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Abstract 

Spores of Bacillus anthracis (Ba) Sterne were irradiated with 267nm UV light using 

small light emitting diodes (LEDs). The pRB373 plasmid with a red fluorescent protein 

was transformed into Ba Sterne cells prior. Following irradiation, germination media was 

added and the spores were incubated for various times, to allow for DNA repair. The 

pRB373 plasmid was isolated and analyzed using real-time PCR. Primers were designed 

across the RFP in the plasmid yielding two amplicons, 245bp and 547bp long. PCR 

amplification was not achieved for germinated samples. Spore samples isolated using 

bead beating methods were amplified. Results indicate a quicker amplification (lower Ct) 

for irradiated samples than for un-irradiated. Lack of PCR amplification in germinated 

samples is attributed to extremely harsh extraction methods for Ba cells. This observation 

was not expected. Ba survival curves were also developed using the quadratic fit   
      . Averaging results form 3 experiments, α is reported as -0.0144 ± 0.008 and β 

as -0.00001 ± 0.0002. Fit parameters are reported to a 90% confidence interval. 

Actinometry experiments corrected for the efficiency of the LEDs in all experimentation. 

Fluorescence measurements monitored germination and outgrowth; they indicated a 

delay in germination of irradiated spores. AFM images showed morphological changes in 

irradiated spores. Spore coats and/or the exosporium appear detached from the spore 

following irradiation. Irradiated spores also show vegetative growth in much smaller 

clusters than non-irradiated spores.  
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1 

MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS 

ANTHRACIS STERNE SPORES BY UV RADIATION 

 

I.  Introduction 

Research Statement 

 The primary objective of this research project was to develop Bacillus anthracis 

Sterne spore survival curves for UV C irradiation and to use PCR to model DNA repair 

following UV irradiation. 

Problem Statement 

The purpose of this research is to investigate DNA damage and repair of Bacillus 

anthracis spores following UV irradiation. Investigation in this field is driven by both 

practical and fundamental motivations. There is a need to disinfect drinking water for 

military personnel in remote locations to limit expensive bottled water usage. 

Disinfection of water by UV radiation without use of harmful chemicals is also applied in 

water treatment facilities for waste water and in drinking water disinfection. Disease-

causing microorganisms that are very difficult to kill, such as bacterial spores, represent a 

bounding challenge for water disinfection.  In these and other applications there is benefit 

in understanding fundamental relationships between spore inactivation with DNA 

damage and repair.  Correlation of DNA damage and repair with spore inactivation 

conditions allows for a better understanding of what UV irradiation doses can render 

Bacillus anthracis spore harmless to the human population. Inactivation of Bacillus 

anthracis spores is of particular interest to the US military in attempts to prevent and 

counteract terrorist attacks involving Bacillus anthracis bio-weapons. 
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This project aimed to study the relationship between DNA damage and 

inactivation of Bacillus anthracis spores. DNA damage is known to have significance in 

the inactivation of bacteria, as does enzyme activity. This research analyzed UV 

irradiation and its direct impact on DNA damage, as it leads to spore inactivation. The 

spore’s ability to repair damaged DNA through use of enzyme activity was also studied. 

Motivation 

Bacillus anthracis (Ba) is a spore-forming gram-positive bacterium, known for its 

use as a biological weapon. Ba causes the disease anthrax in humans which can be lethal 

without treatment or prevention. Anthrax occurs in three forms depending on the 

exposure path: cutaneous, gastrointestinal, and pulmonary (inhalational) [1]. Of greatest 

interest to the military is inhalational exposure which causes the most lethal disease. 

Typically pulmonary disease requires inhalation of approximately 1000 separate spores 

into the lungs of a healthy person. So dissemination of respirable, dry spores by aerosol 

methods is most effective in spreading the bacteria to cause disease.  

 In 1979, anthrax was accidentally released from a research facility in Russia, 

resulting in 97 cases of human infection [2]. In 2001, the United States was threatened by 

biological warfare when Ba spores were concealed in letters and mailed to members of 

the press and members of Congress. According to the Center for Disease Control (CDC), 

22 people contracted anthrax disease from these attacks, 11 inhalational and 11 

cutaneous. Of the 11 with inhalational anthrax, five individuals perished [2]. The attack 

in 2001 encouraged the United States to better prepare for biological warfare, especially 

pertaining to anthrax and other aerosol-mediated weapons. In recent years, the United 
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States’ combat against biological warfare has been defensive in nature. While no concrete 

evidence has been provided, other countries could continue to produce anthrax for 

offensive use. Following the first Gulf War, Iraq had a bio-weapons program capable of 

weaponizing anthrax [3]. 

Research Focus 

At AFIT, previous studies of Ba spores have focused on thermal inactivation to 

prevent colony formation. Complete inactivation is defined as outgrowth that yields no 

viable colonies. Models have been created for inactivation at different temperatures and 

exposure times to create a complete profile of thermal inactivation [4] [5].  

When Ba spores are exposed to heat, bound water molecules become mobile in 

the spore [4]. Water molecules then react with DNA undergoing hydrolysis reactions [5]. 

Enzymes and the DNA encapsulated inside the spore are both degraded. If the spore is to 

survive, it must repair its damaged DNA. The repair process relies heavily on enzymes 

that can retain catalytic activity after thermal exposure [4]. A graduate student at AFIT, 

Alexis Hurst, modeled survivability rates after thermal exposure based upon criteria 

including: water mobility, hydrolysis reactions, and repair enzymes. Another graduate 

student at AFIT, Emily Knight, studied similar phenomenon. In an attempt to mimic 

effects equivalent to detonation of a conventional weapon, Knight studied high 

temperature exposure of spores for short durations of time, and the differences in thermal 

inactivation with a wet and dry spore. Knight also modeled the high temperature 

exposure for short durations of time [5]. She concluded that wet heating allowed for more 

hydrolysis reactions, causing more protein damage then did dry heat. 
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The modeling and measurement approach to understanding spore inactivation, 

particularly DNA degradation and repair in Ba spores, is now being applied to spore 

inactivation via UV and ionizing radiation. In this field, little is understood about the 

inactivation effects produced by DNA damage and repair after exposure to ionizing 

radiation. UV radiation has been studied in greater detail because of its simpler 

mechanism and the interest generated by its importance in civil health infrastructure such 

as waste water treatment facilities. UV water disinfection reduces chemical usage in 

treatment facilities, and has negligible residual affects harmful to humans.  

Damage by ionizing radiation and UV radiation are related. Kinetic mechanisms 

and yields are nearly identical for that portion of ionizing radiation damage in organic 

molecules that is produced by disintegration of electronically excited states of those 

molecules.  Kinetic mechanisms and yields that proceed from molecular ion excited 

states and molecular radicals produced by ionizing radiation are different. Particularly for 

indirect ionization radiation effects, the radical distributions produced in aquatic systems 

and the efficiency of DNA damage that can be interpreted via known kinetics 

mechanisms [6]. To better understand and begin to study ionizing radiation, UV radiation 

was used as a more simplified platform to begin our new research in this field.  

To safely perform this research in a BSL 2 laboratory, the Sterne strain of Ba was 

used. The Sterne strain lacks the pXO1 plasmid which encodes for the virulence/toxicity 

of Ba. Without this pXO1 plasmid, the organism loses its virulence. Ba Sterne is even 

used as an effective vaccine for prevention of anthrax [7]. 
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Relevant Research 

 Inactivation of spores by UV radiation was previously studied at AFIT by Major 

Tho Tran [8]. Using the same reactor used in this experimentation, he modeled the 

inactivation of Bacillus globigii. Tran’s work concluded that pulsed UV light from Light 

Emitting Diodes (LEDs) was more effective than continuous UV radiation at inactivating 

spores. Continuous and pulsed LED irradiation both achieved 6-log kill inactivation, but 

pulsed was 1.8 times more effective than continuous [8]. Wurtele et al also studied UV-

LEDs for waste water disinfection. Bacillus subtilis was studied in this experiment where 

inactivation was achieved at 269 and 282nm, concluding 269nm light was more effective 

at inactivation of Bacillus subtilis than was 282nm [9].  

Methodology 

A commercial plasmid pRB373 (5800 base pairs) [10] was transformed into 

Bacillus anthracis. DNA damage can be studied more easily with plasmids, as their size is 

significantly smaller than the Ba genome. The plasmid contains a red florescent protein 

and upon expression, the cells are a pinkish-red color. The plasmid also contains an 

antibiotic resistance gene, which gives the cell an advantage when it keeps the plasmid. 

Studies will be conducted on Ba spores and vegetative cells. Target radiation dose will 

correlate to approximately 1-log kill. At this dose, it is expected that the surviving spores 

will have badly damaged DNA and will yield the most useful damage and repair data. 

Special primers and probes were designed to work in conjunction with real-time PCR 

(Polymerase Chain Reaction) and were used to amplify the DNA from the extracted 

plasmids.  
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Document Structure 

 This document is separated into 5 chapters. Chapter 1 introduces the subject 

matter and discusses the motivations behind the research. Chapter 2 provides the reader 

with background information and theory behind the research covered in this thesis. 

Topics covered in chapter 2 include: The Spore, UV photochemistry, and DNA damage 

and repair. Chapter 3 describes the detailed methods and procedures followed to conduct 

the research. Chapter 4 presents the data collected by methods following in chapter 3, as 

well as the data analysis results. Chapter 5 concludes the document and discusses the 

significance of the research. Chapter 5 also addresses recommendations for future 

research in this area. Following the fifth chapter, the appendix provides additional 

information not pertinent to the content of the thesis, but necessary for reproducibility of 

results. The appendix also provides the raw data for all experiments conducted. The 

bibliography follows the appendix and annotates all sources and documents used in 

research and creation of this project.  
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II. Background & Theory 

Chapter Overview 

The purpose of this chapter is to provide relevant background information 

regarding Bacillus anthracis and UV radiation. Topics discussed in this section include 

DNA, photochemistry, DNA damage and repair, and spore structure. This section also 

previews the experimentation including the irradiation system used, configured with 

small, light-emitting diodes (LEDs).  

DNA 

Deoxyribonucleic acid (DNA) is a molecule that contains the individual genetic 

code used to create new cells and life. Nucleic acids, lipids, proteins and carbohydrates 

are all necessary molecules for life. DNA double strand structure is composed of two 

anti-parallel strands containing the same genetic code. It has a double helical structure 

where the backbone is comprised of phosphorous ribose sugar molecules. DNA is a linear 

polymer with its repeating units having different component bases. Four bases make up 

the code in DNA: cytosine, guanine, thymine, and adenine. Adenine and guanine are 

purines and have double ring structures. Thymine and cytosine are pyrimidines and have 

a single ring structure. Because of geometry and hydrogen bonding between the bases, 

adenine exclusively pairs with thymine and cytosine exclusively pairs with guanine. 

Figure 1 below shows the hydrogen bonding of pyrimidines and purines [11]. Adenine 

and thymine linkages are held together by two hydrogen bonds. Cytosine and guanine 

linkages are held together by 3 hydrogen bonds. Therefore, CG bonds are stronger than 

AT bonds.  
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Figure 1. Structure of DNA. Cytosine and Guanine form the stronger of the two bonds 

across the sugar backbones. Thymine and Adenine form the weaker of the two bonds. 

The strength of the bond across the two DNA strands directly correlates to the hydrogen 

bonds. Figure reprinted with Permission from [11]. 

 

When DNA is not actively being used to synthesize new DNA, it is wound tightly 

into chromosomal structure, which serves to protect the DNA. The DNA is coiled several 

times and wrapped tightly around proteins. The wrapping helps the DNA keep its 

chromatin structure. When DNA is to be replicated, enzymes unwind the chromosomal 

DNA. Therefore, DNA is not specifically used for any function other than a storage 

library for the genetic code. Therefore, the cell protects and preserves the DNA as much 

as possible. If damage occurs and is not repaired or repaired improperly, mutations may 

occur in descendant generation cells.  
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DNA can take on several different conformational forms. B conformation of DNA 

(B-DNA) is the most common form under aqueous, low salt conditions. When Watson 

and Crick first discovered the structure of DNA, they were primarily studying B-DNA 

with X-ray diffraction [12]. In most typical cells, the B conformation is predominant [13]. 

While Watson and Crick were aware of a second DNA confirmation, A-DNA, it has just 

recently been studied in detail. A-DNA is most prevalent in low-water content and high 

salt environments [12].  A-DNA is more compact than B-DNA, which helps protect the 

DNA. The difference between A-DNA and B-DNA is discussed later regarding its 

importance in this project. DNA inside the spore adopts A-DNA conformation, leading to 

unique DNA damage called the spore photoproduct. Other confirmation forms of DNA 

exist including Z-, C-, D-, and E-DNA, but are not relevant to this project. 

Ba encapsulates its DNA deep within the spore. However, the DNA is still 

susceptible to damage via heat, chemicals, and radiation. UV radiation, or 

photochemistry, causes conformational changes of the DNA within spores, which help to 

better protect the DNA.  

Photochemistry 

Photochemistry involves chemistry following the absorption of one or more 

photons; for this project, photons in the ultraviolet energy range. Absorption of a photon 

by a molecule causes an electronic excitation to quantized excited states described by 

quantum mechanics. The collection of additional energy in the form of UV light causes 

molecules to undergo vibrational-electronic (vibronic) excitation that can produce 

conformation changes and chemical changes. For DNA, the chemical changes can alter 
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the genetic code producing mutations that can ultimately lead to cell death or the inability 

of a cell to replicate. 
1
 

Calvert and Pitts consider photochemistry as a bimolecular reaction in which the 

two reactants are light and a molecule [14]. The light and molecule interact and undergo 

chemical and/or physical changes. Therefore, it is important to discuss light when 

discussing photochemistry. Because light can cause a heating effect much like the sun 

does, and because energy is defined as heat or anything transferable to heat, light is 

considered a form of energy [14]. 

Photochemistry follows a set of laws discovered in the 1800s. The first law of 

photochemistry discovered by Grotthus (1817) and Draper (1843) states: Only the light 

which is absorbed by a molecule can be effective in producing photochemical change in 

the molecule. The second law of photochemistry, also termed the photo-equivalence law, 

states: For each photon of light absorbed by a chemical system, only one molecule is 

activated for subsequent reaction [14]. The second law was developed in large by Max 

Planck’s discovery of quantum theory. Planck believed that molecules could only absorb 

fixed quantities or quanta of light energy. Planck related this light energy, E to the 

frequency of light as seen below: 

                    E= hν                                                       (1) 

Where h is Planck’s proportionality constant and ν is the frequency of light or 

radiation. Quantum yield is defined as the number of defined events occurring per photon 

absorbed by the system [15]. In photochemical reactions, quantum yield Ф is calculated 

                                                 
1
 For the purposes of this research, “cell death” is considered to be the inability to outgrow a viable colony 

of daughter cells. 
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for any resulting product. Given the following chemical reaction where B is formed from 

the decomposition of A and hν signifies light radiation, 

                                                  A + hν → B                                                 (2) 

ФB=Molecules of B formed per unit volume per unit time/quanta of light absorbed by A 

per unit volume per unit time [14]. Quantum yields of photochemical reactions are used 

to determine the rate of photon absorption using chemical actinometers, to be discussed 

further in later sections.  

The ultraviolet spectrum is divided in three sections: UV-A (315-400nm), UV-B 

(280-315nm), and UV-C light (100-280nm). The UV light used in this project is UV-C 

light at approximately 267 nm. UV-C light is the most harmful and causes the most DNA 

damage [16]. UV-A light acts a photo-sensitizer and the damage may be easily reversed. 

UV-B and UV-C radiation causes more damage and more complex repair mechanisms 

are required [16].  

The sources of UV irradiation used in this project are small, light emitting diodes 

(LEDs). The LEDs are flat windowed and composed of aluminum gallium nitride 

(AlGaN) semiconducting material. Research using these AlGaN LEDs is a new 

exploration, and not without its issues. Experimentation during this project revealed the 

LEDs burn out if the current exceeds 20mA. These LEDs are of great interest for use in 

waste water treatment facilities because they contain no mercury and can therefore be 

disposed of more easily, they require no start-up or warm-up time, and can be powered 

on and off quickly [9]. Würlte et al. studied the emission power of AlGaN LEDs over 

time. Their study showed that LEDs lose emission power significantly over 100 hours. 
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Figure 2 below displays this relationship [9]. After 30 hours of operation, their emission 

output declines linearly and  slowly, but not negligibly, at about 0.2% per hour. 

 

Figure 2. Emission Power of AlGaN LEDs over time. LED emission power decreased 

40% over 100 hours of operating time. LED Emission power decrease also caused an 

increase in series resistance of about 1 Ω. Figure reprinted with permission from [9]. 

Copyright 2011 Elsevier 

The emission power decreased 40% after 100 hours of operation. However, this 

decrease in emission power did not change the emission wavelength (269 nm) [9]. This 

change in emission power will alter the efficiency of the LEDs to inactivate Ba spores. 

To account for this near-linear diminishment in light output, actinometry experiments 

were conducted. The potassium iodate/iodide chemical actinometer was used to measure 

fluence before and after irradiation experiments are conducted to monitor changes in the 

LEDs. 

Actinometry measurements will allow for better characterization of the UV 

irradiation imposed upon the Ba spores. To understand the protection mechanisms the 

spore offers to its DNA, the next sections describe the Ba spore in detail.  
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Bacillus anthracis  

The organism Bacillus anthracis is found naturally in domesticated and wild 

animals; such as sheep’s wool. In unfavorable conditions lacking nutrients, the organisms 

sporulate. Figure 3 below shows a microscopic image of both Ba cells and spores [17]. 

Bacillus organisms, including Ba, form long chains of rod like structures stained black in 

Figure 3. Endospores are seen in Figure 3 as light orange, ovular structures. Cells that 

have just sporulated are still connected in long chains. Spores that are released from the 

vegetative cells are isolated or conglomerated with other spores in clumps. It is common 

to see cells and spores together as neither germination nor sporulation are simultaneous 

for all cells. One study by Pandey showed the start of germination occurring on average 

around 63 minutes after LB-MOPRs germination media with AGFK germination salts 

was added. However, the germination process had a standard deviation of 56 minutes, 

showing that not all spores within the same preparation batch germinate at the same time 

[18]. 
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Figure 3. Microscopic image of both Ba cells and spores [17]. During sporulation and 

germination, cells and spores are often found occurring together as not all individual 

organisms sporulate/germinate simultaneously. Spores are shown as light orange and 

ovular. Cells are rod-shaped and form long chains. Figure reprinted with permission from 

[17]. Copyright 2002 John Wiley & Sons. 

When forming a spore, the cell dehydrates, binding its DNA securely with small, 

acid-soluble proteins (SASPs). The DNA is ensconced in a matrix of mainly calcium 

dipicolinate. Metabolic activity ceases and the cell’s membrane breaks open, ejecting the 

spore [19]. Spores of Ba are extremely resistant to the environment and can survive in 

soil for decades [2]. Since the spore contains few energy compounds such as ATP and 

limited water, no metabolic activity takes place. The spore also lacks enzymatic activity 

and therefore cannot repair DNA damage until germination and outgrowth stages [20]. If 

too much damage occurs while the spore is dormant, the repair systems may become 

overwhelmed, and germinated spores may not survive to outgrowth or even be able to 

germinate. The endospore (commonly referred to as a spore) has a well-engineered 

survival mechanism for many different bacterial species, including Bacillus anthracis. 

The spore is an ovular structure with layers of protection surrounding its core where the 
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DNA is contained.  Figure 4 below depicts the structure of a typical spore. The outermost 

layer, the exosporium, is not exhibited in all species but is considered an extension of the 

outermost core layer for some species. The exosporium contains special coat proteins, the 

function of which is not entirely understood. The spore coat combines several smaller 

layers and contains at least 50 proteins [21]. The spore coat plays little role in resistance 

to UV radiation [22]. The next innermost layer, the outer membrane, is not fully 

understood but isn’t thought to play a significant role in resistance to UV radiation [21]. 

The next layer, the cortex plays an important role in spore formation and outgrowth. 

During spore germination, the cortex breaks down and allows for expansion of the core 

and outgrowth [21]. The inner membrane protects the core, where DNA is stored tightly. 

 

 

 

Figure 4. Layer structure of the spore. The inner core of the spore contains the well 

protected and tightly stored DNA. The layers in this figure are not to scale. Figure 

reprinted with permission from [21]. Copyright 2006 John Wiley & Sons. 
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When oxygen and nutrients are conducive for growth, the spore undergoes the 

process of germination. Figure 5 below shows a flow chart of occurrences during spore 

germination [20]. The process of germination converts the dormant spore back into a 

growing cell. The germination process is well described by Peter Setlow [20] and is 

reiterated below. A special mixture of asparagine, glucose, fructose, and potassium ion 

(AGFK) initiates spore germination. The initiation (activation) process is yet to be well 

understood. During Stage 1 of germination, a cation release from the spore coat causes a 

change in pH. This pH change is essential for enzymatic activity which will occur during 

germination. Following this pH change, the spore core releases its storage of dipicolinic 

acid (DPA) and replaces it with water. Replacement of DPA with water suggests that at 

this point, the spore has a decreased resistance to wet-heat [21]. Stage 2 involves more 

hydration, first hydrolysis of the spore cortex. The spore core begins to swell as water 

content increases. After this large increase of water, protein motility begins and 

enzymatic activity is initiated. The outgrowth period of germination is the only step that 

contains enzymatic activity. The germination process is of importance to this project 

because it is well known that DNA repair occurs mainly during the germination process 

[23].  
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Figure 5. The spore germination process. Germination occurs in 2 main stages. The 

initiation/activation step involves the enrichment of nutrients. Stage 1 involves release of 

DPA and hydration of the spore core. Stage 2 involves further hydration and swelling of 

the spore. During outgrowth, the cell eventually emerges from the spore as metabolic and 

enzymatic activity reinitializes.  Figure Reprinted with Permission from [20]. Copyright 

2003 Elsevier. 

 

Spores contain two unique substances which are involved in the relationship 

between DNA damage and UV irradiation: dipicolinic acid (DPA) and SASPs. Ba spores 

contain three main SASPs, α, β, and γ [24]. These SASPs are created during sporulation 

and degrade very quickly during germination. Dr. James Mason studied spores lacking 

one or more of these SASPs [24]. His studies on α and β type SASPs determined that 

spores without these SASPs had significantly increased UV radiation sensitivity. Dr. Ralf 

Moeller et al. also confirmed these findings regarding UV radiation and ionizing 

radiation [25].  Evidence supports a connection between SASPs and DPA, but the 

mechanistic connection is not well known. Dr. Barbara Setlow studied this connection. 

Spores with an intentional deficiency of DPA were studied. These DPA-less spores 

lacked the γ SASP altogether [26]. Dr. Setlow also found that spores lacking both DPA 

and SASPs were not viable following heat and irradiation because of extensive DNA 
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damage [26]. Figure 6 below displays the absorbance spectrum of DPA, with respect to 

wavelength [27]. The figure displays the changes in optical density of DPA and Calcium 

DPA (CaDPA) before and after UV light exposure(100J/cm
2
 ) by a 450W ozone-free 

xenon arc lamp. A small shift in wavelength is observed following exposure to UV light. 

This shift is not well understood. Research of DPA suggests it acts as both a protectant of 

DNA and a photosensitizer. One study by Thierry Douki concluded that photoexcitation 

energy is transferred from DPA to thymine residues (the main form of DNA damage 

inside spores) [28].  

 

Figure 6. Absorption spectra of DPA. The absorption was measure using optical density 

of the samples. The unfilled-circles represent DPA prior UV light. The closed-circles 

represent DPA absorption following UV light exposure (100J/cm
2
 ) by a 450W ozone-

free xenon arc lamp. The dashed line represents CaDPA prior to UV light and the solid 

line represents CaDPA absorption following UV light exposure under the same 

conditions as the DPA. A small shift in wavelength is observed following exposure to 

UV light. Figure reprinted with permission from [27]. Copyright 2005 OSA. 
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DNA Damage 

DNA damage caused by UV radiation is well known. Dr. Jean-Luc Ravanat 

studied the effects of UV radiation on DNA and its components [29]. DNA is a major 

target of UV radiation as it directly absorbs the photons of excited light. Discussed below 

are the main photoproducts observed from UV-B radiation. UV-C radiation exhibits the 

same photoproducts, but to a much more severe extent. The radiation used in this project 

(267nm) is near the absorption maxima of DPA, in the UV-C range. 

Of the four bases in DNA, thymine is most sensitive to UV radiation. In most 

cells, genomic DNA is of the B-type conformation. This conformation leads to several 

widely recognized thymine dimers in the presence of UV radiation: the cyclobutane 

pyrimidine dimer (CPD) and the pyrimidine (6-4) pyrimidone photoproduct (PD) are the 

main two dimers [13]. Figures 7 and 8 below show the formation of CPDs and (6-4) PD 

dimers [29]. Figure 7 displays the formation of thymine cyclobutane dimers. These 

dimers arise from a [2+2] cycloaddition of the C5-C6 carbon bonds [29]. There are six 

diastereomers that can be generated from these cycloadditions because of cis/tran 

stereochemistry. The formation of these Pyr<>Pyr dimers can be repaired by UV-C 

radiation by splitting the cyclobutane ring.  
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Figure 7. Thymine cyclobutane dimer formation [29]. The dimer formed is a [2+2] 

cycloaddition that occurs at 5
th

 and 6
th

 carbon positions (across the double bond) between 

two adjacent pyrimidines. While thymine-thymine CPDs are most common, other 

combinations of pyrimidine bases can undergo the same cycloaddition. Figure reprinted 

with permission from [29]. Copyright 2001 Elsevier 

 

Pyrimidine (6-4) pyrimidone photoproducts are another type of DNA damage that 

cells can incur. It is known and well understood that the cell repairs (6-4) photoproducts 

at a faster rate than it repairs CPDs [30]. Figure 8 shows the production of the (6-4) 

photoproduct. UV-C or UV-B light first forms an unstable oxetane. Spontaneous 

rearrangement leads to the (6-4) photoproduct formation. 

 

 

Figure 8. Pyrimidine (6-4) Pyrimidone photoproduct. This dimer is created from a [2+2] 

cycloaddition as well. Figure reprinted and adapted with permission from [29]. Copyright 

2001 Elsevier. 
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Unlike DNA in a vegetative cell, DNA inside the spore adopts A-DNA 

conformation. A-DNA only occurs in a low water, high salt environment; the spore 

exhibits this conformation, making the DNA in the spore’s core one of the few known 

sources of naturally occurring A-DNA. Therefore, unique damage occurs inside the spore 

termed the spore photoproduct (SP). This project focuses on DNA damage inside the 

spore. According to a study by Setlow in 2006, SP is generated in Ba spores as frequently 

as are CPDs and PDs in cells [26]. However, SP is repaired far more rapidly by the spore 

photoproduct lyase (SPL) in active cells. Figure 9 below displays the spore photoproduct 

and its repair via SPL. SP is formed from an intermolecular H-atom transfer. 

 

  

Figure 9. Spore Photoproduct. UV radiation causes thymine residues to form the spore 

photoproduct (SP). The spore photoproduct lyase is an enzyme that reverses this thymine 

damage. Figure Obtained from [13], open access article. 

DNA Repair 

Once DNA in the spore has been damaged, to achieve outgrowth it must be 

repaired during germination. The spores are at least 10 times more resistant to UV 

radiation than are Ba vegetative cells [31]. During germination, spores utilize two repair 

mechanisms: nucleotide excision repair (NER) and SP repair via spore photoproduct 

lyase (SPL) [13]. Repair of DNA in Ba spores does not begin until germination. Spores 
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of Ba exposed to UV-C light accumulate a special type of thymine dimer, the spore 

photoproduct (SP) [32]. The SP totals 95% of the UV-C damage incurred in the Ba spore 

[13]. The SP is then repaired during germination by two repair mechanisms: SP lyase and 

NER. The spore photoproduct occurs in place of other pyrimidine dimers because the 

chemical interactions between DNA and small acid-soluble proteins are unique to spores. 

Several mechanisms are proposed for the spore photoproduct lyase repair of the SP. The 

radical enzyme S-adenosyl methionine (SAM) is believed to be responsible for the repair 

of SP [33]. Figure 10 below depicts the mechanism through which spore photoproduct 

lyase repairs the spore photoproduct.  

 

Figure 10. Spore photoproduct (SP) repair by Spore Photoproduct Lyase. A free electron 

originates from a 4Fe-4S cluster and is provided to the SAM enzyme molecule. 

Reductive cleavage of the C5’-S bond creates a reactive radical 5’-dA. The radical 

abstracts a hydrogen atom from the spore photoproduct, initiating the repair process [13]. 

Figure Obtained from [13], open access article. 

 

The repair process that follows is detailed by Linlin Yang in her article titled “The 

Enzyme-Mediated Direct Reversal of a Dithymine Photoproduct in Germinating 

Endospores” [13]. The SAM enzyme uses a tri-cysteine motif to bind to a cluster of iron-

sulfide compounds (4Fe-4S).  The 4Fe-4S compound provides an electron to the SAM, 

reductively cleaving the C5’-S bond. This cleavage creates a highly reactive radical, 5’-

deoxyadensoyl (5’-dA). The radical created then abstracts a hydrogen atom from the C6 
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carbon of the SP. This initiates the repair process. The new SP radical fragments to create 

a thymine methyl radical. The thymine radical accepts hydrogen back and creates the 

repaired TpT. The hydrogen donor is believed to be a neighboring cysteine [13].  

Nucleotide excision repair (NER) is a more common method of DNA repair, not 

exclusive to spores. In NER, the damaged portion of a single strand of DNA is removed. 

The undamaged portion of the complementary DNA strand is used as a template to repair 

the damaged section. UVrA, UVrB, and UVrC endonuclease enzymes also play 

important roles in repair of the DNA [34]. UVrA recognizes the distortions in the DNA 

caused by the dimers.  UVrB and UVrC form a complex capable of cleaving the template 

DNA 4 bases down from the damage [34]. DNA helicase II removes the excised 

fragment of DNA. DNA polymerase synthesizes the new, repaired portion and DNA 

ligase binds the two single strands back together. A similar repair mechanism, base 

excision repair, reverses single base pair damage. Double stranded DNA damage can 

occur when two single strand breaks are in close proximity to each other. Double 

stranded breaks are most damaging to the cell and hardest to repair. This project will 

focus not on specific repair mechanisms, but rather the rate at which damaged DNA is 

repaired inside the spore. 

 DNA damage and repair play an important role in this research. The AFIT 

research program aims to understand, and possibly even model the kinetics of DNA 

repair. However, to accurately measure UV radiation to which the Ba spores are exposed 

to, actinometry experiments are necessary. The next section introduces actinometry and 

its importance with radiation measurements. 
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Actinometry 

An actinometer measures the number of photons available in a photochemical 

system via photochemical reactions where the quantum yield is well known [35]. 

Actinometers also require a thermally stable reaction. Equation 3 below shows a 

commonly used iodide-iodate chemical actinometer [35]. 

8I
-
 + IO3

-
 + 3H2O + hv → 3I3

-
 + 6OH

- 
  (3) 

Upon UV exposure, as the reaction shown in Equation 3 progresses in the forward 

direction the photoproduct, the tri-iodide compound (I3
-
), is created. The tri-iodide 

complex has a maximum absorption at 352 nm. This particular actinometer can be used 

in room light, as it does not react to UV light at wavelengths greater than 320nm [35]. By 

performing an actinometry experiment, the exact number of photons occurring in the UV 

reactor for this research can be determined.  

For the actinometer to accurately represent this research, it must mimic closely 

the actual UV radiation experiments. Sample volume and reaction conditions must be 

kept consistent with the UV experiments. The quantum yield of the actinometer is 

calculated using the following equation [35]: 

                    
           

 

                                              
                                     (4) 

The KI/KIO3 actinometer is temperature dependent. RO Rahn, 2003 reported the 

temperature dependence of the KI/KIO3 actinometer between 22°C and 42
o
C [36]. The 

temperature dependence can be easily accounted for as it has been well studied and is 

typically linear. Figure 11 below reports the linear regression of data from Rahn’s study 

in 2003 showing the linear dependence on temperature of the KI/KIO3 actinometer 

quantum yield. 
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Figure 11. The linear temperature dependence of the KI/KIO3 actinometer. The 

temperature dependence of the KI/KIOs actinometer shows the need for temperature 

measurement and control in the lab apparatus. This linear regression was created using 

multiple temperatures, each point representing 1 to 5 replicates. Figure reprinted with 

permission from [36]. Copyright 2007 John Wiley and Sons. 

 

The temperature dependence of the quantum yield at 253.7nm is seen below where t is 

temperature in degrees Celsius. 

Ф= (0.471±0.020) + (0.0099±0.0004)t                                    (5) 

 

Equation 5 will be used to adjust for lab temperatures on various experiment days. 

A collection of quantum yield values at varying wavelengths was collected by NIST at 

23.5°C ±1°C [35]. As quantum yield is also apparently linear with wavelength over a 

narrow range, the calculated yield at (21°C and 22°C) will be compared to NIST data 

collected at a higher temperature. To accurately compare the NIST quantum yield data 

with the yield determined in these experiments, the quantum yield from NIST will be 

adjusted using equation 5 above to correlate to the temperature of these lab experiments. 

 



26 

PCR 

Studying DNA damage and repair is often achieved using polymerase chain 

reaction, PCR. Studying DNA quantitatively requires PCR, as it exponentially increases 

the copies of DNA present in sample. In a PCR  procedure, DNA is heated and cooled in 

a cyclical process. PCR was developed by Kary Mullis in 1983 and is only made possible 

by use of a unique enzyme from the bacterium Thermus aquaticus. This enzyme is 

nicknamed Taq polymerase and is stable under high temperatures, as the bacterium 

originates from hot spring geysers. In the presence of the appropriate primers (short 

single-stranded DNA fragments), bases and enzymes, the DNA is heated (to 

approximately 95
o
C) and the strands separate. The reaction is then cooled to around 

60
o
C. In principle, the shorter DNA fragments termed primers are statistically more 

probable to recognize their match in the two single strands than for the two single strands 

to recognize each other and re-anneal. The primers are the starting point of double 

stranded DNA for the Taq polymerase to perform synthesis. When the primer attaches it 

begins to synthesize a specific section of the DNA strand. The process of heating and 

cooling is typically repeated approximately 40 times, yielding only the sequenced strand 

designated by the primers. Primers for this research were chosen to operate across the red 

fluorescent protein (RFP) in the plasmid.  

This project utilizes a specific type of PCR, termed real-time PCR. Real-time 

PCR tracks the DNA amplification in real time and allows for quantification. Real-time 

PCR can be used in two main ways. The first method employs a fluorescent dye that only 

intercalates into double-stranded (DS) DNA. SYBR Green is a commonly used DS-DNA 

intercalated dye. This project utilizes the second method, which employs a probe which 
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carries a combination quencher/fluorophore pair. Prior to sequence binding, the quencher 

and fluorophore are in close proximity and fluorescence signal is quenched. When the 

primer synthesizes and reaches the probe, the quencher and the fluorophore are separated. 

The quencher and fluorophore are no longer in close proximity, so the fluorophore 

fluoresces. The real-time PCR reads the fluorescence from the fluorophore. For every 

amplification, the fluorescence increases. In this way, the probe is used in tandem with 

real-time PCR to determine amplification based on relative fluorescence intensities. 

Gel Electrophoresis 

PCR is an effective and useful method to amplify DNA. Gel electrophoresis is 

often used in tandem with PCR to determine size of amplicons. Even when Real-time 

PCR is performed, gel electrophoresis is used to confirm the fragments of interest are 

indeed the DNA being amplified by the primers. Gel electrophoresis applies an electric 

field, which causes the negatively charged DNA molecules to move through an agarose 

gel. The length at which the DNA fragments move through the gel is determined by their 

size. Smaller fragments move fastest through the gel and large fragments move the 

slowest. The fragments are then compared to a DNA ladder, a series of known fragments 

resolved on the gel as well. With the help of software, concentration of DNA can even be 

determined based upon the intensity of bands resolved in the gel. 

Atomic Force Microscopy 

Atomic force microscopy (AFM) is one type of scanning probe microscopy. AFM 

uses a sharp tip, termed the probe, to very carefully scan the surface of a sample. The tip 

is attached to a thin, long arm, called the cantilever, that rasters the tip back and forth 
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across the sample. The tip never touches the sample; rather the cantilever is deflected 

with respect to the forces of attraction between the tip and the sample. Deflection of the 

cantilever is the actual measurement used by the AFM to map out the surface topography 

of a sample. Cantilever deflection obeys Hooke’s law seen below, 

             F = kX                                                 (6) 

Where F is the force applied to extend the cantilever X distance, and k is the spring 

constant [37]. Force, pertaining to AFM, can be attributed to van der Waals forces, 

chemical bonding, capillary force, electrostatic force, and more.  

 AFM has been used to characterize Ba spores, although it is not widely 

popularized. Dr. Xing and Dr. Li from AFIT utilized AFM to study surface changes in 

spores following exposure to high temperatures. They observed nanoscale blister-like 

structures on the surface of the spore using a heated AFM tip [38]. Figure 12 below 

shows spores: a) prior to heat treatment b) following heat treatment.   

 

Figure 12. AFM images of Bacillus anthracis spores before (a) and after (b) heat 

treatment with a heated AFM tip. Nanoscale blister-like structures were observed on the 

surface of the spores following heat treatment. Figure reprinted with permission from 

[38]. Copyright 2013 American Chemical Society.   
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III. Methodology 

Chapter Overview 

This chapter details the methods developed and adapted to characterize DNA 

damage in Bacillus anthracis (Ba) Sterne spores by UV radiation at ~267nm. The 

pRB373 plasmid with a turbo-red fluorescent protein (RFP) [10] was transformed into Ba 

cells prior to UV radiation and the cells were allowed to sporulate. Spores were then 

irradiated at 267nm and allowed to repair for various times including prior to 

germination, immediately following germination, and during vegetative outgrowth. 

Following irradiation and repair, the plasmids were isolated and their DNA analyzed 

using PCR and selectively designed primers. Also detailed in this section is the 

development of Ba sterne inactivation curves, as well as actinometry experiments that 

were used to determine the efficiency and quantum yield of the LED reactor.  

Microbial Technique 

Initial samples of the pRB373 plasmid [10] and Ba Sterne were provided by Dr. 

Thomas Lamkin and his research group at AFRL USAF-SAM [39]. When the plasmid 

was successfully transformed into Ba Sterne, the cells/spores were a bright pink hue. The 

plasmid carries ampicillin resistance (AmpR)
2
. 

E. coli Transformation 

In order to enumerate the plasmid, transformation was first performed into 

Escherichia coli (E. coli) following the protocol provided with the competent E. coli cells 

[40]. A pre-measured tube from the manufacturer of DAM-/DCM- cells was thawed until 

                                                 
2
 See Appendix for Plasmid Information sheet.  
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the ice crystals disappeared. The tube was gently mixed by hand and 50 µL of DAM-

/DCM- cells were added to a transformation tube on ice. A transformation tube can 

simply be a 1 or 2mL micro centrifuge tube. 5µL of plasmid was added to the cell 

mixture. The concentration of plasmid DNA was 47.3ng/µL. The tube was flicked by 

hand 4 to 5 times, allowing the cells and DNA to mix
3
.  The resulting mixture was placed 

on ice 30 minutes. The mixture was then heat shocked at exactly 42ºC for 30 seconds. 

Immediately following heat shock, the mixture was placed on ice for another 5 minutes. 

Afterwards, 950µL of SOC
4
 (a chemical provided in the transformation kit) was added to 

the transformation tube. The new mixture was then incubated at 37ºC for 1 hour with 

vigorous shaking (approximately 150-200 rpm). While incubating the sample, selection 

plates (LB media with 50µg/mL ampicillin) were allowed to warm. Ampicillin selection 

plates are used because the plasmid contains a marker gene for AmpR. If the E. coli cells 

were successfully transformed and contain the plasmid, they will have AmpR and will 

grow on the selective plates. Following incubation, 100µL of the transformation mixture 

was placed on selective media. A multitude of colonies were observed 12 hours later, 

indicating transformation had occurred. An isolated colony was inoculated in an 

overnight culture with 50µg/mL ampicillin to enumerate the plasmid DNA. 

   

Plasmid Isolation 

Plasmid isolation was performed using the overnight culture. When isolating the 

plasmid, the goal was to get a high plasmid yield (100ng) to prepare for transformation 

                                                 
3
 Vortexing can be damaging and should not be used at this step. 

4
 SOC: Super Optimal Broth with added Glucose. SOC is a super nutrient rich growth medium. 
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into Ba. It can be difficult to transform into Ba and a higher plasmid concentration 

increases the probability of success. Plasmid isolation, properly termed plasmid 

purification, was performed following the Qiagen EndoFree Plasmid Maxi-Prep 

Purification Handbook [41]. The bacterial culture enumerated the night before was 

centrifuged at 6000 RCF (relative centrifugal force) for 15 minutes at 4° C. Following the 

buffer labels in the maxi-prep lot, the bacteria pellet was suspended in 10mL of buffer 

P1. 10mL of buffer P2 was then added and mixed thoroughly by tube inversion at least 4 

times. The mixture was incubated at room temperature for 5 minutes. Following 

incubation, 10mL of chilled buffer P3 was added to the mixture tube and inverted and 

shaken strongly (but not vortexed) 4-6 times. This lysate mixture was placed into the 

plunger included with the kit and incubated for 10 minutes. The lysate filtered by gravity 

within about 20 minutes. Following filtration, the filtered lysate was saved. 2.5mL of 

buffer ER was added to the filtered lysate and incubated on ice for 30 minutes. 10mls of 

buffer QBT was added following incubation and the column emptied via gravity flow 

again within 20 minutes. The column was washed twice with 30mLs of buffer QC each 

time. The DNA was then eluted with 15mL of buffer QN. The eluted DNA can be 

precipitated if necessary but was left in solution for future purposes. Using a Nano-Drop 

2000c, the final plasmid concentration was determined. Agarose gels and/or UV 

spectrometry can also be used to measure the final plasmid concentration. The Qiagen 

protocol details these measurement techniques [41].   
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Transformation/Electroporation into Ba 

In order to transform the pRB373 plasmid into Ba, electroporation was utilized. 

Electroporation applies an external electrical field to a sample mixture of plasmid and 

cells. The increase in electrical conductivity causes the permeability of the cell membrane 

to change, and eventually incorporate a plasmid into the cell. This process is termed 

transformation. Electroporation transformation protocol was taken from Koehler et al. 

[42] using a Bio-Rad Gene Pulser Xcell Total System. An overnight culture of Ba cells 

was prepared. One milliliter of the culture was added to 100mL of Blood Heart Infused 

(BHI) media with 0.5% glycerol. The sample was incubated with vigorous shaking at 

200rpm. When the optical density (A600) reached 0.6, the cells were harvested by 

centrifugation. Cells were washed four times with 25mL of ice-cold electroporation 

buffer, suspending the cells and centrifuging after each wash. The electroporation buffer 

was made prior to experimentation (1mM HEPES, 10% glycerol, pH 7.0). Following 

washes, the cells were re-suspended in electroporation buffer to 5mL. Approximately 3µg 

of plasmid DNA was added to 0.4mL of the cell suspension on ice in a pre-chilled 0.4cm-

gap electroporation cuvette made by Bio-Rad [43]. Ba cells were exposed to one 

electrical pulse at 2.5kV, 25µF and 400Ω. Immediately following the pulse, the cells 

were transferred to a solution of 1mL BHI with 10% glycerol, 0.4% glucose, and 10mM 

MgCl2. The solution was incubated for 1 hour so expression of the antibiotic resistance 

could occur prior to plating on selective plates (50µg/mL of ampicillin) [42]. Observable 

pink colonies on selective plating indicated successful transformation. 
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Spore Preparation 

Scale-up Cultures 

Following successful transformation, the Ba cells were used to prepare spores to 

be used for experimentation. The procedure for sporulation was adapted from Leighton 

and Doi [44]. Using ampicillin selective TSA plates, a culture of Ba was streaked and 

incubated at 37
o
C overnight. From a well isolated colony on the overnight plate, a 2X 

nutrient broth was inoculated. Nutrient broth is used at a volume 1/10
th

 the intended 

volume for the subsequent spore culture. 20mL of nutrient broth was used for this project.  

The new culture was incubated at 37
o
C and 130rpm overnight.  

 

Inoculation of Spore Culture 

200mL of Leighton-Doi Spore Media
5
 and 20mL of the previous overnight 

culture was added to a 1L flask (5 times larger than the volume of culture) which allowed 

for air exchange. This culture was incubated at 37
o
C and 130rpm overnight. Sporulation 

was tested by removing about 10µL of culture to a microscope slide. The slide was 

observed under phase contrast at 1000X. Culture ready for harvest exhibits mostly phase 

bright spores. 

 

Harvesting spores 

Spores were centrifuged at 8000rpm for 20 minutes at 4
o
C. Supernatant was 

removed and spores re-suspended in ice cold water via repetitive pipetting. Spores were 

pelleted by centrifugation under the same previous conditions. Three more additional 

                                                 
5
 See Appendix for Leighton-Doi Media recipe 
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washes were repeated. Spores were re-suspended in 3mL of phosphate buffered saline 

with 0.05% Tween (PBST) [45]. PBST acts as a detergent and prevents spores from 

clumping and aggregating. Spores were stored in suspension at 4
o
C.  

LED UV Irradiator 

This section explains the reactor used to perform UV irradiation experiments. 

Figure 13 below displays the UV reactor. 7 light emitting diodes (LEDs) surround the 

bottom of the reactor. The LEDs were purchased from Sensor Electronic Technology 

Incorporated (SETi), part number UVTOP260TO39 [46]. The LEDs peak at the 

wavelength 267nm. Before adhering of the LEDs to the reactor cell with silicon putty, 

they were first characterized using an integrating sphere [47]. The integrating sphere 

accurately measures the power output of the LEDs. Measurements were made in 

duplicate for each LED on the integrating sphere. The average power of all 6 LEDs used, 

determined by the integrating sphere, was 1.4mW. The same 6 LEDs were used for the 

entire experimentation period. Peak wavelength was measured for each LED and 

averaged to be 267nm. LEDs for purchase from SETi range in wavelength.  

The wavelength of LEDs chosen mimics the UV-C range used in another similar 

study of UV irradiation on Bacillus subtilis [9]. A separate study validated Bacillus 

subtilis as a surrogate organism for Ba, as their UV inactivation curves are very similar 

[48]. The reactor radius measures 3.64cm and is composed of highly reflective stainless 

steel. The lid swivels on and off for easy sample collection but stays tightly shut during 

experimentation. LED configuration in direct contact with the radiation solution allows 

for a critical angle of UV output of 41.6 degrees. This higher critical angle increases the 
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optical efficiency by approximately 46% [8]. The entire reactor sits on a Thermo 

Scientific Max-Q 2000 shaker [49].  

 

Figure 13. UV reactor designed by Michael Spencer, AFIT [47]. The reactor has 7 LEDs 

that irradiate from the bottom. Composed of stainless steel, the reactor allows for a high 

reflectance.  LEDs are sealed with silicon to the bottom of the reactor. The entire reactor 

sits on a shaker, helping to prevent spore clumping.  

 

During irradiation, the reactor shakes at approximately 120rpm. Shaking helps 

prevent the spores from aggregating on the sides of the reactor. The LEDs are extremely 

sensitive and burn-out instantaneously if current exceeds 20mA. Therefore, current 

flowing through the LEDs is maintained at 20mA using 25Ω variable resistors (also 

termed potentiometers). During experimentation, a voltmeter was used to monitor voltage 

and ensure proper usage/operation of the electronics. The UV reactor is connected to a 

power board and power supply, both of which are operated by DASYLab software [50]. 

Figure 14 below displays the circuitry configured for powering the LEDs. Once 

characterized, the LEDs were glued to the bottom of the reactor in Figure 13 using silicon 

putty. Then, the leads for each LED were soldered to wires on the bottom of the reactor.  
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Figure 14. UV reactor circuitry board and DASY Lab interface. The seven LEDs plug 

into the circuit board in the locations in series with 20 ohm resistors. The power supply 

from DASY Lab is connected into the center of the board, where it then flows to the op-

amp on the back of the board before coming back to the input of the LEDs.  

 

Once characterized and glued to the reactor cell, the LEDs were ready to operate. 

Table 1 below displays the power measurements taken for the 6 LEDs used during 

experimentation
6
. More LEDs were purchased, but several burned out during the 

preliminary stages of testing. The ultraviolet transmittance (UVT) was taken as the value 

of UVT for deionized water, 0.975. The physical measurements for the reactor cell are 

also given in Table 1 below. 

 

                                                 
6
 10 LEDs were purchased in total. Six to seven were used for the 

experimentation reactor (the reactor was operated with up to 1 LED burned out).  
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Table 1. LED Characterization and UV reactor measurements. The power output for each 

LED was measured using an integrating sphere. The Ultraviolet Transmittance (UVT) is 

the value of UVT in deionized water [9].  

 
 

Using the important information from Table 1 above, the UV fluence was then 

calculated as it related to dose time (in seconds). Table 2 below contains this information. 

Irradiance was calculated from the average power determined by the integrating sphere 

divided by the cross-sectional area of the reactor. Calculated fluence is a product of 

irradiance, UVT, number of LEDs and exposure time. These eleven data points were used 

as a starting point for experimentation. More collection time points were added to the 

survival curves as the important time regions became more apparent. 

 

 

 

 

 

Radius (cm) 3.64

Cross-Sectional Area (cm^2) 41.74

Ultraviolet Transmittance 0.975

Number of LEDs 6

Peak Wavelength 267nm

Measured P (mW) Average P (mW)

1.298

1.297

1.46

1.52

1.466

1.37

1.40
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Table 2. Fluence/UV Dose Calculations. Irradiance is calculated from the average power 

divided by the cross-sectional area of the reactor. Fluence is calculated as the product of 

irradiance, UVT, number of LEDS, and exposure time. The following 11 data points 

were used to develop survival curves for Ba spores. Fluences were later adjusted by 

actinometry results. 

 
 

 Prior to irradiation with LEDs, actinometry experiments were first conducted. 

Fluence doses were later adjusted based on the apparent quantum yield determined by 

actinometry. The actinometer used for this project is a potassium iodide/iodate 

actinometer. 

Actinometry 

 Actinometry measurements were taken before and after UV irradiation 

experiments to measure fluence by determining the number of photons per unit time. 

Chemical actinometers have been specially designed with a well-defined quantum yield. 

A potassium iodide-iodate actinometer was used for this project. The actinometer 

solution was prepared as follows: 9.96grams KI, 2.14grams KIO3, and 0.381grams of 

sodium tetraborate (Na2B4O7• 10H2O) to 100mL of deionized water. 60mL of water was 

Exposure Time (sec)

0

26

51

77

102

127

178

229

331

433

560

85.1 851

110.0 1100

0 0

5.1 51

10.0 100

65.0 650

15.1 151

20.0 200

25.0 250

35.0 350

45.0 450

Fluence = (Irradiance*UVT*Numbers of LEDs*Exposure Time)

Fluence (mJ/cm²) Fluence (J/m²)

Irradiance = Avg* P/Cross-Sectional Area
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added to a 100mL volumetric flask, and then the chemicals were added. The solution was 

well mixed, and then diluted to volume
7
. The solution was added to the UV reactor. 3mL 

blank measurements were taken at 352nm, on a UV-Vis spectrometer for 10 minutes (one 

measurement reading every 30 seconds), the longest UV experiment time. The whole 

solution was then irradiated at time samples corresponding to those used for DNA 

damage and repair experiments. After each time point, a 3mL sample was collected in a 

UV cuvette and read on the UV spectrometer from 200-700nm. The room temperature 

was recorded throughout the experimentation, as the iodide-iodate actinometer varies 

with temperature. Actinometry experiments were performed before and after irradiation 

experiments and anytime reaction conditions changed (the most common changing 

reaction condition was LEDs being replaced and/or burning out). Whenever the number 

of LEDs in the reactor changed, new actinometry experiments were conducted.  

Bacillus anthracis Spore Survival Curve 

 Survival Curves were developed to correlate UV dosage with surviving fraction 

of Ba spores. Ba spores of final concentration 1.0x10
7
spores/mL were diluted from a 

stock concentration of spores in distilled, sterile water. The spore solution was placed in 

the UV reactor and a non-irradiated sample was taken and termed No. No represents the 

initial spore concentration, 1.0x10
7
spores/mL. The UV reactor was then prepared and the 

shaker was turned on (~120rpm). The spores were irradiated for various times 

corresponding to specific doses of UV light. At each time point, the LEDs were turned 

off and a 100µL sample was collected. A serial dilution was performed for each 

                                                 
7
 The solution should be used within 4 hours and was kept in the dark. 
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collection point. Each dilution point was plated in triplicate and incubated at 37°C. The 

colonies were counted 18 hours later. Table 2 above shows the data collection points used 

for both actinometry and Ba survival curve experiments. The results of the survival curve 

determined proper UV dosage for DNA damage and repair experimentation. It was 

important to dose at a level that would create a large amount of DNA damage, but not so 

much as to completely inactivate all spores.  

DNA Damage & Repair Experimentation 

Determined by the survival curves, a 1-log kill was chosen for DNA damage and 

repair experiments. 1-log kill corresponded to approximately 100J/m
2
. For the LED 

configuration in place, 100J/m
2 

dose corresponded to 51 seconds with the LEDs on. 

Following actinometry corrections, 51 seconds actually corresponded to a fluence of 

approximately 88J/m
2
. A spore concentration of 1.0x10

7
spores/mL

 
was prepared from a 

stock solution in distilled, sterile water. The spore solution was placed in the UV reactor. 

The LED reactor was then prepared as detailed in the LED reactor section and the shaker 

was turned on (~120rpm). The spore solution was dosed for 51 seconds (88J/m
2
). 

Immediately following the radiation, 100mL of double strength germination media was 

added following protocol from research performed by Dr. Pandey [18]. This research 

tracked individual spores’ progress through the germination and outgrowth stages using a 

newly developed technique which they termed the SporeTracker [18]. The germination 

media was LB-MOPS media with special germination “boosters” added [18]. These 

germination salts/sugars are termed “AGFK” which stands for the ingredients used: 

10mM L-asparagine, 10mM glucose, 1mM fructose, and 1mM potassium chloride. The 
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LB-MOPs media needed to be double strength because it was added to the 100mL of 

spore solution, making it “single strength”. For this reason, the AGFK salts/sugars also 

needed to be doubled in concentration in the LB-MOPS media. Once media was added, 

the entire reactor and shaker were placed in the incubator. Samples were collected at 

various times to track the spores’ progress through germination, repair, and outgrowth. 

Atomic force microscopy (AFM) images were taken to help track spore progress through 

the germination and outgrowth processes. At each time point, triplicate 1mL samples 

were collected and stored for later PCR analysis at -20°C. These samples were washed 

several times by a centrifugation/re-suspension cycle. Following sample washes and 

collection, they were stored in the freezer at -4°C until PCR analysis. At each time point, 

a 100µL was also collected for serial dilution plating. Each time sample was plated in 

triplicate for each serial dilution point. Collection times were: Control (prior to 

irradiation), T=0 (immediately following irradiation), 30min incubation, 60, 90, 120, 150, 

180, 210, 270, 330, 390, and 450min incubation. In addition to these samples collected, a 

second set of samples were collected. A 1mL sample of T=0 and the control sample were 

also incubated for the full incubation time (450 minutes). The second set of samples was 

collected to use as controls for the real-time PCR experimentation. 

PCR 

Sample Preparation 

Following irradiation of Ba Sterne spores, the samples needed to be prepared for 

PCR analysis. The first step in sample preparation was to remove the DNA from inside 

the spore. DNA isolation was achieved using the bead beating method. Qiagen bead 



42 

beating kit ASAY-ASY-0503 was used [51]. The DNA isolation in a water sample 

protocol was used. A small amount of antifoam powder was added to each bead beating 

tube. Then, 800µL of sample (in water) was added to the tube. The tubes were placed in a 

disruptor Genie. The samples were bead beat on high for 5 minutes. Following bead 

beating, 60µL of proteinase K solution was added to a separate small receiver tube. If 

available, 10 µL of carrier RNA is also added. To the small receiver tube, 600µL of 

buffer AL was added. Finally, 600µL of the bead beaten sample was added to the small 

receiver tube. This mixture was vortexed quickly and then incubated in dry heat at 60° C 

for 1 hour. These initial steps cause physical lysing. Following incubation, new spin 

column tubes were labeled with sample names. Next, 600µL of ethanol (200 proof, 

molecular biology grade) was added to the heated sample and mixed by repeated 

pipetting. 600µL of the heated mixture was transferred to the pre-labeled spin columns. 

The columns were centrifuged for 1.5 minutes at 6000g. The centrifugation was repeated 

two more times using the same column, but with new collection tubes. Using a new 

collection tube, 500µL of AW1 buffer was then added to column and centrifuged for 1.5 

minutes at 6000g. Using again a new collection tube, 500µL of AW2 buffer was added to 

the column and centrifuged under the same conditions. Following washes with the 

buffers, one final centrifugation cycle at 12000g for 3 minutes was performed using a 

new collection tube.  The last portion of the sample preparation requires elution of the 

DNA off the spin column and into the final collection tube. To the spin column and a new 

small receiver tube, 230 µL of buffer AE (preheated to 68° C) was added. The column 

and elution buffer was incubated for 5 minutes at 68-72° C in a heat block or vacuum-

drying oven. Following incubation, the column was centrifuged at 6000 g for 1.5 
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minutes. The spin column is discarded and the final solution contains the genomic and 

plasmid DNA. The DNA was stored at -20° C until analysis. 

In order for PCR to function properly, primers are designed to amplify across 

certain portions of DNA. Table 3 below displays the primer sequences and probe 

sequence used in PCR reactions for this project. The primers and probe were all 

constructed using Primer3Plus, a program designed by Bioinformatics [52]. The primers 

and probe in Table 3 were designed across the RFP sequence. Also displayed in Table 3 

are the primers’ starting positions. During the PCR reactions, these primers yield two 

fragments (amplicons) of DNA; the forward primer and first reverse primer (RP1) yield a 

245 base pair amplicon, and the forward primer and second reverse primer (RP2) yield a 

547 base pair amplicon.  

Table 3. Primer and Probe sequences. The two amplicons created with these primers are 

245 and 547 base pairs in length. The primers and probe synthesize across the RFP 

inserted in the pRB373 plasmid. If DNA damage is too severe across the plasmid DNA, 

the primers may not attach and properly synthesize. As seen in the table, the left side of 

the Probe sequence encodes for the fluorescence. The far right side of the probe encodes 

for the quencher. 

Name Primer Sequence 5' to 3' Position 

Short Forward CGTTACCATTCGCTTTCGAT 183 

Short Reverse CCGGACCATTACTTGGAAAA 428 

Long Forward CGTTACCATTCGCTTTCGAT 183 

Long Reverse TTAACGGTGCCCTAATTTGC 730 

TaqMan Probe 6FAM-TCCCACGTAAATCCTTCAGG-MGBNFQ 306 

 

During initial PCR experimentation, the FAM probe yielded no fluorescence. 

Temperature protocols were adjusted several times with no success. To continue on with 

sample analysis, SYBR Green was used in place of the probe
8
. Where the FAM probe 

                                                 
8
 See Appendix for SYBR Green Master Mix Recipe 
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binds specifically to the primer yielded fragments, SYBR Green intercalates into any 

double stranded DNA after the PCR extension step. SBYR Green is less specific, but 

works sufficiently for samples that are not contaminated and contain only the DNA of 

interest. No contamination presented itself during this project. Microscope images proved 

the evidence of clean samples during experimentation. Gel electrophoresis was also 

performed to confirm appropriate fragmentation. Figure 15 below shows the gel. Wells 1 

and 2 (from the left) show two different ladders. Well 3 is isolated RFP DNA, where only 

one intense band is shown. This indicates a clean sample, free of contamination. Wells 4 

through 8 are the dilution serious 10
1
-10

5
 of RFP DNA with the first reverse primer (This 

should be the shorter amplicon, 245 base pairs in length). Well 9 is the DNA ladder 

again. Wells 10-14 are the dilution serious 10
1
-10

5
 of RFP DNA with the second reverse 

primer (This should be the longer amplicon, 547 base pairs in length). And finally, well 

15 is another DNA ladder. Wells 4-8 very clearly display an amplicon about half the 

length of the amplicon in wells 10-14. This gel confirms proper amplification of the 

designed amplicons in Table 3. 
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Figure15. Gel electrophoresis of PCR controls. Wells 1 and 2 (from the left) show two 

different ladders. Well 3 is isolated RFP DNA, where only one intense band is shown. 

This indicates a clean sample, free of contamination. Wells 4 through 8 are the dilution 

serious 10
1
-10

5
 of RFP DNA with the first reverse primer (This should be the shorter 

amplicon, 245 base pairs in length). Well 9 is the DNA ladder again. Wells 10-14 are the 

dilution serious 10
1
-10

5
 of RFP DNA with the second reverse primer (This should be the 

longer amplicon, 547 base pairs in length. And finally, well 15 is another DNA ladder. 

Wells 4-8 very clearly display an amplicon about half the length of the amplicon in wells 

10-14. This gel confirms proper amplification of the designed amplicons. 

 

 PCR Experimentation 

PCR experiments were performed using a Bio-Rad CFX Connect [53]. PCR 

controls were designed using isolated RFP DNA in serial dilution (10
1
-10

5
). The initial 

dilution contained DNA at a concentration of 130ng. This concentration is indicative of 

the concentration in the PCR well. The controls were analyzed in the same spot for every 

experiment. PCR reactions were performed using 25µL of SYBR Green Master Mix and 

10µL of sample (10µL of control as well). Adding 10µL of each control sample, Table 4 

below shows the control DNA concentrations. Samples 0R, 0NR, 1R, and 1NR taken 
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during the UV experimentation are all used to develop a calibration curve. The 

calibration curve is relative only to the experimental samples. Comparing the calibration 

curve to the serial dilution of control samples (with a known DNA concentration) allows 

for the determination of DNA concentrations in experimental samples. The serial dilution 

of RFP is of known DNA concentration; the experimental samples are of unknown DNA 

concentration. The calibration curve using the initial experimental samples bridges this 

gap. 

Table 4. PCR control DNA concentrations. The control samples were prepared using 

isolated RFP DNA, purchased from GeneScrip, and provided by Dr. Lamkin’s research 

group at USAF-SAM [39]. The concentration reflects the DNA concentration when the 

samples were added to the PCR wells. For example, the DNA concentration for the first 

sample (10
-1

) was 13ng/µL. 10µL was added to the PCR well for a total concentration of 

130ng.  

Dilution 

Factor 

DNA 

Concentration 

(ng) 

10
-1 

130 

10
-2 

13 

10
-3 

1.3 

10
-4 

0.13 

10
-5 

0.013 

10
-6 

0.0013 

10
-7 

0.00013 

10
-8 

0.000013 

10
-9 

0.0000013 

10
-10 

0.00000013 

 

The dilution controls were run in duplicate for every experiment. Each full 

experiment was divided into two PCR runs. To better understand necessity for a 

calibration curve, samples 0R, 0NR, 1R, and 1NR need more explanation. Table 5 below 

displays sample collection times for the DNA damage and repair experiments. Samples 

0R and 0NR are spore samples with no irradiation. Samples 1R and 1NR represent the 
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spores after irradiation. 0R represents the un-irradiated spores that have been cultured in 

germination media for 450 minutes and are expected to have the highest yield of DNA. 

Sample 0NR represents the undamaged spores and un-germinated spores. Sample 1R is 

representative of spores that were irradiated and allowed to repair; this is the most DNA 

repair expected from the damaged spores that were incubated for 450 minutes. Sample 

1NR represents the un-germinated irradiated spores in which the most damage is 

expected. These first 4 samples are used to develop the calibration curve with which to 

compare the other samples. Samples 2-12 are spores that were incubated for the 

designated time. 

Table 5. DNA damage and repair experimentation. Samples 0R and 0NR are spore 

samples with no irradiation. Samples 1R and 1NR represent the spores after irradiation. 

0R represents the most DNA expected to be seen for the spores that outgrew to 450 

minutes. 0NR represents the undamaged spores. Sample 1R is representative of spores 

that were irradiated and allowed to repair; this is the most repair expected from the 

damaged spores that were incubated for 450 minutes. Sample 1NR represents the most 

damage to be observed. These first 4 samples are used to develop the calibration curve 

with which to compare the other samples. Samples 2-12 are spores that were incubated 

for the designated time. 

Sample 

Name 

Incubation Time 

(Minutes) 

Sample Description 

0R Control Prior to irradiation; incubated for 450 minutes 

0NR Control Prior to irradiation; no incubation 

1R 0 Immediately following irradiation; incubated for 450 minutes 

1NR 0 Immediately following irradiation; incubated for 450 minutes 

2 30 Incubated for 30 minutes 

3 60 Incubated for 60 minutes 

4 90 Incubated for 90 minutes 

5 120 Incubated for 120 minutes 

6 150 Incubated for 150 minutes 

7 180 Incubated for 180 minutes 

8 210 Incubated for 210 minutes 

9 270 Incubated for 270 minutes 

10 330 Incubated for 330 minutes 

11 390 Incubated for 390 minutes 

12 450 Incubated for 450 minutes 
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While several PCR temperature protocols were tested, the protocol in Table 6 

worked best. Phase 1 of the protocol is meant to bring the sample up to primer operation 

temperature. Phases 2 and 3 are the steps where primer sequencing and amplification 

occurs. Phases 2 and 3 were repeated 40 times (40 cycles). DNA that has been properly 

amplified doubles each cycle. 

Table 6. PCR temperature protocol. PCR primers and probes are temperature dependent. 

If the temperature protocol is not correct, amplification will not occur. This protocol 

worked best with the primers in this project. Phase 1 brings the primers up to proper 

temperature. Phase 2 causes DNA to separate into its two strands. Primers attach at Phase 

2. Primer extension (amplification) occurs in Phase 3.  

Phase Temperature & Time 

1 95°C for 30 seconds 

2 95°C for 10 seconds 

3 55°C for 45 seconds 
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IV. Analysis and Results 

Chapter Overview 

This chapter presents the data collected during the research portion of the project. 

Data sets presented include Ba survival curves, actinometry measurements to account for 

changes in efficiency of the LEDs, and real time-PCR results of the DNA damage and 

repair experiments. Other additional analyses were performed to determine efficiency and 

success of main experiments. Additional analysis included fluorescence experiments to 

monitor germination times of Ba and atomic force microscopy images to observe 

morphological changes of Ba before and after irradiation. 

Actinometry 

Actinometry experiments were performed using the potassium iodate/iodide 

actinometer. The actinometry experiment conducted on 5/23/2014 was representative of 

the LEDs operation prior to all experimentations. Actinometry conducted on 7/21/2014 

represents the LED operation conditions following all experimentation. By comparing 

these two actinometry experiments, the reduction in LED power output could be 

determined based on quantum yield calculations of the actinometer. The following 

calculations were obtained from James Bolton and his quantum yield calculations of the 

potassium iodate/iodide actinometer [35]. Quantum yield was calculated by first 

calculating the concentration of I3
-
 following equation 7 below [35]: 

   
   

                 

      
                                      (7) 

Where Abs352 is the absorbance of the sample at 352nm and Absblank is the 

absorbance of the blank at 352nm. The blank sample is non-irradiated potassium 
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iodate/iodide solution. 27.636 is the molar absorbance coefficient of I3
-
 as tabulated. 

Next, using the calculation of [I3
-
], the moles of [I3

-
] generated in the reactor were 

calculated using the following equation [35], 

           
            

   
    

    
                        (8) 

Where V is the volume in the reactor, 100mL. Next, the number of Einstein’s of 

UV absorbed at 267nm (the peak wavelength of the LEDs) were calculated using 

equation 9 below [35], 

                                  
                  

  
           (9) 

Where P is the average power of the UV LEDs (Watts), R is the reflection 

coefficient of reflected UV light (0.975) for DI water, t is the exposure time in seconds, 

Absλ is the absorbance of the actinometer solution at the exposure wavelength, 267nm, 

and Uλ is the energy per Einstein at 267nm, given to be 447938.1277 J/Einstein. Using 

equation 4
9
, the quantum yields were calculated

10
.  

Because the potassium iodate/iodide solution is temperature dependent and 

because the temperature differed on the two collection days, the quantum yield was 

adjusted based on equation 5. The temperature dependence is linear. Once the quantum 

yield was adjusted for temperature differences, it was compared to the quantum yield 

determined by the National Institute of Standards and Technology (NIST) at 23.5°C ± 

1°C [35]. Table 7 below lists the data points collected in this study. Quantum yield is 

approximately linearly dependent on wavelength. Using this data, the quantum yield 

expected to see for these LEDs at 267nm was 0.5315 (using an approximate least squares 

                                                 
9
 See Chapter 2, Actinometry 

10
 See Appendix for Calculations of Quantum Yield  
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fit). 0.5315 was representative of the yield at 23.5°C ± 1°C. Adjusting for temperature 

using equation 5 in chapter 2, the expected quantum yield is calculated to be 0.68. The 

quantum yield of the UV LED reactor was calculated to be 0.60. Based on this quantum 

yield, the fluence values for both collected actinometry experiments were adjusted to 

reflect the ratio of the experimentally determined yield to the yield reported by NIST. 

The LEDs in the UV reactor are calculated to be approximately 89% efficient.  

Table 7. Quantum yield measurements reported by NIST [35]. Quantum yield is 

apparently linearly dependent upon wavelength. Therefore, the expected quantum yield 

for the UV LED reactor was determined to be 0.68 at 267nm, once temperature adjusted 

(the temperature that experiments were conducted at differed from 23.5°C as much as 2 

degrees. The LEDs in the UV reactor are approximately 89% efficient. 

NIST Data @ 
 23.5°C ± 1°C 

Wavelength        
(nm), λ Quantum Yield 

240.7 0.82 

253 0.68 

255.3 0.73 

289 0.26 

302 0.15 

 

Table 8 below shows the adjusted quantum yield values as they relate to the 

temperature corrected fluence values. Figure 16 below displays this relationship. To 

determine the average quantum yield values, the first three data points were omitted 

because their absorbance measurements were too close to the absorbance blank values, 

thereby introducing an unnecessary uncertainty
11

. It is postulated the deviation in 

quantum yield from the average around the first few collection times is because of this 

closeness in absorbance values to the blank correction values.   

                                                 
11

 See Appendix for absorbance values 
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Table 8. Apparent quantum yield and corrected fluence values. 5/23/2014 data was 

collected prior to all experimentation. 7/21/2014 data was collected after all other 

experimentation had been conducted. The average quantum yield omits the first three 

data points, as their absorbance measurements were too similar to the blank 

measurements to be included. 

 

Figure 15 below displays the apparent quantum yield as fluence changes. The 

functionality seen at the beginning of the plot is not typical of actinometry experiments. 

The absorbance values are measured at 352nm, the absorbance wavelength of the 

actinometer solution. The blank values at this wavelength were very close in value to the 

absorbance of the actinometer solution near the beginning of the experiment (the first few 

data points). This is attributed to the uncertainty introduced in having the blank values so 

close to the experimentally collected data.  

Corrected Fluence 

(J/M^2)

5/23/2014 Apparent 

Quantum Yield

7/21/2014 Apparent 

Quantum Yield

51.85 0.87 0.98

103.70 0.80 0.82

155.55 0.69 0.78

207.40 0.58 0.68

259.25 0.56 0.68

311.10 0.58 0.63

362.94 0.60 0.63

414.79 0.57 0.62

466.64 0.57 0.61

517.61 0.59 0.63

569.46 0.59 0.61

621.31 0.58 0.61

673.16 0.58 0.60

725.01 0.58 0.62

741.71 0.58 0.60

828.71 0.60 0.61

880.56 0.60 0.60

932.41 0.58 0.59

984.26 0.59 0.61

1036.11 0.58 0.60

Average: 0.58 0.62
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Figure16. Apparent Quantum Yield. Values used in this graph are reported in Table 8. 

The first three data points were omitted during quantum yield calculations because the 

absorbance values at 352nm were too close to the absorbance blank measurements. The 

quantum yield should remain constant with changing fluence.  

 

 

The ultimate goal in conducting actinometry experiments was to determine the 

proper fluence values to be used for the rest of the research. The corrected fluence values 

reported in Table 5 were used for the remainder of the project.  

Bacillus anthracis Survival Curve 

The first set of experiments conducted led to the creation of the Ba survival 

curves. Fluence values were adjusted based on the actinometry results in the above 

section. Ba spores (1x10
7
 spores/mL) were irradiated for a total of approximately 10 

minutes (approximately 1000J/m
2
) while 100µL samples (in triplicate) were taken 
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frequently throughout. Samples were plated in triplicate
12

. The surviving fraction was 

calculated at each point for each plate. The following figures display data for Survival 

Curve 3 (corresponding to Experiment #3) because the triplicate plate counts were the 

tightest groups of all 3 experiments
13

 and had the smallest standard deviations. Then, the 

data for all three experiments was averaged and presented below as well. Figure 17 below 

displays the surviving fraction of Survival Curve 3. Data was collected in all three 

experiments up to approximately 1000J/m
2
.  N and No are representative of physical plate 

counts, an average of three plates counted in triplicate per data point. The survival 

fraction changes dramatically in the first three data points and exhibits a tailing effect for 

the duration of the experiments. Other studies have supported evidence of both a shoulder 

and tailing effect [48]. More data points are needed at lower fluences to determine if there 

indeed exists a shoulder. The tailing effect is exhibited in Figure 17. 

                                                 
12

 See Appendix for Plate Counts 
13

 See Appendix for Survival Curve 1 and 2 figures  
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Figure17.  Survival Curve 3 surviving fraction of Ba Sterne spores as fluence is varied 

between 0 and 1000 J/m
2
. Fluence carries the units J/m

2
. Fluence values displayed in this 

figure are the corrected values from actinometry results. 

 

To better understand the data observed, error bars were utilized in Figure 18. 

Error was calculated using counting statistics where several assumptions were made. The 

counting error statistics assume a normal or Gaussian distribution, where the error in the 

value n (the counted statistic) goes as the square-root of n. This calculation is most 

accurate when n is very large. The data towards the end of the survival curve is based on 

counting one or two colonies per plate out of a starting concentration of spores that was 

1x10
7
spores/mL. This indicates that n is very small and the error statistics are less 

accurate for the smaller values of n.  The error values are ultimately the division of 

T/CT, where T is the error associated with the colony count value, CT. The error 
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calculation also assumes that x and y are independent variables. The error equation is 

given by equation 10 below, 

  

 
     

 
       

 
                                             (10) 

Equation 9 assumes the central limit theorem. The central limit theorem states that “the 

distribution of the average of a large number of independent, identically distributed variables 

will be approximately normal, regardless of the underlying distribution” [54] . Because the 

error becomes extremely large after 240J/m
2
, only the first 8 data points were used for 

fitting purposes. The dotted blue line represents this cut-off point in Figure 18 below.  

 

 

Figure 18. Survival fraction for Survival Curve 3. The dotted blue line represents the cut-

off point for data to be fit. The magnitude of the errors towards the higher fluence values 

is as large as the spread of the data. The last 6 data points are omitted from the fitting 

functions seen in the following figures. 
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Figure 19 below displays the log(N/No) as a function of fluence. The dotted blue line 

shows the cut-off point for data to be fitted. This figure represents data taken from the 

third experiment, Survival Curve 3. The last data point at 966J/m
2
 is omitted from the 

plot because the plate counts were zero, making the Survival fraction 0. The log10 (0) is 

undefined. 

 

Figure 19. Log10 (N/No) as a function of fluence for Survival Curve 3. The blue line 

indicates the breaking point in the data where errors become too large to trust the data 

points. The last data point (at 966J/m
2
) is omitted from the plot because the plate counts 

were zero, making the Survival fraction 0. The log10 (0) is undefined.  

 

Figure 20 below shows the log-linear fit for Survival Curve 3. The fitting function is as 

follows, 

                                         y = [α]x + [β]x
2    

                                                (11) 

Where α and β are the fit parameters to be compared between experiments. The α-term is 

representative of the linear functionality of the data and β is representative of the 
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quadratic functionality. All fitting for the survival curves was performed in Root, a large 

scale data fitting and analysis program. Fitting the data up to 240J/m
2
 for Survival Curve 

3, the fitting statistics are as follows in Table 9. 

Table 9. Fitting Parameters and statistics for Survival Curve 3. The R
2
 is the best for 

Survival Curve 3 (Of all three curves), at 0.992. Note the magnitude of β is very small, 

indicating that the fit has a very small quadratic-term. That is to say, the data is 

nearlylinear. 

Survival Curve #3 

α -0.017 

β -0.000013 

Reduced Χ² 0.022 

R² 0.992 

 

The β-term is very small because the data is mostly linear and only has a slight quadratic 

tendency. Chi-square, Χ
2
, measures the goodness of a fit to its modeled data. Χ

2
 is 

described in equation 12 below: 

   
                                

              
                                          (12) 

Chi-square values around 1 indicate a good fit of the data. Values larger than 1 

indicate a bad fit of the data. The Χ
2 

reported in Table 9 above is less than 1, indicative of 

an overfitting of the data. This is logical, as the quadratic component of the fit is existent, 

but very small. The reduced chi-square value is the calculated chi-square divided by the 

degrees of freedom. Figure 20 below shows the fitting of Survival Curve 3. Only data up 

to 240 J/m
2
 was fitted. This included the first 8 data points.  
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Figure 20. Log-linear with fit of Survival Curve 3. Fitting only the data up to 240J/m
2
, 

the Root coding program yields an R
2
 value of 0.992. Fitting parameters for this fit are 

found in Table 9 above.  

 

Figure 21 below displays the correlation plot for Survival Curve 3. The 

correlation plot is developed using a Pearson product-moment correlation coefficient, r. 

Information about the Pearson coefficient was taken from the Laerd Statistics website 

[55]. The Pearson coefficient, r, is a measure of the relationship between two variables. 

The Pearson coefficient can take on values between -1 and 1. A Pearson coefficient value 

of 0 means that the two variables have no association with each other. A value between 0 

and +1 indicates positive correlation; as one variable increases in value, so does the other. 

The closer r is to +1, the more strongly positively correlated the two variables are. A 

value between 0 and -1 indicates negative correlation; as one variable increases in value, 

the other variable decreases. The closer r is to -1, the more strongly negatively correlated 



60 

the two variables are. Figure 21 below indicates a negative correlation between the two 

fit parameters of the survival curve data, α and β. The closer r is to +1 or -1, the better the 

data fits the model chosen. The blue area indicates 1 standard deviation from the mean, 

where 68% of the data lies. The green area indicates 2 standard deviations from the mean, 

where 95% of the data lies. The red area indicates 3 standard deviations from the mean, 

where 99.7% of the data lies. 

 

 
Figure 21. Pearson product-moment correlation plot for Survival Curve 3. The two fit 

parameters α and β are negatively correlated. The blue area indicates 1 standard deviation 

from the mean, where 68% of the data lies. The green area indicates 2 standard deviations 

from the mean, where 95% of the data lies. The red area indicates 3 standard deviations 

from the mean, where 99.7% of the data lies. 

  

The next set of figures displays data for all three experiments (Survival Curves 1,2 &3) 

combined on one plot. Figure 22 displays the combined survival curve for N/N0 as a 

function of fluence in J/m
2
.  
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Figure 22. Survival Curve for all 3 data sets. Surviving fraction of Bacillus anthracis 

Sterne spores as fluence is varied between 0 and 1000J/m
2
. Fluence carries the units J/m

2
.  

 

Figure 23 below shows the large increase in error that occurs in all three survival 

curves as fluence increases. All fitting of the data was only from 0 to 240J/m
2
. Fitting 

parameters for the combined survival curve are the reported α and β terms for the project. 

The fit parameters and the fit curve are found in Table 10 and Figure 24 respectively. 
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Figure 23. Ba Sterne survival curve showing all 3 experimental data sets. Data from the 3 

different experiments varies greatest when fluence is less than 100J/m
2
. This plot displays 

the large increase in error as fluence increases and colony counts are greatly diminished. 

  

Combining the data from all 3 experiments, the fit parameters below are reported 

with a 90% confidence. This confidence interval was calculated using equation 13 below:  

  = 
  

  
                            (13)           

Where     is the mean of the data points (the average of the three α or β values 

from all 3 survival curves), t is a designated constant determined by the confidence level 

and degrees of freedom, and s/   is the standard deviation of the data. 
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Table 10. Fitting Parameters and statistics for the combined survival curve data. Error 

bars are reported with a confidence interval of 90%. 

Combined Survival Curve 

α -0.0144 ± 0.008 

β -0.00001 ± 0.0002 

Reduced Χ² 0.192 

R² 0.876 

 

The fit parameters in Table 10 above are derived from the Root software coding 

program of the fit in Figure 24 below. Figure 24 below shows three data points for each 

fluence dose. Each data point is the result of three separate plate counts. An R
2
 of 0.876 is 

not considered extremely great. But, this can most likely be attrubuted to the slight 

quadratic tendancy of the fit. 

 

 

 

Figure 24. Log-linear with fit of the Combined Survival Curve. Fitting only the data up to 

240J/m
2
, the Root coding program yields an R

2
 value of 0.876. Fitting parameters for this 

fit are found in Table 10 above.  
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Figure 25 below displays the Pearson product-moment correlation plot for the Combined 

Survival Curve. The two fit parameters α and β are again negatively correlated. The blue, 

green and red areas are again indicative of the confidence intervals for where the data lies 

1 (blue), 2 (green) and 3 (red) standard deviations from the mean. 

 

 
Figure 25. Pearson product-moment correlation plot for the Combined Survival Curve. 

The two fit parameters α and β are negatively correlated. The blue area indicates 1 

standard deviation from the mean, where 68% of the data lies. The green area indicates 2 

standard deviations from the mean, where 95% of the data lies. The red area indicates 3 

standard deviations from the mean, where 99.7% of the data lies. 

 

DNA Damage & Repair Experimentation 

The final experimentation in this project was performed to monitor DNA repair 

following irradiation. As discussed previously, no repair of DNA occurs in the dormant 

spore. The repair process occurs during germination and outgrowth. To assure spores 

were germinating in the time frame of data collection, fluorescence experiments were 
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conducted. Germination salts were only concentrated at half strength for fluorescence 

experiments and were adjusted to full strength for the DNA damage and repair 

experiments analyzed with PCR. A lessened concentration of germination salts most 

likely slowed the germination process. This was evident when microscopic and AFM 

images were taken during experimentation where full strength salts were used and 

germination was seen as early as 90 minutes in the irradiated spores. Table 8 below 

shows the fluorescence data. Triplicate readings were taken on the spectrometer for each 

sample point. The three readings were averaged. The standard deviation in the triplicate 

readings is displayed in Table 11 as the intensity error. 

Table 11. Fluorescence data collected on irradiated and un-irradiated (control) Ba Sterne 

spores. This data was collected to monitor the germination and outgrowth stages of the 

spore. For this experiment, the germination salts were only at half strength. This most 

likely slowed the germination process for both the control and irradiated spores. An 

increase in fluorescence intensity indicates an increase in germination as the fluorescence 

dye will not penetrate the spore. Three measurements were collected at each data point 

and averaged.  

 

Un-Irradiated Irradiated Un-Irradiated Irradiated

Control 142390 47620 2475.7 242.7

0 119190 102633.3 367.6 2355.6

30 126836.7 140566.7 992.9 1501.1

60 243506.7 85303.3 39283.9 1218.3

90 249456.7 97532.1 124202.5 696.2

120 276527.5 106043.3 4025.5 2081.7

150 172553.3 99250 5812.8 221.7

200 794500 5181430 7326.5 127567.6

250 15836330 212790 2906885.9 10663.2

300 21860346.7 1197630 574442.2 16984.7

350 20660606.7 303903.3 32597.4 3806.0

400 19257616.7 7213123.3 26133.2 112645.4

450 19725483.3 8311860 11818.2 297451.8

Average Intensity, RFU
Incubation

Time, 

Minutes

Intensity Error 
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Figure 26 below displays the fluorescence data as a function of incubation time 

(minutes). A sharp intensity increase is seen at 200 minutes for the control data, 

indicating the beginning of germination. The same increase is not observed in the 

irradiated spores until approximately 350 minutes. This delay time is attributed to the 

spore recovering from the UV damage before beginning outgrowth. A sharp increase is 

seen at 200 minutes for the irradiated sample. This sharp increase intensity could be 

attributed to the burst time of the spore. The burst time is defined as when the cell 

emerges from the spore coat [18]. This fluorescence tracking of the germination process 

was developed from a study performed by Kong et al, where germination was monitored 

and reported with respect to time [56].  
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Figure 26. Fluorescence data collected on irradiated and un-irradiated (control) Ba Sterne 

spores. This data was collected to monitor the germination and outgrowth stages of the 

spore. For this experiment, the germination salts were only at half strength. This most 

likely slowed the germination process for both the control and irradiated spores. An 

increase in fluorescence intensity indicates an increase in germination as the fluorescence 

dye will not penetrate the spore. Three measurements were collected at each data point 

and averaged. The control spores show germination beginning at 200 minutes and the 

irradiated spores begin to germinate at 350 minutes, a lag time of about 2½ hours.  

 

To accompany fluorescence data, Atomic Force Microscopy (AFM) images were 

collected throughout the incubation time. AFM images were prepared and collected by 

Dr. Yun Xing, a fellow AFIT researcher [57]. AFM images were taken after incubation 

media was added at the following incubation times: 0, 90 and 150 minutes. Figures 27-29 

show images of un-irradiated spores in germination media. Un-irradiated spores appeared 

normal, meaning they matched the spores from the reference article where the growth 

conditions were the same (AGFK in MOPS media) [18]. Figures 30-32 display images of 
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the irradiated spores in germination media. Note that for the experiments displaying AFM 

images, as with fluorescence experiments, germination salts (AGFK) were at full 

strength. The irradiated spores did germinate. However, the clustering of the spores 

seemed to be in groups of two or three spores; whereas the un-irradiated spores clustered 

in very large groups. 

 

 

 

Figure 27. Un-irradiated Spores at Time Zero. Non-irradiated spores immediately 

following addition of germination salts (half strength). The size, shape, and clustering is 

typical of Ba spores. Images are courtesy of Dr. Yun Xing [57]. 

In Figure 27 above, spores look normal. Clustering and size are indicative of Ba 

spores. The spores have an exosporium layer, evident in the images encasing the spore. 

Spores in this first figure have not been given the opportunity to germinate. In Figure 28 

below, spores have been in germination media (half strength AGFK salts) for 90 minutes. 

Germination is occurring. The vegetative cells are not forming their normal long-chain 

structures. However, their growth pattern is indicative to the growth pattern in Pandey, 
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where similar growth conditions we used [18]. The fibers surrounding the spores are 

commonly observed as well.  

 

 

Figure 28. AFM images of un-irradiated control spores: 90 min culture in germination 

media. Note the presence of normal looking veg cells, pit-like structures and also fibers. 

Normal spores are approximately 2-5 microns in length, where the vegetative cells are 

slightly longer. Images are courtesy of Dr. Yun Xing [57]. 

 

Figure 29 below demonstrates to a larger degree these clusters of vegetative cells. 

The cluster of cells is large, but normal in size for this germination media. The 

germination media is minimal media buffered to a pH of 7.4 with 3-(N-morpholino) 

propanesulfonic acid (MOPS) [18]. In addition, the media was supplemented with 

AGFK: 10mM L-asparagine, 10mM glucose, 1mM fructose, and 1mM potassium 

chloride.  
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Figure 29. AFM images of un-irradiated spores control: 150 min culture in germination 

media. At this point, nearly all germination has taken place. The size, shape, and 

clustering is typical of Ba vegetative cells in this MOPS AGFK germination media. 

Images are courtesy of Dr. Yun Xing [57]. 

 

The following 3 figures display AFM images of spore following irradiation. 

Overall, the spores have a different morphology then the un-irradiated spores. While this 

morphology change is not well identified or understood, it is evident in the images below. 

The spore coat or exosporium appears to be attached from the spore itself in Figure 30 

below.  
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Figure 30. Radiated (log kill 1) Spores. This sample is 0 minutes incubation in 

germination media. The white box indicates the spot at which the bottom two images are 

focused. In the top image and image on the left, a haze is seen around each spore. It 

appears (shown in bottom right image) the spores have lost their exosporium and perhaps 

their spore coats. Images are courtesy of Dr. Yun Xing [57]. 

 

In Figure 31 below, after 90 minutes in germination media the spores are 

germinating. However, the clusters of germinating spores are much smaller. This figure 

also displays the debris of what appears to be a spore coat or exosporium as the spore is 

germinating. The far right image displays this well. Normal looking fibers are also seen 

in these germinating spores.  
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Figure 31. Irradiated spores incubated in germination media for 90 minutes. These spores 

are beginning to germinate. The fibers seen in un-irradiated germinating spores are also 

seen here. But, the germination is occurring in much smaller clusters then the un-

irradiated spores. Images are courtesy of Dr. Yun Xing [57]. 

 

The final AFM image, the irradiated spores are now fully germinated cells. 

Evidence of complete germination is also supported by the fluorescence data.  The cells 

look normal. Again in Figure 32 below, clusters of cells are much smaller containing 1-3 

cells. Clusters of cells in un-irradiated spores contained 20-50 cells. Some morphological 

difference must be changing this growth habit of the Ba cells. Further imaging is needed 

to better understand this behavior. 
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Figure 32. Irradiated spores incubated in germination media for 150 minutes. The spores 

are almost entirely germinated cells. This is also confirmed by the fluorescence 

measurements. These cells are clustered in 1-3 cell clusters. The un-irradiated cells were 

clustering in much larger groups of 20-50 cells. Images are courtesy of Dr. Yun Xing 

[57]. 

 

During irradiation experiments, samples were collected for several different 

analysis methods including AFM images, fluorescence measurements and PCR. To 

accompany all of this data, plate counts were also taken in triplicate at each time 

collection point. Plates were plated in serial dilutions and incubated at 37°C for 18 hours 

before being counted. Figure 33 below displays these plate counts. A few statements can 

be made regarding this figure. It is evident that all 3 experiments irradiated spores in a 

fairly consistent fashion, as their plate growth habits were all very similar. The cell 

counts of the damaged spores never reached the same level as the un-irradiated spores 

(control), as expected. The steep decline in surviving fraction towards low incubation 

times probably can be attributed to the recovery time of the damaged spores before 

outgrowth. 
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Figure 33. Surviving fraction of DNA damage and repair experiments with varying 

incubation time. Each data point is representative of 3 plate counts. Plates were counted 

after 18 hours. The control experiment received no irradiation while the experiments 

received a dose of 100 J/m
2
.   

 

Following AFM images and fluorescence measurements, DNA damage and repair 

experiments were still analyzed by PCR using SYBR Green. The real-time PCR produces 

a reading for each sample called Ct. Ct is determined by a threshold fluorescence value 

that is just above background fluorescence. The number of cycles required to reach this 

threshold fluorescence is termed Ct. The following figures display the PCR data from all 

three experiments. The short amplicon figures indicate the samples utilizing the forward 

primer and the first reverse primer. The long amplicon figures indicate the samples 

containing the forward primer and the second reverse primer. PR1 yields the shorter 

amplicon fragment in Table 3 and PR2 yields the longer amplicon fragment. 
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After conducting all the PCR analysis, samples yielded few results. No amplification was 

observed for any samples past the incubation/germination stage (samples 2-12). The lack 

of amplification is most likely attributed to DNA isolation techniques. The same bead 

beating method of DNA isolation was used for all samples: 0R, 0NR, 1R, 1NR and 2-12. 

It is hypothesized that this method of isolation was too severe and damaging to the 

germinated samples 2-12. Ba spores are much harder to lyse open than are Ba cells. The 

bead beating isolation protocol worked well for spore samples, but may have been too 

damaging to germinated samples. Too much damage across the plasmid DNA would 

result in PCR failure. The primers wouldn’t be able to identify the complementary strand 

of the template DNA and would fail to attach. The taq polymerase would then fail to 

synthesize. The PCR primers were tested against a separate isolated sample of RFP DNA 

and were successful, so improperly functioning primers could be ruled out. 

Figures 34 and 35 below display the only data points collected in all three 

experiments, samples 0NR and 1NR. Figure 34 shows data for the short amplicon and 

Figure 35 shows data for the long amplicon. NR samples were not allowed to incubate at 

all. Sample 0NR was taken immediately following the spore solution preparation and 

sample 1NR was taken immediately following irradiation. These two samples should 

show the healthiest spores (0NR) and the most damaged spores (1NR).  
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Figure 34. Un-germinated spores pre and post-irradiation. Samples for all 3 experiments 

are displayed. Error bars are included and individual Ct results displayed on the bars. 

Total DNA concentrations are also shown in a white box at the bottom of each bar. Data 

in this figure corresponds to the short amplicon, 245bps long. Irradiation of 1-log kill.  

 

In Figure 34 above, two different trends are observed. In Experiment 1, PCR 

amplification occurs faster in the un-irradiated spores than in irradiated as expected. 

When the DNA is damaged, it’s expected to take longer (higher Ct) to amplify in the 

PCR (less complete, undamaged copies of template DNA are available). However, in 

experiments 2 and 3, the opposite trends are observed. It should be noted that these 

spores have not germinated. No repair has occurred. Samples in Figure 34 should be 

directly reflective of the damage incurred by the DNA during log kill1 irradiation. Figure 

35 below displays the same samples as Figure 34, with the longer amplicon primers.  
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Figure 35. Un-germinated spores pre and post-irradiation. Samples for all 3 experiments 

are displayed. Error bars are included and individual Ct results displayed on the bars. 

Total DNA concentrations are also shown in a white box at the bottom of each bar. Data 

in this figure corresponds to the long amplicon, 547bps long. Irradiation of 1-log kill. 

 

In all 3 experiments displayed in Figure 35, the irradiated DNA is more efficiently 

amplified then is the un-irradiated DNA.  To better interpret this data, Figures 38 and 39 

display the same data, but it has been corrected by DNA concentrations. As displayed in 

Figure 34-37, total DNA concentrations (displayed in white boxes at the bottom of each 

bar) varied from sample to sample. This variance is most likely attributed to inconsistent 

isolation efficiency. It should be noted that total DNA concentration accounts for both 

genomic DNA and plasmid DNA. Had the PCR properly amplified all samples, Ct values 

would have been calibrated based on only plasmid DNA.  
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Figures 36 and 37 below display data from experiment 2, where 2 germination 

samples OR and 1R properly amplified. Figure 36 shows data for the short amplicon and 

Figure 37 for the Long amplicon. Notice the errors for germinated samples in Figure 36 

are very large. On average, the data in Figures 36 and 37 again show a faster efficiency of 

amplification after irradiation. This was not the expected trending. Making conclusions 

from this data would not tell the full story. Conclusions should instead be drawn from 

concentration corrected data in Figures 38-41. 

 
Figure 36. Ct PCR data from experiment 2, where germination samples OR and 

1R properly amplified. Germinated samples are viewed on the left, un-germinated on the 

right. Irradiation of 1-log kill. 
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Figure 37. Ct PCR data from experiment 2, where germination samples OR and 

1R properly amplified. Germinated samples are viewed on the left, un-germinated on the 

right. Irradiation of 1-log kill. 

 

The following 4 figures display the same data observed in the above 4 figures. 

However, the data has been corrected by DNA concentration. Experiments 2 and 3 seem 

to be in agreement with each other, where as experiment 3 exhibits opposite trending. For 

the two experiments in agreement, in Figures 38 and 39, irradiated samples are more 

efficient at amplification than are un-irradiated. This is not the expecting trending. Figure 

38 displays data for the short amplicon and Figure 39 for the long amplicon. Ct values for 

the next four plots are corrected by multiplying the Ct value by the total DNA 

concentration (ng/µL). 
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Figure 38. Un-germinated Ba spores pre and post-irradiation. Samples for all 3 

experiments are displayed. Error bars are included and individual Ct results displayed on 

the bars. These Ct results have been corrected by total DNA concentration. Data in this 

figure corresponds to the short amplicon, 245bps long. Irradiation of 1-log kill. Ct*DNA 

has units of cylces * ng/µL. 

 

 

Figure 39. Un-germinated spores pre and post-irradiation. Samples for all 3 experiments 

are displayed. Error bars are included and individual Ct results displayed on the bars. 

These Ct results have been corrected by total DNA concentration. Data in this figure 

corresponds to the long amplicon, 547bps long. Irradiation of 1-log kill. Ct*DNA has 

units of cylces * ng/µL 
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Figures 40 and 41 below display the data from experiment 2, where germinated samples 

0R and 1R were successfully amplified. Germinated samples were expected to have a 

lower Ct value. Because the cells are outgrowing and increasing in numbers, the number 

of plasmids (DNA template for PCR) should also be increasing. Because the opposite is 

observed, DNA isolation technique is most-likely to blame. Based on plating, the plasmid 

was never ejected from the Ba spore/cells. Therefore, the plasmid was subjected to the 

same DNA repair as the genomic DNA. In these figures, amplification is faster before 

irradiation then after, as expected. 

 

 

Figure 40. Experiment 2, Germinated vs Un-germinated spores. The bars in blue reflect 

un-irradiated spores and the bars in red reflect irradiated spores. Data in this figure 

corresponds to the short amplicon, 245bps long .Irradiation of 1-log kill. Ct*DNA has 

units of cylces * ng/µL 
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Figure 41. Experiment 2, Germinated vs Un-germinated spores. The bars in blue reflect 

un-irradiated spores and the bars in red reflect irradiated spores. Data in this figure 

corresponds to the long amplicon, 547bps long. Irradiation of 1-log kill. Ct*DNA has 

units of cylces * ng/µL 

 

For un-germinated spores we have reason to believe that the DNA wasn’t 

shredded and the data has validity.  Since the isolation method for germinated spores 

seems to be improper, it is difficult to draw conclusions from this data. However, the 

isolation of un-germinated spores by bead beating was successful for all three 

experiments. Using only the un-germinated data, PCR is about 1.4 times less efficient for 

irradiated spores, then for un-irradiated.  

Summary 

Experimental data collected in this project included fluorescence measurements to 

monitor germination, AFM images to observe morphological changes in irradiated 

spores, survival curves to understand how Ba sterne is affected by UV radiation, and PCR 

measurements in an attempt to monitor DNA repair through germination and outgrowth. 
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Actinometry measurements were also collected to adjust the UV fluence dosage based on 

the efficiency of the LEDs. Overall, data collection and analysis was successful. 
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter discusses conclusions drawn from the experimental data collected 

and also recommends future experiments that would support the currently presented data. 

The most crucial future recommendations are to investigate a better isolation method for 

germinated samples, and to solve the mystery of the taqman probe failure. Other future 

recommendations include redesign of the LED reactor and to conduct more survival 

curve experiments at different fluences. The end of the chapter also serves to conclude 

the entire thesis document.  

Conclusions of Research 

 The primary objective of this research project was to develop Bacillus anthracis 

Sterne spore survival curves and to use PCR to measure DNA repair. These objectives 

were partially met. Bacillus anthracis survival curves were successfully developed. The 

survival curves, actinometry corrected, allowed for proper dosage of DNA repair 

experimentations. These survival curves are in agreement with other literature curves.  

PCR experiments were less than perfect. Some samples lacked any PCR amplification. 

PCR troubles have been attributed most likely to DNA isolation techniques and 

efficiency. To draw specific conclusions from the current PCR data is difficult. The data 

reveals an overall higher PCR efficiency from irradiated samples then from un-irradiated 

samples. This was not the expected outcome. Irradiated samples were expected to have 

greater DNA damage and therefore lower PCR amplification (corresponding to higher Ct 

values). 
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Future Recommendations 

 To further improve upon research collected in this project, a few important 

questions need to be answered, or solved. Developing a successful isolation technique for 

DNA must be achieved. The bead beating method used in this project is sufficient for 

spore DNA isolation, but is too harsh for cell DNA isolation. I recommend using a simple 

DNA plasmid isolation kit for Ba cells. In addition, plasmid isolation following spore 

DNA isolation may help isolate plasmid DNA from total genomic DNA in the initial 

samples. If the same experiments were to be repeated, collection times greater than 3 

hours are unnecessary, as fluorescence measurements confirmed germination completion 

by this time. Collecting samples more frequently during the germination process would 

most likely allow for better modeling of repair.  

Determining why the taqman probe failed would also be helpful. Occasionally, 

these probes just do not work. Since the primers operate efficiently, several probe 

sequences could be experimented with, until one working sequence is found. 

Investigation into a new sequencing company may also fix the issue.  

 Further investigation of AFM images following irradiation, during germination, 

and after outgrowth would be meaningful to the images already collected. It may also be 

beneficial to explore the adhesion properties of the spore surface before and after 

irradiation. AFM images displayed a clear morphological change in the spores following 

irradiation. More images would form statistically significant populations of different 

morphological changes in the irradiated spores. 
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 Several additional experiments could be conducted in the future to support and 

improve the current presented data. The UV LED reactor works well, but is not a user 

friendly configuration. If care is not taken to properly turn on and off the LEDs, they can 

fail after even one operation
14

. I recommend constructing a reactor that operates in a 

more conducive manner to the frequency of sample collection that is necessary. Turning 

the LEDs on and off every 30 seconds (or less) is difficult, and not always accurate. If a 

port were designed that allowed for easier access sample collection, the LEDs would not 

need to be powered on and off as frequently.  

 The activity at the beginning of the survival curves is not well understood. Lack 

of enough data points between 0 and 50 J/m
2
 could be overlooking an important 

shouldering feature.  Other related research has reported shouldering effects at the 

beginning of Ba inactivation curves [48]. I recommend conducting more Ba survival 

curve experiments focusing on the smaller fluences to determine if the typical 

shouldering is indeed occurring. Tailing occurs at the end of the survival curves and is 

also a mystery to the researchers here at AFIT. In tandem with conducting more survival 

curve experiments at low fluences, I recommend sonication of the samples first, followed 

with close monitoring of the longer fluences. If the tailing is indeed from clusters of 

spores, sonication should eliminate this tailing. 

Summary 

This section provides a summary of the entire thesis project. Spores of Bacillus 

anthracis Ba Sterne were irradiated with 267nm UV LEDs. The pRB373 plasmid with a 

                                                 
14

 See Appendix for safe operation of LEDs 
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red fluorescent protein was transformed into Ba sterne cells prior. Following irradiation, 

germination media was added and the spores were incubated for various times, to allow 

for DNA repair. The pRB373 plasmid was isolated and analyzed using real-time PCR. 

Primers were designed across the RFP in the plasmid yielding two amplicons, 245bp and 

547bp long. PCR amplification was not achieved for germinated samples. Spore samples 

isolated using bead beating methods were amplified. Results indicate a quicker 

amplification (lower Ct) for irradiated samples thsn for un-irradiated. Lack of PCR 

amplification in germinated samples is attributed to too rough an extraction method for 

Ba cells. This observation was not expected. Ba Survival Curves were also developed 

using the quadratic fit         . Averaging results form 3 experiments, α is reported 

as -0.0144 ± 0.008 and β as -0.00001 ± 0.0002. Fit parameters are reported to a 90% 

confidence interval. Actinometry experiments corrected for the efficiency of the LEDs in 

all experimentation. Fluorescence measurements monitored germination and outgrowth; 

they indicated a delay in germination of irradiated spores. AFM images showed 

morphological changes in irradiated spores. Spore coats and/or the exosporium appear 

detached from the spore following irradiation. Irradiated spores also show vegetative 

growth in much smaller clusters than un-irradiated spores.  
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Appendix 

Microbial Technique & Preparation 

Leighton-Doi Media Recipe 

The following recipe prepares 1L of 10X sporulation media. Add the following 

ingredients and fill to 1L with dH2O. Filter sterilization is recommended. Store at 4
o
C.  

When ready to use, aseptically combine 9 parts 2X nutrient broth with 1 part 10X 

sporulation media.   

10X Sporulation Media: 

5grams MgSO4• 7H2O 

20grams KCl 

10grams glucose 

2.4grams Ca(NO3)2•4H2O 

0.2grams MnCl2•7H2O 

1mL 0.01M FeSO4•7H2O (0.28grams FeSO4•7H2O per 100mL H2O) 
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Plasmid Fact sheet 

The following information can be obtained on ATCC’s website. This is a snapshot of the 

information provided by ATCC for the plasmid pRB373 used in this project [10]. 

 

Figure Appdx-1. ATCC pRB373 plasmid information. The pRB373 plasmid is best 

grown in LB medium with 50µg/mL of ampicillin at 37°C. The sheet also provides 

information about the size of the plasmid and its vector and construction. 

 

 

Primer3Plus Primer Design 

The primer3Plus images shown here were designed specifically for this project. The 

primers and probe operate across the RFP sequence shown below. The RFP was inserted 

into the pRB373 plasmid. When using the Primer3Plus software, one should pick a left 

forward primer and fix it. To view more options for reverse primer, select different 

reaction conditions. Pay special attention to the “self” number and “Tm”. The “Tm” for 

all of the designed primers should be close to each other and the “self” number should be 
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as low as possible. The “self” number indicates the likelihood of the primer to anneal and 

stick to itself. 

 
Figure Appdx-2 Primer3Plus software design of primers.  

 

In Figure Appdx-2, the left primer begins at position 183. The first reverse primer begins 

at position 428. The product size (246) is the amplicon length including the primers’ 

sequence.  
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Figure Appdx-3. Primer3Plus Software design of the forward primer and second reverse 

primer.  

 

The resulting amplicon length is 548 base pairs. Notice the Tm for the first reverse 

primer, the second reverse primer and the forward primer are all around 60.0°C. Keeping 

the temperatures close increases efficiency of the PCR.  
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Figure Appdx-4. Primer3Plus software design of the internal oligo (or probe). 

Once the probe was designed in Primer3Plus, the sequence was ordered through 

Life Technologies with a FAM fluorescence probe on one end and an MGB quencher on 

the other end. Again, note that the Tm of the probe is around 60.0°C.  
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RFP Sequence 

The following information is provided about the turbo-RFP sequence. The primers and 

probe were designed across the sequence of the RFP. 

Gene name: BaTurboRFP, Length: 739 bp, Vector name: pUC57,  

Cloning strategy: pUC57,  

Plasmid preparation: Custom plasmid preparation: 100 ug, Quality grade: Research Grade 

(Predominantly supercoiled),  

Sequence:  

GGCGCCTGATTAACTTTATAAGGAGGAAAAACATATGAGCGAACTAATAAAGGAAA

ACATGCATATGAAACTATACATGG 

AGGGTACAGTGAATAATCATCATTTCAAATGTACGTCTGAAGGAGAAGGTAAACCAT

ATGAAGGAACTCAGACAATGAAA 

ATCAAAGTAGTAGAAGGTGGACCGTTACCATTCGCTTTCGATATTCTAGCTACATCAT

TTATGTATGGTTCTAAAGCGTT 

CATAAACCATACTCAAGGGATCCCTGATTTTTTCAAACAGTCATTTCCTGAAGGATTT

ACGTGGGAAAGAATTACAACAT 

ATGAGGATGGTGGAGTATTAACAGCTACACAAGACACGTCTTTTCAAAATGGATGCA

TTATATACAACGTAAAAATTAAT 

GGCGTAAATTTTCCAAGTAATGGTCCGGTAATGCAAAAGAAAACACGTGGCTGGGA

GGCGAATACAGAAATGTTATATCC 

TGCTGATGGAGGACTTAGAGGACATAGTCAAATGGCATTAAAATTAGTTGGGGGTGG

TTATCTTCATTGTAGTTTTAAAA 

CAACGTATCGCTCAAAGAAACCAGCGAAGAATTTGAAAATGCCAGGATTCCATTTTG

TTGATCATCGATTAGAACGTATT 

AAAGAAGCTGATAAAGAGACGTATGTTGAGCAACACGAGATGGCAGTGGCAAAATA

CTGTGATCTTCCAAGCAAATTAGG 

GCACCGTTAATAGACGCGT 

 

Serial Dilution Procedure 

Performing serial dilutions consistently and accurately is crucial for success in biological 

research. The following procedure was used for this experimentation.  

1) Prepare 10 micro centrifuge tubes with 900µL of water each. Label them 10
-1 

through 10
-10

.  
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2) Take 100µL of sample and place into the first tube (labeled 10
-1

). This tube will 

be 1/10
th

 the concentration of your starting sample. Mix well. 

3) Pipette 100µL of that tube into the next tube (10
-2

). Do this until all tubes have 

been diluted. Now, the dilution series decreases in spore concentration by 1/10
th

 

each sequential tube. 

4) Plate 100µL of each tube in triplicate. The plates will be 1/10
th

 the concentration 

of the tube, and 1/100
th

 the concentration of the starting stock solution.   

 

SYBR Green PCR Master Mix 

For 1mL 

500µL SYBR Green 

500µL DNAse Free Water 

1µL Forward Primer 

1µL Reverse Primer 1 

A second solution should be made with the Reverse Primer 2 (omitting Reverse 

Primer 1) 

Note: SYBR Green does not require a hot start 

 

 

Experimental Information 

Proper LED Operation 

To prevent the LEDs from failing, a certain order of operations has been developed. The 

LEDs should not be plugged in to the circuit board until the DASY Lab software has 

been turned on and the voltage turned up to approximately 1.0V on the voltage slider. 

Because the circuit board has an amplifier, a voltage of 1.0V in DASY Lab will cause the 

voltage in the board to be around 2.5V. Any fluctuations in voltage that will occur will 
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not lead to a negative voltage, as the play in the voltage will instead be around 2 volts. 

Since the start-up voltage for the LEDs is around 5 volts, the LEDs will still not be turned 

on. The following order of operations will protect the LEDs: 

Turn-on 

1) Turn on the computer and open up DASY Lab software. 

2) Plug in the circuit board and turn on voltmeter to monitor voltage. 

3) Slide voltage slider to 1.0V and hit play. 

4) Rather than hitting stop and start each time you power off the LEDs, just change 

the slider and hit enter. Only hit stop when you are finished with the board. This 

prevents play in the voltage. 

5) Plug in the LEDs (ground first). 

6) Now set the slider to 10.0V to power on the LEDs. Because of the resistors, the 

Voltage will not go above the start-up voltage of the LEDs (5.3V), even if the 

slider is set to 10V.  

Turn-off 

1) The LEDs should be the first portion of the system to be shut off. First take the 

voltage slider back down to 1.0V. Ensure the LEDs are off by first checking the 

voltmeter and then checking the LEDs. 

2) Unplug the LEDs, ground last. 

3) Once the LEDs are unplugged, everything else can be shut-off in any order.  
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LED characterization and Manufacturer Specifications 

The following three sheets were provided from the company SETi [46]. They provide 

manufacturer specifications for the LEDs purchased including voltage, current, and peak 

wavelength. These specifications were not explicitly used in data analysis, as an 

integrating sphere was used to more accurately peak wavelength and power output of the 

LEDs. 

 
Figure Appdx-5. SETi manufacturer specifications for purchased LEDs 
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Figure Appdx-6. SETi manufacturer specifications for purchased LEDs.  
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Figure Appdx-7. SETi manufacturer specifications for purchased LEDs.  

 

 

The following measurements were taken at AFIT using an integrating sphere. These 

measurements were used for the duration of the project. Total power measurements for 

each LED were taken in duplicate and then averaged. The peak wavelength chosen for 

this research was an average of all LEDs, 267nm. 



99 

Table Appdx-1. LED measurements collected using the integrating sphere. Two Power 

measurements were taken for each LED and averaged. Peak wavelength used for 

calculations throughout the project was 267nm, and average wavelength of all the LEDs. 

LED 
Total 

Power (W) 

Average 
Total 

Power (W) 

Peak 
Wavelength 

(nm) 
Y1 0.00133 0.00130 267 

Y1 0.00133 
 

267 

X10 0.00140 0.00140 267 

X10 0.00141   267 

Y5 0.00137 0.00136 267 

Y5 0.00135   267 

I7 0.00416 0.00416 268 

I7 0.00416   268 

I6 0.00139 0.00139 266 

I6 0.00139   266 

X9 0.00157 0.00157 267 

X9 0.00157   267 

Y2 0.00164 0.00164 266 

Y2 0.00164   266 

Y3 0.00157 0.00158 267 

Y3 0.00159   267 

Y4 0.00157 0.00157 267 

Y4 0.00157   267 

Y6 0.00163 0.00163 267 

Y6 0.00163   267 

 

Raw Data 

Actinometry 

Figure Appdx-8 below displays the raw data collected for both actinometry experiments. 

This data has not been corrected in quantum yield or fluence. However, the functionality 

is similar to the functionality of the apparent quantum yield vs. correct fluence. 
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Figure Appdx-8. Quantum yield vs. Fluence for raw actinometry data. The fluence values 

have not been corrected and the quantum yield has not been temperature adjusted.  

 

 

Tables Appdx-2 and Appdx-3 tabulate the data displayed in Figure Appdx-8 above. All 

the values necessary to calculate quantum yield are listed in these tables. Quantum yield 

in the far right columns has not been adjusted. Fluence values in column two are also not 

corrected. Note the temperature on collection days.  
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Table Appdx-2. Actinometry data collected on 5/23/2014, prior to experimentation. The 

temperature on this collection day was 21°C.  

 

 

Table Appdx-3. Actinometry data collected on 7/21/2014, following all experimentation. 

The temperature on this collection day was 22°C.  

 
 

Irradiation Time, 

Seconds

Fluence 

(J/m²)

Abs @ 

352nm

Abs 

Blank
 [I3⁻] Moles [I3⁻]

Einsteins of UV absorbed 

at 267nm
Abs @ 267nm

Quantum 

Yield

30 59 0.130 0.053 0.003 0.003 0.00000831 3.82 0.863

60 118 0.119 0.053 0.002 0.002 0.00000715 Power (mWatts) 0.795

90 177 0.185 0.053 0.005 0.005 0.00001428 1.44 0.688

120 236 0.235 0.053 0.007 0.007 0.00001971 U(λ) 0.579

150 295 0.300 0.053 0.009 0.009 0.00002678 447938.13 0.556

180 354 0.361 0.053 0.011 0.011 0.00003340 Reflection Coeff. 0.578

210 413 0.421 0.053 0.013 0.013 0.00003989 0.9 0.592

240 472 0.458 0.053 0.015 0.015 0.00004390 0.570

270 531 0.502 0.054 0.016 0.016 0.00004871 0.562

300 589 0.578 0.054 0.019 0.019 0.00005685 0.590

330 648 0.627 0.053 0.021 0.021 0.00006230 0.588

360 707 0.672 0.054 0.022 0.022 0.00006706 0.580

390 766 0.715 0.054 0.024 0.024 0.00007176 0.573

420 825 0.767 0.054 0.026 0.026 0.00007743 0.574

450 844 0.825 0.054 0.028 0.028 0.00008371 0.579

480 943 0.895 0.054 0.030 0.030 0.00009136 0.593

510 1002 0.957 0.054 0.033 0.033 0.00009801 0.599

540 1061 0.973 0.054 0.033 0.033 0.00009977 0.576

570 1120 1.034 0.054 0.035 0.035 0.00010636 0.581

600 1179 1.070 0.054 0.037 0.037 0.00011028 0.573

Collection Date: 5/23/2014          Temp: 21°C

Irradiation Time, 

Seconds

Fluence 

(J/m²)

Abs @ 

352nm

Abs 

Blank
 [I3⁻] Moles [I3⁻]

Einsteins of UV absorbed 

at 267nm
Abs @ 267nm

Quantum 

Yield

30 59 0.189 0.059 0.005 0.00001410 0.00000963 3.82 0.986

60 118 0.206 0.059 0.005 0.00001599 0.00001926 Power (mWatts) 0.830

90 177 0.270 0.060 0.008 0.00002280 0.00002889 1.44 0.789

120 236 0.306 0.062 0.009 0.00002650 0.00003852 U(λ) 0.688

150 295 0.368 0.063 0.011 0.00003308 0.00004815 447938.13 0.687

180 354 0.400 0.063 0.012 0.00003651 0.00005778 Reflection Coeff. 0.632

210 413 0.456 0.063 0.014 0.00004272 0.00006741 0.9 0.634

240 472 0.504 0.062 0.016 0.00004794 0.00007705 0.622

270 531 0.557 0.063 0.018 0.00005360 0.00008668 0.618

300 589 0.626 0.063 0.020 0.00006109 0.00009631 0.634

330 648 0.666 0.062 0.022 0.00006557 0.00010594 0.619

360 707 0.712 0.061 0.024 0.00007064 0.00011557 0.611

390 766 0.765 0.063 0.025 0.00007625 0.00012520 0.609

420 825 0.832 0.062 0.028 0.00008362 0.00013483 0.620

450 844 0.864 0.061 0.029 0.00008716 0.00014446 0.603

480 943 0.929 0.061 0.031 0.00009423 0.00015409 0.612

510 1002 0.968 0.062 0.033 0.00009830 0.00016372 0.600

540 1061 1.013 0.062 0.034 0.00010327 0.00017335 0.596

570 1120 1.092 0.061 0.037 0.00011189 0.00018298 0.611

600 1179 1.127 0.061 0.039 0.00011566 0.00019261 0.600

Collection Date: 7/21/2014        Temp: 22°C
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Survival Curve Data 

This sections presents then raw data collected for Survival Curves 1 through 3. N and No 

are representative of physical plate counts, an average of three plates counted in 

triplicate.  

Table Appdx-4. Survival Curve 1 data. The fluence values used are the corrected fluence 

values, determined from the actinometry experiments. N/No is termed the surviving 

fraction. Survival Curve 1 data was collected on 6/13/2014. 

 

 

 

Time (Sec)
Corrected 

Fluence
No N N/No

Counting 

Error

0 0 2000000 2000000 1 0

26 44.82 2000000 430000 0.215 0.00168095

26 44.82 2000000 380000 0.19 0.00176963

26 44.82 2000000 320000 0.16 0.00190394

51 87.88 2000000 90000 0.045 0.00340751

51 87.88 2000000 120000 0.06 0.00297209

51 87.88 2000000 60000 0.03 0.00414327

77 132.70 2000000 52000 0.026 0.00444193

77 132.70 2000000 48000 0.024 0.0046188

77 132.70 2000000 36000 0.018 0.00531769

102 175.76 2000000 22000 0.011 0.00677898

102 175.76 2000000 17000 0.0085 0.00770218

102 175.76 2000000 9000 0.0045 0.01056462

127 219.70 2000000 3600 0.0018 0.01668166

127 219.70 2000000 4200 0.0021 0.01544653

127 219.70 2000000 2200 0.0011 0.02133179

178 307.58 2000000 200 0.0001 0.07071421

178 307.58 2000000 100 0.00005 0.1000025

178 307.58 2000000 100 0.00005 0.1000025

229 395.46 2000000 1 0.0000005 1.00000025

229 395.46 2000000 2 0.000001 0.70710713

229 395.46 2000000 2 0.000001 0.70710713

331 571.22 2000000 1 0.0000005 1.00000025

331 571.22 2000000 2 0.000001 0.70710713

331 571.22 2000000 1 0.0000005 1.00000025

433 747.86 2000000 3 0.0000015 0.5773507

433 747.86 2000000 1 0.0000005 1.00000025

433 747.86 2000000 1 0.0000005 1.00000025

560 966.68 2000000 0 0 1

560 966.68 2000000 0 0 1

560 966.68 2000000 0 0 1

Experiment #1     6/13/2014
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Table Appdx-5. Survival Curve 2 data. The fluence values used are the corrected fluence 

values, determined from the actinometry experiments. N/No is termed the surviving 

fraction. Survival Curve 1 data was collected on 6/14/2014. 

 

Time (Sec)
Corrected 

Fluence
No N N/No

Counting 

Error

0 0 1000000 1000000 1 0

26 44.82 1000000 440000 0.44 0.00180907

26 44.82 1000000 270000 0.27 0.0021688

26 44.82 1000000 350000 0.35 0.00196396

51 87.88 1000000 100000 0.1 0.00331662

51 87.88 1000000 130000 0.13 0.00294827

51 87.88 1000000 140000 0.14 0.00285357

77 132.70 1000000 7000 0.007 0.01199405

77 132.70 1000000 13000 0.013 0.0088274

77 132.70 1000000 11000 0.011 0.00958692

90 155.55 1000000 4300 0.0043 0.01528261

90 155.55 1000000 3600 0.0036 0.01669664

90 155.55 1000000 4700 0.0047 0.01462074

102 175.76 1000000 1000 0.001 0.03163858

102 175.76 1000000 1500 0.0015 0.02583925

102 175.76 1000000 800 0.0008 0.03536948

115 198.61 1000000 570 0.00057 0.04189733

115 198.61 1000000 340 0.00034 0.05424183

115 198.61 1000000 510 0.00051 0.04429203

127 219.70 1000000 490 0.00049 0.04518646

127 219.70 1000000 370 0.00037 0.05199714

127 219.70 1000000 420 0.00042 0.04880525

150 259.25 1000000 28 0.000028 0.18898488

150 259.25 1000000 21 0.000021 0.21822018

150 259.25 1000000 14 0.000014 0.26726311

178 307.58 1000000 13 0.000013 0.2773519

178 307.58 1000000 14 0.000014 0.26726311

178 307.58 1000000 6 0.000006 0.40824952

229 395.46 1000000 7 0.000007 0.3779658

229 395.46 1000000 10 0.00001 0.31622935

229 395.46 1000000 5 0.000005 0.44721471

331 571.22 1000000 1 0.000001 1.0000005

331 571.22 1000000 3 0.000003 0.57735114

331 571.22 1000000 2 0.000002 0.70710749

433 747.86 1000000 1 0.000001 1.0000005

433 747.86 1000000 1 0.000001 1.0000005

433 747.86 1000000 1 0.000001 1.0000005

560 966.68 1000000 0 0 1

560 966.68 1000000 0 0 1

560 966.68 1000000 0 0 1

Experiment #2     6/14/2014
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Table Appdx-6. Survival Curve 3 data. The fluence values used are the corrected fluence 

values, determined from the actinometry experiments. N/No is termed the surviving 

fraction. Survival Curve 3 data was collected on 6/18/2014. 

 

 

Time (Sec)
Corrected 

Fluence
No N N/No

Counting 

Error

0 0 2500000 2500000 1 0

26 44.82 2500000 280000 0.112 0.001992844

26 44.82 2500000 340000 0.136 0.001827889

26 44.82 2500000 200000 0.08 0.00232379

51 87.88 2500000 120000 0.048 0.002955221

51 87.88 2500000 90000 0.036 0.003392803

51 87.88 2500000 70000 0.028 0.003832194

77 132.70 2500000 9000 0.0036 0.010559882

77 132.70 2500000 7000 0.0028 0.011969008

77 132.70 2500000 10000 0.004 0.01001998

90 155.55 2500000 3600 0.00144 0.016678662

90 155.55 2500000 4800 0.00192 0.014447606

90 155.55 2500000 4200 0.00168 0.015443291

102 175.76 2500000 800 0.00032 0.035360995

102 175.76 2500000 700 0.00028 0.037801738

102 175.76 2500000 600 0.00024 0.040829728

115 198.61 2500000 200 0.00008 0.070713506

115 198.61 2500000 300 0.00012 0.057738491

115 198.61 2500000 400 0.00016 0.050004

127 219.70 2500000 160 0.000064 0.079059471

127 219.70 2500000 150 0.00006 0.081652108

127 219.70 2500000 130 0.000052 0.087708082

150 259.25 2500000 25 0.00001 0.200001

150 259.25 2500000 29 0.0000116 0.185696415

150 259.25 2500000 19 0.0000076 0.229416606

178 307.58 2500000 11 0.0000044 0.301512008

178 307.58 2500000 10 0.000004 0.316228398

178 307.58 2500000 10 0.000004 0.316228398

229 395.46 2500000 4 0.0000016 0.5000004

229 395.46 2500000 4 0.0000016 0.5000004

229 395.46 2500000 4 0.0000016 0.5000004

331 571.22 2500000 3 0.0000012 0.577350616

331 571.22 2500000 1 0.0000004 1.0000002

331 571.22 2500000 1 0.0000004 1.0000002

433 747.86 2500000 1 0.0000004 1.0000002

433 747.86 2500000 1 0.0000004 1.0000002

433 747.86 2500000 1 0.0000004 1.0000002

560 966.68 2500000 0 0 1

560 966.68 2500000 0 0 1

560 966.68 2500000 0 0 1

Experiment #3    6/18/2014
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Figure Appdx-9. Survival Curve 1 surviving fraction. Ideally, more points would be 

placed in the 0 to 200J/m
2
 range, to determine if shouldering is occurring.  

The next table and figure display the fitting and fitting parameters for Survival Curve 1. 

Of all three survival curves, R
2
 was the worst for Survival Curve 1.  

 

Table Appdx-7. Survival Curve 1 fitting statistics. Note that for survival curve 1, β is 

positive. Β is negative for the other two survival curves.  

Survival Curve #1 

α -0.015 

β 0.000012 

Reduced Χ² 0.3858 

R² 0.986 
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Figure Appdx-10. Survival Curve 1, fitting to 240J/m

2
. Note that this particular fit seems 

to have a slight curve, due to the fact that β is positive.   

 

 

 

 
Figure Appdx-11. Pearson product-moment correlation plot for Survival Curve 1. The 

two fit parameters α and β are negatively correlated. The blue area indicates 1 standard 
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deviation from the mean, where 68% of the data lies. The green area indicates 2 standard 

deviations from the mean, where 95% of the data lies. The red area indicates 3 standard 

deviations from the mean, where 99.7% of the data lies. 

  

 

 
Figure Appdx-12. Survival Curve 2 surviving fraction. 

 

 

 

Table Appdx-8. Fitting parameters and statistics for Survival Curve 2.  

Survival Curve #2 

α -0.01 

β -0.000025 

Reduced Χ² 0.3858 

R² 0.980 
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Figure Appdx-13. Survival Curve 2 log-linear fit of data up to 240 J/m
2
. Fit parameters 

and statistics are displayed in Table Appdx-8 above. 
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Figure Appdx-14. Pearson product-moment correlation plot for Survival Curve 2. The 

two fit parameters α and β are negatively correlated. The blue area indicates 1 standard 

deviation from the mean, where 68% of the data lies. The green area indicates 2 standard 

deviations from the mean, where 95% of the data lies. The red area indicates 3 standard 

deviations from the mean, where 99.7% of the data lies. 
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DNA Damage & Repair Experimentation 

Table Appdx-9. Plate counts for DNA damage and repair experimentation control 

experiment. For the control experiment, no irradiation was incurred. The spores were 

simply placed in the germination media and allowed to sporulate. The final column 

displays the surviving fraction. The control experiment was conducted on 7/14/2014. 

 

Table Appdx-10. Plate counts for DNA damage and repair Experiment #1. The 

experiment was conducted on 7/9/2014. 

 

Incubation 

Time, Minutes
Colony Count 1 Colony Count 2 Colony Count 3

Average Colony 

Count, S 
S/So

Control (So) 140000 138000 154000 144000.00

0 145000 173000 124000 147333.33 1.02

30 133000 154000 156000 147666.67 1.03

60 156000 148000 162000 155333.33 1.08

90 145000 182000 164000 163666.67 1.14

120 182000 165000 142000 163000.00 1.13

150 178000 162000 138000 159333.33 1.11

180 156000 147000 183000 162000.00 1.13

210 145000 153000 168000 155333.33 1.08

270 183000 174000 127000 161333.33 1.12

330 161000 157000 153000 157000.00 1.09

390 175000 147000 157000 159666.67 1.11

450 187000 158000 163000 169333.33 1.18

Control 7/14/2014

Incubation 

Time, Minutes
Colony Count 1 Colony Count 2 Colony Count 3

Average Colony 

Count, S 
S/So

Control (So) 231000 352000 283000 288666.67

0 142000 114000 202000 152666.67 0.53

30 40000 55000 80000 58333.33 0.20

60 31000 30000 24000 28333.33 0.10

90 19000 26000 24000 23000.00 0.08

120 40000 19000 22000 27000.00 0.09

150 15000 11000 20000 15333.33 0.05

180 26000 35000 20000 27000.00 0.09

210 11000 20000 27000 19333.33 0.07

270 55000 23000 18000 32000.00 0.11

330 28000 39000 33000 33333.33 0.12

390 4000 0 4000 2666.67 0.01

450 0 0 0 0.00 0.00

Experiment #1  7/9/2014
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Table Appdx-11. Plate counts for DNA damage and repair Experiment #2. The 

experiment was conducted on 7/14/2014. 

 

Table Appdx-12. Plate counts for DNA damage and repair Experiment #3. The 

experiment was conducted on 7/17/2014. 

 

Incubation 

Time, Minutes
Colony Count 1 Colony Count 2 Colony Count 3

Average Colony 

Count, S 
S/So

Control (So) 314000 329000 359000 334000.00

0 156000 153000 154000 154333.33 0.46

30 38000 41000 47000 42000.00 0.13

60 54000 45000 43000 47333.33 0.14

90 39000 9000 19000 22333.33 0.07

120 28000 27000 28000 27666.67 0.08

150 29000 44000 24000 32333.33 0.10

180 14000 12000 17000 14333.33 0.04

210 24000 25000 25000 24666.67 0.07

270 63000 39000 50000 50666.67 0.15

330 31000 21000 23000 25000.00 0.07

390 14000 12000 15000 13666.67 0.04

450 0 0 0 0.00 0.00

Experiment #2  7/14/2014

Incubation 

Time, Minutes
Colony Count 1 Colony Count 2 Colony Count 3

Average Colony 

Count, S 
S/So

Control (So) 302000 333000 383000 339333.33

0 148000 169000 104000 140333.33 0.41

30 38000 33000 34000 35000.00 0.10

60 36000 34000 52000 40666.67 0.12

90 22000 23000 24000 23000.00 0.07

120 40000 47000 26000 37666.67 0.11

150 24000 15000 8000 15666.67 0.05

180 65000 62000 71000 66000.00 0.19

210 40000 39000 53000 44000.00 0.13

270 88000 53000 50000 63666.67 0.19

330 76000 62000 65000 67666.67 0.20

390 54000 58000 41000 51000.00 0.15

450 0 0 0 0.00 0.00

Experiment #3  7/17/2014
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Table Appdx-13. PCR results for Experiment 1. Duplicate samples were analyzed for the 

control dilution of RFP DNA. Experimental samples were all analyzed in triplicate. A 

second serial dilution of control values is seen half way down the table because 

experiments were analyzed in two separate PCR runs. Cq is determined by a threshold 

fluorescence value that is just above background fluorescence. The number of cycles 

required to reach this threshold fluorescence is termed Cq. 

 

 

 

 

 

 

 

 

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq 5.01 2.17 9.13 14.14 19.01 22.35 25.41 27.63 25.91 26.82

Cq 6.1 2.11 9.2 14.14 17.97 22.02 26.4 27.06 26.62 26.71

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq N/R 4.01 10.24 16.74 21.03 26.45 31.13 31.42 31.16 31.17

Cq 8.95 3.79 10.21 16.72 21.31 26.23 31.91 31.6 31.43 31.23

Sample 0R PR1 0R PR1 0R PR1 0NR PR1 0NR PR1 0NR PR1 1R PR1 1R PR1 1R PR1 1NR PR1 1NR PR1 1NR PR1

Cq N/R N/R N/R 18.62 18.67 18.55 N/R N/R N/R 19.59 19.62 19.42

Sample 0R PR2 0R PR2 0R PR2 0NR PR2 0NR PR2 0NR PR2 1R PR2 1R PR2 1R PR2 1NR PR2 1NR PR2 1NR PR2

Cq N/R N/R N/R 23.18 22.63 22.6 N/R N/R N/R 22.01 21.8 21.69

Sample 2 PR1 2 PR1 2 PR1 3 PR1 3 PR1 3 PR1 4 PR1 4 PR1 4 PR1 5 PR1 5 PR1 5 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 2 PR2 2 PR2 2 PR2 3 PR2 3 PR2 3 PR2 4 PR2 4 PR2 4 PR2 5 PR2 5 PR2 5 PR2

N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq 5.61 2.16 9.25 14.02 17.46 19.39 18.91 19.7 19.27 19.58

Cq 6.49 2.26 9.07 13.76 17.85 19.15 19.58 19.51 19.44 19.35

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq 10.79 4.06 10.4 16.66 22.21 25.52 26.21 26.28 22.34 30.73

Cq N/A 4.03 10.71 16.89 21.73 25.09 26.04 27.16 26.78 30.26

Sample 6 PR1 6 PR1 6 PR1 7 PR1 7 PR1 7 PR1 8 PR1 8 PR1 8 PR1 9 PR1 9 PR1 9 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 6 PR2 6 PR2 6 PR2 7 PR2 7 PR2 7 PR2 8 PR2 8 PR2 8 PR2 9 PR2 9 PR2 9 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR1 10 PR1 10 PR1 11 PR1 11 PR1 11 PR1 12 PR1 12 PR1 12 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR2 10 PR2 10 PR2 11 PR2 11 PR2 11 PR2 12 PR2 12 PR2 12 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Experiment 1
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Table Appdx-14. PCR results for Experiment 2. Duplicate samples were analyzed for the 

control dilution of RFP DNA. Experimental samples were all analyzed in triplicate. A 

second serial dilution of control values is seen half way down the table because 

experiments were analyzed in two separate PCR runs. Cq is determined by a threshold 

fluorescence value that is just above background fluorescence. The number of cycles 

required to reach this threshold fluorescence is termed Cq. 

 

 

 

 

 

 

 

 

 

 

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq 5.68 3.19 9.57 14.16 17.22 18.76 19.27 18.44 18.73 19.04

Cq N/A 2.98 9.16 14.11 17.23 18.85 19.28 19.11 19.13 19.51

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq 6.83 3.85 10.24 16.57 22.2 24.31 24.94 23.28 25.09 26.48

Cq 7.71 3.79 10.28 17.02 21.37 24.42 26.8 23.06 25.14 26.27

Sample 0R PR1 0R PR1 0R PR1 0NR PR1 0NR PR1 0NR PR1 1R PR1 1R PR1 1R PR1 1NR PR1 1NR PR1 1NR PR1

Cq 14.1 19.23 20.66 19.28 19.41 19.16 20.68 21.8 19.37 18.56 18.5 18.46

Sample 0R PR2 0R PR2 0R PR2 0NR PR2 0NR PR2 0NR PR2 1R PR2 1R PR2 1R PR2 1NR PR2 1NR PR2 1NR PR2

Cq 35.53 35.08 34.74 25.47 25.57 26.01 34.61 34.48 34.74 22.14 22.03 21.84

Sample 2 PR1 2 PR1 2 PR1 3 PR1 3 PR1 3 PR1 4 PR1 4 PR1 4 PR1 5 PR1 5 PR1 5 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 2 PR2 2 PR2 2 PR2 3 PR2 3 PR2 3 PR2 4 PR2 4 PR2 4 PR2 5 PR2 5 PR2 5 PR2

N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq 5.59 3.03 9.51 14.31 17.32 19.15 19.26 19.27 19.14 19.55

Cq 5.83 3.25 9.82 14.22 17.49 19.28 19.32 19.28 19.27 19.43

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq 9.88 4.4 11.65 16.93 21.68 24.58 24.75 23.23 25.22 26.42

Cq 7.58 4.38 10.99 17.37 21.18 24.21 24.7 23.15 24.97 26.5

Sample 6 PR1 6 PR1 6 PR1 7 PR1 7 PR1 7 PR1 8 PR1 8 PR1 8 PR1 9 PR1 9 PR1 9 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 6 PR2 6 PR2 6 PR2 7 PR2 7 PR2 7 PR2 8 PR2 8 PR2 8 PR2 9 PR2 9 PR2 9 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR1 10 PR1 10 PR1 11 PR1 11 PR1 11 PR1 12 PR1 12 PR1 12 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR2 10 PR2 10 PR2 11 PR2 11 PR2 11 PR2 12 PR2 12 PR2 12 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Experiment 2
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Table Appdx-15. PCR results for Experiment 3. Duplicate samples were analyzed for the 

control dilution of RFP DNA. Experimental samples were all analyzed in triplicate. A 

second serial dilution of control values is seen half way down the table because 

experiments were analyzed in two separate PCR runs. Cq is determined by a threshold 

fluorescence value that is just above background fluorescence. The number of cycles 

required to reach this threshold fluorescence is termed Cq. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq 4.35 2.86 9.37 14.25 17.27 19.00 19.39 19.21 19.28 19.36

Cq 6.32 3.26 10.23 14.43 17.50 19.16 20.03 19.16 19.30 19.46

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq 9.90 4.18 10.88 17.47 21.42 25.45 25.00 23.25 25.41 27.53

Cq 7.70 4.39 11.16 17.20 21.79 26.18 24.95 23.46 25.23 26.43

Sample 0R PR1 0R PR1 0R PR1 0NR PR1 0NR PR1 0NR PR1 1R PR1 1R PR1 1R PR1 1NR PR1 1NR PR1 1NR PR1

Cq N/R N/R N/R 19.02 18.66 18.49 N/R N/R N/R 18.23 17.49 17.80

Sample 0R PR2 0R PR2 0R PR2 0NR PR2 0NR PR2 0NR PR2 1R PR2 1R PR2 1R PR2 1NR PR2 1NR PR2 1NR PR2

Cq N/R N/R N/R 21.80 21.94 21.84 N/R N/R N/R 20.01 19.94 19.58

Sample 2 PR1 2 PR1 2 PR1 3 PR1 3 PR1 3 PR1 4 PR1 4 PR1 4 PR1 5 PR1 5 PR1 5 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 2 PR2 2 PR2 2 PR2 3 PR2 3 PR2 3 PR2 4 PR2 4 PR2 4 PR2 5 PR2 5 PR2 5 PR2

N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10-1 PR1 10-2 PR1 10-3 PR1 10-4 PR1 10-5 PR1 10-6 PR1 10-7 PR1 10-8 PR1 10-9 PR1 10-10 PR1

Cq N/R 3.43 10.55 14.98 18.90 22.01 24.25 22.09 23.81 26.26

Cq N/R 3.31 10.18 14.67 18.46 21.65 24.29 21.97 23.81 26.44

Sample 10-1 PR2 10-2 PR2 10-3 PR2 10-4 PR2 10-5 PR2 10-6 PR2 10-7 PR2 10-8 PR2 10-9 PR2 10-10 PR2

Cq 10.30 5.07 11.13 17.90 22.40 25.52 27.94 24.54 28.17 28.79

Cq N/R 4.91 11.30 17.80 22.83 25.70 27.68 24.41 28.32 29.65

Sample 6 PR1 6 PR1 6 PR1 7 PR1 7 PR1 7 PR1 8 PR1 8 PR1 8 PR1 9 PR1 9 PR1 9 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 6 PR2 6 PR2 6 PR2 7 PR2 7 PR2 7 PR2 8 PR2 8 PR2 8 PR2 9 PR2 9 PR2 9 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR1 10 PR1 10 PR1 11 PR1 11 PR1 11 PR1 12 PR1 12 PR1 12 PR1

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Sample 10 PR2 10 PR2 10 PR2 11 PR2 11 PR2 11 PR2 12 PR2 12 PR2 12 PR2

Cq N/R N/R N/R N/R N/R N/R N/R N/R N/R

Experiment 3
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