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Abstract 

Structural Health Monitoring (SHM) systems face many obstacles and gaps that 

have resulted in the slow implementation in real-world applications. These obstacles 

include technology performance, implementation issues and a solid business case that 

justifies the investment in a SHM system. The presentation of a solid business case for 

the SHM system is a great challenge and arguably is the main factor contributing to the 

slow implementation of this technology. The research intent of this dissertation is to 

focus on the business case by providing a tool to aid decision makers. Simulated aging 

aircraft flight data are used in this effort due to the fact that many aging military aircraft 

will be flying beyond their initially intended design life. An analytical model was 

developed to address the business case and the integration of the SHM system into 

Condition Based Maintenance (CBM). The model aids the calculation of the cost of Life 

Cycle (LC) events resulting from the implementation of the SHM system on an aging 

aircraft. In addition, the model captures the events and effect on aircraft availability due 

to different SHM detection threshold settings and replacement of degraded sensors. The 

model captures false alarm rates, crack growth, probability of detection, and sensor 

degradation amongst other parameters. The proposed analytical model is a useful tool 

that provides the decision makers the confidence to either implement the SHM system on 

an aging military aircraft or not. Two models were developed; one was the SHM system 

model with no degradation and the second was the SHM system model with simulated 

degrading sensors. Three major subcomponents of the SHM model will be the sensor 

detection component, the crack growth component and the sensor degradation component 

(second model only). Linking these three components where the main parameters of 

interest (crack length, sensor degradation/detection) are not static and accounting for 
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senor replacement will provide useful data of LC cost estimation that have not been 

accomplished before. 
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STRUCTURAL HEALTH MONITORING SYSTEM TRADE SPACE ANALYSIS 

TOOL WITH CONSIDERATION FOR CRACK GROWTH, SENSOR 
DEGRADATION AND A VARIABLE DETECTION THRESHOLD   

 
 
 
 

I.  Introduction 

Motivation 

 Aircraft (Structural Health Monitoring) SHM is a research area that will lead to a 

major change in the way we manage the health of our fleet in the future. Relatively few 

SHM systems are in operation on aircraft today. A review and a gap analysis of some of 

the relevant SHM literature led us to identify the current challenges facing the 

implementation of an SHM system.  Some of the main SHM system’s challenges are the 

technology performance, implementation issues and a solid business case. The 

presentation of a solid business case for such a system is considered very important as 

this challenge has a great impact on the decision to implement an SHM on an operational 

aircraft. 

A perspective of the structural mechanics program of the Air Force Office of 

Scientific Research on structural health monitoring (SHM) and non-destructive 

evaluation (NDE) was presented by (Giurgiutiu, 2008). NDE and SHM have an essential 

role in the operational readiness and safety of the Air Force fleet; however, considerable 

challenges face the operators and the maintainers due to aging aircraft. NDE techniques 

have proven to be reliable in detecting damage during phase inspections. SHM has great 

potential due to its on board sensors and systems that provide structural health assessment 
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on demand. This study concludes that considerable applied and fundamental research is 

needed to develop, integrate and implement SHM technology. 

Research Problem Statement 

Develop a decision support model to explore the tradespace associated with 

implementation of an SHM system on aging aircraft. 

Features of the model should include: 

• Capture representative crack propagation with respect to accumulated flight 

hours; 

• Capture representative performance of SHM sensors as influenced by SHM 

detection thresholds and acceptable crack lengths; 

• Capture representative change in detection of SHM sensors due to degradation as 

a result of accumulated flight hours; 

• Capture representative events and aircraft unavailability encountered due to 

sensor maintenance/replacement during SHM system scheduled and unscheduled 

maintenance; 

• Capture representative events and aircraft unavailability encountered due to 

aircraft scheduled and unscheduled maintenance associated with SHM alarm 

verification inspection and inspect/repair of aircraft; 

• Capture catastrophic failure events due to miss detection and a crack reaching the 

critical length. 

Assumptions and limitations of this model are as follows: 

• The SHM system monitors a hot spot on an aging military aircraft; 
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• Initially a single hot spot will be assumed; while not demonstrated in this 

research, the approach herein is readily extensible to monitoring multiple hot 

spots;  

• Degradation of sensors is due to loads exerted due to flight maneuvers; 

• While the model will capture event data, for purposes of this research notional 

event parameters will be utilized; 

• While maintenance events are captured by the model, a cost per event is not 

assumed or modeled.  

 

The model can be utilized for informing decisions associated with implementation 

of an SHM system on aging aircraft. This will be attained through the more realistic 

modeling of crack growth, sensor detection/degradation, cost and SHM system 

maintenance procedures associated with a particular aircraft.  

The outline of the dissertation is as follows: Chapter II will discuss the current 

state of aircraft SHM research and will build the case for what is proposed through this 

research effort. This is accomplished by identifying the gaps in previous SHM studies 

and will help support why this research effort is needed. Chapter III is a journal article 

demonstrating a trade space analysis of an aircraft equipped with a SHM system. This 

trade space analysis considers the effect of setting the SHM system detection threshold 

on the LC events. Chapter IV is a journal article that demonstrates the effect of the SHM 

system sensor degradation on the LC events that an aircraft might encounter. Chapter V 

discusses results, conclusions, future work and recommendations. 
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II. Literature Review 

Technology Performance 

Much research in the field of structural health monitoring (SHM) for aircraft has 

been conducted with performance objectives of reduced life cycle cost and increased 

availability. Yet there are still gaps that slow the implementation of SHM systems. The 

performance of SHM technology has been and is still being investigated. Many believe 

that available technology did not reach the maturity level for what we want to 

accomplish. In research on SHM by (Derriso et al., 2007) technical feasibility is 

described as facing three fundamental challenges: 1) small-scale damage must be 

detected in relatively large-scale structures, 2) SHM systems must work in an 

unsupervised learning mode, and 3) the redundancy and robustness of a SHM system 

must be reliable. Reliability and durability are a major technological concern for SHM 

systems. 

Reliability  

False alarms that could be produced from the SHM system cause more 

maintenance actions than are necessary. A simulation model of a prognostics and health 

management (PHM) system used as an autonomic logistics system (ALS) for the joint 

strike fighter (JSF) was developed and used by (Miller et al., 2007). Their simulation 

captured a large number of commonly used flight line measures of performance for 

aircraft availability and mission effectiveness. Multivariate statistical analysis of these 

measures provided ways to analyze the positive impact of a PHM system on aircraft 

sortie generation. On the other hand, their analysis showed a great sensitivity to false 
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alarms. This great sensitivity implies that more research effort should be devoted to 

investigating and trying to minimize false alarms which cause’s excessive downtime and 

cost without significantly degrading detection performance.  

Another experiment was conducted on a fast military jet by (Read et al., 2008) to 

try to test a SHM system in near real-world applications. A BAE Hawk jet carrying an 

experimental test pod with specimens that had crack initiators was used to test the effect 

of flight maneuvers on the SHM system detection capability and the possibility of 

detecting crack growth during flight. The conclusion was that this system was effective in 

detecting a crack and the growth of the crack during flight especially if false alarms can 

be avoided. The tests were run throughout the flight envelope in the presence of acoustic 

noise levels in excess of 135 decibels and considerable electromagnetic interference. 

With this experiment, one still can argue that the system was not attached to a real 

structure.  

Many reliability models are developed in the general area of structural 

monitoring. For example, a Reliability-Based System Assessment was used by Hosser et 

al. (2004) for monitoring building structures with sensors.  

For reasons of economy, structural monitoring currently has to be concentrated on 

the weak spots critical for the structural behavior and the corresponding uncertainties. In 

order to accomplish this, methods for the identification of such weak points and 

uncertainties are used for the definition of optimal monitoring measures as well as 

assessment and decision criteria. These methods are based on recognized procedures of 

reliability and system theory.  
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In order to make the application possible to building engineers without special 

training in reliability theory, the methods were summarized in the knowledge-based 

system PROBILAS (PRObabilistic Building Inspection and Life ASsessment). This 

computer code consists of a data base module, a computation module and a statistics and 

updating module, which are linked by graphical user interface and server for the 

optimization of the building assessment cycle. An essential component of the assessment 

is the illustration of the building as a system and its integration into the data base and the 

computation module of PROBILAS. Since the logical models of real structures, e.g. 

bridges, needed as elements of the system reliability computation can be very complex, 

methods are developed to identify and integrate the possible failure mechanisms. In their 

article, the building assessment cycle with the knowledge-based system PROBILAS is 

illustrated first. The continuous reevaluation of the system and the focusing of both the 

stochastic and the physical models on the failure-relevant parts of the system, limit states 

and parameters are characteristics of this cycle. A main focus of this article is on the 

methods of system integration. Some steps of the system generation run more or less 

automatically, e.g. the creation of response surfaces for the limit-state functions of system 

components. In other domains the monitoring engineer is consciously involved in the 

process while PROBILAS offers the necessary assessment and decision criteria. The 

different methods are described and demonstrated using an example of a bridge 

construction. 

 The large amount of data produced from monitoring needs improved statistical 

tools to clearly identify defects. A synopsis review conducted by (Sohn and Los Alamos 

National Laboratory, 2004) identified that in general there is not yet tools that are well 
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developed and implemented for statistical pattern recognition. Many damage detection 

methods try to identify damage by solving an inverse problem, which requires the 

construction of analytical models. An inverse problem can be described as a general 

framework that is used to convert observed measurements (i.e., monitoring data) into 

information about a physical object or system (i.e., defect) of interest. A neural network 

approach can be used to map the inverse relationship between the parameter of interest 

and the measured response. The main drawback for this approach is that a large amount 

of data is needed for the damaged and undamaged component and this is not available in 

the real world (Sohn and Los Alamos National Laboratory, 2004). Analysis of hypotheses 

approaches includes outlier analysis, statistical process control charts and simple 

hypothesis testing as indicated by this review.  These approaches are demonstrated to be 

very effective for identifying the onset of damage growth, and they are identified as one 

of the most significant improvements (Sohn and Los Alamos National Laboratory, 2004).  

Durability and Robustness 

Many studies show degradation of SHM sensors over time due to static loads, 

cyclic loads, temperature and corrosion. Durability and robustness are additional 

technology performance issues for an SHM system. 

An investigation on the effect of cyclic loads on sensor performance was 

conducted by Kuhn (2009) which will be discussed in more detail in Chapter III. In his 

research, degradation was identified in sensor performance as having a direct relationship 

with cyclic strain which was estimated by using a power law model. A probability of 

detection (POD) degradation model was also developed to show the overall performance 

of a SHM system. Research by Achenbach (2007) indicated that some of the technical 
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challenges for sensors are that they should be small, autonomous, cheap, robust, 

repairable, accurate, densely distributed, measure local and system level responses, and 

designed to measure relevant damage parameters. Beard et al. (2005) found that 

environmental conditions such as temperature can affect the signal obtained from sensors. 

This research used calibration to compensate for temperature variation based on the 

structure and application. A sensor diagnostics and validation process was presented by 

Park et al. (2006). It performs in situ monitoring of the operational status of a 

piezoelectric (PZT) active-sensor in SHM applications. Both degradation of the 

mechanical/electrical properties of a PZT transducer and the bonding defects between a 

PZT patch and a host structure could be identified by the proposed process in Park et al. 

(2006). The proposed process can provide a metric that can be used to determine the 

sensor functionality over a long period of service time or after an extreme loading event. 

More research is needed to understand all environmental factors that could degrade the 

sensing of an SHM system such as corrosion. Moreover, the maintenance action needed 

to bring the degraded SHM system back to its original condition needs to be investigated. 

Implementation Issues 

Design of an SHM system should be part of a system engineering framework that 

integrates health monitoring and maintenance with all other requirements for the system. 

For a new aircraft design, this would begin with the conceptual design of the system and 

would affect decisions regarding levels of maintenance and inspection intervals, among 

others. Less extensive implementations are being proposed for aging aircraft. A 

framework for SHM system design was presented which could be applied to aging 

aircraft through hot spot monitoring (Malkin et al., 2007). Understanding the structure of 
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interest and establishing requirements could start the framework flow. This flow ends 

with comparing requirements to specific SHM system designs. The data needed from an 

identified requirement for an SHM system can be obtained by focusing on the following 

points: 1) benefits and drawbacks of the SHM system, 2) requirements for the SHM 

system, 3) available SHM technologies, 4) detail design of the SHM systems, and 5) 

identifying the SHM design that meets the requirements and the cost of the SHM system 

that meets the requirements. Although this framework is developed for hot spot 

monitoring it could be modified for other applications. It would be useful if this 

framework could be modified to include the effect of sensor degradation. 

Research by Millar (2007) identifies that the barriers that have slowed acceptance 

and use of PHM tools in military propulsion systems over the past two decades were the 

product of incomplete total life cycle systems engineering management (TLCSM). The 

US Department of Defense Acquisition Guidebook states in Section 4.1.3 TLCSM in 

Systems Engineering: “It is fundamental to systems engineering to take a total life cycle, 

total systems approach to system planning, development, and implementation.” (Defense 

Acquisition Guidebook, 2004:Ch 4, 80). It is also important to implement TLCSM not 

only on new systems but also on legacy systems currently operating to control the high 

maintenance cost as the systems continue to operate beyond their design life. Further, the 

research describes up and down periods in the engine condition monitoring which are 

time phases. The up periods are triggered by the cost benefits that could be gained by 

successful monitoring and the down period is when the demanded monitoring technology 

is not available for the monitoring system. This study concludes that using TLCSM 
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through the systems engineering process is the right tool to close the gaps that held the 

large scale applications and implementation of integrated monitoring systems.  

Advanced integrated vehicle health monitoring systems (IVHM) are expected to 

formulate a decision response based on the extent of the damage unlike a pure monitoring 

system that only reports damage (Price et al., 2003). Price et al. sub-divided the problem 

to achieve the requirements of this system as follows: 1) Detection of damage events 

requires some knowledge of the environment in which the vehicle will operate and 

threats it will face, 2) The development of sensors will depend on the time required for 

the system to respond, 3) For events requiring a rapid response the use of passive 

embedded sensors is the best solution, 4) Characterization of damage may be 

accomplished during detection of damage or separately by using different sensors or 

using a sensor in different ways, 5) Active sensors could be employed to accomplish 

characterization of damage by being embedded in the structure, 6) Prioritization of the 

seriousness of damage and how it can compromise the mission of the vehicle is needed to 

give the level of urgency to the response, 7) Identification of the cause of the damage can 

be accomplished using an intelligent system, 8) Large number of sensors can provide 

information on the vehicle as a whole, 9) Formulation of a response of an intelligent 

system is dependent on the extent of the damage and could be a panic response for major 

damage requiring the isolation of a whole section of the vehicle, 10) Execution of a 

response could be a maintenance action or could be a more immediate action of limiting 

the flight maneuvers of the vehicle. This approach will be hard to implement on an aging 

aircraft where embedding sensors on the existing structure might be hard or infeasible. 
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The integration process of SHM on aging aircraft is a challenge. In the near 

future, an SHM system could be integrated on aging aircraft to monitor known failure 

modes as a starting step in the integration process. Aging aircraft face challenges on how 

to integrate an SHM system with Condition Based Maintenance (CBM) because design 

choices are limited by the existing system architecture. A number of integration issues 

were researched by Buderath (2004) and concluded the following: 1) There should be a 

clear process for integration to ensure the right selection of an SHM system, data 

analysis, and sensor location, 2) Integration technology should be researched in order to 

reach acceptance on all system levels, 3) An integrated process is needed during the 

development phase of an SHM system to be able to fully integrate with CBM, 4) 

Research should be extended to include the integration technologies, 5) When a 

successful SHM system and CBM integration is achieved we can improve safety and 

trigger maintenance action only when needed. 

Business Case 

The presentation of a solid business case for the SHM system is a great challenge 

and arguably is the main factor contributing to the slow implementation of this 

technology. Factors that could help create a business case are the understanding of the 

customer needs and requirements and performing a credible cost and risk analysis (Perez 

et al., 2010). 

Quantifying cost reduction 

Quantification of cost reduction in the total life cycle of a system by using SHM 

needs to be presented. There are few research attempts to quantify the cost benefit of 



12 

SHM found in literature. In one study, implementation of SHM on a commercial 

transport aircraft could result in an estimated 30% to 40% reduction in maintenance 

requirements. This would result in a recovery of the initial implementation costs in only 

two to three years (Kent et al., 2000). Another research effort (Schmidt et al., 2004) 

shows only a one percent reduction of the maintenance by using SHM systems on an 

AIRBUS aircraft, but it did not include the increased availability due to reduced 

inspection times. Another finding of this study is a reduced panel weight up to 15 percent 

by using SHM which impacts cost in many ways such as less fuel consumption and 

longer operating range. In the case of reusable launch vehicles a study has shown that the 

benefits of implementing a SHM system outweigh the cost (Derriso et al., 2007). Further, 

research on aging military aircraft show cost benefits of using SHM on some hot spots of 

the structure of a Tornado fighter as long as the hot spots with real payoff are identified 

(Boller, 2001).  

Systems level cost model 

A unique cost-benefit analysis for the allocation and cost justification of an 

Integrated System Health Management (ISHM) at the conceptual design level was 

presented by Hoyle et al. (2007). An optimization framework was used to determine the 

optimal allocation of ISHM to maximize profit. This was calculated using the following 

profit function (Π): 

 

Π = 𝐴𝑆 ∙  𝑅 − 𝐶 = ∏ 𝐴𝐹,𝑖  ∙ 𝑅 − ∑ (𝐶𝑅 + 𝐶𝐷)𝑖𝑁
𝑖=1

𝑀+𝑁
𝑖=1              (1) 
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The objective function, referred to as Profit, Π, is expressed as the product of 

System Availability (𝐴𝑆) and Revenue per unit Availability (R), minus Cost (C), which is 

a summation of Cost of Detection (𝐶𝐷) and Cost of Risk (𝐶𝑅) over the total number of 

system functions N. The system availability is determined as the product of the 

availabilities of the N system functions and the M allocated ISHM sensor suites; the 

models function availability will differ for functions with and without ISHM. This 

framework can also determine the optimal detection/false alarm threshold and inspection 

interval. When this framework was applied to an aerospace system it was shown that 

applying ISHM increased profit by 11%, reduced cost by a factor of 2.4 and lengthened 

the inspection intervals by a factor of 1.5. It would be interesting to try to modify and use 

this framework for a system that does not have a clear identification for revenue, such as 

military systems which can benefit by a reduction in the total life cycle cost (LCC). 

Further it would also be interesting to modify this approach to include sensor degradation 

and its effect on the aircraft life cycle. 

Esperon-Miguez et al. (2012) studied a methodology that takes advantage of the 

historical maintenance data available for legacy platforms to determine the performance 

requirements for diagnostic and prognostic tools to achieve a certain reduction in 

maintenance costs and time. The effect of these tools on the maintenance process is 

studied using Event Tree Analysis, from which the equations are derived. However, 

many of the parameters included in the formulas are in reality not constant and tend to 

vary randomly around a mean value (e.g.: shipping costs of parts, repair times), 

introducing uncertainties in the results. As a consequence, the equations are modified to 

take into account the variance of all variables. Additionally, the reliability of the 
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information generated using diagnostic and prognostic tools can be affected by multiple 

characteristics of the fault, which are never exactly the same, meaning the performance of 

these tools might not be constant either. To tackle this issue, formulas to determine the 

acceptable variance in the performance of a health monitoring tool are derived under the 

assumption that the variables considered follow Gaussian distributions. 

Leao et al. (2008) proposed a cost benefit analysis methodology. This study 

presents a methodology to perform cost-benefit analysis on the application of PHM for 

existing (legacy) commercial aircraft. The methodology takes into account the 

characteristics of the commercial aircraft operation business to yield conclusions on the 

economic feasibility of the application of the technology to these platforms. The study 

presented guidelines to develop such calculations and the tools that may be used to 

analyze the results. The final product of the methodology is a cost benefit model which 

provides insight to the aircraft’s original equipment manufacturer (OEM) and to the 

aircraft operator on how PHM technologies should be applied in order to maximize their 

bottom lines. One of the draw backs of this model is that it treats false alarm rate as a 

constant value provided by the PHM technology manufacturer. 

Another cost model was presented by Hou-bo and Jian-min (2011). When they 

considered adopting and selecting a PHM technology, the first important step is to 

conduct the cost-benefit analysis. The purpose of implementing a PHM technology is to 

reduce failure rates and reduce cost needed for repair action. They proposed a Cost-

Benefit Model for PHM to identify the main factors of implementing PHM which can 

provide costs benefits. Obviously, none of the presented benefits come for free. Both the 

manufacturer and the operator must invest money in order to implement PHM. The costs 
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associated with development and operation, training costs of maintenance people and 

operations were taken into consideration. The model can be a useful tool for decision-

making and maintenance planning. On the other hand, for a SHM system, a different 

approach is needed because the structure is not designed and treated like a component 

that fails abruptly as considered in their study. The approach would need to be augmented 

to include sensors that are continuously monitoring a crack growth.  

Another approach by Kacprzynski et al. (2002) involves the developments 

associated with a PHM system design tool that integrates a model-based Failure Mode, 

Effects and Criticality Analysis (FMECA) methodology with state-of-the-art system 

simulation directly linked to downstream Life Cycle Costs (LCC). This design tool will 

seek out recommended PHM system designs based on a cost function that accurately 

represents key LCC variables such as system availability, maintainability, reliability, and 

failure mode observability. The tool will be capable of assessing PHM sensor 

requirement specifications at the component and subsystem levels, and will then allow 

for integration into a broader integrated system model. Tradeoff, sensitivity and “what if” 

analysis will then allow the designer/user to examine the cost/benefit relationship of 

either adding or removing sensor and algorithms under consideration for the PHM 

design. This study is different from that proposed in this dissertation since it does not 

focus on the effect of degradation on the sensors. Further, it does not investigate the 

interaction between component degradation and sensor degradation and how it affects 

resulting events and availability of the aircraft. 
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Optimization and simulation models  

The number of sensors needs to be optimized to provide the desired effectiveness 

within cost and weight constraints as well as a balance between detection sensitivity, 

false alarms and the number of sensors.  

 A promising area for optimization is the use of genetic algorithms, which allows 

the determination of the optimal number and location of sensors for damage locations 

(Boller, 2000).  Optimization and simulation of a maintenance phase with SHM 

technology was used by Kapoor et al. (2008) to quantify benefits when applied to 

commercial aircraft. The effect of using SHM technologies to reduce maintenance 

downtime was provided. The concept of this approach was to identify the critical paths 

along the maintenance process. After a critical maintenance path was identified it was 

substituted with a SHM alternative. After optimization and simulation, a reduction factor 

of 6 to 100 hrs was found. This study indicates that further work for a better estimate of 

savings should involve employing the method proposed to a Maintenance Planning 

Document (MPD) with defined maintenance phases. Also this study did not include the 

effect of false alarms by SHM system. 

Williams (2006) suggested that the performance improvement on a system by 

implementing Integrated Vehicle Health Management (IVHM) can be evaluated before 

design dollars are ever committed or contracts signed. By identifying the processes, 

measures of effectiveness (MOE), and input drivers, a discrete event simulation can be 

applied to assess the first order requirements for IVHM implementation on systems. 

Williams (2006) discusses the benefits to 5 different categories of operators: 1) the 

Original Equipment Manufacturers (OEMs), 2) the mission operators, 3) 
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command/control elements, 4) fleet management, 5) and maintenance operators. These 

five categories may overlap in organizational structure and personnel, but they have 

clearly identifiable processes and performance that can be analyzed and measured. The 

paper then goes on to discuss how IVHM technologies impact events in the field and how 

the effects on individual events affect the MOEs of the larger system. Finally, an example 

is illustrated of the impacts IVHM has on the field performance of a notional system from 

a simulation run using a notional system and scenario data. This type of analysis enables 

a larger business case to be developed to aid designers and planners in their decisions of 

how to implement IVHM. It will be of great value to extend this study to include the 

IVHM system’s change of performance over time due to degradation in the IVHM 

sensors.  

Standardization 

Standardization of SHM systems across different platforms should help in 

reducing the ownership cost as well. In the automobile industry, SHM has great potential 

and has seen more aggressive application than the aircraft industry (e.g. On-Star System). 

Integrated system health monitoring in an automobile typically monitors important 

features such as Oil pressure, Engine Temperature, Tire pressure etc. (You, Krage, & 

Jalics, 2005) in which it was shown that standardization of remote diagnostics and 

maintenance systems between different automobile models will reduce cost 

tremendously. 
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Structural health monitoring cost models 

In a study by Pattabhiraman et al. (2010), the cost effectiveness of progressive 

inspection over scheduled inspection is analyzed. The lifecycle of an airplane was 

modeled as blocks of damage propagation interspersed with inspection. The Paris model 

(Beden et al., 2009) with random parameters is used to model damage growth and 

detection probability during inspections and it is modeled by Palmberg’s expression 

(Palmberg et al., 1986). SHM based progressive inspection were found to be 50% more 

cost effective than schedule-based preventive inspections. The sensitivity of the lifecycle 

cost to the inspection parameters has been studied. To accommodate critical panels which 

must be manually inspected, a hybrid model of inspection is also proposed. The hybrid 

model is found to have sufficient cost savings over a scheduled inspection model. In this 

model false alarms and SHM operation cost were neglected. 

Another study by Aldrin et al. (2007) presented a software package for integrating 

NDE and SHM design with product life cycle management models. Hybrid life 

management strategies for new and aging aircraft were proposed that combine traditional 

nondestructive evaluation (NDE) methods and recently developed SHM technologies. In 

recent times, a usual aim for managing the life of aircraft components that are critical or 

that are subject to fatigue or corrosion damage is to attempt development of in situ 

damage detection systems that can indicate when more detailed inspection is necessary. 

This creates a need for decisions about the type and settings of sensors and signal 

processing algorithms for the health monitoring system, and system type, settings, and 

scheduling for NDE. How well these systems are matched will have great influence on 

overall maintenance cost, aircraft availability and system reliability. 
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A study conducted by Wilmering and Ramesh (2005) focused on the means for 

assessing the impact of potential health management approaches on LCC as implemented 

within a system-engineering framework. A disciplined approach to selecting appropriate 

health management solutions to satisfy design and operational requirements was 

presented, and a software tool for performing trade studies of alternate approaches' 

impact on life cycle cost was discussed. A primary goal was to allow domain experts and 

health management specialists to perform thorough life cycle cost analyses without 

requiring the services of specialized cost analysts. 

Summarization of gaps 

There are a number of cost benefits studies for integrated system or vehicle health 

monitoring ISHM/IVHM. A fewer number of studies focus on the structural health 

monitoring system SHM LCC benefits. It is found by this literature review that a business 

case that relates LC events and aircraft availability to crack propagation, crack detection 

and sensor degradation has not been investigated. The sensors used for crack detection 

degrade over time due to flight stress. This is also accompanied by crack propagation due 

to the same flight stress. The use of current crack propagation modeling techniques 

accompanied with current structural health monitoring sensor degradation models should 

yield more realistic LC benefit analysis for the decision maker. In this effort, the overall 

LC model should also account for the effect on safety and availability due to sensor 

replacement triggered by SHM scheduled and unscheduled maintenance.  
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The following is Chapter III and it contains a journal article accepted by the Tech 

Science Press Structural Durability and Health Monitoring (SDHM) journal on July 2014. 

The title of the article is (Structure Health Monitoring (SHM) System Trade Space). 

Previously (Kuhn and Soni, 2009) described performance of SHM sensors and an 

approach to modeling them vs. accumulated flight hours on an aircraft.  This paper builds 

on the work of Kuhn and others to explore the trade space associated with detection, false 

alarms, unscheduled maintenance actions and mishaps associated with an installed SHM 

system with realistic crack growth assumptions.  In this paper, an approach to modeling 

the SHM detection performance as well as the changes occurring with the aircraft 

structure is demonstrated.  This model is used to evaluate candidate levels for a sensor 

threshold with predictable performance regarding detection, missed detections and false 

alarms.  It provides an analytic basis for establishing a business case for SHM 

implementation. 
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III. Structure Health Monitoring (SHM) System Trade Space Analysis 

 

Salman A. Albinali and David R. Jacques 

Abstract    

An analytic approach to exploring the tradespace associated with Structural 

Health Monitoring (SHM) systems is presented. Modeling and simulation of the life 

cycle of a legacy aircraft and the expected operational and maintenance events that could 

occur is shown. A focus on the SHM system detection of a significant crack length and 

the possibility of False Alarm (FA), miss detection and mishap events is investigated. 

The modeling approach allows researchers to explore the tradespace associated with safe 

and critical crack lengths, sensor thresholds, scheduled maintenance intervals, falsely 

triggered maintenance actions, and mishaps due to missed detections.  As one might 

expect, it was observed that setting the SHM system very conservatively (closer to safe 

crack levels) increases detection but causes a high number of FA events. On the other 

hand setting the SHM system threshold higher to tolerate a greater crack length reduces 

FA events but increases the number of Miss Detection events. Furthermore as cracks 

propagate to a greater length it was observed that Miss Detection events can lead to 

catastrophic failures causing (mishap) events.  The analytic approach described herein 

allows one to determine an acceptable balance between safety of flight and acceptable FA 

rates. The novelty of this approach is providing a life cycle analysis for a legacy aircraft 

equipped with SHM system with expected events (FA, Miss Detections) that could 

impact the life cycle and cost-benefit analysis. This was accomplished by combining the 
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method used in MIL-HDBK-1823 and Paris’s model and integrating it into a life cycle 

model reflecting changing crack size and detection in every flight sortie until the end of 

the life of the aircraft. This enables users to estimate the frequency of event occurrences 

and the costs associated with these events, thus contributing to a more accurate life cycle 

cost (LCC) analysis for an aircraft equipped with an SHM system. While the current 

model is applicable to crack propagation in metallic structures, analytic expressions for 

sensor signal variation associated with other damage/structure types would allow the 

current model to be extended for those applications.   

 

Keywords:  Structural Health Monitoring, Fatigue Crack Growth, Probability of 

Detection, False Alarms, Missed Detections 

Nomenclature   
 

𝑎 crack length 

𝑎𝑐𝑟 critical crack length at which failure occurs 

𝑎� system response signal to a crack length 

𝑎𝑡ℎ a crack size detected 50% of the time by the SHM system 

𝑎�𝑡ℎ signal threshold for a crack size detected 50% of the time by the SHM  

  system 

𝑎𝑠𝑎𝑓𝑒 minimum significant crack length 

𝑎0 initial flaw size (crack length) 

𝛽1 regression line slope 

𝛽0 regression line intercept 
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𝐶 material constant 

𝛥𝛿 pressure differential due to the stress load 

𝛥𝐾 difference between the stress intensity factors 

𝐾𝐼𝐶 fracture toughness 

𝐾𝑚𝑎𝑥 maximum stress intensity factor 

𝐾𝑚𝑖𝑛 minimum stress intensity factor 

𝑚 material constant 

𝑁 number of load cycles 

𝜎 standard deviation associated with probability of 𝑎� given 𝑎 

 

Introduction 

Operation and Maintenance (O&M) of aircraft often accounts for 70-80% or more 

of the total Life Cycle Costs (LCC) of military and civilian aircraft (Gilmore and Valaika, 

1992). For this reason, aircraft operators and maintainers are always looking for ways to 

reduce the O&M burden for both new and legacy aircraft.  Maintenance schedules are 

selected conservatively based on flight safety, but a higher frequency of scheduled 

maintenance increases O&M cost and may make it more likely that the maintenance 

actions themselves introduce system faults.  Performing maintenance tasks in a timely 

manner, with reduced cost and improved safety, is critically important for successful 

operation of any system, especially as resources are becoming scarce. If we examine the 

military aerospace field we note that many legacy systems will be operating beyond their 

original design life due to funding delays or schedule slips associated with new 

replacement aircraft. Life extension programs have often been implemented on these 
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legacy systems so that they can operate safely and effectively until a replacement system 

is available. Even with a life extension program, however, operating a legacy system can 

incur significant operations and support costs.  

One of the major concerns for aging aircraft is the structural health of the system. 

As the structure accumulates flight hours, cracks develop and propagate in that structure. 

In response, Non-Destructive Inspections (NDI) are used by the maintenance crews to 

find these cracks and perform maintenance if they grow beyond what is considered a safe 

length. These NDI are preformed periodically, usually based on flight hours. These 

inspections have some negative aspects associated with them. NDI causes aircraft down 

time affecting mission readiness, and increasing labor hours and maintenance costs. 

Further, between NDI intervals the length of the existing cracks in the structure are not 

known, which raises safety concerns. Condition-Based Maintenance (CBM) has been 

investigated in recent years to overcome these shortcomings by performing maintenance 

when needed as opposed to relying on more conservative maintenance intervals (Cutter 

and Thompson, 2005; Ellis, 2008).  

One of the necessary tools to achieve CBM is to continuously monitor the system. 

Structure Health Monitoring (SHM) is an approach that employs methods and tools to 

monitor the health of the structure continuously through on-board sensors, promising 

higher safety level and reduction in cost through extended inspection intervals and 

continuous monitoring. Many of the necessary SHM technologies are available, yet we 

see a slow implementation of these systems on operational platforms. Further, challenges 

involved in the development and transition of SHM technology including issues 

concerned with design, installations and validation methods for damage detection are still 
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present (Beard and Banerjee, 2011). It has been suggested that the lack of a solid business 

case clearly analyzing the cost benefit of a SHM system is one of the main causes of the 

slow implementation of such a system (Derrisoet al., 2007; Perez et al., 2010).  False 

Alarms (FA) from a SHM system will cause unnecessary maintenance actions, thus 

raising cost and aircraft availability concerns. Missed detections that might also occur 

when using a SHM system also create safety concerns. It is clear that these factors have a 

major impact on the business case. Trade space analysis that considers fatigue crack 

growth rates, SHM sensor performance, scheduled inspection intervals, and event costs is 

needed. This paper presents a trade space analysis for a legacy fighter equipped with an 

SHM system throughout its life cycle. Modeling and simulation using Monte Carlo 

analysis in the MATLAB® programming environment will be used as the trade space 

analysis tool. While the current model is applicable to crack propagation in metallic 

structures, analytic expressions for sensor signal variation associated with other 

damage/structure types would allow the current model to be extended for those 

applications.   

Fatigue crack growth 

Fatigue crack growth predictions are used to estimate the design life of aircraft 

structural components. They are used in design where a structural component is expected 

to operate safely with an existing crack until the crack reaches a length that is detectable 

by NDI, but less than a critical length (Roylance, 2001). Paris’s Law is one of the most 

widely used fatigue crack growth models and was used in this research effort (Paris and 

Erdogan, 1963). 
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 Paris’s Law 

Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to 

stress intensity factor. The basic formula has the following form: 

 

𝑑𝑎
𝑑𝑁

= 𝐶∆𝐾𝑚                                                             (2) 

 

The term on the left side is known as the crack growth rate, where 𝑎 is the crack 

length and 𝑁 is the number of load cycles. The crack growth rate indicates the crack 

length growth per accumulated number of load cycles. 𝐶 and 𝑚 are material constants 

and ∆𝐾 is the difference between the stress intensity factor at maximum loading and 

minimum loading: 

 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 =  ∆𝛿√𝜋𝑎                                            (3) 

 

where 𝐾𝑚𝑎𝑥 is the maximum stress intensity factor, 𝐾𝑚𝑖𝑛 is the minimum stress 

intensity factor and ∆δ is the pressure differential due to the stress load. 

Probability of detection (POD) 

The primary focus of a SHM system is to reliably detect a significant crack length 

𝑎 just like the NDI does, but to perform this task continuously during operation of the 

system. The performance of a SHM system can be demonstrated using 𝑃𝑂𝐷(𝑎) curves. 

(Kuhn and Soni, 2009; Kuhn, 2009) showed that 𝑃𝑂𝐷(𝑎) can be evaluated using the 

following formula: 
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𝑃𝑂𝐷(𝑎) = 𝑃(𝑎 � > 𝑎�𝑡ℎ) = 𝛷 �𝛽0+𝛽1∗ln(𝑎)−ln(𝑎�𝑡ℎ)
𝜎

�                              (4) 

 

𝑃𝑂𝐷(𝑎) is modeled by performing linear regression on an 𝑎 vs. 𝑎 �  functional 

relation that has normally distributed residuals with constant variance, where 𝑎 �  is the 

measured system response of a NDI system to a crack of length 𝑎. Units depend on the 

particular inspection system. MIL-HDBK-1823 (Department of Defense, 1999), 

describes NDI experimental data showing a linear regression line relationship relating 

ln(𝑎) to ln(𝑎 �), where 𝛽0 is the regression line intercept, 𝛽1 is the slope, 𝑎�𝑡ℎ is the signal 

threshold for a NDI system (the value of  𝑎 �  below which the signal is determined to have 

been caused by a crack of insignificant length) and 𝜎 is the standard deviation of the 

residuals of a linear regression fit of 𝑎 vs. 𝑎 �  data as represented in Figure 1 (Department 

of Defense, 1999). A more intuitive explanation of the generation of the POD equation 

showing practitioners how properties of SHM data affect the rotation and translation of 

the POD curve was pressed by (Pado et al., 2013). 
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Figure 

Figure 1: Linear regression fit of ln(𝑎) vs. ln(𝑎 �) data (Department of Defense, 1999) 

 

Confusion Matrix 

In a scenario where a NDI or SHM system is attempting binary detection 

(crack/no-crack) of a crack of length 𝑎 there are four possible outcomes: 

 

1) The system detects a crack and a crack of significant length actually  

  exists; this is declared a True Detection event; 

2) The system detects a crack and either the crack does not exist or the length 

  of the crack is not considered significant; this is declared a FA event; 

3) The system does not detect a crack and a crack of significant length does  

  not exist; this is a True Negative event; 

4) The system does not detect a crack but a crack of significant length exists;  

  this is a Missed Detection event. 
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These four probabilities can be represented in a “Confusion Matrix” shown in 

Figure 2 (Fawcett, 2006).  The confusion matrix is used for predictive analysis. 

Typically, the probabilities appearing in the matrix are determined through test or 

historical data collection.   

 

 

In operating an aircraft, FA rates or false calls raise concerns due to the fact that 

these will drive unnecessary maintenance actions that will affect mission readiness and 

cost. Even beyond concerns for unnecessary maintenance actions, false alarms could 

result in premature mission terminations.  Missed Detections raise concerns due to the 

fact that they might cause an aircraft mishap due to unforeseen/undetected structural 

problems. A graphical representation of the confusion matrix probabilities distributions 

plus the threshold level of an NDI or SHM system is represented in Figure 3 (Kuhn, 

2009).                                      

 

Figure 2: Confusion Matrix 
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Figure 3: Graphical representation of the probabilities and the Threshold Detection Level 

(Kuhn, 2009) 

 

It is important to note that adding the FA and True Negative probabilities equals 

1. Likewise adding the True Detection and Miss Detection probabilities equals 1. It can 

be observed from Fig. 3 that varying the threshold 𝑎�𝑡ℎ will affect sensor performance. 

Moving 𝑎�𝑡ℎ to the right will result in less FA and less Detections. Moving 𝑎�𝑡ℎ to the left 

will result in more Detections and more FA. The variance (standard deviation)  of the 

response signal 𝑎� can also affect sensor performance as it will determine the amount of 

overlap for pdfs associated with a given crack length and that associated with a “safe” 

structure. In this research the effect of a crack growth on a legacy fighter will be 

simulated for each sortie up to the time when a mishap (catastrophic failure) occurs or the 

end of the design life of the aircraft is reached, whichever occurs first. For every sortie, 
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corresponding to a set number of load cycles, SHM system detection will be simulated 

based on the current crack size and sensor performance, POD(a).  

For this analysis, the SHM system will be assumed to follow an NDI-like 

detection trend whereby a larger crack will generate a larger mean signal response; the 

analysis approach easily supports a piezo-like sensor whereby the trend is reversed 

(larger cracks generate smaller mean signal response). An event corresponding to one of 

the quadrants of the confusion matrix will occur at each sortie.  First, a true detection 

event will trigger an inspection and a repair action will occur. Second, a FA event 

triggering an inspection can occur. For an FA event, subsequent NDI will identify the 

true crack size.  In this research, NDI performed post-flight is assumed to be perfect; in 

future work this assumption will be relaxed. Third, a missed detection event triggering 

the possibility of a mishap can occur.  A missed detection of a crack that is still less than 

some defined critical length will not cause a mishap; however, missed detection of a 

crack that grows to a length equal to or exceeding a critical length will result in a mishap. 

Finally, a true negative event triggers no action, and the aircraft is assumed ready for the 

next sortie.  

Varying the sensor detection threshold, 𝑎�𝑡ℎ, minimum crack length detected 

requiring a repair action, 𝑎𝑠𝑎𝑓𝑒, and the standard deviation of the distribution will be 

investigated to study the effects of these SHM system sensor performance parameters on 

the number of maintenance events and mishaps that occur.  For this research, a single 

critical crack location is modeled, but the methods described herein are extensible to 

multiple crack locations, and future work will extend the model to accommodate them. 

Further, this method is applicable for damage detection in composite panels where the 
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extent of the damage is an area (compared to crack length) and the extent of the damage 

includes severity. As long as experimental data can show and reflect a relationship 

existing between damage characteristics/severity and signal response by SHM system 

that could be later modeled this method is applicable. 

Methodology 

Modeling and simulation using MATLAB® was the method used in this research. 

Figure 4 shows an event flow diagram depicting SHM related events for a legacy aircraft 

equipped with SHM system. 

 

 

 
Figure 4:  Flow diagram for SHM equipped aircraft 
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The simulation model starts at takeoff, depicted on the bottom left side of Figure 

4. To initialize the model, a threshold, 𝑎�𝑡ℎ,  safe crack length, 𝑎𝑠𝑎𝑓𝑒, and a standard 

deviation σ are set and kept for the life time of the aircraft. An initial flaw size is used to 

initialize the crack growth model based on the Paris model discussed previously (Paris 

and Erdogan, 1963). After takeoff, the model generates a probability distribution for the 

crack length in that specific sortie based on the growth model and the number of 

accumulated flight hours in service or since previous crack repair. A Monte Carol draw is 

initiated simulating SHM system detection. If the system response signal 𝑎� is less than 

𝑎�𝑡ℎ no SHM detection occurred. The model will check if the crack length 𝑎 is greater 

than the critical crack length, 𝑎𝑐𝑟. If that is true the model will declare a catastrophic 

structure failure leading to an aircraft mishap. Otherwise the aircraft will land. Then the 

model will check if 𝑎 is greater than 𝑎𝑠𝑎𝑓𝑒, and if that is true a missed detection event 

will be recorded. Note that while missed detections are recorded in the simulation for 

later analysis, the SHM system has no knowledge that a missed detection has occurred.  

If no detection occurs and 𝑎 < 𝑎𝑠𝑎𝑓𝑒 , a true negative event will be recorded. If the 

aircraft reached its maximum life the simulation run for this aircraft will end and a new 

simulation run will start; otherwise, the model will propagate the crack length by the 

amount simulated for one sortie and takeoff again. For any sortie, if 𝑎 �  is greater than 𝑎�𝑡ℎ, 

SHM detection occurs and the sortie will be aborted. An inspection will occur and if 𝑎 is 

greater than 𝑎𝑠𝑎𝑓𝑒, a true detection event will be recorded. The crack length will be reset 

simulating a repair or a replacement of a structural component and the aircraft will take 

off again. If 𝑎 is less than 𝑎𝑠𝑎𝑓𝑒, a FA event will be recorded, the crack 𝑎 will be 
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propagated, and the aircraft will takeoff again. This will continue until the end of design 

life or catastrophic failure of the aircraft. For a given set of 𝑎𝑠𝑎𝑓𝑒, 𝑎�𝑡ℎ and σ, 100 

simulation runs will be performed, each one having a randomly selected initial flaw size 

and growth rate parameter. After that a different set of 𝑎𝑠𝑎𝑓𝑒, 𝑎�𝑡ℎ and σ will be used so 

trade space analysis on the affect of SHM sensor performance and crack length on events 

can be performed.  

Fatigue crack growth subroutine 

A fatigue crack growth subroutine model was developed to simulate the crack 

length propagation in every sortie. By integrating the Paris model Equation 2 and solving 

for 𝑎𝑖 which is the crack length after 𝑁𝑖 cycles (flights) we get (An et al., 2012): 

 

𝑎𝑖 = �𝑁𝑖𝐶 �1 − 𝑚
2
� �∆𝛿√𝜋�

𝑚
+ 𝑎0

1−𝑚2 �
2

2−𝑚
                                  (5) 

 

where 𝑎0 is assumed to be the initial flaw size (crack length) existing in a new or repaired 

structural component (Heida and Grooteman, 1998). Uncertainty is applied to the value 

of 𝑎0 to reflect that this value is different every time a repair or replacement is done to the 

structure. The pressure differential, ∆δ, due to the stress load can be evaluated by using 

the expression (An et al., Chol, 2012): 

 

∆𝛿 = 𝐾𝐼𝐶
�𝑎𝑐𝑟𝜋

                                                             (6) 
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where 𝐾𝐼𝐶 is the fracture toughness, a material property provided by the manufacturer of 

the structural component. ∆δ is modeled with uncertainty to simulate the variation in 

loads an aircraft structure is exposed to for any given sortie. Figure 5 is a presentation of 

the fatigue crack growth simulation with 10 runs reflecting 10 repairs or replacements to 

the structural component. 

 

 

Figure 5: Fatigue crack growth simulation results for 10 runs 

 

It is shown in Figure 5 that every run has a different 𝑎0 and the growth rate with 

different loads ∆δ causing the crack to propagate differently after each replacement or 

repair. Also a representation of 𝑎𝑠𝑎𝑓𝑒 , a minimum crack considered to be significant for 

SHM monitoring is shown on the figure. Detected cracks of length smaller than 𝑎𝑠𝑎𝑓𝑒 

will not be repaired.  The figure also shows 𝑎𝑡ℎ, a crack size having an associated SHM 
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response designated as the threshold for detection, 𝑎�𝑡ℎ. Both 𝑎𝑠𝑎𝑓𝑒 and  𝑎�𝑡ℎ will be varied 

to simulate the performance of the SHM system. 

 Probability of detection subroutine 

A probability of detection (POD) simulation subroutine was developed to 

simulate the SHM system response to a crack length occurring for every sortie. A 

probability of detection of the threshold crack 𝑎𝑡ℎ, detected 50% of the time, will be 

evaluated using Equation 4 in the following form: 

 
𝑃𝑂𝐷(𝑎) = 0.5 = 𝛷 �𝛽0+𝛽1∗ln(𝑎𝑡ℎ)−ln(𝑎�𝑡ℎ)

𝜎
�                                         (7) 

 
The signal threshold 𝑎�𝑡ℎwill be solved for and used in the following equation: 

 
𝑃𝑂𝐷(𝑎) = 𝑃(𝑎 � > 𝑎�𝑡ℎ) = 𝛷 �𝛽0+𝛽1∗ln(𝑎)−ln(𝑎�𝑡ℎ)

𝜎
�                                    (8) 

 
where the crack length 𝑎 from the fatigue crack growth simulation will be used and a 

Monte Carlo draw will be preformed every sortie. The constants 𝛽0 and 𝛽1 are evaluated 

by performing linear regression on experimental data provided by MIL-HDBK-1823 

(Department of Defense, 1999). Since varying 𝑎𝑡ℎ will directly vary 𝑎�𝑡ℎ as shown from 

the previous equations, only 𝑎𝑡ℎwill be used in the rest of the discussion. The variables 

𝑎𝑡ℎ and 𝑎𝑠𝑎𝑓𝑒 are held constant for a given run, but varied for different simulation runs as 

a percentage of 𝑎𝑐𝑟. Also, the standard deviation σ associated with the 𝑎� vs. 𝑎 pdf will be 

set for a given simulation run and varied for different runs.   

Parameter Values and Recorded Events 

The main simulation routine tallies several different events for the tradespace 

analysis. The number of FA events and Miss Detection events will be recorded for 
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different sets of 𝑎𝑠𝑎𝑓𝑒, 𝑎𝑡ℎ and σ. The parameter 𝑎𝑠𝑎𝑓𝑒 will have five values, and for 

every value of 𝑎𝑠𝑎𝑓𝑒, 𝑎𝑡ℎ will have a corresponding eight values and σ will have four 

values. For each combination of 𝑎𝑠𝑎𝑓𝑒 , 𝑎𝑡ℎ, and σ, 100 simulation runs will conducted 

and the average FA and Miss Detection events will be calculated. The results will be 

displayed and discussed in the following section. 

Results and Discussion 

FA events 

Figure 6 (a) displays the effect of fixing the standard deviation σ at 0.1 and 

varying 𝑎𝑠𝑎𝑓𝑒 with the values 5, 6, 7, 8 and 9% of 𝑎𝑐𝑟. For every 𝑎𝑠𝑎𝑓𝑒 value, the 𝑎𝑡ℎ 

value was incremented eight times starting at 𝑎𝑠𝑎𝑓𝑒 using increments of 1% of 𝑎𝑐𝑟. For 

example, if 𝑎𝑠𝑎𝑓𝑒= 5% 𝑎𝑐𝑟 then 𝑎𝑡ℎ will be incremented as 5, 6, 7, 8, 9, 10, 11 and 12% 

of 𝑎𝑐𝑟. This is repeated for Figure 6 (b), (c) and (d) with standard deviation σ = 0.2, 0.3, 

and 0.4. It is observed from Figure 6 (a) that as 𝑎𝑡ℎ is moved about 2% from 𝑎𝑠𝑎𝑓𝑒 a 

significant drop in the number of FA events is noticed. The greater the 𝑎𝑠𝑎𝑓𝑒 percentage 

the greater the number of false alarm events recorded. From Fig. 6(b), as the standard 

deviation is increased from σ = 0.1 to σ = 0.2, it is observed that we have the same trend 

shown in Figure 6 (a) but with an increase in FA events. Also it is observed that an 

increase of 𝑎𝑡ℎ by about 3% over 𝑎𝑠𝑎𝑓𝑒 essentially eliminates FA events. From Figure 6 

(c), as the standard deviation is increased from σ = 0.2 to σ = 0.3, it is observed that we 

have the same trend shown in Figure 6 (b) with very close FA events, but it now requires 

an increase of 𝑎𝑡ℎ by about 5% over 𝑎𝑠𝑎𝑓𝑒 to essentially eliminate FA events. Similarly 

in Figure 6 (d), as the standard deviation is increased from σ = 0.3 to σ = 0.4, it is 
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observed that it now requires an increase of 𝑎𝑡ℎ by about 8% over 𝑎𝑠𝑎𝑓𝑒 to essentially 

eliminate FA events. 95% confidence intervals bars are shown on all figures based on 

100 simulation runs.  

 

 

Figure 6: % 𝑎𝑡ℎ  of 𝑎𝑐𝑟 for a crack detected 50% of the time vs. Average number of FA 

events for different standard deviation levels 𝜎 

 

Miss Detection events 

From Figure 7 (a) we observe that if 𝑎𝑡ℎ is moved about 3% above 𝑎𝑠𝑎𝑓𝑒 a 

significant increase in number of Miss Detection events is noticed. Note that a single 

missed detection is not fatal as long as detection on a subsequent sortie occurs prior to the 

crack reaching a critical length. From Figure 7 (b) it is observed that, as the standard 

deviation is increased for σ = 0.1 to σ = 0.2,  the same trend as Figure 7 (a) is shown, but 
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𝑎𝑡ℎ  needs to be at least 4% more than 𝑎𝑠𝑎𝑓𝑒 to reach the same number of Miss Detection 

events shown in Figure 7 (a).  A similar trend is shown in Figure 7 (c) where it is 

observed that, as the standard deviation is increased from σ = 0.2 to σ = 0.3,  𝑎𝑡ℎ  needs to 

be at least 5% more than 𝑎𝑠𝑎𝑓𝑒 to reach the same number of Miss Detection events as 

shown in Fig. 7(b).  For σ = 0.4, shown in Figure 7 (d), 𝑎𝑡ℎ  needs to be at least 6% more 

than 𝑎𝑠𝑎𝑓𝑒 to reach the same number of Miss Detection events as shown in Figure 7 (c). 

In general, a decrease in the standard deviation and an increase in the difference between 

𝑎𝑡ℎ  and 𝑎𝑠𝑎𝑓𝑒 results in an increase in the average number of Miss Detection events.  

Referring back to Figure 3, an increase in the standard deviation of the distributions 

results in greater overlap, improving the Miss Detection performance at the expense of 

higher FA rates. 
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Figure 7: % 𝑎𝑡ℎ  of 𝑎𝑐𝑟 for a crack detected 50% of the time vs. Average number of Miss 

Detection events for different standard deviation levels 𝜎 

 

Average crack length detected after a Miss Detection event  

It is of interest to know the average crack length once detected after a Miss 

Detection event as percentage of 𝑎𝑐𝑟  as it reflects a safety concern.  As noted previously, 

an initial missed detection can be detected during a later sortie as long as it does not reach 

the critical length causing a mishap.  Before discussing these results, it is important to 

note that each detection attempt is treated independently, and the treatment herein 

assumes no degradation of the sensor (although research accounting for sensor 

degradation over time is ongoing). The following plots represent the simulation output 

for the crack length once detected as a percentage of 𝑎𝑐𝑟. 
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Figure 8: % 𝑎𝑡ℎ of 𝑎𝑐𝑟 for a crack detected 50% of the time vs. Average length of a crack 

detected after a miss detection event as a percentage of 𝑎𝑐𝑟 for different standard 

deviation levels 𝜎 

 

From Figure 8(a) it can be observed that, as 𝑎𝑡ℎ is increased further away from 

𝑎𝑠𝑎𝑓𝑒, the crack length once detected after initial miss detection increases. Also, as 

expected, a greater value of 𝑎𝑠𝑎𝑓𝑒 results in greater crack lengths once detected, which 

can become problematic as they approach a critical length. The obvious contribution to 

this increase is the fact that, as 𝑎𝑠𝑎𝑓𝑒  is increased, the size of the smallest crack that you 

intend to detect increases.  However, it is important to note that the crack growth rate 

monitonically increases (see Figure 5); higher values for 𝑎𝑠𝑎𝑓𝑒 result in higher growth 
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rates for 𝑎 > 𝑎𝑠𝑎𝑓𝑒. Sweeping across Figure 8(a), (b), (c) and (d) to observe the effect of 

change in standard deviation, it is noted that the length of the crack once detected is the 

greatest for the smallest 𝜎 = 0.1 and the greatest 𝑎𝑡ℎ.  This can be expected as the 

combination of these parameter trends increases the separation and decreases the overlap 

between the “safe” and “detectable” crack distributions.  As the standard deviation 

increases there is a smaller change in the length of the crack detected after a Miss 

Detection event is observed due to greater overlap between the distributions. 

Miss detection leading to a catastrophic failure 

The previous section leads one to the question as to what values for 𝑎𝑡ℎ and 𝑎𝑠𝑎𝑓𝑒 

result in a significant chance that a Miss Detection leads to a catastrophic failure (𝑎 ≥

 𝑎𝑐𝑟 ) of the structure component. Based on the crack growth model, growth is very slow 

for low numbers of load cycles (or sorties), but increases significantly as the load cycles 

accumulate.  The simulation is coded to flag every time the crack length 𝑎 is equal or 

greater than the critical length 𝑎𝑐𝑟 and declare a catastrophic failure, and these results will 

be shown for increasing values of 𝑎𝑠𝑎𝑓𝑒 and 𝑎𝑡ℎ.  

Figure 9 displays the effect on the percentage of mishaps based on varying the 

threshold 𝑎𝑡ℎ from 50% to 90% of 𝑎𝑐𝑟. For this analysis, 𝑎𝑠𝑎𝑓𝑒 was set at 50% of 𝑎𝑐𝑟 and 

the standard deviation σ was set at 0.4. It is observed that varying 𝑎𝑡ℎ from 50% to about 

55% of 𝑎𝑐𝑟 did not result in any aircraft mishap events from the simulation runs. Once 

the threshold is increased beyond 55% of 𝑎𝑐𝑟 mishap events are noticed. Setting the 

threshold set at 65% 𝑎𝑐𝑟 resulted in approximately 10% mishap events (based on 100 

simulation runs). As expected, the trend of increasing mishap rates for increasing 
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detection thresholds continued.  This preliminary analysis clearly shows how tradespace 

analysis can be conducted to show safe operating regimes resulting in minimal 

probabilities of catastrophic failure and acceptable false alarm rates. 

 

 

 

Figure 9: % 𝑎𝑡ℎ of 𝑎𝑐𝑟 for a crack detected 50% of the time vs. Average mishap 

percentage of number of simulation runs 

 

Conclusion 

Summary and findings 

The tradespace analysis approach described herein shows how SHM sensor 

performance design parameters 𝑎𝑠𝑎𝑓𝑒, 𝑎𝑡ℎ and σ can affect the number of FA, Missed 

Detections and mishap events that could occur over the expected life of an aircraft. If 
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design parameters are set conservatively with regards to safety, a high number of false 

alarms will result, with a subsequent increase in maintenance events and cost. 

Conversely, higher value for 𝑎𝑡ℎ with respect to 𝑎𝑐𝑟 result in a reduction in FA events, 

but an increase of Miss Detection. Further increase in 𝑎𝑡ℎ with respect to acr can result in 

Miss Detection events leading to mishaps. With safety of flight as a primary 

consideration, the SHM system sensor parameters can be adjusted to reduce the 

probability of mishap events to an acceptably low level while also keeping FA rates, and 

related maintenance costs, at an acceptable level.  

Future work 

Although installing an SHM system with a certain expected performance might 

produce expected cost savings, better operational readiness and improved safety, the 

degradation of the SHM system will be a concern in its own right. Any system installed 

on an aircraft is likely to degrade with operation. Systems installed on aircraft typically 

require maintenance and inspection schedules to ensure continued acceptable operation. 

The same is true for the SHM system. Kuhn’s research (Kuhn and Soni, 2009; Kuhn, 

2009) concluded that degradation to the SHM system sensors due to flight loads affect 

the performance of such a system.  Ongoing work is investigating the effect of 

degradation on SHM performance parameters such as 𝑎�𝑡ℎ and σ, amongst others, on the 

FA, Miss Detection and mishap events an aircraft might experience. Also maintenance of 

the SHM system itself will be considered.  SHM system unscheduled maintenance will be 

based on the maximum FA events encountered between SHM system scheduled 

maintenance intervals which will be based on flight hours.  Extensions to this work for 

composite structures and other damage types are also being investigated. 
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The following is Chapter IV and it contains a journal article that will be submitted 

to the Journal of Structure Health Monitoring. The title of the article is (Utility and Effect 

of Employing a Variable Threshold for Countering the Effect of Degrading SHM 

Sensors). Kuhn and Soni (2009) previously described performance and degradation of 

SHM sensors and an approach to modeling them vs. accumulated flight hours on an 

aircraft.  This paper builds on the work of Kuhn and others to explore the effect of sensor 

degradation on detection, false alarms, unscheduled maintenance actions and mishaps 

associated with an installed SHM system with realistic crack growth assumptions.  In this 

paper, an approach to modeling the SHM detection performance/ sensor degradation as 

well as the changes occurring with the aircraft structure is demonstrated.  Also the utility 

and effect of employing a variable threshold is discussed. This model is used to evaluate 

sensor performance under degradation with predictable performance regarding detection, 

missed detections and false alarms.  It provides an analytic basis for establishing a 

business case for the SHM system implementation. 
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IV. Utility and Effect of Employing a Variable Threshold for Countering the Effect 

of Degrading SHM Sensors 

 

Salman A. Albinali , David R. Jacques, Christine M. Schubert Kabban and Alan Johnson 

Abstract 

The degradation associated with a Structural Health Monitoring (SHM) system’s sensors 

is considered using an analytic approach. Expected operational and maintenance events that could 

occur due to degradation is explored though modeling and simulation of the life cycle of a legacy 

aircraft. The SHM system’s ability to detect a crack of significant length degrades over time, and 

it affects both the possibility of False Alarm (FA) and Miss Detection events. Degradation in the 

SHM system increases the number of FA events which raises a maintenance cost concern. 

Degradation also causes a concurrent reduction in the number of Miss Detection events. The 

analysis demonstrates that employing a variable detection threshold to counter the effect of 

degradation can significantly lower the number of FA events while maintaining Miss Detection 

events at an acceptable and safe level. Uncertainties in the assumed degradation factors are 

accounted for in the model, resulting in degraded performance, but a variable threshold is still 

capable of maintaining FA events lower than they would be for the constant threshold case. 

Determining acceptable FA and Miss Detection rates by employing a variable threshold to 

counter the effect of degradation can be achieved using the analytic approach described herein. 

This paper provides a life cycle analysis for a legacy aircraft equipped with a SHM system with 

degrading sensors leading to events (FA, Miss Detections) that could impact the life cycle and 

cost-benefit analysis. The frequency of event occurrences and the costs associated with these 

events can be estimates by users, thus contributing to a more accurate Life Cycle Cost (LCC) 

analysis for an aircraft equipped with a degrading SHM system. 
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Nomenclature   

𝑎 crack length 

𝑎𝑐𝑟 critical crack length at which failure occurs 

𝑎� system response signal to a crack length 

𝑎𝑡ℎ a crack size detected 50% of the time by the SHM system 

𝑎�𝑡ℎ signal threshold for a crack size detected 50% of the time by the SHM  

  system 

𝑎𝑠𝑎𝑓𝑒 minimum significant crack length 

𝑎0 initial flaw size (crack length) 

𝛼 degradation in the intercept factor 

𝛽1 regression line slope factor 

𝛽0 regression line intercept factor 

𝐶 material constant 

𝛥𝛿 pressure differential due to the stress load 

𝛾 degradation in the slope factor 

𝛥𝐾 difference between the stress intensity factors 

𝐾𝐼𝐶 fracture toughness 

𝐾𝑚𝑎𝑥 maximum stress intensity factor 

𝐾𝑚𝑖𝑛 minimum stress intensity factor 
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𝜓 degradation in the standard deviation factor 

𝑚 material constant 

𝑁 number of load cycles 

𝜎 standard deviation associated with probability of 𝑎� given 𝑎
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Introduction 

It has been reported that 70-80% or more of the total Life Cycle Costs (LCC) of 

military and civilian aircraft is due to the Operation and Maintenance (O&M) cost 

(Gilmore and Valaika, 1992). Therefore, aircraft operators and maintainers are always 

looking for ways to reduce the O&M burden for both new and legacy aircraft.  

Maintenance schedules are selected conservatively based on flight safety, but a higher 

frequency of scheduled maintenance increases O&M cost and may make it more likely 

that the maintenance actions themselves introduce system faults.  Performing 

maintenance tasks in a timely manner, with reduced cost and improved safety, is 

critically important for successful operation of any system, especially as resources are 

becoming scarce.   Examining the military aerospace field, one notes that many legacy 

systems are or will be operating beyond their original design life due to funding delays or 

schedule slips associated with new replacement aircraft. Life extension programs have 

often been implemented on these legacy systems so that they can operate safely and 

effectively until a replacement system is available.  

Even with a life extension program, however, operating a legacy system can incur 

significant operations and support costs. One of the major concerns for aging aircraft is 

the structural health of the system. As the structure accumulates flight hours, cracks 

develop and propagate in that structure. In response, Non-Destructive Inspections (NDI) 

are used by the maintenance crews to find these cracks and perform maintenance if they 

grow beyond what is considered a safe length. These NDI are preformed periodically, 

usually based on flight hours. These inspections have some negative aspects associated 
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with them. NDI cause aircraft down time affecting mission readiness, and increasing 

labor hours and maintenance costs. Further, between NDI intervals the length of the 

existing cracks in the structure are not known, which raises safety concerns. Condition-

Based Maintenance (CBM) has been investigated in recent years to overcome these 

shortcomings by performing maintenance when needed as opposed to relying on more 

conservative maintenance intervals (Cutter and Thompson, 2005; Ellis, 2008). 

One of the necessary tools to achieve CBM is to continuously monitor the system. 

Structure Health Monitoring (SHM) is an approach that employs methods and tools to 

monitor the health of the structure continuously through on-board sensors, promising 

higher safety level and reduction in cost through extended inspection intervals and 

continuous monitoring. Many of the necessary SHM technologies are available, yet we 

see a slow implementation of these systems on operational platforms. It has been 

suggested that the lack of a solid business case clearly analyzing the cost benefit of a 

SHM system is one of the main causes of the slow implementation of such a system 

(Derriso et al., 2007; Perez et al., 2010). Further, challenges involved in the development 

and transition of SHM technology including issues concerned with design, installations 

and validation methods for damage detection are still present (Beard and Banerjee, 2011). 

False Alarms (FA) from a SHM system will cause unnecessary maintenance actions, thus 

raising cost and aircraft availability concerns. Further, Missed detections from a SHM 

system can cause safety concerns. 

Degradation of the SHM system over the life time of an aircraft can have a great 

impact on the SHM system performance, adversely effecting FA and Miss Detection 

events. Many studies show degradation of SHM sensors over time due to static loads, 



51 

 

cyclic loads, temperature and corrosion. Research by Achenbach (2007) indicated that 

some of the technical challenges for sensors are that they need to be small, autonomous, 

cheap, robust, repairable, accurate, densely distributed, measure local and system level 

responses and designed to measure relevant damage parameters. There are typically 

competing objectives that must be balanced by the system designer. Beard et al. (2005) 

found that environmental conditions such as temperature can affect the signal obtained 

from sensors. His research used calibration to compensate for temperature variation based 

on the structure and application. A sensor diagnostics and validation process was 

presented by Park et al. (2006). It performs in situ monitoring of the operational status of 

a piezoelectric (PZT) active-sensor in SHM applications. Both degradation of the 

mechanical/electrical properties of a PZT transducer and the bonding defects between a 

PZT patch and a host structure could be identified by the proposed process. The proposed 

process can provide a metric that can be used to determine the sensor functionality over a 

long period of service time or after an extreme loading event.  An investigation on the 

effect of cyclic loads on sensor performance was conducted by Kuhn (2009). Degradation 

was identified in sensor performance having a direct relationship with cyclic strain which 

was estimated by using a power equation model in his research. A probability of 

detection (POD) degradation model was also developed to show the overall performance 

of a SHM system over time. 

It is clear that these factors have a major impact on the business case. A benefit 

study that considers fatigue crack growth rates, realistic probability of detection, SHM 

sensor degradation, scheduled inspection intervals, SHM maintenance actions, and Life 

cycle analysis and operation events is needed. This research is a follow on work of 
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Albinali and Jacques (2014). The novelty of this research described herein is the benefit 

study and analysis for a legacy fighter equipped with a SHM system that degrades 

throughout the life cycle. SHM sensor degradation and its effect on operation and 

maintenance events is considered. Realistic fatigue crack growth rates and probability of 

detection is employed. Modeling and simulation using Monte Carlo analysis in the 

MATLAB® programming environment is used to model the operational life of an aircraft 

equipped with a degrading SHM system, and the potential impact of that system on life 

cycle maintenance events. 

Crack propagation model 

Fatigue crack growth predictions are used to estimate the design life of aircraft 

structural components. They are used in design where a structural component is 

expected to operate safely with an existing crack until the crack reaches a length that is 

detectable by NDI, but less than a critical length (Roylance, 2001). Paris’s Law is one of 

the most widely used fatigue crack growth models and was used in this research effort 

(Paris and Erdogan, 1963). 

Paris’s Law 

Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to 

stress intensity factor. The basic formula has the following form: 

 
𝑑𝑎
𝑑𝑁

= 𝐶∆𝐾𝑚                                                               (9) 

 

The term on the left side is known as the crack growth rate, where 𝑎 is the crack 

length and 𝑁 is the number of load cycles. The crack growth rate indicates the crack 
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length growth per accumulated number of load cycles. 𝐶 and 𝑚 are material constants 

and ∆𝐾 is the difference between the stress intensity factor at maximum loading and 

minimum loading: 

 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 =  ∆𝛿√𝜋𝑎                                             (10) 

 

where 𝐾𝑚𝑎𝑥 is the maximum stress intensity factor, 𝐾𝑚𝑖𝑛 is the minimum stress 

intensity factor and ∆δ is the pressure differential due to the stress load. 

Fatigue crack growth subroutine 

A fatigue crack growth subroutine model was developed to simulate the crack 

length propagation in every sortie. By integrating the Paris model Equation 9 and solving 

for 𝑎𝑖 which is the crack length after 𝑁𝑖 cycles (flights) we get (An et al., 2012): 

 

𝑎𝑖 = �𝑁𝑖𝐶 �1 − 𝑚
2
� �∆𝛿√𝜋�

𝑚
+ 𝑎0

1−𝑚2 �
2

2−𝑚
                               (11) 

 

where 𝑎0 is assumed to be the initial flaw size (crack length) existing in a new or 

repaired structural component (Heida and Grooteman, 1998). Uncertainty is applied to 

the value of 𝑎0 to reflect that this value is different every time a repair or replacement is 

done to the structure. The pressure differential, ∆δ, due to the stress load can be 

evaluated by using the expression (An et al., 2012): 
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∆𝛿 = 𝐾𝐼𝐶
�𝑎𝑐𝑟𝜋

                                                         (12) 

 

where 𝐾𝐼𝐶 is the fracture toughness, a material property provided by the manufacturer of 

the structural component. ∆δ is modeled with uncertainty to simulate the variation in 

loads an aircraft structure is exposed to after a repair or replacement of structural 

component.  

Crack detection model 

Probability of detection (POD) 

The primary focus of a SHM system is to reliably detect a significant crack 

length 𝑎 just like the NDI, but to perform this task continuously during operation of the 

system. The performance of a SHM system can be demonstrated using 𝑃𝑂𝐷(𝑎) curves. 

Kuhn and Soni (2009) and Kuhn (2009) showed that 𝑃𝑂𝐷(𝑎) can be evaluated using 

the following formula: 

 

𝑃𝑂𝐷(𝑎) = 𝑃(𝑎 � > 𝑎�𝑡ℎ) = 𝛷 �𝛽0+𝛽1∗ln(𝑎)−ln(𝑎�𝑡ℎ)
𝜎

�                      (13) 

 

𝑃𝑂𝐷(𝑎) is modeled by performing linear regression on an 𝑎 vs. 𝑎 �  functional 

relation that has normally distributed residuals with constant variance, where 𝑎 �  is the 

measured system response of a NDI system to a crack of length 𝑎. Units depend on the 
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particular inspection system. MIL-HDBK-1823 (Department of Defense, 1999), 

describes NDI experimental data showing a linear regression line relationship relating 

ln(𝑎) to ln(𝑎 �), where 𝛽0 is the regression line intercept, 𝛽1 is the slope, 𝑎�𝑡ℎ is the signal 

threshold for a NDI system (the value of  𝑎 �  below which the signal is determined to 

have been caused by a crack of insignificant length) and 𝜎 is the standard deviation of 

the residuals of a linear regression fit of 𝑎 vs. 𝑎 �  data. A more intuitive explanation of 

the generation of the POD equation showing practitioners how properties of SHM data 

affect the rotation and translation of the POD curve was pressed by Pado et al. (2013). 

In an SHM system using piezoelectric sensors (PZT) using pitch-catch signals we get a 

smaller signal response 𝑎 �  for a greater crack length 𝑎.  This is opposite to NDI where a 

greater signal response 𝑎 �  for a greater crack length 𝑎. The PZT POD relationship is 

represented in Equation 14 and Figure 10 (Kuhn, 2009). 

 

𝑃𝑂𝐷(𝑎) = 𝑃(𝑎�𝑡ℎ > 𝑎 �) = 𝛷 �ln(𝑎�𝑡ℎ)−𝛽0−𝛽1∗ln(𝑎)
𝜎

�                              (14) 

 
Figure 10: Linear regression fit of ln(𝑎) vs. ln(𝑎 �) data for SHM using PZT sensors (Kuhn, 

2009)  
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Confusion Matrix 

In a scenario where an NDI or SHM system is attempting binary detection 

(crack/no-crack) of a crack of length 𝑎 there are four possible outcomes: 

  

1)  The system detects a crack and a crack of significant length actually   

 exists, thus declared a True Detection event; 

2) The system detects a crack and either the crack does not exist or the length of 

 the crack is not considered significant, thus declared a FA event; 

3) The system does not detect a crack and a crack of significant length does not 

 exist, thus declared a True Negative event; 

4) The system does not detect a crack but a crack of significant length exists; this 

 is a Missed Detection event. 

 

These four probabilities can be represented in a “Confusion Matrix” shown in 

Figure 11 (Fawcett, 2006).  The confusion matrix is used for predictive analysis. 

Typically, the probabilities appearing in the matrix are determined through test or 

historical data collection.   
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Figure 11: Confusion Matrix 

 

A graphical representation of the confusion matrix probability distributions with 

the threshold level of an SHM system is represented in Figure 12. In operating an 

aircraft, FA rates or false calls (shaded part of the no damage distribution plot to the left 

of 𝑎�𝑡ℎ) raise concerns due to the fact that these will drive unnecessary maintenance 

actions that will affect mission readiness and cost.  Even beyond concerns for 

unnecessary maintenance actions, false alarms could result in premature mission 

terminations.  Missed Detections (un-shaded part of the damage distribution plot to the 

right of 𝑎�𝑡ℎ) raise concerns due to the fact that they might cause an aircraft mishap due 

to unforeseen/undetected structural problems.  

 

 



58 

 

 

Figure 12: Graphical representation of the probabilities and Threshold detection Level 

Probability of detection with degradation 

A probability of detection (POD) simulation subroutine was developed to 

simulate the SHM system response to a crack length occurring for every sortie following 

a normal distribution. A probability of detection of the threshold crack 𝑎𝑡ℎ, detected 

50% of the time, will be evaluated using Equation 13 in the following form: 

 

𝑃𝑂𝐷(𝑎) = 0.5 = 𝛷 �ln(𝑎�𝑡ℎ)−𝛽0−𝛽1∗ln(𝑎𝑡ℎ)
𝜎

�                                            (15) 

 

The signal threshold 𝑎�𝑡ℎwill be solved for and used in the following equation by (Kuhn, 

2009): 

 

𝑃𝑂𝐷(𝑎)𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑 = 𝛷 �ln(𝑎�𝑡ℎ)−(𝛽0∗𝛼)−(𝛽1∗𝛾)∗ln(𝑎)
𝜎∗𝜓

�                                        (16) 

 

where the crack length 𝑎 from the fatigue crack growth simulation will be used and a 

Monte Carlo draw will be performed every sortie. The constants 𝛽0, 𝛽1and σ are 

evaluated by performing linear regression on experimental data provided by MIL-
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HDBK-1823 (Department of Defense, 1999). The variables 𝑎𝑡ℎ (set equal to 10% of 

𝑎𝑐𝑟) and 𝑎𝑠𝑎𝑓𝑒 (set equal to 5% of 𝑎𝑐𝑟) are held constant for all runs, but α, γ and ψ are 

varied for different simulation runs as a percentage of 𝛽0, 𝛽1and σ , respectively. While 

𝑎𝑡ℎ and 𝑎𝑠𝑎𝑓𝑒  were kept constant relative to 𝑎𝑐𝑟 for this research, previous research has 

investigated the effect of varying them relative to 𝑎𝑐𝑟 (Albinali and Jacques, 2014).   

The previous discussion pertains to the constant 𝑎�𝑡ℎ case. For the variable 

threshold case the threshold was adjusted to maintain a 50% detection as follows: 

 

0.5= 𝛷 �ln(𝑎�𝑡ℎ)−(𝛽0∗𝛼)−(𝛽1∗𝛾)∗ln(𝑎)
𝜎∗𝜓

�                    (17) 

 

Using Equation 17, 𝑎�𝑡ℎ was calculated with different degradation factors to always 

maintain a 50% detection threshold. Then the calculated 𝑎�𝑡ℎwas used in Equation 16. 

This caused 𝑎�𝑡ℎ to be reduced, i.e. move to the left, as was described in Figure 12. For 

the varying threshold case with uncertain degradation level 20% uncertainty was applied 

to degradation factors α, γ and ψ in Equation 16 and the simulation was repeated to see 

the effect of varying the threshold with uncertainty. 

It is important to note that FA and True Detection are competing objectives, and 

for a given detection system both cannot be simultaneously improved. It can be 

observed from Figure 4 that false alarms are calculated from the (no damage) 

distribution, and if sensor degradation occurs the distribution shifts to the left (no 

damage-degradation) due to a change in the mean, or a spreading of the distribution 
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occurs due to a change in standard deviation (assuming a constant threshold), resulting 

in more false alarms. It also can be observed from Figure 13 the missed detection 

portion of the (damage) probability distribution is the unshaded portion to the right of 

𝑎�𝑡ℎ.  If sensor degradation occurs the distribution shifts to the left (damaged-

degradation) due to change in the mean of the distribution (again assuming a constant 

threshold detection threshold), resulting in less missed detections. For a static crack with 

a>ath , a spreading of the distributions in Figure 13 without a change in the mean could 

potentially result in an increase in both FA events and Missed Detections (given a static 

threshold) due to greater overlap between the damage and no damage distributions.  

However, when considered with cracks that transition from a<asafe to a larger value, the 

POD(asafe<a<ath) distributions lie to the right of the 𝑎�𝑡ℎ line, and it will be shown that 

this results in a drop in the number of Missed Detections.  If a moving threshold is 

considered, the threshold will need to move to the left with the mean of the POD(ath) 

distribution in order to counter the effect of increased FAs.  While FA probability in the 

(no damage-degradation) distribution will be reduced (the intended result), the Miss 

Detection probability in the (damaged-degradation) distribution will increase over the 

corresponding amount that would be seen with a constant threshold.  
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Figure 13: Graphical representation of the probabilities and Threshold detection 

Level with Degradation 

 

In this research, the effect of a crack growth on a legacy fighter will be simulated 

for each sortie up to the time when a mishap (catastrophic failure) occurs or the end of 

the design life of the aircraft is reached, whichever occurs first. For every sortie, 

corresponding to a set number of load cycles, SHM system detection will be simulated 

based on the current crack size and sensor performance (POD(a)) / degradation 

(POD(a)Degraded). For this analysis, the SHM system will be assumed to follow an SHM-

like detection trend using PZT sensors, whereby a larger crack will generate a smaller 

mean signal response. An event corresponding to one of the quadrants of the confusion 

matrix will occur at each sortie.   

• A true detection event will trigger an inspection and a repair action will 

occur;  
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• An FA event triggering an inspection can occur. For an FA event, 

subsequent NDI will identify the true crack size.  In this research, NDI 

performed post-flight is assumed to be perfect;  

• A Missed Detection event triggering the possibility of a mishap can 

occur.  A missed detection of a crack that is still less than some defined 

critical length will not cause a mishap; however, missed detection of a 

crack that grows to a length equal to or exceeding a critical length will 

result in a mishap;  

• Finally, a true negative event triggers no action, and the aircraft is 

assumed ready for the next sortie.  

Varying the sensor detection POD(a)Degraded due to degradation by varying the 

degradation factors where α is the degradation factor applied to the regression line 

intercept β0, γ is the degradation factor applied to the regression line slope β1, ψ is the 

degradation factor applied to the regression line standard deviation σ. For this research, a 

single critical crack location is modeled, but the methods described herein are extensible 

to multiple crack locations. 

Structural health monitoring model 

Modeling and simulation using MATLAB® was the method used in this 

research. Figure 23 shows an event flow diagram depicting SHM related events for a 

legacy aircraft equipped with SHM system. 

The simulation model starts at takeoff, depicted on the bottom left side of Figure 

14. To initialize the model, a threshold, 𝑎�𝑡ℎ, and safe crack length,  𝑎𝑠𝑎𝑓𝑒, are set and 
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kept for the lifetime of the aircraft. An uncertain initial flaw size is used to initialize the 

crack growth model based on the Paris model discussed previously (Paris and Erdogan, 

1963). After takeoff, the model generates a probability distribution for the crack length 

in that specific sortie based on the growth model and the number of accumulated flight 

hours in service or since previous crack repair.  

 

 

Figure 14: Flow diagram for SHM equipped aircraft 
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It is shown in Figure 15 that every run has a different 𝑎0 and growth rate 

(corresponding to variation in loads, ∆δ) causing the crack to propagate differently after 

each replacement or repair. Also a representation of 𝑎𝑠𝑎𝑓𝑒 , the minimum crack 

considered to be significant for SHM monitoring, is shown on the figure. Detected 

cracks of length smaller than 𝑎𝑠𝑎𝑓𝑒 are not repaired.  The figure also shows 𝑎𝑡ℎ, a crack 

size having an associated SHM response designated as the threshold for detection, 𝑎�𝑡ℎ. 

The parameters 𝑎𝑠𝑎𝑓𝑒 and  𝑎𝑡ℎ were set at 5% and 10% of 𝑎𝑐𝑟 respectively for this 

research, but earlier research explored variations of 𝑎𝑠𝑎𝑓𝑒 and  𝑎𝑡ℎ with respect to acr  

(Albinali and Jacques, 2014).  
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Figure 15: Fatigue crack growth simulation results for 10 runs 

 

At each sortie, a Monte Carlo draw is initiated simulating SHM system detection. 

If the system response signal 𝑎� is greater than 𝑎�𝑡ℎ no SHM detection occurred. The 

model will check if the crack length 𝑎 is greater than the critical crack length, 𝑎𝑐𝑟. If that 

is true the model will declare a catastrophic structure failure leading to an aircraft mishap. 

Otherwise the aircraft will land. If no catastrophic failure occurs, the model will check if 

𝑎 is greater than 𝑎𝑠𝑎𝑓𝑒, and if that is true a missed detection event will be recorded. Note 

that while missed detections are recorded in the simulation for later analysis, the SHM 



66 

 

system has no knowledge that a missed detection has occurred. If the aircraft reached its 

maximum life the simulation run for this aircraft will end and a new simulation run will 

start; otherwise, the model will propagate the crack length and degrade the SHM sensors 

by the amount simulated for one sortie and takeoff again. For any sortie, if 𝑎 �  is less than 

𝑎�𝑡ℎ, SHM detection occurs and the sortie will be aborted. An inspection will occur and if 

𝑎 is greater than 𝑎𝑠𝑎𝑓𝑒, a true detection event will be recorded. The crack length will be 

reset simulating a repair or a replacement of a structural component and the aircraft will 

take off again. If 𝑎 is less than 𝑎𝑠𝑎𝑓𝑒, a FA event will be recorded, the crack 𝑎 will be 

propagated, SHM sensors will be degraded, and the aircraft will take off again. If the 

number of FA events reach a maximum number identified FAmax between SHM 

scheduled maintenance intervals, the crack 𝑎 will be propagated, SHM sensors will be 

replaced resetting the POD(a)Degraded, and the aircraft will take off again. This will 

continue until the end of design life or catastrophic failure of the aircraft. For a given set 

of α, γ and ψ, 100 simulation runs will be performed, each one having a randomly 

selected initial flaw size and growth rate parameter. After that a different set of α, γ and ψ 

will be used so trade space analysis on the affect of SHM sensor degradation and crack 

length on events can be performed.  

Parameter Values and Recorded Events 

The main simulation routine tallies several different events for the tradespace 

analysis. The number of FA events and Miss Detection events are recorded for different 

sets of α, γ and ψ. For each combination of α, γ and ψ, 100 simulation runs will 
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conducted and the average FA and Miss Detection events will be calculated. The results 

will be displayed and discussed in the following section. 

Results and Discussion 

Fixed detection threshold 

Figure 16 displays the effect of degradation in the intercept, slope and standard 

deviation on the average number of Miss Detection events. Every point on the graph 

represents one life of an aircraft simulated by 100 iterations. It is observed from Figure 

16 that as the degradation factors α, γ and ψ are increased a significant drop in the 

number of Miss Detection events is noticed. The greater the degradation of α, γ and ψ, 

the lower the number of Miss Detection events recorded. While fewer missed detections 

is a desirable outcome, this is at the expense of a significant increase in the number of 

FA events.  Figure 17 displays the effect of degradation in the intercept, slope and 

standard deviation on the average number of FA events. Again, every point on the graph 

represents one life of an aircraft simulated by 100 iterations. It is observed from Figure 

17 that as the degradation factors α, γ and ψ are increased a significant increase in the 

number of Miss Detection events is noticed. The greater α, γ and ψ percentage the 

greater the number of FA events recorded. We notice the degradation in standard 

deviation does not show a significant increase in FA events for the ranges shown; 

however, Kuhn’s (2009) experimental data showed that degradation could cause up to 

400% degradation in the standard deviation. This was implemented in the simulation 

and showed an average of 50 FA events at 400% degradation in the standard deviation. 

Confidence intervals of 95% are shown on all figures.  
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Figure 16: Degradation in the Intercept, Slope and Standard Deviation vs. Average 

number of Miss Detection Events 

 

 

Figure 17: Degradation in the Intercept, Slope and Standard Deviation vs. Average 

number of FA Events 
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Figure 18 displays the effect of degradation in the intercept and standard 

deviation while keeping the slope constant (non-degraded) to see the effect of combined 

factors on the average number of Miss Detection events. From Figure 18 we observe 

that as the degradation factors α and ψ are increased a significant drop in the number of 

Miss Detection events is noticed, and combining both factors causes an even greater 

decrease in the Miss Detection events. Figure 19 displays the effect of degradation in the 

intercept and standard deviation while keeping the slope constant to see the effect of 

combined factors on the average number of FA events. From Figure 19 we observe that 

as the degradation factors α and ψ are increased a significant increase in the number of 

FA events is noticed where combining both factor will cause even greater increase in the 

FA events.  Considering that FA events trigger unnecessary and costly maintenance 

events, this increase in the FA rate would be unacceptable for fielded system. 

 

Figure 18: Degradation in Intercept and Standard Deviation vs. Average number of Miss 

Detection events 
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Figure 19: Degradation in Intercept and Standard Deviation vs. Average number 

of FA events 

 

Figure 20 displays the effect of degradation in the intercept and standard 

deviation while keeping the slope at a constant 30% degradation to see the effect of 

combined all factors on the average number of Miss Detection events. From Figure 20 

we observe that the same trend demonstrated in Figure 20 is evident, but combined 

degradation of all factors results in an even greater decrease in the Miss Detection 

events. The greater α and ψ percentage, the lower the number of Miss Detection events 

recorded. Figure 21 displays the effect of degradation in the intercept and standard 

deviation while keeping the slope also at constant 30% degradation to see the effect of 

combined factors on the average number of FA events. The trend from Figure 10 is 

repeated in Figure 21 but with a greater increase in FA events resulting from the 

combined degradation factors. 
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Figure 20: Degradation in Intercept, Standard Deviation and Slope at 30% Degradation 

vs. Average number of Miss Detection events 

 

 

Figure 21: Degradation in Intercept, Standard Deviation and Slope at 30% Degradation 

vs. Average number of FA events 
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Setting 𝑎𝑠𝑎𝑓𝑒 to 5% of 𝑎𝑐𝑟 and 𝑎𝑡ℎ to 10% 𝑎𝑐𝑟 did not result in any simulated 

catastrophic failure leading to loss of aircraft in this study. This is true for all simulated 

events with varying threshold and varying degradation factors effect. Recall that a 

Missed Detection event does not typically result in a catastrophic failure because the 

SHM system continues to have opportunities for detection for each sortie.  As long as 

the crack growth rate is sufficiently slow it will typically get detected during a later 

sortie.  Figure 22 represents degradation in the slope effect versus average crack length 

detected after a Miss Detection event. The crack detected after miss detection is 

acceptably small relative to the critical crack length. Effect of setting different 𝑎𝑠𝑎𝑓𝑒 and 

𝑎𝑡ℎ values was demonstrated in a previous study (Albinali and Jacques, 2014). 
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Figure 22: Degradation in the Slope vs. Average crack length after a Miss 

Detection event 

 

Varying detection threshold 

Figures 23 and 24 display the effect of degradation in the intercept to observe the 

effect of a variable threshold on the SHM system performance. From Figure 23 we 

observe that as the degradation factor α is increased, a significant increase in the number 

of FA events occurs for the constant threshold case as shown before. Varying the 

threshold according to assumed degradation models serves to stem the growth of FA 

events, thus avoiding the unnecessary and costly maintenance events.  Even for the case 

of a variable threshold, random error associated with the assumed intercept degradation 

factor while the number of FA events is higher than the ideal case in which the intercept 

degradation factor is known, that FA event growth is still halted at a far lower value than 
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that experienced by the system with a constant threshold which continues to grow for 

higher values of the intercept degradation factor.  

  

Figure 23: Degradation in the Intercept vs. Average FA events for threshold being 

constant, varying and varying with random degrading Slop factor 

 

From Figure 24 we observe that as the intercept degradation factor α is increased 

a significant drop in the number of Miss Detection events occurs for the constant 

threshold case as shown previously. If the threshold is varied a relatively constant 

number of Miss Detection events are recoded. This is a result of the constant drop in 

mean of the regression line in Figure 13 and moving the threshold to maintain a 50% 

detection level based on assumed degradation levels. If the threshold is varied but the 

assumed intercept degradation factor has random error associated with it, a lower 

number of Miss Detection events are recorded, but with a cost of more FA events as 

discussed previously.  
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Figure 24: Degradation in the Intercept vs. Average Miss Detection events for threshold 

being constant, varying and varying with random degrading Slope factor 

 

Figures 25 and 26 show the benefit of a variable detection threshold in the 

presence of degradation in the slope of the POD curve. From Figure 25 we observe that 

as the degradation factor γ is increased, a significant increase in the number of FA 

events occurs for the constant threshold case, again as shown previously. As in the case 

for the degrading intercept factor, a variable threshold serves to restrain the growth in 

FA events to a manageable case, even when there is random error associated with the 

assumed degradation factor.  
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Figure 25: Degradation in the Slope vs. Average FA events for threshold being constant, 

varying and varying with random degrading Slope factor 

 

From Figure 26 we observe that as the degradation factor α is increased a 

significant drop in the number of Miss Detection occurs for the constant threshold case, 

as shown previously. With a variable threshold there is a proportional drop in the 

number of Miss Detection events as the slope is degraded. This is a result of the 

proportional drop in mean of the regression line in Figure 13 and moving the threshold 

to maintain a 50% detection level. If the threshold is varying with random error 

associated with the assumed slope degradation factor it is observed that lower 

proportional Miss Detection events are recorded.  
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Figure 26: Degradation in the Slope vs. Average Miss Detection events for threshold 

being constant, varying and varying with random degrading Slope factor 

 

Figures 27 and 28 show the impact on SHM performance for the cases of known 

and uncertain degradation in the standard deviation of the POD curve. In this case, no 

movement in the threshold occurs because the mean of the associated distribution is 

stationary. From Figure 27 we observe that the known degradation factor ψ results in a 

significant increase in the number of FA events as shown before. If the standard 

deviation is increased with a random degradation factor it is observed that a higher 

number of FA events are recorded. The increasing spread of the POD distribution for 

cracks smaller than the asafe will cause a greater proportion of that distribution to fall 

below 𝑎�𝑡ℎ, resulting in more FA events. From Figure 28 we observe that as the 

degradation factor ψ increases, a significant drop in the number of Miss Detection 

events is recorded. To understand this trend, one needs to consider the distribution for 

POD(asafe<a<ath).  For a piezo-like sensor this distribution is centered on an 𝑎� > 𝑎�𝑡ℎ, 



78 

 

but the spreading of this distribution will cause a greater proportion to fall below 𝑎�𝑡ℎ .  

This represents correctly detected cracks; an increase in the proportion of correctly 

detected cracks (for a given crack size) can only occur if there is a complementary 

reduction in Missed Detections.  If the standard deviation is increased with a random 

degradation factor it is observed that lower Miss Detection events are recorded. This is 

due to the uncertainty in the standard deviation degradation factor.  As in the prior 

degradation cases, one notes that uncertainty in the standard deviation degradation 

parameter adversely affects the FA rate, but has a positive effect on Missed Detections 

(lower numbers). 

 

Figure 27: Degradation in the Standard Deviation vs. Average FA events for threshold 

being constant and varying 
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Figure 28: Degradation in the Standard Deviation vs. Average Miss Detection events for 

threshold being constant and varying 

 

Conclusions and recommendations 

Although installing an SHM system with a certain expected performance might 

produce expected cost savings, better operational readiness and improved safety, the 

SHM system degradation will be a concern. Any system installed on an aircraft is likely 

to degrade with operation. Systems installed on aircraft typically require maintenance 

and inspection schedules to ensure continued acceptable operation. The same is true for 

the SHM system. This work studied the affect of degradation on SHM performance 

parameters on the FA and Miss Detection events an aircraft might experience The 

tradespace analysis approach described herein shows how SHM sensor degradation 

factors α and γ can affect the number of FA and Missed Detections events that could 

occur over the expected life of an aircraft. With increased degradation while keeping a 

constant threshold a high number of false alarms will result, with a subsequent increase 
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in maintenance events and cost. On the other hand if the threshold is varied to overcome 

the degradation effect, lower FA events will occur with an increase in Miss Detection 

events. Further, varying the threshold with a random degradation factor lowers false 

alarms but less effective that the previous case. Also, the standard deviation degradation 

factor ψ can affect the number of FA and Missed Detections events that could occur 

over the expected life of an aircraft. With increased degradation while keeping a 

constant threshold a high number of false alarms will result, with a subsequent increase 

in maintenance events and cost. Further, varying the threshold with a random 

degradation factor increases false alarms but reduces Miss Detection events. With safety 

of flight as a primary consideration, the SHM system sensor parameters 𝑎𝑠𝑎𝑓𝑒, 𝑎�𝑡ℎ and 

degradation parameters α, γ and ψ can be adjusted to reduce the probability of mishap 

events to an acceptably low level while also keeping FA rates, and related maintenance 

costs, at an acceptable level while mitigating the degradation effects.  
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V. Conclusions and Recommendations 

Conclusions of Research 

There are a number of important conclusions that arose as a result of this research 

topic. The key conclusions can be summarized as follows: 

• Setting the SHM system design parameters very conservatively (closer to 

safe crack levels) increases detection but causes a high number of FA 

events; 

• Setting the SHM system threshold higher to tolerate a greater crack length 

reduces FA events but increases the number of Miss Detection events; 

• As cracks propagate to a greater length it was observed that Miss 

Detection events can lead to catastrophic failures; 

• Degradation in SHM PZT-Like sensors (POD mean) while keeping a 

constant threshold will result in a high number of false alarms, with a 

subsequent increase in maintenance events and cost; 

• If the threshold is varied to overcome degradation effects, lower numbers 

of FA events will occur with a concurrent increase in Miss Detection 

events; 

• Varying the threshold in the presence of random degradation factor lowers 

false alarms as compared to the constant threshold case, but less 

effectively than would be achieved with perfect knowledge of the 

degradation factors; 
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• The standard deviation degradation factor can affect the number of FA and 

Missed Detections events that could occur over the expected life of an 

aircraft. With increased degradation a high number of false alarms will 

result, with a subsequent increase in maintenance events and cost;  

• Varying the threshold in the presence of a random degradation factor  

associated with the standard deviation causes a greater increase in false 

alarms but a reduction in Miss Detection events is observed. 

 

Significance of research 

This research provided a life cycle analysis for a legacy aircraft equipped with 

SHM system with expected events (FA, Miss Detections) that could impact the life cycle 

and cost-benefit analysis. This was accomplished by combining the method used in MIL-

HDBK-1823 and Paris’s model and integrating it into a life cycle model reflecting 

changing crack size, with detection and sensor degradation in every flight sortie until the 

end of the life of the aircraft. This enables users to estimate the frequency of event 

occurrences and the costs associated with these events, thus contributing to a more 

accurate life cycle cost (LCC) basis for an aircraft equipped with an SHM system. 

This research developed a decision support model to explore the tradespace 

associated with implementation of an SHM system on aging aircraft. This model was able 

to capture representative crack propagation with respect to accumulated flight hours, and 

it captured representative performance of SHM sensors as influenced by SHM detection 

thresholds and acceptable crack lengths.  The model provided the capability for system 

sensor parameters to be adjusted to reduce the probability of mishap events to an 
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acceptably low level while also keeping FA rates, and related maintenance costs, at an 

acceptable level. This is significant for system design requirement.  The model provided 

the capability to capture representative changes in detection of SHM sensors due to 

degradation as a result of accumulated flight hours.  Representative maintenance events 

(both scheduled and unscheduled) and aircraft unavailability encountered due to 

structural or sensor maintenance (or replacement of the SHM system) can also be 

captured from the model. This will provide a better basis for a LCC estimate as sensor 

degradation and SHM system unscheduled maintenance is taken into consideration. 

The model also investigated the utility and effect of employing a variable 

threshold for countering the effect of degrading SHM sensors. This resulted in better 

SHM performance when compared to the static threshold case (significantly lower 

numbers of FA events), while maintaining levels of Miss Detection within acceptable 

limits. 

Recommendations for Future Research 

With respect for future tasks, there are a number of tasks that could be 

investigated. For this research, a single critical crack location is modeled, but the methods 

described herein are extensible to multiple crack locations, and future work is 

recommended to extend the model to accommodate them. Further, this method 

investigated damage in metallic structures, and has not been adapted for damage 

detection in composite panels where the extent of the damage is an area (compared to 

crack length). In order to adapt the model for modeling damage detection in composite 

structures, an analytic model for sensors capable of detecting composite damage will be 



84 

 

required.  As long as experimental data can show and reflect a relationship between 

existing damage characteristics/severity and signal response the SHM system model 

could be extended to include this type of damage detection. It is recommended that future 

work extend the model to investigate damage in composite structures.   

While cost drivers such as maintenance and/or repair events were captured in the 

current model, a true LCC analysis was not performed.  Representative cost/event data 

could be used with the post processed data from the existing model to perform a cost-

benefit analysis associated with monitoring aircraft structural hot spots.   

Finally, a longer term goal should be to consider structural health monitoring 

within the larger scope of integrated system health monitoring and condition based 

maintenance.  This will significantly increase the scope of the model, but many of the 

lower level sub-models associated with specific monitoring types/locations and/or the 

maintenance and supply chain are maturing and may be available for integration into the 

larger model. 
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Appendix 

Model Inputs and Outputs  

Table 1 Lists model inputs and Table 2 List Model outputs. Some outputs like 

the average unscheduled maintenance events can be used in the future once a cost and 

time required by these events is available. This will allow the model to have a better 

LCC estimates.  

Table 1. SHM Model Inputs 
Description Value 

𝑎𝑐𝑟 = critical crack length at which failure occurs 4.744 mm 

𝑎0 = initial flaw size (crack length) 0.1778 mm 

𝛽1 = regression line slope 1.4195 

𝛽0 = regression line intercept 7.5271 

𝐶 = material constant 1.5e-10 

𝐾𝐼𝐶  = fracture toughness 53 𝑃𝑎√𝑚  
 

𝑚 = material constant 4.6 

𝑁  = number of load cycles 200,000 

𝜎  =standard deviation associated with probability of 𝑎� given 𝑎 0.38221 

Aircraft scheduled Maintenance 1000 Hrs 

Aircraft total life 8000 Hrs 
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SHM system scheduled Maintenance 2000Hrs 

Total Flight sorties 2000 

Single sortie 4 Hrs 

 

Table 2. SHM Model Outputs 
Description 

𝑎 = crack length at each sortie 

Average number of catastrophic failures leading to loss of aircraft 

Average number of True Detection events 

Average number of False Alarm events 

Average number of Miss detection events 

Average number of True Negative events 

Average crack length detected after a Miss Detection event 

Average number of aircraft unscheduled repairs 

Average number of aircraft unscheduled inspections 

Average number of SHM system unscheduled repairs/sensor replacement 
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The following is a conference paper titled (Integrated Health Monitoring for 

Aircraft-A Literature Review and Gap Analysis) presented to the Conference on Systems 

Engineering Research (CSER) 2011. It covers a detailed literature search of the 

Integrated Health Monitoring research area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

 

Integrated Health Monitoring For Aircraft – A Literature Review and Gap Analysis 

Salman A. Albinali 

Air Force Institute of Technology 
AFIT/ENV 

2950 Hobson Way 
WPAFB, OH 45433-7765 
(937) 255-6565, ext 6130 

 salman.albinali.bh@afit.edu 

David R. Jacques 

Air Force Institute of Technology 
AFIT/ENV 

2950 Hobson Way 
WPAFB, OH 45433-7765 
(937) 255-3636, ext 3329  

 
david.jacques@afit.edu 



93 

Abstract 

This paper is a literature review and gap analysis for Integrated Health Monitoring 

(IHM) systems focused on aircraft application. Some of the main challenges slowing the 

implementation of an IHM system are technology performance, implementation issues 

and a solid business case. False alarms that could be produced from this system can cause 

more maintenance than needed, and the large amount of data produced from monitoring 

needs improved statistical tools to clearly identify defects without false alarms. Durability 

and robustness are additional technology performance issues for an IHM system. Design 

of an IHM system should be part of a systems engineering framework that integrates 

health monitoring and maintenance with all other requirements for the system. In the near 

future an IHM system could be implemented on aging aircraft to monitor known failure 

modes. Longer term, the use of an IHM system on new aircraft could result in monitoring 

the full system in real time. Application of IHM to new military jets has started to appear, 

but implementation in aging aircraft is lagging far behind. The presentation of a solid 

business case for the IHM system is a great challenge and arguably is the main factor 

contributing to the slow implementation of this technology.  

 

Introduction 

IHM for aircraft is a research area that could lead to a major change in the way we 

manage the health of our fleet in the future. Relatively few IHM systems are in operation 

on aircraft today. A review and a gap analysis of some of the relevant IHM literature lead 

us to identify the current challenges facing the implementation of an IHM system.  Some 

of the main IHM system’s challenges are the technology performance, implementation 
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issues and a solid business case. The presentation of a solid business case for such a 

system is considered very important as this challenge has a great impact on the decision 

to implement an IHM on an operational aircraft. 

A perspective of the structural mechanics program of the Air Force Office of 

Scientific Research on structural health monitoring (SHM) and non-destructive 

evaluation (NDE) was presented by (Giurgiutiu, 2008). NDE and SHM have an essential 

role in the operational readiness and safety of the Air Force fleet. Considerable 

challenges face the operators and the maintainers due to aging aircrafts. NDE techniques 

have proven to be reliable in detecting damage during phase inspections due to their 

maturity. SHM has great potential due to its on board sensors and systems that provide 

structural health assessment on demand. In particular, the study indicated a desire to use 

SHM to provide remaining life prognosis and quantifying structural variability.  This 

study concludes that considerable applied and fundamental research is needed to develop, 

integrate and implement SHM technology. 

 

Technology Performance 

Much research in the field of IHM for aircraft has been motivated by the promise 

of increased performance, reduction of life cycle cost and increased availability. Yet we 

still have gaps that slow the implementation of IHM systems. Many believe that the 

current maturity level for IHM technology falls short of what is required for fielded 

implementation. In a research on SHM by (Derriso et al., 2007)  technical feasibility is 

described as facing three fundamental challenges: small-scale damage must be detected 
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in relatively large-scale structures, SHM systems must work in an unsupervised learning 

mode, and the SHM system must be robust and reliable.  

 

Reliability  

False alarms from an IHM system can cause more maintenance action than 

needed. A simulation model of a prognostics and health management (PHM) system used 

as an Autonomic Logistics System (ALS) for the Joint Strike Fighter (JSF) was 

developed and used by (Miller et al., 2007). Their simulation utilized a large number of 

commonly used flight line measures of performance for aircraft availability and mission 

effectiveness. Multivariate statistical analysis of these measures provided ways to analyze 

the positive impact of a PHM on aircraft sortie generation. On the other hand their 

analysis showed a great sensitivity to false alarms. This sensitivity implies that more 

research effort should be devoted to investigating and trying to minimize false alarms 

without significantly degrading detection performance. 

An experiment was conducted on a fast military jet by (Read et al., 2008) to try to 

test SHM in a near real-world application. A BAE Hawk jet carrying an experimental test 

pod with specimens containing crack initiators was used to test flight the effect of 

maneuvers on the SHM system detection capability and the possibility of detecting crack 

growth during flight. The conclusion was that this system was effective in detecting a 

crack and the growth of the crack during flight. They noted a very large number of 

spurious noise events/signals, but were able to avoid an associated large amount of false 

positive indications through the use of guard sensors surrounding the area of interest.  

Test points were obtained that spanned the entire flight envelope, to include 6g turns, 
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acoustic noise levels in excess of 135 decibels, and considerable electromagnetic 

interference. While providing significant flight test results, a shortcoming is the fact that 

the test specimen was not part of the actual aircraft structure.   

      Given the large amount of data produced from IHM, improved statistical tools 

to clearly identify defects are necessary. A synopsis review conducted by (Sohn and Los 

Alamos National Laboratory, 2004) identified a shortage of well developed tools and 

algorithms for statistical pattern recognition in IHM. Many damage detection methods try 

to identify damage by solving an inverse problem (predicting a condition based on a 

measured response), which requires the construction of analytical models. These models 

have uncertainty and need to be validated by experimental results, making this approach 

less attractive for some applications. Neural network approaches can be used to map the 

inverse relationship between the parameter of interest and the measured response. The 

main drawback for this approach is that a large amount of data is needed for the damaged 

and undamaged component and this is not always available. Statistical process control 

and hypothesis testing methods can be employed without the same level of effort 

developing analytical models, but these approaches tend to be limited to damage onset 

detection without knowledge of the failure condition triggering the onset.   

 

Durability and Robustness 

Many studies show degradation of IHM sensors over time due to static loads, 

cyclic loads, temperature and corrosion. Durability and robustness of a candidate IHM 

system must be characterized prior to any implementation decision.  An investigation into 

the effect of cyclic loads on sensor performance was conducted by (Kuhn, 2009). In this 
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research sensor degradation associated with cyclic strain was identified.  Experimental 

data was used to construct an analytic model of the sensor degradation. A probability of 

detection (POD) degradation model was also developed to show the effect of the 

degradation on the overall performance of an SHM system. In their experiment (Beard et 

al., 2005) found that environmental conditions such as temperature can affect the signal 

obtained from sensors. This research used calibration to compensate for temperature 

variation based on the structure and application. More research is needed to characterize 

fully the degradation due to environmental factors such as vibration, temperature and 

corrosion. 

 

Implementation Issues 

Design of an IHM system should be part of a system engineering framework that 

integrates health monitoring and maintenance with all other requirements for the aircraft. 

For a new aircraft design, this would begin with the conceptual design of the system and 

would affect decisions regarding operating conditions, levels of maintenance and 

inspection intervals, among others. Less extensive implementations are being proposed 

for aging aircraft. A framework for SHM system design was presented by (Malkin et al., 

2007) which could be applied to aging aircraft through hot spot monitoring. The initial 

step in their framework, understanding the structure, involves characterization of the 

materials, loads, stresses and strains, environment and interfaces.  The data needed to 

support an implementation decision for an SHM system can be obtained by focusing on 

the following points: benefits and drawbacks of the SHM system, requirements for the 

SHM system, available SHM technologies, detail design of the SHM systems, identifying 
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the SHM design that meet the requirements and the cost of the SHM system that meet the 

requirements. Although this framework was developed for hot spot monitoring it could 

be modified for other applications as mentioned by the study. 

      A research by (Millar, 2007) identifies barriers that have slowed acceptance 

and use of prognostics health management tools in military propulsion systems over the 

past two decades.  In particular, they note incomplete total life cycle systems engineering 

management (TLCSM) as a barrier to implementation. The US Department of Defence 

Acuisition Guidebook states in Section 4.1.3 TLCSM in Systems Engineering: “It is 

fundamental to systems engineering to take a total life cycle, total systems approach to 

system planning, development, and implementation.” It is also important to implement 

TLCSM not only on new systems but also on legacy systems currently operating to 

control the high maintenance cost as the systems continue to operate beyond their design 

life. This research describes up and down periods of development associated with engine 

condition monitoring. The up periods are triggered by the cost benefits that could be 

gained by successful monitoring, and the down periods occur when technology is not 

available for the monitoring system. This study concludes that the use of TLCSM through 

the systems engineering process is the right tool to close the gaps that are holding up 

large scale applications and implementation of IHM.  

      Advanced Integrated Vehicle Health Monitoring systems (IVHM) are 

expected to formulate a response based on the extent of the damage.  This is contrasted 

with pure monitoring systems that only report damage (Price et al., 2003). This study 

sub-divided the problem as follows: 
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• Detection of damage. Requires knowledge of the environment and 

anticipated damage modes;   

• Development of sensors will depend on the time required for the system 

to respond; 

• Characterization of damage. This may be accomplished during detection 

of damage or may require additional and/or different sensors; 

• Prioritization of the seriousness of damage.  Damage that can 

compromise the mission of the vehicle will obviously be given greater 

urgency; 

• Identification of the cause of the damage.  This may require an intelligent 

system populated by large numbers of sensors providing information on the 

vehicle as a whole;  

• Formulation of a response.  This could be an individual or sequence of 

actions, to include panic responses where appropriate;  

• Execution of a response. This could involve reconfiguration of the 

vehicle or restriction of operating conditions. 

 The integration process associated with both aging and new aircraft is considered 

a major weakness in the implementation of IHM.  In the near future an IHM system could 

be integrated on aging aircraft to monitor known failure modes. Aging aircraft face a 

challenge on how to integrate an IHM system with conditional based maintenance (CBM) 

because design choices will be limited by the existing system architecture. A number of 

integration issues were researched by (Buderath, 2004) and concluded the following. 

There should be a clear process for integration to ensure the right selection of an IHM 
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system, data analysis, and sensor location. Integration should be addressed to reach 

acceptance on all system levels. An integrated process is needed during the development 

phase of an IHM system to be able to fully integrate with CBM to meet safety concerns 

and reduce the costs associated with maintenance and repair actions.  

 

Business Case 

The presentation of a solid business case for the IHM system is a great challenge 

and arguably is the main factor contributing to the slow implementation of this 

technology. Factors that could help create a business case are the understanding of the 

customer needs and requirements and performing a credible cost and risk analysis (Perez 

et al., 2010). 

Quantifying cost reduction in the total life cycle of a system through use of IHM 

needs to be presented. Few research attempts to quantify the cost benefit of IHM are 

found in literature, and wide discrepancies can be noted in the cost savings estimates. In 

one study it is estimated that implementation of SHM on a commercial transport aircraft 

could result in a 30% to 40% reduction in maintenance requirements. This would result in 

a recovery of the initial implementation costs in only two to three years (Kent et al., 

2000).  Another research study (Schmidt et al., 2004) showed only a one percent 

reduction of the maintenance costs by using SHM systems on an AIRBUS aircraft; 

however, the authors noted the omission of consideration for increased availability due to 

reduced inspection times. Another finding of this study was a reduced fuselage panel 

weight by up to 15 percent using SHM. This impacts cost in many ways such as lower 

fuel consumption and longer operation range. Research on aging military aircraft showed 
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cost benefits of using an SHM on some hot spots of the structure of a tornado fighter, but 

suggests the implementation should be limited to hot spots where real payoff can be 

identified (Boller, 2001).  

A unique cost-benefit analysis for the allocation and cost justification of an 

Integrated System Health Management (ISHM) at the conceptual design level was 

presented by (Hoyle et al., Mehr, 2007). An optimization framework was used to 

determine the optimal allocation of ISHM to maximize profit. This was calculated using a 

profit function formulated using single attribute objectives as the product of system 

availability and revenue per unit availability minus the summation of costs associated 

with detection and risk. This framework also addressed the optimal detection/false alarm 

threshold and inspection interval, assuming the availability of parameters characterizing 

the sensor in terms of detection, false alarm rate and failure rate. When this framework 

was applied to an aerospace system it was shown that applying ISHM increased profit by 

11%, reduced cost by a factor of 2.4 and increased the inspection intervals by a factor of 

1.5. A useful extension of this work would involve modification and application for 

systems not driven by revenue generation, such as military aircraft, which can still benefit 

by reduction in the total life cycle cost (LCC).  

The number of sensors needs to be optimized to provide desired effectiveness 

within cost and weight constraints. A balance between detection sensitivity, false alarms 

and the number of sensors needs to be achieved. Many models are developed in the 

general area of structural monitoring. For example a Reliability-Based System 

Assessment was used by (Hosser et al., 2004) for monitoring buildings structures with 

sensors. This computer code consists of a data base module, a computational module and 
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a statistical module for the optimization of the assessment cycle. Another promising area 

for optimization is the use of genetic algorithms, which can be used for discrete value 

and/or non-convex solution spaces to determine the optimal number and location of 

sensors for damage locations (Boller, 2000).  

Another approach to quantify cost benefit was used by (Kapoor et al., 2008) using 

optimization and simulation of a maintenance phase with SHM technology applied to 

commercial aircraft. The effect of using SHM technologies to reduce maintenance 

downtime was presented. The concept of this approach was to identify the critical paths 

along the maintenance process. After a critical maintenance path was identified it was 

modified with an SHM alternative approach. After optimization and simulation a 

reduction factor of 6 for a critical path task was achieved, resulting in an increase of 100 

hrs of aircraft availability over the life cycle. This study indicates that cost benefit 

analysis for SHM should involve consideration of defined maintenance phases 

scheduling.  

Standardization of IHM systems across different platforms should help in 

reducing the ownership cost as well. In the automobile industry IHM has seen wider 

application than in the aircraft industry, as evidenced by systems like General Motor’s 

On-Star (You et al., 2005). These authors investigated remote diagnostics and 

maintenance systems and identified the cost reduction associated with standardization 

across different automobile models. 
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Conclusion 

IHM systems face many obstacles and gaps that have resulted in the slow 

implementation in real-world applications. These obstacles include technology 

performance, implementation issues and a solid business case that justifies the investment 

in an IHM system.  

A major technology performance issue is the reliability of an IHM system. False 

alarms that could be produced from this system can cause more maintenance than needed. 

More research should be devoted to investigating and trying to minimize false alarms 

without significantly degrading detection performance. The large amount of data 

produced from monitoring needs improved statistical tools to clearly identify defects. 

Current tools such as Numerical Modeling, Neural Networks and Analysis Hypotheses 

are available but have their disadvantages. Durability and robustness are additional 

technology performance issues for an IHM system. Many studies show degradation of 

IHM sensors over time due to static loads, cyclic loads, temperature and corrosion. 

Design of an IHM system should utilize a Systems Engineering framework that 

integrates health monitoring and maintenance with all other requirements for the system. 

For a new aircraft design, this would begin with the conceptual design of the system and 

would affect decisions regarding levels of maintenance and inspection intervals, among 

others. Less extensive implementations are likely appropriate for aging aircraft.  In the 

near future an IHM system could be implemented on aging aircraft to monitor known 

failure modes. Aging aircraft face a challenge on how to implement an IHM system for 

conditional based maintenance (CBM) because design choices will be limited by the 

existing system architecture. More research must be done before full integration of an 
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IHM system into CBM can be achieved. Longer term, the use of an IHM system on new 

aircraft could result in monitoring the full system in real time.  

The presentation of a solid business case for the IHM system is a great challenge 

and arguably is the main factor contributing to the slow implementation of this 

technology. Approaches and models to quantify the reduction in life cycle cost by using 

these systems is an important field of study. The number of sensors needs to be optimized 

to provide desired effectiveness within cost and weight constraints. Further, the health 

monitoring throughout the aircraft must be extensive enough to result in a lengthening of 

scheduled inspection intervals if it is to provide maintenance cost savings.  

Standardization of IHM systems across different platforms should help in reducing the 

ownership cost as well. The literature indicates that adoption of IHM in the commercial 

world is further along than in the military due to more aggressive cost saving measures. 

Application of IHM to new military jets has started to appear, but implementation in 

aging aircraft is lagging far behind. A solid business case for the aging military aircraft 

remains as an open area of investigation.        
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