restricted to the amount of time available for research. In both

simulations, the equation representing the best line fit did not change after approximately

100 simulations. Additionally, The inclusion of Poisson noise represents a more accurate
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model as the arrival of photons is a random event; therefore, on average there is an expected

number of photons arriving at any given time interval. However, the actual amount arriving

at any given moment is best described by the Poisson impulse process [8]. If K is the

random variable representing the number of photons arriving at a given time interval and

λ(t) represents the rate function or mean number of photons arriving for a time interval,

then the probability, P(K; t1, t2), that K photons fall within the time interval (t1 < t ≤ t2) is

given by [8]

P(K; t1, t2) =

 t2∫
t1

λ(t)dt

K

exp

 t2∫
t1

λ(t)dt


K!

. (3.55)

Each simulation performed 30 repetitions for a specific r0, wind x-direction, and wind y-

direction values generated from a Gaussian random number generator in order to provide

statistical significance.

The results of these simulations showed an decreasing error in position as r0 values

increased; these results are shown in figure (3.17) and (3.18). In figure (3.17) and (3.18),

Figure 3.17: Position error ±1Φerror vs. r0

the y-axis is ±Φerror in units of pixels; the x-axis is the r0 values in units of centimeters. A
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Figure 3.18: Position error ±1Φerror vs. r0

best line fit in Microsoft Excel was used on the ± 1 standard deviations line (marked with

diamonds in figure 3.17). The best line fit equation is:

±1Φerror = 0.0542r−0.827
0 (3.56)

and

±1Φerror = 0.0711r−0.742
0 (3.57)

for the model with Poisson noise. It is interesting to note that the inclusion of Poisson

noise actually reduced the error due to the Poisson function eliminating small values, thus

reducing the size of the sampled PSF. Eqs. (3.56) and (3.57) states that for a particular r0

value that the position of the object has an error of ±1Φerror in units of pixels. For example,

if the SST took an image through a turbulent atmosphere with a r0 value of 10cm, using the

model without Poisson noise, a potential error from its true position in pixel position would

be ± 1.0917 pixels. Assuming the object being observed by SST is in geosynchronous orbit

at approximately 36,000km, this would correspond to about 168.44m observed difference

from its true location. Note, Eqs. (3.56) and (3.57) are specific for images observed by the

SST with an integration time of 100ms.
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It was also observed from the data that lower wind speeds (near 0m/s) for a specific

r0 caused higher observed position errors. The opposite is also true that higher wind

speeds caused lower observed position errors. However, as r0 increased, the difference

(or variance) between high and low wind speeds decreases. The worst case situation would

be a very turbulent atmosphere (low r0 value) and a low wind speed. This makes sense

from a physical perspective as large scale turbulent eddies cause tilt [5]; if the wind is not

blowing, the tilt caused by that turbulent eddy will remain in the field of view causing the

observed image to be translated.

Eqs. (3.56) and (3.57) can be considered the observation uncertainty and take into

account both the imperfections in the optics of a system and the tilt phase error due to

atmospheric turbulence. This model allows for the observation uncertainty, referred to as

Φα in the next subsection, to change as a function of r0.

3.7.2 The Total Observation Uncertainty.

The observation uncertainty affects the ability to accurately determine the position

of a detected space object. The observation uncertainty affects the ability to accurately

determine the angular position, rate, and acceleration. From a purely deterministic

perspective, once the angular rates and accelerations are measured for both the right

ascension, α, and declination, δ, angles, it is possible to determine the range, ρ, and range

rate, ρ̇ [11]. The two astronomical coordinates, α and δ, combine to specify the a point

on the celestial sphere in the equatorial coordinate system. Theoretically, once all the

variables of Eq. (3.58) are measured from ground based optical sensors or determined from

the equations of motion, then all variables of the state equation of the orbiting object are

known and it is possible to calculate the orbit of an object. The ability to determine range

and range rate is derived from the equations of motion in which the acceleration of either

angle is a mathematical function, where the function is represented by fα and fδ, of the

angular position, angular rate, range and range rate. In Eq. (3.58), the dot and double dot
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above the orbital parameter represent the first and second derivatives of the right ascension,

α, declination, δ, and range, ρ. From an optical detection perspective, it is very difficult to

determine the range and range rate parameters; however, if acceleration can be measured,

then through the equations of motion, the range and range rate data can be determined.

α̈ = fα(α, α̇, δ, δ̇, ρ, ρ̇)

δ̈ = fδ(α, α̇, δ, δ̇, ρ, ρ̇)
(3.58)

However, from a practical perspective, there is a large uncertainty in measuring the

acceleration, σα̈o , of an orbital object which translates into a large uncertainty in estimating

the range and range rate [11]. By using the equations described in the Maruskin, et al.

paper, it is possible to determine the error associated with measuring angular position, rate,

and acceleration using the SST.

It is important to consider the errors or observation uncertainties in measuring the

angular position, rate, and acceleration of a detected space object. Assume that the angular

motion can be modeled kinematically as listed in Eq. (3.59) [11].

α(t) = αo + α̇o(t − to) +
1
2
α̈o(t − to)2 (3.59)

Provided there are N equally spaced observations (minimum of N > 3 observations) of

the same object over a span of time T , it is possible to determine the angle at epoch, αo,

the angular rate at epoch, α̇o, and angular acceleration at epoch, α̈o. Assuming that the N

angular measurements are uncorrelated with each other, a least-squares estimation problem

is used to minimize the cost function

J =
1

2Φ2
α

N∑
i=1

[α(ti) − αi]2, (3.60)

where Φα is the observation uncertainty, αi are the actual measurements, and α(ti) are the

predicted measurements; these quantities are used to estimate αo, α̇o, and α̈o. Assuming

that the measurements are taken at equal times, then ti = to + (T/2n)i, where i =
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−n,−(n−1), ...,−1, 0, 1, ..., n, creating a total of N = 2n+1 measurements over the total time

span T [11]. Due to taking measurements at equal times, the odd terms of the information

matrix Λ sum to zero:

Λ =
(2n + 1)

Φ2
α


1 0 n(n+1)

6 ( T
2n )2

0 n(n+1)
3 ( T

2n )2 0

n(n+1)
6 ( T

2n )2 0 n(n+1)(3n2+3n−1)
60 ( T

2n )4

 . (3.61)

The inverse of this matrix is covariance matrix Q which provides the accuracy of the angle

quantities measured:

Q =
Φ2
α

(2n + 1)


9
4 0 −15

2 ( 2
T )2

0 3( 2
T )2 0

−15
2 ( 2

T )2 0 45( 2
T )4

 . (3.62)

By taking the square root of the diagonal entries, it is possible to determine the standard

deviation, ψ, of the estimated angular motion variables αo, α̇o, and α̈o listed in Eq. (3.59):

ψαo =
3Φα

2
√

2n + 1
(3.63)

ψα̇o =
2
√

3Φα

T
√

2n + 1
(3.64)

ψα̈o =
12
√

5Φα

T 2
√

2n + 1
(3.65)

The purpose of using position algorithms that improve the position accuracy of a

detected space object such, as the CoS method, is to reduce the observation uncertainty.

This is in turn reduces the errors associated with making measurements of angular position,

rate, and acceleration. As the SST determines the track for a detected object based on

three subsequent detections, reducing the observation uncertainty as much as possible is

important.
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IV. Results

The results on this research are based on a statistical analysis of the calculated angular

rate of 30 different stars using the SST data. The data is captured by the SST over three

days; 10 random stars are used from each day of data. As the purpose of this research

is to determine which position algorithm returns the most accurate angular rate, the stars

selected are bright; thus, the ability to detect a space object has no impact in determining

the position. In this research, on average, 18.9 frames of sequential data is taken for each

star in order that a mean with some statistical significance could be determined. Lastly,

the window is limited to only one star; this is to avoid issues where multiple objects are

detected in a single frame of data, which would manipulate the centroid operations. In

full frame data, an unwindowed frame of data may have multiple detected objects. The

ability to determine the angular rate for multiple detected objects would involve a clustering

algorithm; however, this research is limited to measuring the angular rate of a single space

object.

4.1 Assessing the Position and Angular Rate Algorithms

The results of this research show that from a statistical perspective, that all angular rate

algorithms, given 18.9 frames of data on average, will calculate a mean angular rate ratio,

E[µ], for the all 30 stars close to the actual angular rate of a star. As is noted in section 3.6,

the calculated angular rate is divided by the actual angular rate of a star; thus, a perfectly

calculated angular rate divided by the actual angular rate would produce an angular rate

ratio of 1.

Looking at table (4.1) and considering only the statistical mean, E[µ], of the average

angular rate, µ, for each star, the centroid method performs the best (1.0056864) given

about 19 frames of data followed in order by the CoI method (1.0057782), the CoS1 method
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Table 4.1: Calculated Mean Angular Rate for Each Angular Rate Algorithm

data day #of frames µ centroid µ CoI µ CoS1 µ CoS2

73 23 1.0049711 1.0054758 1.0056160 1.0052673
73 21 1.0070785 1.0062551 1.0061252 1.0064317
73 13 1.0052292 1.0055392 1.0042487 1.0040030
73 22 1.0059939 1.0059618 1.0057218 1.0060486
73 20 1.0083811 1.0075002 1.0074646 1.0074760
74 20 1.0053867 1.0057544 1.0060864 1.0060435
74 18 1.0068006 1.0070948 1.0072384 1.0071367
74 19 1.0067455 1.0067682 1.0065905 1.0065977
74 17 1.0049657 1.0052306 1.0064570 1.0066316
74 18 1.0049777 1.0057517 1.0057167 1.0058569
74 14 1.0067543 1.0067997 1.0066813 1.0071213
74 19 1.0057002 1.0058825 1.0059335 1.0060599
74 20 1.0066515 1.0056373 1.0049228 1.0052492
74 21 1.0073051 1.0062502 1.0054367 1.0053855
75 18 1.0043525 1.0045270 1.0047913 1.0047076
75 19 1.0055581 1.0055253 1.0053320 1.0052745
75 19 1.0043362 1.0050875 1.0048318 1.0047935
75 18 1.0044765 1.0044657 1.0048413 1.0045600
75 19 1.0055261 1.0060162 1.0062280 1.0061452
75 19 1.0076103 1.0055851 1.0052363 1.0050916
75 17 1.0026446 1.0042524 1.0056341 1.0056372
75 13 1.0034606 1.0050959 1.0059679 1.0060691
75 19 1.0056633 1.0060919 1.0061616 1.0062177
75 19 1.0055581 1.0055253 1.0053320 1.0052745
74 21 1.0051755 1.0050625 1.0051932 1.0051160
73 19 1.0062770 1.0060259 1.0060197 1.0059555
73 19 1.0042889 1.0051152 1.0055301 1.0056028
73 21 1.0052778 1.0053031 1.0053482 1.0051598
73 21 1.0070172 1.0060705 1.0058571 1.0061884
73 21 1.0064290 1.0076935 1.0078084 1.0076327

E[µ] 1.0056864 1.0057782 1.0058118 1.0058245√
E
[(
µ − E[µ]

)2] 0.0012631 0.0008212 0.0008086 0.0008684
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without noise outlier removal (1.0058118), and lastly by the CoS2 method with the noise

outlier removal (1.0058245). The performance of the centroid translates to an angular rate

of 73.33581µrad/sec compared to the performance of the CoS2, which corresponds to an

angular rate of 73.34589µrad/sec. This is only a difference of 0.01008µrad/sec, meaning

that all the methods are very close. The statistical mean, E[µ], is a measurement of the

accuracy of the angular rate methods. However, looking at the standard deviation of the

accuracy,
√

E
[(
µ − E[µ]

)2], the centroid method has the largest variability at 0.0012631,

while the CoS1 is the most consistent at 0.0008086. With that said, each angular rate

algorithms would fit well within 1 standard deviation of the other methods standard

deviation; therefore, the difference in the accuracy of each measurement could be explained

by the statistical randomness of the samples chosen in this research. Analyzing the

variance, E[σ2] of the calculated angular rates, which is a measurement of the precision of

the angular rate algorithms, the most precise angular rate algorithm is the CoS1 algorithm

with an average variance of E[σ2] = 0.0001185. This is approximately 4 times more

precise than the centroid algorithm at E[σ2] = 0.0004462. Adding one standard deviation

to the mean of the centroid method results in an angular rate ratio of 1.02681. This

corresponds to an angular rate of 74.8761µrad/sec. Performing this same operation using

the CoS2 returns an angular rate ratio of 1.01670, which corresponds to an angular rate of

74.1392µrad/sec. The difference between the two is 0.7369µrad/sec.

One method to quantify the quality of the measurement is the variance of estimation

error [16]. To compare the algorithms from both an accuracy and precision perspective,

Eq. (4.1) is used to quantify the total error, etotal, where E[σ2] is the variance, E[µ] is the

mean, and T is the true angular rate ratio. In this research, T = 1. The total error will have

units of error squared.

e2
total = E[σ2] + (E[µ] − T )2 (4.1)
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Table 4.2: Calculated ± 3 Standard Deviation of the Angular Rate for Each Angular Rate

Algorithm

data day #of frames 3σ centroid 3σ CoI 3σ CoS1 3σ CoS2

73 23 0.0445912 0.0298581 0.0251999 0.0289219
73 21 0.0392077 0.0296648 0.0271911 0.0292341
73 13 0.0963049 0.0446007 0.0315409 0.0354693
73 22 0.0717623 0.0382374 0.0381151 0.0280439
73 20 0.0724458 0.0364097 0.0303710 0.0280032
74 20 0.0428336 0.0334345 0.0314792 0.0336935
74 18 0.0571243 0.0451754 0.0343813 0.0383804
74 19 0.0569313 0.0316126 0.0299362 0.0202356
74 17 0.1246202 0.0865768 0.0360987 0.0269769
74 18 0.0522510 0.0271277 0.0238602 0.0230673
74 14 0.0361371 0.0239891 0.0178208 0.0195015
74 19 0.0501664 0.0336210 0.0227849 0.0178829
74 20 0.0599039 0.0340425 0.0451242 0.0433622
74 21 0.0671119 0.0452155 0.0362285 0.0329722
75 18 0.0577331 0.0441061 0.0359139 0.0433578
75 19 0.0621439 0.0335418 0.0263784 0.0306161
75 19 0.0526860 0.0375872 0.0382641 0.0367432
75 18 0.0635416 0.0325461 0.0318498 0.0320464
75 19 0.0432926 0.0265838 0.0234228 0.0280347
75 19 0.0484179 0.0317165 0.0362577 0.0360900
75 17 0.1195076 0.0669008 0.0248923 0.0267181
75 13 0.0637285 0.0488859 0.0378567 0.0362041
75 19 0.0692308 0.0441056 0.0389342 0.0328561
75 19 0.0621439 0.0335418 0.0263784 0.0306161
74 21 0.0726213 0.0455256 0.0386212 0.0383896
73 19 0.0625248 0.0342114 0.0345918 0.0339022
73 19 0.0636214 0.0404866 0.0366572 0.0408823
73 21 0.0461279 0.0334492 0.0317194 0.0337131
73 21 0.0508438 0.0377533 0.0303708 0.0322880
73 21 0.0914496 0.0603033 0.0574650 0.0608769

E[3σ] 0.0633669 0.0396937 0.0326569 0.0326360
E[σ2] 0.0004462 0.0001751 0.0001185 0.0001183

e2
total 0.0004785 0.0002085 0.0001523 0.0001523

etotal 0.0218743 0.0144379 0.0123399 0.0123398
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This method for describing which angular rate algorithm is the most accurate and precise

from an equal weighting. This is method for quantifying which angular rate algorithm is

best is based on the etotal, which assigns equal weighting to the mean, E[µ], differenced

from the true angular rate, T , as well as the error due to the variance, E[σ2], of the

calculated angular rate. As this method judges the accuracy and precision from an equal

footing, the total error will tell which error source between accuracy and precision has more

significance in the overall calculated angular rate. Note that the data in this research are

based on the ratio of calculated angular rate compared to the actual angular rate; a perfectly

calculated angular rate would yield to an angular rate ratio of 1. Additionally, the total error

is computed in percentage squared. Therefore, the total error in these results is a percentage

squared from 1.

Based on this, the CoS1 and CoS2 algorithms both have a total error of 0.01234. This

is slightly better than the CoI algorithm which has a total error of 0.01444. The centroid

method scores a 0.02187, which is approximately 1.77 times worse than the CoS methods.

Given equal weighting of the variance and mean, the precision, E[σ2], is a more significant

factor in calculating the angular rate of a detected space object.

Looking at the total error for the centroid algorithm in terms of angular rate, an etotal

of 0.02187 would correspond to an error of 1.595µrad/sec. Looking at the total error for

the CoS methods in terms of angular rate, which both have an etotal of 0.01234, they would

correspond to an 0.899µrad/sec in error.
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V. Discussion

The results of this research show that both the Center of SNR (CoS) algorithms, which

are based on the multi-hypothesis test (MHT) detection algorithms with and without noise

outlier removal performed the best in terms of precision and total error when measuring the

angular rate of an object. The centroid method is the most accurate; however, its slightly

better performance in accuracy is well within one standard deviation of the data. This

means that this slightly better performance in measuring the mean angular rate could be

explained by variances in the data; therefore, a definitive conclusion about it being more

accurate angular rate algorithm cannot be made in this research.

5.1 Relevance of Results

The relevance of these results are that the binary hypothesis and centroid method

currently employed on the SST for detecting space objects and determining their position

and angular rate information could be improved upon by implementing the MHT detection

algorithm and one of the CoS algorithm for determining position and angular rate described

in this research. Looking at the total error as described in section (4.1), both CoS algorithms

had a total error of 0.01234, while the method currently employed on the SST has a total

error of 0.02187. This means that in terms of total error, that the CoS algorithms are

approximately 1.77 times better than the currently employed centroid method. The total

error in terms of angular rate for the centroid method is 1.595µrad/sec. In comparison,

the CoS algorithms have a total error of 0.899µrad/sec. As the SST uses around 3 to 5

sequential observations to determine a track for a detected object, having the most precise

and accurate angular rate measurement is critical.
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5.2 Future Work

The purpose of this research is in categorizing which angular rate algorithm is accurate

and precise. The next step in this research would be to use the angular rate measurements

from a detected space object to determine its track and orbital parameters. Additionally, if

this research is to be implemented on the SST, the code will need to be streamlined in order

that it runs near real-time. This requires understanding the full SST system in order that

the MHT detection and CoS angular rate algorithms can be implemented into the current

operational system. Finally, more work is required in being able to implement this code

with a full SST data frame which can contain multiple objects each moving at a unique

angular rate.

5.3 Conclusion

Both CoS methods performed in this research are better at determining the position

and angular rate of a detected object than the currently employed centroid method on the

SST. This research demonstrated that improvements can be made by using the MHT

methods. The implications are that the observation uncertainty will go down, thereby

improving the estimated angular position and rate. This in-turn improves the ability to

determine the track of a detected space object and improve the ability to perform SSA.

Additional research will need to be conducted to quantify by how much tracks of detected

space objects are improved by when using the MHT algorithms in conjunction with the

CoS algorithms.
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Appendix: MATLAB code

A.1 Main MATLAB code

%Anthony Sligar

%SST detection

clear; close all; clc;

%Day seeing (cm)

%73 5.9

%74 6.1

%75 5.6

%81 3.5

%82 4.8

%83 6.4

Bx=2.028436184860734e+03; %x_correct=x_window+view_x1+B

By=3.075334518833674e+03; %y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load data_cube073_3d; %data used

rdata=data_cube073_3d;

load hypo59; %loads hypotheses with 5.9 cm seeing parameter

%star1

frame1=552; %first frame to view
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frame2=575; %last frame to view

view_x1=60; %coordinate of 1st x value in viewing range

view_x2=80; %coordinate of last x value in viewing range

view_y1=1; %coordinate of 1st y value in viewing range

view_y2=200; %coordinate of last y value in viewing range

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%sets size of psf to the size of the window

if (view_x2-view_x1)>=20

psf=padarray(hypo,[view_y2-view_y1-19 view_x2-view_x1-19],0,’pre’);

z=psf(:,:,5);

[num indx]=max(z(:));

[Yshift Xshift] = ind2sub(size(z),indx); %uses index value to find location of max

psf=circshift(psf,[1-Yshift,1-Xshift]);

else psf=padarray(hypo,[view_y2-view_y1-19 0],0,’pre’);

psf=psf(:,1:(view_x2-view_x1+1),:);

z=psf(:,:,5);

[num indx]=max(z(:));

[Yshift Xshift] = ind2sub(size(z),indx); %uses index value to find location of max

psf=circshift(psf,[1-Yshift,1-Xshift]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%detection tests and position array

for ii=frame1:frame2

Dsst=rdata(view_y1:view_y2,view_x1:view_x2,ii); %load SST frame

[xcent(ii) ycent(ii) H0]=centroid(Dsst); %centroid function call

[xCOI(ii) yCOI(ii) H1]=COI(Dsst); %CoI function call

[xMHT(ii) yMHT(ii) H3]=MHT3(Dsst, psf); %CoS1 function call

[xSNR(ii) ySNR(ii) H4]=MHT4(Dsst, psf); %CoS2 function call

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%position information

Xloc1=xcent+view_x1+Bx; %centroid method

Yloc1=ycent+view_y1+By; %centroid method

XlocCOI=xCOI+view_x1+Bx; %CoI method

YlocCOI=yCOI+view_y1+By; %CoI method

XlocSNR=xSNR+view_x1+Bx; %CoS2 method

YlocSNR=ySNR+view_y1+By; %CoS2 method

XlocMHT=xMHT+view_x1+Bx; %CoS1 method

YlocMHT=yMHT+view_y1+By; %CoS1 method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%converts pixels to radians in field of view

radperpix=tan((30/3.49)*10ˆ-6); %SST rad/pixel
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sid_radsec=(2*pi/(23.9344699*3600)); %sidereal rate (rad/sec)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for kk=frame1:frame2-1

xslope(kk)=(Xloc1(kk+1)-Xloc1(kk))*radperpix; %centroid method

yslope(kk)=(Yloc1(kk+1)-Yloc1(kk))*radperpix; %centroid method

xslopeCOI(kk)=(XlocCOI(kk+1)-XlocCOI(kk))*radperpix; %CoI method

yslopeCOI(kk)=(YlocCOI(kk+1)-YlocCOI(kk))*radperpix; %CoI method

xslopeSNR(kk)=(XlocSNR(kk+1)-XlocSNR(kk))*radperpix; %CoS2 method

yslopeSNR(kk)=(YlocSNR(kk+1)-YlocSNR(kk))*radperpix; %CoS2 method

xslopeMHT(kk)=(XlocMHT(kk+1)-XlocMHT(kk))*radperpix; %CoS1 method

yslopeMHT(kk)=(YlocMHT(kk+1)-YlocMHT(kk))*radperpix; %CoS1 method

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%centroid method

xslope1=xslope./sid_radsec; %ratio between object’s angular rate to sidereal rate

yslope1=yslope./sid_radsec;

combinedmag=(sqrt((xslope.ˆ2)+(yslope.ˆ2)))./sid_radsec;

avgCen=ones(1,length(combinedmag))*mean(combinedmag(combinedmag˜=0));
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pstdCen=avgCen+(ones(1,length(combinedmag))*3*std(combinedmag(combinedmag˜=0)));

nstdCen=avgCen-(ones(1,length(combinedmag))*3*std(combinedmag(combinedmag˜=0)));

%CoI method

xslopeCOI1=xslopeCOI./sid_radsec; %ratio between object’s angular rate to sidereal rate

yslopeCOI1=yslopeCOI./sid_radsec;

combinedmagCOI=(sqrt((xslopeCOI.ˆ2)+(yslopeCOI.ˆ2)))./sid_radsec;

avgCOI=ones(1,length(combinedmag))*mean(combinedmagCOI(combinedmagCOI˜=0));

pstdCOI=avgCOI+(ones(1,length(combinedmag))*3*std(combinedmagCOI(combinedmagCOI˜=0)));

nstdCOI=avgCOI-(ones(1,length(combinedmag))*3*std(combinedmagCOI(combinedmagCOI˜=0)));

%CoS2 method

xslopeSNR1=xslopeSNR./sid_radsec; %ratio between object’s angular rate to sidereal rate

yslopeSNR1=yslopeSNR./sid_radsec;

combinedmagSNR=(sqrt((xslopeSNR.ˆ2)+(yslopeSNR.ˆ2)))./sid_radsec;

avgSNR=ones(1,length(combinedmag))*mean(combinedmagSNR(combinedmagSNR˜=0));

pstdSNR=avgSNR+(ones(1,length(combinedmag))*3*std(combinedmagSNR(combinedmagSNR˜=0)));

nstdSNR=avgSNR-(ones(1,length(combinedmag))*3*std(combinedmagSNR(combinedmagSNR˜=0)));

%CoS1 method

xslopeMHT11=xslopeMHT./sid_radsec; %ratio between object’s angular rate to sidereal rate

yslopeMHT11=yslopeMHT./sid_radsec;

combinedmagMHT=(sqrt((xslopeMHT.ˆ2)+(yslopeMHT.ˆ2)))./sid_radsec;

avgMHT=ones(1,length(combinedmag))*mean(combinedmagMHT(combinedmagMHT˜=0));

pstdMHT=avgMHT+(ones(1,length(combinedmag))*3*std(combinedmagMHT(combinedmagMHT˜=0)));

nstdMHT=avgMHT-(ones(1,length(combinedmag))*3*std(combinedmagMHT(combinedmagMHT˜=0)));
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%plotting

figure(1)

subplot(3,2,1)

set(gca, ’FontSize’, 12);

plot(Xloc1,’color’, ’b’,’linestyle’,’--’);hold on;plot(XlocCOI,’color’,’m’,’linestyle’,’:’);hold on; plot(XlocMHT,’color’,’r’,’linestyle’,’-.’);hold on;plot(XlocSNR,’k’)

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’pixel x-direction’);

title(’Position (x)’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

subplot(3,2,2)

set(gca, ’FontSize’, 12);

plot(Yloc1,’color’, ’b’,’linestyle’,’--’);hold on;plot(YlocCOI,’color’,’m’,’linestyle’,’:’);hold on; plot(YlocMHT,’color’,’r’,’linestyle’,’-.’);hold on;plot(YlocSNR,’k’)

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’pixel y-direction’);

title(’Position (y)’)

legend(’Centroid’,’Center of Intensity’,’MHT’,’MHT w/outlier removal’,’location’,’southeast’);

subplot(3,2,3)

set(gca, ’FontSize’, 12);

plot(xslope,’color’, ’b’,’linestyle’,’--’);hold on;plot(xslopeCOI,’color’,’m’,’linestyle’,’:’);hold on; plot(xslopeMHT,’color’,’r’,’linestyle’,’-.’);hold on;plot(xslopeSNR,’k’)

xlim([ frame1 frame2 ])
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xlabel(’frame number’);

ylabel(’rate (radians/frame) (x)’);

title(’Angular rate radians/frame (x)’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

subplot(3,2,4)

set(gca, ’FontSize’, 12);

plot(yslope,’color’, ’b’,’linestyle’,’--’);hold on;plot(yslopeCOI,’color’,’m’,’linestyle’,’:’);hold on; plot(yslopeMHT,’color’,’r’,’linestyle’,’-.’);hold on;plot(yslopeSNR,’k’)

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’rate (radians/frame) (y)’);

title(’Angular rate radians/frame (y)’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

subplot(3,2,5)

set(gca, ’FontSize’, 12);

plot(xslope1,’color’, ’b’,’linestyle’,’--’);hold on;plot(xslopeCOI1,’color’,’m’,’linestyle’,’:’);hold on; plot(xslopeMHT11,’color’,’r’,’linestyle’,’-.’);hold on;plot(xslopeSNR1,’k’)

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’ratio rad/frame/sidereal rate (x)’);

title(’radians/frame divided by sidereal rate (x)’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

subplot(3,2,6)

set(gca, ’FontSize’, 12);

plot(yslope1,’color’, ’b’,’linestyle’,’--’);hold on;plot(yslopeCOI1,’color’,’m’,’linestyle’,’:’);hold on; plot(yslopeMHT11,’color’,’r’,’linestyle’,’-.’);hold on;plot(yslopeSNR1,’k’)
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xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’ratio rad/frame/sidereal rate (y)’);

title(’radians/frame divided by sidereal rate (y)’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

figure(2)

set(gca, ’FontSize’, 12);

plot(combinedmag,’color’, ’b’,’linestyle’,’--’);hold on;plot(combinedmagCOI,’color’,’m’,’linestyle’,’:’);hold on; plot(combinedmagMHT,’color’,’r’,’linestyle’,’-.’);hold on;plot(combinedmagSNR,’k’)

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’Magnitude of object in (radians/frame)/(sidereal rate)’);

title(’Magnitude of angular rate divided by sidereal rate’)

legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

figure(3)

set(gca, ’FontSize’, 12);

plot(avgCen,’b’,’linestyle’,’--’);hold on;plot(avgCOI,’m’,’linestyle’,’:’);hold on; plot(avgMHT,’r’,’linestyle’,’-.’);hold on;plot(avgSNR,’k’);hold on;

plot(pstdCen,’b’,’linestyle’,’--’);hold on;plot(nstdCen,’b’,’linestyle’,’--’);hold on;

plot(pstdCOI,’m’,’linestyle’,’:’);hold on;plot(nstdCOI,’m’,’linestyle’,’:’);hold on;

plot(pstdMHT,’r’,’linestyle’,’-.’);hold on;plot(nstdMHT,’r’,’linestyle’,’-.’);hold on;

plot(pstdSNR,’k’);hold on;plot(nstdSNR,’k’);hold on;

xlim([ frame1 frame2 ])

xlabel(’frame number’);

ylabel(’Magnitude of object in radians/frame’);

title(’Magnitude of angular rate divided by sidereal rate using mean and stdev’);
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legend(’Centroid’,’CoI’,’CoS’,’CoS w/outlier removal’,’location’,’southeast’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format long;

ZZ=[max(avgCen) max(avgCOI) max(avgMHT) max(avgSNR) max(pstdCen) max(pstdCOI) max(pstdMHT) max(pstdSNR) frame1 frame2]; %used to gather statistics for each method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.2 MATLAB code functions: Centroid

function [xpos ypos H1] = centroid(Dsst);

tau=6; %threshold value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%point detection test

Bh=median(Dsst(:)); %this is the noise determined from Dsst

sigma=sqrt(mean(mean((Dsst-Bh).ˆ2))); %takes the value of all the pixels

LRT=((Dsst-Bh)/sigma); %LRT is likelihood ratio test

[m,n]=size(Dsst); %m is size in y direction, n is size in x direction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create matrix of detection points

for m=1:m

for n=1:n

if LRT(m,n)>tau

H1(m,n)=1; %sets detection parameter H1 to 1 if there is an object
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else H1(m,n)=0;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%centroid operation

xsum=sum(H1);

ysum=sum(H1’);

H1sum=sum(sum(H1));

for k=1:n %centroid operation; finds x position

xprod(k)=xsum(k)*k;

end

for l=1:m %centroid operation; finds y position

yprod(l)=ysum(l)*l;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%returns position coordinates of values

xpos=sum(xprod)/H1sum; %x position of object

ypos=sum(yprod)/H1sum; %y position of object

end
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A.3 MATLAB code functions: CoI

function [xpos ypos H1i] = COI(Dsst);

tau=6; %threshold value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%point detection test

Bh=median(Dsst(:)); %this is the noise determined from Dsst

sigma=sqrt(mean(mean((Dsst-Bh).ˆ2))); %takes the value of all the pixels

LRT=((Dsst-Bh)/sigma); %LRT is likelihood ratio test

[m,n]=size(Dsst); %m is size in y direction, n is size in x direction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create matrix of detection points

for m=1:m

for n=1:n

if LRT(m,n)>tau

H1(m,n)=1; %sets detection parameter H1 to 1 if there is an object

else H1(m,n)=0;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%centroid operation
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H1i=Dsst.*H1; %sets values in H1 equal to 1 back to intensity values in Dsst

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Center of Intensity - COI method 1

xsum=sum(H1i);

ysum=sum(H1i’);

H1sum=sum(sum(H1i));

for k=1:n

xprod(k)=xsum(k)*k;

end

for l=1:m

yprod(l)=ysum(l)*l;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%returns position coordinates of values

xpos=sum(xprod)/H1sum; %x position of object

ypos=sum(yprod)/H1sum; %y position of object

end

A.4 MATLAB code functions: MHT3

function [xpos ypos MHT_SNR1] = MHT3(Dsst, psf);

78



tau=6.2212; %threshold value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%LRT detection test

Bh=median(Dsst(:)); %this is the noise determined from Dsst

sigma=sqrt(mean(mean((Dsst-Bh).ˆ2))); %takes the value of all the pixels

LRT=((Dsst-Bh)/sigma); %LRT is likelihood ratio test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MHT

for kk=1:9;

SNR(:,:,kk)=(ifft2(fft2(LRT).*fft2(psf(:,:,kk))))/sqrt(sum(sum(psf(:,:,kk).ˆ2))); %this is the 9 SNRs

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%filter (set to 0) anything that is less than tau

[m,n,o]=size(SNR);

for c=1:o;

for a=1:m;

for b=1:n;

if SNR(a,b,c)>tau

SNR(a,b,c)=SNR(a,b,c); %sets detection parameter H1 to 1 if there is an object

else SNR(a,b,c)=0;
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end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create MHT_SNR combined matrix

MHT_SNR=zeros(m*2,n*2);

MHT_SNR(2:2:m*2,2:2:n*2)=SNR(:,:,5);

MHT_SNR(2:2:m*2,3:2:n*2+1)=SNR(:,:,6);

MHT_SNR(3:2:m*2+1,2:2:n*2)=SNR(:,:,8);

MHT_SNR(3:2:m*2+1,3:2:n*2+1)=SNR(:,:,9);

MHT_SNR=padarray(MHT_SNR,[10 10],0,’both’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%filter out all but the brightest star

[m,n]=size(MHT_SNR);

MHT_SNR1=zeros(m,n);

if max(max(MHT_SNR))==0;

xpos=-1;

ypos=-1;

else

[num indx]=max(MHT_SNR(:));

[Ymax Xmax] = ind2sub(size(MHT_SNR),indx);
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MHT_SNR1(Ymax-5:Ymax+5,Xmax-5:Xmax+5)=MHT_SNR(Ymax-5:Ymax+5,Xmax-5:Xmax+5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%centroid operation

xsum=sum(MHT_SNR1);

ysum=sum(MHT_SNR1’);

H2sum=sum(sum(MHT_SNR1));

[y,x]=size(MHT_SNR1);

for k=1:x

xprod(k)=xsum(k)*k;

end

for l=1:y

yprod(l)=ysum(l)*l;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%return position values

xpos=sum(xprod)/(2*H2sum)-5.5623;

ypos=sum(yprod)/(2*H2sum)-5.7067;

end

A.5 MATLAB code functions: MHT4

function [xpos ypos MHT_SNR1] = MHT4(Dsst, psf);
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tau=6.2212; %threshold value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%LRT detection test

Bh=median(Dsst(:)); %this is the noise determined from Dsst

sigma=sqrt(mean(mean((Dsst-Bh).ˆ2))); %takes the value of all the pixels

binmap=((Dsst-Bh)<tau*sigma); %creates a binary map where 1 is equal to anything less than tau*sigma

sigma2=sqrt(sum(sum((binmap.*(Dsst-Bh)).ˆ2))/sum(sum(binmap))); %creates a new sigma (boosts background noise levels while taking out any object that is over the tau*sigma)

LRT=((Dsst-Bh)/sigma2); %LRT is likelihood ratio test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MHT

for kk=1:9;

SNR(:,:,kk)=(ifft2(fft2(LRT).*fft2(psf(:,:,kk))))/sqrt(sum(sum(psf(:,:,kk).ˆ2))); %this is the 9 SNRs

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%filter (set to 0) anything that is less than tau

[m,n,o]=size(SNR);

for c=1:o;

for a=1:m;

for b=1:n;
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if SNR(a,b,c)>tau

SNR(a,b,c)=SNR(a,b,c); %sets detection parameter H1 to 1 if there is an object

else SNR(a,b,c)=0;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create MHT_SNR combined matrix

MHT_SNR=zeros(m*2,n*2);

MHT_SNR(2:2:m*2,2:2:n*2)=SNR(:,:,5);

MHT_SNR(2:2:m*2,3:2:n*2+1)=SNR(:,:,6);

MHT_SNR(3:2:m*2+1,2:2:n*2)=SNR(:,:,8);

MHT_SNR(3:2:m*2+1,3:2:n*2+1)=SNR(:,:,9);

MHT_SNR=padarray(MHT_SNR,[10 10],0,’both’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%filter out all but the brightest star

[m,n]=size(MHT_SNR);

MHT_SNR1=zeros(m,n);

if max(max(MHT_SNR))==0;

xpos=-1;

ypos=-1;

else
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[num indx]=max(MHT_SNR(:));

[Ymax Xmax] = ind2sub(size(MHT_SNR),indx);

MHT_SNR1(Ymax-5:Ymax+5,Xmax-5:Xmax+5)=MHT_SNR(Ymax-5:Ymax+5,Xmax-5:Xmax+5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%centroid operation

xsum=sum(MHT_SNR1);

ysum=sum(MHT_SNR1’);

H2sum=sum(sum(MHT_SNR1));

[y,x]=size(MHT_SNR1);

for k=1:x

xprod(k)=xsum(k)*k;

end

for l=1:y

yprod(l)=ysum(l)*l;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%return position values

xpos=sum(xprod)/(2*H2sum)-5.5810;

ypos=sum(yprod)/(2*H2sum)-5.6550;

end

end
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