
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2015

The Unified Behavior Framework for the
Simulation of Autonomous Agents
Daniel M. Roberson

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Artificial Intelligence and Robotics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Roberson, Daniel M., "The Unified Behavior Framework for the Simulation of Autonomous Agents" (2015). Theses and Dissertations.
55.
https://scholar.afit.edu/etd/55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277527556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/55?utm_source=scholar.afit.edu%2Fetd%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

THE UNIFIED BEHAVIOR FRAMEWORK FOR

THE SIMULATION OF AUTONOMOUS AGENTS

THESIS

Daniel M. Roberson, First Lieutenant, USAF

AFIT-ENG-MS-15-M-014

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-MS-15-M-014

THE UNIFIED BEHAVIOR FRAMEWORK FOR

THE SIMULATION OF AUTONOMOUS AGENTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Daniel M. Roberson, B.S.

First Lieutenant, USAF

March 2015

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-MS-15-M-014

THE UNIFIED BEHAVIOR FRAMEWORK FOR

THE SIMULATION OF AUTONOMOUS AGENTS

Daniel M. Roberson, B.S.

First Lieutenant, USAF

Committee Membership:

Douglas D. Hodson, PhD

Chair

Gilbert L. Peterson, PhD

Member

Maj Brian G. Woolley, PhD

Member

AFIT-ENG-MS-15-M-014
Abstract

Since the 1980s, researchers have designed a variety of robot control architectures

intending to imbue robots with some degree of autonomy. A recently developed

architecture, the Unified Behavior Framework (UBF), implements a variation of the

three-layer architecture with a reactive controller to rapidly make behavior decisions.

Additionally, the UBF utilizes software design patterns that promote the reuse of code and

free designers to dynamically switch between behavior paradigms. This paper explores

the application of the UBF to the simulation domain. By employing software engineering

principles to implement the UBF architecture within an open-source simulation framework,

we have extended the versatility of both. The consolidation of these frameworks assists

the designer in efficiently constructing simulations of one or more autonomous agents

that exhibit similar behaviors. A typical air-to-air engagement scenario between six

UBF agents controlling both friendly and enemy aircraft demonstrates the utility of the

UBF architecture as a flexible mechanism for reusing behavior code and rapidly creating

autonomous agents in simulation.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . vii

List of Acronyms . viii

I. Introduction . 1

1.1 Problem Statement . 1
1.2 Research Goal . 2
1.3 Thesis Overview . 2

II. Background . 3

2.1 Early Inroads in Autonomous Robots . 3
2.2 A Behavioral Perspective . 5
2.3 Three Layers of Autonomy . 7
2.4 The Commercial Gaming Industry’s Solution 9
2.5 The Unified Behavior Framework . 12
2.6 The Simulation Framework . 12
2.7 The Scenario Under Study . 15

2.7.1 Ingress . 16
2.7.2 Beyond Visual Range (BVR) Engagement 16
2.7.3 Within Visual Range (WVR) Engagement 16
2.7.4 Egress . 16

III. IEEE Conference Paper . 18

IV. Conclusion . 30

4.1 Controller Complexity . 30
4.2 UBF versus Behavior Trees . 32
4.3 Granularity of Behaviors . 32
4.4 Future Work . 33

4.4.1 Fusion Arbiter . 33
4.4.2 Sequencer . 34

v

Page

4.4.3 Addressing the Complexity . 34

Appendix: Implementation Code . 36

vi

List of Figures

Figure Page

2.1 A graphical depiction of the sense-plan-act (SPA) architecture as described by

Brooks and Gat [1, 2]. 4

2.2 A depiction of two of Braitenberg’s “Vehicles” which inspired the behavioral

perspective of autonomous robot control [3]. The vehicle on the left (Vehicle

a) is exhibiting fear of a light source, while the one on the right (Vehicle b)

exhibits love of the same. 6

2.3 A graphical depiction of reactive control architectures as described by Gat [2]. . 7

2.4 A graphical depiction of three layer architectures as described by Gat [2]. . . . 8

2.5 An example behavior tree implementing autonomous driving behavior (with

the aid of a GPS). Note that the nodes in the tree will be “ticked” from top to

bottom, implying that behaviors higher in the tree have higher priority. 10

2.6 A UML diagram of the Unified Behavior Framework (UBF) [4]. 13

2.7 A graphical depiction of the structure of the OpenEaagles simulation framework. 14

2.8 A birds-eye-view depiction of the sweep mission. 17

vii

List of Acronyms

Acronym Definition

OpenEaagles Open Extensible Architecture for the Analysis and Generation of
Linked Simulations

UBF Unified Behavior Framework

SPA sense-plan-act

WTA winner takes all

BVR beyond visual range

WVR within visual range

IEEE Institute of Electrical and Electronics Engineers

AI artificial intelligence

USAF United States Air Force

CRA Charles River Analytics

UML Unified Modeling Language

HOTAS hands on throttle-and-stick

IFF Identification Friend or Foe

viii

THE UNIFIED BEHAVIOR FRAMEWORK FOR

THE SIMULATION OF AUTONOMOUS AGENTS

I. Introduction

The development of autonomy has been a goal, if not the primary goal, of the artificial

intelligence (AI) research community since its inception. Robots are possibly the purest

demonstration of true autonomous agents, as they must navigate the dynamic environment

that is the real world using simple (by comparison to human capabilities) sensors and

actuators. While robots are indeed a valuable metric for evaluating our progress towards the

goal of complete autonomy, there is room for research by utilizing methods like simulation

and modeling that consume less time and fewer monetary resources. A recently developed

reactive control framework, known as the Unified Behavior Framework, has proven to be

an effective method for autonomous robot agents. By implementing this framework within

an open-source simulation framework, known as OpenEaagles, autonomous agents could

be more easily designed, developed, tested and understood.

1.1 Problem Statement

Autonomy in and of itself is a difficult problem facing the AI research community.

Instead of focusing on developing costly and complicated robotic platforms, effort could be

focused on tackling these problems in simulation before investing in the hardware needed

for robot development. The value of simulation for autonomy research is indispensable;

however, it would be futile if every different architecture required it’s own made-from-

scratch code base. The effort involved in building an autonomous agent architecture from

the ground up quickly expands beyond reasonable, especially when such a large number

1

of architectures is available for use. Software engineering principles can enable dynamic

switching between robot architectures, and can ensure rapid design and development of

autonomous agents with radically different characteristics and capabilities.

1.2 Research Goal

This research attempts to attain a degree of autonomy in AI agents inserted into a

military context. The use of simulation to conserve resources is critical to furthering the

development of robot control architectures. Finally, the application of modern software

engineering principles is necessary to promote code reuse and ensure design flexibility.

1.3 Thesis Overview

This thesis presents a brief introduction in Chapter 1, outlining the problem and goal

of this research. In Chapter 2, we explore the history of autonomous robot architectures,

covering early research all the way to current methods for implementing autonomy.

Chapter 3 includes a short paper that presents the bulk of this research in a condensed

format, ready for publishing. Finally, Chapter 4 discusses the results of this research and

the potential for future work in this research area.

2

II. Background

Autonomy is likely the biggest thrust of the AI community’s research since its

inception. The pursuit of an agent capable of thinking, acting, solving problems, and

behaving independent of human input is a main driver in this research. Many approaches to

this problem have been tried, not the least of which being the ambitious goal of constructing

a robot capable of acting alone to complete a task. Robots, in some sense, represent the

ultimate goal of autonomy, being more than just a computer program that can perform tasks

independently, but an actual physical entity that is capable of living and acting in the real

world. Seeing this goal of robotic autonomy come to fruition is likely years in the future;

however, the brief history of robotics has already shown rapid and unimaginable progress.

2.1 Early Inroads in Autonomous Robots

The early 1980s began the AI research community’s headfirst dive into the problem

of autonomous robots. Initially, it was natural to break autonomy down into a series of

chronological steps. By trying to understand how humans solve problems, and applying

that to the robot control program, we could potentially imbue the robot with human-like

thought patterns. Of course, it is never that simple. The chronological understanding of a

human’s interaction with the world is deceivingly simple. First, we receive data about the

world through our sensory organs, and we interpret this data and form our understanding of

our surrounding environment. Then, we can start to make decisions based on that “world

model,” planning and choosing how we think we should act to maneuver through our

environment towards our goal. Finally, we can actually use our muscles and our motor

organs to propel ourselves through the environment, proceeding towards our goal.

Clearly, this is a massively oversimplified version of how we humans actually operate.

Simple sensory processes are almost beyond comprehension, when one considers the

3

complexity of our most used anatomical “sensors,” our eyes. We know, based on optical

physics, that the retina in the back of the human eye actually receives an inverted (upside-

down) image of the world around us. In the extremely short amount of time it takes for that

image to be interpreted and understood by us, our brains have managed to revert the image

to its true orientation. Not only that, but our brain has also merged the two separate images

from each of our eyes to form the visual scene that allows us to see the world around us

[5].

In light of how truly complicated these tasks really are - tasks we perform without

thinking - it follows that implementing even basic functionality on robots is exceedingly

difficult. The initial approach, a chronological understanding of problem-solving, proved

to be effectively useless in getting robots to perform autonomously. The aptly and

humorously-named robot, “Shakey,” demonstrates the early issues with the chronological

view of autonomy [6]. Shakey implemented this approach, later to be called the sense-

plan-act (SPA) architecture, and the problems with it were quickly revealed by Shakey’s,

for lack of a better term, shakiness when navigating the real world [2]. The SPA architecture

is depicted in Figure 2.1.

Figure 2.1: A graphical depiction of the SPA architecture as described by Brooks and Gat

[1, 2].

4

A solution was needed, or perhaps a new way of thinking about the problem. It was

quickly obvious that in the dynamic environment that is the world, a robot does not have

much time to spend reevaluating sensor data and reconstructing a world model. While it

builds a model, the world around it is changing faster than it can cope.

2.2 A Behavioral Perspective

In a psychology thought experiment he called “Vehicles”, Braitenberg challenged

the AI community’s sense-plan-act understanding of autonomy [3]. While trying to

demonstrate how seemingly complex behaviors could be caused by simple internal

mechanisms, Braitenberg inadvertently presented a solution to the autonomy problem.

Instead of breaking the problem down sequentially, it was possible that a behavioral

understanding was more appropriate. Figure 2.2 illustrates two of Braitenberg’s simple

robots that exhibit what we might refer to as fear and love, respectively, of a light source.

The first to understand and implement a behavioral solution was Brooks, who gave us

the subsumption architecture. By layering behaviors, Brooks was able to create a robot that

responded instinctively to certain conditions. These low-level behaviors, or instincts, were

achieved by tightly coupling the robot’s sensors to the robot’s actuators, as Braitenberg

described. Thereby, obstacle avoidance, for instance, did not require for a complete world

model to be built; instead, a simple behavior was developed that stopped the robot’s forward

motion when an obstacle was detected nearby. This simple behavior was decidedly quicker

than robots built on SPA architectures. Brooks built more complex behaviors on top of

the lower-level “instincts,” so that the robot could explore by wandering throughout its

environment. However, the lowest-level behaviors ran regardless of higher-level behaviors.

In this way, the higher-level planning and decision-making behaviors, which required a fair

amount of time to execute, could do so without fear of the robot crashing into a wall while

they produced a plan.

5

Figure 2.2: A depiction of two of Braitenberg’s “Vehicles” which inspired the behavioral

perspective of autonomous robot control [3]. The vehicle on the left (Vehicle a) is

exhibiting fear of a light source, while the one on the right (Vehicle b) exhibits love of

the same.

This concept, tightly coupling sensors to actuators, came to be known as “reactive

control,” or “reactive planning” [2]. This concept is illustrated in Figure 2.3.

Though subsumption is now well-recognized as the first approach that used a reactive

control behavioral architecture, it was not without its own issues. Gat describes these

complications with subsumption; namely, its difficulty with managing complexity due

to insufficient modularity, but additionally, it was an inaccurate representation of human

6

Figure 2.3: A graphical depiction of reactive control architectures as described by Gat [2].

intelligence. Multiple architectures emerged to combat these problems, and many of them

followed a structure that Gat described as the three layer architecture [2].

2.3 Three Layers of Autonomy

The three layer architecture, as expected, is constructed with three layers of execution.

Each layer contains different elements pertaining to the robot’s behavior. Figure 2.4 depicts

the arrangement of the three layer architecture.

The lowest layer, the controller, composes the reactive control element of tightly

coupled sensors and actuators. Therefore, the controller usually retains a very limited

amount of state, and sometimes none. Gat recommends that if internal state is used, “it

should expire after some constant-bounded time” [2].

Above the controller layer is the sequencer. The sequencer is able to retain some

state, and therefore addresses the inability of basic reactive control architectures to switch

7

Figure 2.4: A graphical depiction of three layer architectures as described by Gat [2].

between goals or tasks. By recognizing characteristics of the state, the sequencer may be

able to switch the behavior of the controller based on the goal being pursued or task being

performed. However, because the sequencer is separate from the controller, it does not

interfere with low level behaviors’ execution until it switches the current behavior scheme.

For this reason, the three layer architecture avoids the bottlenecking problems of the SPA

architecture.

At the highest layer, the deliberator performs time-intensive, high-latency tasks for

the robot. Usually, this involves planning activities, but could also involve expensive

algorithms like vision-processing or other polynomial-time algorithms. Running on

separate threads, the deliberator, again, does not interfere with the operation of the

sequencer or controller. Depending on the architecture, however, Gat notes that the

deliberator can either be authoritative or subject to the sequencer. In some architectures,

the deliberator produces plans and sends them to the sequencer for execution. On the other

hand, some deliberators receive requests from the sequencer, executing its threads only

when asked [2].

8

2.4 The Commercial Gaming Industry’s Solution

Splitting up the different execution elements of a robot’s control architecture into three

layers solved many of the problems of the earlier SPA and reactive control architectures.

However, some of these execution issues differ from the autonomy problem in commercial

games. Whereas a robot has to worry about latency in order to rapidly interpret information

from the sensors and apply outputs to the actuators, commercial games’ non-player

characters (NPCs) have direct access to the world model, without needing to interpret

sensor data. Also, NPCs don’t need actuators or motors, and therefore short scripts will

effect actions onto the NPCs in the game. Without this bottleneck, which the robot

community solved with reactive control, the commercial gaming industry was able to

innovate a different solution to the autonomy problem.

Isla, in 2005, introduced one of the gaming industry’s recent methods for implement-

ing autonomous NPCs, which he called “behavior trees.” He restates the autonomy prob-

lem succinctly: “A ‘common sense’ AI is a long-standing goal for much of the research AI

community” [7]. Though some of the intricacies of autonomy are different in commercial

games, clearly, the problem is the same.

Behavior trees are a decision-making structure that allow NPCs to execute a wide

variety of behaviors simply and quickly. Isla also recognizes that “we are concerned...with

how easy it is for the users of the AI system - the level designers - to make use of

the system to put together a dramatic and fun experience for the player” [7]. The ease

with which behavior trees can be understood allows for designers to quickly build and

populate complicated behavior trees that respond realistically and rapidly within the game

environment.

The structure of behavior trees technically is a hierarchal finite state machine

implemented as a directed acyclic graph. In this way, though nodes in the tree may

implement the same behaviors, they must not create cycles in the tree’s traversal. Behavior

9

Figure 2.5: An example behavior tree implementing autonomous driving behavior (with the

aid of a GPS). Note that the nodes in the tree will be “ticked” from top to bottom, implying

that behaviors higher in the tree have higher priority.

trees are traversed depth-first, and each time a traversal is initiated, it is termed as “ticking”

the tree [8]. As the tree is traversed, the leaf or external nodes return values indicating

success or failure. Or in the case of a script being run to complete an action, they could

return a running condition.

These external nodes can either be action or condition node types. The action node

type is the only element of the tree structure where scripts are run that affect the NPC’s

activity. Therefore, action nodes return success or failure when an action has completed,

but while a behavior script is in progress, the action node will return running.

10

Condition nodes are used within the tree structure to direct the traversal of the tree.

They typically contain some sort of test condition, and depending on how that condition

evaluates, they will return success or failure. Unlike action nodes, condition nodes cannot

return running.

To facilitate the decision-making within the tree, internal nodes (with at least one child

node) may be one of several types. Marzinotto defines them as sequence, selector, parallel,

or decorator nodes. These node types help the designer implement the pattern of traversal

through the tree.

Sequence nodes are used to tick a sequence of children nodes in order, sometimes

looping over the same sequence repetitiously. When a child of a sequence node returns

failure or running, the sequence node stops ticking and returns failure or running,

respectively. As long as the children nodes return success, however, the sequence node

will continue to tick its children in order.

Selector nodes tick their children in order, like sequence nodes, however they are

waiting for one child to return success or running, rather than failure. In this way, they

select one of the children. The order of the selector node’s children can be considered the

order of priority (high to low), as once a node is selected, none of the later children will be

ticked.

Parallel nodes tick every one of their children, regardless of return condition. However,

as the children nodes return, the parallel node records each of the return values. After

all children have been ticked, parallel nodes use the return value information to decide

whether to return success, running, or failure, typically by evaluating certain thresholds.

For instance, if a parallel node had five children, it might return success if at least 3 returned

success, it might return failure if at least 3 returned failure, but it would return running

otherwise.

11

Decorator nodes are allowed only one child node. The decorator node records internal

variables, which are evaluated every time the decorator node is ticked. If the internal

conditions over those variables are met, the decorator node ticks its child node and returns

based on an internal function.

Figure 2.5 shows an example behavior tree, utilizing all different types of nodes

mentioned above, and implements autonomous car-driving behavior.

Clearly, the ease with which behavior trees can be understood facilitates a quick and

seamless design process, especially in commercial games where sensors and actuators do

not create latency in complex behaviors. Therefore, behavior trees are a valuable construct

to understand, especially when comparing them to the autonomous robot architectures

mentioned in sections 2.1- 2.3.

2.5 The Unified Behavior Framework

Meanwhile, in the autonomous robot research domain, Woolley created a framework

which centered around the reactive control concept, pairing the speed of reactive control

with the modularity and extensibility of the composite and strategy design patterns. The

incorporation of these software engineering principles promoted code reuse and enabled the

rapid design of behaviors. The framework was coined Unified Behavior Framework (UBF),

highlighting its ability to dynamically switch between behavioral architectures, thereby

unifying them under one framework [4]. A Unified Modeling Language (UML) diagram

of the UBF is shown in Figure 2.6.

The paper presented in chapter 3 discusses both the history and the implementation of

UBF as a part of this research.

2.6 The Simulation Framework

As this research is hinged on demonstrating the UBF’s potential for simulation

applications, a simulation framework was necessary. A worthy framework was found in

12

Figure 2.6: A UML diagram of the Unified Behavior Framework (UBF) [4].

the open-source domain, referred to as Open Extensible Architecture for the Analysis and

Generation of Linked Simulations (OpenEaagles). This framework “is a simulation design

pattern that provides a structure for constructing simulation applications.” By following

modern software engineering principles, OpenEaagles “aids the design of robust, scalable,

virtual, constructive, stand-alone, and distributed simulation applications” [9]. Because

OpenEaagles is oriented towards aerial scenario simulation (it originated in the Simulation

and Analysis Facility for the United States Air Force (USAF)), it was useful to give military

13

context to our implementation. Figure 2.7 illustrates the architecture of a simulation

application built using OpenEaagles.

Station SimulationControls
& Displays

Player

Player

Player List

Player

Gimbals/Antennas

R/F Signature

Sensors

Stores/Weapons

Nav Systems

Routes

(Auto) Pilot Model

Dynamics Model

JSBSim

Onboard Computers

Datalinks

Radios

DIS

HLA

Interoperability
Networks

…

Real-time
functions

Ownship Ptr

Controls &
Displays
Interface

Player

Simulation Time

Cycles,Frames,
Phases

Environments

Player

Displays

I/O Devices

OTW

Indicates
Multiple Systems

Figure 2.7: A graphical depiction of the structure of the OpenEaagles simulation

framework.

The simulation framework is written in C++ due to the performance gains afforded

by C, along with the object-oriented nature of C++. To take advantage of the performance

of C++, the framework utilizes common memory management techniques within its own

object system. In addition, OpenEaagles, is split into two threads of execution, a foreground

14

and background thread, which allows time-sensitive computations to be performed quickly,

while less important computations can run in the background when processor space is

available.

Real-time simulations are built to accurately simulate the passing of time. In order

to accomplish this, OpenEaagles implements a frame-based approach, where each entity

within the simulation updates based on how much real-world time has passed. With this in

mind, every entity in the simulation has a method that re-calculates the state of that entity,

and is called every time the simulation frame advances.

As OpenEaagles is a well-developed, stable, and open source simulation framework,

it is certainly suitable for the implementation and of UBF and the development of our

scenario application.

2.7 The Scenario Under Study

As was discussed, a scenario is critical to determining a correct implementation of

UBF within OpenEaagles. Additionally, our scenario can provide some military context,

ensuring that our implementation is appropriate for the combat domain.

A simple scenario that proved useful for evaluating autonomous agents was developed

in a report completed by Charles River Analytics (CRA) in 1999. This scenario, known as

the sweep mission, was simple enough to implement, yet complex enough that it adequately

tested the capabilities of UBF and OpenEaagles [10].

Though the sweep mission is discussed in depth by the CRA, some adjustments

were made to ensure that the UBF implementation stayed the focus of the research. The

version of the sweep mission utilized for this project includes four phases: ingress, beyond

visual range (BVR) engagement, within visual range (WVR) engagement, and egress. An

overview of the mission is depicted in Figure 2.8.

15

2.7.1 Ingress.

The ingress phase of the mission consists of navigating along a set of waypoints to

the designated mission area. During this phase, friendly aircraft will be scanning visually

and on their radar for enemy aircraft, or “bogeys.” If enemy aircraft are discovered, the

friendlies will proceed to the engagement phase.

2.7.2 Beyond Visual Range (BVR) Engagement.

BVR engagement occurs if the friendly flight notices enemy aircraft outside of their

visual range, typically by radar scans picking up a track of those enemy aircraft. If the

friendly aircraft have the capability and a cache of long-range weapons, they may engage

the enemy aircraft by releasing those weapons. If the enemy aircraft are not destroyed by

the time the friendlies have closed the distance between them, then the friendly flight will

proceed to the WVR portion of the engagement phase.

2.7.3 Within Visual Range (WVR) Engagement.

Once the enemy aircraft are visible to the friendly flight of aircraft, the WVR

engagement phase begins. This portion of the engagement is known colloquially as

“dogfighting,” where the friendly and enemy aircraft perform complex maneuvering for

advantage, engaging each other with short-range weapons. Upon destruction of the enemy

aircraft, or if an emergency condition occurs, the friendlies will progress to the egress phase

of the mission.

2.7.4 Egress.

Egress occurs when the friendly aircraft are leaving the mission area. Sometimes this

is due to mission success, where all bogeys have been destroyed. Otherwise, if a friendly

aircraft is low on fuel, or if too many friendly aircraft have been damaged or destroyed,

the egress phase may be entered. Ultimately, the friendly aircraft return to the original

waypoint, usually their home airfield, during the egress phase. This may be via a direct path

to the home airfield, or it may, like ingress, occur by navigating along a set of waypoints.

16

Figure 2.8: A birds-eye-view depiction of the sweep mission.

17

III. IEEE Conference Paper

Included as a condensed and complete overview of this thesis’ research, is the

following conference paper in IEEE format.

18

The Unified Behavior Framework for
the Simulation of Autonomous Agents

Daniel Roberson∗, Douglas Hodson†, Gilbert Peterson‡, and Brian Woolley§
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

Email: ∗daniel.roberson@afit.edu, †douglas.hodson@afit.edu, ‡gilbert.peterson@afit.edu, §brian.woolley@afit.edu
Phone: ∗443-504-9177, †937-255-3636 x4719 , ‡937-255-3636 x4281 , §937-255-3636 x4618

Abstract—Since the 1980s, researchers have designed a variety
of robot control architectures intending to imbue robots with
some degree of autonomy. A recently developed architecture, the
Unified Behavior Framework (UBF), implements a variation of
the three-layer architecture with a reactive controller to rapidly
make behavior decisions. Additionally, the UBF utilizes software
design patterns that promote the reuse of code and free designers
to dynamically switch between behavior paradigms. This paper
explores the application of the UBF to the simulation domain.
By employing software engineering principles to implement the
UBF architecture within an open-source simulation framework,
we have extended the versatility of both. The consolidation of
these frameworks assists the designer in efficiently constructing
simulations of one or more autonomous agents that exhibit sim-
ilar behaviors. A typical air-to-air engagement scenario between
six UBF agents controlling both friendly and enemy aircraft
demonstrates the utility of the UBF architecture as a flexible
mechanism for reusing behavior code and rapidly creating
autonomous agents in simulation.

I. INTRODUCTION

The pursuit of autonomous agents is one of the main thrusts
of the artificial intelligence research community. This has
manifested in the robotics community, where development
has progressed towards the creation of robots that can au-
tonomously pursue goals in the real world. Building robots
to explore autonomy is practical, but it requires investment of
time and resources beyond the design and development of the
software. On the other hand, simulation is an effective and
inexpensive way of exploring autonomy that does not require
the hardware, integration effort, and risk of damage inherent in
designing, constructing, and testing robots. Not only that, but
robots can be simulated in a variety of environments that push
the limits of their autonomous capability. The ability to stress
and analyze a robot might otherwise be impractical in a real-
world context. So, it seems that simulation is a good option
for researching and testing applications of autonomous robots.
However, there is a plethora of robot control architectures
available, and simulating each of them individually would
require a huge code base. With the application of software
engineering principles, it is possible to reduce this coding
requirement. Doing so grants the designer access to a wide
range of autonomous architectures within a single, flexible
framework.

The Unified Behavior Framework (UBF) applies such soft-
ware engineering principles by implementing well-established
design patterns and an extensible behavior paradigm. Because
of it’s flexibility, UBF can be used to explore multiple robot
control architectures simultaneously. Currently, UBF has been
implemented mainly on robot platforms [1]. However, due
to its adaptability, it is ripe for implementation on other AI
platforms. In this paper, we discuss a basic implementation
and demonstration of UBF within a simulation environment.
OpenEaagles (Open Extensible Architecture for the Analysis
and Generation of Linked Simulations) is an open-source
framework that simplifies the development of a simulation ap-
plication or scenario. Again, by utilizing software engineering
principles, OpenEaagles lends itself to the rapid creation of
scenarios, and therefore is a copacetic simulation framework in
which to implement the UBF. Additionally, a simple example
of an air engagement scenario was developed in order to
demonstrate the utility of the implementation. This scenario,
known generically as the sweep mission, verifies the ability
for rapid scenario development with UBF-based agents, and it
demonstrates its application in a military context.

In this paper, we will first discuss some relevant back-
ground, highlighting some history in the robotics field, previ-
ous applications of UBF, the OpenEaagles framework, and a
breakdown of the sweep mission scenario. Then we will delve
into this implementation, examining the UBF structure within
OpenEaagles, and the specific implementation of the sweep
mission within the our UBF implementation. We will discuss
the results of our implementation of the sweep mission, and
end with a conclusion and a brief look at possible future work.

II. BACKGROUND

A. Robot Control Architectures

1) Early Robot Architectures: Perhaps the purest demon-
stration of an artificial intelligence (AI) agent is an au-
tonomous robot. As Braitenberg discusses, the external ap-
pearance of autonomy can be attained through the simplest
of internal behavior mechanisms [2]. In pursuit of such an
autonomous agent, the challenge of creating and implementing
autonomous behavior in robots has evolved greatly since it’s
beginnings in the mid-1980s. “Shakey the Robot” demon-
strates the early approach to robot control, which Gat describes

as the Sense-Plan-Act (SPA) architecture [3], [4]. As Figure 1
indicates, the problem of autonomy was typically decomposed
into a “series...of functional units” namely the sensing, plan-
ning, and acting units (which may be further decomposed
depending on the specifics of an implementation) [5]. While
SPA is indeed the most chronological way of breaking down
the autonomy problem, the approach was plagued by problems
due to the variability inherent in the real world. Because
planning and acting cannot occur prior to the construction of a
world model, those latter stages depend on the correctness of
the world model constructed in the sensing stage. However,
the sensing stage tends to require the longest amount of
computational time, and the dynamic nature of the real world
can quickly render the robot’s internal world model obsolete
[6].

Fig. 1. A graphical depiction of the sense-plan-act (SPA) architecture as
described by Brooks and Gat [5], [4].

2) The Emergence of Subsumption: The shortcomings of
the SPA architecture were first addressed by Brooks, who
dealt with the robot autonomy problem with the subsump-
tion architecture [5]. Instead of breaking the problem down
into the chronological components of sensing, then planning,
then acting, he broke it down by tasks, or behaviors. These
behaviors are “layered,” so that the more complex behaviors
are built on top of the existing simpler ones, and the complex
behaviors have the ability to override the simple behaviors’
outputs. Since the behavior layers execute simultaneously, the
simpler behaviors will continue to produce motor outputs, but
more complex behaviors are able to suppress those outputs
when deemed unnecessary or when more complex behaviors
are desired. In this way, the robot will function when only
simple behaviors are implemented, but the robot can gain
“levels of competence” as more complex behaviors are layered
over the already-functioning lower levels [5].

3) Reactive Control: Brooks brought the subsumption ar-
chitecture into the forefront of robot control architecture
design, highlighting the usefulness of a tight coupling between
a robot’s sensors and actuators. A graphical representation
of this coupling is illustrated by Figure 2. Deemed “reactive
planning” or “reactive control” by Brooks’ contemporaries,
this approach recognizes the bottlenecks inherent in the SPA
architecture, primarily in the sensing stage where the world
model is constructed [4]. As reactive architectures expanded
upon Brooks’ architecture, some of the issues with subsump-
tion were revealed. Gat describes some of these issues; namely,
the lack of modularity, no mechanism for managing complex-
ity, the inability of low-level behaviors to affect high-level
behaviors, and the inaccuracy of subsumption’s representation

Fig. 2. A graphical depiction of reactive control architectures as described
by Gat [4].

of human intelligence [4]. As reactive control architectures
addressed subsumption’s shortcomings in the years following
Brook’s initial concept, robots began to act more intelligently
in dynamic environments and even began to accomplish simple
tasks involving interaction with the world. Gat highlights two
of these robots, Tooth and Rocky III, which were able to search
for and retrieve small objects in the surrounding environment.
However, these initial foray’s into reactive control architec-
tures revealed their own shortcomings. While a reactive control
architecture’s tight coupling between sensors and actuators
leads to quick and effective action in a dynamic environment,
robots were dedicated to single tasks, and needed complete
reprogramming to change their main goal [4].

4) Three Layer Architectures: This main shortcoming was
addressed by expanding robot architectures to include three
layers of execution. The reactive control layer came to be
known as the controller, and two higher layers were added,
the sequencer above the controller, and the deliberator above
that. Figure 3 depicts the typical structure of a three layer
architecture. The controller layer, as before, maintained a tight
coupling between sensors and actuators, so that it could react
quickly to a changing environment. As mentioned, however,
this reactive control layer did not retain state by building a
world model, it only implements and executes a predefined
and preprogrammed behavior, much like Braitenberg’s “Vehi-
cles” [2]. Therefore, incorrect or inaccurate sensor data might
manifest in incorrect or unexpected behavior. With the addition
of the sequencer, multiple tasks could be performed by the
robot depending on the situation. The sequencer could detect
the current situation by maintaining some internal state. With
these changes, the sequencer was able to switch the current
behavior/task based on the current environment. Finally, the
third and highest layer, the deliberator, is where the time-
consuming planning aspects of robot intelligence reside. Either
by building plans and sending them to the sequencer for

execution, or by receiving requests from the sequencer, the
deliberator runs as it’s own thread producing high-level plans
or running time-consuming operations separately from the
speedier sequencer and controller threads [4], [7].

Fig. 3. A graphical depiction of three layer architectures as described by Gat
[4].

B. Behavior trees

While the robotics community has progressed from SPA,
through subsumption, all the way to three layer architectures
for controlling their robotic agents, the commercial gaming
industry has faced similar problems when trying to create
realistic non-player characters (NPCs). Like robots, these
NPCs are expected to be autonomous, acting with realistic,
human-like intelligence within the game environment. As Isla
states, “a ‘common sense’ AI is a long-standing goal for much
of the research AI community.” In pursuit of this goal, Isla
introduced an AI concept, colloquially referred to as “behavior
trees,” which was first implemented in the popular console
game Halo 2. More technically, behavior trees are hierarchical
finite state machines (HFSMs) implemented as directed acyclic
graphs (DAGs) [8], [9].

In the same way that recent robot architectures focus on
individual tasks, or behaviors, an agent’s behavior tree exe-
cutes relatively short behavior scripts directly onto the NPC,
so that it exhibits the specified behavior. These scripts are built
into a tree structure that is traversed depth-first node-by-node.
The tree is queried, or “ticked” at a certain frequency, and
behaviors are executed (or not) based on the structure of the
tree and the types of nodes that are being ticked. In order to
facilitate decision-making, the tree contains multiple types of
nodes. As Marzinotto defines them, these node types are either
specified as internal or external (leaf) nodes. The internal node
types are selector, sequence, parallel, and decorator, while the
external/leaf nodes are either actions or conditions. In addition,
after being ticked all nodes will either return a success, failure,
or running condition, indicating whether the behavior was
successful, or if it is still running [9]. Figure 4 provides a
simple example of a behavior tree that utilizes at least one of
each type of node and implements autonomous vehicle-driving
behavior.

At the leaf level, action nodes are the only nodes that
actually implement control steps upon the agent. When an

Fig. 4. An example behavior tree implementing autonomous driving behavior
(with the aid of a GPS). Note that the nodes in the tree will be “ticked” from
top to bottom, implying that behaviors higher in the tree have higher priority.

action node is ticked, it will execute the control step and return
running until the control step is complete. Once completed,
success or failure return values indicate whether the control
step achieved the desired state.

Condition nodes, like action nodes, evaluate the agent’s
state and return either success or failure, however, they cannot
exercise control over the agent, and therefore cannot return
running.

Internally, selector, sequence, parallel, and decorator nodes
represent different elements of the agent’s decision-making
process. Selector nodes select one child by ticking each child
in order until one of the children returns running or success,
which the selector node also returns. If all children return
failure, the selector node fails.

Sequence nodes execute each child in order, by ticking
each until one of the children returns running or failure.
If none of the sequence node’s children fails, it will return
success, otherwise, it will return running or failure based on
the running/failed child’s return condition.

Parallel nodes tick all children regardless of return condi-
tion, ticking each child node in sequence. The parallel node
maintains a count of the return values of every child. If either
the success or return value counts are greater than established
thresholds, the parallel node will return the respective success
or failure condition. If neither threshold is met, the parallel
node will return running.

Finally, decorator nodes have internal variables and condi-
tions that are evaluated when ticked, and are only allowed one
child node. If the conditions based on the internal variables
of the decorator node are met, the child node is also ticked.
The return value of a decorator node is based on a function
as applied to the node’s internal variables.

Due to their ease of understanding and the ability to quickly

construct large trees, behavior trees are extremely effective
for building AI agents in commercial games. As Marzinotto
demonstrates, with slight modifications, behavior trees can also
be effectively applied to robot control architectures [9]. There
are a few limitations when it comes to robot control, however.
First is the necessity for the behavior tree action nodes to
have direct control over the robot’s actuators. This is less
of a problem, as the running return value of nodes accounts
for the time it takes for a node to complete the relevant
behavior. However, in addition to requiring direct control over
the actuators, the entire behavior tree also needs access to
the current world state. In commercial games, these are not
issues, as the NPCs can be given complete and 100% accurate
information about the virtual world at any time through the
code, with no sensors or world model-building required. In
the robot control domain, however, the state of the robot must
be gathered from the sensors and built into some sort of world
model. This world model is sometimes inaccurate, and as the
world changes, it can quickly become obsolete, as discussed
in section II-A1. Marzinotto admits that “a large number
of checks has to be performed over the state spaces of the
Actions in the [behavior] tree,” acknowledging this shortfall
of behavior trees for robot control. In his case, Marzinotto
works around this problem of behavior trees by being willing
to accept a delayed state update rather than interrupt the
ticking over the behavior tree [9]. Also, behavior trees lack
the flexibility of behavior-switching and goal-setting provided
by sequencer and deliberator (respectively) of the three layer
architecture.

C. Unified Behavior Framework

In response to the issues of behavior trees for robot con-
trol, the Unified Behavior Framework (UBF) decouples the
behavior tree from the state and actions. By reintroducing the
controller, the UBF enforces a tight coupling between sensors
and actuators, ensuring the rapid response times of reactive
control architectures. UBF also utilizes the strategy and the
composite design patterns to guarantee design flexibility and
versatility over multiple behavior paradigms [10]. In this way,
UBF reduces latency in the autonomous robots, while offering
implementation flexibility by applying software engineering
principles. Additionally, the modular design of UBF speeds
up the development and testing phases of software design and
promotes the reuse of code [1].

The UBF was initially implemented on robot platforms, as
a way to accomplish real-time, reactive robot control [10],
[1]. In robot control implementations, a driving factor is the
speed with which the robot reacts to the changing environment.
Again, the current methodology for ensuring quick response
time in reactive control is to tightly couple sensors to actuators
through the use of a controller. Figure 5 contains a UML
diagram of the Unified Behavior Framework.

1) Behavior: The initial success of the subsumption archi-
tecture came from viewing the functional units of the robot
control architecture as individual robot tasks or behaviors,
instead of chronological steps in the robot’s decision making

Fig. 5. A UML diagram of the Unified Behavior Framework (UBF) [10].

process. The UBF utilizes this concept, viewing the smallest
units of the architecture as individual behaviors. And, taking
a page from the commercial game industry, these behaviors
are developed individually and added to a tree structure.
However, similar to the three layer architecture, behaviors are
not given access to the robot’s sensors or actuators; instead,
the sensing and actuation is left to the controller, discussed
below. As expected, these behaviors are the central part of the
agents “intelligence,” and they define individual tasks that the
robot intends to perform. In practice, UBF behaviors interpret
the perceived state of the robot (as represented by the UBF
State class). Then, based on the task being performed, the
behavior may test certain conditions or otherwise evaluate the
state passed to it. After interpreting the state, the behavior
recommends a specific action to take. During each traversal
of the UBF tree, every behavior recommends and returns an
action for the robot to take.

2) Controller, State & Action: As with three layer architec-
tures, the controller is the direct interface between the UBF
and the sensors and actuators of the robot. As the layer closest
to the hardware, the controller has two primary responsi-
bilities. First, the controller develops the “world model,” or
the state, by interpreting the incoming sensor data. Then the
controller actuates the robot’s motors and controls based on
the characteristics of the action output by the UBF behavior
tree.

As is the case with any robot control architecture, some
representation of the real world, or the world model, is
present in UBF. This is referred to as the state. Through the
updateState() method, the controller interprets the sensor data

for the robot. Because of the possible inaccuracies and failures
of sensors in robot control applications, the state is described
more accurately as the “perceived state,” as the actual world
state cannot be known, but can only be interpreted based on
input from the sensors.

A quick philosophical aside: although we might imply that
these robots are somehow inferior due to their limitations
in perceiving the world state correctly, we must humble
ourselves; we humans are also limited to the inputs from our
“sensors” - our eyes, ears, mouth, skin, etc. So, in the same
way, our understanding of the world’s state may also be flawed,
despite our inherent trust in our perspective.

As described in the previous section, each behavior in the
UBF tree recommends an action for the robot to take. This
action is a representation of what a behavior is recommending
that the robot do, it does not actually control the motors
on the robot, keeping in line with three layer architectures.
By this method, the UBF behavior tree remains decoupled
from the specifics of the robot, enhancing the flexibility
of the framework for use in different applications. Actions
might represent small adjustments to the robots actuators, but
are typically more abstract representations, such as vectors
indicating a desired direction and magnitude for the robot to
go. As such, the action can be tailored to the desired effect on
the robot, but the details of the actuation of controls is left to
the controller, and is therefore not dealt with inside the UBF
behavior tree.

Because the controller is the only direct link to the sensors
and actuators, other elements of the UBF behavior tree are in-
terchangeable between different robots by making adjustments
to the controller. In the same way, differing UBF behavior trees
and architectures can be swapped in and out on the same robot
by retaining the controller. Due to this structuring, the behavior
packages can even be swapped in and out at runtime [10].

3) Arbiter: Because each behavior recommends an action,
multiple actions are being passed up the UBF behavior tree as
return values from behaviors’ children. Therefore, a method
of choosing the “correct” action from child behaviors the UBF
behavior tree is required. This is the reason for the UBF
Arbiter class. The arbiter is contained within UBF behaviors
that are internal nodes in the UBF behavior tree. These internal
behaviors have one or more children that will be recom-
mending actions for the robot to perform. The arbiter acts as
another decision-maker, determining which of its children is
the appropriate action to pass further up the tree to its parent,
until the desired action is returned from the UBF behavior
tree’s root node (which also contains an arbiter). In this way,
the root node of the tree will use its arbiter to recommend a
single action, based on the returned actions of the entire tree.

Arbiters can have differing schemes for determining the
most important action. Simple arbiters, such as a winner-takes-
all (WTA) arbiter, might just choose the highest-voted action
from that behavior’s children nodes. A more complex arbiter
might “fuse” multiple returned actions into one, where the
components of the composite action are weighted by each
individual action’s vote. This is known as a “fusion” arbiter.

In a general sense, fusion arbiters combine one or more
actions returned by its children in the UBF behavior tree.
By “fusing,” a single action will be created and returned
by the fusion arbiter which has elements from multiple of
the child behaviors’ recommended actions. Typically, some
set of the highest-voted actions returned to the fusion arbiter
are selected, and those actions combinable attributes are all
added to a single action which is then returned by the arbiter.
There are varying ways that this can be achieved. One method
would be to select the highest-voted actions, and combine their
non-conflicting attributes. Or, to achieve “fairness” between
the highest-voted actions, their attributes might be weighted
relative to their respective votes before being “fused” into the
arbiters returned action. In this way, a fusion arbiter is really
a larger category of arbiters with infinite possibilities of how
to combine the actions returned by the UBF tree.

The variety and customization available for arbitration im-
plementations allows for great flexibility, whereby the entire
behavior of a robot can be modified by using a different
arbitration scheme, even if the rest of the UBF behavior tree
remains unchanged.

D. “OpenEaagles” Simulation Framework

UBF has been implemented as a robot control architec-
ture, but is clearly ripe for implementation in simulation.
To maintain the flexibility and versatility that UBF pro-
vides, a simulation framework that was also developed using
these principles is necessary. The Open Extensible Architec-
ture for the Analysis and Generation of Linked Simulations
(OpenEaagles) is such a framework. OpenEaagles is open-
source, meaning that the code base is readily accessible. With
the express purpose of “[aiding] the design of robust, scalable,
virtual, constructive, stand-alone, and distributed simulation
applications,” OpenEaagles is a worthwhile tool in which to
add UBF capability [11].

OpenEaagles is an open-source simulation framework that
defines the design pattern shown in Figure 6 for constructing
a wide variety of simulation applications. The framework
itself is written in C++ and leverages modern object-oriented
software design principles while incorporating fundamental
real-time system design techniques to build time sensitive,
low latency, fast response time applications, if needed. By
providing abstract representations of many different system
components (that the object-oriented design philosophy pro-
motes), multiple levels of fidelity can be easily intermixed and
selected for optimal runtime performance. Abstract represen-
tations of systems allow a developer to tune the application
to run efficiently so, for example, interaction latency deadlines
for human-in-the-loop simulations can be met. On the flip side,
constructive-only simulation applications that do not need to
meet time-critical deadlines can use models with even higher
levels of fidelity.

The framework embraces the Model-View-Controller
(MVC) software design pattern by partitioning functional
components into packages. As shown, the Station class serves
as a view-controller or central connection point that associates

Station SimulationControls
& Displays

Player

Player

Player List

Player

Gimbals/Antennas

R/F Signature

Sensors

Stores/Weapons

Nav Systems

Routes

(Auto) Pilot Model

Dynamics Model

JSBSim

Onboard Computers

Datalinks

Radios

DIS

HLA

Interoperability
Networks

…

Real-time
functions

Ownship Ptr

Controls &
Displays
Interface

Player

Simulation Time

Cycles,Frames,
Phases

Environments

Player

Displays

I/O Devices

OTW

Indicates
Multiple Systems

Fig. 6. A graphical depiction of the structure of the OpenEaagles simulation
framework.

simulation of systems (M) with specific views (V) which
include graphics, I/O and networks in the case of a distributed
simulation.

As a simulation framework, OpenEaagles is not an appli-
cation itself applications which are stand-alone executable
software programs designed to support specific simulation
experiments are built leveraging the framework.

Currently, OpenEaagles has a sophisticated autopilot sys-
tem, but that is the extent of built-in mechanisms for aircraft
autonomy. Other than that, no AI exists in the framework for
making simulation entities autonomous. Hence, our addition of
the UBF to OpenEaagles will ultimately benefit the capabilities
of both frameworks.

Due to UBF’s abstract design structure, it was implemented
within OpenEaagles as a set of cooperating classes to define
agents which can be attached to Players to provide more intel-
ligent features than currently available. Within this structure,
UBF agents have access to Player state (world model) and
all Player systems which are attached as components such as
antennas, sensors, weapons, etc. The Players themselves also
include a sophisticated autopilot system which can be used to
augment and provide low level control functionality.

E. Sweep Mission Scenario

In order to demonstrate the utility of the UBF imple-
mentation in OpenEaagles, a simple example application and
scenario was created; one that would demonstrate the use-
fulness of being able to quickly build autonomous agents in
simulation. A simple military mission known as a “sweep”
was defined to test UBF-based agents. In this mission, a
flight of friendly aircraft navigate towards enemy-controlled
or contested airspace. The friendly aircraft search for and
engage any enemy aircraft encountered, leaving the area upon
destruction of the enemies or an emergency condition being

met. The mission is split into four phases: Ingress, Beyond Vi-
sual Range (BVR) Engagement, Within Visual Range (WVR)
Engagement, and Egress. Figure 7 and Figure 8 depict
graphically the progression of the typical sweep mission.

Fig. 7. A graphical depiction of the sweep mission phases.

1) Ingress Phase: The ingress phase of the sweep mission
consists of navigating along a set of waypoints to the desig-
nated mission area. The flight of friendly aircraft follows the
flight lead in formation towards the mission area, watching
and evaluating their radar for potential enemy target aircraft.
Upon acquiring a target, the friendly aircraft proceed to the
engagement phase of the mission.

2) Engagement Phase: Engagement is the mission phase
upon which the friendly aircraft launch missiles and fire guns
against the enemy targets in attempt to shoot down those
aircraft. Engagement is broken into two sub-phases based on
the distance to the target.

a) Beyond Visual Range: The beyond visual range
(BVR) phase of engagement consists of any combat that
occurs when an enemy target is not visible to the friendly
pilot through the windscreen, only on radar and signal warning
systems. If targets are not detected until they are visible to
the friendly pilots, it is possible to skip the BVR phase of
engagement. While BVR, the friendly aircraft will confirm
that the radar targets are indeed enemy aircraft, and then will
engage the target(s) with long-range missiles. If the targets
are not destroyed while BVR, and they become visible to the
pilots, the within visual range engagement phase is entered.

b) Within Visual Range: Within Visual Range (WVR)
combat occurs when enemy aircraft are close enough that
the friendly pilots can see them from the cockpit, and not
exclusively on radar or signal warning systems. Within visual
range combat tends to involve more complicated aircraft
maneuvering in order to achieve an advantageous position
relative to the enemy aircraft. When an advantageous position
is attained, the friendly aircraft may engage the enemy with
short range missiles or guns.

3) Egress Phase: The egress phase of the mission occurs
after the desired mission objective is completed; namely, if the
mission area is clear of enemies. Egress may also be necessary
if other emergency conditions are met. If friendly aircraft are
low on fuel, or if multiple flight members have been shot down
by enemy aircraft, it might be necessary to exit the mission
area as quickly as possible. During egress, remaining friendly
aircraft proceed to the home airfield, again, sometimes by way

of navigation waypoints exiting the mission area, or possibly
by the most direct route to base.

Fig. 8. A birds-eye-view depiction of the sweep mission.

III. METHODS & RESULTS

To take advantage of the flexibility of UBF and
OpenEaagles, we have laid out the sweep mission scenario
used to test our implementation. Having described UBF in
detail, and understanding the benefits of the OpenEaagles
simulation framework, we will delve into our specific imple-
mentation. Due to differences between a robot platform and
a simulation environment, appropriate adjustments were made
to UBF before implementing. First, we will describe UBF as
implemented within OpenEaagles. The sweep mission will be
highlighted again, but accounting for the details of bringing
it to life in our situation. Finally, we will discuss the specific
UBF behaviors built and utilized by our agents to successfully
navigate the sweep mission.

A. Implementation of UBF in OpenEaagles

Using the basic structure of UBF as described in section
II-C, the architecture was built into the object system pro-
vided by OpenEaagles. Then, abstract classes defined by the
architecture were extended to provide specific functionality
(i.e., behaviors, arbiters) relevant to the sweep mission being
implemented. Some changes were made to the original UBF
structure to tailor it to the OpenEaagles simulation environ-
ment, which are described in detail in the following sections.
Figure 9 contains a UML diagram of the UBF including the
changes that were made in the OpenEaagles implementation.

Fig. 9. A UML diagram of the OpenEaagles implementation of the Unified
Behavior Framework (UBF).

1) Agent: As discussed in section II-C, UBF within a robot
control application provides flexibility between platforms by
utilizing different controllers that interface to hardware. Within
a simulation environment, hardware is simulated, and can be
accessed through the OpenEaagles object system. Therefore,
a controller isn’t implemented in the same way as it would be
on a robot. Also, within OpenEaagles, player entities are built
using the composite design pattern; each entity is a composite
of many individual components, which each are composites
of their own components. To maintain consistency with this
design pattern, UBF needed an overarching component object
that contains the whole of the UBF structure. The most
effective method was to create an Agent class that contains
multiple elements of the UBF, namely, the controller, the root
behavior, and the state. This UBF agent can be added - as
a component - to an (intended) autonomous player entity in
order to add UBF functionality. Through the periodic time
phase updates of the Simulation, the agent trickles down
requests for updates to the state, and requests for execution
of the actions on the autonomous player entity.

2) Controller: Since direct hardware access is not neces-
sary when using a software framework like OpenEaagles, the
controller was implemented somewhat differently. Not only
does the controller no longer directly update the state of
UBF, it is also implemented as a method in the Agent class,
rather than its own class separate from actions. This structure
retains the decoupling between the UBF behavior tree and the
controller, and it enables actions/controllers to be tailored to
a specific (simulated) platform. This is more appropriate for
simulation: unlike robot architectures, the variety of platforms
available in simulation means that different platforms will not
only have different control mechanisms, but the actions that
can logically be performed between them might be drastically
different. For instance, increasing altitude on an aircraft is a
logical action for that aircraft, but trying to use that Action
on a ground vehicle does not make sense. In this case, it is
more appropriate to have different versions of the action class
in addition to differing controllers.

By implementing the controller as an action method, the
UBF agent’s “perceived” state is also no longer tied to the
controller, but is separated into its own state class, which will
be discussed in detail in the next section.

3) State: As an abstraction, state actually contains no data
other than that specific to the OpenEaagles object system.
Within individual implementations, state can be populated with
world model information that is important to a specific agent.
The controller previously contained the updateState() method,
as it alone had access to the robot hardware, specifically,
the sensors needed to evaluate the state. The OpenEaagles
framework, allows for much wider access to the simulation
environment details that might be important to a UBF agent.
Therefore, updating the state in practice might occur differ-
ently than on a robot. An update can occur by evaluating the
simulated sensors’ input data, emulating the operation of a
robot control application. However, software-simulated entities
generally have privileged access to true (though simulated)
world state details. In the interest of simplifying a scenario,
state was granted this privileged access to the actual simulation
state. On the other hand, there is flexibility to implement
a more true-to-life state update, one that emulates a robot’s
state update process, if desired. By separating state into it’s
own class, rather than relegating it to the controller, the state
update can be implementation-defined, adding to the flexibility
of UBF in the OpenEaagles simulation environment.

It should also be noted that in OpenEaagles (as in most real-
time simulation frameworks), simulation occurs via discrete
time steps. Therefore, the State class contains the updateState()
method that is tied to the simulation’s time-step process,
received as requests from the Agent class’ controller() method,
by which the state is updated as the simulation progresses.

4) Action: As aforementioned, the OpenEaagles implemen-
tation of the Action class includes a execute() method that
interprets the details of the action and then executes it by
“actuating” the relevant controls within the simulated player
entity. As is the case with the state, the action/execute()
combination allows for more flexibility in the implementation

of UBF to specific platforms.
5) Behavior: Behaviors are the smallest functional unit

of the UBF, in accordance with the original principles of
the subsumption architecture. Behaviors comprise individual
tasks that a player entity might perform, which might be as
simple as flying straight, or as complicated as following an
enemy aircraft. As the UBF’s design originally intended, UBF
behaviors in OpenEaagles accept the state of the UBF agent’s
player entity and return an action via the genAction() method.
Each internal behavior node also passes the state down the tree
to its children, so that every behavior in the tree will receive an
updated state every time the UBF tree is polled for an action.
Based on the specific behavior involved, each behavior returns
a recommended action. Associated with each action is a vote,
which indicates the priority of that action as determined by
the behavior. A higher value vote indicates a higher priority
action. As the returned actions are passed up the tree, arbiters
must decide which of the actions (or which combination) will
be returned further up the UBF behavior tree.

6) Arbiter: Unlike the original UBF design, arbiters are not
a component of internal behavior nodes in the OpenEaagles
UBF implementation. Instead, the Arbiter class is subclassed
off of the Behavior class, so that the arbiters are the internal
behavior nodes, though a more specific version of a behavior.
In a nutshell, this implementation combines “arbiter” function-
ality with the composite behavior. This facilitates the selection
of actions as behaviors return actions up the UBF tree. Each
arbiter, as described, has some decision scheme that selects or
constructs the action that is returned up the UBF behavior
tree. In the OpenEaagles implementation, the Arbiter class
includes a genComplexAction() method, which is the method
for returning an action based on the recommendations of its
children.

B. Scenario Implementation

1) Reducing the complexity: Complexity is a very relevant
issue when trying to build a well-software-engineered product.
While any project will become more complex as it grows,
the intent is generally to reduce complexity and maintain
simplicity. In this case, reducing the complexity of the scenario
was necessary to obtain an effective demonstration.

To reduce the complexity, some sacrifices were made with
regard to the pilot mental model fidelity. Where pilots might
fly specific maneuvers in order to pursue an enemy aircraft,
the UBF agent essentially turns on the autopilot and sets it to
follow the enemy aircraft. In the same way, the pilots defensive
maneuvering is limited to a break maneuver, whereas a human
pilot likely has a large repertoire of defensive maneuvers at
his/her disposal to defend against an incoming missile or a pur-
suing enemy. These sacrifices were necessary to successfully
implement the desired scenario, but with more work and study
on a human pilots decision making, a much more accurate
representation of the pilots mind could be obtained with the
UBF tree.

In addition to the mental model fidelity, complexity was
also reduced with regards to the maneuverability of the

aircraft. The OpenEaagles simulation framework includes a
very detailed aerodynamics model called JSBSim. In order to
create a more manageable implementation, however, this UBF
agent utilizes a more simplistic aerodynamics model called
the LaeroModel. While the LaeroModel prevents hands-on-
stick-and-throttle (HOTAS) control of the aircraft allowing
for detailed maneuvers and upside down flight, the simplicity
of the model interface greatly reduces the UBF action code
required. This was a necessary and acceptable sacrifice in
order to implement the sweep mission scenario. As with any
simulation, detail is a function of the defined experiment.

2) Scenario Arbiters, State, and Action classes:
a) Arbiters: As mentioned in section II-C3, there are a

variety of arbitration schemes available to facilitate decision
making in the UBF behavior tree. In our scenario, two separate
Arbiters were designed. Unfortunately, due to time constraints,
only one was tested and verified with the sweep mission
scenario.

b) Winner-takes-all Arbiter: The winner-takes-all (WTA)
arbiter simply selects the action with the highest vote. This
is the simpler of the two arbiters implemented, not requiring
any special manipulation of returned actions. Because of its
simplicity, the WTA was the arbiter used in the scenario
implementation. This allowed for straightforward construction
of the UBF behavior tree and unambiguous confirmation that
behaviors were responding as expected.

c) Fusion Arbiter: In addition to the WTA arbiter, a
simple fusion arbiter was implemented, but again, it was
not tested or verified. Our arbiter takes an extremely basic
approach, simply averaging the altitude, velocity, and heading
components of each action, and launching a missile if there is
a highly-voted action recommending weapons-release.

d) PlaneState: For the OpenEaagles implementation, the
PlaneState class was subclassed off of the generic State class.
This class contains useful information to an aircraft such as
heading, altitude, velocity, missiles onboard, etc. During the
updateState() routine, the PlaneState class polls the simulation
to ascertain and populate the PlaneState object. Each of the
UBF agents has a state created when the agent is initialized,
and the state is not destroyed, rather it is changed as it is
updated with the simulation time steps.

e) PlaneAction: The PlaneAction class is the subclass
of Action that implements actions for the aircraft agent. Some
leniency had to be taken with this class in order to simplify
the flying of the aircraft. While specific controls such as the
throttle or control column could be actuated to direct the
aircraft to the desired vector or location, this is clearly an
extremely complicated way of flying the aircraft. Essentially,
a UBF agent would require the flying skill of an experienced
pilot in order to even perform basic flight maneuvers. As
implemented, however, actions are able to use more effec-
tive, if less realistic control methods, without requiring an
experienced pilot’s flying ability. OpenEaagles provides a
simplistic aerodynamic model that will “fly” the plane absent
of any actual inputs to the simulated controls; only a basic
understanding of some elements of flight (altitude, velocity,

and heading) is required. In this manner, the PlaneActions
controller() method stores the details of the intended action,
and modifies the heading, velocity, altitude, launches missiles,
engages the autopilot, etc., to allow the aircraft to act according
to the agents desire.

Again, the inherent flexibility of this implementation
method allows for a future implementation to utilize a more
accurate emulation of the original UBF’s design, if desired.

Fig. 10. The UBF behavior tree for the sweep mission scenario.

3) UBF behaviors: In designing the scenario, multiple
behaviors were created so that the pilot agents could seek out
their sweep mission goal of destroying the enemy aircraft.
These behaviors are implemented for the agent’s navigation,
missile evasion, pursuit of the enemy, and weapons release.
They are discussed individually in the sections below. Fig-
ure 10 shows the UBF tree structure for the sweep mission
scenario.

a) Navigate: In order to successfully complete the mis-
sion, the UBF agent needs a way of navigating along a mission
path towards the intended mission area. In a real sweep
mission, the intended waypoints would be known and planned
ahead of mission execution, and the pilot would follow those
waypoints until the engagement phase. In this way, the mission
waypoints were programmed into the navigation computer of
the aircraft before the mission started. The UBF agent turns
on the autopilot, instructing it to follow those waypoints, in
order to execute the navigation required for the mission.

b) Follow the Lead: Following is a behavior that is
necessary for formation flight. While having all of the friendly
UBF agents navigating to the same waypoints might imitate
this behavior, it does not truly replicate how a pilot would
behave, keeping track of the lead aircraft and following his
movements. That being said, however, all of the friendly UBF
agents in our scenario were given knowledge of the waypoints
within their navigation computers. This allowed for an agent
to take over as the flight lead if the current one was shot down.

Because a particular formation is specified, the wall for-
mation (shown in figure 11), the UBF agents can use their
flight ranking to determine their physical position in relation
to the flight lead. In this way, the UBF agent can tell its flight
ranking based on the players predefined name assigned when
constructing the simulation. To make things simpler, a naming
convention of “(flight name)(rank)” was used to identify which
flight the agent is a part of, and their intended rank in the flight.

As rank could change if flight leaders were shot down, there
was a mechanism built into PlaneStates updateState() method
that determines the actual current ranking, rather than just the
original predefined ranking.

To actually follow the flight leader in proper formation, the
autopilot was again utilized for the convenient functionality
provided within OpenEaagles. The autopilot has a following
mode built in, which allows the user to define who to follow,
and the position relative to the leader. For instance, in our
scenario, “eagle2” followed 6000 feet left, 1000 feet behind,
and 500 feet below eagle1.

Utilizing this autopilot functionality, along with the naming
convention that defines a flight and its members, the follow
behavior was implemented that allows the “eagle” flight (and
the enemy “bogey” flight) to fly in wall formation during any
non-engagement portions of the scenario.

Fig. 11. A graphical depiction of the “wall” flight formation.

c) Pursue an Enemy: Pursuing the enemy is a behavior
that is necessary for eventually attacking the enemy, which
ultimately is the purpose of the sweep mission. To implement
this behavior, again, the autopilot following functionality was
utilized. This, while not an accurate representation of how a
pilot might maneuver to engage an enemy, does provide a
simple, convenient way to implement the pursuing behavior.
This is certainly an area for future improvement, whereas a
complex model that is more representative of an actual pilot
could be implemented.

In this case, the UBF agent first detects the enemy using its
onboard radar systems. After detecting the enemy, the agent
is given special access to simulation information about the
enemy player in order to provide the data necessary for the
autopilot to enter following mode against that enemy.

d) Release Weapon: As it is the ultimate mission of the
sweep mission, the UBF agent requires a behavior that decides
when to release a weapon against an enemy target. A pilot
would normally have some idea of how probable a kill is based
on the location of the enemy aircraft in relation to his own
aircraft. The term for the region with the highest probability
of a kill is a weapons employment zone, or WEZ.

The UBF agent evaluates whether an enemy target is visible
(on radar), and then whether that target is within the agents
WEZ. If so, the behavior recommends the release of a weapon,

which is performed through the stores management system of
the UBF agents player.

e) Break (Defensive Maneuver): Finally, a maneuver
that attempts to evade incoming missiles is necessary. This
behavior detects a missile based on its radar track. As with the
pursuit of an enemy aircraft, this behavior could be modified
to be more accurate to a true pilots behavior. In the meantime,
the detection of the missile is performed within the simulation,
which of course has omniscience about whether the radar track
is a missile or not.

Once detected, the incoming missile also needs to be
determined to be coming at the UBF agent interested in it.
As before, the simulation is polled to determine the missiles
target. If the target is the current UBF agents player entity, the
UBF agent knows that the missile is pursuing it, and can then
initiate defensive maneuvering.

In order to be simple, the current defensive maneuver
implementation has two phases. The first phase occurs if the
missile is detected outside of a two nautical mile radius of the
UBF agent. When the missile is far away, as determined by
this arbitrary boundary, the UBF agent maneuvers his plane
towards the incoming missile, and increases altitude. This is
designed as a preparation phase for when the missile is danger
close, within the two nautical mile radius. Upon the missile
breaching two nautical miles, the UBF agent then performs
a break maneuver, or a hard, diving turn (to either side,
depending on the angle of the incoming missile).

IV. CONCLUSION

Through the development and implementation of the Uni-
fied Behavior Framework within the OpenEaagles simulation
framework, we have demonstrated the potential for creating
simulated autonomous agents in a military simulation context.
Some specific issues that arose during the process were the
granularity of behaviors, and the contrast between UBF and
behavior trees. In this section, we will briefly discuss these
issues as they relate to our implementation.

A. Granularity of behaviors

A difficult design decision presented itself when building
the UBF tree of behaviors for our scenario. Behaviors can
be as “simple” as performing a basic stick or throttle control
change, but they can also be very complex, attempting to
attain a specific heading, altitude and velocity by a long
series of control input changes. When designing behaviors,
it is necessary to make some decisions about how complex,
or “granular,” the individual UBF behaviors will be. The
granularity of the behaviors will also have a direct effect on the
size of the UBF behavior tree, and it can affect the arbitration
scheme drastically. As the behaviors become simpler and
smaller, the UBF tree will grow, and vice versa. WTA arbiters
are useful for “large grain” behaviors and small trees, while
a fusion arbiter becomes much more interesting as the UBF
tree grows and includes “small grain” behaviors that can be
fused in interesting ways.

In this case, the design decision was made to allow for very
complex, “large grain” behaviors. In this way, the scenario
behavior tree remained fairly small in size. This decision was
due to the exponential jump in complexity of breaking some
tasks down into multiple behaviors. In addition, behaviors
that utilized the autopilot navigation and follow modes would
have been much more complex if not using the autopilot,
and instead building multiple less-complex, autopilot-lacking
behaviors. Instead of having a large UBF sub-tree dedicated to
navigating to the next waypoint, the UBF agent only required
one behavior that turned on the autopilot when navigation was
the desired behavior. Though it results in a much more com-
plex exhibited behavior, by choosing this level of granularity,
the behavior was actually much simpler to implement.

B. UBF versus Behavior Trees

A question that arose when implementing our sweep mis-
sion scenario using UBF was, would the sweep mission
be easier to implement with Behavior Trees? The answer,
of course, is complicated. When thinking about the sweep
mission scenario, the behaviors desired from the pilot agent are
well-understood and well-defined. This lends itself to behavior
trees, with behaviors that are expected and scripted, rather than
unexpected, or “emergent” behaviors. Clearly, the benefits of
UBF are lost on such a simple and well-defined scenario. On
the other hand, the design elements of UBF lend it to future
experimentation within the simulation environment. With the
UBF framework in place, the opportunity to simulate pilot
agents that exhibit unpredictable behavior is now ripe for
exploration. Instead of defining a scenario based on detailed
pilot procedures, agents can be designed to behave like we
would expect a pilot to in various situations, and then put those
agents through their paces to understand how an agent might
behave under unpredictable circumstances. While behavior
trees would presumably produce consistent behavior, the UBF
agents would allow for emergence of behaviors that give
deeper insight into agent design.

C. Future Work

1) Fusion arbiter and emergent behaviors: One of the
major benefits of the Unified Behavior Framework‘s arbiter
scheme, is the opportunity for emergent behavior. Emergent
behavior is somewhat of a misnomer; in truth, the actions are
emergent. Specific behaviors in the UBF tree are deterministic
when considered on their own. When utilizing an arbitration
scheme that allows for actions to combine multiple behaviors
returned actions, such as fusion, those deterministic responses
can now become unpredictable, or emergent. While this may
produce odd and possibly detrimental behavior, it also provides
for complex combinations of actions that may have been
unexpected. By introducing this element of unpredictability
and randomness, the capability of the UBF agent grows
beyond that of the scripted nature of behavior trees.

A fusion arbiter was developed as part of this effort, but it
was not utilized as part of the scenario. Along with increasing

the fidelity of the pilot mental model, the fusion arbiter is
certainly ready for future work.

2) Sequencer: Three layer architectures demonstrate the
usefulness of separating complex planning algorithms from
the reactive control mechanisms needed for rapid action in
dynamic environments. In our scenario, these higher-level
planning activities were not necessary, as our agents were
seeking a very specific goal: destroy any enemies encountered.
On the other hand, a real-world pilot would likely come
across situations that required a change of goal; an emergency
condition or a change of waypoints. While our agents’ single-
mindedness did not affect the results of the simulation, it
demonstrates a lack of capability that could be remedied with
the addition of a sequencer to the OpenEaagles UBF agent.
In later implementations, adding a sequencer would be an
effective way to give planning abilities, so that agents could
switch between UBF behavior trees if a goal change was
necessary during the middle of a mission.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
David P. Gehl of L-3 Communications for his support in
understanding the design and organization of the OpenEaagles
framework.

REFERENCES

[1] B. G. Woolley, G. L. Peterson, and J. T. Kresge, “Real-time behavior-
based robot control,” Autonomous Robots, vol. 30, no. 3, pp. 233–242,
2011.

[2] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology,
ser. Bradford Books. MIT Press, 1986. [Online]. Available:
http://books.google.com/books?id=7KkUAT q sQC

[3] N. J. Nilsson, “Shakey the robot,” DTIC Document, Tech. Rep., 1984.
[4] E. Gat et al., “On three-layer architectures,” 1998.
[5] R. A. Brooks, “A robust layered control system for a mobile robot,”

Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[6] R. C. Arkin, “Survivable robotic systems: Reactive and homeostatic
control,” in Robotics and remote systems for hazardous environments.
Prentice-Hall, Inc., 1993, pp. 135–154.

[7] R. Peter Bonasso, R. James Firby, E. Gat, D. Kortenkamp, D. P. Miller,
and M. G. Slack, “Experiences with an architecture for intelligent,
reactive agents,” Journal of Experimental & Theoretical Artificial In-
telligence, vol. 9, no. 2-3, pp. 237–256, 1997.

[8] D. Isla, “Gdc 2005 proceeding: Handling complexity in the halo 2 ai,”
Retrieved October, vol. 21, p. 2009, 2005.

[9] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, 2014.

[10] B. G. Woolley and G. L. Peterson, “Unified behavior framework for
reactive robot control,” Journal of Intelligent and Robotic Systems,
vol. 55, no. 2-3, pp. 155–176, 2009.

[11] D. D. Hodson, D. P. Gehl, and R. O. Baldwin, “Building distributed sim-
ulations utilizing the eaagles framework,” in The Interservice/Industry
Training, Simulation & Education Conference (I/ITSEC), vol. 2006,
no. 1. NTSA, 2006.

[12] M. Cutumisu and D. Szafron, “An architecture for game behavior ai:
Behavior multi-queues.” in AIIDE, 2009.

[13] A. September, “Ieee standard glossary of software engineering termi-
nology,” Office, vol. 121990, no. 1, p. 1, 1990.

[14] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

IV. Conclusion

The demonstration of the sweep mission within the UBF confirms the utility of

our implementation within OpenEaagles. The usefulness in a military context was also

demonstrated, by the fact that a combat scenario was successfully implemented.

Through the development and implementation of this research, it became clear that

implementing the sweep mission was not a simple task.

4.1 Controller Complexity

Though a successful demonstration was achieved through the sweep mission scenario,

some obstacles manifested during development. Despite the apparent simplicity of the

sweep mission, its implementation is much more complex than just constructing a few

UBF behaviors. The construction of the controller turned out to be quite difficult. As

the OpenEaagles simulation environment attempts to maintain an extremely high level of

fidelity to the real world, the task of controlling an aircraft required the knowledge and

skill of a trained pilot. Besides the obvious difficulty of flying a plane, complexity in

designing the controller also arose out of the environment in which the agent was operating.

Moving in three-dimensional space is no easy task, especially when also considering the

complicated aerodynamics involved in fixed-wing flight. To reduce this burden, a simpler

aerodynamics model, the LaeroModel, was used to implement manual aircraft maneuvers.

This model did not require hands on throttle-and-stick (HOTAS) control of the aircraft, but

was able to “fly” the plane when provided with a desired heading, altitude, and velocity.

This massively simplified the design of the UBF agent, and reduced the necessity for pilot-

level skill in designing behaviors and actions.

When deciding how best to navigate and fly in formation, the simplicity offered by

the OpenEaagles autopilot quickly became the favorable option over splitting individual

30

behaviors into a navigation and following sub-tree, respectively. Again, while it would

have been possible to control the aircraft directly by using HOTAS control, the autopilot

functionality required no pilot-equivalent skill or understanding of flight mechanics, and

was therefore the preferred method of flying the aircraft. Additionally, this may not be

such an inaccurate representation of a human pilot, who would clearly prefer the ease and

efficiency of the autopilot, especially when engaging in other tasks like scanning his radar

screen or communicating by radio.

In addition to the difficulty of controlling the aircraft, evaluating the state of the

simulation was quite complex. As a result, some parts of the aircraft state had to be

retrieved from the simulation directly, rather than from the aircraft’s sensors, which would

have been a more accurate representation of an autonomous robot architecture.

For example, when a human pilot sees blips on his radar screen, he cannot assume that

those blips represent enemy aircraft. The blips could be missiles, friendly aircraft, civilian

aircraft, flocks of birds, high terrain, etc. A robot implementation of a UBF agent is also

limited in this way, only having access to the sensor data, not the true world state. To

emulate an agent in the most true-to-life way, we would have to imbue it with the ability to

reason over these radar blips, and the agent would need access to other sensor systems such

as Identification Friend or Foe (IFF). The exponential jump in complexity of implementing

such ability would have quickly consumed all available design and development effort.

Instead of dealing with the extra effort, it was much more effective to grant a bit of extra

knowledge to our agent, by allowing it access to simulation information that would confirm

a radar track as an enemy aircraft, a missile, or otherwise.

Considering the complexity of implementing the agent’s state and actions, it is clear

that much of the effort of implementing an autonomous agent is wrapped up in developing

the controller of that agent. For our implementation within the simulation environment,

some sacrifices were made in order to achieve a proof-of-concept scenario, and to ensure

31

that the entire UBF structure could be exercised sufficiently. Section 4.4.3 discusses the

areas of future work that could improve upon these workarounds and generate a more

realistic representation of an autonomous robot in the simulation.

4.2 UBF versus Behavior Trees

In the context of robot architectures, the UBF indeed is a preferred method for

encouraging code reuse and promoting design flexibility. However, within simulation, an

argument could be made that behavior trees would be a quicker and more efficient way

of implementing simple scenarios such as the sweep mission. Because simulation entities

have software-level access to the true world state, a behavior tree autonomous agent could

effectively be used in the same way that commercial games do.

While this is indeed true, in another sense, it circumvents the main objective of this

research. In pursuing the value that simulation provides, we ultimately desire the real

representation of an autonomous agent within that simulation. Utilizing a behavior tree

to control that agent would defeat this purpose by violating the true capabilities of the

robot to understand its state. As discussed in section 4.1, some workarounds were utilized

to implement our scenario within a reasonable timeframe. While using behavior trees

would have required the same workarounds, the addition of the UBF’s capabilities to the

OpenEaagles framework allows for future development of fully realistic representations of

autonomous robots. For this reason, the utilization of behavior trees would have severely

limited the representation of an autonomous robot in simulation.

4.3 Granularity of Behaviors

When building the UBF behavior tree, the size of each behavior revealed itself to be

an issue. While small behaviors that focus on limited tasks is seemingly the best way to

build a tree, this proved to be difficult to implement. In addition, some of the workarounds,

32

such as the autopilot and the LaeroModel, required larger behaviors in order to adequately

accomplish the sweep mission.

4.4 Future Work

Though this implementation of UBF certainly demonstrates its utility and flexibility in

developing autonomous agents in simulation, there is clearly room for future development

above and beyond the research done in this thesis. By adding variety to the arbitration

schemes available for use, the UBF will attain the full potential of flexibility for

implementing different robot architectures. By taking a page from three layer architectures

and adding a sequencer to the UBF, it would certainly enable goal-switching in a way not

available under the current framework structure. Finally, in response to the complexity

issues faced during this research, a multitude of improvements could be made to the

scenario implementation that increase the accuracy of the simulated autonomous agents

within the OpenEaagles simulation environment.

4.4.1 Fusion Arbiter.

As mentioned in the paper in chapter 3, a fusion arbiter was designed and coded as a

part of this research. However, due to time constraints, the fusion arbiter was unable to be

tested with the sweep mission scenario.

Fusion arbiters, as described, are useful in exploring “emergent” behavior. Because

the actions produced by a fusion arbitration scheme are ultimately combinations of multiple

recommended actions, those actions are not that of any specific behavior. Therefore, these

“fused” actions are sometimes unpredictable or unexpected.

Implementing the fusion arbiter adds a great deal of capability to the UBF

implementation, and therefore is a natural progression beyond the current research’s winner

takes all (WTA) arbitration scheme.

33

4.4.2 Sequencer.

Three layer architectures apply modularity to their design, separating higher-level

planning and goal-determining behaviors from the low-level reactive behaviors. The UBF

structure includes no mechanism for implementing goal-switching or planning outside

of the UBF behavior tree. By adding a sequencer to the UBF implementation, goal-

switching could be enabled within the behavioral architectures that the UBF is capable

of implementing.

This lends itself to extensive military missions with multiple phases, and multiple

goals, but it can also be applied to the sweep mission scenario. For instance, a navigation

UBF behavior tree with a goal of navigating to a certain waypoint could be implemented,

as well as an engagement UBF behavior tree devoted to the dogfighting portion of the

scenario. With the addition of a sequencer, the mission phases now fall naturally into either

of these UBF behavior trees. Ingress and egress are clearly just navigation from waypoint

to waypoint. A sequencer can manage which waypoint is being pursued, as the agent moves

along the mission path. Then, when an enemy is encountered, either on radar or by direct

engagement, the sequencer would be able to switch out the navigation UBF tree with the

engagement UBF tree. In this way, military missions could be broken down into minor

goals or tasks, and individual UBF trees could be built per goal.

Adding a sequencer to the UBF structure within OpenEaagles, though not part of

the original design of the UBF, would obviously extend the current capabilities of the

framework. Not only that, but the ability to build UBF behavior trees on a by-goal or by-

task basis lends itself to the military context due to the goal-based nature of most combat

missions.

4.4.3 Addressing the Complexity.

As discussed in section 4.1, implementing a controller for an aircraft-based

autonomous agent is quite complex. In this research, the sweep mission scenario

34

implementation simplified certain elements of the controller in order to work around those

complexities. Because of those workarounds, the autonomous agent controlling the aircraft

in the scenario is not quite a true-to-life representation of an autonomous robot.

By correcting these workarounds, and by embracing these complexities, the scenario

and the relevant UBF behaviors could be more accurately implemented. With a

more accurate implementation of these behaviors, autonomous agents developed in the

simulation could be applied to real robotic systems after exploration, research and

development within the OpenEaagles environment.

35

Appendix: Implementation Code

A.1 OpenEaagles UBF Implementation Code

A.1.1 Action.h.

//--

// Class: Action

//--

#ifndef __Eaagles_Basic_Ubf_Action_H__

#define __Eaagles_Basic_Ubf_Action_H__

#include "openeaagles/basic/Object.h"

namespace Eaagles {

namespace Basic {

class Component;

namespace Ubf {

//--

// Class: Action

//

// Description:

// Abstract base class for all Actions. They are responsible for

// their own execution.

//

// Factory name: UbfAction

36

//--

class Action : public Basic::Object

{

DECLARE_SUBCLASS(Action, Basic::Object)

public:

Action();

unsigned int getVote() const;

void setVote(const unsigned int x);

// Execute the behavior

virtual bool execute(Basic::Component* actor)=0;

private:

unsigned int vote;

};

inline void Action::setVote(const unsigned int x) { vote = x; return; }

inline unsigned int Action::getVote() const { return vote; }

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

#endif

37

A.1.2 Action.cpp.

//--

// Class: Action

//--

#include "openeaagles/basic/ubf/Action.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

IMPLEMENT_ABSTRACT_SUBCLASS(Action, "UbfAction")

EMPTY_SLOTTABLE(Action)

EMPTY_DELETEDATA(Action)

EMPTY_SERIALIZER(Action)

//--

// Class support functions

//--

Action::Action()

{

STANDARD_CONSTRUCTOR()

vote = 0;

}

void Action::copyData(const Action& org, const bool cc)

{

38

BaseClass::copyData(org);

vote = org.vote;

}

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

39

A.1.3 Agent.h.

//--

// Class: Agent

//--

#ifndef __Eaagles_Basic_Ubf_Agent_H__

#define __Eaagles_Basic_Ubf_Agent_H__

#include "openeaagles/basic/Component.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

class Behavior;

class State;

class Action;

//--

// Class: Agent

//

// Description: Generic agent class to control a component in the

simulation - the agent’s "actor"

//

// Notes:

// 1) Use ’Agent’ to update the behavior framework via updateData() and use

// ’AgentTC’ to update the behavior framework using updateTC().

//

40

// 2) The updateData() and updateTC() calls are only processed by this

Agent

// class and are not passed to the rest of the behavior framework.

//

//

// Factory name: UbfAgent

// Slots:

// state <State> ! The agent’s state object

// behavior <Behavior> ! behavior

//--

class Agent : public Basic::Component

{

DECLARE_SUBCLASS(Agent, Basic::Component)

public:

Agent();

// Basic::Component Interface

virtual void updateTC(const LCreal dt = 0.0f);

virtual void updateData(const LCreal dt = 0.0f);

virtual void reset();

protected:

// generic controller

virtual void controller(const LCreal dt = 0.0f);

Behavior* getBehavior() const { return behavior; }

void setBehavior(Behavior* const);

41

State* getState() const { return state; }

void setState(State* const);

virtual void initActor();

Basic::Component* getActor();

void setActor(Basic::Component* const myActor);

// slot functions

virtual bool setSlotBehavior(Behavior* const);

bool setSlotState(State* const state);

private:

Behavior* behavior;

State* state;

SPtr<Basic::Component> myActor;

};

inline void Agent::setActor(Basic::Component* const actor) { myActor =

actor; return; }

inline Basic::Component* Agent::getActor() { return myActor; }

//--

// Class: Agent

//

// Description: Generic agent class to control a component - the agent’s

"actor"

42

// - a derived agent class that performs its actions in the TC thread

//

// Factory name: UbfAgentTC

//--

class AgentTC : public Agent

{

DECLARE_SUBCLASS(AgentTC, Agent)

public:

AgentTC();

// Basic::Component Interface

virtual void updateTC(const LCreal dt = 0.0f);

virtual void updateData(const LCreal dt = 0.0f);

};

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

#endif

43

A.1.4 Agent.cpp.

//--

// Agent

//--

#include "openeaagles/basic/ubf/Agent.h"

#include "openeaagles/basic/ubf/Action.h"

#include "openeaagles/basic/ubf/Behavior.h"

#include "openeaagles/basic/ubf/State.h"

#include "openeaagles/basic/Pair.h"

#include "openeaagles/basic/String.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

//

// Class: Agent

//

// Description: An Agent that manages a component (the "actor") with a

behavior

// (either a player, or a player’s component)

//

IMPLEMENT_SUBCLASS(Agent, "UbfAgent")

EMPTY_SERIALIZER(Agent)

EMPTY_COPYDATA(Agent)

44

//--

// slot table for this class type

//--

BEGIN_SLOTTABLE(Agent)

"state", // 1) The agent’s state object

"behavior" // 2) behavior

END_SLOTTABLE(Agent)

// mapping of slots to handles

BEGIN_SLOT_MAP(Agent)

ON_SLOT(1, setSlotState, State)

ON_SLOT(2, setSlotBehavior, Behavior)

END_SLOT_MAP()

//--

// Class support functions

//--

Agent::Agent()

{

STANDARD_CONSTRUCTOR()

myActor = 0;

behavior = 0;

state = 0;

}

void Agent::deleteData()

45

{

if (behavior!=0) { behavior->unref(); behavior = 0; }

if (state!=0) { state->unref(); state = 0; }

myActor = 0;

}

//--

// Reset the system

//--

void Agent::reset()

{

// Reset our behavior and state objects

if (behavior != 0) {

behavior->reset();

}

if (state != 0) {

state->reset();

}

myActor=0;

initActor();

// although state is not explicitly initialized as component, the set

state

// method sets up the component relationship since state is a

component, it

// will get the reset() this way (via the component i/f)

46

BaseClass::reset();

}

//--

// updateTC() -

//--

void Agent::updateTC(const LCreal dt)

{

}

//--

// updateData()

//--

void Agent::updateData(const LCreal dt)

{

controller(dt);

}

//--

// updateData()

//--

void Agent::controller(const LCreal dt)

{

Basic::Component* actor = getActor();

47

if ((actor!=0) && (getState()!=0) && (getBehavior()!=0)) {

// update ubf state

getState()->updateState(actor);

// generate an action, but allow possibility of no action returned

Action* action = getBehavior()->genAction(state, dt);

if (action) {

action->execute(actor);

action->unref();

}

}

}

//--

// Set our behavior model

//--

void Agent::setBehavior(Behavior* const x)

{

if (x==0)

return;

if (behavior!=0)

behavior->unref();

behavior = x;

behavior->ref();

behavior->container(this);

}

48

//--

// Set our state model

//--

void Agent::setState(State* const x)

{

if (x==0)

return;

if (state!=0)

state->unref();

state = x;

state->ref();

state->container(this);

Basic::Pair* p = new Basic::Pair("", state);

addComponent(p);

p->unref();

}

//--

// finds our actor during reset() processing

//--

void Agent::initActor()

{

if (getActor()==0) {

// our actor is our container

if (container() != 0) {

49

setActor(container());

}

}

}

//--

// set slot functions

//--

// Sets the state object for this agent

bool Agent::setSlotState(State* const state)

{

bool ok = false;

if (state != 0) {

setState(state);

ok = true;

}

return ok;

}

bool Agent::setSlotBehavior(Behavior* const x)

{

bool ok = false;

if (x!=0) {

setBehavior(x);

ok = true;

}

50

return ok;

}

//--

// getSlotByIndex()

//--

Basic::Object* Agent::getSlotByIndex(const int si)

{

return BaseClass::getSlotByIndex(si);

}

//==

// Class: AgentTC

// Description: An Agent that manages a component (the "actor") with a

behavior,

// using TC thread to perform its activity (instead of BG

thread)

//==

IMPLEMENT_SUBCLASS(AgentTC, "UbfAgentTC")

EMPTY_SLOTTABLE(AgentTC)

EMPTY_CONSTRUCTOR(AgentTC)

EMPTY_SERIALIZER(AgentTC)

EMPTY_COPYDATA(AgentTC)

EMPTY_DELETEDATA(AgentTC)

//--

51

// updateTC() - Calls the controller

//--

void AgentTC::updateTC(const LCreal dt)

{

controller(dt);

}

//--

// updateData() -

//--

void AgentTC::updateData(const LCreal dt)

{

}

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

52

A.1.5 Arbiter.h.

//--

// Class: Arbiter

//--

#ifndef __Eaagles_Basic_Ubf_Arbiter_H__

#define __Eaagles_Basic_Ubf_Arbiter_H__

#include "Behavior.h"

namespace Eaagles {

namespace Basic {

class List;

namespace Ubf {

class State;

class Action;

//--

// Class: Arbiter

//

// Description:

// A meta-behavior that generates a "complex action" based on the actions

// generated our list of behaviors.

//

// Note:

// The default is to select the Action with the highest vote value.

//

53

// Factory name: UbfArbiter

// Slots:

// behaviors <PairStream> ! List of behaviors

//--

class Arbiter : public Behavior

{

DECLARE_SUBCLASS(Arbiter, Behavior)

public:

Arbiter();

// Basic::Ubf::Behavior class functions

virtual Action* genAction(const State* const state, const LCreal dt);

protected:

Basic::List* getBehaviors();

// evaluates a list of actions and return an optional "complex action"

// (default: returns the action with the highest vote value)

virtual Action* genComplexAction(List* const actionSet);

// add new behavior to list

void addBehavior(Behavior* const);

// slot functions

bool setSlotBehaviors(Basic::PairStream* const);

private:

54

Basic::List* behaviors;

};

inline Basic::List* Arbiter::getBehaviors() { return behaviors; }

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

#endif

55

A.1.6 Arbiter.cpp.

//--

// Class: Arbiter

//--

#include "openeaagles/basic/ubf/Arbiter.h"

#include "openeaagles/basic/ubf/Action.h"

#include "openeaagles/basic/Pair.h"

#include "openeaagles/basic/PairStream.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

IMPLEMENT_SUBCLASS(Arbiter, "UbfArbiter")

EMPTY_COPYDATA(Arbiter)

EMPTY_SERIALIZER(Arbiter)

//--

// slot table for this class type

//--

BEGIN_SLOTTABLE(Arbiter)

"behaviors" // 1) behaviors

END_SLOTTABLE(Arbiter)

// mapping of slots to handles

BEGIN_SLOT_MAP(Arbiter)

56

ON_SLOT(1, setSlotBehaviors, Basic::PairStream)

END_SLOT_MAP()

//--

// Class support functions

//--

Arbiter::Arbiter()

{

STANDARD_CONSTRUCTOR()

behaviors = new Basic::List();

}

void Arbiter::deleteData()

{

// unref behaviors

if (behaviors!=0) { behaviors->unref(); behaviors = 0; }

}

//--

// genAction() - generate an action

//--

Action* Arbiter::genAction(const State* const state, const LCreal dt)

{

// create list for action set

Basic::List* actionSet = new Basic::List();

// fill out list of recommended actions by behaviors

57

Basic::List::Item* item = behaviors->getFirstItem();

while (item != 0) {

// get a behavior

Behavior* behavior = static_cast<Behavior*>(item->getValue());

// generate action, we have reference

Action* action = behavior->genAction(state, dt);

if (action != 0) {

// add to action set

actionSet->addTail(action);

// unref our action reference

action->unref();

}

// goto behavior

item = item->getNext();

}

// given the set of recommended actions, the arbiter

// decides what action to take

Action* complexAction = genComplexAction(actionSet);

// done with action set

actionSet->unref();

// return action to perform

return complexAction;

}

58

//--

// Default: select the action with the highest vote

//--

Action* Arbiter::genComplexAction(Basic::List* const actionSet)

{

Action* complexAction = 0;

unsigned int maxVote = 0;

// process entire action set

Basic::List::Item* item = actionSet->getFirstItem();

while (item != 0) {

// Is this action’s vote higher than the previous?

Action* action = dynamic_cast<Action*>(item->getValue());

if (maxVote==0 || action->getVote() > maxVote) {

// Yes ...

if (complexAction != 0) complexAction->unref();

complexAction = action;

complexAction->ref();

maxVote = action->getVote();

}

// next action

item = item->getNext();

}

if (maxVote > 0 && isMessageEnabled(MSG_DEBUG))

59

std::cout << "Arbiter: chose action with vote= " << maxVote <<

std::endl;

// Use our vote value; if its been set

if (getVote() > 0 && complexAction != 0) {

complexAction->setVote(getVote());

}

// complexAction will have the vote value of whichever component action

was selected

return complexAction;

}

//--

// addBehavior() - add a new behavior

//--

void Arbiter::addBehavior(Behavior* const x)

{

behaviors->addTail(x);

x->container(this);

}

//--

// Slot functions

//--

60

bool Arbiter::setSlotBehaviors(Basic::PairStream* const x)

{

bool ok = true;

// First, make sure they are all behaviors

{

Basic::List::Item* item = x->getFirstItem();

while (item != 0 && ok) {

Basic::Pair* pair = static_cast<Basic::Pair*>(item->getValue());

item = item->getNext();

Behavior* b = dynamic_cast<Behavior*>(pair->object());

if (b == 0) {

// Item is NOT a behavior

std::cerr << "setSlotBehaviors: slot: " << *pair->slot() << " is

NOT of a Behavior type!" << std::endl;

ok = false;

}

}

}

// next, add behaviors to our list

if (ok) {

Basic::List::Item* item = x->getFirstItem();

while (item != 0) {

Basic::Pair* pair = static_cast<Basic::Pair*>(item->getValue());

item = item->getNext();

Behavior* b = static_cast<Behavior*>(pair->object());

61

addBehavior(b);

}

}

return ok;

}

//--

// getSlotByIndex()

//--

Basic::Object* Arbiter::getSlotByIndex(const int si)

{

return BaseClass::getSlotByIndex(si);

}

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

62

A.1.7 Behavior.h.

//--

// Class: Behavior

//--

#ifndef __Eaagles_Basic_Ubf_Behavior_H__

#define __Eaagles_Basic_Ubf_Behavior_H__

#include "openeaagles/basic/Component.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

class State;

class Action;

//--

// Class: Behavior

// Description: Abstract base class for all behaviors. Generates an

optional

// action based on our current state.

//

// Factory name: UbfBehavior

// Slots:

// vote <Number> ! default vote/weight value for actions generated

// ! by this behavior

//--

class Behavior : public Basic::Component

63

{

DECLARE_SUBCLASS(Behavior, Basic::Component)

public:

Behavior();

// Returns a pre-ref’d Action (or zero if no action is generated)

virtual Action* genAction(const State* const state, const LCreal dt) =

0;

protected:

unsigned int getVote() const;

virtual void setVote(const unsigned int x);

bool setSlotVote(const Basic::Number* const num);

private:

unsigned int vote;

};

inline void Behavior::setVote(const unsigned int x) { vote = x; }

inline unsigned int Behavior::getVote() const { return vote; }

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

64

#endif

65

A.1.8 Behavior.cpp.

//--

// Class: Behavior

//--

#include "openeaagles/basic/ubf/Behavior.h"

#include "openeaagles/basic/Number.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

IMPLEMENT_ABSTRACT_SUBCLASS(Behavior, "UbfBehavior")

EMPTY_DELETEDATA(Behavior)

EMPTY_COPYDATA(Behavior)

EMPTY_SERIALIZER(Behavior)

//--

// slot table for this class type

//--

BEGIN_SLOTTABLE(Behavior)

"vote" // 1) default vote/weight value for actions generated by

this behavior

END_SLOTTABLE(Behavior)

// mapping of slots to handles

BEGIN_SLOT_MAP(Behavior)

66

ON_SLOT(1, setSlotVote, Basic::Number)

END_SLOT_MAP()

//--

// Class support functions

//--

Behavior::Behavior()

{

STANDARD_CONSTRUCTOR()

vote = 0;

}

//--

// Slot functions

//--

// [1 .. 65535]

bool Behavior::setSlotVote(const Basic::Number* const num)

{

bool ok = false;

int vote = num->getInt();

if (vote > 0 && vote <= 65535) {

setVote(static_cast<unsigned int>(vote));

ok = true;

}

return ok;

67

}

//--

// getSlotByIndex()

//--

Basic::Object* Behavior::getSlotByIndex(const int si)

{

return BaseClass::getSlotByIndex(si);

}

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

68

A.1.9 State.h.

//--

// Class: State

//--

#ifndef __Eaagles_Basic_Ubf_State_H__

#define __Eaagles_Basic_Ubf_State_H__

#include "openeaagles/basic/Component.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

//--

// Class: State

//

// Description: The actor’s state vector, as seen by the Behaviors.

//

// Factory name: UbfState

//--

class State : public Basic::Component

{

DECLARE_SUBCLASS(State, Basic::Component)

public:

State();

virtual void updateGlobalState(void);

virtual void updateState(Basic::Component* actor);

69

virtual const State* getUbfStateByType(const std::type_info& type)

const;

};

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

#endif

70

A.1.10 State.cpp.

#include "openeaagles/basic/ubf/State.h"

#include "openeaagles/basic/Pair.h"

#include "openeaagles/basic/PairStream.h"

namespace Eaagles {

namespace Basic {

namespace Ubf {

IMPLEMENT_ABSTRACT_SUBCLASS(State, "UbfState")

EMPTY_SLOTTABLE(State)

EMPTY_CONSTRUCTOR(State)

EMPTY_DELETEDATA(State)

EMPTY_COPYDATA(State)

EMPTY_SERIALIZER(State)

void State::updateGlobalState(void)

{

// Update all my children

Basic::PairStream* subcomponents = getComponents();

if (subcomponents != 0) {

if (isComponentSelected() != 0) {

// When we’ve selected only one

if (getSelectedComponent() != 0) {

State* state = dynamic_cast<State*>(getSelectedComponent());

if (state != 0)

71

state->updateGlobalState();

}

}

else {

// When we should update them all

Basic::List::Item* item = subcomponents->getFirstItem();

while (item != 0) {

Basic::Pair* pair = static_cast<Basic::Pair*>(item->getValue());

Basic::Component* obj =

static_cast<Basic::Component*>(pair->object());

State* state = dynamic_cast<State*>(obj);

if (state != 0)

state->updateGlobalState();

item = item->getNext();

}

}

subcomponents->unref();

subcomponents = 0;

}

}

void State::updateState(Basic::Component* actor)

{

// Update all my children

Basic::PairStream* subcomponents = getComponents();

if (subcomponents != 0) {

if (isComponentSelected() != 0) {

// When we’ve selected only one

72

if (getSelectedComponent() != 0) {

State* state = dynamic_cast<State*>(getSelectedComponent());

if (state != 0)

state->updateState(actor);

}

}

else {

// When we should update them all

Basic::List::Item* item = subcomponents->getFirstItem();

while (item != 0) {

Basic::Pair* pair = static_cast<Basic::Pair*>(item->getValue());

Basic::Component* obj =

static_cast<Basic::Component*>(pair->object());

State* state = dynamic_cast<State*>(obj);

if (state != 0)

state->updateState(actor);

item = item->getNext();

}

}

subcomponents->unref();

subcomponents = 0;

}

}

const State* State::getUbfStateByType(const std::type_info& type) const

{

const State* p = this;

73

if (!p->isClassType(type)) {

const Basic::Pair* pair = findByType(type);

if (pair != 0) {

p = dynamic_cast<const State*>(pair->object());

}

}

return p;

}

} // End Ubf namespace

} // End Basic namespace

} // End Eaagles namespace

74

A.2 Sweep Mission Scenario Implementation Code

A.2.1 FusionArbiter.h.

//--

// Class: FusionArbiter

//--

#ifndef __Eaagles_xBehaviors_FusionArbiter_H__

#define __Eaagles_xBehaviors_FusionArbiter_H__

#include "openeaagles/basic/ubf/Arbiter.h"

namespace Eaagles {

namespace Basic { class List; class Action; }

namespace xBehaviors {

//--

// Class: FusionArbiter

//

// Description: Fusion arbiter for a plane

//--

class FusionArbiter : public Basic::Ubf::Arbiter

{

DECLARE_SUBCLASS(FusionArbiter, Basic::Ubf::Arbiter)

public:

FusionArbiter();

75

// generates an action based upon the recommended actions in the

actionSet

virtual Basic::Ubf::Action* genComplexAction(Basic::List* const

actionSet);

private:

};

}

}

#endif

76

A.2.2 FusionArbiter.cpp.

//--

// Class: FusionArbiter

//--

#include "FusionArbiter.h"

#include "openeaagles/basic/List.h"

#include "PlaneAction.h"

namespace Eaagles {

namespace xBehaviors {

IMPLEMENT_SUBCLASS(FusionArbiter, "FusionArbiter")

EMPTY_SLOTTABLE(FusionArbiter)

EMPTY_CONSTRUCTOR(FusionArbiter)

EMPTY_COPYDATA(FusionArbiter)

EMPTY_SERIALIZER(FusionArbiter)

EMPTY_DELETEDATA(FusionArbiter)

Basic::Ubf::Action* FusionArbiter::genComplexAction(Basic::List* const

actionSet)

{

PlaneAction* complexAction = new PlaneAction;

unsigned int maxVote = 0;

// Here’s our data used for the fusion part of this complex action

77

// which is to average/"fuse" the altitude, heading, and velocity,

// and we’ll launch a missile if that behavior recommends a missile

// launch within a certain threshold of the maximum-voted action

double headingSum = 0;

double altitudeSum = 0;

double velocitySum = 0;

double headingCt = 0;

double altitudeCt = 0;

double velocityCt = 0;

bool launchMsl = false;

unsigned int mslVote = 0;

// process entire action set

const Basic::List::Item* item = actionSet->getFirstItem();

while (item != 0) {

const PlaneAction* action = dynamic_cast<const

PlaneAction*>(item->getValue());

if (action!=0) {

if (action->getVote() > maxVote) {

complexAction->setAPNavigate(action->getAPNavigate());

complexAction->setFollow(action->getFollow());

complexAction->setFollowTarget(action->getFollowTarget());

complexAction->setReleaseWeapon(action->getReleaseWeapon());

complexAction->setWeaponTarget(action->getWeaponTarget());

78

complexAction->setFltMember(action->getFltMember());

complexAction->setVote(action->getVote());

maxVote = action->getVote();

setVote(action->getVote());

}

// Here’s our fusion - this happens for every action

// independent of the vote

// Is any behavior recommending to launch a missile?

if (action->getReleaseWeapon()){

launchMsl = true;

mslVote = action->getVote();

}

// Let’s get a sum for the heading altitude, and velocity

// so we can average...

headingSum += complexAction->getHeading();

velocitySum += complexAction->getVelocity();

altitudeSum += complexAction->getAltitude();

// ...plus a count of the number of values we have

// going into our final average

headingCt++;

altitudeCt++;

velocityCt++;

79

}

else {

std::cout << "Action NOT a PlaneAction\n";

}

// next action

item = item->getNext();

} // end while (iterating through list of acitons)

// Now we’ll set the actions commands averages of the velocity,

altitude, and heading

// Note: these will be useless if we’re engaging the autopilot at all...

if (headingCt == 0 || velocityCt == 0 || altitudeCt == 0){

// we don’t want a divide by zero error, so in this case,

// we’ll just let the maximum voted action decide our

// heading

}

else {

complexAction->setHeading((headingSum / headingCt));

complexAction->setVelocity((velocitySum / velocityCt));

complexAction->setAltitude((altitudeSum / altitudeCt));

}

// Let’s say that we should launch a missile if it’s recommended

// We’ll define "recommended" as within a certain threshold (defined

// above) of the maximum vote

unsigned int mslVoteThreshold = 20;

80

if (launchMsl && (mslVote > (maxVote - mslVoteThreshold))){

complexAction->setReleaseWeapon(true);

}

std::cout << "FollowTarget: " << (complexAction->getFollowTarget() ?

"Yes" : "No") << "\n";

std::cout << "APNavigate: " << (complexAction->getAPNavigate() ? "Yes"

: "No") << "\n";

return complexAction;

}

}

}

81

A.2.3 PlaneAction.h.

//--

// Class: PlaneAction

//--

#ifndef __Eaagles_xBehaviors_PlaneAction_H__

#define __Eaagles_xBehaviors_PlaneAction_H__

#include "openeaagles/basic/ubf/Action.h"

namespace Eaagles {

namespace Simulation { class Player; }

namespace xBehaviors {

//--

// Class: PlaneAction

//--

class PlaneAction : public Basic::Ubf::Action

{

DECLARE_SUBCLASS(PlaneAction, Basic::Ubf::Action)

public:

PlaneAction();

virtual bool execute(Basic::Component* actor);

82

// get/set methods

void setHeading(const double);

double getHeading() const { return heading; }

void setVelocity(const double);

double getVelocity() const { return velocity; }

void setAltitude(const double);

double getAltitude() const { return altitude; }

void setAPNavigate(const bool);

bool getAPNavigate() const { return apNavigate; }

void setFollow(const bool);

bool getFollow() const { return follow; }

void setFollowTarget(const bool);

bool getFollowTarget() const { return followTarget; }

void setReleaseWeapon(const bool);

bool getReleaseWeapon() const { return releaseWeapon; }

void setWeaponTarget(const int);

int getWeaponTarget() const { return weaponTarget; }

void setFltMember(const unsigned int);

unsigned int getFltMember() const { return fltMember; }

83

private:

double heading;

double velocity;

double altitude;

bool apNavigate;

bool follow;

bool followTarget;

bool releaseWeapon;

int weaponTarget;

unsigned int fltMember;

};

}

}

#endif

84

A.2.4 PlaneAction.cpp.

//--

// Class: PlaneAction

//--

#include "PlaneAction.h"

#include "PlaneState.h"

#include "openeaagles/basic/PairStream.h"

#include "openeaagles/simulation/AirVehicle.h"

#include "openeaagles/simulation/DynamicsModels.h"

#include "openeaagles/simulation/Autopilot.h"

#include "openeaagles/simulation/OnboardComputer.h"

#include "openeaagles/simulation/TrackManager.h"

#include "openeaagles/simulation/Track.h"

#include "openeaagles/simulation/StoresMgr.h"

#include "openeaagles/simulation/Missile.h"

#include "openeaagles/simulation/Player.h"

#include "openeaagles/simulation/Simulation.h"

namespace Eaagles {

namespace xBehaviors {

IMPLEMENT_SUBCLASS(PlaneAction, "PlaneAction")

EMPTY_SLOTTABLE(PlaneAction)

EMPTY_DELETEDATA(PlaneAction)

EMPTY_SERIALIZER(PlaneAction)

85

PlaneAction::PlaneAction()

{

STANDARD_CONSTRUCTOR()

heading = 0;

velocity = 0;

altitude = 0;

apNavigate = false;

follow = false;

releaseWeapon = false;

weaponTarget = PlaneState::MAX_TRACKS;

followTarget = false;

fltMember = 0;

}

void PlaneAction::copyData(const PlaneAction& org, const bool cc)

{

BaseClass::copyData(org);

heading = org.heading;

velocity = org.velocity;

86

altitude = org.altitude;

apNavigate = org.apNavigate;

follow = org.follow;

releaseWeapon = org.releaseWeapon;

weaponTarget = org.weaponTarget;

followTarget = org.followTarget;

fltMember = org.fltMember;

}

void PlaneAction::setHeading(const double x)

{

heading = x;

}

void PlaneAction::setVelocity(const double x)

{

velocity = x;

}

void PlaneAction::setAltitude(const double x)

{

altitude = x;

87

}

void PlaneAction::setAPNavigate(const bool x)

{

apNavigate = x;

}

void PlaneAction::setFollow(const bool x)

{

follow = x;

}

void PlaneAction::setFollowTarget(const bool x)

{

followTarget = x;

}

void PlaneAction::setReleaseWeapon(const bool x)

{

releaseWeapon = x;

}

void PlaneAction::setWeaponTarget(const int x)

{

weaponTarget = x;

}

void PlaneAction::setFltMember(const unsigned int x)

88

{

fltMember = x;

}

bool PlaneAction::execute(Basic::Component* actor)

{

Simulation::Player* player = dynamic_cast<Simulation::Player*>(actor);

if (player != 0) {

// We want to release our weapon regardless of our navigation...

if (getReleaseWeapon()){

// Get our stores management, assuming we have one...

Simulation::StoresMgr* sm = player->getStoresManagement();

if (sm != 0){

if (!(sm->isWeaponReleased())){ // Did we just release a weapon?

If so, prob a bad idea fo fire again...

// We need some more stuff here - find the track of the

target...

const Simulation::OnboardComputer* oc =

player->getOnboardComputer();

if (oc != 0) {

// Get our track manager

const Simulation::TrackManager* trackManager =

oc->getTrackManagerByType(typeid(Simulation::TrackManager));

if (trackManager != 0) {

// Now let’s get our track list (all of the radar tracks)

89

SPtr<Simulation::Track> trackList[PlaneState::MAX_TRACKS];

// MAX_TRACKS is 50

unsigned int nTracks =

trackManager->getTrackList(trackList,

PlaneState::MAX_TRACKS);

// Find our player

Simulation::Player* ourTarget =

dynamic_cast<Simulation::Player*>(trackList[getWeaponTarget()]->getTarget());

// Release our missile

Simulation::Missile* missile =

dynamic_cast<Simulation::Missile*>(sm->releaseOneMissile());

// Make sure our target and our missile are real...

if (missile != 0 && ourTarget != 0){

// ... then reset our missile target (for some reason

this doesn’t occur

// when the missile is released) with guidance

(second param)

missile->setTargetPlayer(ourTarget , true);

}

}

} // End if onboard computer

} // End if weapon released

} // end if stores manager

} // end if release weapon

90

if (getAPNavigate()) {

// Get our autopilot and turn on navigation

Simulation::Autopilot* ap = dynamic_cast<Simulation::Autopilot*>(

player->getPilot());

if ((ap != 0)){

ap->setFollowTheLeadMode(false);

ap->setNavMode(true);;

}

}

else if (getFollow()){

// Get our autopilot and turn on navigation

Simulation::Autopilot* ap = dynamic_cast<Simulation::Autopilot*>(

player->getPilot());

if ((ap != 0)){

// We’re following a flight lead (or we are flight lead, but

hopefully we

// won’t reach this point if that’s the case)

// So we want our wall formation:

//

// 1 (flight lead)

// 2 |-- 6 to 9 kft --| |---- 9 to 12 kft ----| 3 (element

lead)

// |-- 6 to 9 kft

--| 4

//

91

// *Angles should be no more than 15 degrees "behind"

respective element lead

// *Vertical spacing is environment-dependent

// Ok, here’s where we figure out who we are, with the

assumption that

// everyone in our flight:

// (a) has a player name of the form: flightname#

// where flightname is the flight’s name (e.g., "Eagle")

// and # is the number of the flight member IAW the diagram

// above.

// (b) the flight member number # is no more than one digit.

Basic::String pname((player->getName())->getString()); // Our

player’s name

// Get the flight name, one less char than full player name

Basic::String flightNm;

pname.getSubString(flightNm, 0, (pname.len() - 1));

if (getFltMember() == 2){ // Follow flight lead (1) trailing left

Basic::String leader(flightNm, "1");

// All function params are in meters, so we need to convert

ap->setLeadFollowingDistanceTrail((500 * Basic::Feet::FT2M)

); // Follow 500 feet behind

92

ap->setLeadFollowingDeltaAltitude((-1000 *

Basic::Feet::FT2M)); // 1000 feet below altitude

ap->setLeadFollowingDistanceRight((-6000 *

Basic::Feet::FT2M)); // Follow 6000 feet to the left

ap->setLeadPlayerName(leader);

}

else if (getFltMember() == 3) { // Follow flight lead (1)

trailing right

Basic::String leader(flightNm, "1");

// All function params are in meters, so we need to convert

ap->setLeadFollowingDistanceTrail((500 * Basic::Feet::FT2M)

); // Follow 500 ft behind

ap->setLeadFollowingDeltaAltitude((-1000 *

Basic::Feet::FT2M)); // 1000 feet below altitude

ap->setLeadFollowingDistanceRight((9000 * Basic::Feet::FT2M)

); // Follow 9000 feet to the right

ap->setLeadPlayerName(leader);

}

else if (getFltMember() == 4){ // Follow element lead (3)

trailing right

Basic::String leader(flightNm, "3");

// All function params are in meters, so we need to convert

ap->setLeadFollowingDistanceTrail((500 * Basic::Feet::FT2M)

); // Follow 500 ft behind

93

ap->setLeadFollowingDeltaAltitude((-1000 *

Basic::Feet::FT2M)); // 1000 feet below altitude

ap->setLeadFollowingDistanceRight((6000 * Basic::Feet::FT2M)

); // Follow 6000 feet to the right

ap->setLeadPlayerName(leader);

}

// Otherwise we’ll assume the defaults are good enough...

}

// Now we can turn on autopilot

ap->setNavMode(true);

ap->setFollowTheLeadMode(true);

}

else if (getFollowTarget()){ // We’re following our target

// We need some more stuff here - find the track of the target...

Simulation::Autopilot* ap = dynamic_cast<Simulation::Autopilot*>(

player->getPilot());

if (ap != 0){

const Simulation::OnboardComputer* oc =

player->getOnboardComputer();

if (oc != 0) {

// Get our track manager

const Simulation::TrackManager* trackManager =

oc->getTrackManagerByType(typeid(Simulation::TrackManager));

if (trackManager != 0) {

94

// Now let’s get our track list (all of the radar tracks)

SPtr<Simulation::Track> trackList[PlaneState::MAX_TRACKS];

// MAX_TRACKS is 50

unsigned int nTracks =

trackManager->getTrackList(trackList,

PlaneState::MAX_TRACKS);

if (trackList[getWeaponTarget()] != 0){

Simulation::Player* ourTarget =

dynamic_cast<Simulation::Player*>(trackList[getWeaponTarget()]->getTarget());

if (ourTarget != 0) {

ap->setLeadPlayer(ourTarget); // Set our target as the

}

}

else {

// why did we get here?

std::cout << "no target\n\n";

}

ap->setLeadFollowingDistanceTrail((2 *

Basic::Distance::NM2M)); // Follow behind

ap->setLeadFollowingDeltaAltitude(0); // Aim for the same

altitude (o meters difference)

ap->setLeadFollowingDistanceRight(0); // Follow directly

behind (0 meters difference)

}

} // End if onboard computer

95

// Now we can turn on autopilot

ap->setNavMode(true);

std::cout << "\n\nPlayer: " << player->getName()->getString() <<

", damage: " << player->getDamage() << "\n\n";

ap->setFollowTheLeadMode(true);

}

}

else { // Don’t need autopilot, we’re controlling "manually" (not

following or using waypoints)

Simulation::Autopilot* ap = dynamic_cast<Simulation::Autopilot*>(

player->getPilot());

if ((ap != 0)){ // Gotta turn everything off...we’re doing

manual control

// This will be on if we were navigating...

ap->setNavMode(false);

// ...and so will these, because nav mode turns them on

ap->setAltitudeHoldMode(false);

ap->setVelocityHoldMode(false);

ap->setHeadingHoldMode(false);

// This will be on if we were following...

ap->setFollowTheLeadMode(false);

96

// We don’t use this yet, but we’ll turn it off just in case

ap->setLoiterMode(false);

}

Simulation::DynamicsModel* model =

dynamic_cast<Simulation::DynamicsModel*>

(player->getDynamicsModel());

if (model != 0) {

// Command our "vector" of heading, velocity, and altitude

model->setCommandedHeadingD(heading, 25, 90); // 25 degrees

per sec is about halfway between the capabilities of the

F-15 and F-22

model->setCommandedVelocityKts(velocity);

model->setCommandedAltitude((altitude * Basic::Distance::FT2M),

(500 * Basic::Distance::FT2M), 90);

}

} // end if-else navigate, follow, follow target, or not

return true;

} // end if player != 0

return false;

}

}

}

97

A.2.5 PlaneBehaviors.h.

//--

// Classes: PlaneBehaviorBase

// PlaneBehaviorBase -> PlaneFlyStraight

// PlaneBehaviorBase -> PlaneTurnRight

//--

#ifndef __Eaagles_xBehaviors_PlaneBehaviors_H__

#define __Eaagles_xBehaviors_PlaneBehaviors_H__

#include "openeaagles/basic/ubf/Behavior.h"

namespace Eaagles {

namespace Basic { class Distance; class State; }

namespace xBehaviors {

//--

// test code for a base class for PlaneBehaviors, implements some common

slots

//--

class PlaneBehaviorBase : public Basic::Ubf::Behavior

{

DECLARE_SUBCLASS(PlaneBehaviorBase, Basic::Ubf::Behavior)

public:

PlaneBehaviorBase();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt)=0;

98

protected:

bool setSlotCriticalAltitude(const Basic::Distance* const msg);

bool setSlotVoteOnCriticalAltitude(const Basic::Number* const num);

bool setSlotVoteOnIncomingMissile(const Basic::Number* const num);

unsigned int voteOnIncomingMissile;

unsigned int voteOnCriticalAltitude;

LCreal criticalAltitude;

};

class PlaneFlyStraight : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneFlyStraight, PlaneBehaviorBase)

public:

PlaneFlyStraight();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneTurnRight : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneTurnRight, PlaneBehaviorBase)

public:

PlaneTurnRight();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

99

class PlaneTurnLeft : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneTurnLeft, PlaneBehaviorBase)

public:

PlaneTurnLeft();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneClimb : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneClimb, PlaneBehaviorBase)

public:

PlaneClimb();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneDive : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneDive, PlaneBehaviorBase)

public:

PlaneDive();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

100

class PlaneNavigate : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneNavigate, PlaneBehaviorBase)

public:

PlaneNavigate();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneFollow : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneFollow, PlaneBehaviorBase)

public:

PlaneFollow();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneReleaseWeapon : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneReleaseWeapon, PlaneBehaviorBase)

public:

PlaneReleaseWeapon();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

101

class PlaneFollowEnemy : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneFollowEnemy, PlaneBehaviorBase)

public:

PlaneFollowEnemy();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

};

class PlaneBreakDefend : public PlaneBehaviorBase

{

DECLARE_SUBCLASS(PlaneBreakDefend, PlaneBehaviorBase)

public:

PlaneBreakDefend();

Basic::Ubf::Action* genAction(const Basic::Ubf::State* const state,

const LCreal dt);

private:

double startHeading;

};

}

}

#endif

102

A.2.6 PlaneBehaviors.cpp.

//--

// Classes: PlaneBehaviorBase

// PlaneBehaviorBase -> PlaneFire

// PlaneBehaviorBase -> PlaneFlyStraight

// PlaneBehaviorBase -> PlaneFollowEnemy

// PlaneBehaviorBase -> PlaneTurn

// PlaneBehaviorBase -> PlaneSlowTurn

// PlaneBehaviorBase -> PlaneClimb

// PlaneBehaviorBase -> PlaneDive

// PlaneBehaviorBase -> PlaneTrim

// PlaneBehaviorBase -> PlaneRoll

// PlaneBehaviorBase -> PlaneBarrelRoll

// PlaneBehaviorBase -> PlaneLoop

//--

#include "PlaneBehaviors.h"

#include "PlaneAction.h"

#include "PlaneState.h"

#include "openeaagles/basic/units/Distances.h"

#include "openeaagles/basic/units/Angles.h"

#include "openeaagles/basic/ubf/State.h"

namespace Eaagles {

namespace xBehaviors {

IMPLEMENT_ABSTRACT_SUBCLASS(PlaneBehaviorBase, "PlaneBehaviorBase")

EMPTY_COPYDATA(PlaneBehaviorBase)

103

EMPTY_SERIALIZER(PlaneBehaviorBase)

EMPTY_DELETEDATA(PlaneBehaviorBase)

// slot table for this class type

BEGIN_SLOTTABLE(PlaneBehaviorBase)

"criticalAltitude",

"voteOnCriticalAltitude",

"voteOnIncomingMissile"

END_SLOTTABLE(PlaneBehaviorBase)

// map slot table to handles

BEGIN_SLOT_MAP(PlaneBehaviorBase)

ON_SLOT(1, setSlotCriticalAltitude, Basic::Distance)

ON_SLOT(2, setSlotVoteOnCriticalAltitude, Basic::Number)

ON_SLOT(3, setSlotVoteOnIncomingMissile, Basic::Number)

END_SLOT_MAP()

PlaneBehaviorBase::PlaneBehaviorBase()

{

STANDARD_CONSTRUCTOR()

criticalAltitude = 3500.0f;

voteOnCriticalAltitude = 0;

voteOnIncomingMissile = 0;

}

bool PlaneBehaviorBase::setSlotCriticalAltitude(const Basic::Distance*

const msg)

104

{

bool ok = false;

if (msg != 0) {

double value = Basic::Meters::convertStatic(*msg);

criticalAltitude = value;

ok = true;

}

return ok;

}

// [1 .. 65535]

bool PlaneBehaviorBase::setSlotVoteOnCriticalAltitude(const Basic::Number*

const num)

{

bool ok = false;

int vote = num->getInt();

if (vote > 0 && vote <= 65535) {

voteOnCriticalAltitude = static_cast<unsigned int>(vote);

ok = true;

}

return ok;

}

// [1 .. 65535]

bool PlaneBehaviorBase::setSlotVoteOnIncomingMissile(const Basic::Number*

const num)

{

bool ok = false;

105

int vote = num->getInt();

if (vote > 0 && vote <= 65535) {

voteOnIncomingMissile = static_cast<unsigned int>(vote);

ok = true;

}

return ok;

}

//--

// getSlotByIndex() for Graphic

//--

Basic::Object* PlaneBehaviorBase::getSlotByIndex(const int si)

{

return BaseClass::getSlotByIndex(si);

}

IMPLEMENT_SUBCLASS(PlaneFlyStraight, "PlaneFlyStraight")

EMPTY_SLOTTABLE(PlaneFlyStraight)

EMPTY_COPYDATA(PlaneFlyStraight)

EMPTY_SERIALIZER(PlaneFlyStraight)

EMPTY_DELETEDATA(PlaneFlyStraight)

PlaneFlyStraight::PlaneFlyStraight()

{

STANDARD_CONSTRUCTOR()

}

106

Basic::Ubf::Action* PlaneFlyStraight::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->isAPNavigating()){ action->setAPNavigate(false); }

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude());

action->setVote(getVote());

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneTurnRight, "PlaneTurnRight")

EMPTY_SLOTTABLE(PlaneTurnRight)

EMPTY_COPYDATA(PlaneTurnRight)

EMPTY_SERIALIZER(PlaneTurnRight)

107

EMPTY_DELETEDATA(PlaneTurnRight)

PlaneTurnRight::PlaneTurnRight()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneTurnRight::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->isAPNavigating()){ action->setAPNavigate(false); }

action->setHeading(pState->getHeading() + 25); // Increase degrees

for right turn

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude());

action->setVote(getVote());

}

108

return action;

}

IMPLEMENT_SUBCLASS(PlaneTurnLeft, "PlaneTurnLeft")

EMPTY_SLOTTABLE(PlaneTurnLeft)

EMPTY_COPYDATA(PlaneTurnLeft)

EMPTY_SERIALIZER(PlaneTurnLeft)

EMPTY_DELETEDATA(PlaneTurnLeft)

PlaneTurnLeft::PlaneTurnLeft()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneTurnLeft::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->isAPNavigating()){ action->setAPNavigate(false); }

109

action->setHeading(pState->getHeading() - 25); // Decrease degrees

for left turn

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude());

action->setVote(getVote());

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneClimb, "PlaneClimb")

EMPTY_SLOTTABLE(PlaneClimb)

EMPTY_COPYDATA(PlaneClimb)

EMPTY_SERIALIZER(PlaneClimb)

EMPTY_DELETEDATA(PlaneClimb)

PlaneClimb::PlaneClimb()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneClimb::genAction(const Basic::Ubf::State* const

state, const LCreal dt)

{

PlaneAction* action = 0;

110

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->isAPNavigating()){ action->setAPNavigate(false); }

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude() + 500); // Increase altitude

action->setVote(getVote());

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneDive, "PlaneDive")

EMPTY_SLOTTABLE(PlaneDive)

EMPTY_COPYDATA(PlaneDive)

EMPTY_SERIALIZER(PlaneDive)

EMPTY_DELETEDATA(PlaneDive)

PlaneDive::PlaneDive()

{

111

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneDive::genAction(const Basic::Ubf::State* const

state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude() - 500); // Decrease altitude

action->setVote(getVote());

}

return action;

}

112

IMPLEMENT_SUBCLASS(PlaneFollow, "PlaneFollow")

EMPTY_SLOTTABLE(PlaneFollow)

EMPTY_COPYDATA(PlaneFollow)

EMPTY_SERIALIZER(PlaneFollow)

EMPTY_DELETEDATA(PlaneFollow)

PlaneFollow::PlaneFollow()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneFollow::genAction(const Basic::Ubf::State* const

state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if ((pState->isLead())){

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

113

action->setVote(1);

}

else {

action->setAPNavigate(false);

action->setFollow(true);

action->setFollowTarget(false);

action->setVote(getVote());

}

action->setFltMember(pState->getFlightMember());

std::cout << "\nPlaneFollow, vote: " << action->getVote() << "\n";

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneNavigate, "PlaneNavigate")

EMPTY_SLOTTABLE(PlaneNavigate)

EMPTY_COPYDATA(PlaneNavigate)

EMPTY_SERIALIZER(PlaneNavigate)

EMPTY_DELETEDATA(PlaneNavigate)

PlaneNavigate::PlaneNavigate()

{

STANDARD_CONSTRUCTOR()

114

}

Basic::Ubf::Action* PlaneNavigate::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if ((pState->isLead())) {

action->setAPNavigate(true);

action->setFollow(false);

action->setFollowTarget(false);

action->setVote(getVote());

}

else {

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

// Just go straight

action->setAltitude(pState->getAltitude());

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

115

action->setVote(1);

}

action->setFltMember(pState->getFlightMember());

std::cout << "PlaneNavigate, vote: " << action->getVote() << "\n";

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneReleaseWeapon, "PlaneReleaseWeapon")

EMPTY_SLOTTABLE(PlaneReleaseWeapon)

EMPTY_COPYDATA(PlaneReleaseWeapon)

EMPTY_SERIALIZER(PlaneReleaseWeapon)

EMPTY_DELETEDATA(PlaneReleaseWeapon)

PlaneReleaseWeapon::PlaneReleaseWeapon()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneReleaseWeapon::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

116

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

// Maintain heading/velocity/altitude...

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setAltitude(pState->getAltitude());

action->setReleaseWeapon(false); // We’ll set it false upfront, then

do some tests to see if it should really be true...

// Now for launching the missile...

if (pState->getTargetTrack() != PlaneState::MAX_TRACKS){ // We have a

target that we’re tracking

// Let’s set our target...

action->setWeaponTarget(pState->getTargetTrack());

// Now let’s determine if target is in our WEZ (weapons employment

zone):

117

// What is our WEZ? It would be aircraft (and potentially

adversary)-dependent

// A real WEZ is teardrop shaped off the nose of our aircraft, but

for simplicity,

// we’re going to use a 3 dimensional "windshield"ish-shaped WEZ:

// For our case, we will be using missiles with a maximum burst

range of 50 nm,

// so let’s make our max WEZ range 45 nm, our min WEZ range 1 nm.

// We want our heading and pitch to the target no more than 20

degrees off our own nose

if (pState->getDistanceToTracked(pState->getTargetTrack()) < (45

* Basic::NauticalMiles::NM2M)

&& pState->getDistanceToTracked(pState->getTargetTrack()) > (0.5

* Basic::NauticalMiles::NM2M) // Distance test

&& pState->getHeadingToTracked(pState->getTargetTrack()) <= (10)

&& pState->getHeadingToTracked(pState->getTargetTrack()) >= (-10)

// Heading test

&& pState->getPitchToTracked(pState->getTargetTrack()) <= (10)

&& pState->getPitchToTracked(pState->getTargetTrack()) >= (-10)

// Pitch test

&& pState->getNumMissiles() > 0){ // Make sure we actually have

some missiles...

// This means our target is in the WEZ and we have available

missiles!

118

// Now let’s do some math to utilize our timer and incorporate

our distance from the target

double distNM = (

(pState->getDistanceToTracked(pState->getTargetTrack())) *

Basic::NauticalMiles::M2NM);

std::cout << "distNM = " << distNM << "\n";

// If we’re closer, we should fire more often...

// So, let’s say we’re 50 NM away - this means our timer needs

to be 50 * 10 = 500 to fire again

// But, if we’re 4 NM away, our timer needs to be 4 * 50 = 200

to fire again...

if ((pState->getMissileTimer() / distNM) > 15) {

// Our timer is triggered... FIRE!

action->setReleaseWeapon(true);

}

// Here is where we can calculate a probability of kill p_k and

then possibly use it for our vote

}

} // End if get target track

// Also should we incorporate the probability of a kill into our

vote...? Maybe...

// it would be a good opportunity to demonstrate the usefulness of a

function-based

119

// vote

if ((action->getReleaseWeapon())){

action->setVote(getVote());

}

else {

action->setVote(1);

}

action->setFltMember(pState->getFlightMember());

std::cout << "PlaneReleaseWeapon, vote: " << action->getVote() << "\n";

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneFollowEnemy, "PlaneFollowEnemy")

EMPTY_SLOTTABLE(PlaneFollowEnemy)

EMPTY_COPYDATA(PlaneFollowEnemy)

EMPTY_SERIALIZER(PlaneFollowEnemy)

EMPTY_DELETEDATA(PlaneFollowEnemy)

PlaneFollowEnemy::PlaneFollowEnemy()

{

STANDARD_CONSTRUCTOR()

}

120

Basic::Ubf::Action* PlaneFollowEnemy::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->getTargetTrack() != PlaneState::MAX_TRACKS){ // We have a

target

// Test to see if we’re "BVR" or "WVR"

if ((pState->getDistanceToTracked(pState->getTargetTrack()) >=

(1.5 * Basic::Distance::NM2M))) { // BVR (farther away)

action->setAPNavigate(false);

action->setFollow(false); // This will turn on the autopilot for

following

action->setFollowTarget(true); // This will be our trigger to

switch who we follow to the enemy

action->setWeaponTarget(pState->getTargetTrack());

action->setVote(getVote()); // More important to follow if we

have a target...

}

121

else { // We’re closer than some set distance, we’ll call this

"within visual range" (WVR) and do a different manuever

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

action->setWeaponTarget(pState->getTargetTrack()); // We should

still set our target, right?

// Where is our target?

bool tgtAbove =

(((pState->getPitchToTracked(pState->getTargetTrack()))) >=

0);

bool tgtRight = (((

(pState->getHeadingToTracked(pState->getTargetTrack()))) >

0)

&& ((

(pState->getHeadingToTracked(pState->getTargetTrack()))

) < 180)) ;

// If he’s higher than us, let’s dive and speed up

if (tgtAbove){

action->setAltitude((pState->getAltitude() - 500));

action->setVelocity((pState->getVelocity() + 100));

}

122

else {

action->setAltitude((pState->getAltitude() + 500));

action->setVelocity((pState->getVelocity() - 100));

} // otherwise, climb and slow

// If he’s to our right, turn left

if (tgtRight){ action->setHeading((pState->getHeading() - 25)

); }

else { action->setHeading((pState->getHeading() + 25)

); } // otherwise, turn right

// Turn right and climb for the advantage...

//action->setHeading((pState->getHeading() + 15));

//action->setAltitude((pState->getAltitude() + 200));

//action->setVelocity((pState->getVelocity() + 100));

action->setVote(getVote());

}

}

else { // We don’t have a target, follow no one, just keep going

straight

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

action->setAltitude(pState->getAltitude());

123

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setVote(1);

}

action->setFltMember(pState->getFlightMember());

std::cout << "PlaneFollowEnemy, vote: " << action->getVote() << "\n";

}

return action;

}

IMPLEMENT_SUBCLASS(PlaneBreakDefend, "PlaneBreakDefend")

EMPTY_SLOTTABLE(PlaneBreakDefend)

EMPTY_COPYDATA(PlaneBreakDefend)

EMPTY_SERIALIZER(PlaneBreakDefend)

EMPTY_DELETEDATA(PlaneBreakDefend)

PlaneBreakDefend::PlaneBreakDefend()

{

STANDARD_CONSTRUCTOR()

}

Basic::Ubf::Action* PlaneBreakDefend::genAction(const Basic::Ubf::State*

const state, const LCreal dt)

{

124

PlaneAction* action = 0;

const PlaneState* pState = dynamic_cast<const

PlaneState*>(state->getUbfStateByType(typeid(PlaneState)));

if (pState!=0 && pState->isAlive()) {

action = new PlaneAction();

if (pState->isIncomingMissile()){ // We’ve got a missile inbound,

let’s break

// Make sure we’re not navigating or following - we need to break

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

// How far is the missile away? Maybe we shouldn’t break until it’s a

bit closer...

// Maybe we could use the farther away missile to report to our

flight lead...

if (pState->isProximityWarning()){

// Where is the missile? Right, left, or behind us?

bool mslRight = ((((

(pState->getHeadingToTracked(pState->getMissileTrack()))) >= 0

)

125

&& ((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) <= 135))

|| (((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) <= -225)

&& ((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) >= -360)));

bool mslLeft = ((((

(pState->getHeadingToTracked(pState->getMissileTrack()))) < 0)

&& ((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) >= -135))

|| (((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) >= 225)

&& ((

(pState->getHeadingToTracked(pState->getMissileTrack()))

) <= 360))) ;

// Is the missile coming from the front right, front left, or from

behind (or straight ahead)

if (mslRight) {

action->setHeading(pState->getHeading() - 30);

126

action->setAltitude(pState->getAltitude() -

(pState->getAltitude() / 2)); // Drop half our altitude

(dive)

action->setVelocity(pState->getVelocity() + 100); // Speed up!

} // Hard left turn

else if (mslLeft) {

action->setHeading(pState->getHeading() + 30);

action->setAltitude(pState->getAltitude() -

(pState->getAltitude() / 2)); // Drop half our altitude

(dive)

action->setVelocity(pState->getVelocity() + 100); // Speed up!

} // Hard right turn

else {

action->setHeading(pState->getHeading() + 30); // Right turn

action->setAltitude(pState->getAltitude() - (3 *

(pState->getAltitude() / 4))); // Drop our altitude (dive)

action->setVelocity(pState->getVelocity() - 200); // Slow down!

} // behind, let’s dive

// We can drop countermeasures here too, unless we want to do that

in a different behavior...

action->setVote(getVote()); // It’s quite important

}

else { // The missile isn’t "close" yet, so let’s maneuver early to

help us avoid it...

action->setAltitude(pState->getAltitude() + 1000); //

Gain potential energy for our dive

127

action->setVelocity(pState->getVelocity()); // I

guess we’ll maintain speed for now...?

// Let’s do manuevers that help us get ready to evade the missile

when it gets close...

double headingToMissileD =

(pState->getHeadingToTracked(pState->getMissileTrack()));

if ((headingToMissileD >= 0) && (headingToMissileD <= 180)) { //

Turn towards the missile, slower as we get close to the heading

we want

action->setHeading(pState->getHeading() - (0.25 *

headingToMissileD));

}

else if ((headingToMissileD < 0) && (headingToMissileD >= -180))

{

action->setHeading(pState->getHeading() + (0.25 *

headingToMissileD));

}

else {

action->setHeading(pState->getHeading() + (0.25 *

headingToMissileD));

}

action->setVote((getVote() - (0.3 * getVote()))); // Not as

important if we’re far away

}

128

}

else {

// Make sure we’re not navigating or following - just go straight

action->setAPNavigate(false);

action->setFollow(false);

action->setFollowTarget(false);

action->setAltitude(pState->getAltitude());

action->setHeading(pState->getHeading());

action->setVelocity(pState->getVelocity());

action->setVote(1); // Not a big deal otherwise

}

action->setFltMember(pState->getFlightMember());

std::cout << "PlaneBreakDefend, vote: " << action->getVote() << "\n";

}

return action;

}

} // namespace xBehaviors

} // namespace Eaagles

129

A.2.7 PlaneState.h.

//--

// Class: PlaneState

//--

#ifndef __Eaagles_xBehaviors_PlaneState_H__

#define __Eaagles_xBehaviors_PlaneState_H__

#include "openeaagles/basic/ubf/State.h"

namespace Eaagles {

namespace Simulation { class Player; }

namespace xBehaviors {

//--

// Class: PlaneState

//

// Description: this implementation of PlaneState assumes that player

using this

// state has only one missile (or is ok with firing all

missiles at

// first target)

//--

class PlaneState : public Basic::Ubf::State

{

DECLARE_SUBCLASS(PlaneState, Basic::Ubf::State)

public:

130

PlaneState();

// Basic::Component Interface

virtual void reset();

// NewUbf::UbfState interface

virtual void updateState(Basic::Component* actor);

// set/get

virtual void setAlive(const bool x) { alive = x; return; }

virtual bool isAlive() const { return alive; }

virtual void setHeading(const double x) { heading = x; return; }

virtual double getHeading() const { return heading; }

virtual void setAltitude(const double x) { altitude = x; return; }

virtual double getAltitude() const { return altitude; }

virtual void setVelocity(const double x) { velocity = x; return; }

virtual double getVelocity() const { return velocity; }

virtual void setAPNavigating(const bool x) { apNavigating = x;

return; }

virtual bool isAPNavigating() const { return apNavigating; }

virtual void setFollowing(const bool x) { following = x; return; }

virtual bool isFollowing() const { return following; }

131

virtual void setIncomingMissile(const bool x) { incomingMissile = x;

return; }

virtual bool isIncomingMissile() const { return incomingMissile; }

virtual void setProximityWarning(const bool x) { proximityWarning = x;

return; }

virtual bool isProximityWarning() const { return proximityWarning;

}

//sets the pitch to current object being tracked

virtual void setPitchToTracked(const unsigned int track, const double

angle);

virtual double getPitchToTracked(const unsigned int track) const;

virtual void setHeadingToTracked(const unsigned int track, const double

angle);

virtual double getHeadingToTracked(const unsigned int track) const;

virtual void setDistanceToTracked(const unsigned int track, const

double distance);

virtual double getDistanceToTracked(const unsigned int track) const;

virtual void setNumTracks(const unsigned int x) { numTracks = x;

return; }

virtual unsigned int getNumTracks() const { return numTracks; }

//tracking setter

virtual void setTracking(const bool x) { tracking = x; return; }

132

//returns true if plane is currently tracking

virtual bool isTracking() const { return tracking; }

virtual void setLead(const unsigned int x) { lead = x; return; }

virtual unsigned int getLead() { return lead; }

virtual bool isLead() const { return (flightMember ==

lead); }

virtual void setFlightMember(const unsigned int x) { flightMember = x;

return; }

virtual unsigned int getFlightMember() const { return

flightMember; }

virtual void setNumMissiles(const unsigned int x) { numMissiles = x;

return; }

virtual unsigned int getNumMissiles() const { return

numMissiles; }

virtual void setMissileTimer(const double x) { missileTimer = x;

return; }

virtual unsigned int getMissileTimer() const { return

static_cast<unsigned int>(missileTimer); }

virtual void incMissileTimer(const double x) {

missileTimer += x; return; }

virtual void setTargetTrack(const unsigned int x) { targetTrack = x;

return; }

virtual unsigned int getTargetTrack() const { return targetTrack; }

133

virtual void setMissileTrack(const unsigned int x) { missileTrack = x;

return; }

virtual unsigned int getMissileTrack() const { return missileTrack; }

public:

static const unsigned int MAX_TRACKS = 50;

private:

void initData();

bool alive;

double heading;

double altitude;

double velocity;

bool apNavigating;

bool following;

unsigned int lead;

unsigned int flightMember;

// From old UBF, for missile and enemy tracking

double pitchToTracked[MAX_TRACKS];

double headingToTracked[MAX_TRACKS];

double distanceToTracked[MAX_TRACKS];

unsigned int targetTrack;

unsigned int missileTrack;

134

unsigned int numTracks;

bool tracking;

unsigned int numMissiles;

double missileTimer;

bool incomingMissile;

bool proximityWarning;

};

}

}

#endif

135

A.2.8 PlaneState.cpp.

//--

// Class: PlaneState

//--

#include <string.h>

#include "PlaneState.h"

#include "openeaagles/basic/List.h"

#include "openeaagles/basic/PairStream.h"

#include "openeaagles/simulation/Radar.h"

#include "openeaagles/simulation/Rwr.h"

#include "openeaagles/simulation/TrackManager.h"

#include "openeaagles/simulation/Track.h"

#include "openeaagles/simulation/OnboardComputer.h"

#include "openeaagles/simulation/StoresMgr.h"

#include "openeaagles/simulation/Missile.h"

#include "openeaagles/simulation/AirVehicle.h"

#include "openeaagles/simulation/Simulation.h"

#include "openeaagles/simulation/Autopilot.h"

namespace Eaagles {

namespace xBehaviors {

IMPLEMENT_SUBCLASS(PlaneState, "PlaneState")

EMPTY_SLOTTABLE(PlaneState)

136

EMPTY_DELETEDATA(PlaneState)

EMPTY_COPYDATA(PlaneState)

EMPTY_SERIALIZER(PlaneState)

PlaneState::PlaneState()

{

STANDARD_CONSTRUCTOR()

initData();

}

void PlaneState::initData()

{

alive = false;

heading = 0;

altitude = 0;

velocity = 0;

apNavigating = false;

following = false;

// From old UBF

for (unsigned int i=0; i<MAX_TRACKS;i++) {

pitchToTracked[i] = 0.0;

headingToTracked[i] = 0.0;

distanceToTracked[i] = 0.0;

}

targetTrack = MAX_TRACKS; // 0 is a valid target track, use MAX_TRACKS

to signal

137

// "no tgt track"

numTracks = 0;

numMissiles = 0;

tracking = false;

incomingMissile = false;

missileTimer = 500;

lead = 0;

flightMember = 0;

}

void PlaneState::reset()

{

initData();

BaseClass::reset();

}

void PlaneState::updateState(Basic::Component* actor)

{

setAlive(false); // Set up

// Get our player

Simulation::Player* player = dynamic_cast<Simulation::Player*>(actor);

if (player != 0) {

// Get some simple info about the player and set our UBF state

accordingly

setAltitude(player->getAltitudeFt());

138

setAlive(player->isActive());

setHeading(player->getHeadingD());

setVelocity(player->getGroundSpeedKts());

// Is autopilot navigating?

Simulation::Autopilot* ap = dynamic_cast<Simulation::Autopilot*>(

player->getPilot());

if (ap != 0) { // We have an autopilot

setAPNavigating(ap->isNavModeOn());

setFollowing(ap->isFollowTheLeadModeOn());

}

else { // No autopilot

setAPNavigating(false);

setFollowing(false);

}

// Set our flight lead and flight member based on wall formation:

// Let’s find our flight and flight member number...

Basic::String pname((player->getName())->getString()); // Our

player’s name

std::cout << "\nName: " << pname << "\n";

// Get the last character, which is the flight member #

Basic::String fltMember;

Basic::String flightNm;

139

pname.getSubString(flightNm, 0, (pname.len() - 1));

pname.getSubString(fltMember, (pname.len() - 1), pname.len());

// Who are we?

unsigned int me = fltMember.getInteger();

// Now let’s see if anyone who outranks us is dead...

for (unsigned int i = 1; i <= 4; i++){

char fltNum[2];

std::sprintf(fltNum, "%d", i);

Basic::String fltMbrName(flightNm, fltNum); // Which flight

member are we interested in?

// If the flight member in question is higher ranking than me...

if (i < me){

Simulation::Player* fltMbr =

dynamic_cast<Simulation::Player*>(player->getSimulation()->findPlayerByName(fltMbrName));

if (fltMbr != 0){ // Does this flight member exist?

if (!(fltMbr->isActive())){ // Are they dead?

me--; // If so, we’re higher ranking than we thought...

}

}

}

}

setFlightMember(me); // Now we can set our place in the flight...

// Who is our lead? The flight lead or the element lead?

if (getFlightMember() == 4){

140

setLead(3);

}

else {

setLead(1);

}

// Get our air vehicle

Simulation::AirVehicle* airVehicle =

dynamic_cast<Simulation::AirVehicle*>(actor);

// Let’s calculate how many missiles we have

// and see if we just launched a missile

const Simulation::StoresMgr* stores =

airVehicle->getStoresManagement();

if (stores != 0) {

// For now we’re assuming every weapon is a missile

if (getNumMissiles() > stores->available()){ // Did we just launch

a missile? (1 less in our stores)

setMissileTimer(0); // Restart our missile timer for our

behavior...

}

else {

incMissileTimer(1); // Increment our missile timer otherwise

}

// Now we update our number of weapons

setNumMissiles(stores->available());

141

}

else { // We don’t have any stores

setNumMissiles(0);

} // End if-else stores management

// Get our onboard computer

const Simulation::OnboardComputer* oc =

airVehicle->getOnboardComputer();

if (oc != 0) {

// Get our track manager

const Simulation::TrackManager* trackManager =

oc->getTrackManagerByType(typeid(Simulation::TrackManager));

if (trackManager != 0) {

// Now let’s get our track list (all of the radar tracks)

SPtr<Simulation::Track> trackList[MAX_TRACKS]; // MAX_TRACKS is

50

unsigned int nTracks = trackManager->getTrackList(trackList,

MAX_TRACKS);

setNumTracks(((nTracks < MAX_TRACKS) ? nTracks : MAX_TRACKS));

// Set the number of tracks that we see...or MAX_TRACKS

// if

there

are

more

than

MAX_TRACKS

142

// Some tracking stuff to see if we’re still tracking enemies or

missiles

unsigned int numEnemies = 0;

unsigned int numMissiles = 0;

// If we don’t see any tracks

if (nTracks == 0) {

setTracking(false);

}

else {

setTracking(true); // Not indicitave of a target, just that

we’re tracking (i.e.,

// we see one or more tracks on our radar)...

// Initialize our target and missile tracks in case we don’t

have a target...

setTargetTrack(PlaneState::MAX_TRACKS);

setMissileTrack(PlaneState::MAX_TRACKS);

// Initialize our missile warnings

setIncomingMissile(false);

setProximityWarning(false);

// So we can find the closest target / missile

double minAngleTarget = 180;

double minDistMissile = -1.0;

// Iterate through each of the tracks

143

for (int trackIndex = nTracks -1; trackIndex >= 0;

trackIndex--) {

// Set the heading, pitch, and distance to each of the

tracks

setHeadingToTracked(trackIndex,

trackList[trackIndex]->getRelAzimuthD());

setPitchToTracked(trackIndex,

trackList[trackIndex]->getElevationD());

setDistanceToTracked(trackIndex,

trackList[trackIndex]->getRange());

// What is the target track? An aircraft or a missile?

(Later we could look for other stuff,

// like ground vehicles or buildings, etc.)

if

(trackList[trackIndex]->getTarget()->isMajorType(Simulation::Player::AIR_VEHICLE)){

// Now we should check if this is a worthy track to be

our "target"

if (trackList[trackIndex]->getTarget()->isActive()

// Is it alive?

&&

trackList[trackIndex]->getTarget()->isNotSide(player->getSide()))

{ // Is it an enemy?

// We have at least one active enemy aircraft (so we

have at least one possible target)

numEnemies++;

144

unsigned int missilesInbound = 0;

// Let’s look to see if this target is already

targeted by a missile... if so, we want to go on to

// our next potential target, and ignore this one...

for (int trackIndex2 = nTracks -1; trackIndex2 >= 0;

trackIndex2--) {

// Let’s only look at missiles, looking at other

friendly aircraft would be too complicated...

Simulation::Weapon* msl =

dynamic_cast<Simulation::Weapon*>(trackList[trackIndex2]->getTarget());

if (msl != 0){

if (msl->getTargetPlayer() != 0){ // Make sure

the target player still exists...

// Check to see if our current potential

target (trackIndex) is being pursued by a

missile (trackIndex2 and msl)

unsigned short missileTargetID =

(msl->getTargetPlayer()->getID()); // the

missile’s target

unsigned short playerID =

(trackList[trackIndex]->getTarget()->getID());

// the player we want to target

if ((missileTargetID) == (playerID)){

missilesInbound++;

}

145

} // end if target player exists

} // end if it’s a missile

} // End for loop through looking for missiles

// Make sure it’s not already targeted by missiles...

if (missilesInbound == 0) {

// These things mean that we can set this as our

target, but first

// lets check that it’s the "best" track for us

(smallest angle to target)

double angleTgt =

trackList[trackIndex]->getRelAzimuthD();

// Let’s get our angle in the -180 to 180 degree

window

if (angleTgt > 180) { angleTgt = angleTgt - 360; }

else if (angleTgt < -180) { angleTgt = angleTgt +

360; }

// Absolute value for easiest comparison

angleTgt = std::abs(angleTgt);

if ((angleTgt < minAngleTarget)){ // it’s the

best target, or...

setTargetTrack(trackIndex); // ...if it isn’t,

we’ll set this as our target

minAngleTarget = (angleTgt); // and set the

min angle

146

} // End if the enemy is best

} // end if our intended target is already targeted

} // End if it’s alive and an enemy

}

// If the target track is a weapon, we want to look for

incoming missiles

else { //if

(trackList[trackIndex]->getTarget()->isMajorType(Simulation::Player::WEAPON)){

Simulation::Weapon* msl =

dynamic_cast<Simulation::Weapon*>(trackList[trackIndex]->getTarget());

if (msl != 0){

if (msl->getTargetPlayer() != 0){ // Make sure the

target player exists...

if ((msl->getTargetPlayer()->getID()) ==

(player->getID())){ // Is it us?? ID’s are

unique by player

setIncomingMissile(true); // We have an inbound

missile whether it’s closest or not -

AAAAHHHH!

numMissiles++;

// Let’s make sure it’s the closest missile (if

there are multiple...but we certainly hope

not!)

if ((trackList[trackIndex]->getRange() <

minDistMissile) || (minDistMissile == -1.0)){

147

setMissileTrack(trackIndex);

minDistMissile =

trackList[trackIndex]->getRange();

}

// Set our proximity warning if the missile is

within a certain distance threshold

if (((minDistMissile <= (2 *

Basic::Distance::NM2M)) && (minDistMissile !=

-1.0))){

setProximityWarning(true);

}

else { setProximityWarning(false); }

} // end if target player is us

} // end if the target player is real

} // end if the missile is real

} // end if-else what type is it?

} // End for (loop through tracks)

} // end if-else we’re not tracking targets

// If we no longer have a valid target, we need to remove that

from our state...

if (numEnemies == 0) { setTargetTrack(PlaneState::MAX_TRACKS);

}

// If we no longer are tracking missiles, we should remove any

incoming missile warnings...

148

if (numMissiles == 0) {

setIncomingMissile(false);

setProximityWarning(false);

setMissileTrack(PlaneState::MAX_TRACKS);

}

} // End if track manager

} // End if onboard computer

} // end if our player exists

BaseClass::updateState(actor);

}

void PlaneState::setPitchToTracked(const unsigned int trackNumber, const

double angle)

{

if (trackNumber<numTracks) {

pitchToTracked[trackNumber] = angle;

}

}

double PlaneState::getPitchToTracked(const unsigned int trackNumber) const

{

if (trackNumber<numTracks) {

return pitchToTracked[trackNumber];

}

149

std::cout << trackNumber << " is out of bounds of the tracking array of

PlaneState! Error!\n";

return trackNumber;

}

void PlaneState::setHeadingToTracked(const unsigned int trackNumber, const

double angle)

{

if (trackNumber < numTracks) {

headingToTracked[trackNumber] = angle;

}

}

double PlaneState::getHeadingToTracked(const unsigned int trackNumber)

const

{

if (trackNumber < numTracks) {

return headingToTracked[trackNumber];

}

std::cout << trackNumber << " is out of bounds of the tracking array of

PlaneState! Error!\n";

return trackNumber;

}

void PlaneState::setDistanceToTracked(const unsigned int trackNumber,

const double distance)

{

if (trackNumber < numTracks) {

150

distanceToTracked[trackNumber] = distance;

}

}

double PlaneState::getDistanceToTracked(const unsigned int trackNumber)

const

{

if (trackNumber < numTracks) {

return distanceToTracked[trackNumber];

}

std::cout << trackNumber << " is out of bounds of the tracking array of

PlaneState! Error!\n";

return trackNumber;

}

}

}

151

A.2.9 WTAArbiter.h.

//--

// Class: WTAArbiter

//--

#ifndef __Eaagles_xBehaviors_WTAArbiter_H__

#define __Eaagles_xBehaviors_WTAArbiter_H__

#include "openeaagles/basic/ubf/Arbiter.h"

namespace Eaagles {

namespace Basic { class List; class Action; }

namespace xBehaviors {

//--

// Class: WTAArbiter

//

// Description: Winner takes all arbiter for a plane

//--

class WTAArbiter : public Basic::Ubf::Arbiter

{

DECLARE_SUBCLASS(WTAArbiter, Basic::Ubf::Arbiter)

public:

WTAArbiter();

152

// generates an action based upon the recommended actions in the

actionSet

virtual Basic::Ubf::Action* genComplexAction(Basic::List* const

actionSet);

private:

};

}

}

#endif

153

A.2.10 WTAArbiter.cpp.

//--

// Class: WTAArbiter

//--

#include "WTAArbiter.h"

#include "openeaagles/basic/List.h"

#include "PlaneAction.h"

namespace Eaagles {

namespace xBehaviors {

IMPLEMENT_SUBCLASS(WTAArbiter, "WTAArbiter")

EMPTY_SLOTTABLE(WTAArbiter)

EMPTY_CONSTRUCTOR(WTAArbiter)

EMPTY_COPYDATA(WTAArbiter)

EMPTY_SERIALIZER(WTAArbiter)

EMPTY_DELETEDATA(WTAArbiter)

Basic::Ubf::Action* WTAArbiter::genComplexAction(Basic::List* const

actionSet)

{

PlaneAction* complexAction = new PlaneAction;

unsigned int maxVote = 0;

// process entire action set

154

const Basic::List::Item* item = actionSet->getFirstItem();

while (item != 0) {

const PlaneAction* action = dynamic_cast<const

PlaneAction*>(item->getValue());

if (action!=0) {

if (action->getVote() > maxVote) {

complexAction->setHeading(action->getHeading());

complexAction->setAltitude(action->getAltitude());

complexAction->setVelocity(action->getVelocity());

complexAction->setAPNavigate(action->getAPNavigate());

complexAction->setFollow(action->getFollow());

complexAction->setFollowTarget(action->getFollowTarget());

complexAction->setReleaseWeapon(action->getReleaseWeapon());

complexAction->setWeaponTarget(action->getWeaponTarget());

complexAction->setFltMember(action->getFltMember());

complexAction->setVote(action->getVote());

maxVote = action->getVote();

setVote(action->getVote());

}

}

else {

std::cout << "Action NOT a PlaneAction\n";

}

// next action

155

item = item->getNext();

}

std::cout << "FollowTarget: " << (complexAction->getFollowTarget() ?

"Yes" : "No") << "\n";

std::cout << "APNavigate: " << (complexAction->getAPNavigate() ? "Yes"

: "No") << "\n";

return complexAction;

}

}

}

A.2.11 Test.

if (test){

}

A.2.12 Test 2.

if (test2){

}

A.3 Test 3

if (test3){

}

156

Bibliography

[1] R. A. Brooks, “A robust layered control system for a mobile robot,” Robotics and

Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23, 1986.

[2] E. Gat et al., “On three-layer architectures,” 1998.

[3] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Bradford Books, MIT

Press, 1986.

[4] B. G. Woolley and G. L. Peterson, “Unified behavior framework for reactive robot

control,” Journal of Intelligent and Robotic Systems, vol. 55, no. 2-3, pp. 155–176,

2009.

[5] “human eye,” Encyclopedia Britannica. Encyclopedia Britannica Online. Encyclope-

dia Britannica Inc., 2015. Web, vol. 16, Feb. 2015.

[6] N. J. Nilsson, “Shakey the robot,” tech. rep., DTIC Document, 1984.

[7] D. Isla, “Gdc 2005 proceeding: Handling complexity in the halo 2 ai,” Retrieved

October, vol. 21, p. 2009, 2005.

[8] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a unified

behavior trees framework for robot control,” in Robotics and Automation (ICRA),

2014 IEEE International Conference on, 2014.

[9] D. D. Hodson, D. P. Gehl, and R. O. Baldwin, “Building distributed simulations

utilizing the eaagles framework,” in The Interservice/Industry Training, Simulation

& Education Conference (I/ITSEC), vol. 2006, NTSA, 2006.

157

[10] S. L. G. G. L. Z. Sandeep S. Mulgund, Karen A. Harper, “Situation awareness

for pilot-in-the-loop evaluation,” Tech. Rep. R96011, Charles River Analytics, 725

Concord Ave. Cambridge, MA 02138, mar 1999.

158

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2015 Master’s Thesis Oct 2013–Mar 2015

The Unified Behavior Framework for
the Simulation of Autonomous Agents

Roberson, Daniel M., First Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-MS-15-M-014

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Since the 1980s, researchers have designed a variety of robot control architectures intending to imbue robots with
some degree of autonomy. A recently developed architecture, the UBF, implements a variation of the three-layer
architecture with a reactive controller to rapidly make behavior decisions. Additionally, the UBF utilizes software design
patterns that promote the reuse of code and free designers to dynamically switch between behavior paradigms. This
paper explores the application of the UBF to the simulation domain. By employing software engineering principles
to implement the UBF architecture within an open-source simulation framework, we have extended the versatility of
both. The consolidation of these frameworks assists the designer in efficiently constructing simulations of one or more
autonomous agents that exhibit similar behaviors. A typical air-to-air engagement scenario between six UBF agents
controlling both friendly and enemy aircraft demonstrates the utility of the UBF architecture as a flexible mechanism
for reusing behavior code and rapidly creating autonomous agents in simulation.

15. SUBJECT TERMS

Autonomy, UBF, Robotics, Simulation

U U U UU 168

Dr. Douglas Hodson (ENG)

(937) 255-3636 x4719 douglas.hodson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-26-2015

	The Unified Behavior Framework for the Simulation of Autonomous Agents
	Daniel M. Roberson
	Recommended Citation

	Abstract
	Table of Contents
	List of Figures
	List of Acronyms
	Introduction
	Problem Statement
	Research Goal
	Thesis Overview

	Background
	Early Inroads in Autonomous Robots
	A Behavioral Perspective
	Three Layers of Autonomy
	The Commercial Gaming Industry's Solution
	The Unified Behavior Framework
	The Simulation Framework
	The Scenario Under Study

	IEEE Conference Paper
	Conclusion
	Controller Complexity
	UBF versus Behavior Trees
	Granularity of Behaviors
	Future Work

	Appendix: Implementation Code
	OpenEaagles UBF Implementation Code
	Sweep Mission Scenario Implementation Code
	Test 3

