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Abstract

A method is presented to extend current graph-based Air Traffic Management optimization

frameworks. In general, Air Traffic Management is the process of guiding a finite set of

aircraft, each along its pre-determined path within some local airspace, subject to various physical,

policy, procedural and operational restrictions. This research addresses several limitations of

current graph-based Air Traffic Management optimization methods by incorporating techniques

to account for stochastic effects, physical inertia and variable arrival sequencing. In addition,

this research provides insight into the performance of multiple methods for approximating non-

differentiable air traffic constraints, and incorporates these methods into a generalized weighted-sum

representation of the multi-objective Air Traffic Management optimization problem that minimizes

the total time of flight, deviation from scheduled arrival time and fuel consumption of all aircraft.

The methods developed and tested throughout this dissertation demonstrate the ability of graph-

based optimization techniques to model realistic air traffic restrictions and generate viable control

strategies.
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OPTIMAL CONTROL OF FULLY ROUTED AIR TRAFFIC

IN THE PRESENCE OF UNCERTAINTY AND

KINODYNAMIC CONSTRAINTS

I. Introduction

1.1 Background

Air Traffic Management (ATM) is the process of guiding a finite set of aircraft within some

local airspace from their initial positions (or originations) to their respective destinations, subject

to various physical, policy, procedural and operational restrictions [41]. If each aircraft has a pre-

defined route through the airspace and a scheduled (or nominal) time of arrival, the process is

known as the Fully Routed Nominal Arrival Problem in ATM [75]. Solving this problem involves

generating feasible speed advisories (also known as control strategies) for all aircraft within the

finite set. Clearly, for airspace on the order of the National level, there can be many aircraft

comprising this set. Thus, problems of this nature tend to be large and difficult to solve.

Ghrist and Koditschek [32] developed a framework that defines the finite set of allowable or

pre-determined vehicle routes as a directed graph with vertices corresponding to points in two- or

three-dimensional physical space, and with edges corresponding to oriented curves in the space. The

physical position of each vehicle is thus represented by its arc-length along one of the graph edges.

Sadovsky, Davis, and Isaacson [72, 73, 76] at the National Aeronautics and Space Administration

(NASA) Ames Research Center have applied this framework to compute for each aircraft within

a local airspace speed advisories that are feasible with respect to various restrictions, focusing on

separation assurance requirements. However, this framework does not model aircraft acceleration

and assumes zero winds and zero deviation from pre-defined aircraft routes or arrival sequence.

Thus, there exists no graph-based ATM framework that generates optimal control strategies based

on kinodynamic constraints, stochastic flight control properties and variable arrival sequencing.
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This research extends current graph-based methods used to address the Fully Routed Nominal

Arrival Problem in ATM by generalizing the ATM framework of Sadovsky, et al., to account for

stochastic effects, physical inertia and variable arrival sequences. In addition, this research provides

insight into the performance of multiple methods for approximating non-differentiable air traffic

constraints, and incorporates these methods into a scalarized representation of the multi-objective

Air Traffic Management optimization problem that evaluates trade-offs between the total time of

flight, deviation from scheduled arrival time and fuel consumption of all aircraft based on notional

priorities.

1.2 Overview

This research focuses on modeling local Air Traffic that falls under the responsibility of

terminal Air Traffic Control (ATC) (i.e., aircraft in flight near an airport), as opposed to optimizing

Air Traffic across multiple ATC sectors or optimizing ground traffic operations (e.g., sequencing

take-off order, aircraft taxiing between runways and terminal gates, etc.). One of the fundamental

objectives of this research is to demonstrate that the roadmap coordination space framework

developed by Sadovsky, et al., is suitable for mapping general airspace graphs. While the current

framework, detailed in Section 2.5.1, is able to represent special airspace graphs that include only

lateral separation requirements [72, 73], Federal Aviation Administration (FAA) policies define

safe separation in terms of each aircraft maintaining some minimum lateral distance from any other

aircraft in the terminal airspace or maintaining a distinct minimum vertical distance from any other

aircraft in the terminal airspace [27]. This anisotropic property of the safe separation requirement

results in non-differentiable constraint functions when formulating the ATM optimization problem.

Therefore, this research develops and analyzes three differentiable methods of approximating the

anisotropic safe separation constraint. These approximations are defined such that the modeled

feasible region of the ATM optimization problem is a subset of the true feasible region; that is,

solutions that satisfy the differentiable constraint approximations never violate the actual anisotropic

constraints. Furthermore, error bounds are derived for each approximation method indicating the

anisotropic constraints can be approximated with arbitrary precision. Additionally, FAA procedures

to account for the “effects of wake turbulence” in the terminal airspace introduce asymmetry to the
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safe separation requirements [27]. For example, if a designated “small” aircraft is flying behind a

designated “heavy” aircraft, ATC is directed to ensure at least 5 miles of lateral separation between

the aircraft [27]. However, if a designated “heavy” aircraft is flying behind a designated “small”

aircraft, ATC is directed to ensure at least 3 miles of lateral separation between the aircraft [27].

This research develops a hybrid approximation scheme that incorporates two differentiable methods

to approximate the asymmetric lateral separation constraint.

Modeling the management of commercial air traffic in the terminal airspace as an optimization

problem requires the definition of an objective function. However, real-world conditions and FAA

policies may imply a preference or ordering among certain competing objectives. For example,

commercial airlines may seek to minimize fuel consumption and deviation from scheduled arrival

times, while the priority of Air Traffic Controllers may be to guide aircraft out of the terminal

airspace as quickly and safely as possible. Taking these factors into consideration, this research

defines and evaluates a notional weighted-sum objective function that represents the relative

priorities assigned to a fuel consumption measure, a deviation from scheduled arrival time measure

and a total time in flight (or makespan) measure as either a linear or exponential weight. This

research evaluates variants of this weighted-sum approach to provide insight into how to incorporate

the relative priorities of these competing objectives when defining the ATM optimization problem.

Furthermore, the current graph-based ATM optimization framework of Sadovsky, et al.,

detailed in [75], does not model aircraft acceleration and assumes each aircraft achieves zero

deviation from its assigned path or speed. That is, the model does not incorporate random lateral

deviations from path due to wind, nor vertical deviations from path due to turbulence. Additionally,

the current model does not account for random perturbations in aircraft speed due to mechanical or

control lag or human error. The research presented here defines aircraft acceleration as the control

variable and incorporates a positional probability ellipsoid model to account for stochastic effects

when estimating the lateral and vertical separation between each aircraft.

The incorporation of flight time measures, such as schedule deviation or makespan, as

objectives in an ATM optimization problem introduces the issue of allowing the aircraft arrival

sequence to vary. While variable arrival sequences could be accounted for by enumerating and
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evaluating all feasible arrival sequences, such a method would introduce combinatoric complexity

to the ATM optimization problem. Therefore, this research leverages the assumption of positive

aircraft speed to define an on-time arrival constraint that allows the ATM optimization problem with

variable arrival sequences to be evaluated without explicitly defining the aircraft arrival sequence.

This research combines these extensions and generalizations into a novel ATM optimization

framework that accounts for aircraft acceleration, anisotropic and asymmetric separation require-

ments, variable arrival sequences and stochastic effects. The suitability of these extensions and

generalizations of the current graph-based ATM optimization framework is demonstrated through

the use of notional test cases with increasing complexity. The simplest test case is evaluated to char-

acterize how the performance of the new framework varies based on changes in model parameters

and on variations of the weighted-sum objective formulation. The model parameters and weighted-

sum objective formulation that generate the best overall results are then used to demonstrate how

the new framework could be applied in more complicated cases.

1.3 Organization

This document is organized as follows. Chapter 2 reviews the relevant literature concerning

current ATM problems and research, as well as pertinent mathematical and optimization techniques

that have been applied to similar problems. Chapter 3 describes methods to synthesize previous

research and novel approaches into a robust ATM optimization framework. Chapter 4 provides the

results of implementing those methods, while Chapter 5 provides a summary and conclusion of the

research and results presented.
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II. Literature Review

This chapter presents background information and research concerning Air Traffic Manage-

ment (ATM) in general, as well as techniques that are currently applied to ATM optimization prob-

lems and topics that are relevant to this research.

2.1 Air Traffic Management

Air Traffic Management is defined by the Federal Aviation Administration (FAA) as the process

of guiding a finite set of aircraft through some local airspace, subject to various physical, policy,

procedural and operational restrictions [27]. In practice, this process consists of Air Traffic Control

(ATC) operators (or controllers) giving navigational instructions (consisting of directional heading,

speed and target altitude) to aircraft within the controller’s designated airspace; providing these

instructions is known as vectoring. The principal restriction in this research is minimum separation

assurance. While exact separation requirements are location-specific, Isaacson and Robinson [40]

state that aircraft typically must be separated vertically by at least 1, 000 feet (ft) or laterally by

at least 3 nautical miles (nmi). This restriction defines a set of cylinders centered on each aircraft

(Figure 2.1), and admissible air traffic advisories (also known as vectors or control strategies) must

result in trajectories in which no aircraft intersects another’s cylinder at any time. That is, for every

instant of time, t, all pairs of aircraft i and j must satisfy at least one of the constraints:

∥∥∥xi(t) − x j(t)
∥∥∥

L ≥ ri, j(t) (2.1a)

or
∥∥∥xi(t) − x j(t)

∥∥∥
V ≥ hi, j(t), (2.1b)

where xi(t) is the three-dimensional position of aircraft i at time t, x j(t) is the three-dimensional

position of aircraft j at time t, ‖ · ‖L is the lateral (two-dimensional Euclidean) distance function,

ri, j(t) is the minimum allowable lateral separation between aircrafts i and j at time t, ‖ · ‖V is the

vertical (one-dimensional absolute) distance function, and hi, j(t) is the minimum allowable vertical

separation between aircrafts i and j at time t. Since only one of the constraints from (2.1) must be

satisfied at any time, inadmissible air traffic advisories violate both constraints at some instant, t.
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Figure 2.1: Notional Aircraft Separation Cylinder

2.1.1 Current Operations and Developing Issues.

The primary concern of air traffic controllers is ensuring the safe separation of aircraft in the

terminal airspace. While en-route traffic follows routes that ensure safe separation, Sadovsky [72]

states that in the terminal airspace, controllers are required to detect potential safety conflicts and

provide timely trajectory advisories, including speed, altitude and heading, in order to ensure safe

separation through the terminal airspace. Furthermore, the FAA has projected air traffic demand

to increase significantly in the upcoming years [26]. According to Davis, Erzberger, Green and

Nedell [20], and Sadovsky [72], this increased demand and workload for air traffic controllers is

expected to result in increasing delays and airspace congestion, as well as increased costs due to

fuel consumption.

2.1.2 Next-Generation Air Transportation System (NextGen).

To address these developing issues, the Next-Generation Air Transportation System (NextGen)

is being developed by the FAA as a comprehensive overhaul of the National Airspace System (NAS)

[26]. NextGen includes ATC navigational and communications technology modernization, as well

as policy and procedural changes that reflect the capabilities of the new infrastructure. One of

the intended goals of NextGen is to mitigate the safety, schedule and congestion issues associated

with increasing air traffic demand through the use of increasingly precise navigation methods and

the development of automated ATM support tools. Thus, a critical component of NextGen is

the efficient generation of admissible trajectories for aircraft in the terminal airspace; that is, the

“specification of a path from origin to destination for each flight” that does not violate applicable

physical, policy, procedural or operational requirements [72]. The success of the NextGen system

depends heavily on the performance and validity of its automated ATM support tools, including
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trajectory planning for the terminal airspace. Therefore, the algorithms and frameworks that

NextGen implements for trajectory generation must be robust and thoroughly analyzed.

2.2 Optimization Problems

This section lists various types of optimization problems and describes how they may apply to

this ATM optimization research. Many of these problems are related to vehicle routing problems,

where the goal is to find the optimal route from a given initial position (or origination) to the final

position (or destination), or to optimal control problems, where the goal is to find the control strategy

(e.g., heading, speed or acceleration) that minimizes the measure of performance. Indeed, the key

distinction between these types of problems is generally the measure of performance that defines

optimality: total distance travelled, time of completion, fuel consumed, and so on.

2.2.1 Shortest Path Problem.

Given a graph G = (N ,A), where N is a set of nodes (or vertices) and A is a set of edges

(or arcs), and a set of arc lengths, C, for each element in A, a set of arcs that connects a given

origination vertex to a given destination vertex is a path [7]. The path length is the sum of all arc

lengths corresponding to the arcs in the path. The path with the minimum length is the shortest path

[7]. This problem of finding the shortest path is represented as:

minimize
n∑

i=1

n∑
j=1

ci jxi j (2.2a)

subject to
n∑

j=1

xi j −

n∑
k=1

xki =


1, i = 1

0, i < {1, n}

−1, i = n

(2.2b)

x ∈ {0, 1} i, j = 1, 2, . . . , n, (2.2c)

where n is the total number of vertices in the graph G, ci j ∈ C is the length of the arc connecting

vertices i ∈ N and j ∈ N , xi j is equal to 1 if the arc connecting vertices i and j is in the path, and

xi j is equal to 0 otherwise [7]. Several methods exist to solve this shortest path problem, including

Dijkstra’s Algorithm [21], the “A-star” heuristic [34] and dynamic programming.
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The shortest path problem does not need to minimizes literal distances, since the set C of

arc lengths could represent some other cost or weighting associated with traversing the arcs. For

example, Sadovsky, et al., represent aircraft route segments in [72] as arcs in the graph, but the arc

lengths are not defined as distances. Instead, they are defined by a weighting function that represents

the likelihood of admitting separation compliant routings along those arcs. Thus, the shortest path

problem in [72] does not necessarily generate paths of minimal distances, but is intended to generate

paths that are more likely to keep pairs of aircraft safely separated.

The shortest path problem is called a Euclidean Shortest Path (ESP) problem if the arc lengths

are defined as Euclidean distances, and the goal of the ESP is to find the minimum distance route

(or set of routes for multiple vehicles) [7]. This representation of the shortest path problem is valid

for vehicle routings when the set of paths from the vehicle initial position to the final position

constitutes a roadmap of a countable number of arcs [52, 66]. Transforming an ATM problem

into an ESP network optimization problem can be accomplished a variety of ways. For example,

if aircraft are only permitted to fly through predefined routes in the airspace near an airport, and

aircraft altitude is allowed only a finite number of values, then the path of an aircraft through the

terminal airspace consists of a discrete and countable set of physical route segments connected at

physical waypoints that can be modeled as a roadmap network of arcs connected at vertices [72].

On the other hand, if there are no predefined routes in the airspace, it is possible to construct a

graph, known as a Voronoi diagram, whose arcs represent the safest routes that avoid obstacles in

the environment, and to find the shorts path along these safety arcs [9]. This method is discussed in

more detail in Section 2.3.3.

If aircraft altitude is not constrained to a finite number of values, then the number of paths

from the initial position to the final position may become uncountable, and no graph representation

may be practical. However, the shortest path problem can be generalized to account for when the

number of paths from the initial position to the final position is uncountable. The objective function

of the continuous shortest path problem can be given as

minimize
f

t f∫
t0

∥∥∥ḟ(t)
∥∥∥dt, (2.3)
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where t0 is the initial time (when the initial position is departed), t f is the final time (when the final

position is reached), and ḟ(t) is the vehicle velocity at time t [39]. Depending on the dynamics or

constraints involved in the problem, continuous shortest path problems are typically approximated

by selecting discrete values from the time interval, [t0, t f ], and applying a numerical solver to

optimize the problem at the selected time values [39].

Shortest path problems have been used extensively in collision avoidance and vehicle

navigation problems with direct application to ATM. Suh and Shin proposed a shortest path method

for path planning of robots with distance safety criterion that could be applied to aircraft that

must navigate within predefined airspace corridors [82]. Asano, Kirkpatrick and Yap presented

a pseudo approximation algorithm for the three-dimensional ESP that “generalizes the shortest path

for . . . moving amidst polyhedral obstacles” [4], which could apply to inclement weather avoidance

in ATM. Mitchell and Sharir provide a polynomial-time algorithm for the shortest path problem

that avoids “terrain-like” stacked polygonal obstacles [62] that could also apply to aircraft weather

or terrain avoidance. Furthermore, the ESP in two-dimensions is shown by Hershberger and Suri

[35] to be computable in polynomial time, while Canny and Reif [17] show that, in general, three-

dimensional ESP problems are not computable in polynomial time. Thus, it may be impractical to

formulate a terminal airspace ATM optimization problem as a three-dimensional ESP.

2.2.2 Minimum Time.

Given a general shortest path problem as defined by equation (2.2) or (2.3), if the arc lengths

are defined as task times or durations, then the shortest path problem represents a minimum time or

minimum final time problem (also known as makespan [67]). In many cases, the ESP solution also

defines the minimum time solution, since the total distance travelled can be parameterized by the

instantaneous vehicle velocity and time, as given in the continuous shortest path objective function

(2.3).

However, path-dependent restrictions on vehicle speeds may generate a difference between the

minimum distance path and the minimum time path. For example, if a path of distance d permits

a maximum speed of u, the minimum time required to traverse the path is d/u. However, if a path
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of distance 2d permits a maximum speed of 3u, the minimum time required to traverse the path is

2d/3u. Thus, between the two paths, the minimum distance path is not the minimum time path.

Indeed, for ATM problems, the minimum time route may not correspond to the minimum

distance route; thus, if the goal is to minimize the travel time from the initial position to the final

position, then time should occur explicitly in the objective function formulation, such as

minimize t f . (2.4)

Makespan problems are used extensively in obstacle avoidance vehicle routing problems

[1, 66, 78]. Thus, while the objective function evaluation may be very simple in obstacle

avoidance problems, it may be very difficult and time consuming to generate feasible solutions

and guarantee that an optimal solution has been found. Methods for generating feasible obstacle

avoidance solutions are described in Section 2.3. Furthermore, when multiple vehicles with

separation requirements are involved, minimum time problems may include the additional difficulty

of determining the optimal vehicle arrival sequence, as described in Section 2.2.4.

2.2.3 Minimum Control.

For many vehicle routing problems, the objective is to minimize a function that measures the

control variable (or set of variables) used to control changes in the vehicle’s state (e.g., position,

weight, speed, etc.). These optimal control problems are often defined by the objective function

minimize
u(t)

t f∫
t0

[ m∑
i=1

βi
∣∣∣ui(t)

∣∣∣]dt, (2.5a)

subject to ẋ(t) = f (x(t),u(t)) , (2.5b)

where t0 is a fixed or variable initial time, t f is a fixed or variable final time, x(t) is the state of a

vehicle (or the state of the system under control) at time t, ẋ(t) is the instantaneous change in state at

time t, u(t) = [u1(t), u2(t), . . . , um(t)] is the vector of control variables that vary as a function of time,

βi > 0 is a weighting that represents the relative importance of control variable i, and f (x(t),u(t))

is the function that relates changes in the control variables to changes in the state at time t (thus,

equations similar to equation (2.5b) define the dynamics of the problem [46]).
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A similar measure, presented in [73], to require vehicles “to move as slowly as possible” is

given as

minimize
u(t)

m∑
i=1

[ t[ f ,i]∫
t0

(
ui(t)

)2
dt

]
, (2.6a)

subject to ẋ(t) = u(t), (2.6b)

where t[ f ,i] is the final time for vehicle i.

Optimal control vehicle routing problems that seek to minimize the amount of fuel consumed,

or fuel burn [16], are studied extensively in ATM since fuel costs are of great interest to commercial

airlines and other operators. Bowe and Lauderdale studied the effects of generating individual

collision avoidance maneuvers based on optimal fuel consumption instead of minimal schedule

delay [16]. Erzberger illustrated the cost savings associated with on-board trajectories generated

to minimize fuel consumption [24]. Neuman and Erzberger compared fuel minimizing ATM

techniques to standard First-Come-First-Served (FCFS) arrival sequencing [63]. However, [16]

and [24] consider only individual conflict maneuvers or the trajectory of a single aircraft, while

[63] is primarily concerned with efficiently scheduling and sequencing airport landings from the

perspective of runway operations, as opposed to congested airspace operations.

2.2.4 Minimum Delay.

Minimum delay vehicle routing problems can be seen as a generalized makespan problem in

which each vehicle is given a target start time or a target time of completion. With respect to air

traffic operations, the start time may be the aircraft’s scheduled departure time from its origination,

while the time of completion is typically the aircraft’s scheduled arrival time at its destination.

Deviations from scheduled departure and arrival times can result in significant costs for airlines.

Although the exact cost of delay as determined by the airlines may be unknown, ATM solutions that

minimize schedule delay certainly contribute to minimizing the cost of delay [15, 19, 44].

Time targets could be generalized for any point along an aircraft’s route; for example, each

aircraft could have a scheduled arrival time at each waypoint along its path. If the number of target

times is countable for each aircraft, the minimum delay problem for a single aircraft can be given
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by

minimize
m∑

i=1

wiTi, (2.7a)

subject to Ti , max {ti − τi, 0}, (2.7b)

where m is the number of waypoints with scheduled arrival times, wi is a weighting that represents

the relative importance of meeting the scheduled time of arrival at waypoint i, τi is the scheduled or

target time of arrival at waypoint i, ti is the actual time of arrival at waypoint i, and Ti, known as the

tardiness at waypoint i, is 0 if the actual time of arrival is equal to or less than the scheduled time

of arrival, and the difference between the two otherwise [68]. It is important to note that no cost is

incurred for the minimum delay problem if the aircraft arrives before its scheduled arrival time.

As in the makespan problem, generating feasible solutions in the presence of obstacles or

multiple aircraft that share resources (e.g., the same route segments or runways) can be difficult.

For example, when multiple vehicles with separation requirements are involved, the makespan and

minimum delay problems could involve the additional difficulty of determining the optimal arrival

sequence. If the arrival sequence is not fixed, then for A aircraft, there could be A! possible arrival

sequences. Thus, determining which arrival sequence provides the minimum feasible makespan or

delay could require evaluating A! makespan or delay sub-problems. In [63], Neuman and Heinz

analyze how optimal arrival sequencing and “FCFS” sequencing rules can affect aircraft arrival

delays. In [71], Robinsin, Davis and Isaacson, compare FCFS sequencing methods to a “fuzzy

reasoning-based sequencing” of aircraft arrivals. In [80], Soler, Olivares, Staffetti and Bonami

propose a “branch-and-bound”-based heuristic for selecting and optimizing an arrival sequence.

Section 3.1.3.1 presents a method for evaluating feasible arrival sequences implicitly, without

having to define all A! sub-problems and evaluate all feasible arrival sequences.

2.2.5 Minimum Deviation.

The minimum deviation problem can be seen as a generalization of the minimum delay

problems. The minimum delay problem seeks to minimize tardiness, and ignores cases in which the

aircraft arrives before the scheduled arrival time. Although it is important for an aircraft to arrive

at each waypoint (including its destination) with minimal delay, it may also be important to prevent
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aircraft from arriving too soon before their scheduled arrival time, since this could interfere with

other aircrafts’ scheduled arrivals and departures, and may result in greater fuel consumption if the

aircraft is forced to loiter until it can safely land [3]. Therefore, an ATM problem may seek to

minimize the absolute deviation, positive and negative, from schedule.

However, it may also be important to minimize an aircraft’s absolute deviation from a planned

trajectory, or any target that can be parameterized as a function of time. Thus, if the measure of

comparison can be given as a function of time, the minimum absolute deviation objective function

for a single aircraft is given as

t f∫
t0

[ m∑
i=1

|τi(t) − xi(t)|
]
dt, (2.8)

where | · | represents the absolute value, m is the number of target measures of comparison (schedule,

trajectory, etc.), τi(t) is the target value of measure of comparison i at time t, and xi(t) is the actual

value of measure i at time t. For computational simplicity, the minimum deviation objective function

may also appear as

t f∫
t0

[ m∑
i=1

(
τi(t) − xi(t)

)2]
dt. (2.9)

2.2.6 Min-max.

Min-max (or minimax, or max ordering) problems typically involve multiple objectives, or

multiple vehicles, each with its own measure of performance. The goal of the min-max problem

is to find the feasible solution that minimizes the maximal element of the set of all objectives or

vehicles. The min-max problem takes the form

minimize
x∈Ω

max { f1(x), . . . , fi(x), . . . , fm(x)}, (2.10)

where m is the number of objective functions or vehicles of interest, x ∈ Ω is the vector of decision

variables in the feasible space Ω, and fi(x) is the value of objective i evaluated at x.

An important feature of the min-max formulation is that it gives a weakly efficient solution

[23]; that is, no feasible solution can improve upon any of the m objective function values given by

the min-max solution without generating an inferior value in another objective function. However,
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the min-max objective function may be non-differentiable even if the individual objective functions

are differentiable, which can make optimization difficult [11].

2.2.7 Weighted-Sum.

Another method of evaluating problems that involve multiple objectives, or multiple vehicles,

each with its own measure of performance, is to define the objective function as a weighted-sum of

the multiple objectives or measure of performance for each vehicle. This weighted-sum transforms

the vector of values of each objective function into a single value, or scalar. The weighted-sum

objective function takes the form

minimize
x∈Ω

m∑
i=1

λi fi(x), (2.11)

where m is the number of objective functions or vehicles of interest, x ∈ Ω is the vector of solution

values in the feasible space Ω, fi(x) is the value of objective i evaluated at x, and λi is the relative

weighting associated with objective function i, often defined such that
m∑

i=1
λi = 1 (i.e., normalized

weights).

An important feature of the weighted-sum formulation is that it gives a weakly efficient solution

[23]; that is, no feasible solution can improve upon any of the m objective function values given

by the weighted-sum solution without generating an inferior value in another objective function.

While the weighted-sum objective function is differentiable if the individual objective functions are

differentiable, for certain problems, the weighted-sum objective function method may be unable to

generate large regions of efficient solutions. For example, if some of the multiple objectives are

non-convex, the weighted-sum method “may work poorly” and generate solutions corresponding

to individual objective minima rather than solutions that represent trade-offs between the multiple

objectives [23].

2.3 Obstacle Avoidance

In addition to a measure of performance and dynamics equations, an ATM or vehicle routing

problem may involve a set of obstacles that must be avoided. Obstacle avoidance problems seek to

generate vehicle trajectories that guide the vehicle from its origination to its destination such that

the vehicle trajectory does not intersect the boundary of any obstacle in the set. The separation
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assurance criteria of ATM can be seen as part of an obstacle avoidance problem, with each aircraft

being considered a moving obstacle in relation to all other aircraft. Furthermore, ATM strategies that

seek to avoid inclement weather or restrict aircraft trajectories to predefined routes in the airspace

can also be formulated as obstacle avoidance problems [4, 82]. This section describes typical

obstacle avoidance techniques and details how they have been applied to ATM related problems.

2.3.1 Path Constraints.

One approach for dealing with obstacles is to define vehicle path constraints based on each

obstacle. Path constraints define the minimum allowable distance from the vehicle to an obstacle,

or the distance from a time-dependent state of the system to the boundary of a set of inadmissible

states (as described in Section 2.5.1). For example, the time-dependent path constraint for a single

obstacle may be given by

min
b(t)

{
D

(
x(t),b(t)

)
| x(t)

}
≥ r(t), (2.12)

where D (·) represents the distance function chosen for the problem, the vector x(t) represents the

given system state or the position of the vehicle at time t, b(t) represents the boundary of the

obstacle or inadmissible state set at time t, and r(t) is the minimum separation allowed between

the vehicle or state and the boundary of the obstacle. In this case, the path constraint indicates that

the vehicle path must be at least a distance of r(t) from the nearest point on the boundary of the

obstacle at time t. For circular or spherical obstacles with known radii, the path constraint can be

simplified as the minimum allowable distance from the center of the obstacle, since the point on the

obstacle boundary nearest to the vehicle path will always be a single radius from the obstacle center.

Therefore, some obstacle avoidance techniques seek to approximate obstacles with a circle or sphere

that encompasses the actual shape of the obstacle [28]. Suppose, however, that an obstacle, O, is

defined as the intersection of K constraint-defined sets, formulated as

O ,
K⋂

k=1

Gk, (2.13a)

where for each k ∈ {1, 2, . . . ,K}

Gk ,
{
x(t) | gk(x(t)) > 0

}
, (2.13b)
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and x(t) is the position of a vehicle or the system state at time t. That is,

O ,
{

x(t)
∣∣∣∣ min

{
g1(x(t)), g2(x(t)), . . . , gK(x(t))

}
> 0

}
. (2.14)

For example, the ATM constraints in equation (2.1) define each aircraft as a cylindrical obstacle

that is the intersection of the lateral separation constraint and the vertical separation constraint. In

this case, the intersection of sets is not circular or spherical, so approximating such an obstacle

with a single radius will reduce the apparent feasible region for the problem and could result in

paths that are not optimal. Thus, the path constraints should model the obstacle boundary with as

much accuracy as is practical. Sections 2.3.1.1 - 2.3.1.6 describe methods of modeling obstacles

and obstacle boundaries that seek to reduce the over-estimation error of the path constraints.

2.3.1.1 Elliptical Methods.

Elliptical methods approximate each path obstacle with an ellipsoid or the union of multiple

ellipsoids. The equation of the boundary of an ellipsoid centered at the origin and oriented in the

direction of each coordinate axis is given by [86]
K∑

k=1

(
xk

rk

)2

= 1, (2.15)

where K is the dimensionality of the ellipsoid, xk is the coordinate in the kth dimension of a point

on the boundary, and rk is the distance from the center of the ellipsoid to the boundary in the kth

coordinate direction. Therefore, the time-dependent path constraint for a single stationary elliptical

obstacle may be given by

1 −
K∑

k=1

(
ĉk(t)

rk

)2

≤ 0, (2.16)

where ĉk(t) is the kth state coordinate at time t transformed to account for the location of the center

and orientation of the elliptical obstacle. If an obstacle is approximated by the combination (or

union) of multiple ellipsoids, then the path constraint for the single obstacle would consist of a set

of ellipsoid constraints of the form given by equation (2.16). For example, in [43], Kamgarpour,

Dadok and Tomlin use a set of “minimum volume bounding ellipses” to model inclement weather

obstacles for aircraft to avoid.

While elliptical methods can more closely approximate obstacles than a single radius (circular)

approximation, they are inappropriate for path obstacles defined as the intersection of shapes or
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sets, rather than the union. For example, the ATM cylindrical constraint from equation (2.1) could

be approximated with the equation of the minimum volume ellipsoid that contains the minimum

separation cylinder. However, the approximation could greatly overestimate the volume of the

cylindrical ATM obstacle.

2.3.1.2 Indicator Methods.

One method of formulating path obstacles as the intersection of sets involves the use of

indicator functions. In reference to equation (2.13), for each set Gk in the obstacle-defining

intersection of K such sets, an indicator function, yk, is defined such that

yk(t) =


1 if x(t) ∈ Gk,

0 otherwise,
(2.17)

where x(t) is the state of the system at time t. If an obstacle is defined as the intersection of K such

sets, then the obstacle is avoided when there exists some Gk such that x(t) < Gk; that is whenever at

least one indicator function is equal to zero, the obstacle is avoided. Thus, the path constraint can

be formulated as

1 − K +

K∑
k=1

yk(t) ≤ 0 (2.18a)

or

K∏
k=1

yk(t) ≤ 0. (2.18b)

However, neither formulation of the indicator function path constraint given in (2.18) is

guaranteed to be differentiable at all values of t, since each indicator function yi defined by equation

(2.17) becomes discontinuous at the boundary of the set Gk. The non-differentiability of the

constraint formulation makes the obstacle avoidance problem difficult to solve using the standard

methods described in Section 2.4. Therefore, many differentiable approximations or alternative

formulations have been developed to address this issue [10].
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2.3.1.3 Piece-wise Methods.

Piece-wise methods of formulating obstacle path constraints are similar to indicator methods

in that they are based on conditionally (or piece-wise) defined constraint functions of the form

G(t) =



y1(t) if x(t) ∈ D1,

...

yK(t) if x(t) ∈ DK ,

0 otherwise,

(2.19)

where the subdomains D1, . . . ,Dk are mutually exclusive:
K⋂

k=1
Dk = ∅ [2]. That is, for k = 1, . . . ,K,

if the state variable x is in the subdomain Dk at time t, the value G(t) of the piece-wise defined

constraint function is given by yk(t); otherwise, G(t) = 0. However, for use with standard

optimization methods, the piece-wise defined constraint functions should be defined such that they

are continuous and differentiable. For example [29], the piece-wise defined constraint function,

Gpw, given by

Gpw(t) =



−1 + e−(d1(t)−1)2
if d1(t) ≥ 1 and d2(t) < 1,

−1 + e−(d2(t)−1)2
if d1(t) < 1 and d2(t) ≥ 1,

−1 + e−(d1(t)−1)2−(d2(t)−1)2
if d1(t) ≥ 1 and d2(t) ≥ 1,

0 otherwise,

(2.20)

is continuous for d1(t), d2(t) ≥ 0 since each subdomain’s function is continuous over its subdomain,

and at the shared boundary of any two subdomains, their functions evaluate to the same value.

Note that the piece-wise defined function (2.20) may be used to represent the ATM cylindrical path

obstacle as

Gpw(t) < 0, (2.21a)

with

d1(t) =

∥∥∥xi(t) − x j(t)
∥∥∥

L

ri, j(t)
(2.21b)

and d2(t) =

∥∥∥xi(t) − x j(t)
∥∥∥

V

hi, j(t)
. (2.21c)
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This piece-wise defined constraint function is once-differentiable for d1(t), d2(t) ≥ 0 since each

subdomain’s function is differentiable over its subdomain, and at the shared boundary of any two

subdomains, their function’s derivatives evaluate to the same value. However, the strict inequality of

this formulation treats the boundary of the path obstacle as infeasible, and the constraint function is

not twice-differentiable [29], since at the shared boundary of any two subdomains, their function’s

second derivatives do not evaluate to the same value.

2.3.1.4 Multiplier Methods.

In [69], Raghunathan, Gopal, Subramanian and Biegler address the non-differentiability of the

ATM cylindrical path constraint (2.1) by introducing two artificial control variables, λ1 and λ2, that

are included as multipliers in the path constraint formulation, and as terms in an addition to the

objective function. Thus, the minimum separation path constraint is given by

λ1(t)
(∥∥∥xi(t) − x j(t)

∥∥∥
L − ri, j(t)

)
+ λ2(t)

(∥∥∥xi(t) − x j(t)
∥∥∥

V − hi, j(t)
)
≥ 0, (2.22a)

λ1(t) + λ2(t) = 1, (2.22b)

λ1(t), λ2(t) ≥ 0, (2.22c)

for every t ∈
[
t0, t f

]
, and the addition to the objective function is given by

t f∫
t0

[
λ1(t)2 + λ2(t)2

]
dt. (2.23)

While this method appears to work well with obstacles that can be defined as the intersection of

only two constraints, it requires the introduction and optimization of a new control variable for

each constraint in the intersection of constraints that defines the obstacle. Therefore, the Multiplier

Method in [69] may be inappropriate for formulations that involve the intersection of more than two

constraints.

In [10], Bertsekas discusses Multiplier Methods that approximate multiple non-differentiable

functions with piece-wise defined functions whose subdomains are determined by a sequence of

multipliers and a sequence of accuracy parameters. These methods are designed for problems with
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“simple kinks” [10] of the form

G(t) = max
{
0, g(t)

}
(2.24a)

or G(t) = max
{
g1(t), . . . , gk(t), . . . , gK(t)

}
, (2.24b)

where the function G is the only source of non-differentiability in an objective function or constraint

function, and g and each gk are assumed to be continuously differentiable functions. For example,

(2.24a) would be approximated as

G̃
(
g(t), λ, γ

)
=


g(t) − (1 − λ)2/2γ if (1 − λ)/γ ≤ g(t),

λg(t) + 1
2γ[g(t)]2 if −λ/γ ≤ g(t) ≤ (1 − λ)/γ,

−λ2/γ if g(t) ≤ −λ/γ,

(2.25)

where 0 ≤ λ ≤ 1 is a multiplier that “determines whether the approximation is more accurate

for positive or negative values”, and γ > 0 is a parameter that “controls the accuracy of the

approximation” [10]. Using (2.25), functions of the form (2.24b) would be approximated by a

series of embedded approximations, such that

G̃
(
g1(t), . . . , gK(t),Λ,Γ

)
=g1(t)+

G̃
(
g2(t) − g1(t)+

G̃
(
. . . G̃

(
gK−1(t) − gK−2(t)+

G̃
(
gK(t) − gK−1(t), λK−1, γK−1

))
. . .

)
, λ1, γ1

)
, (2.26)

where Λ =
[
λ1, . . . , λK−1

]
is a vector of multipliers and Γ =

[
γ1, . . . , γK−1

]
is a vector of accuracy

parameters. Note that this formulation can be simplified by setting λk = λ for all k = 1, . . . ,K − 1

and γk = γ for all k = 1, . . . ,K − 1.

From (2.14), the path obstacle, O, may be defined as

O ,
{

x(t)
∣∣∣∣ min

{
g1(x(t)), g2(x(t)), . . . , gK(x(t))

}
> 0

}
. (2.27)

However, since

min
k∈{1,...,K}

{
gk(x(t))

}
> 0 ⇐⇒ −

(
max

k∈{1,...,K}

{
− gk(x(t))

})
> 0, (2.28)
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the ATM cylindrical obstacle for the interaction between aircraft i and aircraft j would appear as

Oi, j ,
{
x(t)

∣∣∣∣ − (
max

{
− g1(x(t)),−g2(x(t))

})
> 0

}
, (2.29)

where Oi, j is the cylindrical obstacle, x(t) is the system state at time t,

g1(x(t)) = ri, j(t) −
∥∥∥xi(t) − x j(t)

∥∥∥
L, (2.30a)

g2(x(t)) = hi, j(t) −
∥∥∥xi(t) − x j(t)

∥∥∥
V , (2.30b)

and the remaining terms are as defined in equation (2.1). Thus, the piece-wise defined multiplier

approximation of the path constraint for the required separation between aircraft i and aircraft j

would be formulated as

−

(
− g1(x(t)) + G̃

(
− g2(x(t)) − (−g1(x(t))) , λ, γ

))
≤ 0, (2.31a)

or, equivalently, as

g1(x(t)) − G̃
(
g1(x(t)) − g2(x(t)), λ, γ

)
≤ 0. (2.31b)

While the piece-wise defined Multiplier Methods can account for multiple non-differentiable

functions, and may produce approximations that are twice-differentiable, they introduce two new

sets of parameters, both of which are iteratively updated throughout the optimization process,

either through the “repetitive solution of the approximate problem for ever increasing values” of

the parameter, or using a fixed step size change in the multiplier [10]. The approximation error

associated with this method is discussed in Section 3.1.2.1.

2.3.1.5 Max-Norm Methods.

A max-norm (or mixed-norm [74]) method uses a maximum-norm as a way to intersect multiple

constraints (that is, more than two) so as to define an obstacle or region to avoid. For a finite-

dimensional vector space RK , the maximum-norm is formulated in [58] as

∥∥∥(g1, g2, . . . , gK)
∥∥∥

max , max
{
|g1|, |g2|, . . . , |gK |

}
. (2.32)

Thus, the max-norm simply maps a vector g ∈ RK to the absolute value of the element of the vector

g that is largest in absolute value. In reference to (2.13), the max-norm method formulates the
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obstacle, O, as

O ,
{
x(t)

∣∣∣∣ max
{
|ĝ1(x(t))|, |ĝ2(x(t))|, . . . , |ĝK(x(t))|

}
< 1

}
, (2.33)

where |ĝk(x(t))| > 1 if and only if gk(x(t)) > 0 and |ĝk(x(t))| ≤ 1 if and only if gk(x(t)) ≤ 0. That

is, each constraint involved in the obstacle definition is replaced with an equivalent normalized

constraint. For example, the ATM cylindrical obstacle for the interaction between aircraft i and

aircraft j would be formulated as

Oi, j ,
{
x(t)

∣∣∣∣ max
{∥∥∥xi(t) − x j(t)

∥∥∥
L

ri, j(t)
,

∥∥∥xi(t) − x j(t)
∥∥∥

V

hi, j(t)

}
< 1

}
, (2.34)

where Oi, j is the cylindrical obstacle, x(t) is the system state at time t, and the remaining terms are

as defined in equation (2.1). The path constraint for the required separation between aircraft i and

aircraft j would be given by

max
{∥∥∥xi(t) − x j(t)

∥∥∥
L

ri, j(t)
,

∥∥∥xi(t) − x j(t)
∥∥∥

V

hi, j(t)

}
≥ 1, (2.35a)

or equivalently by ∥∥∥∥∥∥
(
‖xi(t) − x j(t)‖L

ri, j(t)
,
‖xi(t) − x j(t)‖V

hi, j(t)

)∥∥∥∥∥∥
max
≥ 1. (2.35b)

From equation (2.32), the derivative with respect to time of the max-norm is

d
dt

∥∥∥(g1(t), g2(t), . . . , gK(t))big‖max =
d
dt

max
{
|g1(t)|, |g2(t)|, . . . , |gK(t)|

}
. (2.36)

However, if for some value of t, there exist k1, k2 ∈ {1, 2, . . . ,K} such that k1 , k2, |gk1(t)| = |gk2(t)| =

max
{
|g1(t)|, |g2(t)|, . . . , |gK(t)|

}
, but d

dt |gk1(t)| , d
dt |gk2(t)|, then there is no unique value for equation

(2.36), and the derivative of the max-norm is not defined for that value of t. That is, unless the

derivative is identical for each maximal term of the set for all t, the max-norm is not differentiable

for some values of t. Thus, the max-norm method may be impractical for use with the gradient-

based optimization methods that are typically applied to ATM optimal control problems. Therefore,

Section 2.3.1.6 outlines an approximation of a max-norm method that is differentiable and thus

suitable for use with typical optimization methods.
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2.3.1.6 p-Norm Approximation Methods.

In [56], Lewis, Ross and Gong define two-dimensional obstacles for ground vehicle routing

problems using a p-norm formulated as

‖ (g1, g2) ‖p ,
(
|g1|

p + |g2|
p)1/p, p ∈ [0,∞) . (2.37)

However, a p-norm may also be used as a differentiable approximation of a max-norm intersection

method described in Section 2.3.1.5. In addition to equation (2.32), the max-norm can also be

defined as [85] ∥∥∥(g1, g2, . . . , gK)
∥∥∥

max , lim
p→∞

( K∑
k=1

|gk|
p
)1/p

. (2.38)

Therefore, a p-norm approximation of the max-norm simply evaluates
( K∑

k=1
|gk|

p
)1/p

for some large

value of p. Since the p-norm approximation is a polynomial, it resolves the non-differentiability

issue inherent in the max-norm formulation. However, defining an obstacle with the p-norm

approximation is not trivial. For example, if the p-norm approximation were used to substitute

the max-norm in equation (2.35), the following erroneous constraint would result(∥∥∥xi(t) − x j(t)
∥∥∥p

L

ri, j(t)p +

∥∥∥xi(t) − x j(t)
∥∥∥p

V

hi, j(t)p

)1/p

≥ 1, (2.39a)

or equivalently, ∥∥∥xi(t) − x j(t)
∥∥∥p

L

ri, j(t)p +

∥∥∥xi(t) − x j(t)
∥∥∥p

V

hi, j(t)p ≥ 1. (2.39b)

The formulation given in equation (2.39) is satisfied if∥∥∥xi(t) − x j(t)
∥∥∥

L = ri, j(t)
(
1
2

)1/p

(2.40a)

and
∥∥∥xi(t) − x j(t)

∥∥∥
V = hi, j(t)

(
1
2

)1/p

. (2.40b)

However, if 1 < p < ∞, then (1/2)1/p < 1, so the values given in (2.40) fail to satisfy each of

the exact constraints given in (2.1). Thus, the formulation given in equation (2.39) is not a suitable

approximation. In [79], Smith and Arendt provide a formulation that accounts for this error. Their

formulation is given as ∥∥∥xi(t) − x j(t)
∥∥∥p

L

ri, j(t)p +

∥∥∥xi(t) − x j(t)
∥∥∥p

V

hi, j(t)p ≥ 2. (2.41)
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Additionally, since the p-norm approximation involves normalized constraints, care must be

taken to ensure the obstacle constraints are properly normalized. In [55], Lewis and Ross address

the issue of non-normalized constraints for a p-norm approximation method by defining the obstacle

path constraint as the natural logarithm of the p-norm of the exponential function of each constraint.

In standard form, the approximate constraint function would be defined as

Gp(g1, g2, . . . , gK) , − ln
[( K∑

k=1

(
e−gk

)p
)1/p]

, (2.42)

where g1, g2, . . . , gK are the constraints from (2.13) whose intersection defines the obstacle. Thus,

the obstacle path constraint is simply

Gp(g1(x(t)), g2(x(t)), . . . , gK(x(t))) ≤ 0. (2.43)

However, if gk(x(t)) = 1
p ln

(
K
)
, for k = 1, . . . ,K, then each gk(x(t)) > 0 so the state x is actually

infeasible at t, but the approximate constraint evaluates as

Gp

(
1
p ln

(
K
)
, . . . , 1

p ln
(
K
))

= − ln
[( K∑

k=1

(
e−

1
p ln

(
K
))p)1/p]

= − ln
[( K∑

k=1

(
e− ln

(
K
)))1/p]

= − ln
[( K∑

k=1

( 1
K

))1/p]
= − ln [1]

= 0

so the path appears feasible. Therefore, care must be taken so that exponential p-norm

approximation does not underestimate the obstacle and lead to paths that would fail to avoid the

exact obstacle. Section 3.1.2.4 outlines a method of accomplishing this task.

2.3.1.7 Sigmoid Approximation Methods.

In [70], Ren, McIsaac and Huang use sigmoid approximation functions to define physical

terrain obstacles for vehicles to avoid in an optimal control problem. A sigmoid approximation

method is a differentiable approximation of an indicator function intersection method described in

Section 2.3.1.2. An exponential sigmoid approximation of the indicator functions given in equation
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(2.17) is formulated as

g̃k(t) =
1

1 + e−sgk(t) , (2.44)

where s is some large positive number and the constraint function gk(t) is defined in reference to

(2.13) such that

gk(t) > 0 ⇐⇒ x(t) ∈ Gk (2.45a)

and gk(t) ≤ 0 ⇐⇒ x(t) < Gk. (2.45b)

Thus, the sigmoid approximation g̃k is continuously differentiable if the constraint function gk is

continuously differentiable. Additionally, for s > 0,

x(t) ∈ Gk ⇒ g̃k(t)→ 1 as s→ ∞ (2.46a)

and x(t) < Gk ⇒ g̃k(t)→ 0 as s→ ∞. (2.46b)

However,

x(t) < Gk, gk(t) = 0⇒ g̃k(t) =
1
2
,∀s. (2.47)

That is, on the boundary of the path obstacle, the sigmoid function will evaluate to 1
2 . Therefore, for

an individual sigmoid approximation function g̃k, its path constraint would be given by

g̃k(t) ≤
1
2
. (2.48)

Thus, if the sigmoid approximation is used to define the path obstacle as the intersection of K

constraints, as in (2.18b), it should be formulated as

K∏
k=1

g̃k(t) ≤
(
1
2

)K

, (2.49a)

or −
(
2−K

)
+

K∏
k=1

g̃k(t) ≤ 0. (2.49b)

Substituting (2.44) for g̃k(t) gives

−
(
2−K

)
+

K∏
k=1

1
1 + e−sgk(t) ≤ 0. (2.50)
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For example, a sigmoid formulation of the ATM path constraint for the required separation between

aircraft i and aircraft j would be given by

−
(
2−2

)
+

(
1

1 + e−sg1(t)

) (
1

1 + e−sg2(t)

)
≤ 0, (2.51)

where

g1(t) = ri, j(t) −
∥∥∥xi(t) − x j(t)

∥∥∥
L (2.52a)

and g2(t) = hi, j(t) −
∥∥∥xi(t) − x j(t)

∥∥∥
V . (2.52b)

Since g̃k(t) only approximates an indicator function, the sigmoid formulation of the path constraint

overestimates the true region of the obstacle in every set Gk. For example, in (2.49b) with K = 2, if

g̃1(t) = 0.9999 and g̃2(t) = 1
2 , then the state is actually feasible, but the sigmoid constraint function

would evaluate to

−
(
2−2

)
+ (0.9999) (0.50)

= 0.24995

> 0,

so the state would appear to be infeasible. For K = 2, if g̃1(t) = 0.9999, then g̃2(t) would have to

satisfy g̃2(t) ≤ 2−2

0.9999 in order for the state to appear feasible. Since g̃1(t) is bounded above by 1, the

worst case feasibility bound for g̃2(t) at the boundary of the path obstacle is g̃2(t) ≤ 2−2. Similarly,

for any K ≥ 2, the worst case feasibility bound for a sigmoid indicator approximation g̃k at the

boundary of the path obstacle is given by

g̃k(t) ≤ 2−K . (2.53)

From (2.44),

g̃k(t) ≤ 2−K ⇐⇒ 1 + e−sgk(t) ≥ 2K , (2.54a)

or, equivalently,

g̃k(t) ≤ 2−K ⇐⇒ gk(t) ≤
1
s

ln
(
2K − 1

)
. (2.54b)
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Therefore, the sigmoid approximation of the ATM cylindrical obstacle constraint with K = 2 is

equivalent to the conditional constraint:

∥∥∥xi(t) − x j(t)
∥∥∥

L ≥ ri, j(t) +
1
s

ln
(
3
)

(2.55a)

or
∥∥∥xi(t) − x j(t)

∥∥∥
V ≥ hi, j(t) +

1
s

ln
(
3
)
. (2.55b)

The parameter s controls the accuracy of the approximation, similar to the effect of γ in Section

2.3.1.4, without the need for additional multiplier variables or iterative updates to the parameter.

2.3.2 Penalty Functions.

The penalty function approach to obstacle avoidance problems is to define an additional cost

function based on the system state’s proximity to an obstacle. Thus, the minimum cost path should

avoid states that approach too close to the path obstacles. However, since the penalty function

associated with an obstacle replaces path constraints for the obstacle [54], it may be possible to

generate a path that intersects an obstacle, but is still considered feasible by the penalty function

formulation of the optimization problem. Therefore, it is important to formulate the obstacle-based

penalty function so that the minimum cost path is very likely to avoid intersecting an obstacle. Some

common penalty function methods that can be applied to obstacle avoidance problems follow.

2.3.2.1 Barrier Functions.

One method of decreasing the likelihood of generating an obstacle-intersecting path is to use

a barrier function to define the obstacle’s penalty. For example, a logarithmic barrier function is

defined such that the cost of intersecting an obstacle approaches infinity:

fb(t) , −µ ln
(
g(x(t))

)
, (2.56)

where fb is the barrier function, µ > 0 is a scaling parameter (or “barrier parameter” [84]) that

controls the relative importance of avoiding the obstacle, and g(·) ≥ 0 is defined such that g(x(t)) = 0

if and only if the state at time t, x(t), intersects the obstacle. However, if ln
(
g(x(t))

)
> 0, the

fb(t) < 0, so the barrier and similar penalty function methods may generate paths that stay as far

away from obstacles as possible, to maximize ln
(
g(x(t))

)
. While such paths are likely to be feasible

for the original obstacle avoidance problem, they may result in increases in the original measure of
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performance. That is, if the minimum cost path in the original obstacle avoidance problem (without

penalty functions) requires the state to approach very close to an obstacle, penalty function methods

may not generate that solution, since the penalty function could reduce the apparent cost of a path

by requiring the state to remain very far from an obstacle. This deviation from the optimal path of

the non-penalty problem can be mitigated by choosing the barrier parameter µ to be very small.

2.3.2.2 Artificial Potential Fields.

An alternative to using barrier penalty functions is to define an Artificial Potential Field (APF)

for each obstacle. An APF is defined to act analogously to a repulsive force emanating outward from

an obstacle so the trajectory of the state is unlikely to approach the obstacle [54]. As with barrier

functions, the APF may cause the trajectory to avoid obstacles by more than is actually necessary,

resulting in sub-optimal paths. In [70], Ren, McIsaac and Huang employ sigmoid-type functions

so that the simulated repulsive force only significantly affects trajectories that are relatively close

to an obstacle, and has negligible effect elsewhere. In [6], Barnes, Fields and Valvanis also use a

sigmoid “limiting function” to control where an artificial potential field can significantly affect the

cost of a candidate trajectory. Additionally, since each obstacle requires its own APF, problems with

multiple obstacles may cause the multiple APFs to interact problematically. In [45], Kim and Khosla

introduce harmonic APFs that are designed to minimize or eliminate problematic interactions.

2.3.3 Voronoi Diagrams.

Another approach to obstacle avoidance is to generate a Voronoi diagram to partition the entire

traversable space (i.e., the feasible space if there were no obstacles) into regions defined by each

obstacle [64]. Each region of the diagram is defined as the points in the space that are closer

to the obstacle contained in the region than to any other obstacle. The boundary of each region

is either the boundary of the traversable space or the set of points equidistant from two or more

obstacles. Typically, Voronoi diagrams are generated by first transforming the traversable space

so that all obstacles can be represented as single points in the transformed space [64]. The region

boundaries can then be produced from the perpendicular bisectors of every combination of pairs

of point obstacles. If no obstacle-to-point transformation is used, then the obstacle boundaries

determine the Voronoi diagram. Figure 2.2 shows an example Voronoi diagram for a rectangular
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traversable space with three circular obstacles. The solid boundary lines define the regions based

on the obstacle center points. Note that a Voronoi diagram based on obstacles boundaries may not

be identical to the diagram based on point obstacles, since points that are equidistant from obstacle

centers are not necessarily equidistant from obstacle boundaries.

Figure 2.2: Obstacle center-based and Obstacle boundary-based Voronoi Diagrams

For cases where the originations and destinations of a vehicle are located on the boundary of

a two-dimensional traversable space, the Voronoi diagram can be used to define the graph for a

shortest path problem; the origination and destination, as well as points where the boundaries of

the traversable space intersect, can be considered graph vertices, and segments connecting these

points can be considered graph arcs if they do not intersect any obstacles. Thus, any path from

the origination vertex to the destination vertex in a graph generated in this manner will avoid all

obstacles.

In [13] and [12], Bhattacharya and Gavrilova present an efficient optimal path planning

algorithm based on the Voronoi diagram generated from “simple disjoint polygonal obstacles”

with applications to aircraft terrain following or avoidance. The resulting Voronoi diagram is then

considered a roadmap for the vehicle, and any shortest path algorithm can then be applied to find

the shortest obstacle avoiding path. If the sharp corners of the Voronoi diagram path are impractical

for the vehicle, an approximation of the Voronoi diagram path may be generated [42, 57]. If the
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Voronoi diagram method is extended to a three-dimensional traversable airspace or the obstacles

are time-dependent (in effect, moving), the region boundaries could become surfaces oriented in

three dimensions. Since these boundary surfaces admit a continuum of paths, each boundary would

need to be discretized into a countable number of paths in order to generate a shortest path graph

from the boundaries.

2.4 Optimization Methods

The preceding sections outlined various objective function and constraint formulations

associated with ATM. This section details the optimization approaches that may be used to obtain

an optimal solution given some combination of the objective function and constraint formulations

describe in Section 2.2 and Section 2.3.1.

2.4.1 Optimal Control Problem Discretization.

Continuous-time optimal control problems as described in Section 2.2.3 fall under the study of

functional optimization, and can be analyzed using indirect methods based on optimality conditions

derived from variational calculus [31, 46]. However, since these indirect methods may have no

analytical solution, and the problems involve differential equations that may require numerical

approximation methods to evaluate, many continuous-time optimization problems are instead

evaluated using direct numerical methods based on discretization and large-scale static optimization

[46]. That is, the continuous-time optimal control problem is typically given by

minimize φ(x(t f )) +

t f∫
t0

L(x(t),u(t), t)dt, (2.57a)

subject to ẋ(t) = f (x(t),u(t), t) , (2.57b)

where x(t) is the vector of the values of n state variables at time t, u(t) is the vector of the values of

m control variables at time t, t0 is a fixed or variable initial time, φ is the function that represents a

cost incurred at the fixed or variable final time, t f , L is a function that represents the running cost

incurred at each instant, t, and f is the function that represents the dynamics that relate changes in
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the control u to changes in the state x [46]. Then, the discretized approximation would be given by

minimize φ̂(x̂N , t f ) +

N−1∑
i=0

L̂i(x̂i, ûi, i), (2.58a)

subject to x̂i+1 = f̂i (x̂i, ûi, i) , i = 1, . . . ,N − 1, (2.58b)

which is a static optimization problem with decision variable [x̂0, . . . , x̂N , û0, . . . , ûN], for fixed or

chosen t0 and t f , where x̂i ∈ Rn and ûi ∈ Rm [46].

A simple method for discretizing the optimal control problem is to divide the interval [t0, t f ]

into N sub-intervals of equal length ∆t =
t f−t0

N , and to define the state and control within each interval

as a vector that is constant over the sub-interval. That is, for the simple discrete approximation [46],

x(t) ≈ x̂i, ti < t ≤ ti+1 (2.59a)

u(t) ≈ ûi, ti < t ≤ ti+1, (2.59b)

f̂i (x̂i, ûi, i) , x̂i + f (x̂i, ûi) ∆t, (2.59c)

L̂i(x̂i, ûi, i) , L(x̂i, ûi)∆t, (2.59d)

φ̂(x̂N) , φ(x̂, t f ). (2.59e)

In [65], Patterson and Rao describe a “Radau collocation method” for discretizing the optimal

control problem. This method introduces a new variable τ ∈ [−1, 1] and defines the time parameter,

t, as a function of τ, such that

t =
t f − t0

2
τ +

t f − t0
2

. (2.60)

The interval [−1, 1] for τ is then partitioned into a “mesh” of K sub-intervals [Tk−1,Tk], k =

1, . . . ,K, such that [30]

−1 = T0 < T1 < T2 < · · · < Tk = 1. (2.61)

While the simple discretization method approximates the state as a constant over an interval,

the Radau collocation method approximates the state in each mesh sub-interval [Tk−1,Tk] with a
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polynomial of degree Nk, such that

xk(τ) ≈
Nk+1∑
j=1

x̂k, jLk, j(τ), (2.62)

where xk(τ) is the state at time τ in mesh k, x̂k, j is the approximation of the state in mesh k at time

τk, j, where
{
τk,1, . . . , τk, j, . . . , τk,Nk

}
are the Legendre-Gauss-Radau (LGR) [30] collocation points in

mesh k while τk,Nk+1 = Tk, and Lk, j(τ) is a basis of Lagrange polynomials such that

Lk, j(τ) =

Nk+1∏
l=1
l, j

τ − τk,l

τk, j − τk,l
. (2.63)

An approximation of the control, ûk, j, is then generated for each of the x̂k, j state approximations.

Given these state and control approximations, the dynamics and objective functions are then

approximated using LGR differentiation and integration matrices and LGR quadrature weights for

each mesh interval [30].

2.4.2 Optimal Control Problem Phases.

Regarding optimal control formulations for the ATM problem, once an aircraft reaches its

destination (or leaves the airspace under control), it should no longer affect the objective function

or the trajectories of the remaining aircraft [76]. Such time-dependent changes in the dynamics

or constraints imposed on an optimal control problem are typically addressed by defining a phase

for each interval of the problem that has dynamics or constraints that are different from another

interval of the problem [65]. The P phases of the problem are linked through a set of constraints

that define how the final conditions of one phase are related to the initial conditions of another.

For example, in an ATM optimal control problem, the first phase may end the instant the first

aircraft reaches its destination, and the second phase begins at that same instant, with constraints

dictating that the speed and position of each remaining aircraft at the initiation of the second phase

must equal the speed and position of the aircraft at the final instant of the first phase. Then, the

final objective function value is optimized as the sum of the objective function values from each

phase. The “branch-and-bound”-based ATM heuristic proposed by Soler, et al, in [80] and the

Radau collocation-based GPOPS-II Matlab package detailed in [65] both implement the phase sub-

problem method for optimal control problems.
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In [22], Dmitruk and Kaganovich propose an alternative method of modeling time-dependent

changes in the optimal control problem dynamics or constraints without explicit phase definitions.

Instead, new time, state and control variables are defined for each possible change in dynamics or

constraints. The problem is then defined as a function of a “joint” time variable, with dynamic

equations defined to relate the change in the joint time to the change in each phase-implied time

dependent variable. Thus, instead of optimizing P phase-defined sub-problems, with np state and

mp control variables defined for each sub-problem p ∈ {1, . . . , P}, the Dmitruk and Kaganovich

method optimizes a single optimal control problem with
P∑

p=1
np state and

P∑
p=1

mp control variables.

In [74], Sadovsky, et al., formulate the ATM nominal arrival problem using the method proposed

by Dmitruk and Kaganovich.

2.4.3 Sequential Quadratic Programming.

Sequential Quadratic Programming (SQP) algorithms, as described in [8] by Bazarra, Sherali

and Shetty, apply Newton’s method or the Newton-Raphson method to directly solve the Karush-

Kuhn-Tucker (KKT) conditions derived from the Lagrangian form of the objective function and

constraints. Since Newton’s method requires second-order derivatives for the functions involved,

the second-order term is often replaced with a quasi-Newton positive definite approximation (for

minimization). Additionally, since SQP algorithm convergence to optimality depends on the

proximity of the initial solution to the optimal solution, a merit or penalty function may be

introduced so that the SQP algorithm iterations approach a KKT solution in the limit.

In [74], Sadovsky, et al., use an SQP algorithm to generate optimal speed advisories for the

sample roadmap coordination space problems presented therein. Patterson and Rao [65] also employ

an SQP algorithm to generate solutions to optimal control problems that have been discretized using

the Radau collocation method in the GPOPS-II optimal control software. This research used the

GPOPS-II software to generate SQP-approximated optimal solutions.

2.4.4 Sequential Convex Programming.

In [81], Sriver describes several Sequential Convex Programming (SCP) algorithms that

approximate the objective function at a point with a convex function of the original variables, their

reciprocals and an approximation of the gradient of the objective function evaluated at the point.
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The resulting approximation is separable; that is, it is a linear combination of functions that each

depend on only one of the original variables.

At each iteration of an SCP algorithm, the gradient of the Lagrangian function of the convex

approximation is itself approximated with respect to the primal variables and set to zero. This

system of equations is used to define each primal variable in terms of the dual (or Lagrange)

variables, and the dual of the convex approximation is constructed and optimized with respect to

the dual variables only. The primal-dual variable equations are then used to equate the optimal dual

solution to an optimal primal solution for the current iteration. As with SQP, a penalty function may

be added to the algorithm to improve its iterative convergence to optimality.

In [81], Sriver employs SCP methods to solve large-scale structural optimization problems

that involve thousands of design variables. These methods could prove to be useful in discretized

optimal control problems, since the discretization process can result in thousands of time-increment

control variables.

2.4.5 Interior Point Methods.

Interior point method (or barrier method [84]) algorithms introduce a barrier term to the

objective function being minimized. A logarithmic form for the barrier term is often used.

For example, given an optimization problem with objective function f (x), inequality constraints

gi(x) ≤ 0, for i = 1, . . . ,K, and set of equality constraints h(x) = 0, the interior-point optimization

problem would appear as [84]

minimize f (x) − µ
K∑

i=1

ln
(
− gi(x)

)
, (2.64a)

subject to h(x) = 0, (2.64b)

where µ > 0 is the “barrier parameter” [84]. Since ln
(
− gi(x)

)
→ −∞ as −gi(x) → 0, the optimal

solution to (2.64) will satisfy gi(x) > 0, for i = 1, . . . ,K, and the solution to (2.64) is a point in the

interior the feasible region.

Given a formulation of the form (2.64), interior-point optimization algorithms iteratively

decrease the value of the barrier term, µ, and apply Newton-type methods to directly solve a

sequence of KKT conditions derived from the barrier form of the objective function and constraints.
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Primal-dual interior-point algorithms introduce a set of dual variables that involve the iteratively

decreasing barrier parameter, µ, and the reciprocal of the primal variables, and apply Newton-type

methods to solve a sequence of “perturbed” KKT conditions derived from the barrier form of the

objective function and the dual variables [84].

Patterson and Rao [65] employ an interior-point algorithm called IPOPT to generate solutions

to optimal control problems that have been discretized using the Radau collocation method in

GPOPS-II. As detailed in Section 3.1.4.2, this research uses the GPOPS-II software to generate

interior-point approximated optimal solutions.

2.5 Path Coordination and Resolution

Path coordination refers to generating trajectories for all vehicles in the problem setting such

that each vehicle’s path does not conflict with the path of another vehicle, where conflict definition

may vary based on the problem setting. Path resolution refers to problem settings in which the

trajectories of some vehicles may be controlled but others may not be, and trajectories for the

vehicles under control must be generated such that their paths do not conflict with each other’s paths

or with the paths of vehicles that are not under control. This section describes various approaches

to these types of problems.

2.5.1 Roadmap Coordination.

In [14], Bien and Lee provide examples of the conflict-free state space (or coordination space)

for the motion of two robotic manipulators under direct control and show how changes in the

motion of each manipulator affect the state space representation of when they are in conflict. These

examples were based on the path-position parameterization technique developed in [77]. In [33],

Ghrist, O’Kane and LaValle propose a similar coordination space approach to the path coordination

problem for multiple vehicles. This roadmap coordination method requires that each vehicle

have a predefined set of allowable paths, called a roadmap, from its origination to its destination.

The roadmap coordination space is then defined as the product space of all roadmaps, excluding

positions that satisfy the problem’s pair-wise conflict definition.

In [74] and [75], Sadovsky, et al., apply this roadmap coordination method to the Fully

Routed Nominal Arrival Problem, in which each aircraft in the problem setting has a predefined
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origination, destination, scheduled (or nominal) time of arrival, and path from its origination to its

destination. To apply the roadmap coordination method, the airspace is represented as a graph, with

arcs corresponding to aircraft route segments, assumed to be linear, and vertices corresponding to

airspace waypoints or the intersection of route segments. This graph could be based on actual policy

mandated flight corridors, or generated using the Voronoi diagram method discussed in Section

2.3.3, or some other technique. Pair-wise conflict regions for two aircraft are then defined for route

segments that share a common vertex in the graph using the following steps from [74] and [75] for

each pair-wise interaction of two aircraft, aircraft1 and aircraft2:

1. Define unit vectors in the direction of the route segments of each aircraft by

a1 ,
v1 − vc

‖v1 − vc‖
(2.65a)

and a2 ,
v2 − vc

‖v2 − vc‖
, (2.65b)

where a1 is the unit vector given as the direction from the common vertex, vc, to the other

segment endpoint v1 for aircraft1 of the the pair and a2 is the unit vector given as the direction

from the common vertex, vc, to the other segment endpoint v2 for aircraft2 of the pair.

2. Translate the space so that the common vertex, vc, becomes the coordinate origin, and the

position of each aircraft along its route segment becomes a scalar multiple of its unit direction

vector.

3. Parameterize the position of each aircraft with the state scalars c1 for aircraft1 and c2 for

aircraft2 such that the state space X1,2 for the pair can be defined as

X1,2 ,

 (c1, c2)
0 ≤ c1 ≤ l1,

0 ≤ c2 ≤ l2


(2.66a)

(2.66b)

where l1 , ‖v1 − vc‖ is the route segment length for aircraft1 and l2 , ‖v2 − vc‖ is the route

segment length for aircraft2.
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4. Define the state space conflict region C1,2 for an airspace with minimum allowable separation

requirement r as

C1,2 ,
{
(c1, c2) ∈ X1,2

∣∣∣ ‖c1a1 − c2a2‖
2 < r2}, (2.67a)

or equivalently as

C1,2 ,
{
(c1, c2) ∈ X1,2

∣∣∣ (c1)2 + (c2)2 − 2c1c2
〈
a1, a2

〉
< r2}, (2.67b)

where r is the minimum allowable separation requirement and
〈
a1, a2

〉
is the inner-product of

the direction vectors a1 and a2.

From [75], this process can be extended to define the conflict region, CA, and the set of feasible

states (or coordination space), ΩA
X

, for the set of A aircraft, denoted {α1, α2, . . . , αA} with the

corresponding set of unit direction vectors {a1, a2, . . . , aA}, that share a common vertex:

1. Define the state space XA as

XA ,


(c1, c2, . . . , cA)

0 < c1 ≤ l1,

0 < c2 ≤ l2,

...

0 < cA ≤ lA



(2.68a)

(2.68b)

(2.68c)

where li , ‖vi − vc‖ is the route segment length for aircraft αi for i = 1, 2, . . . , A.

2. Define the conflict region CA for the route segments with a common vertex in an airspace with

minimum allowable separation requirement r as the union of all pair-wise conflict regions:

CA ,
⋃

(i, j)∈A×A,i, j

{
(c1, c2, . . . , cA) ∈ XA

∣∣∣ (ci)2 + (c j)2 − 2cic j
〈
ai, a j

〉
< r2}, (2.69)

3. Define the coordination space ΩA
X

as the complement of CA in XA:

ΩA
X
, XA \ CA =

{
(c1, c2, . . . , cA) ∈ XA

∣∣∣ (c1, c2, . . . , cA) < CA}, (2.70)
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where the back-slash symbol, \ , represents the set-theoretic difference or relative-

complement operator [36]. Thus, the coordination space ΩA
X

is defined equivalently as the

intersection of all regions that do not contain a pair-wise conflict:

ΩA
X
,

⋂
(i, j)∈A×A,i, j

{
(c1, c2, . . . , cA) ∈ XA

∣∣∣ (ci)2 + (c j)2 − 2cic j
〈
ai, a j

〉
≥ r2}, (2.71)

This state space feasible region definition can then be used to find the optimal trajectory of each

aircraft along its route segment, subject to its own physical, policy, procedural or operational

restrictions. Sadovsky, et al., use this framework to derive optimal aircraft trajectories based on

SQP, described in Section 2.4.3, under the simplifying assumptions [75]:

• Vehicles change direction instantaneously at each waypoint

• Vehicle state is controlled directly by vehicle velocity only; acceleration is not modeled

• All vehicle pairs have the same, symmetric minimum separation requirement, r

Nonetheless, this roadmap coordination method was then generalized in [73] and [76] to

nominal arrival time problems without pre-defined paths. To accomplish this, a Hybrid Control

System (HCS) is defined by enumerating all possible paths in a given graph from each aircraft’s

initial position to its final position along the route segment network. Each enumerated combination

consisting of A paths defines a discrete mode, and each mode thus defines a Fully Routed Nominal

Arrival problem that can be analyzed using the roadmap coordination space approach. Thus,

choosing the best solution from all modes gives the overall optimal solution.

2.5.2 Non-cooperative Path Resolution.

Non-cooperative path resolution problems model cases in which some of the vehicles in the

setting are not under control and must be considered independent obstacles. In [5], Bach, Chu

and Erzberger present methods for generating temporary path deviations for the aircraft under

control in order to avoid the paths of uncontrolled aircraft. Similarly in [16], Bowe and Lauderdale

demonstrate path resolution techniques based on minimizing fuel consumption. Tomlin, Pappas

and Sastry develop a game-theoretic approach to non-cooperative conflict resolution in [83]. This

approach defines the game theoretic optimal reaction to the worst possible action of the other
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aircraft as each aircraft’s resolution maneuver. However, these methods are designed for one-on-

one conflicts, as opposed to the multiple independent conflicts that could arise in terminal airspace

ATM problems. Kosecka, Tomlin, Pappas and Sastry present a method to resolve path conflicts for

multiple moving agents in [48], but the method is only applicable to a few specific conflict scenarios

(e.g., head-on conflicts of aircraft at constant altitude).

2.6 Stochastic Components

This section outlines research related to incorporating stochastic weather, aircraft maneuver

and control (i.e., mechanical) lag and random human effects (such as control implementation error)

into ATM frameworks.

2.6.1 Wind and Weather.

The stochastic effects of wind and weather on aircraft trajectory may invalidate some of the

roadmap-type approaches to ATM, since weather avoidance may force an aircraft to deviate from

a predefined route, and wind may affect the aircraft’s ability to execute optimal speed advisories

precisely [53]. Additionally, in [25], Erzberger, Paielli, Isaacson and Eshow state that “the effects

of wind modeling and prediction errors accumulate with time”, leading to greater uncertainty in the

true position of an aircraft. In [51] and [49], Lauderdale further simulates how such wind prediction

uncertainty can affect trajectory planning algorithms, and suggests in [50] that a normal probability

distibution-based ellipse can be used to model the likely position of an aircraft in the presence of

wind and speed uncertainty.

In [43] Karmgarpour suggests a “receding horizon trajectory” generation method to iteratively

optimize weather avoidance paths based on incremental weather forecast updates. In this procedure,

weather features are approximated as ellipsoid obstacles for the current planning and execution

horizons, and the shortest obstacle avoidance path for each aircraft is determined. Then, the most

recent weather forecast is used to update the weather approximating obstacles, and the process

is repeated. While this method treats weather forecasts as deterministic obstacles, in [53] Lee,

Weygandt, Schwartz and Murphy study how wind and weather uncertainty can cause uncertainty

in aircraft trajectories. Since trajectory uncertainty is positively correlated with wind and weather

forecast uncertainty, the study indicates the common procedure of adding a standard buffer to the
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minimal separation requirement to account for trajectory uncertainty should be replaced with a

method of adding a dynamic buffer based on the uncertainty of the wind and weather forecast.

2.6.2 Execution Delay.

According to Cone [18], execution delay refers to the “delay between when a conflict resolution

maneuver is sent to an aircraft . . . and when the aircraft actually begins flying this maneuver”.

Thus, execution delay is a random process that comprises both human and mechanical effects.

Unfortunately, many automated conflict detection and resolution algorithms are designed and tested

without taking execution delay into consideration, and McNally and Gong [59] and McNally and

Thipphavong [60] showed that the performance of these algorithms is highly dependent on the level

of uncertainty present.

In [18], Cone indicates that adding a buffer to minimal separation requirements to account for

execution delay leads to path inefficiencies that cause aircraft to fly longer routes than necessary

and generates schedule inefficiencies that cause unnecessary arrival or departure delays. Instead,

the study [18] simulates a process of generating conflict resolution maneuvers and evaluates the

effects of starting the maneuvers with varying time errors. It shows that starting maneuvers late

is more detrimental than starting maneuvers early, but that starting maneuvers early still results in

failures to resolve minimal separation conflicts and the generation of new conflicts. Nonetheless,

[18] suggests, but does not present, generating resolution maneuvers that are robust to a range of

both positive and negative execution time errors.

In [47], Knorr and Walter state that “(u)ncertainty can be captured with 3-dimensional

ellipsoids, covering all aircraft positions at a specific instant of time ahead,” and they suggest that

separation conflicts are less likely to occur as the volume of an uncertainty ellipsoid decreases as

a result of more accurate estimates of aircraft positions, and in [61], Meckiff estimates this aircraft

position uncertainty ellipsoid using the normal distribution to model the uncertainty in each of

the three dimensions. Thus, the position uncertainty ellipsoid radii in each of the three directions

(latitudinal, longitudinal and vertical) is equated to the distance of three standard deviations of the

normal distribution associated with that direction’s uncertainty. In [37] and [38], Hu, Prandini and
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Sastry apply Brownian Motion theory to justify modeling the aircraft position uncertainty with such

an ellipsoid.

2.7 Summary

The background information and optimization techniques outlined in this chapter represent

the variety of methods that have been applied to ATM optimization problems. While many of

these techniques have been developed to address individual ATM components, no robust model has

been constructed to address simultaneously many of the limitations of current roadmap-based ATM

optimization methods. Chapter 3 presents the methods developed in this research that extend and

modify current roadmap-based ATM models to account for aircraft inertia, position uncertainty and

realistic safe separation requirements.
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III. Research Methodology

The Hybrid Control System (HCS) for Air Traffic Management (ATM) proposed by Sadovsky,

et al., lists the following suggested extensions [76]:

1. Optimize feasible control strategies using alternative measures of performance (e.g. fuel

consumption, safety, or deviation from schedule).

2. Include inertia into the HCS by using aircraft accelerations as control variables with

corresponding minimum and maximum values

3. Investigate the effects of asymmetric and anisotropic pair-wise separation requirements.

4. Incorporate stochastic components to account for the effects of wind, transportation

performance, or human factors.

This chapter describes the approaches used to address these extensions and modifications to the

current HCS framework. Section 3.1 provides the multi-objective formulation of the HCS ATM

problem. Section 3.1.2 details methods for estimating the anisotropic pair-wise conflict regions for

all aircraft in the problem. Section 3.3 provides a formulation of the multi-objective HCS ATM

problem that incorporates acceleration controls, and Section 3.4 outlines a method for incorporating

uncertainty into the HCS framework. Section 3.5 incorporates asymmetric lateral separation

features into the stochastic multi-objective HCS ATM problem with kinodynamic constraints.

3.1 Objective Function Extension

Real-world conditions and Federal Aviation Administration (FAA) policies may imply a

preference or ordering among competing objectives associated with ATM. For example, commercial

airlines may wish to minimize their measures of fuel consumption and deviation from scheduled

arrival times, while the priority of Air Traffic Control (ATC) may be to guide aircraft out of

the terminal airspace as quickly and safely as possible. The focus of this research is not to

determine the specific priorities that should be assigned to each measure, rather, the focus is to

demonstrate the ability of the roadmap-based optimization framework to incorporate these priorities

42



to generate feasible control strategies. Therefore, this section details a notional weighted-sum

objective function that is formulated to incorporate the relative priorities that could be assigned

to a measure of fuel consumption, a measure of schedule deviation and a measure of total time (i.e.,

the makespan.

3.1.1 Mutli-Objective Formulation.

The multi-objective HCS problem is formulated as the weighted-sum of the notional fuel

consumption measure, the deviation from scheduled arrival time measure and the makespan

measure. Thus, the weighted-sum objective may be given as

F̂ , λ1F1 + λ2F2 + λ3F3 (3.1)

where λ1 ≥ 0 is the scalar that represents the relative importance of the notional fuel consumption

measure, F1, λ2 ≥ 0 is the scalar that represents the relative importance of the schedule deviation

measure, F2, and λ3 ≥ 0 is the scalar that represents the relative importance of the total time

measure, F3. For the weighted-sum objective, it is common to require that λ1 + λ2 + λ3 = 1, and

to normalize the competing objectives so that 0 ≤ Fk ≤ 1 for each k ∈ {1, 2, 3} [23]. However,

parameter screening test results, provided in Appendix A, indicated that the linear combination

of normalized objectives were not suitable for representing the priorities assigned to the schedule

deviation or makespan measures. For example, when λ1 and λ3 were set to zero while λ2 was

set to 1, indicating that only the schedule deviation should be minimized, the solution did not

result in zero schedule deviation. However, several non-linear weighting schemes resulted in much

smaller measures of schedule deviation than the standard linear weighting scheme. Therefore, in

order to model non-linear priority weightings, this research generalized the weighted-sum objective

formulation. The generalized weighted-sum objective is

F ,
(
λ1

β1
)

F1
(λ1

1−β1) +
(
λ2

β2
)

F2
(λ2

1−β2) +
(
λ3

β3
)

F3
(λ3

1−β3) (3.2)

where each βk ∈ {0, 1} is a binary term for k ∈ {1, 2, 3} that determines how each measure is

weighted. That is, if βk = 1, then Fk is weighted on a linear scale, but if βk = 0, then Fk is weighted

exponentially. Note that the weights are not required to sum to unity for the generalized weighted-
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sum objective (3.2); as such, exponent values of λk much greater than 1 would cause values of Fk

less than 1 to become insignificant in the optimization problem.

Additionally, since this research is intended to extend and generalize the framework from

[73], the “move as slowly as possible” objective from [73] was selected as the notional measure

representing fuel consumption. Thus, the fuel consumption objective, F1, is

F1(µ,u, t0, t f , t) =

A∑
α=1

[ t[ f ,α]∫
t[0,α]

[
u[µ,α](t)

]2
dt

]
, (3.3)

where µ is the selected control mode which designates the pre-defined set of paths for each aircraft

α ∈
{
1, 2, . . . , A

}
, u = [u[µ,1], u[µ,2], . . . , u[µ,A]] is a feasible vector of control strategies, t0 =

[t[0,1], t[0,2], . . . , t[0,A]] is the vector of initial times for each aircraft, and t f = [t[ f ,1], t[ f ,2], . . . , t[ f ,A]]

is the vector set of final (or actual arrival) times for each aircraft. However, if the control strategies

are required to satisfy u[µ,α]min ≤ u[µ,α](t) ≤ u[µ,α]max for each α ∈ {1, 2, . . . , A}, then the normalized

fuel consumption objective, F̂1, could be given as

F̂1(µ,u, t0, t f , t) =

 A∑
α=1

[
t[ f ,α]max − t[0,α]

]
−1 A∑

α=1

[ t[ f ,α]∫
t[0,α]

[
u[µ,α](t) − u[µ,α]min

]2

u[µ,α]max − u[µ,α]min

dt
]
, (3.4)

where t[ f ,α]max is the latest allowable arrival time for aircraft α, such that [t[ f ,α] ≤ t[ f ,α]max for each

α ∈
{
1, 2, . . . , A

}
. Therefore, the normalized F̂1 given in equation (3.4) was used in the initial

parameter screening tests, while the original F1 given in equation (3.3) was used in subsequent

demonstration tests.

F2 is the measure of deviation from scheduled arrival time given by

F2(µ, κ2, t f , tS ) = κ2 +

A∑
α=1

[
t[ f ,α] − t[S ,α]

]2
, (3.5)

where tS = [t[S ,1], t[S ,2], . . . , t[S ,A]] is the vector of scheduled arrival times for each aircraft and κ2 ≥ 1

is a scalar term added to ensure F2
λ2 ≥ 1. The normalized measure of deviation from scheduled

arrival time, F̂2, is given by

F̂2(µ, t f , tS ) =

 A∑
α=1

[
max

{[
t[S ,α] − t[ f ,α]min

]2
,
[
t[S ,α] − t[ f ,α]max

]2
}]
−1 A∑

α=1

[
t[ f ,α] − t[S ,α]

]2
, (3.6)
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where t[ f ,α]min is the earliest allowable arrival time for aircraft α, such that t[ f ,α] ≥ t[ f ,α]min for each

α ∈
{
1, 2, . . . , A

}
. The normalized F̂2 given in equation (3.6) was used in the initial parameter

screening tests, while the original F2 given in equation (3.5) was used in subsequent demonstration

tests.

F3 is the measure of total time (or makespan) given by

F3(µ, κ3, t f , t fmin) = κ3 +

A∑
α=1

[
t[ f ,α] − t[ f ,α]min

]2
, (3.7)

where t fmin = [t[ f ,1]min , t[ f ,2]min , . . . , t[ f ,A]min] is the vector of earliest allowable arrival times for each

aircraft, and κ3 ≥ 1 is a scalar term added to ensure F3
λ3 ≥ 1. The normalized measure of total time,

F̂3, is given by

F̂3(µ, t f , t fmin) =

 A∑
α=1

[
t[ f ,α]max − t[ f ,α]min

]2

−1 A∑

α=1

[
t[ f ,α] − t[ f ,α]min

]2
. (3.8)

The normalized F̂3 given in equation (3.8) was used in the initial parameter screening tests, while

the original F3 given in equation (3.7) was used in subsequent demonstration tests.

For each objective, a control strategy u[µ,α] is feasible if and only if it satisfies the problem’s

dynamic equations, boundary conditions, and its intermediate state, control and ATM separation

constraints. Using roadmap coordination space notation, the dynamic equations of the HCS problem

without inertia are

d
dt

c[µ,α](t) = u[µ,α](t), ∀α ∈ {1, 2, . . . , A}, (3.9)

where c[µ,α](t) is the path-length parameterized position at time t of aircraft α along its route defined

by control mode µ. Thus, u[µ,α](t) directly controls the instantaneous change in position of aircraft

α along its route.

In order to define the boundary conditions and intermediate constraints for the HCS ATM

problem, it is necessary to define more precisely how the control mode µ relates to the three-

dimensional airspace position
(
xα(t), yα(t), zα(t)

)
of aircraft α to its roadmap state c[µ,α](t). In control

mode µ, each aircraft α ∈ {1, 2, . . . , A} is assigned a set of nα way-points in the three-dimensional

airspace that must be visited in order. The set of way-points is given as

WP[µ,α] =
{
(x[1,α], y[1,α], z[1,α]

)
, (x[2,α], y[2,α], z[2,α]

)
, . . . , (x[nα,α], y[nα,α], z[nα,α]

)}
, (3.10)
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so the route of aircraft α is partitioned into a set of (nα − 1) route segments (or arcs) defined by

the airspace way-points. Thus, the total path-length for the route of aircraft α in control mode µ,

denoted l[µ,α], is given by

l[µ,α] =

nα−1∑
i=0

∥∥∥a[i,α]
∥∥∥, (3.11a)

where

a[i,α] ,


[
0, 0, 0

]
if i = 0,[

x[i+1,α], y[i+1,α], z[i+1,α]
]
−

[
x[i,α], y[i,α], z[i,α]

]
if i ≥ 1,

(3.11b)

is a vector representation of the route segment that connects way-point i to way-point (i + 1). Thus,

the roadmap state c[µ,α](t) ∈ [0, l[µ,α]] in control mode µ is related to the three-dimensional airspace

position of aircraft α by the relationship
xα(t)

yα(t)

zα(t)

 =


x[1,α]

y[1,α]

z[1,α]

 + ĉ[µ,α](t)a[n̂α,α] +

n̂α−1∑
i=0

a[i,α], (3.12a)

where

n̂α−1∑
i=0

∥∥∥a[i,α]
∥∥∥ ≤ c[µ,α](t) ≤

n̂α∑
i=0

∥∥∥a[i,α]
∥∥∥ (3.12b)

and

ĉ[µ,α](t) =

c[µ,α](t) −
n̂α−1∑
i=0
‖a[i,α]‖

‖a[n̂α,α]‖
. (3.12c)

Alternatively, the three-dimensional airspace position of aircraft α at time t in control mode µ can

be determined using Algorithm 3.1.
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Algorithm 3.1 Calculate airspace position given roadmap state c[µ,α](t)

aα =
[
0, 0, 0

]
lα = 0

n̂α = 1

while lα + ‖a[n̂α,α]‖ ≤ c[µ,α](t) do

aα = aα + a[n̂α,α]

lα = lα + ‖a[n̂α,α]‖

n̂α = n̂α + 1

end while

ĉ[µ,α](t) =
c[µ,α](t) − lα
‖a[n̂α,α]‖

aα = aα + ĉ[µ,α](t)
(
a[n̂α,α]

)
[xα(t), yα(t), zα(t)

]
= [x[1,α], y[1,α], z[1,α]

]
+ aα

Given equations (3.10) - (3.12), the boundary conditions of the HCS ATM problem are given

by

t[0,α] = 0, ∀α ∈ {1, 2, . . . , A}, (3.13a)

c[µ,α]
(
t[0,α]

)
= c[min,α], ∀α ∈ {1, 2, . . . , A}, (3.13b)

c[µ,α]
(
t[ f ,α]

)
= l[µ,α], ∀α ∈ {1, 2, . . . , A}, (3.13c)

where l[µ,α] is the path length of the route defined by control mode µ for aircraft α. That is, all

aircraft are assumed to enter the problem at the same initial time, t = 0, at some distance c[min,α]

along their path, and they are required to travel the remaining distance, l[µ,α] − c[min,α], of their path

defined by the control mode µ.

Given equations (3.10) - (3.12), the intermediate state and control constraints for all aircraft

α ∈ {1, 2, . . . , A} are given by

c[min,α] ≤ c[µ,α](t) ≤ l[µ,α], (3.14a)

u[min,α] ≤ u[µ,α](t) ≤ u[max,α], (3.14b)
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for all intermediate time 0 ≤ t ≤ t[ f ,α], where u[min,α] > 0 is the minimum allowable speed control

value for aircraft α and u[max,α] is the maximum allowable speed control value for aircraft α.

Given equations (3.10) - (3.12) and Algorithm 3.1, for each pair of aircraft
(
α1, α2

)
such that

α1 ∈ {1, 2, . . . , A}, α1 ∈ {1, 2, . . . , A} and α1 , α2, the intermediate ATM separation constraint

function is given by

GATM
[α1,α2](t) , 1 −max


(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2

r(t)2 ,

(
zα1(t) − zα2(t)

)2

h2

, (3.15a)

or equivalently,

GATM
[α1,α2](t) , min

{
r(t)2 −

(
xα1(t) − xα2(t)

)2
−

(
yα1(t) − yα2(t)

)2
, h2 −

(
zα1(t) − zα2(t)

)2}
, (3.15b)

where r(t) is the minimum allowable lateral separation at time t, as described in Section 3.5, h is

the minimum allowable vertical separation, and all other values are as defined in equations (3.10) -

(3.12) and Algorithm 3.1. The ATM separation constraint is thus,

GATM
[α1,α2](t) ≤ 0 (3.16)

for all intermediate time 0 ≤ t ≤ min
{
t[ f ,α1], t[ f ,α2]

}
. Therefore, the pair-wise ATM separation

constraint is only defined until aircraft α1 or aircraft α2 reaches its destination.

3.1.2 Differentiable ATM Separation Constraint Approximation.

As described in Section 2.3.1, the ATM separation constraints given by equation (3.15) are not

differentiable, so they must be approximated in order to evaluate the ATM optimization problem

using gradient-based numerical methods. This section details four methods for approximating the

multi-objective HCS optimization problem’s ATM separation constraints.

3.1.2.1 Multiplier Method ATM Separation Constraint Approximation.

From Section 2.3.1.4, the differentiable Multiplier Method approximation of the ATM

separation constraints given in equation (3.15a) should appear as

g1(t) − G̃
(
g1(t) − g2(t), λ, γ

)
≤ 0, (3.17a)
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where

g1(t) = r(t)2 −

((
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2)
, (3.17b)

g2(t) = h2 −
(
zα1(t) − zα2(t)

)2
, (3.17c)

and

G̃
(
g1(t) − g2(t), λ, γ

)
=



g1(t) − g2(t) − (1−λ)2

2γ if 1−λ
γ ≤ g1(t) − g2(t), λ

(
g1(t) − g2(t)

)
+1

2γ
(
g1(t) − g2(t)

)2

 if −λγ ≤ g1(t) − g2(t) ≤ 1−λ
γ ,

−λ
2

γ if g1(t) − g2(t) ≤ −λγ ,

(3.17d)

with 0 ≤ λ ≤ 1 and γ > 0.

Note that if xα1(t) = xα2(t) and yα1(t) = yα2(t), then g1(t) = r2 > 0. Thus, in order to satisfy the

ATM separation constraint, it must be that g2(t) ≤ 0. Therefore, g1(t) − g2(t) ≥ r2. From equation

(3.17a), if γ > 1
r2 , then 1−λ

γ ≤ g1(t) − g2(t), so the Multiplier Method constraint approximation

becomes

r(t)2 − G̃
(
r(t)2 − g2(t), λ, γ

)
≤ 0 (3.18a)

=⇒ r(t)2 −
(
r(t)2 − g2(t) −

(1 − λ)2

2γ

)
≤ 0 (3.18b)

=⇒ g2(t) +
(1 − λ)2

2γ
≤ 0 (3.18c)

=⇒ g2(t) ≤ −
(1 − λ)2

2γ
. (3.18d)

That is, if the lateral separation is zero, then the Multiplier Method ATM separation approximation

requires the square of the vertical separation to be at least (1−λ)2

2γ greater than the square of the

minimum allowable vertical separation. Since the actual ATM separation requirement is that if

the lateral separation is zero, then the square of the vertical separation must be at least equal to

the square of the minimum allowable vertical separation, the maximum error of the Multiplier

Method ATM separation approximation in the vertical direction, denoted εV (λ, γ) is bounded by

the relationship

0 ≤ εV (λ, γ) ≤
(1 − λ)2

2γ
. (3.19)
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Similarly, if zα1(t) = zα2(t), then g2(t) = h2 > 0. Thus, in order to satisfy the ATM separation

constraint, it must be that g1(t) ≤ 0. Therefore, g1(t) − g2(t) ≤ −
(
h2

)
. From equation (3.17a), if

γ > 1
h2 , then g1(t) − g2(t) ≤ −λγ , so the Multiplier Method constraint approximation becomes

g1(t) − G̃
(
g1(t) − h2, λ, γ

)
≤ 0 (3.20a)

=⇒ g1(t) −
(
−
λ2

γ

)
≤ 0 (3.20b)

=⇒ g1(t) +
λ2

γ
≤ 0 (3.20c)

=⇒ g1(t) ≤ −
λ2

γ
. (3.20d)

That is, if the vertical separation is zero, then the Multiplier Method ATM separation approximation

requires the square of the lateral separation to be at least λ2

γ greater than the square of the minimum

allowable lateral separation. Since the actual ATM separation requirement is that if the vertical

separation is zero, then the square of the lateral separation must be at least equal to the square

of the minimum allowable lateral separation, the maximum error of the Multiplier Method ATM

separation approximation in the lateral plane, denoted εL(λ, γ) is bounded by the relationship

0 ≤ εV (λ, γ) ≤
λ2

γ
. (3.21)

It is interesting to note that the maximum error of a constraint in the Multiplier Method is

dependent on its order of appearance in the approximation. For example, if the Multiplier Method

ATM separation approximation had been constructed as

g2(t) − G̃
(
g2(t) − g1(t), λ, γ

)
≤ 0, (3.22)

then the maximum error in the vertical direction would have been λ2

γ , instead of (1−λ)2

2γ , and the

maximum error in the lateral plane would have been (1−λ)2

2γ , instead of λ2

γ . However, the two

maximum error values are equal if (1−λ)2

2γ = λ2

γ , which is satisfied when λ =
(√

2 − 1
)
. Nonetheless,

increasing the parameter γ > 0 should result in more accurate approximations of the ATM separation

constraint. However, as γ → ∞, the Multiplier Method approximation becomes computationally

unstable when evaluated with numerical differentiation methods. Section 3.1.2.5 describes the

tests constructed to determine appropriate values of γ and λ for use with the multi-objective HCS

optimization problem.
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3.1.2.2 Sigmoid ATM Separation Constraint Approximation.

From Section 2.3.1.7, the differentiable sigmoid approximation of the ATM separation

constraints given in equation (3.15b) appear as

−
(
2−2

)
+

(
1

1 + e−sg1(t)

) (
1

1 + e−sg2(t)

)
≤ 0, (3.23)

where

g1(t) = r(t)2 −

((
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2)
(3.24a)

and g2(t) = h2 −
(
zα1(t) − zα2(t)

)2
. (3.24b)

Note that if xα1(t) = xα2(t) and yα1(t) = yα2(t), then g1(t) = r(t)2 and the sigmoid constraint

approximation becomes

−
(
2−2

)
+

(
1

1 + e−sr(t)2

) (
1

1 + e−sg2(t)

)
≤ 0, (3.25a)

or equivalently, (
1

1 + e−sr(t)2

)
≤

1
4

(
1 + e−sg2(t)

)
(3.25b)

=⇒ 4
(

1
1 + e−sr(t)2

)
≤ 1 + e−sg2(t) (3.25c)

=⇒ 4
(

1
1 + e−sr(t)2

)
− 1 ≤ e−sg2(t) (3.25d)

=⇒ ln
[
4
(

1
1 + e−sr(t)2

)
− 1

]
≤ −sg2(t) (3.25e)

=⇒ g2(t) ≤ −
1
s

ln
[
4
(

1
1 + e−sr(t)2

)
− 1

]
. (3.25f)

That is, if the lateral separation is zero, then the sigmoid ATM separation approximation requires

the square of the vertical separation to be at least 1
s ln

[
4
(

1
1+e−sr(t)2

)
− 1

]
greater than the square of

the minimum allowable vertical separation. Since the actual ATM separation requirement is that if

the lateral separation is zero, then the square of the vertical separation must be at least equal to the

square of the minimum allowable vertical separation, 1
s ln

[
4
(

1
1+e−sr(t)2

)
− 1

]
is the maximum error

of the sigmoid ATM separation approximation in the vertical direction.
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Note that 1
1+e−sr(t)2

→ 1 as s → ∞, so the maximum error of the sigmoid ATM separation

approximation in the vertical direction, denoted εV (s), is bounded by the relationship

0 ≤ εV (s) ≤
1
s

ln [3]. (3.26)

Similarly, if zα1(t) = zα2(t), then g2(t) = h2 and the sigmoid constraint approximation becomes

−
(
2−2

)
+

(
1

1 + e−sg1(t)

) (
1

1 + e−sh2

)
≤ 0, (3.27a)

or equivalently, (
1

1 + e−sh2

)
≤

1
4

(
1 + e−sg1(t)

)
(3.27b)

=⇒ 4
(

1
1 + e−sh2

)
≤ 1 + e−sg1(t) (3.27c)

=⇒ 4
(

1
1 + e−sh2

)
− 1 ≤ e−sg1(t) (3.27d)

=⇒ ln
[
4
(

1
1 + e−sh2

)
− 1

]
≤ −sg1(t) (3.27e)

=⇒ g1(t) ≤ −
1
s

ln
[
4
(

1
1 + e−sh2

)
− 1

]
. (3.27f)

That is, if the vertical separation is zero, then the sigmoid ATM separation approximation requires

the square of the lateral separation to be at least 1
s ln

[
4
(

1
1+e−sh2

)
− 1

]
greater than the square of the

minimum allowable lateral separation. Since the actual ATM separation requirement is that if the

vertical separation is zero, then the square of the lateral separation must be at least equal to the

square of the minimum allowable lateral separation, 1
s ln

[
4
(

1
1+e−sh2

)
− 1

]
is the maximum error of

the sigmoid ATM separation approximation in the lateral plane.

Note that 1
1+e−sh2 → 1 as s → ∞, so the maximum error of the sigmoid ATM separation

approximation in the lateral plane, denoted εL(s), is bounded by the relationship

0 ≤ εL(s) ≤
1
s

ln [3]. (3.28)

Equations (3.26) and (3.28) indicate that increasing the parameter s > 0 should result in more

accurate approximations of the ATM separation constraint. However, as s → ∞, the sigmoid
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approximation becomes computationally unstable when evaluated with numerical differentiation

methods. Section 3.1.2.5 presents tests constructed to determine appropriate values of s for use

with the multi-objective HCS optimization problem.

3.1.2.3 p-Norm ATM Separation Constraint Approximation.

From Section 2.3.1.6 equation (2.41), the differentiable p-norm approximation of the ATM

separation constraints given in equation (3.15a) are

2 −



(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2

r(t)2


p

+


(
zα1(t) − zα2(t)

)2

h2


p ≤ 0. (3.29)

Note that if xα1(t) = xα2(t) and yα1(t) = yα2(t), then the p-norm constraint approximation

becomes

2 −


(
zα1(t) − zα2(t)

)2

h2


p

≤ 0, (3.30a)

or equivalently,

2 ≤


(
zα1(t) − zα2(t)

)2

h2


p

(3.30b)

=⇒ 21/p ≤

(
zα1(t) − zα2(t)

)2

h2 (3.30c)

=⇒ 21/p
(
h2

)
≤

(
zα1(t) − zα2(t)

)2
. (3.30d)

That is, if the lateral separation is zero, then the p-norm ATM separation approximation requires

the square of the vertical separation to be at least a factor of 21/p times greater than the square of

the minimum allowable vertical separation. Since the actual ATM separation requirement is that

if the lateral separation is zero, then the square of the vertical separation must be at least equal to

the square of the minimum allowable vertical separation, the maximum error of the p-norm ATM

separation approximation in the vertical direction, denoted εV (p) is bounded by the relationship

0 ≤ εV (p) ≤
(
h2

) (
21/p − 1

)
. (3.31)

Similarly, if zα1(t) = zα2(t) then the p-norm constraint approximation becomes

2 −


(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2

r(t)2


p

≤ 0, (3.32a)
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or equivalently,

2 ≤


(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2

r(t)2


p

(3.32b)

=⇒ 21/p ≤

(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2

r(t)2 (3.32c)

=⇒ 21/p
(
r(t)2

)
≤

(
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2
. (3.32d)

That is, if the vertical separation is zero, then the p-norm ATM separation approximation requires

the square of the lateral separation to be at least 21/p times greater than the square of the minimum

allowable lateral separation. Since the actual ATM separation requirement is that if the vertical

separation is zero, then the square of the lateral separation must be at least equal to the square

of the minimum allowable lateral separation, the maximum error of the p-norm ATM separation

approximation in the lateral plan, denoted εL(p) is bounded by the relationship

0 ≤ εL(p) ≤
(
r(t)2

) (
21/p − 1

)
. (3.33)

Increasing the parameter p > 0 should result in more accurate approximations of the

ATM separation constraint. But once again, as p → ∞, the p-norm approximation becomes

computationally unstable when evaluated with numerical differentiation methods. Section 3.1.2.5

describes the tests constructed to determine appropriate values of p for use with the multi-objective

HCS optimization problem.

3.1.2.4 Exponential p-Norm ATM Separation Constraint Approximation.

Given the non-differentiable constraint

min {g1(t), g2(t), . . . , gK(t)} ≤ 0, (3.34)

the exponential p-norm constraint approximation given in Section 2.3.1.6 by equation (2.42) was

shown to underestimate the true infeasible region. That is, when gk(t) = 1
p ln

(
K
)
, for k = 1, . . . ,K,

then min {g1(t), g2(t), . . . , gK(t)} > 0 so the constraint is violated, but the exponential p-norm

constraint approximation is not violated. Therefore, a corrected form of the exponential p-norm

constraint approximation is needed to ensure the approximate feasible region does not over-estimate

the true feasible region.
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Suppose the corrected exponential p-norm constraint function is defined as

Gp(g1, g2, . . . , gK) , − ln


 K∑

k=1

(
e−gk

)p


1/p +

1
p

ln [K], (3.35)

and the corrected exponential p-norm constraint approximation is defined as

Gp(g1, g2, . . . , gK) ≤ 0. (3.36)

If gk(t) > 0, for all k = 1, . . . ,K, then the original constraint (3.34) is violated. Furthermore,

e−gk < e0 = 1 (3.37a)

=⇒
(
e−gk

)p
<

(
1
)p

= 1 (3.37b)

=⇒

K∑
k=1

(
e−gk

)p
<

K∑
k=1

1 = K (3.37c)

=⇒

 K∑
k=1

(
e−gk

)p


1/p

< (K)1/p (3.37d)

=⇒ ln


 K∑

k=1

(
e−gk

)p


1/p < ln
[
K1/p

]
=

1
p

ln [K] (3.37e)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p > −1
p

ln [K] (3.37f)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p +
1
p

ln [K] > 0. (3.37g)

Therefore, if the original constraint (3.34) is violated, then the corrected exponential p-norm

constraint approximation (3.36) is also violated.

If there is some k̂ ∈ {1, 2, . . . ,K} such that − 1
p ln [K] < gk̂(t) ≤ 0, while gk(t) > 0

for all k ∈ {1, . . . ,K} such that k , k̂, then the original constraint (3.34) is satisfied, since
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min {g1(t), g2(t), . . . , gK(t)} ≤ gk̂(t) ≤ 0. However,

e−gk̂ < e
1
p ln [K] (3.38a)

e−gk < e0 = 1, if k , k̂ (3.38b)

=⇒

K∑
k=1

(
e−gk

)p
<

(
e

1
p ln [K]

)p
+

K∑
k,k̂

1 (3.38c)

= eln [K] + K − 1 (3.38d)

= K + K − 1 (3.38e)

= 2K − 1 (3.38f)

< 2K (3.38g)

=⇒

 K∑
k=1

(
e−gk

)p


1/p

< (2K)1/p (3.38h)

=⇒ ln


 K∑

k=1

(
e−gk

)p


1/p < ln
[
(2K)1/p

]
(3.38i)

=
1
p

ln [K] +
1
p

ln [2] (3.38j)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p > −1
p

ln [K] −
1
p

ln [2] (3.38k)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p +
1
p

ln [K] > −
1
p

ln [2]. (3.38l)

Therefore, if there is some k̂ ∈ {1, 2, . . . ,K} such that − 1
p ln [K] < gk̂(t) ≤ 0, while gk(t) > 0 for

all k ∈ {1, . . . ,K} such that k , k̂, then the original constraint (3.34) is satisfied, but the corrected

exponential p-norm constraint approximation (3.36) is not necessarily satisfied.
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If there is some k̂ ∈ {1, 2, . . . ,K} such that gk̂(t) ≤ − 1
p ln [K], then the original constraint (3.34)

is satisfied, since min {g1(t), g2(t), . . . , gK(t)} ≤ gk̂(t) ≤ 0. Furthermore,

e−gk̂ ≥ e
1
p ln [K] (3.39a)

=⇒
(
e−gk̂

)p
≥

(
e

1
p ln [K]

)p
(3.39b)

= eln [K] (3.39c)

=⇒

K∑
k=1

(
e−gk

)p
≥ eln [K] (3.39d)

=⇒

 K∑
k=1

(
e−gk̂

)p


1/p

≥
(
eln [K]

)1/p
(3.39e)

= e
1
p ln [K] (3.39f)

=⇒ ln


 K∑

k=1

(
e−gk̂

)p


1/p ≥ ln
[
e

1
p ln [K]

]
(3.39g)

=
1
p

ln [K] (3.39h)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p ≤ −1
p

ln [K] (3.39i)

=⇒ − ln


 K∑

k=1

(
e−gk

)p


1/p +
1
p

ln [K] ≤ 0. (3.39j)

Therefore, if there is any k̂ ∈ {1, 2, . . . ,K} such that gk̂(t) ≤ − 1
p ln [K], then the corrected exponential

p-norm constraint approximation is satisfied. Thus, 1
p ln [K] is the maximum error of the corrected

exponential p-norm constraint approximation.

Setting K = 2, the corrected exponential p-norm approximation of the ATM separation

constraints given in equation (3.15a) should appear as

− ln
[((

e−g1(t)
)p

+
(
e−g2(t)

)p)1/p]
+

1
p

ln [2] ≤ 0, (3.40a)

where

g1(t) = r2 −

((
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2)
, (3.40b)

g2(t) = h2 −
(
zα1(t) − zα2(t)

)2
. (3.40c)
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Note that if xα1(t) = xα2(t) and yα1(t) = yα2(t), then the corrected exponential p-norm constraint

approximation becomes

− ln
[((

e−(r(t)2))p
+

(
e−g2(t)

)p
)1/p

]
+

1
p

ln [2] ≤ 0, (3.41a)

or equivalently,

ln
[
21/p

]
≤ ln

[((
e−(r(t)2))p

+
(
e−g2(t)

)p
)1/p

]
(3.41b)

=⇒ 21/p ≤

((
e−(r(t)2))p

+
(
e−g2(t)

)p
)1/p

(3.41c)

=⇒ 2 ≤
(
e−(r(t)2))p

+
(
e−g2(t)

)p
(3.41d)

=⇒ 2 −
(
e−(r(t)2))p

≤
(
e−g2(t)

)p
(3.41e)

=⇒ ln
[
2 −

(
e−(r(t)2))p]

≤ −p
(
g2(t)

)
(3.41f)

=⇒ −
1
p

ln
[
2 −

(
e−(r(t)2))p]

≥ g2(t) (3.41g)

That is, if the lateral separation is zero, then the exponential p-norm ATM separation approximation

requires the square of the vertical separation to be at least 1
p ln

[
2 −

(
e−(r(t)2)

)p]
greater than the

square of the minimum allowable vertical separation. Since the actual ATM separation requirement

is that if the lateral separation is zero, then the square of the vertical separation must be at least equal

to the square of the minimum allowable vertical separation, the maximum error of the exponential

p-norm ATM separation approximation in the vertical direction, denoted εVe(p), is bounded by the

relationship

0 ≤ εVe(p) ≤
1
p

ln
[
2 −

(
e−(r(t)2))p]

. (3.42)

Similarly, if zα1(t) = zα2(t), then the corrected exponential p-norm constraint approximation

becomes

− ln
[((

e−g1(t)
)p

+
(
e−(h2))p)1/p

]
+

1
p

ln [2] ≤ 0, (3.43a)
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or equivalently,

ln
[
21/p

]
≤ ln

[((
e−g1(t)

)p
+

(
e−(h2))p)1/p

]
(3.43b)

=⇒ 21/p ≤

((
e−g1(t)

)p
+

(
e−(h2))p)1/p

(3.43c)

=⇒ 2 ≤
(
e−g1(t)

)p
+

(
e−(h2))p

(3.43d)

=⇒ 2 −
(
e−(h2))p

≤
(
e−g1(t)

)p
(3.43e)

=⇒ ln
[
2 −

(
e−(h2))p]

≤ −p
(
g1(t)

)
(3.43f)

=⇒ −
1
p

ln
[
2 −

(
e−(h2))p]

≥ g1(t) (3.43g)

That is, if the vertical separation is zero, then the exponential p-norm ATM separation

approximation requires the square of the lateral separation to be at least 1
p ln

[
2 −

(
e−(h2)

)p]
greater

than the square of the minimum allowable lateral separation. Since the actual ATM separation

requirement is that if the vertical separation is zero, then the square of the lateral separation must be

at least equal to the square of the minimum allowable lateral separation, the maximum error of the

exponential p-norm ATM separation approximation in the lateral plane, denoted εLe(p), is bounded

by the relationship

0 ≤ εLe(p) ≤
1
p

ln
[
2 +

(
e−(h2))p]

. (3.44)

Increasing the parameter p > 0 should result in more accurate approximations of the ATM

separation constraint. However, as p → ∞, the exponential p-norm approximation becomes

computationally unstable when evaluated with numerical differentiation methods. Section 3.1.2.5

describes the tests constructed to determine appropriate values of p for use with the multi-objective

HCS optimization problem.

3.1.2.5 ATM Separation Constraint Approximation Testing.

As indicated in Sections 3.1.2.2- 3.1.2.4, the accuracy and computational stability of each

ATM separation constraint approximation is determined by a user-defined parameter. This section

describes the tests conducted to determine values of each approximation method’s parameters

that provide accurate estimates without becoming computationally unstable when using numerical

methods to evaluate the multi-objective HCS optimization problem.
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The first test was designed to determine how well each approximation method estimates the

pair-wise state space conflict region, as defined by equation (3.16). However, the airspace geometry

of a pair-wise aircraft interaction may affect how well an approximation method estimates the

conflict region. Therefore, the following pair-wise aircraft interaction test scenarios were developed:

1. Two constant, co-altitude aircraft whose current path segments intersect. The unitless

minimum allowable lateral separation is r = 0.3.

2. Two constant, co-altitude aircraft whose current path segments do not intersect

3. Two variable altitude aircraft whose current path segments intersect

4. Two variable altitude aircraft whose current path segments do not intersect

For all scenarios, the unitless minimum allowable lateral separation was set to r(t) = 0.3 to

reflect the separation value given in [73], and the unitless minimum allowable vertical separation

was set to h = 0.05 to reflect a realistic ratio of the lateral minimum allowable separation

value divided by the vertical minimum allowable separation value. Within each scenario, unique

representative aircraft interaction configurations (denoted treatments) were generated such that each

aircraft’s path consisted of two segments, where the unitless length of each path segment was set

to 1, giving the total unitless path length for each aircraft as 2. Thus, for each treatment, the state

space was defined as

X1,2 ,

 (c1, c2)
0 ≤ c1 ≤ 2,

0 ≤ c2 ≤ 2,


(3.45a)

(3.45b)

where c1 is the roadmap state space coordinate of aircraft 1 and and c2 is the roadmap state space

coordinate of aircraft 2, and the area of the state space for each treatment was 2 × 2 = 4. However,

the area of the resulting pair-wise conflict region for each treatment was estimated numerically by

generating a grid of points within the state space and calculating the proportion of grid points that

violated the ATM pair-wise separation constraint given in equation (3.15b). For each treatment,

the grid consisted of every combination of points from the set
{
{0, 0.005, 0.01, . . . , 1.995, 2} ×

{0, 0.005, 0.01, . . . , 1.995, 2}
}
, for a total of (401 × 401) = 160, 801 grid points.
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For each treatment, the proportion of grid points that violated the Multiplier Method ATM pair-

wise separation constraint approximation given in equation (3.17a) was calculated for each value of

the Multiplier Method accuracy parameter γ ∈ {1, 5, 10, 50, 100, 500}, while the priority parameter

λ was set to
(√

2 − 1
)
. This procedure was also applied to the sigmoid, p-norm, and exponential

p-norm constraint approximations. Table 3.1 displays the approximation parameter values tested

for each treatment.

Table 3.1: Approximation Parameter Values.

Approximation Method Parameter Values Tested at Each Treatment

Multiplier Method γ 1 5 10 50 100 500

Sigmoid s 10 50 100 500 1000 5000

p-Norm p 2 10 20 100 200 1000

Exponential p-Norm p 2 10 20 100 200 1000

Scenario 1 was tested with the heading angle, α], set to 0, ±45 and ±90 degrees for each

aircraft approaching the point of intersection and 0, ±45 and ±90 degrees departing the point of

intersection. This resulted in 22 reflection- and rotation-unique configurations. Figure 3.1 displays

the lateral orientation of the two notional paths for each Scenario 1 test design treatment. Figure

3.2 displays the state space conflict region for each Scenario 1 test design treatment based on the

methods developed in Appendix B. Table 3.2 provides the complete test design for Scenario 1.
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Figure 3.1: Lateral Path Orientations for Scenario 1 Test Design
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Figure 3.2: State Space Conflict Region Boundaries for Scenario 1 Test Design
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Table 3.2: Scenario 1 Test Design.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

1 0 90 0 90

2 0 90 0 -45

3 0 90 0 0

4 0 90 0 45

5 0 90 0 -90

6 0 -45 0 -45

7 0 -45 0 0

8 0 -45 0 45

9 0 0 0 0

10 0 90 45 -45

11 0 90 45 0

12 0 90 45 45

13 0 -45 45 0

14 0 -45 45 45

15 0 -45 45 -90

16 0 0 45 -45

17 0 0 45 45

18 0 45 45 -45

19 0 45 45 0

20 0 -90 45 -45

21 0 0 90 -90

22 0 -90 90 0

Scenario 2 was tested with the same path configurations designed for Scenario 1; however,

since the paths are not allowed to intersect for Scenario 2, only 14 of the configurations were

applicable. For each of these 14 configurations, Scenario 2 was tested with the Minimum Lateral

Distance (MLD) between the two aircraft (as defined in Appendix B) set to 10%, 25% and 75%

of the notional unitless minimum lateral separation, r(t) = 0.3. Figure 3.3 displays the lateral

orientation of the two notional paths for each Scenario 2 test design treatment. Figure 3.4 displays

the state space conflict region for Scenario 2 test design treatments with MLD set to 25% of the

notional unitless minimum lateral separation, based on the methods developed in Appendix B. Table

3.3 provides the complete test design for Scenario 2.
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Figure 3.3: Non-Intersecting Lateral Path Orientations for Scenario 2 Test Design
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Figure 3.4: State Space Conflict Region Boundaries for Scenario 2 Test Design
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Table 3.3: Scenario 2 Test Design.

Treatment

Aircraft 1 Heading Aircraft 2 Heading MLD

(degrees) (degrees) Distance

Approach Departure Approach Departure (%r)

1 15 29 0 90 0 90 10 25 75

2 16 30 0 90 0 -45 10 25 75

3 17 31 0 90 0 0 10 25 75

4 18 32 0 90 0 45 10 25 75

5 19 33 0 90 0 -90 10 25 75

6 20 34 0 -45 0 -45 10 25 75

7 21 35 0 -45 0 0 10 25 75

8 22 36 0 -45 0 45 10 25 75

9 23 37 0 0 0 0 10 25 75

10 24 38 0 0 45 -45 10 25 75

11 25 39 0 45 45 -45 10 25 75

12 26 40 0 45 45 0 10 25 75

13 27 41 0 -90 45 -45 10 25 75

14 28 42 0 -90 90 0 10 25 75

Scenario 3 was tested with the same lateral path configurations designed for Scenario 1;

however, for each lateral path configuration, each path segment was configured to ascend or descend

toward the point of intersection, and ascend or descend away from the point of intersection. The

angles of ascent and descent, α^, were set to ±30 degrees. This resulted in eight (8) rotation- and

reflection-unique three-dimensional configurations for each lateral configuration. Figures 3.5 - 3.12

display the state space conflict region for each Scenario 3 test design treatment, based on the three-

dimensional intersection methods developed in Appendix B. Tables 3.4 - 3.11 provide the complete

test design for Scenario 3.
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Figure 3.5: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 1
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Figure 3.6: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 2
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Figure 3.7: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 3
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Figure 3.8: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 4
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Figure 3.9: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 5
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Figure 3.10: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 6
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Figure 3.11: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 7
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Figure 3.12: State Space Conflict Region (Shaded) for Scenario 3 Test Design: 3-Dimensional

Configuration 8
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Table 3.4: Scenario 3 Test Design - 3 Dimensional Configuration 1.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

1 0 30 90 30 0 30 90 30

2 0 30 90 30 0 30 -45 30

3 0 30 90 30 0 30 0 30

4 0 30 90 30 0 30 45 30

5 0 30 90 30 0 30 -90 30

6 0 30 -45 30 0 30 -45 30

7 0 30 -45 30 0 30 0 30

8 0 30 -45 30 0 30 45 30

9 0 30 0 30 0 30 0 30

10 0 30 90 30 45 30 -45 30

11 0 30 90 30 45 30 0 30

12 0 30 90 30 45 30 45 30

13 0 30 -45 30 45 30 0 30

14 0 30 -45 30 45 30 45 30

15 0 30 -45 30 45 30 -90 30

16 0 30 0 30 45 30 -45 30

17 0 30 0 30 45 30 45 30

18 0 30 45 30 45 30 -45 30

19 0 30 45 30 45 30 0 30

20 0 30 -90 30 45 30 -45 30

21 0 30 0 30 90 30 -90 30

22 0 30 -90 30 90 30 0 30

Table 3.5: Scenario 3 Test Design - 3 Dimensional Configuration 2.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

23 0 30 90 30 0 30 90 -30

24 0 30 90 30 0 30 -45 -30

25 0 30 90 30 0 30 0 -30

26 0 30 90 30 0 30 45 -30

27 0 30 90 30 0 30 -90 -30

28 0 30 -45 30 0 30 -45 -30

29 0 30 -45 30 0 30 0 -30

30 0 30 -45 30 0 30 45 -30

31 0 30 0 30 0 30 0 -30

32 0 30 90 30 45 30 -45 -30

33 0 30 90 30 45 30 0 -30

34 0 30 90 30 45 30 45 -30

35 0 30 -45 30 45 30 0 -30

36 0 30 -45 30 45 30 45 -30

37 0 30 -45 30 45 30 -90 -30

38 0 30 0 30 45 30 -45 -30

39 0 30 0 30 45 30 45 -30

40 0 30 45 30 45 30 -45 -30

41 0 30 45 30 45 30 0 -30

42 0 30 -90 30 45 30 -45 -30

43 0 30 0 30 90 30 -90 -30

44 0 30 -90 30 90 30 0 -30
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Table 3.6: Scenario 3 Test Design - 3 Dimensional Configuration 3.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

45 0 30 90 30 0 -30 90 30

46 0 30 90 30 0 -30 -45 30

47 0 30 90 30 0 -30 0 30

48 0 30 90 30 0 -30 45 30

49 0 30 90 30 0 -30 -90 30

50 0 30 -45 30 0 -30 -45 30

51 0 30 -45 30 0 -30 0 30

52 0 30 -45 30 0 -30 45 30

53 0 30 0 30 0 -30 0 30

54 0 30 90 30 45 -30 -45 30

55 0 30 90 30 45 -30 0 30

56 0 30 90 30 45 -30 45 30

57 0 30 -45 30 45 -30 0 30

58 0 30 -45 30 45 -30 45 30

59 0 30 -45 30 45 -30 -90 30

60 0 30 0 30 45 -30 -45 30

61 0 30 0 30 45 -30 45 30

62 0 30 45 30 45 -30 -45 30

63 0 30 45 30 45 -30 0 30

64 0 30 -90 30 45 -30 -45 30

65 0 30 0 30 90 -30 -90 30

66 0 30 -90 30 90 -30 0 30

Table 3.7: Scenario 3 Test Design - 3 Dimensional Configuration 4.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

67 0 30 90 30 0 -30 90 -30

68 0 30 90 30 0 -30 -45 -30

69 0 30 90 30 0 -30 0 -30

70 0 30 90 30 0 -30 45 -30

71 0 30 90 30 0 -30 -90 -30

72 0 30 -45 30 0 -30 -45 -30

73 0 30 -45 30 0 -30 0 -30

74 0 30 -45 30 0 -30 45 -30

75 0 30 0 30 0 -30 0 -30

76 0 30 90 30 45 -30 -45 -30

77 0 30 90 30 45 -30 0 -30

78 0 30 90 30 45 -30 45 -30

79 0 30 -45 30 45 -30 0 -30

80 0 30 -45 30 45 -30 45 -30

81 0 30 -45 30 45 -30 -90 -30

82 0 30 0 30 45 -30 -45 -30

83 0 30 0 30 45 -30 45 -30

84 0 30 45 30 45 -30 -45 -30

85 0 30 45 30 45 -30 0 -30

86 0 30 -90 30 45 -30 -45 -30

87 0 30 0 30 90 -30 -90 -30

88 0 30 -90 30 90 -30 0 -30
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Table 3.8: Scenario 3 Test Design - 3 Dimensional Configuration 5.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

89 0 30 90 -30 0 30 90 30

90 0 30 90 -30 0 30 -45 30

91 0 30 90 -30 0 30 0 30

92 0 30 90 -30 0 30 45 30

93 0 30 90 -30 0 30 -90 30

94 0 30 -45 -30 0 30 -45 30

95 0 30 -45 -30 0 30 0 30

96 0 30 -45 -30 0 30 45 30

97 0 30 0 -30 0 30 0 30

98 0 30 90 -30 45 30 -45 30

99 0 30 90 -30 45 30 0 30

100 0 30 90 -30 45 30 45 30

101 0 30 -45 -30 45 30 0 30

102 0 30 -45 -30 45 30 45 30

103 0 30 -45 -30 45 30 -90 30

104 0 30 0 -30 45 30 -45 30

105 0 30 0 -30 45 30 45 30

106 0 30 45 -30 45 30 -45 30

107 0 30 45 -30 45 30 0 30

108 0 30 -90 -30 45 30 -45 30

109 0 30 0 -30 90 30 -90 30

110 0 30 -90 -30 90 30 0 30

Table 3.9: Scenario 3 Test Design - 3 Dimensional Configuration 6.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

111 0 30 90 -30 0 30 90 -30

112 0 30 90 -30 0 30 -45 -30

113 0 30 90 -30 0 30 0 -30

114 0 30 90 -30 0 30 45 -30

115 0 30 90 -30 0 30 -90 -30

116 0 30 -45 -30 0 30 -45 -30

117 0 30 -45 -30 0 30 0 -30

118 0 30 -45 -30 0 30 45 -30

119 0 30 0 -30 0 30 0 -30

120 0 30 90 -30 45 30 -45 -30

121 0 30 90 -30 45 30 0 -30

122 0 30 90 -30 45 30 45 -30

123 0 30 -45 -30 45 30 0 -30

124 0 30 -45 -30 45 30 45 -30

125 0 30 -45 -30 45 30 -90 -30

126 0 30 0 -30 45 30 -45 -30

127 0 30 0 -30 45 30 45 -30

128 0 30 45 -30 45 30 -45 -30

129 0 30 45 -30 45 30 0 -30

130 0 30 -90 -30 45 30 -45 -30

131 0 30 0 -30 90 30 -90 -30

132 0 30 -90 -30 90 30 0 -30
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Table 3.10: Scenario 3 Test Design - 3 Dimensional Configuration 7.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

133 0 30 90 -30 0 -30 90 30

134 0 30 90 -30 0 -30 -45 30

135 0 30 90 -30 0 -30 0 30

136 0 30 90 -30 0 -30 45 30

137 0 30 90 -30 0 -30 -90 30

138 0 30 -45 -30 0 -30 -45 30

139 0 30 -45 -30 0 -30 0 30

140 0 30 -45 -30 0 -30 45 30

141 0 30 0 -30 0 -30 0 30

142 0 30 90 -30 45 -30 -45 30

143 0 30 90 -30 45 -30 0 30

144 0 30 90 -30 45 -30 45 30

145 0 30 -45 -30 45 -30 0 30

146 0 30 -45 -30 45 -30 45 30

147 0 30 -45 -30 45 -30 -90 30

148 0 30 0 -30 45 -30 -45 30

149 0 30 0 -30 45 -30 45 30

150 0 30 45 -30 45 -30 -45 30

151 0 30 45 -30 45 -30 0 30

152 0 30 -90 -30 45 -30 -45 30

153 0 30 0 -30 90 -30 -90 30

154 0 30 -90 -30 90 -30 0 30

Table 3.11: Scenario 3 Test Design - 3 Dimensional Configuration 8.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

155 0 30 90 -30 0 -30 90 -30

156 0 30 90 -30 0 -30 -45 -30

157 0 30 90 -30 0 -30 0 -30

158 0 30 90 -30 0 -30 45 -30

159 0 30 90 -30 0 -30 -90 -30

160 0 30 -45 -30 0 -30 -45 -30

161 0 30 -45 -30 0 -30 0 -30

162 0 30 -45 -30 0 -30 45 -30

163 0 30 0 -30 0 -30 0 -30

164 0 30 90 -30 45 -30 -45 -30

165 0 30 90 -30 45 -30 0 -30

166 0 30 90 -30 45 -30 45 -30

167 0 30 -45 -30 45 -30 0 -30

168 0 30 -45 -30 45 -30 45 -30

169 0 30 -45 -30 45 -30 -90 -30

170 0 30 0 -30 45 -30 -45 -30

171 0 30 0 -30 45 -30 45 -30

172 0 30 45 -30 45 -30 -45 -30

173 0 30 45 -30 45 -30 0 -30

174 0 30 -90 -30 45 -30 -45 -30

175 0 30 0 -30 90 -30 -90 -30

176 0 30 -90 -30 90 -30 0 -30
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Scenario 4 was tested with the same lateral path configurations designed for Scenario 2;

however, for each lateral path configuration, the MLD was set to 50% of the notional unitless

minimum lateral separation, and each path segment was configured to ascend or descend toward

the MLD, and ascend or descend away from the MLD. The angles of ascent and descent, α^, were

set to ±30 degrees. This resulted in eight (8) rotation- and reflection-unique three-dimensional

configurations for each lateral configuration. Figures 3.13 - 3.20 display the state space conflict

region for Scenario 4 test design treatments with the MLD set to 50% of the notional unitless

minimum lateral separation, based on the three-dimensional intersection methods developed in

Appendix B. Tables 3.12 - 3.19 provide the complete test design for Scenario 4.
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Figure 3.13: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 1
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Figure 3.14: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 2
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Figure 3.15: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 3
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Figure 3.16: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 4
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Figure 3.17: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 5
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Figure 3.18: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 6
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Figure 3.19: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 7
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Figure 3.20: State Space Conflict Region (Shaded) for Scenario 4 Test Design: 3-Dimensional

Configuration 8
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Table 3.12: Scenario 4 Test Design - 3 Dimensional Configuration 1.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

1 0 30 90 30 0 30 90 30

2 0 30 90 30 0 30 -45 30

3 0 30 90 30 0 30 0 30

4 0 30 90 30 0 30 45 30

5 0 30 90 30 0 30 -90 30

6 0 30 -45 30 0 30 -45 30

7 0 30 -45 30 0 30 0 30

8 0 30 -45 30 0 30 45 30

9 0 30 0 30 0 30 0 30

10 0 30 0 30 45 30 -45 30

11 0 30 45 30 45 30 -45 30

12 0 30 45 30 45 30 0 30

13 0 30 -90 30 45 30 -45 30

14 0 30 -90 30 90 30 0 30

Table 3.13: Scenario 4 Test Design - 3 Dimensional Configuration 2.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

15 0 30 90 30 0 30 90 -30

16 0 30 90 30 0 30 -45 -30

17 0 30 90 30 0 30 0 -30

18 0 30 90 30 0 30 45 -30

19 0 30 90 30 0 30 -90 -30

20 0 30 -45 30 0 30 -45 -30

21 0 30 -45 30 0 30 0 -30

22 0 30 -45 30 0 30 45 -30

23 0 30 0 30 0 30 0 -30

24 0 30 0 30 45 30 -45 -30

25 0 30 45 30 45 30 -45 -30

26 0 30 45 30 45 30 0 -30

27 0 30 -90 30 45 30 -45 -30

28 0 30 -90 30 90 30 0 -30
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Table 3.14: Scenario 4 Test Design - 3 Dimensional Configuration 3.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

29 0 30 90 30 0 -30 90 30

30 0 30 90 30 0 -30 -45 30

31 0 30 90 30 0 -30 0 30

32 0 30 90 30 0 -30 45 30

33 0 30 90 30 0 -30 -90 30

34 0 30 -45 30 0 -30 -45 30

35 0 30 -45 30 0 -30 0 30

36 0 30 -45 30 0 -30 45 30

37 0 30 0 30 0 -30 0 30

38 0 30 0 30 45 -30 -45 30

39 0 30 45 30 45 -30 -45 30

40 0 30 45 30 45 -30 0 30

41 0 30 -90 30 45 -30 -45 30

42 0 30 -90 30 90 -30 0 30

Table 3.15: Scenario 4 Test Design - 3 Dimensional Configuration 4.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

43 0 30 90 30 0 -30 90 -30

44 0 30 90 30 0 -30 -45 -30

45 0 30 90 30 0 -30 0 -30

46 0 30 90 30 0 -30 45 -30

47 0 30 90 30 0 -30 -90 -30

48 0 30 -45 30 0 -30 -45 -30

49 0 30 -45 30 0 -30 0 -30

50 0 30 -45 30 0 -30 45 -30

51 0 30 0 30 0 -30 0 -30

52 0 30 0 30 45 -30 -45 -30

53 0 30 45 30 45 -30 -45 -30

54 0 30 45 30 45 -30 0 -30

55 0 30 -90 30 45 -30 -45 -30

56 0 30 -90 30 90 -30 0 -30
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Table 3.16: Scenario 4 Test Design - 3 Dimensional Configuration 5.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

57 0 30 90 -30 0 30 90 30

58 0 30 90 -30 0 30 -45 30

59 0 30 90 -30 0 30 0 30

60 0 30 90 -30 0 30 45 30

61 0 30 90 -30 0 30 -90 30

62 0 30 -45 -30 0 30 -45 30

63 0 30 -45 -30 0 30 0 30

64 0 30 -45 -30 0 30 45 30

65 0 30 0 -30 0 30 0 30

66 0 30 0 -30 45 30 -45 30

67 0 30 45 -30 45 30 -45 30

68 0 30 45 -30 45 30 0 30

69 0 30 -90 -30 45 30 -45 30

70 0 30 -90 -30 90 30 0 30

Table 3.17: Scenario 4 Test Design - 3 Dimensional Configuration 6.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

71 0 30 90 -30 0 30 90 -30

72 0 30 90 -30 0 30 -45 -30

73 0 30 90 -30 0 30 0 -30

74 0 30 90 -30 0 30 45 -30

75 0 30 90 -30 0 30 -90 -30

76 0 30 -45 -30 0 30 -45 -30

77 0 30 -45 -30 0 30 0 -30

78 0 30 -45 -30 0 30 45 -30

79 0 30 0 -30 0 30 0 -30

80 0 30 0 -30 45 30 -45 -30

81 0 30 45 -30 45 30 -45 -30

82 0 30 45 -30 45 30 0 -30

83 0 30 -90 -30 45 30 -45 -30

84 0 30 -90 -30 90 30 0 -30
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Table 3.18: Scenario 4 Test Design - 3 Dimensional Configuration 7.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

85 0 30 90 -30 0 -30 90 30

86 0 30 90 -30 0 -30 -45 30

87 0 30 90 -30 0 -30 0 30

88 0 30 90 -30 0 -30 45 30

89 0 30 90 -30 0 -30 -90 30

90 0 30 -45 -30 0 -30 -45 30

91 0 30 -45 -30 0 -30 0 30

92 0 30 -45 -30 0 -30 45 30

93 0 30 0 -30 0 -30 0 30

94 0 30 0 -30 45 -30 -45 30

95 0 30 45 -30 45 -30 -45 30

96 0 30 45 -30 45 -30 0 30

97 0 30 -90 -30 45 -30 -45 30

98 0 30 -90 -30 90 -30 0 30

Table 3.19: Scenario 3 Test Design - 4 Dimensional Configuration 8.

Treatment

Aircraft 1 Heading Aircraft 2 Heading

(degrees) (degrees)

Approach Departure Approach Departure

Lateral Vertical Lateral Vertical Lateral Vertical Lateral Vertical

99 0 30 90 -30 0 -30 90 -30

100 0 30 90 -30 0 -30 -45 -30

101 0 30 90 -30 0 -30 0 -30

102 0 30 90 -30 0 -30 45 -30

103 0 30 90 -30 0 -30 -90 -30

104 0 30 -45 -30 0 -30 -45 -30

105 0 30 -45 -30 0 -30 0 -30

106 0 30 -45 -30 0 -30 45 -30

107 0 30 0 -30 0 -30 0 -30

108 0 30 0 -30 45 -30 -45 -30

109 0 30 45 -30 45 -30 -45 -30

110 0 30 45 -30 45 -30 0 -30

111 0 30 -90 -30 45 -30 -45 -30

112 0 30 -90 -30 90 -30 0 -30
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The second test was designed to determine the maximum value that each approximation

method’s parameter can obtain before causing computational difficulties with the numerical methods

used to evaluate the multi-objective HCS optimization problem. Thus, for every treatment generated

for the accuracy test, the gradient of each constraint approximation method was estimated at every

interior point of the state space using Matlab’s central difference numerical gradient estimation

function.

For each treatment, the proportion of grid points that resulted in a numerical gradient estimator

output of “Inf” (infinity), “-Inf” or “NaN” was calculated for each value of the Multiplier Method

accuracy parameter γ ∈ {1, 5, 10, 50, 100, 500}, while the priority parameter λ was set to
(√

2 − 1
)
.

This procedure was also applied to the sigmoid, p-norm, and exponential p-norm constraint

approximations. Table 3.1 displays the approximation parameter values tested for each treatment.

3.1.3 Phase and Variable Arrival Sequence Formulation.

The intermediate state, control and ATM separation constraints given by equations (3.76) -

(3.16) introduce phases to the multi-objective HCS optimization problem, as described in Section

2.4.2. Additionally, equations (3.2) - (3.7) imply that the arrival sequence is variable, as described

in Section 2.2.3 and Section 2.2.4. This section details a method of formulating the multi-objective

HCS optimization problem to account for phases and variable arrival sequences.

3.1.3.1 Shadow Time Overshoot Phase Model.

The Shadow Time Overshoot Phase (STOP) model proposes to satisfy the intermediate state,

control and ATM separation constraints given by equations (3.76) - (3.16) by transforming the

problem into a fixed final time problem through the use of a shadow time state variable. For

the multi-objective HCS ATM problem without inertia, the single shadow time state variable is

governed by the dynamic equation

d
dt
τ[µ](t) = 1, (3.46)

where τ[µ](t) is the shadow time state of control mode µ at time t. Since the multi-objective HCS

ATM problem assumes arrival times are not necessarily fixed, for each aircraft α the STOP model
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defines its arrival time as the continuous decision variable t[ f ,α], such that

t[ f ,α]min ≤ t[ f ,α] ≤ t[ f ,α]max , ∀α ∈ {1, 2, . . . , A}, (3.47)

where t[ f ,α]min is the earliest allowable arrival time for aircraft α and t[ f ,α]max is the latest allowable

arrival time for aircraft α. Constraint (3.47) provides a lower bound for the fixed final time for the

problem, so that

t f ≥
(
max

{
t[ f ,1]max , . . . , t[ f ,A]max

})
, (3.48)

which generates the constraints added to impose the intermediate state and control constraints:

0 ≤ τ[µ](t) ≤ t f , (3.49a)(
l[µ,α] − c[µ,α](t)

) (
t − t[ f ,α]

)
≤ 0, ∀α ∈ {1, 2, . . . , A}, (3.49b)

Constraint (3.49b) guarantees that every feasible solution to the STOP model problem has only

on-time arrivals, defined as

c[µ,α](t[ f ,α]) = l[µ,α]. (3.50)

For example, suppose c[µ,α](t[ f ,α]) < l[µ,α], which implies a late arrival. If d
dt c[µ,α](t) > 0, ∀t > t[0,α],

as indicated by equations (3.9) and (3.76), then there exists some ε > 0 such that t = t[ f ,α] + ε and

c[µ,α](t) < l[µ,α]. Therefore,

l[µ,α] − c[µ,α](t) > 0,

t − t[ f ,α] > 0

=⇒
(
l[µ,α] − c[µ,α](t)

) (
t − t[ f ,α]

)
> 0,

so constraint (3.49b) would be violated.

On the other hand, suppose there exists some ε > 0 such that t = t[ f ,α] − ε and c[µ,α](t) = l[µ,α],

which would imply an early arrival. If d
dt c[µ,α](t) > 0, ∀t > t[0,α], as indicated by equations (3.9) and

(3.76), then there exists some ε̂ > 0 such that t̂ = t[ f ,α]−ε+ ε̂ < t[ f ,α] and c[µ,α](t̂) > l[µ,α]. Therefore,

l[µ,α] − c[µ,α](t̂) < 0,

t̂ − t[ f ,α] < 0

=⇒
(
l[µ,α] − c[µ,α](t̂)

) (
t̂ − t[ f ,α]

)
> 0,
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so constraint (3.49b) would be violated. Thus, early and late arrivals violate constraint (3.49b).

Suppose t = t[ f ,α] and c[µ,α](t) = l[µ,α], which defines an on-time arrival. Then,

l[µ,α] − c[µ,α](t) = 0,

t − t[ f ,α] = 0

=⇒
(
l[µ,α] − c[µ,α](t)

) (
t − t[ f ,α]

)
= 0,

so constraint (3.49b) would be satisfied. Additionally, if c[µ,α](t) = l[µ,α] for t = t[ f ,α] and

d
dt c[µ,α](t) > 0, ∀t > t[0,α], then there exists some t̂ < t[ f ,α] such that c[µ,α](t) < l[µ,α]. Therefore,

l[µ,α] − c[µ,α](t̂) > 0,

t̂ − t[ f ,α] < 0

=⇒
(
l[µ,α] − c[µ,α](t̂)

) (
t̂ − t[ f ,α]

)
< 0,

so constraint (3.49b) would be satisfied. And, if c[µ,α](t) = l[µ,α] for t = t[ f ,α] and d
dt c[µ,α](t) > 0,

∀t > t[0,α], then there exists some t∗ > t[ f ,α] such that c[µ,α](t∗) > l[µ,α]. Therefore,

l[µ,α] − c[µ,α](t∗) < 0,

t∗ − t[ f ,α] > 0

=⇒
(
l[µ,α] − c[µ,α](t∗)

) (
t∗ − t[ f ,α]

)
< 0,

so constraint (3.49b) would be satisfied.

Since the STOP model does not induce a change in dynamics after an aircraft’s arrival time,

each aircraft is modeled to continue along its path even after its chosen arrival time. That is, each

aircraft is allowed to overshoot its destination. Figure 3.21 displays how this overshoot affects

constraint (3.49b) (in red) and forces feasible solutions to have aircraft reach their destination

precisely at their arrival time.
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Figure 3.21: Arrival Time Constraint with Overshoot

Nonetheless, due to the overshoot, it is necessary to adjust the intermediate ATM separation

constraints for the STOP model. Given equations (3.10) - (3.12) and Algorithm 3.1, for each pair of

aircraft
(
α1, α2

)
such that α1 ∈ {1, 2, . . . , A}, α1 ∈ {1, 2, . . . , A} and α1 , α2, the STOP model ATM

separation constraint function is defined as

GSTOP
α1,α2

(t) ,
(
S α1(t)

)(
S α2(t)

)
−max


(

xα1 (t)−xα2 (t)
)2

+

(
yα1 (t)−yα2 (t)

)2

r(t)2 ,

(
zα1 (t)−zα2 (t)

)2

h2

, (3.51)

where the indicator functions S α1 and S α2 are defined such that

S α1(t) =


1 if c[µ,α1](t) < l[µ,α1](t),

0 if c[µ,α1](t) ≥ l[µ,α1](t),
(3.52a)
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and

S α2(t) =


1 if c[µ,α2](t) < l[µ,α2](t),

0 if c[µ,α1](t) ≥ l[µ,α1](t).
(3.52b)

However, since constraint (3.49b) guarantees that for feasible solutions

c[µ,α1](t) < l[µ,α1](t) ⇐⇒ t < t[ f ,α]

and

c[µ,α1](t) ≥ l[µ,α1](t) ⇐⇒ t ≥ t[ f ,α],

the indicator functions may also be defined such that

S α1(t) =


1 if t < t[ f ,α1],

0 if t ≥ t[ f ,α1],
(3.53a)

and

S α2(t) =


1 if t < t[ f ,α2],

0 if t ≥ t[ f ,α2].
(3.53b)

When the ATM separation constraint is approximated with a sigmoid function, S α1(t) and

S α2(t) can also be approximated as sigmoid functions defined by the accuracy parameter s > 0,

Ŝ α1(t) ,
(
1 + es

(
c[µ,α1](t)−l[µ,α1]

))−1
(3.54a)

and

Ŝ α2(t) ,
(
1 + es

(
c[µ,α2](t)−l[µ,α2]

))−1
, (3.54b)

such that

Ŝ α1(t) ≈


1 if c[µ,α1](t) < l[µ,α1](t),

0 if c[µ,α1](t) ≥ l[µ,α1](t),
(3.55a)

and

Ŝ α2(t) ≈


1 if c[µ,α2](t) < l[µ,α2](t),

0 if c[µ,α1](t) ≥ l[µ,α1](t).
(3.55b)
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However, due to constraint (3.49b), S α1(t) and S α2(t) may also be approximated by

Ŝ α1(t) ,
(
1 + es

(
t−t[ f ,α1]

))−1
(3.56a)

and

Ŝ α2(t) ,
(
1 + es

(
t−t[ f ,α2]

))−1
, (3.56b)

such that

Ŝ α1(t) ≈


1 if t < t[ f ,α1],

0 if t ≥ t[ f ,α1],
(3.57a)

and

Ŝ α2(t) ≈


1 if t < t[ f ,α2],

0 if t ≥ t[ f ,α1].
(3.57b)

Therefore, from the arrival time constraint (3.49b),

GSTOP
α1,α2

(t) ≈


GATM
α1,α2

(t) if t < min
{
t[ f ,α1], t[ f ,α2]

}
,

0 if t ≥ min
{
t[ f ,α1], t[ f ,α2]

}
.

(3.58)

Thus, before an aircraft has reached its destination, it must satisfy the original pair-wise ATM

separation constraint, but after it has reached its destination, it can no longer cause ATM separation

conflicts.

The inclusion of two additional sigmoid functions into the sigmoid ATM separation constraint

approximation would force the constraint approximation to be given as

−
(
2−4

)
+

(
Ŝ α1(t)

) (
Ŝ α2(t)

) ( 1
1 + e−sg1(t)

) (
1

1 + e−sg2(t)

)
≤ 0, (3.59)

where

g1(t) = r(t)2 −

((
xα1(t) − xα2(t)

)2
+

(
yα1(t) − yα2(t)

)2)
(3.60a)

and g2(t) = h2 −
(
zα1(t) − zα2(t)

)2
. (3.60b)

The sigmoid multipliers from equation (3.54) or (3.56) were also included in the STOP model

objective function to minimize the effect of each aircraft’s overshoot in the optimization problem.
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The exact indicator functions from equations (3.52) and (3.53) were not included since they would

induce non-differentiability into the objective function. Therefore, given the set of scheduled arrival

times,

tS =
{
t[S ,1], . . . , t[S ,A]

}
, (3.61)

with minimum allowable arrival times,

t[ f ,min] =
{
t[ f ,1]min , . . . , t[ f ,A]min

}
, (3.62)

and maximum allowable arrival times,

t[ f ,max] =
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, (3.63)

the STOP model form of the generalized weighted-sum HCS ATM optimization problem without

inertia is given as

minimize

λ
β1
1


A∑
α=1

[ t f∫
t[0,α]

[
S α(t)u[µ,α](t)

]2
dt


λ

1−β1
1

(3.64a)

+λ
β2
2

κ2 +

A∑
α=1

[
t[ f ,α] − t[S ,α]

]2

λ

1−β2
2

(3.64b)

+λ
β3
3

κ3 +

A∑
α=1

[
t[ f ,α] − t[ f ,α]min

]2

λ

1−β3
3

(3.64c)

subject to:

1. The boundary conditions,

t f ≥ max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, (3.65a)

t[0,α] = 0, ∀α ∈ {1, 2, . . . , A}, (3.65b)

t[ f ,α]min ≤ t[ f ,α] ≤ t[ f ,α]max , ∀α ∈ {1, 2, . . . , A}, (3.65c)

c[µ,α]
(
t[0,α]

)
= c[min,α], ∀α ∈ {1, 2, . . . , A}, (3.65d)

c[µ,α]
(
t[ f ,α]

)
= l[µ,α], ∀α ∈ {1, 2, . . . , A}, (3.65e)
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2. The dynamic equations,

d
dt
τ[µ](t) = 1, (3.66a)

d
dt

c[µ,α](t) = u[µ,α](t), ∀α ∈ {1, 2, . . . , A}, (3.66b)

u[min,α] ≤ u[µ,α](t) ≤ u[max,α], ∀α ∈ {1, 2, . . . , A}, (3.66c)

3. The STOP form of the intermediate constraints,

0 ≤ τ[µ](t) ≤ t f , (3.67a)(
l[µ,α] − c[µ,α](t)

) (
t − t[ f ,α]

)
≤ 0, ∀α ∈ {1, 2, . . . , A}, (3.67b)

4. The STOP form of the ATM separation constraints,

(
S α1(t)

)(
S α2(t)

)
−max


(

xα1 (t)−xα2 (t)
)2

+

(
yα1 (t)−yα2 (t)

)2

r(t)2 ,

(
zα1 (t)−zα2 (t)

)2

h2

 ≤ 0, (3.68)

for each pair of aircraft
(
α1, α2

)
such that α1 ∈ {1, 2, . . . , A}, α1 ∈ {1, 2, . . . , A} and α1 , α2,

which may be approximated with any method described in Section 3.1.2.

3.1.4 Multi-Objective Implementation and Testing.

This section describes notional example multi-objective HCS ATM problems, and details how

they were evaluated using the STOP method described in Section 3.1.3.1 to demonstrate the ability

of the STOP method to generate feasible control strategies.

3.1.4.1 Notional Air Traffic Test Cases.

This section details the three notional air traffic test cases that were evaluated as multi-objective

HCS ATM problems using the STOP method. These test cases are based on the example problems

presented in [74].

1. The first test case is defined as three aircraft flying in the plane with no change in altitude.

Table 3.20 defines the three-dimensional position of each airspace waypoint as a node in the

airspace graph, and Table 3.21 provides the graph’s node adjacency matrix, so that the graph

arcs represent airspace path segments. Figure 3.22 displays the resulting airspace paths,

while Table 3.22 defines the air traffic control mode for the test case; that is, it defines the
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path selected for each aircraft, as well as the initial path length coordinate of each aircraft’s

origination and the final path length coordinate of each aircraft’s destination. Table 3.23

provides the schedule and control constraints for the first test case. The unitless minimum

allowable lateral separation for the first test case was set to r(t) = 0.3, and the unitless

minimum allowable vertical separation for the first test case was set to h = 0.02. Figure

3.23 displays the resulting state space conflict region.

Table 3.20: Test Case 1 Notional Airspace Graph Nodes (No Units).

Waypoint
Coordinate Value

x y z

v1 -1 0 0

v2 -1 -1 0

v3 0 1 0

v4 1 0 0

v5 1 -1 0

Table 3.21: Test Case 1 Graph Adjacency Matrix.

v1 v2 v3 v4 v5

v1 0 0 0 1 0

v2 0 0 1 0 0

v3 0 0 0 0 0

v4 0 0 0 0 0

v5 0 0 1 0 0
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Figure 3.22: Notional Airspace Paths for Test Case 1

Table 3.22: Test Case 1 Notional Air Traffic Paths (No Units).

Aircraft Path Origination Destination

(α)
(
Pµ,α

) (
c[µ,α](0)

) (
l[µ,α]

)
1 (v2, v3) 0

√
5

2 (v5, v3) 0
√

5

3 (v1, v4) 0 2
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Table 3.23: Test Case 1 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Departure Scheduled Earliest Latest

Speed Speed Time Arrival Arrival Arrival

(α)
(
u[min,α]

) (
u[max,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 0.3 1.5 0 2 1 3

2 0.3 0.8 0 3 2 4

3 0.4 0.9 0 4 3 5

0

0.5

1
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Figure 3.23: Notional State Space Conflict Regions for Test Case 1

2. The second test case is defined as three aircraft flying in the plane with no change in altitude

for only Aircraft 3. Table 3.24 defines the three-dimensional position of each airspace

waypoint as a node in the airspace graph, and Table 3.25 provides the graph’s node adjacency

matrix, so that the graph arcs represent airspace path segments. Figure 3.24 displays the

resulting airspace paths, while Table 3.26 defines the control mode for the test case; that is,
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it defines the path selected for each aircraft, as well as the initial path length coordinate of

each aircraft’s origination and the final path length coordinate of each aircraft’s destination.

Table 3.27 provides the schedule and control constraints for the second test case. The unitless

minimum allowable lateral separation for the second test case was set to r(t) = 0.3, and the

unitless minimum allowable vertical separation for the second test case was set to h = 0.02.

Figure 3.25 displays the resulting state space conflict region.

Table 3.24: Test Case 2 Notional Airspace Graph Nodes (No Units).

Waypoint
Coordinate Value

x y z

v1 -1 0 0

v2 -1 -1 0.025

v3 0 1 0

v4 1 0 0.025

v5 1 -1 0

Table 3.25: Test Case 2 Graph Adjacency Matrix.

v1 v2 v3 v4 v5

v1 0 0 0 1 0

v2 0 0 1 0 0

v3 0 0 0 0 0

v4 0 0 0 0 0

v5 0 0 1 0 0
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Figure 3.24: Notional Airspace Paths for Test Case 2

Table 3.26: Test Case 2 Notional Air Traffic Paths (No Units).

Aircraft Path Origination Destination

(α)
(
Pµ,α

) (
c[µ,α](0)

) (
l[µ,α]

)
1 (v2, v3) 0 2.2362

2 (v5, v3) 0
√

5

3 (v1, v4) 0 2.0002
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Table 3.27: Test Case 2 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Departure Scheduled Earliest Latest

Speed Speed Time Arrival Arrival Arrival

(α)
(
u[min,α]

) (
u[max,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 0.3 1.5 0 2 1 3

2 0.3 0.8 0 3 2 4

3 0.4 0.9 0 4 3 5

0
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Figure 3.25: Notional State Space Conflict Regions for Test Case 2

3. The third test case is defined as three aircraft flying in the plane with no change in altitude for

only Aircraft 3. Table 3.28 defines the three-dimensional position of each airspace waypoint

as a node in the airspace graph, and Table 3.29 provides the graph’s node adjacency matrix,

so that the graph arcs represent airspace path segments. Figure 3.26 displays the resulting

airspace paths, while Table 3.30 defines the control mode for the test case; that is, it defines
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the path selected for each aircraft, as well as the initial path length coordinate of each aircraft’s

origination) and the final path length coordinate of each aircraft’s destination. Table 3.31

provides the schedule and control constraints for the third test case. The unitless minimum

allowable lateral separation for the third test case was set to r(t) = 0.3, and the unitless

minimum allowable vertical separation for the third test case was set to h = 0.02. Figure 3.27

displays the resulting state space conflict region.

Table 3.28: Test Case 3 Notional Airspace Graph Nodes (No Units).

Waypoint
Coordinate Value

x y z

v1 -1 0 0

v2 -1 -1 0.025

v3 0 1 0

v4 1 0 0.025

v5 1 -1 0.025

v6 0 2 -0.025

Table 3.29: Test Case 3 Graph Adjacency Matrix.

v1 v2 v3 v4 v5 v6

v1 0 0 0 1 0 0

v2 0 0 1 0 0 0

v3 0 0 0 0 0 1

v4 0 0 0 0 0 0

v5 0 0 1 0 0 0

v6 0 0 0 0 0 0
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Figure 3.26: Notional Airspace Paths for Test Case 3

Table 3.30: Test Case 3 Notional Air Traffic Paths (No Units).

Aircraft Path Origination Destination

(α)
(
Pµ,α

) (
c[µ,α](0)

) (
l[µ,α]

)
1 (v2, v3, v6) 0 3.2365

2 (v5, v3, v6) 0 3.2365

3 (v1, v4) 0 2.0002
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Table 3.31: Test Case 3 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Departure Scheduled Earliest Latest

Speed Speed Time Arrival Arrival Arrival

(α)
(
u[min,α]

) (
u[max,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 0.3 1.5 0 3 2 4

2 0.3 0.8 0 4 3 5

3 0.4 0.9 0 4 3 5
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Figure 3.27: Notional State Space Conflict Regions for Test Case 3

3.1.4.2 Test Case Evaluation.

Each test case defined in Section 3.1.4.1 was evaluated using the STOP formulation of the

generalized weighted-sum representation of the multi-objective HCS ATM problem using both the

arrival time and final state forms of the adjusted ATM separation constraint. Analysis of the initial

screening tests on the parameters of the generalized weighted-sum objective given in equation (3.64)
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indicated that setting t f = 1.2×max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, with κ2 = κ3 = min

(
t[ f ,α]min

)
and varying

the values of λ1, λ2, and λ3 according to the values given in Table 3.32 was most likely to generate

locally optimal solutions. Therefore, Table 3.32 displays the unique combinations (or treatments)

of λ1, λ2, λ3 that were evaluated with each ATM separation constraint approximation. For each

treatment, the STOP generalized weighted-sum objective function, defined in equation (3.64), was

minimized using the GPOPS-II Matlab optimization package running on Mac OS 10.9.4 with a

2.8 GHz Intel Core i5 processor and 8GB of RAM. The GPOPS-II settings that were used for the

optimization are detailed in Appendix C. For each treatment, the control strategies, state trajectories

and arrival times that satisfied the GPOPS-II local optimality conditions were recorded. The time

required to generate each treatment’s locally optimal solution, as well as the total deviation from

scheduled arrival time, makespan, and the total control cost associated with each treatment’s locally

optimal solution were also recorded.
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Table 3.32: Generalized weighted-sum Parameter Design for Notional ATM Cases.

Treatment λ1 β1 λ2 β2 λ3 β3

1 5.5 1 10 0 10 0

2 5.5 1 10 0 0.1 0

3 5.5 1 10 0 0 0

4 5.5 1 0.1 0 10 0

5 5.5 1 0.1 0 0.1 0

6 5.5 1 0.1 0 0 0

7 5.5 1 0 0 10 0

8 5.5 1 0 0 0.1 0

9 5.5 1 0 0 0 0

10 5 1 10 0 10 0

11 5 1 10 0 0.1 0

12 5 1 10 0 0 0

13 5 1 0.1 0 10 0

14 5 1 0.1 0 0.1 0

15 5 1 0.1 0 0 0

16 5 1 0 0 10 0

17 5 1 0 0 0.1 0

18 5 1 0 0 0 0

3.2 Control Mode Modifications

This section describes how the effects of modifications to the current control mode, including

the addition of new waypoints, were investigated.

3.2.1 Additional Waypoints.

The conflict region of a three-dimensional control mode can be reduced if the vertical

separation between pre-defined paths is increased. For example, Test Case 2 from Section 3.1.4.1 is
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nearly identical to Test Case 1 from Section 3.1.4.1, except that the z-coordinate value of waypoints

v2 and v4 of Test Case 2 is 0.025, while the z-coordinate value of waypoints v2 and v4 of Test Case

1 is 0. Nonetheless, these small changes in the waypoint definitions result in a reduction in the

conflict region and an increase in the path length, as observed in a comparison between Figure 3.23

and Figure 3.25. However, the small physical differences between Test Case 1 and Test Case 2

reflect a fundamental difference between the two cases, since the origination of aircraft 1 of Test

Case 1 differs from the origination of aircraft 1 of Test Case 2, and the destination of aircraft 3 of

Test Case 1 is differs from the destination of aircraft 3 of Test Case 2. This is due to the fact that

neither graph from Test Case 1 nor Test Case 2 includes an intermediate waypoint; all waypoints

in both test cases are either originations or destinations. However, Test Case 3 from Section 3.1.4.1

includes an intermediate waypoint, v3. Therefore, it was selected to study the impact of additional

waypoints on feasible and optimal control strategies.

3.2.1.1 Modified Notional Air Traffic Test Cases.

This section details the two modified notional air traffic test cases that were evaluated as multi-

objective HCS ATM problems using the STOP method to compare to the original Test Case 3 from

Section 3.1.4.1.

1. The first test case is defined identically to the third test case from Section 3.1.4.1, except

that a new waypoint is included above waypoint v3 as a replacement waypoint for aircraft

1. Table 3.33 defines the three-dimensional position of each airspace waypoint as a node

in the airspace graph, and Table 3.34 provides the graph’s node adjacency matrix, so that the

graph arcs represent airspace path segments. Figure 3.28 displays the resulting airspace paths,

while Table 3.35 defines the air traffic control mode for the test case; that is, it defines the

path selected for each aircraft, as well as the initial path length coordinate of each aircraft’s

origination and the final path length coordinate of each aircraft’s destination. Table 3.36

provides the schedule and control constraints for the first test case. The unitless minimum

allowable lateral separation for the first test case was set to r(t) = 0.3, and the unitless

minimum allowable vertical separation for the first test case was set to h = 0.02. Figure

3.29 displays the resulting state space conflict region.
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Table 3.33: Test Case 3 Modification 1 Notional Airspace Graph Nodes (No Units).

Waypoint
Coordinate Value

x y z

v1 -1 0 0

v2 -1 -1 0.025

v3 0 1 0

v4 0 1 0.020

v5 1 0 0.025

v6 1 -1 0.025

v7 0 2 -0.025

Table 3.34: Test Case 3 Modification 1 Graph Adjacency Matrix.

v1 v2 v3 v4 v5 v6 v7

v1 0 0 0 0 1 0 0

v2 0 0 0 1 0 0 0

v3 0 0 0 0 0 0 1

v4 0 0 0 0 0 0 1

v5 0 0 0 0 0 0 0

v6 0 0 1 0 0 0 0

v7 0 0 0 0 0 0 0
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Figure 3.28: Notional Airspace Paths for Test Case 3 Modification 1

Table 3.35: Test Case 3 Modification 1 Notional Air Traffic Paths (No Units).

Aircraft Path Origination Destination

(α)
(
Pµ,α

) (
c[µ,α](0)

) (
l[µ,α]

)
1 (v2, v4, v7) 0 3.2373

2 (v6, v3, v7) 0 3.2365

3 (v1, v5) 0 2.0002

113



Table 3.36: Test Case 3 Modification 1 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Departure Scheduled Earliest Latest

Speed Speed Time Arrival Arrival Arrival

(α)
(
u[min,α]

) (
u[max,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 0.3 1.5 0 3 2 4

2 0.3 0.8 0 4 3 5

3 0.4 0.9 0 4 3 5
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Figure 3.29: Notional State Space Conflict Regions for Test Case 3 Modification 1

2. The second test case is defined identically to the third test case from Section 3.1.4.1, except

that a new waypoint is included above waypoint v3 as a replacement waypoint for aircraft

2. Table 3.37 defines the three-dimensional position of each airspace waypoint as a node

in the airspace graph, and Table 3.38 provides the graph’s node adjacency matrix, so that the
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graph arcs represent airspace path segments. Figure 3.30 displays the resulting airspace paths,

while Table 3.39 defines the air traffic control mode for the test case; that is, it defines the

path selected for each aircraft, as well as the initial path length coordinate of each aircraft’s

origination and the final path length coordinate of each aircraft’s destination. Table 3.40

provides the schedule and control constraints for the second test case. The unitless minimum

allowable lateral separation for the second test case was set to r(t) = 0.3, and the unitless

minimum allowable vertical separation for the second test case was set to h = 0.02. Figure

3.31 displays the resulting state space conflict region.

Table 3.37: Test Case 3 Modification 2 Notional Airspace Graph Nodes (No Units).

Waypoint
Coordinate Value

x y z

v1 -1 0 0

v2 -1 -1 0.025

v3 0 1 0

v4 0 1 0.025

v5 1 0 0.025

v6 1 -1 0.025

v7 0 2 -0.025
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Table 3.38: Test Case 3 Modification 2 Graph Adjacency Matrix.

v1 v2 v3 v4 v5 v6 v7

v1 0 0 0 0 1 0 0

v2 0 0 1 0 0 0 0

v3 0 0 0 0 0 0 1

v4 0 0 0 0 0 0 1

v5 0 0 0 0 0 0 0

v6 0 0 0 1 0 0 0

v7 0 0 0 0 0 0 0
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Figure 3.30: Notional Airspace Paths for Test Case 3 Modification 2
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Table 3.39: Test Case 3 Modification 2 Notional Air Traffic Paths (No Units).

Aircraft Path Origination Destination

(α)
(
Pµ,α

) (
c[µ,α](0)

) (
l[µ,α]

)
1 (v2, v3, v7) 0 3.2365

2 (v6, v4, v7) 0 3.2373

3 (v1, v5) 0 2.0002

Table 3.40: Test Case 3 Modification 2 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Departure Scheduled Earliest Latest

Speed Speed Time Arrival Arrival Arrival

(α)
(
u[min,α]

) (
u[max,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 0.3 1.5 0 3 2 4

2 0.3 0.8 0 4 3 5

3 0.4 0.9 0 4 3 5
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Figure 3.31: Notional State Space Conflict Regions for Test Case 3 Modification 2

3.2.1.2 Test Case Evaluation.

Each test case defined in Section 3.2.1.1 was evaluated using the STOP formulation of the

generalized weighted-sum representation of the multi-objective HCS ATM problem using both

the arrival time and final state forms of the adjusted ATM separation constraint, with t f =

1.2 × max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, κ2 = κ3 = min

(
t[ f ,α]min

)
, with varying values for λ1, λ2, and λ3,

as well as different ATM separation constraint approximations. Table 3.32 displays the unique

combinations (or treatments) of λ1, λ2, λ3 that were evaluated with each ATM separation constraint

approximation. For each treatment, the STOP generalized weighted-sum objective function, defined

in equation (3.64), was minimized using the GPOPS-II Matlab optimization package running on

Mac OS 10.9.4 with a 2.8 GHz Intel Core i5 processor and 8GB of RAM. The GPOPS-II settings

that were used for the optimization are detailed in Appendix C. For each treatment, the control

strategies, state trajectories and arrival times that satisfied the GPOPS-II local optimality conditions

were recorded. The time required to generate each treatment’s locally optimal solution, as well as

the total deviation from scheduled arrival time, makespan, and the total control cost associated with

each treatment’s locally optimal solution were also recorded.
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3.3 Incorporation of Inertia

Incorporating inertia into the multi-objective HCS ATM optimization problem involves adding

an additional vector of control variables, denoted ua, to represent the acceleration control of each

aircraft, and defining the speed or velocity of each aircraft as a vector of state variables, denoted

v. This section details the methods used to incorporate inertia into the multi-objective HCS

ATM optimization problem from Section 3.1 to define the kinodynamic multi-objective HCS ATM

optimization problem.

3.3.1 Kinodynamic Mutli-Objective Formulation.

The kinodynamic multi-objective HCS ATM problem is formulated as the generalized

weighted-sum of the fuel consumption measure, the deviation from scheduled arrival time measure

and the makespan measure. Thus, the problem is given as

minimize F ,
(
λ1

β1
)

F1
(λ1

1−β1) +
(
λ2

β2
)

F2
(λ2

1−β2) +
(
λ3

β3
)

F3
(λ3

1−β3) (3.69)

where λ1 ≥ 0 is the scalar that represents the relative importance of the fuel consumption measure,

F1, λ2 ≥ 0 is the scalar that represents the relative importance of the schedule deviation measure,

F2, λ3 ≥ 0 is the scalar that represents the relative importance of the total time measure, F3, and

each βk ∈ {0, 1} is a binary term for k ∈ {1, 2, 3} that controls how each measure is weighted. That

is, if βk = 1, then Fk is weighted on a linear scale, but if βk = 0, then Fk is weighted exponentially..

Furthermore, the measure of fuel consumption, F1, is given by

F1(µ,ua, t0, t f , t) =

A∑
α=1

[ t[ f ,α]∫
t[0,α]

[
ua[µ,α](t)

]2
dt

]
, (3.70)

where µ is the selected control mode which designates the pre-defined set of paths for each

aircraft α ∈
{
1, 2, . . . , A

}
, ua = [ua[µ,1], ua[µ,2], . . . , ua[µ,A]] is a feasible vector of acceleration

control strategies, t0 = [t[0,1], t[0,2], . . . , t[0,A]] is the vector of initial times for each aircraft, and

t f = [t[ f ,1], t[ f ,2], . . . , t[ f ,A]] is vector set of final (or actual arrival) times for each aircraft.

F2 is the measure of deviation from scheduled arrival time given by

F2(µ, κ2, t f , tS ) = κ2 +

A∑
α=1

[
t[ f ,α] − t[S ,α]

]2
, (3.71)
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where tS = [t[S ,1], t[S ,2], . . . , t[S ,A]] is the vector of scheduled arrival times for each aircraft and κ2 ≥ 1

is a scalar term added to ensure F2
λ2 ≥ 1.

F3 is the measure of total time (or makespan) given by

F̂3(µ, κ3, t f , t fmin) = κ3 +

A∑
α=1

[
t[ f ,α] − t[ f ,α]min

]2
, (3.72)

where t fmin = [t[ f ,1]min , t[ f ,2]min , . . . , t[ f ,A]min] is the vector of earliest allowable arrival times for each

aircraft and κ3 ≥ 1 is a scalar term added to ensure F3
λ3 ≥ 1.

An acceleration control strategy ua[µ,α] is feasible if and only if it satisfies the problem’s

dynamic equations, boundary conditions, and its intermediate state, control and ATM separation

constraints. Using roadmap coordination space notation, the kinodynamic equations of the HCS

problem with inertia are given by

d
dt

c[µ,α](t) = v[µ,α](t), ∀α ∈ {1, 2, . . . , A}, (3.73)

d
dt

v[µ,α](t) = ua[µ,α](t), ∀α ∈ {1, 2, . . . , A}, (3.74)

where c[µ,α](t) is the path-length parameterized position at time t of aircraft α along its route defined

by control mode µ, and v[µ,α](t) is the speed or velocity at time t of aircraft α. Thus, ua[µ,α](t)

indirectly controls the instantaneous change in position of aircraft α along its route.

The boundary conditions and intermediate constraints for the kinodynamic HCS ATM problem

are defined similarly to the boundary conditions and intermediate constraints for the HCS ATM

problem without inertia. That is, given equations (3.10) - (3.12), the boundary conditions of the

kinodynamic HCS ATM problem are given by

t[0,α] = 0, ∀α ∈ {1, 2, . . . , A}, (3.75a)

c[µ,α]
(
t[0,α]

)
= c[min,α], ∀α ∈ {1, 2, . . . , A}, (3.75b)

c[µ,α]
(
t[ f ,α]

)
= l[µ,α], ∀α ∈ {1, 2, . . . , A}, (3.75c)

where l[µ,α] is the path length of the route defined by control mode µ for aircraft α. That is, all

aircraft are assumed to enter the problem at the same initial time, t = 0, at some distance c[min,α]

along their path, and they are required to travel the remaining distance, l[µ,α] − c[min,α], of their path

defined by the control mode µ.
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Given equations (3.10) - (3.12), the intermediate state and control constraints for all aircraft

α ∈ {1, 2, . . . , A} are given by

c[min,α] ≤ c[µ,α](t) ≤ l[µ,α], (3.76a)

v[min,α] ≤ v[µ,α](t) ≤ v[max,α], (3.76b)

ua[min,α] ≤ ua[µ,α](t) ≤ ua[max,α], (3.76c)

for all intermediate time 0 ≤ t ≤ t[ f ,α], where v[min,α] is the minimum allowable speed value for

aircraft α, v[max,α] is the maximum allowable speed value for aircraft α, ua[min,α] is the minimum

allowable acceleration value for aircraft α and ua[max,α] is the maximum allowable acceleration

value for aircraft α.

Given equations (3.10) - (3.12) and Algorithm 3.1, for each pair of aircraft
(
α1, α2

)
such that

α1 ∈ {1, 2, . . . , A}, α1 ∈ {1, 2, . . . , A} and α1 , α2, the intermediate ATM separation constraint

function is given by equation (3.15). The ATM separation constraint is thus,

GATM
[α1,α2](t) ≤ 0 (3.77)

for all intermediate time 0 ≤ t ≤ min
{
t[ f ,α1], t[ f ,α2]

}
. Therefore, the pair-wise ATM separation

constraint is only defined until aircraft α1 or aircraft α2 reaches its destination.

3.3.2 Kinodynamic Implementation and Testing.

This section describes notional example multi-objective HCS ATM problems, and details how

they were evaluated using the STOP method described in Section 3.1.3.1.

3.3.2.1 Notional Air Traffic Test Cases.

This section details the notional air traffic test case that was evaluated as a kinodynamic multi-

objective HCS ATM problem using the STOP method.

The kinodynamic notional test case is defined identically to the third test case from Section

3.1.4.1. However, Table 3.41 provides the adjusted schedule and control constraints for the first test

case. The unitless minimum allowable lateral separation for the first test case was set to r(t) = 0.3,

and the unitless minimum allowable vertical separation for the first test case was set to h = 0.02.
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Table 3.41: Test Case 1 Notional Air Traffic Constraints (No Units).

Aircraft
Minimum Maximum Minimum Maximum Initial Departure Scheduled Earliest Latest

Acceleration Acceleration Speed Speed Speed Time Arrival Arrival Arrival

(α)
(
ua[min,α]

) (
ua[max,α]

) (
v[min,α]

) (
v[max,α]

) (
v[0,α]

) (
t[0,α]

) (
t[S ,α]

) (
t[ f ,α]min

) (
t[ f ,α]max

)
1 −5 5 0.3 1.5 0.3 0 3 2 4

2 −5 5 0.3 0.8 0.3 0 4 3 5

3 −5 5 0.4 0.9 0.4 0 4 3 5

3.3.2.2 Test Case Evaluation.

The test case defined in Section 3.3.2.1 was evaluated using the STOP formulation of the

generalized weighted-sum representation of the multi-objective HCS ATM problem using both

the arrival time and final state forms of the adjusted ATM separation constraint, with t f =

1.2 × max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, κ2 = κ3 = min

(
t[ f ,α]min

)
, with varying values for λ1, λ2, and

λ3, as well as different ATM separation constraint approximations. Table 3.32 in Section 3.1.4.2

displays the unique combinations (or treatments) of λ1, λ2, λ3 that were evaluated with each

ATM separation constraint approximation. For each treatment, the STOP generalized weighted-

sum objective function, defined in equation (3.64), was minimized using the GPOPS-II Matlab

optimization package running on Mac OS 10.9.4 with a 2.8 GHz Intel Core i5 processor and 8GB

of RAM. The GPOPS-II settings that were used for the optimization are detailed in Appendix C. For

each treatment, the control strategies, state trajectories and arrival times that satisfied the GPOPS-II

local optimality conditions were recorded. The time required to generate each treatment’s locally

optimal solution, as well as the total deviation from scheduled arrival time, makespan, and the total

control cost associated with each treatment’s locally optimal solution were also recorded.

3.4 Incorporation of Stochastic Components

As described in Section 2.6, various physical and human factors may result in uncertainty in

the speed and position of an aircraft. Therefore, this section details the methods used to incorporate

uncertainty (or stochastic components) into the multi-objective HCS ATM optimization problem.
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3.4.1 Probability Ellipsoid.

As described in Section 2.6, a common way of accounting for the uncertainty in the position of

an aircraft is to model its position as a three-dimensional ellipsoid, centered at the expected position

of the aircraft, with radii based on the level of uncertainty in each direction of motion. For the HCS

roadmap framework, the uncertainty in the path-length parameterized position of aircraft α along

its current path segment, pk, was modeled as a normal random variable, with mean of zero and

standard deviation denoted σ[pk ,α]. Thus, for each aircraft α, the (1− ρ)× 100% confidence interval

for its path-length parameterized coordinate at time t is given by,

c[µ,α](t) −
(
z1− ρ2

)
σ[pk ,α] ≤ c[µ,α](t) ≤ c[µ,α](t) +

(
z1− ρ2

)
σ[pk ,α], (3.78)

where c[µ,α](t) is the expected path-length coordinate of the aircraft at time t, pk is the current path

segment, and z1− ρ2
is the critical value such that

z1− ρ2∫
−∞

1
√

2π
e−(

1
2 )(t2)dt = 1 −

ρ

2
. (3.79)

That is, the probability of a standard-normal random variable being less than z1− ρ2
is

(
1 − ρ

2

)
.

Furthermore, while the HCS roadmap ATM model assumes each aircraft α follows its pre-

defined path exactly, in operation, aircraft may deviate from these paths due to wind or weather.

Therefore, an aircraft’s path-oriented lateral deviation (parallel to the ground and perpendicular

to the current path segment pk) was modeled as a normal random variable, with mean of zero

and standard deviation denoted σ⊥[pk ,α]. Similarly, an aircraft’s path-oriented vertical deviation

(perpendicular to the current path segment pk and perpendicular to the lateral direction) was

modeled as a normal random variable, with mean of zero and standard deviation denoted σ↑[pk ,α].

Thus, if the uncertainty in each airspace dimension (oriented in the direction of the current path

segment) is modeled as a normal random variable centered at the position given by the expected

path-length coordinate, each aircraft α can be expected to be located with probability (1 − ρ) at time

t within the three-dimensional ellipsoid centered at the position given by c[µ,α](t) and oriented in the

direction of the current path segment, with radius

R[pk ,α] ,
(
z 3√1− ρ2

)
σ[pk ,α] (3.80)
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in the direction of the current path segment, radius

RL[pk ,α] ,
(
z 3√1− ρ2

)
σ⊥[pk ,α] (3.81)

in the path-oriented lateral direction (or lateral cross-path), parallel to the ground and perpendicular

to the current path segment, and radius

RV[pk ,α] ,
(
z 3√1− ρ2

)
σ↑[pk ,α] (3.82)

in the path-oriented vertical direction (or vertical cross-path), perpendicular to the current path

segment and perpendicular to the lateral cross-path direction. Figure 3.32 depicts a notional 1 − ρ

probability position ellipsoid.

R [pk ,α]

RL[pk ,α]

RV [pk ,α]

Figure 3.32: Notional Probability Position Ellipsoid

3.4.2 Lateral Separation Estimate.

If the position of each aircraft is modeled as a three-dimensional ellipsoid, then the minimum

lateral separation between any pair of aircraft, α1 and α2, is estimated as the minimum distance

between the probability ellipsoid of aircraft α1 projected onto the horizontal plane parallel to the
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ground, denoted H, and the probability ellipsoid of aircraft α2 projected onto the same plane, H.

For each aircraft α, the projection of its probability ellipsoid onto H is a two-dimensional ellipse,

centered on the projection of the position given by c[µ,α](t) onto H, with radius

r[pk ,α] , max
{(
σ[pk ,α]

)
cos

(
φ[pk ,α]

)
,
(
σ↑[pk ,α]

)
cos

(
φ[pk ,α] + π

2

)}
(3.83)

in the direction of the projection of the current path segment onto H, where cos
(
φ[pk ,α]

)
is the cosine

of the angle of ascent or descent of the current path segment, denoted φ[pk ,α], and cos
(
φ[pk ,α] + π

2

)
is the cosine of the angle of the vertical cross-path direction. The radius of the two-dimensional

projected ellipse in the direction of the projection of lateral cross-path direction is RL[pk ,α], since the

lateral cross-path direction is defined as parallel H. Thus, the value of the semi-major axis of the

two-dimensional projected probability ellipse for the current path segment, pk, is defined as

a[pk ,α] , max
{
r[pk ,α],RL[pk ,α]

}
, (3.84)

where a[pk ,α] denotes the semi-major axis value. Since the unit vector in the direction of the

semi-major axis is dependent on the relationship between r[pk ,α] and RL[pk ,α], the unit vector in

the direction of the semi-major axis is given as

d[µ,α] ,


[
cos

(
θ[pk ,α]

)
, sin

(
θ[pk ,α]

)]
if r[pk ,α] ≥ RL[pk ,α],[

cos
(
θ[pk ,α] + π

2

)
, sin

(
θ[pk ,α] + π

2

)]
if r[pk ,α] < RL[pk ,α],

(3.85)

where θ[pk ,α] is the angle between the x-axis and the projection of the current path segment onto H,

so that

θ[pk ,α] , arccos

 xα(t)√
(xα(t))2 + (yα(t))2

, (3.86)

where xα(t) and yα(t) are determined from c[µ,α](t) and Algorithm 3.1.

Therefore, if control mode µ assigns to each aircraft α a set of path segments,

Pα ,
{
p[1,α], p[2,α], . . . , p[kα,α]

}
, (3.87)

with individual segment lengths

Lα ,
{
l[1,α], l[2,α], . . . , l[kα,α]

}
, (3.88)
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lateral headings

A[L,α] ,
{
θ[1,α], θ[2,α], . . . , θ[kα,α]

}
(3.89)

and angles of ascent (or descent)

A[V,α] ,
{
φ[1,α], φ[2,α], . . . , φ[kα,α]

}
, (3.90)

then given a set of uncertainty parameters in the direction of each segment,

Σ ,
{
σ[1,α], σ[2,α], . . . , σ[kα,α]

}
, (3.91)

in the segment-oriented lateral direction,

Σ⊥ ,
{
σ⊥[1,α], σ⊥[2,α], . . . , σ⊥[kα,α]

}
(3.92)

and in the segment-oriented vertical direction,

Σ↑ ,
{
σ↑[1,α], σ↑[2,α], . . . , σ↑[kα,α]

}
. (3.93)

Algorithm 3.2 can be used to define the values of the semi-major axis, semi-minor axis, and

orientation of the two-dimensional projection of the 1 − ρ probability ellipsoid for any expected

coordinate c[µ,α](t), and Algorithm 3.1 can be used to define the center of the two-dimensional

projection of the 1 − ρ probability ellipsoid for any expected coordinate c[µ,α](t)

Given the values of the semi-major axes, semi-minor axes, orientations and centers of a pair

of two-dimensional ellipses in the plane, the minimum distance between the pair of ellipses can

be calculated from the closed-form solution of Zheng and Palffy-Muhoray [87]. Therefore, after

obtaining the following values from Algorithms 3.1, 3.2, and 3.3,

• [xα1(t), yα1(t), zα1(t)
]

• a[µ,α1](t), b[µ,α1](t) and d[µ,α1](t)

• [xα2(t), yα2(t), zα2(t)
]

• a[µ,α2](t), b[µ,α2](t) and d[µ,α2](t)
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• dC[α1,α2](t),

the minimum lateral distance between aircraft α1 and aircraft α2, denoted DL[α1,α2](t), is estimated

as the minimum distance between ellipse α1 and ellipse α2 using the closed-form method of Zheng

and Palffy-Muhoray [87] with the following input:

• Ellipse α1 is centered at
(
xα1(t), yα1(t)

)
. Its semi-major axis is a[µ,α1](t) oriented in the

direction of vector d[µ,α1](t), and its semi-minor axis is b[µ,α1](t).

• Ellipse α2 is centered at
(
xα2(t), yα2(t)

)
. Its semi-major axis is a[µ,α2](t) oriented in the

direction of vector d[µ,α2](t), and its semi-minor axis is b[µ,α1](t)

• The vector that connects the center of ellipse α1 to the center of ellipse α2 is given by

dC[α1,α2](t).

Therefore, the minimum lateral separation between aircraft α1 and aircraft α2 is estimated to

be greater than or equal to r with probability at least (1 − ρ)2 if

DL[α1,α2](t) ≥ r. (3.94)

3.4.3 Vertical Separation Estimate.

If the position of each aircraft is modeled as a three-dimensional ellipsoid, then the minimum

vertical separation between any pair of aircraft, α1 and α2, is estimated as the minimum distance

between their probability ellipsoids. The minimum vertical distance between two ellipsoids can be

evaluated by the following cases, defined without loss of generality:

1. No Overlap. The minimum vertical value of ellipsoid α1 is greater than the maximum vertical

value of ellipsoid α2.

2. Coincidence. The minimum vertical value of ellipsoid α1 is equal to the maximum vertical

value of ellipsoid α2.

3. Partial Overlap. The maximum vertical value of ellipsoid α1 is greater than the maximum

vertical value of ellipsoid α2, the minimum vertical value of ellipsoid α1 is less than the
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Algorithm 3.2 Obtain Probability Ellipse Components given roadmap state c[µ,α](t)

Lα =
[
l[p1,α], l[p2,α], . . . , l[pkα ,α]

]
A[L,α] =

[
θ[p1,α], θ[p2,α], . . . , θ[pkα ,α]

]
A[V,α] =

[
φ[p1,α], φ[p2,α], . . . , φ[pkα ,α]

]
Σ[µ,α] =

(
z 3√1− ρ2

) [
σ[p1,α], σ[p2,α], . . . , σ[pkα ,α]

]
Σ⊥[µ,α] =

(
z 3√1− ρ2

) [
σ⊥[p1,α], σ⊥[p2,α], . . . , σ⊥[pkα ,α]

]
Σ↑[µ,α] =

(
z 3√1− ρ2

) [
σ↑[p1,α], σ↑[p2,α], . . . , σ↑[pkα ,α]

]
θ[µ,α] = A[L,α][1]

φ[µ,α] = A[V,α][1]

σ[µ,α] =
[
Σ[µ,α][1],Σ⊥[µ,α][1],Σ↑[µ,α][1]

]
for i = 1 to kα − 1 do

if c[µ,α](t) > Lα(i) then

θ[µ,α] = A[L,α][i + 1]

φ[µ,α] = A[V,α][i + 1)]

σ[µ,α] =
[
Σ[µ,α][i + 1],Σ⊥[µ,α][i + 1],Σ↑[µ,α][i + 1]

]
end if

end for

RL[µ,α] = σ[µ,α][2]

r[µ,α] = max
{(
σ[µ,α][1]

)
cos (φα),

(
σ[µ,α][3]

)
cos

(
φα + π

2

)}
a[µ,α](t) = r[µ,α]

b[µ,α](t) = r⊥[µ,α]

d[µ,α](t) =
[
cos

(
θ[µ,α]

)
, sin

(
θ[µ,α]

)]
if r⊥[µ,α] > r[µ,α] then

a[µ,α](t) = r⊥[µ,α]

b[µ,α](t) = r[µ,α]

d[µ,α](t) =
[
cos

(
θ[µ,α] + π

2

)
, sin

(
θ[µ,α] + π

2

)]
end if

H[µ,α](t) = max
{(
σ[µ,α][1]

)
sin (φα),

(
σ[µ,α][3]

)
sin

(
φα + π

2

)}
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Algorithm 3.3 Obtain Inputs for Lateral Separation Estimate given roadmap states c[µ,α1](t) and

c[µ,α2](t)

Obtain [xα1(t), yα1(t), zα1(t)
]

from Algorithm 3.1 with input c[µ,α1](t)

Obtain a[µ,α1](t), b[µ,α1](t) and d[µ,α1](t) from Algorithm 3.2

Obtain [xα2(t), yα2(t), zα2(t)
]

from Algorithm 3.1 with input c[µ,α2](t)

Obtain a[µ,α2](t), b[µ,α2](t) and d[µ,α2](t) from Algorithm 3.2

dC[α1,α2](t) =
[
xα2(t), yα2(t)

]
−

[
xα1(t), yα1(t)

]

maximum vertical value of ellipsoid α2 and the minimum vertical value of ellipsoid α1 is

greater than the minimum vertical value of ellipsoid α2.

4. Total Overlap. The maximum vertical value of ellipsoid α1 is greater than the maximum

vertical value of ellipsoid α2 and the minimum vertical value of ellipsoid α1 is less than the

minimum vertical value of ellipsoid α2.

The minimum vertical distance between two ellipsoids is only positive for Case 1, No Overlap.

After obtaining the altitudes zα1(t) and zα2(t) from Algorithm 3.1, and H[µ,α1](t) and H[µ,α2](t) from

Algorithm 3.2, the minimum vertical value of ellipsoid α1 is given by

zα1(t) − H[µ,α1](t), (3.95)

the maximum vertical value of ellipsoid α1 is given by

zα1(t) + H[µ,α1](t), (3.96)

the minimum vertical value of ellipsoid α2 is given by

zα2(t) − H[µ,α2](t), (3.97)

and the maximum vertical value of ellipsoid α2 is given by

zα2(t) + H[µ,α2](t). (3.98)
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Therefore, Case 1, No Overlap, is achieved if

zα1(t) − H[µ,α1](t) ≥ zα2(t) + H[µ,α2](t) (3.99a)

=⇒ zα1(t) − zα2(t) ≥ H[µ,α1](t) + H[µ,α2](t) (3.99b)

or if

zα2(t) − H[µ,α2](t) ≥ zα1(t) − H[µ,α1](t) (3.100)

=⇒ zα2(t) − zα1(t) ≥ H[µ,α1](t) + H[µ,α2](t). (3.101)

Thus, if there is no overlap between ellipsoids α1 and α2, the minimum vertical distance between

ellipsoids α1 and α2 is positive if

∣∣∣∣zα1(t) − zα2(t)
∣∣∣∣ ≥ H[µ,α1](t) + H[µ,α2](t), (3.102)

and the minimum vertical distance between α1 and α2 is estimated to be greater than or equal to h

with probability at least (1 − ρ)2 if

∣∣∣∣zα1(t) − zα2(t)
∣∣∣∣ ≥ H[µ,α1](t) + H[µ,α2](t) + h. (3.103)

Furthermore, if Case 2, Coincidence, occurs, with H[µ,α1](t) > 0, H[µ,α2](t) > 0 and h > 0.

Then

zα1(t) − H[µ,α1](t) = zα2(t) + H[µ,α2](t)

=⇒ zα1(t) − zα2(t) = H[µ,α1](t) + H[µ,α2](t)

=⇒
∣∣∣∣zα1(t) − zα2(t)

∣∣∣∣ =
∣∣∣∣H[µ,α1](t) + H[µ,α2](t)

∣∣∣∣
However, H[µ,α1](t) > 0, H[µ,α2](t) > 0 and h > 0, so

∣∣∣∣H[µ,α1](t) + H[µ,α2](t)
∣∣∣∣ = H[µ,α1](t) + H[µ,α2](t)

and

H[µ,α1](t) + H[µ,α2](t) < H[µ,α1](t) + H[µ,α2](t) + h.
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Therefore, if Case 2, Coincidence, occurs, with H[µ,α1](t) > 0, H[µ,α2](t) > 0 and h > 0, then

∣∣∣∣zα1(t) − zα2(t)
∣∣∣∣ < H[µ,α1](t) + H[µ,α2](t) + h,

so constraint (3.103) cannot be satisfied.

If Case 3, Partial Overlap, occurs, with H[µ,α1](t) > 0, H[µ,α2](t) > 0 and h > 0, then

zα1(t) − H[µ,α1](t) ≤ zα2(t) + H[µ,α2](t) (3.104a)

and

zα1(t) − H[µ,α1](t) ≥ zα2(t) − H[µ,α2](t). (3.104b)

Now, suppose
∣∣∣∣zα1(t) − zα2(t)

∣∣∣∣ ≥ H[µ,α1](t) + H[µ,α2](t) + h. If zα1 > zα2 , then

zα1(t) − zα2(t) ≥ H[µ,α1](t) + H[µ,α2](t) + h

=⇒ zα1(t) − H[µ,α1](t) ≥ zα2(t) + H[µ,α2](t) + h

=⇒ zα1(t) − H[µ,α1](t) > zα2(t) + H[µ,α2](t),

which contradicts equation (3.104a). On the other hand, if zα1 < zα2 , then

zα2(t) − zα1(t) ≥ H[µ,α1](t) + H[µ,α2](t) + h

=⇒ zα2(t) − H[µ,α2](t) ≥ zα1(t) + H[µ,α1](t) + h

=⇒ zα2(t) − H[µ,α2](t) > zα1(t) − H[µ,α1](t),

which contradicts equation (3.104b). Thus, if Case 3, Partial Overlap, occurs, with H[µ,α1](t) > 0,

H[µ,α2](t) > 0 and h > 0, then constraint (3.103) cannot be satisfied.

If Case 4, Total Overlap, occurs, with H[µ,α1](t) > 0, H[µ,α2](t) > 0 and h > 0, then

zα1(t) − H[µ,α1](t) ≥ zα2(t) + H[µ,α2](t) (3.105a)

and

zα1(t) − H[µ,α1](t) ≤ zα2(t) − H[µ,α2](t). (3.105b)
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Now, suppose
∣∣∣∣zα1(t) − zα2(t)

∣∣∣∣ ≥ H[µ,α1](t) + H[µ,α2](t) + h. If zα1 > zα2 , then

zα1(t) − zα2(t) ≥ H[µ,α1](t) + H[µ,α2](t) + h

=⇒ zα1(t) − H[µ,α1](t) ≥ zα2(t) + H[µ,α2](t) + h

=⇒ zα1(t) − H[µ,α1](t) > zα2(t) − H[µ,α2](t),

which contradicts equation (3.105b). On the other hand, if zα1 < zα2 , then

zα2(t) − zα1(t) ≥ H[µ,α1](t) + H[µ,α2](t) + h

=⇒ zα2(t) − H[µ,α2](t) ≥ zα1(t) + H[µ,α1](t) + h.

However, zα2(t) + H[µ,α2](t) > zα2(t) − H[µ,α2](t) and zα1(t) + H[µ,α1](t) + h > zα1(t) + H[µ,α1](t). So,

zα2(t) − zα1(t) ≥ H[µ,α1](t) + H[µ,α2](t) + h

=⇒ zα2(t) − H[µ,α2](t) > zα1(t) − H[µ,α1](t),

which contradicts equation (3.105a). Thus, if Case 4, Total Overlap, occurs, with H[µ,α1](t) > 0,

H[µ,α2](t) > 0 and h > 0, then constraint (3.103) cannot be satisfied.

Therefore, constraint (3.103) is satisfied if and only if the minimum vertical separation between

ellipsoid α1 and ellipsoid α2 is at least h.

3.4.4 ATM Separation Constraint with Uncertainty.

Given equations (3.94) - (3.103), Algorithms 3.1, 3.2, and 3.3 , for each pair of aircraft
(
α1, α2

)
such that α1 ∈ {1, 2, . . . , A}, α1 ∈ {1, 2, . . . , A} and α1 , α2, the intermediate ATM separation

constraint function with uncertainty is given by

GΣATM
[α1,α2](t) , 1 −max

{ (
DL[α1 ,α2](t)

)2

r(t)2 ,

(
zα1 (t)−zα2 (t)

)2(
H[µ,α1](t)+H[µ,α2](t)+h

)2

}
, (3.106a)

or equivalently,

GΣATM
[α1,α2](t) , min

{
r(t)2 −

(
DL[α1,α2](t)

)2 ,
(
H[µ,α1](t) + H[µ,α2](t) + h

)2
−

(
zα1(t) − zα2(t)

)2
}
.

(3.106b)

Therefore, the intermediate ATM separation constraint in the presence of uncertainty is defined

as

GΣATM
[α1,α2](t) ≤ 0. (3.107)
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3.4.5 Stochastic Components Implementation and Testing.

This section describes a notional example multi-objective HCS ATM problem with stochastic

components, and details how it was evaluated using the STOP method described in Sections 3.1.3.1,

replacing the deterministic ATM separation constraint (3.15) with the probabilistic ATM separation

constraint (3.107).

3.4.5.1 Notional Air Traffic Test Case.

This section details the notional air traffic test case that was evaluated as a kinodynamic multi-

objective HCS ATM problem with uncertainty using the STOP method.

The kinodynamic test case with uncertainty is defined identically to the first test case from

Section 3.3.2.1. However, Table 3.42 provides the uncertainty parameter values for the first test

case.

Table 3.42: Test Case 1 Notional Air Traffic Uncertainty Values (No Units).

Segment Along Path
Cross Path

Lateral Vertical(
vi, v j

) (
σµ

) (
σ⊥µ

) (
σ↑µ

)
(v2, v3) 0.015 0.0075 0.0035

(v5, v3) 0.015 0.0075 0.0035

(v1, v4) 0.007 0.0035 0.0020

(v3, v6) 0.010 0.0050 0.0050

3.4.5.2 Test Case Evaluation.

The test case defined in Section 3.4.5.1 was evaluated with the STOP formulation of the

generalized weighted-sum representation of the multi-objective HCS ATM problem using both

the arrival time and final state forms of the adjusted probabilistic ATM separation constraint for

(1 − ρ) = 0.75, (1 − ρ) = 0.85 and (1 − ρ) = 0.95. For each value of (1 − ρ)2, the test case

was evaluated with t f = 1.2 × max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, κ2 = κ3 = min

(
t[ f ,α]min

)
, and λ1 = 5.5,

λ2 = 10, and λ3 = 0.1 using the sigmoid ATM separation constraint approximation method. For

each treatment, the STOP generalized weighted-sum objective function, defined in equation (3.64),
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was minimized using the GPOPS-II Matlab optimization package running on Mac OS 10.9.4 with

a 2.8 GHz Intel Core i5 processor and 8GB of RAM. The GPOPS-II settings that were used for the

optimization are detailed in Appendix C. For each treatment, the control strategies, state trajectories

and arrival times that satisfied the GPOPS-II local optimality conditions were recorded. The time

required to generate each treatment’s locally optimal solution, as well as the total deviation from

scheduled arrival time, makespan, and the total control cost associated with each treatment’s locally

optimal solution were also recorded.

3.5 Asymmetric Lateral Separation

This section describes the methods developed to account for asymmetric lateral separation.

Asymmetric lateral separation in ATM refers to cases in which policy or operational procedures

dictate that the lateral separation between two aircraft is dependent on their lead-trail weight class

configuration; that is, the minimum allowable lateral separation between two aircraft should be

greater if a lighter aircraft is following behind a heavier aircraft [74].

3.5.1 Lead-Trail Definition.

For the purposes of this research, aircraft α1 is considered to trail aircraft α2 if and only if

〈
∆α2 xy(t),∆[α2,α1]xy(t)

〉
< 0, (3.108)

where ∆α2 xy(t) is the vector given by the lateral heading of aircraft α2 at time t and ∆[α2,α1]xy(t)

is the vector given by the difference in the lateral position of aircraft α1 and the lateral position of

aircraft α2, such that

∆[α2,α1]xy(t) ,
[
xα1(t) − xα2(t), yα1(t) − yα2(t)

]
. (3.109)

That is, if the lateral heading from aircraft α2 to aircraft α1 is greater than 90 degrees from the

current lateral heading of aircraft α2, then aircraft α1 is considered to trail aircraft α2.

Therefore, given c[µ,α1](t) and c[µ,α2](t), ∆[α2,α1]xy(t) can be determined using Algorithm 3.1.

However, the lateral heading vector of each aircraft α, denoted ∆αxy(t), is determined by the lateral

airspace heading of the current path segment for aircraft α. As detailed in Section 3.1.1, in control

mode µ, each aircraft α ∈ {1, 2, . . . , A} is assigned a set of nα way-points in the three-dimensional
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airspace that must be visited in order. The set of way-points is given as

WP[µ,α] =
{
(x[1,α], y[1,α], z[1,α]

)
, (x[2,α], y[2,α], z[2,α]

)
, . . . , (x[nα,α], y[nα,α], z[nα,α]

)}
, (3.110)

so the route of aircraft α is partitioned into a set of (nα − 1) route segments (or arcs) defined by

the airspace way-points. Thus, the total path-length for the route of aircraft α in control mode µ,

denoted l[µ,α], is given by

l[µ,α] =

nα−1∑
i=0

∥∥∥a[i,α]
∥∥∥, (3.111a)

where

a[i,α] ,


[
0, 0, 0

]
if i = 0,[

x[i+1,α], y[i+1,α], z[i+1,α]
]
−

[
x[i,α], y[i,α], z[i,α]

]
if i ≥ 1,

(3.111b)

is a vector representation of the route segment that connects way-point i to way-point (i + 1). Thus,

the roadmap state c[µ,α](t) ∈ [0, l[µ,α]] in control mode µ is related to the lateral heading vector of

aircraft α, denoted ∆αxy(t) by the following relationship:

∆α2 xy(t) ,
(
a[n̂α,α] − a[n̂α−1,α]

)


1 0 0

0 1 0

0 0 0

 , (3.112a)

where

n̂α−1∑
i=0

∥∥∥a[i,α]
∥∥∥ ≤ c[µ,α](t) ≤

n̂α∑
i=0

∥∥∥a[i,α]
∥∥∥. (3.112b)

Alternatively, the lateral airspace heading vector of aircraft α at time t in control mode µ, denoted

∆αxy(t), can be determined using Algorithm 3.4.

3.5.2 Minimum Lateral Separation Update.

Given the lead-trail criterion in equation (3.108), Algorithms 3.1 and 3.4 for aircraft α1 and

aircraft α2, the trail indicator functions qα1 and qα2 , are given by

qα1(t) =


1 if

〈
∆α2 xy(t),∆[α2,α1]xy(t)

〉
< 0,

0 if
〈
∆α2 xy(t),∆[α2,α1]xy(t)

〉
≥ 0,

(3.113)
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Algorithm 3.4 Calculate lateral heading given roadmap state c[µ,α](t)

aα =
[
0, 0, 0

]
lα = 0

n̂α = 1

while lα + ‖a[n̂α,α]‖ ≤ c[µ,α](t) do

aα = aα + a[n̂α,α]

lα = lα + ‖a[n̂α,α]‖

n̂α = n̂α + 1

end while

∆α2 xy(t) =
(
a[n̂α,α] − aα

)


1 0 0

0 1 0

0 0 0



and

qα2(t) =


1 if

〈
∆α1 xy(t),∆[α1,α2]xy(t)

〉
< 0,

0 if
〈
∆α1 xy(t),∆[α1,α2]xy(t)

〉
≥ 0.

(3.114)

That is, qα1(t) is equal to 1 if and only if aircraft α1 is considered to trail aircraft α2, and it is equal

to 0 otherwise, while qα2(t) is equal to 1 if and only if aircraft α2 is considered to trail aircraft α1,

and it is equal to 0 otherwise.

Furthermore, suppose the current control mode defines an increase to r, the baseline lateral

separation requirement, if aircraft α1 is considered to trail aircraft α2, or if aircraft α2 is considered

to trail aircraft α1. If aircraft α1 is considered to trail aircraft α2, denote this increase ∆r[α1,α2]. If

aircraft α2 is considered to trail aircraft α1, denote this increase ∆r[α2,α1]. Then the updated lateral

separation requirement would be r + ∆r[α1,α2] if aircraft α1 is considered to trail aircraft α2 and

aircraft α2 is not considered to trail aircraft α1. Similarly, the updated lateral separation requirement

would be r + ∆r[α2,α1] if aircraft α2 is considered to trail aircraft α1 and aircraft α1 is not considered

to trail aircraft α2. However, if both aircraft are considered to trail each other, then the updated

lateral separation requirement should be r + max
{
∆r[α1,α2],∆r[α2,α1]

}
.
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Therefore, the asymmetric minimum allowable lateral separation is given by

r̂(t) = r + max
{(

qα1(t)
)
∆r[α1,α2],

(
qα2(t)

)
∆r[α2,α1]

}
. (3.115)

Note that to improve differentiability of the asymmetric minimum allowable lateral separation

requirement given by equation (3.115), it can be approximated using the Multiplier Method

described in Section 2.3.1.4 to approximate the value of max
{(

qα1(t)
)
∆r[α1,α2],

(
qα2

)
∆r[α2,α1]

}
and

the Sigmoid Method described in Section 2.3.1.7 to approximate the indicator functions qα1(t) and

qα2(t).

3.5.3 Asymmetric Lateral Separation Implementation and Testing.

This section describes a notional example multi-objective HCS ATM problem with asymmetric

lateral separation requirements, and details how it was evaluated using the STOP method described

in Sections 3.1.3.1, replacing the asymmetric minimum allowable lateral separation equation (3.115)

with the combined Multiplier and Sigmoid Method approximation.

3.5.3.1 Notional Air Traffic Test Cases.

This section details the notional air traffic test case that was evaluated as a multi-objective HCS

ATM problem with asymmetric lateral separation requirements using the STOP method.

The kinodynamic test case with uncertainty and asymmetric lateral separation is defined

identically to the test case from Section 3.4.5.1. However, Table 3.43 provides the changes in

the baseline lateral separation requirement for the given lead-trail configuration.

Table 3.43: Test Case 1 Notional Air Traffic Lateral Separation Update Values (No Units).

Trail Aircraft Lead Aircraft Lateral Separation Update

(α1) (α2)
(
∆[α1,α2]r

)
1 2 0

1 3 0

2 1 0.01

2 3 0

3 1 0.01

3 2 0
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3.5.3.2 Test Case Evaluation.

The test case defined in Section 3.5.3.1 was evaluated using the STOP formulation of the

generalized weighted-sum representation of the multi-objective HCS ATM problem using both

the arrival time and final state forms of the adjusted ATM separation constraint, with t f =

1.2 × max
{
t[ f ,1]max , . . . , t[ f ,A]max

}
, κ2 = κ3 = min

(
t[ f ,α]min

)
, with varying values for λ1, λ2, and λ3,

as well as different ATM separation constraint approximations. Table 3.32 displays the unique

combinations (or treatments) of λ1, λ2, λ3 that were evaluated with each ATM separation constraint

approximation. For each treatment, the STOP generalized weighted-sum objective function, defined

in equation (3.64), was minimized using the GPOPS-II Matlab optimization package running on

Mac OS 10.9.4 with a 2.8 GHz Intel Core i5 processor and 8GB of RAM. The GPOPS-II settings

that were used for the optimization are detailed in Appendix C. For each treatment, the control

strategies, state trajectories and arrival times that satisfied the GPOPS-II local optimality conditions

were recorded. The time required to generate each treatment’s locally optimal solution, as well as

the total deviation from scheduled arrival time, makespan, and the total control cost associated with

each treatment’s locally optimal solution were also recorded.
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IV. Results

This chapter presents the results of the evaluations and test cases described in Chapter 3. The

results of evaluating the suitability of each constraint approximation are presented in Sections 4.1

and 4.2. The results from the notional air traffic test cases are presented in Sections 4.3, 4.4, 4.5,

4.6, and 4.7.

4.1 Approximation Method Accuracy

This section presents the results from testing the accuracy of the four constraint approximation

methods described in Section 3.1.2, namely:

1. Multiplier Method

2. Sigmoid Method

3. p-Norm Method

4. Exponential p-Norm Method

The accuracy of each approximation method was measured for each treatment described in Section

3.1.2 as the ratio of the number of grid points that the approximation method classified as within

the conflict region divided by the number of grid points that were actually within the conflict region

defined for that treatment. If the ratio is greater than 1, then the approximation method overestimated

the conflict region. Thus, the larger the over-estimation error, the less accurate the approximation.

Tables 4.1, 4.3, 4.5 and 4.7 provide a summary of this accuracy measure for each approximation

method listed. However, the impact of the over-estimation error is dependent on how the over-

estimation affects the approximated coordination space regions. Therefore, Tables 4.2, 4.4, 4.6

and 4.8 provide a summary of the ratio of the number of grid points for each treatment that the

approximation method classified as inside the coordination space region divided by the number of

grid points that were actually inside the coordination space region defined for that treatment.
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Table 4.1: Overall Multiplier Method Conflict Region Approximation Results.

Approximated Area Mean over-estimation (%)

Scenario With γ = 1 With γ = 5 With γ = 10 With γ = 50 With γ = 100 With γ = 500

1 1.6659 1.6428 1.5961 1.2412 1.0699 0.642

2-1 1.8241 1.795 1.7394 1.4988 0.5248 0.229

2-2 1.1932 1.1784 1.0335 0.7893 0.5715 0.2476

2-3 3.6545 3.5381 3.3626 2.9675 2.7308 0.4006

3-1 126.1271 121.9973 112.5275 43.1572 23.2539 6.0593

3-2 198.8302 179.493 151.6155 48.4733 25.1526 5.9761

3-3 249.8132 202.2906 157.6691 50.186 26.4099 6.8777

3-4 1354.5289 1001.2095 667.1159 126.1239 58.0802 12.3937

3-5 208.9381 185.1516 153.4082 48.5747 25.1761 5.9674

3-6 188.9029 175.4869 151.1669 49.0261 25.6813 6.4472

3-7 289.356 218.2315 161.1938 50.4616 26.4802 6.8458

3-8 230.8356 191.9769 154.4456 49.9637 26.3343 6.8695

4-1 133.9663 128.5548 117.2222 45.7147 26.1145 5.9373

4-2 206.54 186.9667 158.8222 52.5693 29.1917 6.5564

4-3 245.2401 199.8242 157.3218 52.5367 29.3749 6.3412

4-4 1339.3193 991.8396 674.8337 138.2168 68.5412 13.3969

4-5 208.1514 188.1624 159.4579 52.7251 29.2654 6.5378

4-6 187.7376 177.0491 155.1966 52.1736 29.075 6.5258

4-7 308.1269 228.3853 165.9364 53.621 29.7546 6.3725

4-8 241.1679 197.6338 157.2165 52.5499 29.3614 6.398

Mean 292.49 234.02 176.61 49.3 25.77 5.97

Table 4.1 indicates that the Multiplier Approximation Method, described in Section 3.1.2.1,

was largely inaccurate for values of γ less than 100, but its accuracy improved dramatically for

values of γ greater than 100.
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Table 4.2: Overall Multiplier Method Coordination Space Approximation Results.

Approximated Area Mean Estimation (%)

Scenario With γ = 1 With γ = 5 With γ = 10 With γ = 50 With γ = 100 With γ = 500

1 99.7555 99.7581 99.7637 99.8055 99.826 99.8765

2-1 99.6777 99.6811 99.6877 99.7171 99.9383 99.9733

2-2 99.875 99.8762 99.8948 99.9194 99.9457 99.9768

2-3 99.7516 99.7537 99.7578 99.7688 99.7739 99.9895

3-1 90.0361 90.3791 91.1864 96.7329 98.2477 99.5457

3-2 90.5727 91.4708 92.7672 97.7156 98.8169 99.7201

3-3 92.6243 93.9339 95.1901 98.471 99.1947 99.7884

3-4 93.0317 94.8493 96.5681 99.3512 99.7012 99.9362

3-5 90.6903 91.708 93.089 97.844 98.8853 99.7372

3-6 89.3997 90.0841 91.4156 97.2667 98.5714 99.6415

3-7 93.692 95.2025 96.4289 98.8739 99.4085 99.8469

3-8 92.5105 93.7031 94.8759 98.3446 99.1267 99.7704

4-1 88.828 89.3164 90.3504 96.3611 97.9303 99.5304

4-2 89.7836 90.7416 92.1081 97.4096 98.5628 99.6768

4-3 92.445 93.755 95.0352 98.3527 99.08 99.7998

4-4 93.2342 94.9723 96.5695 99.297 99.6514 99.932

4-5 89.7925 90.7721 92.1689 97.4315 98.5745 99.6808

4-6 88.0874 88.7923 90.2439 96.7652 98.1993 99.5956

4-7 94.0143 95.5632 96.7679 98.9533 99.419 99.8754

4-8 92.4391 93.7286 94.9795 98.3325 99.0692 99.796

Mean 92.9031 93.8105 94.8698 98.3217 99.0942 99.78

Table 4.1 indicates that the Multiplier Approximation Method, described in Section 3.1.2.1,

consistently identified over 90% of the coordination space, and, on average, accurately identified

more than 98% of the coordination space for values of γ greater than 50.
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Table 4.3: Overall Sigmoid Conflict Region Approximation Results.

Approximated Area Mean over-estimation (%)

Scenario With s = 10 With s = 50 With s = 100 With s = 500 With s = 1000 With s = 5000

1 2.0627 1.9991 1.9167 1.503 1.1502 0.4937

2-1 2.1559 2.0805 2.0331 1.6889 1.3433 0.1642

2-2 1.5126 1.4536 1.3944 0.9779 0.669 0.1767

2-3 4.6913 4.365 4.2372 3.2951 2.7771 0.2347

3-1 120.6186 111.0778 91.9257 31.3762 14.8918 1.5975

3-2 183.4356 153.8348 115.4797 34.5318 15.6952 1.1302

3-3 219.8828 164.5489 118.5298 35.9343 16.8156 1.9199

3-4 1142.7372 736.5625 425.5164 83.8396 34.2649 2.1871

3-5 191.2189 156.7663 116.2702 34.5789 15.7093 1.115

3-6 176.4756 152.3398 115.7471 35.0905 16.2023 1.5916

3-7 247.5416 171.5944 119.845 36.0373 16.8361 1.846

3-8 205.4167 159.2545 117.1048 35.8142 16.761 1.9277

4-1 127.4832 116.8376 95.142 32.2579 17.7842 4.0667

4-2 190.3742 161.6825 120.7332 36.3907 19.6476 4.5327

4-3 216.0067 164.6904 119.1718 35.9358 19.8347 4.3543

4-4 1126.5377 742.7563 435.9948 86.4837 43.8908 9.4387

4-5 191.6488 162.4427 121.421 36.5286 19.7005 4.5496

4-6 176.1753 156.3338 119.0395 36.0291 19.5902 4.4064

4-7 261.4138 178.71 123.2585 36.8785 20.0709 4.6416

4-8 212.9536 163.7766 118.9728 36.0775 19.8432 4.3922

Mean 255.45 186.78 126.57 34.17 16.63 2.49

Table 4.3 indicates that the Sigmoid Approximation Method, described in Section 3.1.2.2, was

largely inaccurate for values of s less than 1000, but its accuracy improved dramatically for values

of s greater than 1000.
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Table 4.4: Overall Sigmoid Coordination Space Approximation Results.

Approximated Area Mean Estimation (%)

Scenario With s = 10 With s = 50 With s = 100 With s = 500 With s = 1000 With s = 5000

1 99.7084 99.7159 99.7255 99.7745 99.8164 99.8944

2-1 99.6383 99.6471 99.653 99.6944 99.7389 99.9811

2-2 99.8442 99.8502 99.8564 99.9002 99.9364 99.9839

2-3 99.7209 99.7358 99.7391 99.7594 99.7728 99.9934

3-1 90.467 91.2788 92.8844 97.6306 98.881 99.8814

3-2 91.2798 92.6689 94.5045 98.374 99.2632 99.9482

3-3 93.4585 95.0093 96.3751 98.9046 99.4869 99.9389

3-4 94.1212 96.2108 97.8109 99.5687 99.8237 99.9887

3-5 91.4458 92.9489 94.7778 98.467 99.3061 99.9522

3-6 90.0433 91.3578 93.4535 98.0459 99.1003 99.9113

3-7 94.5862 96.2097 97.3362 99.1952 99.6238 99.9585

3-8 93.2973 94.7361 96.1078 98.8126 99.4437 99.9336

4-1 89.3819 90.3415 92.2517 97.4433 98.5946 99.6819

4-2 90.5712 91.9713 93.999 98.2063 99.0339 99.7786

4-3 93.2961 94.8123 96.2334 98.8721 99.3794 99.8646

4-4 94.3021 96.2288 97.783 99.5604 99.7768 99.952

4-5 90.5883 92.0158 94.0439 98.2261 99.0421 99.7814

4-6 88.8164 90.1297 92.5342 97.7685 98.7887 99.7304

4-7 94.9217 96.5231 97.5965 99.28 99.6081 99.9095

4-8 93.2822 94.7722 96.1926 98.8537 99.3717 99.8621

Mean 93.5399 94.7369 96.0904 98.8037 99.3949 99.904

Table 4.4 indicates that the Sigmoid Approximation Method, described in Section 3.1.2.2,

consistently identified over 93% of the coordination space, and, on average, accurately identified

more than 98% of the coordination space for values of s greater than 100.
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Table 4.5: Overall p-Norm Conflict Region Approximation Results.

Approximated Area Mean over-estimation (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 33.209 6.1527 3.2932 0.9442 0.5846 0.425

2-1 30.0171 5.1813 2.6019 0.3773 0.2101 0.0828

2-2 32.0988 5.6519 2.861 0.4228 0.216 0.1154

2-3 79.4627 13.0887 7.1702 2.3905 0.3427 0.093

3-1 24.8961 4.1511 2.8841 1.7577 1.6364 1.4762

3-2 24.0591 3.264 2.1829 1.2522 1.1597 1.0377

3-3 27.9557 4.7639 3.3978 2.1215 1.9692 1.7676

3-4 34.2649 2.1871 2.1871 2.1871 2.1871 2.1871

3-5 23.9846 3.2127 2.1706 1.2434 1.1506 1.0222

3-6 24.4476 3.7118 2.6311 1.7156 1.6222 1.4982

3-7 29.3636 5.0106 3.5132 2.0696 1.8993 1.6758

3-8 27.9243 4.798 3.3802 2.1142 1.966 1.7795

4-1 24.1592 5.3777 2.5113 0.4851 0.2825 0.0396

4-2 24.1922 5.4118 2.4951 0.4379 0.2479 0.0339

4-3 28.5445 6.1775 2.7326 0.574 0.3224 0.0493

4-4 42.3441 8.6739 3.1034 0.3435 0.0623 0.0186

4-5 24.121 5.4079 2.4329 0.4283 0.2374 0.0281

4-6 23.7686 5.1368 2.4146 0.4792 0.2583 0.0314

4-7 31.1086 7.1513 3.0227 0.4851 0.2949 0.054

4-8 28.6188 6.2921 2.8414 0.5509 0.3141 0.0548

Mean 30.29 5.25 2.96 1.24 1.00 0.83

Table 4.5 indicates that the p-Norm Approximation Method, described in Section 3.1.2.3, was

very inaccurate for all values of p greater than 2, but its accuracy improved dramatically for values

of p greater than 100.
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Table 4.6: Overall p-Norm Coordination Space Approximation Results.

Approximated Area Mean Estimation (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 95.2388 99.0775 99.4895 99.8409 99.8834 99.9027

2-1 95.1687 99.1654 99.5809 99.9547 99.9756 99.9905

2-2 95.5998 99.2116 99.6025 99.9589 99.98 99.9898

2-3 95.5851 99.1972 99.5081 99.7871 99.9908 99.9967

3-1 98.2437 99.7188 99.7993 99.8711 99.8788 99.8891

3-2 98.9402 99.8656 99.9074 99.9434 99.947 99.9519

3-3 99.1922 99.8638 99.9002 99.9337 99.9376 99.9427

3-4 99.8237 99.9887 99.9887 99.9887 99.9887 99.9887

3-5 99.0179 99.8792 99.9153 99.9477 99.9509 99.9555

3-6 98.7635 99.825 99.8691 99.9064 99.91 99.915

3-7 99.3434 99.8874 99.9213 99.9535 99.9573 99.9623

3-8 99.1147 99.8491 99.8911 99.9282 99.9324 99.9377

4-1 98.2246 99.6142 99.8177 99.9641 99.9797 99.9973

4-2 98.8922 99.757 99.8871 99.9805 99.9893 99.9986

4-3 99.1712 99.8246 99.9206 99.9831 99.9908 99.9987

4-4 99.7846 99.9558 99.9844 99.9983 99.9997 99.9999

4-5 98.9065 99.7636 99.8911 99.9798 99.9892 99.9987

4-6 98.6569 99.7187 99.8656 99.9727 99.9857 99.9983

4-7 99.3925 99.8605 99.9408 99.9905 99.9943 99.999

4-8 99.1575 99.8183 99.9167 99.9837 99.991 99.9985

Mean 98.3763 99.7086 99.8347 99.9393 99.9563 99.964

Table 4.6 indicates that the p-Norm Approximation Method, described in Section 3.1.2.3,

consistently identified over 98% of the coordination space, and, on average, accurately identified

more than 99.9% of the coordination space for values of p greater than 100.
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Table 4.7: Overall Exponential p-Norm Conflict Region Approximation Results.

Approximated Area Mean over-estimation (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 2.0742 2.0229 1.9991 1.7923 1.6428 0.9681

2-1 2.1603 2.1329 2.0943 1.9171 1.7638 0.3923

2-2 1.527 1.4827 1.4642 1.2948 1.1637 0.4418

2-3 4.7416 4.432 4.3971 3.966 3.4392 2.4312

3-1 121.1744 118.8144 114.6925 70.0137 42.9274 10.5007

3-2 186.8957 176.8178 164.0581 83.1589 48.2968 10.8417

3-3 229.9908 205.5197 181.5915 85.3386 49.8985 11.8492

3-4 1216.9557 1036.7502 861.6923 260.2673 126.1239 23.0863

3-5 195.6001 183.3087 168.473 83.4962 48.3969 10.8419

3-6 178.5655 171.4982 161.0933 83.6738 48.8724 11.3296

3-7 263.2968 226.7387 193.9368 85.9189 50.0907 11.8451

3-8 213.6878 193.5498 173.5504 84.7067 49.6841 11.8221

4-1 128.6556 125.4268 120.6546 73.2687 45.7356 11.926

4-2 194.4927 184.0439 171.2774 88.6511 52.6648 13.2458

4-3 226.3101 202.6069 180.3625 87.7441 52.5274 12.8986

4-4 1204.3189 1025.8954 859.2546 277.6885 138.9621 28.183

4-5 195.9776 185.3032 172.2955 89.0194 52.8142 13.3018

4-6 178.5003 172.4341 163.4481 87.8365 52.3216 12.9713

4-7 279.2979 238.3523 202.8109 89.6713 53.4408 13.5585

4-8 222.782 200.0428 178.7477 87.663 52.5569 13.0202

Mean 267.97 237.84 208.12 87.74 49.3 11.31

Table 4.7 indicates that the Exponential p-Norm Approximation Method, described in Section

3.1.2.4, was very inaccurate for all values of p less than 200, but its accuracy improved dramatically

for values of p greater than 200.
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Table 4.8: Overall Exponential p-Norm Coordination Space Approximation Results.

Approximated Area Mean Estimation (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 99.7071 99.7132 99.7159 99.7405 99.7581 99.8381

2-1 99.6378 99.6408 99.6454 99.6662 99.6845 99.9529

2-2 99.8429 99.8468 99.849 99.8654 99.8775 99.9566

2-3 99.7198 99.7343 99.7353 99.7451 99.7554 99.7859

3-1 90.4315 90.6222 90.966 94.6421 96.7475 99.2117

3-2 91.1256 91.5921 92.1857 96.0608 97.7224 99.4914

3-3 93.1841 93.8588 94.5265 97.3937 98.4784 99.6376

3-4 93.7394 94.6665 95.5671 98.6611 99.3512 99.8812

3-5 91.2661 91.7911 92.4326 96.2709 97.8503 99.5215

3-6 89.9528 90.311 90.8693 95.3003 97.2727 99.3707

3-7 94.2522 95.0288 95.7307 98.0857 98.882 99.7352

3-8 93.0478 93.6652 94.2859 97.1878 98.3524 99.6069

4-1 89.2791 89.5662 89.9947 94.0926 96.3539 99.063

4-2 90.3648 90.879 91.501 95.6078 97.4016 99.3494

4-3 93.0013 93.6868 94.3431 97.2327 98.35 99.5981

4-4 93.9134 94.8059 95.6429 98.5877 99.2932 99.8567

4-5 90.3778 90.9029 91.5368 95.6415 97.4239 99.3588

4-6 88.6673 89.0641 89.6541 94.5152 96.7505 99.2018

4-7 94.5732 95.3694 96.0573 98.2503 98.9568 99.7353

4-8 92.9914 93.6666 94.3113 97.2019 98.3294 99.5893

Mean 93.3543 93.8288 94.3464 97.1569 98.317 99.5873

Table 4.8 indicates that the Exponential p-Norm Approximation Method, described in Section

3.1.2.4, consistently identified over 93% of the coordination space, and, on average, accurately

identified more than 98% of the coordination space for values of p greater than 200.

4.1.1 Summary.

These results indicate that all four of the approximation methods tested can achieve accuracy

suitable for estimating the roadmap-based ATM conflict regions. However, the Multiplier and
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Exponential p-Norm Approximation Methods generated the least accurate estimates for the

parameter values tested, while the p-Norm Approximation Method generated the most accurate

estimates for the parameter values tested.

4.2 Approximation Method Computational Stability

This section presents the results from testing the computational stability of the four constraint

approximation methods described in Section 3.1.2, namely:

1. Multiplier Method

2. Sigmoid Method

3. p-Norm Method

4. Exponential p-Norm Method

The computational stability of each approximation method was measured for each treatment

described in Section 3.1.2 as the ratio of the number of grid points for which the Matlab gradient

function failed to estimate a gradient value based on the grid of the approximation method’s function

value divided by the total number of grid points that were defined for that treatment. Tables 4.9- 4.12

provide a summary of this computational stability measure for each approximation method listed.

Figures 4.1 - 4.4 present typical surface plot for each constraint approximation method described

in Section 3.1.2 to visualize the function’s computational stability. Note the similarity between

the Multiplier Method constraint function surface and the Exponential p-Norm Method constraint

function surface.
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Figure 4.1: Multiplier Method Constraint Function Surface

149



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Aircraft 1 State

Sigmoid Method Constraint Function Surface

Aircraft 2 State

C
o
n
s
tr

a
in

t 
F

u
n
c
ti
o
n
 V

a
lu

e

Figure 4.2: Sigmoid Method Constraint Function Surface
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Figure 4.3: p-Norm Method Constraint Function Surface
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Figure 4.4: Exponential p-Norm Method Constraint Function Surface
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Table 4.9: Overall Multiplier Method Computational Stability Results.

Proportion of Grid Points where Gradient Estimate Failed (%)

Scenario With γ = 1 With γ = 5 With γ = 10 With γ = 50 With γ = 100 With γ = 500

1 0 0 0 0 0 0

2-1 0 0 0 0 0 0

2-2 0 0 0 0 0 0

2-3 0 0 0 0 0 0

3-1 0 0 0 0 0 0

3-2 0 0 0 0 0 0

3-3 0 0 0 0 0 0

3-4 0 0 0 0 0 0

3-5 0 0 0 0 0 0

3-6 0 0 0 0 0 0

3-7 0 0 0 0 0 0

3-8 0 0 0 0 0 0

4-1 0 0 0 0 0 0

4-2 0 0 0 0 0 0

4-3 0 0 0 0 0 0

4-4 0 0 0 0 0 0

4-5 0 0 0 0 0 0

4-6 0 0 0 0 0 0

4-7 0 0 0 0 0 0

4-8 0 0 0 0 0 0

Mean 0 0 0 0 0 0

Table 4.9 indicates that the Matlab gradient function successfully estimated a gradient for the

Multiplier Approximation Method, described in Section 3.1.2.1, at all grid points, for all values of

γ.
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Table 4.10: Overall Sigmoid Computational Stability Results.

Proportion of Grid Points where Gradient Estimate Failed (%)

Scenario With s = 10 With s = 50 With s = 100 With s = 500 With s = 1000 With s = 5000

1 0 0 0 0 0 0

2-1 0 0 0 0 0 0

2-2 0 0 0 0 0 0

2-3 0 0 0 0 0 0

3-1 0 0 0 0 0 0

3-2 0 0 0 0 0 0

3-3 0 0 0 0 0 0

3-4 0 0 0 0 0 0

3-5 0 0 0 0 0 0

3-6 0 0 0 0 0 0

3-7 0 0 0 0 0 0

3-8 0 0 0 0 0 0

4-1 0 0 0 0 0 0

4-2 0 0 0 0 0 0

4-3 0 0 0 0 0 0

4-4 0 0 0 0 0 0

4-5 0 0 0 0 0 0

4-6 0 0 0 0 0 0

4-7 0 0 0 0 0 0

4-8 0 0 0 0 0 0

Mean 0 0 0 0 0 0

Table 4.10 indicates that the Matlab gradient function successfully estimated a gradient for the

Sigmoid Approximation Method, described in Section 3.1.2.2, at all grid points, for all values of s.
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Table 4.11: Overall p-Norm Computational Stability Results.

Proportion of Grid Points where Gradient Estimate Failed (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 0 0 0 0 0.6313 76.8115

2-1 0 0 0 0 0.8765 75.3927

2-2 0 0 0 0 1.0505 76.9243

2-3 0 0 0 0 1.9492 83.254

3-1 0 0 0 0 17.9725 88.2095

3-2 0 0 0 0 50.69 92.5623

3-3 0 0 0 0 50.69 94.7062

3-4 0 0 0 0 83.4074 99.0591

3-5 0 0 0 0 50.69 93.0499

3-6 0 0 0 0 50.69 91.4762

3-7 0 0 0 0 50.69 95.7923

3-8 0 0 0 0 50.69 94.2187

4-1 0 0 0 0 17.7739 88.389

4-2 0 0 0 0 50.6967 92.7034

4-3 0 0 0 0 50.1895 94.7414

4-4 0 0 0 0 83.1123 99.0558

4-5 0 0 0 0 50.3675 92.78

4-6 0 0 0 0 50.4431 91.1497

4-7 0 0 0 0 50.4431 96.2951

4-8 0 0 0 0 50.5187 94.6648

Mean 0 0 0 0 41.5887 90.8079

Table 4.11 indicates that the Matlab gradient function successfully estimated a gradient for the

p-Norm Approximation Method, described in Section 3.1.2.3, at all grid points, for all values of p

less than 200, but consistently failed to estimate a gradient at over 40% of grid points, for all values

of p greater than or equal to 200.
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Table 4.12: Overall Exponential p-Norm Computational Stability Results.

Proportion of Grid Points where Gradient Estimate Failed (%)

Scenario With p = 2 With p = 10 With p = 20 With p = 100 With p = 200 With p = 1000

1 0 0 0 0 0.0712 31.8931

2-1 0 0 0 0 0.1138 34.6914

2-2 0 0 0 0 0.1573 36.3494

2-3 0 0 0 0 0.5016 44.0194

3-1 0 0 0 0 0 20.966

3-2 0 0 0 0 0 21.554

3-3 0 0 0 0 0 22.3184

3-4 0 0 0 0 0 22.9063

3-5 0 0 0 0 0 21.7304

3-6 0 0 0 0 0 21.1424

3-7 0 0 0 0 0 22.7299

3-8 0 0 0 0 0 22.142

4-1 0 0 0 0 0 24.5294

4-2 0 0 0 0 0 25.3494

4-3 0 0 0 0 0 25.7124

4-4 0 0 0 0 0 26.5324

4-5 0 0 0 0 0 25.3494

4-6 0 0 0 0 0 24.5294

4-7 0 0 0 0 0 26.5324

4-8 0 0 0 0 0 25.7124

Mean 0 0 0 0 0.0352 25.6611

Table 4.12 indicates that the Matlab gradient function successfully estimated a gradient for the

Exponential p-Norm Approximation Method, described in Section 3.1.2.3, at all grid points, for all

values of p less than 200, but consistently failed to estimate a gradient at over 25% of grid points,

for all values of p equal to 1000.
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4.2.1 Summary.

These results indicate that the Exponential p-Norm Approximation Method is unsuitable for

use in defining the roadmap-based ATM conflict regions. Additionally, the non-exponential p-

Norm Approximation Method is unsuitable for use in defining the roadmap-based ATM conflict

regions when its accuracy parameter, p, is greater than 200. However, the Multiplier and Sigmoid

Approximation methods appear suitable for use in defining the roadmap-based ATM conflict regions

for all values of the accuracy parameters tested.

4.3 Shadow Time Overshoot Phase Model Results without Inertia

This section presents the results of evaluating the three test cases described in Section 3.1.4.1

using the STOP model implementation of the multi-objective HCS ATM optimization problem.

4.3.1 Viability of the Arrival Time Constraint.

The STOP method relies on the arrival time constraint to guarantee that each aircraft is modeled

to arrive at its destination at its chosen arrival time. The constraint is defined in equation (3.49b) as

(
l[µ,α] − c[µ,α](t)

) (
t − t[ f ,α]

)
≤ 0, ∀α ∈ {1, 2, . . . , A},

where control mode µ defines the path for each aircraft α ∈ {1, 2, . . . , A}, l[µ,α] is the path length

for the path of aircraft α, c[µ,α](t) is the path-length parameterized coordinate of aircraft α at time

t, and t[ f ,α] is the chosen arrival time of aircraft α. This section displays how well the various

implementations of the STOP model were able to satisfy the arrival time constraint.

4.3.1.1 Multiplier Method Implementation Results.

Tables 4.13 - 4.18 display the maximum value of the arrival time constraint function (3.49b)

for each of the Test Cases described in Section 3.1.4.1 evaluated in GPOPS-II using the STOP

model with the Multiplier Method constraint approximation method with accuracy parameter set

to γ = 500. For each treatment, either a time-based or state-based indicator function was used to

adjust the ATM separation constraint, as detailed in Section 3.1.3.1. The results shown are only for

treatments that satisfied the GPOPS-II optimality or feasibility criteria (detailed in Appendix C).

Figures 4.5 - 4.7 plot the arrival time constraint function values for each treatment of Test Case 3
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that satisfied the GPOPS-II optimality or feasibility criteria using the Multiplier Method constraint

approximation with a state-based indicator function to adjust the ATM separation constraint.

Table 4.13: Test Case 1 Multiplier Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0003 0.0002

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0004 0 0.0048

10 0 0 0

11 0 0 0

12 0 0.0003 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0.0051

17 0 0 0

18 0.0004 0 0.0005

Max 0.0004 0.0003 0.0051

Mean 0 0 0.0006
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Table 4.14: Test Case 2 Multiplier Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

2 0 0.0003 0.0002

4 0 0 0

6 0 0 0

7 0 0 0

9 0.0003 0 0.0002

10 0 0 0.0032

12 0 0.0003 0

13 0 0 0.0003

16 0 0 0.0037

Max 0.0003 0.0003 0.0037

Mean 0 0.0001 0.0008
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Table 4.15: Test Case 3 Multiplier Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0.0017

2 0.0003 0 0

3 0 0 0

4 0 0 0.0079

5 0 0 0

6 0 0 0

7 0 0 0.0051

8 0 0 0

10 0 0 0.0003

11 0 0 0

12 0 0 0.0002

13 0 0 0.0059

14 0 0 0

15 0 0 0

16 0 0 0.0001

17 0 0 0

18 0 0.0003 0.0015

Max 0.0003 0.0003 0.0079

Mean 0 0 0.0013
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Table 4.16: Test Case 1 Multiplier Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0003 0.0002

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0001 0 0.0054

10 0 0 0.0006

11 0 0 0.0003

12 0 0.0003 0.0002

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0.0011

17 0 0 0

18 0.0058 0 0

Max 0.0058 0.0003 0.0054

Mean 0.0003 0 0.0004
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Table 4.17: Test Case 2 Multiplier Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0003 0

3 0 0 0

4 0 0 0.0029

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0001 0 0.0048

10 0 0 0

11 0 0 0

12 0 0.0003 0

13 0 0 0.0011

14 0 0 0

15 0 0 0

16 0 0 0.0028

17 0 0 0

18 0.0004 0 0

Max 0.0004 0.0003 0.0048

Mean 0 0 0.0006
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Table 4.18: Test Case 3 Multiplier Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0.0003 0 0

3 0 0 0

4 0 0 0.0024

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0001 0.0025 0.0001

10 0 0 0

11 0 0 0

12 0.0061 0 0.0003

13 0 0 0.0003

14 0 0 0

16 0 0 0.0003

17 0 0 0

18 0.0004 0.0041 0.0006

Max 0.0061 0.0041 0.0024

Mean 0.0004 0.0004 0.0002

Tables 4.13 - 4.18 indicate that the Multiplier Method implementation of the STOP model

consistently satisfied the arrival time constraint (3.49b), with a maximum violation of 0.008

observed when using the time-based indicator function.
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Figure 4.5: Multiplier Method Aircraft 1 Arrival Time Constraint Function Values
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Figure 4.6: Multiplier Method Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.7: Multiplier Method Aircraft 3 Arrival Time Constraint Function Values

4.3.1.2 Sigmoid Method Implementation Results.

Tables 4.19 - 4.30 display the maximum value of the arrival time constraint function (3.49b) for

each of the Test Cases described in Section 3.1.4.1 evaluated in GPOPS-II using the STOP model

with the Sigmoid constraint approximation method with accuracy parameter set to s = 200. For each

treatment, either a time-based or state-based indicator function or sigmoid was used to adjust the

ATM separation constraint, as detailed in Section 3.1.3.1. The results shown are only for treatments

that satisfied the GPOPS-II optimality or feasibility criteria (detailed in Appendix C). Figures 4.8 -

4.10 plot the arrival time constraint function values for each treatment of Test Case 3 that satisfied

the GPOPS-II optimality or feasibility criteria using the sigmoid constraint approximation with a

state-based indicator function to adjust the ATM separation constraint.
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Table 4.19: Test Case 1 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0 0.0071

3 0.0019 0 0.0058

5 0 0 0

8 0 0 0

9 0.0007 0 0.0055

11 0 0 0

12 0 0 0.0013

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0.0068 0 0.0001

Max 0.0068 0 0.0071

Mean 0.0007 0 0.0015
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Table 4.20: Test Case 2 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

3 0 0 0.002

5 0 0 0

6 0 0 0

8 0 0 0

9 0.0007 0 0.0054

10 0 0 0.0006

11 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0.0069 0 0.0006

Max 0.0069 0 0.0054

Mean 0.0006 0 0.0007
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Table 4.21: Test Case 3 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0.0006 0 0

3 0 0 0

5 0 0 0

6 0 0 0

8 0 0 0

9 0 0.0004 0.0034

10 0 0 0

11 0 0 0

12 0.0006 0 0

13 0 0 0

14 0 0 0

15 0 0 0

18 0 0.0004 0

Max 0.0006 0.0004 0.0034

Mean 0.0001 0.0001 0.0002
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Table 4.22: Test Case 1 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0041 0

3 0 0 0.0043

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0005 0 0.0013

10 0 0 0

11 0 0 0

12 0 0.0004 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0.0007

17 0 0 0

18 0.0002 0 0.0002

Max 0.0005 0.0041 0.0043

Mean 0 0.0002 0.0004
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Table 4.23: Test Case 2 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0004 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0.0004

8 0 0 0

9 0.0007 0 0.0058

10 0 0 0.0004

11 0 0 0.0042

12 0 0.0041 0

14 0 0 0

15 0 0 0

17 0 0 0

18 0.0007 0 0.0048

Max 0.0007 0.0041 0.0058

Mean 0.0001 0.0003 0.001
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Table 4.24: Test Case 3 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0.0002

3 0 0 0.0031

4 0 0 0.0005

5 0 0 0

6 0 0 0

7 0 0.0023 0.0075

8 0 0 0

9 0 0.0004 0.0055

10 0 0 0.0035

11 0 0 0.0038

14 0 0 0

15 0 0 0

17 0 0 0

18 0 0.0003 0.0001

Max 0 0.0023 0.0075

Mean 0 0.0002 0.0017

Table 4.25: Test Case 1 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

2 0 0 0.0008

3 0 0.0046 0.0052

5 0 0 0

6 0 0 0

8 0 0 0

9 0.0005 0 0.0055

10 0 0 0

12 0 0 0.0004

15 0 0 0

17 0 0 0

Max 0.0005 0.0046 0.0055

Mean 0.0001 0.0005 0.0012
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Table 4.26: Test Case 2 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

2 0 0 0.0011

3 0 0.0047 0

5 0 0 0

6 0 0 0

8 0 0 0

9 0.0005 0 0.0044

10 0 0 0

11 0 0 0

12 0 0 0.0007

14 0 0 0

15 0 0 0

17 0 0 0

18 0.0007 0 0.0013

Max 0.0007 0.0047 0.0044

Mean 0.0001 0.0004 0.0006
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Table 4.27: Test Case 3 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0.0006 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0.0003 0

10 0.0002 0 0

11 0 0 0

12 0.0006 0 0.0003

13 0 0 0.0033

14 0 0 0

15 0 0 0

16 0 0 0.0033

17 0 0 0

18 0 0.0004 0.0008

Max 0.0006 0.0004 0.0033

Mean 0.0001 0 0.0004
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Table 4.28: Test Case 1 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0.0006

2 0 0.0004 0.0002

3 0 0 0

4 0 0 0.0075

6 0 0 0

7 0 0 0.0005

8 0 0 0

9 0.0002 0 0.0055

11 0 0 0

12 0 0.0004 0

13 0 0 0.001

14 0 0 0

15 0 0 0

17 0 0 0

18 0.0006 0.0001 0.0055

Max 0.0006 0.0004 0.0075

Mean 0.0001 0.0001 0.0014
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Table 4.29: Test Case 2 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0004 0

3 0 0 0.0001

4 0 0 0

6 0 0 0

7 0 0 0

9 0.0007 0.0003 0.0045

11 0 0 0

12 0 0.0004 0

13 0 0 0

14 0 0 0

15 0 0 0

17 0 0 0

18 0.0006 0 0.0002

Max 0.0007 0.0004 0.0045

Mean 0.0001 0.0001 0.0003
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Table 4.30: Test Case 3 Sigmoid Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Sigmoid

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0.0003

2 0.0007 0 0.0003

3 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0.0032

8 0 0 0

9 0.0043 0.0002 0.0055

10 0 0 0

11 0 0 0.0024

12 0.0006 0 0

14 0 0 0

15 0 0 0

16 0 0 0.0032

17 0 0 0

18 0 0.0004 0.0007

Max 0.0043 0.0004 0.0055

Mean 0.0003 0 0.001

Tables 4.19 - 4.30 indicate that the Sigmoid implementation of the STOP model consistently

satisfied the arrival time constraint (3.49b), with a maximum violation of 0.0075 observed when

using the state-based indicator function or sigmoid.
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Figure 4.8: Sigmoid Method Aircraft 1 Arrival Time Constraint Function Values
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Figure 4.9: Sigmoid Method Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.10: Sigmoid Method Aircraft 3 Arrival Time Constraint Function Values

4.3.1.3 p-Norm Method Implementation Results.

Tables 4.31 - 4.34 display the maximum value of the arrival time constraint function (3.49b) for

each of the Test Cases described in Section 3.1.4.1 evaluated in GPOPS-II using the STOP model

with the p-Norm constraint approximation method with accuracy parameter set to p = 20. For

each treatment, either a time-based or state-based indicator function was used to adjust the ATM

separation constraint, as detailed in Section 3.1.3.1. The results shown are only for treatments that

satisfied the GPOPS-II optimality or feasibility criteria (detailed in Appendix C). Figures 4.11 - 4.13

plot the arrival time constraint function values for each treatment of Test Case 2 that satisfied the

GPOPS-II optimality or feasibility criteria using the p-Norm constraint approximation with a state-

based indicator function to adjust the ATM separation constraint. Note that the p-Norm method

failed to complete treatments from Test Case 3 since the constraint approximation values became

computationally unstable for these scenarios.
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Table 4.31: Test Case 1 p-Norm Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0004 0.0002

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0.0048

10 0 0 0.002

11 0 0 0

12 0 0.0004 0.0002

13 0 0 0.0004

14 0 0 0

15 0 0 0

16 0 0 0.0076

17 0 0 0

18 0.0004 0 0.0048

Max 0.0004 0.0004 0.0076

Mean 0 0 0.0011
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Table 4.32: Test Case 2 p-Norm Method Maximum Arrival Time Constraint Violation.

Using Time-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0004 0.0002

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0003 0 0.0009

11 0 0 0

12 0 0.0004 0.0002

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0.0005 0 0.0048

Max 0.0005 0.0004 0.0048

Mean 0 0 0.0004
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Table 4.33: Test Case 1 p-Norm Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0

2 0 0.0004 0.0002

3 0 0 0

4 0 0 0

5 0 0 0

6 0.0006 0 0

7 0 0 0.0005

8 0 0 0

9 0.0007 0.0002 0.0055

10 0 0 0.0032

11 0 0 0

12 0 0.0004 0.0002

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0.0057

17 0 0 0

18 0.0004 0 0.0048

Max 0.0007 0.0004 0.0057

Mean 0.0001 0.0001 0.0011
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Table 4.34: Test Case 2 p-Norm Method Maximum Arrival Time Constraint Violation.

Using State-based Arrival Indicator

Treatment Aircraft 1 Aircraft 2 Aircraft 3

1 0 0 0.0094

2 0 0.0004 0.0002

3 0 0 0

4 0 0 0.0002

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0.0001 0 0.0004

10 0 0 0.0002

11 0 0 0

12 0 0.0004 0.0002

13 0 0 0.0053

14 0 0 0

15 0 0 0

16 0 0 0.0002

17 0 0 0

18 0.0006 0 0.0055

Max 0.0006 0.0004 0.0094

Mean 0 0 0.0012

Tables 4.31 - 4.34 indicate that the p-Norm implementation of the STOP model consistently

satisfied the arrival time constraint (3.49b), with a maximum violation of 0.0094 observed when

using the state-based indicator function.
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Figure 4.11: p-Norm Method Aircraft 1 Arrival Time Constraint Function Values
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Figure 4.12: p-Norm Method Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.13: p-Norm Method Aircraft 3 Arrival Time Constraint Function Values

4.3.2 Multi-Objective Optimization Results without Inertia.

This section provides the results of the multi-objective test case evaluation described in Section

3.1.4.2, and compares the results of different implementation of the STOP model without inertia.

4.3.2.1 Multiplier Method Implementation Performance.

Tables 4.35 - 4.37 display the minimum measures of total deviation from schedule, total time

(makespan) and fuel consumption achieved across all successfully completed treatments of the test

cases described in Section 3.1.4.2, evaluated using the Multiplier Method constraint implementation

of the STOP model in GPOPS-II. Tables 4.35 - 4.37 also indicate the average successful completion

rate and the average time required to evaluate each treatment. Figures 4.14-4.16 provide scatter

plots of the measure of total deviation from schedule, total time and fuel consumption achieved for

all treatment evaluations that completed successfully.
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Table 4.35: Test Case1 Multiplier Method Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.6616 0 7.3841 1 24.2407

State-based 3.6549 0 7.3841 1 24.3057

Table 4.35 indicates both arrival indicator implementation types achieved nearly identical fuel,

schedule deviation, and makespan minima for the Multiplier Method STOP model of Test Case 1.

Table 4.36: Test Case 2 Multiplier Method Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.6739 0 7.3841 0.5 42.6122

State-based 3.6553 0 7.3841 1 77.1687

Table 4.36 indicates the state-based arrival indicator implementation achieved the lowest

overall fuel measure and highest average success rate for the Multiplier Method STOP model of

Test Case 2. However, it also had the longest average time to completion.

Table 4.37: Test Case 3 Multiplier Method Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 5.4954 0.0394 9.2642 0.9444 16.5383

State-based 5.5079 0.0394 9.2642 0.9444 44.7151

Table 4.37 indicates both arrival indicator implementation types achieved similar minimum

overall fuel measure, schedule deviation measure and makespan for the Multiplier Method STOP
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model of Test Case 3. However, the time-based arrival indicator implementation had the lowest

average time to completion.
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Figure 4.14: Test Case 1 Multiplier Method Objective Plots
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Figure 4.15: Test Case 2 Multiplier Method Objective Plots
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Figure 4.16: Test Case 3 Multiplier Method Objective Plots

Figures 4.14 - 4.16 indicate the Multiplier Method STOP model evaluation of all treatments

resulted in multiple gaps in the multi-objective minimization surface.

4.3.2.2 Sigmoid Implementation Performance.

Tables 4.38 - 4.40 display the minimum measures of total deviation from schedule, total time

(makespan) and fuel consumption achieved across all successfully completed treatments of the test

cases described in Section 3.1.4.2, evaluated using the Sigmoid constraint implementation of the

STOP model in GPOPS-II. Tables 4.38 - 4.40 also indicate the average successful completion rate

and the average time required to evaluate each treatment. Figures 4.14-4.16 provide scatter plots

of the measure of total deviation from schedule, total time, and fuel consumption achieved for all

treatment evaluations that completed successfully.
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Table 4.38: Test Case1 Sigmoid Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.6771 0.4801 7.4483 0.7222 17.5508

State-based 3.6718 0 7.3841 1 52.0399

Time-based Sigmoid 3.6799 0.1958 7.8483 0.5556 31.6178

State-based Sigmoid 3.6799 0 7.5059 0.8333 16.6409

Table 4.38 indicates the state-based arrival indicator implementation achieved the lowest

overall fuel measure, schedule deviation measure, and makespan for the sigmoid STOP model of

Test Case 1. It also achieved the highest success rate, but had the longest average time to completion.

Table 4.39: Test Case 2 Sigmoid Method Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.6721 0.4185 7.6509 0.7222 12.7943

State-based 3.6774 0 7.6089 0.8889 22.527

Time-based Sigmoid 3.6802 0.2282 7.7453 0.7222 40.5692

State-based Sigmoid 3.69 0 7.4483 0.7778 13.4506

Table 4.39 indicates all arrival indicator implementation types achieved similar results for the

sigmoid STOP model of Test Case 2.
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Table 4.40: Test Case 3 Sigmoid Method Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 5.5114 0.0029 9.2642 0.7778 88.0253

State-based 5.5111 0.9548 9.6642 0.7778 37.9908

Time-based Sigmoid 5.5243 0.0394 9.2642 1 10.5476

State-based Sigmoid 5.5198 0.0028 9.2642 0.8889 61.6865

Table 4.40 indicates the time-based sigmoid arrival indicator implementation types achieved

the overall highest success rate and lowest average completion time for the sigmoid STOP model of

Test Case 3.
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Figure 4.17: Test Case 1 Sigmoid Method Objective Plots
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Figure 4.18: Test Case 2 Sigmoid Method Objective Plots
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Figure 4.19: Test Case 3 Sigmoid Method Objective Plots

Figures 4.17 - 4.19 indicate the sigmoid STOP model evaluation of all treatments resulted in

few gaps in the multi-objective minimization surface.

4.3.2.3 p-Norm Implementation Performance.

Tables 4.41 and 4.42 display the minimum measures of total deviation from schedule, total time

(makespan), and fuel consumption achieved across all successfully completed treatments of the test

cases described in Section 3.1.4.2, evaluated using the p-Norm constraint implementation of the

STOP model in GPOPS-II. Tables 4.41 and 4.42 also indicate the average successful completion

rate and the average time required to evaluate each treatment. Figures 4.20-4.21 provide scatter

plots of the measure of total deviation from schedule, total time and fuel consumption achieved for

all treatment evaluations that completed successfully.
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Table 4.41: Test Case1 p-Norm Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.6741 0 7.3841 1 15.6913

State-based 3.6807 0 7.3208 1 35.5346

Table 4.41 indicates both arrival indicator implementation types achieved similar minimum

overall fuel measure, schedule deviation measure, makespan, and success rate for the p-Norm STOP

model of Test Case 1. However, the time-based arrival indicator implementation had the lowest

average time to completion.

Table 4.42: Test Case 2 p-Norm Implementation Summary Results.

Minimum Value Achieved Average Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 3.681 0 7.4089 0.9444 18.4806

State-based 3.681 0 7.3841 1 98.4673

Table 4.42 indicates both arrival indicator implementation types achieved similar minimum

overall fuel measure, schedule deviation measure, makespan, and success rate for the p-Norm STOP

model of Test Case 2. However, the time-based arrival indicator implementation had the lowest

average time to completion.
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Figure 4.20: Test Case 1 p-Norm Method Objective Plots
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Figure 4.21: Test Case 2 p-Norm Method Objective Plots

Figures 4.20 - 4.21 indicate the p-Norm STOP model evaluation of all treatments resulted in

multiple gaps in the multi-objective minimization surface.

4.3.2.4 Conflict Region Avoidance.

This section presents the state space trajectories associated with each successful constraint

approximation implementation of the STOP model.

1. Multiplier Method Implementation Trajectories

Figures 4.22 - 4.24 display all the state-space trajectories obtained from successful treatment

evaluations using the Multiplier Method constraint approximation with time- or state-based

arrival indicator functions, with three-dimensional conflict regions in red, and pair-wise

conflict regions in solid black. These trajectories indicate that the Multiplier Method

constraint approximation successfully implemented the ATM separation restrictions, and in

at least one instance of Test Case 3, generated a solution that required a change in the nominal
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arrival sequence. Note that since the on-time arrival constraint was satisfied, each aircraft’s

state is plotted as the final state after the aircraft’s arrival time.
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Figure 4.22: Test Case 1 Multiplier Method State Space Trajectories
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Figure 4.23: Test Case 2 Multiplier Method State Space Trajectories
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Figure 4.24: Test Case 3 Multiplier Method State Space Trajectories

2. Sigmoid Implementation Trajectories

Figures 4.25 - 4.27 display all the state-space trajectories obtained from successful treatment

evaluations using the Sigmoid constraint approximation with time- or state-based arrival

indicator and sigmoid functions, with three-dimensional conflict regions in red, and pair-

wise conflict regions in solid black. These trajectories indicate that the Sigmoid constraint

approximation method successfully implemented the ATM separation restrictions, and in at

least one instance of Test Case 2, generated a solution that required a change in the nominal

arrival sequence. Note that since the on-time arrival constraint was satisfied, each aircraft’s

state is plotted as the final state after the aircraft’s arrival time.
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Figure 4.25: Test Case 1 Sigmoid Method State Space Trajectories
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Figure 4.26: Test Case 2 Sigmoid Method State Space Trajectories
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Figure 4.27: Test Case 3 Sigmoid Method State Space Trajectories

3. p-Norm Implementation Trajectories

Figures 4.28 and 4.29 display all the state-space trajectories obtained from successful

treatment evaluations using the p-Norm constraint approximation with time- or state-based

arrival indicator functions, with three-dimensional conflict regions in red, and pair-wise

conflict regions in solid black. These trajectories indicate that the p-Norm constraint

approximation method successfully implemented the ATM separation restrictions. Note that

since the on-time arrival constraint was satisfied, each aircraft’s state is plotted as the final

state after the aircraft’s arrival time.
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Figure 4.28: Test Case 1 p-Norm Method State Space Trajectories

202



0

0.5

1

1.5

2
0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 State
Aircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Aircraft 1 State

A
ir
c
ra

ft
 2

 S
ta

te

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 State

A
ir
c
ra

ft
 3

 S
ta

te

Figure 4.29: Test Case 2 p-Norm Method State Space Trajectories

4.3.3 Summary.

These results successfully demonstrate that the STOP optimization model is suitable for

generating safe separation compliant trajectories without inertia that allow for variable arrival

sequences. Additionally, the time required to generate feasible control strategies using this approach

indicates the efficiency of this method is dependent upon the method used to define a differentiable

approximation of the anisotropic separation requirement, and upon the method used to define the

STOP optimization model’s on-time arrival constraint. For example, the time-based on-time arrival

constraint formulations consistently required less time to generate feasible control strategies than

the state-based on-time arrival constraint formulations, while the p-norm separation constraint

approximation method was unable to generate feasible control strategies for the third test case.
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Therefore, state-based on-time arrival constraint formulations and the p-norm separation constraint

approximation method appear unsuitable for use with the STOP model of the multi-objective HCS

ATM optimization problem.

4.4 STOP Model Results with Modified Graph

This section presents the results from evaluating the two test cases from Section 3.2, which

were modifications of Test Case 3 from Section 3.1.4.1.

1. Alternate Way-point for Aircraft 1. The first test case involved defining an alternate way-

point for Aircraft 1 of Test Case 3 from Section 3.1.4.1. The p-Norm implementation was

not used to evaluate the test case since the p-Norm constraint approximation function became

computationally unstable in certain regions when evaluated with GPOPS-II. Out of the 18

treatments, this test case resulted in no successful treatment evaluations using the time-based

arrival indicator implementation of the the Multiplier Method STOP model and only one

successful treatment evaluation using the state-based arrival indicator.

Table 4.43 presents the results obtained using the time- and state-based arrival indicator and

sigmoid function implementations of the the Sigmoid STOP model.

Table 4.43: Aircraft 1 Alternate Way-Point with Sigmoid Implementation Summary Results.

Minimum Value Achieved Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 5.5123 0.0394 9.3602 0.4706 21.8563

State-based 8.7127 0.917 9.7453 0.0588 100.5522

Time-based Sigmoid 5.5211 0.0394 9.2642 0.8824 14.1679

State-based Sigmoid 8.7127 0.917 9.7453 0.0588 100.5522

Table 4.43 indicates modifying the path of Aircraft 1 of Test Case 3 from Section 3.1.4.1

resulted in worse performance when compared to the results from the original configuration

given in Table 4.40.
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2. Alternate Way-point for Aircraft 2. The second test case involved defining an alternate

way-point for Aircraft 2 of Test Case 3 from Section 3.1.4.1. Table 4.44 presents the results

obtained using the time- and state-based arrival indicator implementations of the Multiplier

Method STOP model.

Table 4.44: Aircraft 2 Alternate Way-Point with Multiplier Method Implementation Summary

Results.

Minimum Value Achieved Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 5.4964 0.0466 9.2642 0.9412 119.1458

State-based 5.4964 0.0394 9.2642 1 50.7816

Table 4.44 indicates modifying the path of Aircraft 2 of Test Case 3 from Section 3.1.4.1

resulted in similar performance when compared to the results from the original configuration

given in Table 4.37. However, modifying the path of Aircraft 2 of Test Case 3 from Section

3.1.4.1 resulted in improved average success rate and time to completion for the Multiplier

Method STOP model.

Table 4.45 presents the results obtained using the time- and state-based arrival indicator and

sigmoid function implementations of the Sigmoid STOP model.

Table 4.45: Aircraft 2 Alternate Way-Point with Sigmoid Implementation Summary Results.

Minimum Value Achieved Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 5.5125 0.0394 9.2642 0.7647 33.3854

State-based 5.5266 0.0394 9.2642 0.8824 62.4298

Time-based Sigmoid 5.5254 0.0394 9.2642 1 48.3197

State-based Sigmoid 5.5266 0.0394 9.2642 0.8824 62.4298
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Table 4.45 indicates modifying the path of Aircraft 2 of Test Case 3 from Section 3.1.4.1

resulted in similar performance when compared to the results from the original configuration

given in Table 4.40. However, modifying the path of Aircraft 2 of Test Case 3 resulted in

improved average success rate and overall minimum schedule deviation measure improved,

but increased average time to completion for the Sigmoid STOP model.

4.4.1 Summary.

These results suggest that modifying the path of the aircraft with a later scheduled arrival time

may be more beneficial than modifying the path of the aircraft with the earlier scheduled arrival

time. Therefore, further research may determine a heuristic or rule for modifying each aircraft’s

path in order to improve the efficiency of finding feasible control strategies for the current control

mode.

4.5 Kinodynamic STOP Model Results

This section presents the results of evaluating the test case from Section 3.3.2.1 at all 18

treatments in GPOPS-II using the STOP model of the multi-objective HCS ATM problem with

inertia and the sigmoid constraint approximation. Table 4.46 summarizes the objective function

values obtained from the evaluation as well as the time required to evaluate the test case. Figures

4.30 - 4.32 plot the arrival constraint function values that resulted. Figures 4.33-4.35 plot the speed

and acceleration profiles that resulted from the second treatment for each aircraft . Figure 4.36

presents the state space trajectory that resulted from the speed and acceleration profiles.

Table 4.46: Test Case with Inertia Sigmoid Method Implementation Summary Results.

Minimum Value Achieved Value Achieved

Indicator Fuel Schedule Total Success Seconds

Function Measure Deviation Time Rate To Completion

Time-based 0.2611 0.0394 9.3049 0.6667 135.2069

State-based 0.2594 0.0394 9.7385 0.6667 73.235

Time-based Sigmoid 0.2593 0.0394 9.3602 0.8333 103.9952

State-based Sigmoid 0.2591 0.0394 9.3602 0.8333 123.9584
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Table 4.46 indicates that all implementations achieved similar minimum fuel and deviation

from schedule measures. The sigmoid arrival indicator implementations had the highest success

rates, but the state-based arrival indicator implementation had the shortest average time to

completion. However, the state-based arrival indicator implementation also had the worst minimum

achieved total time.

The time required to evaluate the test case with inertia is between two and ten times greater than

the time required to evaluate the test case without inertia. Therefore, it may be useful to generate a

solution to the test case without inertia and provide that trajectory as an initial guess for evaluating

the test case with inertia.
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Figure 4.30: Sigmoid Method Aircraft 1 Arrival Time Constraint Function Values

207



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time

A
ir
c
ra

ft
 2

 S
ta

te

0 1 2 3 4 5 6
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Time

A
ir
c
ra

ft
 2

 A
rr

iv
a

l 
C

o
n

s
tr

a
in

t 
F

u
n

c
ti
o

n

Figure 4.31: Sigmoid Method Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.32: Sigmoid Method Aircraft 3 Arrival Time Constraint Function Values

Figures 4.30 - 4.32 indicate the all the arrival indicator implementations successfully satisfied

the on-time arrival constraint.
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Figure 4.33: Sigmoid Method Aircraft 1 Speed and Acceleration
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Figure 4.34: Sigmoid Method Aircraft 2 Speed and Acceleration
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Figure 4.35: Sigmoid Method Aircraft 3 Speed and Acceleration

Since the on-time arrival constraint was satisfied, Figures 4.33 - 4.35 plot all speed and

acceleration after the arrival time as zero (0).

Figure 4.36 displays all the state-space trajectories obtained from successful treatment

evaluations using the Sigmoid constraint approximation with time- or state-based arrival indicator

and sigmoid functions, with three-dimensional conflict regions in red, and pair-wise conflict regions

in solid black. These trajectories indicate that the Sigmoid constraint approximation method

successfully implemented the ATM separation restrictions with inertia. Note that since the on-time

arrival constraint was satisfied, each aircraft’s state is plotted as the final state after the aircraft’s

arrival time.
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Figure 4.36: Test Case with Inertia Sigmoid Method State Space Trajectories

4.5.1 Summary.

These results successfully demonstrate that aircraft inertia can be incorporated into the

roadmap coordination space, and that the STOP optimization model is suitable for generating

safe separation compliant trajectories that allow for variable arrival sequences. However, the time

required to generate feasible control strategies using this approach indicates that the efficiency of this

method is dependent upon the weightings assigned to each objective. Therefore, further research is

required to determine how the weighting scheme of the objective function affects the efficiency of

the STOP optimization model, and whether or not an optimal weighting scheme exists.
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4.6 Kinodynamic STOP Model Results with Uncertainty

This section presents the results of evaluating the test case from Section 3.4.5.1 at Treatment

2 of Table 3.32 in GPOPS-II using the STOP model of the multi-objective HCS ATM problem

with kinodynamic and stochastic elements and the sigmoid constraint approximation and state-

based sigmoid arrival constraint. The solution to the kinodynamic problem with uncertainty was

generated by first evaluating the kinodynamic problem without uncertainty, then using the solution

to the simplified problem as the initial guess to the kinodynamic problem with uncertainty. Table

4.47 presents the objective function values obtained from the evaluation with (1 − ρ) = 0.75,

(1 − ρ) = 0.85 and (1 − ρ) = 0.95, as well as the time required to evaluate the test case, including

the time required to generate solutions to the simplified problem without uncertainty. Figures 4.37

- 4.39 plot the arrival constraint function values that resulted. Figures 4.40-4.42 plot the speed

and acceleration profiles that resulted for each aircraft. Figures 4.43-4.43 present the state space

trajectories that resulted from the speed and acceleration profiles.

Table 4.47: Kinodynamic Test Case with Uncertainty Sigmoid Implementation Summary Results.

Minimum Value Achieved Value Achieved

Precision Fuel Schedule Total Success Seconds

(1 − ρ) Measure Deviation Time Rate To Completion

0.75 1.5946 0.0394 11.0394 1 52.1963

0.85 1.5984 0.0394 11.0394 1 45.9576

0.95 1.6056 0.0394 11.0394 1 62.1744

Table 4.47 indicates that while the measures of schedule deviation and total time are similar for

each value of (1 − ρ), the measure of fuel consumption increases as (1 − ρ) increases, but the time to

completion decreases then increases as (1 − ρ) increases. The process of supplying the solution of

the simpler problem without uncertainty as an initial guess to the problem with uncertainty resulted

in faster run times.
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Figure 4.37: Aircraft 1 Arrival Time Constraint Function Values
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Figure 4.38: Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.39: Aircraft 3 Arrival Time Constraint Function Values

Figures 4.37 - 4.39 indicate the on-time arrival constraint was satisfied for all values of (1 − ρ).
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Figure 4.40: Aircraft 1 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95
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Figure 4.41: Aircraft 2 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95
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Figure 4.42: Aircraft 3 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95

Figures 4.40 and 4.42 indicate slight increases in control effort were apparently required for

Aircraft 3 as (1 − ρ) increased from 0.75 to 0.95, while no change in control effort is noticeable for

Aircraft 1 or Aircraft 2. Note that since the on-time arrival constraint was satisfied, Figures 4.40 -

4.42 plot all speed and acceleration after the arrival time as zero (0).
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Figure 4.43: Kinodynamic State Space Trajectories with (1 − ρ) = 0.75

Figure 4.43 indicates the trajectory that resulted from setting (1 − ρ) to 0.75 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 3.
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Figure 4.44: Kinodynamic State Space Trajectories with (1 − ρ) = 0.85

Figure 4.44 indicates the trajectory that resulted from setting (1 − ρ) to 0.85 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 3, and by slightly more than the difference that resulted from setting (1 − ρ)

to 0.75

218



0

1

2

3
0

0.5
1

1.5
2

2.5
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 StateAircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Aircraft 1 State

A
ir
c
ra

ft
 2

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 State

A
ir
c
ra

ft
 3

 S
ta

te

Figure 4.45: Kinodynamic State Space Trajectories with (1 − ρ) = 0.95

Figure 4.45 indicates the trajectory that resulted from setting (1 − ρ) to 0.95 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 3, and by slightly more than the difference that resulted from setting (1 − ρ)

to 0.75 or 0.85.

4.6.1 Summary.

These results successfully demonstrate that stochastic effects can be modeled in the roadmap

coordination space by defining an ellipsoid to represent the likely position of each aircraft and

projecting the ellipsoid in the lateral plane and vertical axis. Additionally, the time required

to generate feasible control strategies using this approach indicates that calculating the distance

between projected ellipsoids does not render this method unsuitable for practical applications.
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Nonetheless, further research is required to compare the exact ellipsoid distance calculation method

used in this research to less accurate estimates of the distance between each aircraft’s position

ellipsoid.

4.7 Kinodynamic STOP Model Results with Uncertainty and Asymmetric Lateral Separa-

tion

This section presents the results of evaluating the test case from Section 3.4.5.1 at Treatment

2 of Table 3.32 in GPOPS-II using the STOP model of the multi-objective HCS ATM problem

with kinodynamic and stochastic elements, as well as asymmetric lateral separation constraints.

This test case was evaluated using the sigmoid constraint approximation and state-based sigmoid

arrival constraint. Additionally, a sigmoid with s = 100 was used to indicate when one aircraft

trailed another, while a Multiplier Method with λ =
√

2 − 1 and γ = 200 was used to approximate

the adjusted minimum allowable lateral separation due to the indicated lead-trail configuration.

Furthermore, the solution to the kinodynamic problem with uncertainty and asymmetric lateral

separation constraints was generated by first evaluating the kinodynamic problem with asymmetric

lateral separation constraints, but no uncertainty, then using the solution to the simplified problem

as the initial guess to the kinodynamic problem with asymmetric lateral separation constraints and

uncertainty. Table 4.48 presents the objective function values obtained from the evaluation with

(1 − ρ) = 0.75, (1 − ρ) = 0.85 and (1 − ρ) = 0.95, as well as the time required to evaluate the test

case, including the time required to generate solutions to the simplified problem with no uncertainty.

Figures 4.46 - 4.48 plot the arrival constraint function values that resulted. Figures 4.49-4.51 plot

the speed and acceleration profiles that resulted for each aircraft. Figures 4.52-4.52 present the state

space trajectories that resulted from the speed and acceleration profiles.
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Table 4.48: Kinodynamic Test Case with Uncertainty and Asymmetry Sigmoid Implementation

Summary Results.

Minimum Value Achieved Value Achieved

Precision Fuel Schedule Total Success Seconds

(1 − ρ) Measure Deviation Time Rate To Completion

0.75 1.6753 0.0394 11.0394 1 156.5112

0.85 1.759 0.0394 11.0394 1 158.3588

0.95 1.8221 0.0394 11.0394 1 345.8033

Table 4.48 indicates that while the measures of deviation from schedule and total time are

similar for each value of (1 − ρ), the measure of fuel consumption increases as (1 − ρ) increases

as expected. Additionally, while the time to completion is similar for (1 − ρ) = 0.75 and 0.85, the

time to completion more than doubles for (1 − ρ) = 0.95. Furthermore, the process of providing

the solution to the simpler problem without uncertainty as an initial guess to the problem with

uncertainty did not decrease the run time by a practically significant amount.
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Figure 4.46: Aircraft 1 Arrival Time Constraint Function Values
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Figure 4.47: Aircraft 2 Arrival Time Constraint Function Values
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Figure 4.48: Aircraft 3 Arrival Time Constraint Function Values

Figures 4.46 - 4.48 indicate the on-time arrival constraint was satisfied for all values of (1 − ρ).
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Figure 4.49: Aircraft 1 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95
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Figure 4.50: Aircraft 2 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95
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Figure 4.51: Aircraft 3 Speed and Acceleration with (1 − ρ) = 0.75, 0.85, 0.95

Figures 4.49 and 4.51 indicate the asymmetric lateral separation implementation resulted in

increased control effort and a loss of smoothness in the acceleration profile for Aircraft 1 and

Aircraft 3. This loss of smoothness was most apparent for (1 − ρ) = 0.95. Note that since the

on-time arrival constraint was satisfied, Figures 4.49 - 4.51 plot all speed and acceleration after the

arrival time as zero (0).
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Figure 4.52: Asymmetric State Space Trajectories with (1 − ρ) = 0.75

Figure 4.52 indicates the trajectory that resulted from setting (1 − ρ) to 0.75 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 2 and the conflict region between Aircraft 1 and Aircraft 3. This should be

expected since the asymmetric lateral separation applies when Aircraft 2 or Aircraft 3 is considered

to trail Aircraft 1.
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Figure 4.53: Asymmetric State Space Trajectories with (1 − ρ) = 0.85

Figure 4.53 indicates the trajectory that resulted from setting (1 − ρ) to 0.85 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 2 and the conflict region between Aircraft 1 and Aircraft 3. This should be

expected since the asymmetric lateral separation applies when Aircraft 2 or Aircraft 3 is considered

to trail Aircraft 1.

227



0

1

2

3
0

0.5
1

1.5
2

2.5
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 StateAircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Aircraft 1 State

A
ir
c
ra

ft
 2

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 1 State

A
ir
c
ra

ft
 3

 S
ta

te

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Aircraft 2 State

A
ir
c
ra

ft
 3

 S
ta

te

Figure 4.54: Asymmetric State Space Trajectories with (1 − ρ) = 0.95

Figure 4.54 indicates the trajectory that resulted from setting (1 − ρ) to 0.95 (in blue) differed

most from the trajectory with no uncertainty (dashed) when avoiding the conflict region between

Aircraft 1 and Aircraft 2 and the conflict region between Aircraft 1 and Aircraft 3, and by noticeably

more than the difference that resulted from setting (1 − ρ) to 0.75 or 0.85.

4.7.1 Summary.

These results successfully demonstrate that the asymmetric lateral separation constraint can be

approximated using a sigmoid method to indicate if the minimum allowable separation value should

be updated, then a Multiplier Method to select how it should be updated. However, the time required

to generate solutions using this hybrid approach appears impractical. Therefore, further research is

required to determine more efficient methods of incorporating asymmetric separation constraints.
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4.8 Summary of Results

This chapter demonstrated that the differentiable constraint approximation methods and

variable arrival sequence models developed in Chapter 3 are suitable for generating feasible

control strategies for ATM optimization problems that incorporate aircraft inertia and realistic

safe separation constraints. However, the efficiency of the methods developed to evaluate the

ATM optimization problems appears to decrease as the complexity and realism of the ATM model

increases. Therefore, further research is required to address the loss of efficiency and improve the

applicability of the methods developed in Chapter 3.
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V. Conclusion

This chapter provides a summary of the research presented and suggests topics for further

study. The original contributions of this research are outlined in Section 5.1, and a brief overview of

the motivation, derivation, and demonstration of each contribution is presented. Areas for analytical

and experimental extensions of this research are presented in Section 5.2.

5.1 Summary

This section summarizes the research and results presented. The first section summarizes

the development of differentiable Air Traffic Management separation constraint approximation

methods, and the second section describes the techniques developed to incorporate the differentiable

separation constraint approximation into a novel multi-objective optimization framework. The

third and fourth sections describe how this research incorporated stochastic effects and asymmetric

separation constraints into the new optimization framework.

5.1.1 Differentiable Constraint Approximations.

While the relevant literature provides theoretically differentiable approximations to non-

differentiable constraints, this research developed generalized error bounds for the classic Multiplier

Method constraint approximation, a sigmoid-based constraint approximation method, and two p-

Norm-based constraint approximation techniques. Formulations for each of these methods were

also developed to guarantee that the approximate feasible region is a subset of the true feasible

region, so that no infeasible solutions are mistakenly considered feasible when using any of the

approximation methods.

This research also generated extensive pair-wise aircraft conflict scenarios to test the

practicality of implementing these suggested approximation methods when evaluating the non-

differentiable Air Traffic Management separation constraint using a gradient-based numerical

optimizer. The results of these tests indicated that although the p-Norm-based constraint

approximations can estimate the infeasible region with great accuracy, the Multiplier Method and
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Sigmoid approximation techniques are more likely to retain computational stability when evaluated

with gradient-based numerical solvers.

5.1.2 Multi-objective Air Traffic Optimization.

Given the competing goals of reducing fuel consumption, reducing total time in flight and

achieving on-time arrivals, this research developed a roadmap-based formulation of a multi-

objective Air Traffic Management problem that takes advantage of the fact that aircraft speeds

are assumed to be positive to define a continuous on-time arrival constraint. This on-time arrival

constraint allowed the formulation to optimize different weightings of the fuel consumption, total

time in flight and deviation from scheduled arrival time measures, without having to explicitly define

an arrival sequence. A generalized weighted-sum representation of the multi-objective optimization

problem was first defined for notional air traffic problems that model aircraft speed as the direct

control of the system, while ignoring inertia or acceleration. It was then tested using the Sigmoid

and Multiplier Method approximations of notional air traffic safe separation constraints. Path

modifications to one of the test cases were evaluated to provide insight into how these modifications

could affect the optimization problem.

Results from these tests suggested that the optimization problem’s sensitivity to path

modifications was related to the problem’s sensitivity to scheduled arrival times. When these

tests indicated that the formulation could adequately solve these simplified models, the method

was extended to include problems that used acceleration as the aircraft control. Tests on this

kinodynamic formulation indicated that gradient-based numerical solvers can quickly generate

locally optimal solutions that satisfy the safe-separation requirements. Thus, the on-time arrival

constraint-based optimization model was demonstrated to be a viable method for evaluating

competing Air Traffic Management goals.

5.1.3 Stochastic Effects.

While the roadmap-based approach used to define the multi-objective Air Traffic optimization

problem is efficient, it assumes that aircraft stay precisely on their pre-defined paths and are able to

transition from one path segment to another instantaneously. Therefore, this research adopted the

standard practice of estimating an aircraft’s position with a three-dimensional ellipsoid whose radii
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are based on the uncertainty in the aircraft’s position in that direction. These probability ellipsoids

were then projected into the lateral and vertical planes to estimate the minimum lateral and vertical

separation between each pair of aircraft. In the lateral plane, the separation between two aircraft

was estimated using a closed-form calculation of the minimum distance between a pair of two-

dimensional ellipses developed by Zheng and Palffy-Muhoray [87]. This lateral separation estimate

therefore provided a buffer based on the uncertainty in the position of each aircraft, so the roadmap-

based approach to Air Traffic Management no longer needs to assume that aircraft stay exactly on

their pre-defined paths, but only that their expected position is on the pre-defined path. Tests of this

method indicated that the trajectories based on the separation of probability ellipsoids were able to

achieve similar objective function values to those obtained assuming no uncertainty; however, the

incorporation of stochastic effects resulted in the gradient-based numerical solver requiring more

time to find locally optimal solutions that satisfied the safe separation requirements.

5.1.4 Asymmetric Separation Constraints.

The differentiable constraint approximation methods developed in this research were based on

constant minimum allowable lateral and vertical air traffic separation values. However, regulations

can induce variability in the minimum allowable lateral separation. For instance, if a designated

small aircraft is trailing behind a designated heavy aircraft, the small aircraft may be required to

maintain a much greater lateral distance from the heavy aircraft. This change in separation value

may be discontinuous and therefore cause gradient-based numerical solvers to fail to find locally

optimal or feasible solutions.

This research developed a differentiable approximation of the asymmetric lateral separation

constraint by incorporating sigmoid functions to indicate if a relevant lead-trail configuration has

occurred, and then adjusting the baseline lateral separation using a Multiplier Method formulation

to choose the correct minimum allowable separation value. Tests of this method indicated that

the on-time arrival constraint-based optimization model could successfully incorporate asymmetric

separation constraints and generate conflict free trajectories. However, the control strategies

required to maintain safe-separation when the lateral separation constraint was asymmetric took
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much longer to generate and appeared much less smooth than the control strategies that resulted

when the constraints were symmetric.

5.2 Suggestions for Further Research

This section discusses potential extensions to this research, including defining conditions that

indicate whether or not a given airspace configuration admits a feasible solution, and research into

realistic values for use with the methods developed.

5.2.1 Control Mode Feasibility Conditions.

The control mode defines the given configuration of paths in the airspace, and analytical

techniques for generating the state space conflict regions that result for the given control mode based

on the lateral and vertical separation requirements are provided in Appendix B. These methods

defined the boundary of each conflict region as a function of the state variable for each aircraft.

Therefore, given the minimum and maximum allowable instantaneous change in state (or speed) of

each aircraft, it should be possible to calculate the boundary of the set of attainable states for each

aircraft. If the boundary of the set of attainable states cannot intersect the boundary of the state

space without also intersecting the boundary of the conflict region, then it should be impossible for

the aircraft to reach its destination without violating the lateral and vertical separation requirement.

Thus, a promising extension of this research is to derive the conditions that indicate when the given

airspace configuration admits no feasible solution for at least one aircraft. Furthermore, it may be

possible to use the infeasibility condition to derive changes to the control mode’s airspace graph

that would be necessary to admit a feasible trajectory for all aircraft.

5.2.2 Arrival of New Aircraft.

This research did not model the arrival of new aircraft into the airspace. Therefore, a possible

extension of this research is to study methods of incorporating the scheduled or unscheduled arrival

of new aircraft. For example, if control mode feasibility conditions can be derived, it may be

possible to define new paths for the control mode that are not used by any of the aircraft and are

guaranteed not to affect the feasibility of the current system. These paths could then be reserved

and assigned to new aircraft that enter the system.
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5.2.3 Realistic Uncertainty Parameters.

While this research demonstrated that estimating the position of each aircraft with an ellipsoid

can result in robust roadmap-based trajectories that satisfy the ATM separation requirements, the test

cases that were evaluated only used notional values for the uncertainty in each aircraft’s position.

Therefore, another extension of this research is to determine realistic values for the uncertainty

parameters involved in estimating an aircraft’s position, and to test how well the framework is able

to perform given real-world data.
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Appendix A: Parameter Screening

This section provides the results of the initial screening tests used to determine suitable

parameter values for the generalized weighted-sum objective given in equation (3.2) and the final

time parameter, t f , of the Shadow Time Overshoot Phase (STOP) model detailed in Section 3.1.3.1.

The generalized weighted-sum objective consists of two types of parameters: the binary

weight-type indicator variables, βk, and the non-negative priority weights, λk. For each k ∈ {1, 2, 3},

βk = 1 indicates objective Fk receives a linear scaling, and is multiplied by the priority weight, λk,

while βk = 0 indicates objective Fk receives an exponential scaling, and is raised to the power of

λk. For three objectives, there are eight possible combinations of the binary weight-type indicator

variables. These combinations are given in Table A.1.

Table A.1: Combinations of Weight-Type Indicator Variables.

Combination β1 β2 β3

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 1 0 1

7 0 1 1

8 1 1 1

However, the number of possible combinations of the three non-negative priority weights is

uncountable. Therefore, the priority weights were tested at varying orders of magnitude to represent

the possibility of widely disparate priorities. Each priority weight was tested at a value of 0.0, 0.1,

1.0, and 10. That is, the three priority weights were tested at four levels each for a total of 43 = 64
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possible treatment combinations. However, the treatment that corresponds to all priority weights set

to 0 was not tested, since this would result in a constant weighted-sum equal to zero.

The STOP fixed final time, t f , is defined by the constraint t f ≥
(
max

{
t[ f ,1]max , . . . , t[ f ,A]max

})
.

Therefore, t f can be parameterized by the equation t f = δ×
(
max

{
t[ f ,1]max , . . . , t[ f ,A]max

})
, where δ ≥ 1.

However, as the parameter δ increases, the discretization of the optimization problem becomes less

accurate, since a decreasing proportion of discretized time steps are allocated within the time range

relevant to the problem (i.e., before the aircraft have reached their destinations). Therefore, the

STOP fixed final time parameter δ was tested at values of 1.00, 1.05, 1.10, 1.15, 1.20 and 1.25.

Thus, the initial screening tests were conducted by evaluating Test Case 1 of Section 3.1.4.1

using normalized objectives (detailed in Section 3.1.1), the sigmoid constraint approximation

method (detailed in Section 3.1.2.2) and the time-based sigmoid arrival indicator (detailed in Section

3.1.3.1), with all eight combinations of the binary weighting-type indicator variables, β1, β2 and β3,

at all six varying values of δ and all 63 combinations of the priority weights, λ1, λ2 and λ3. Tables

A.2 - A.9 display the summary results obtained by averaging all 63 combinations of priority weights

for a given combination of binary weighting-type indicator variables and t f parameter, δ.

Table A.2: Summary Results for Weight-Type Indicator Combination 1.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

1 1.00 1.92 0.51 7.32 0.71 37.30 92.07

2 1.05 1.93 0.50 7.69 0.70 18.03 28.56

3 1.10 1.95 0.08 7.66 0.60 53.44 139.12

4 1.15 1.91 0.14 6.73 0.65 70.12 195.93

5 1.20 1.99 0.06 7.14 0.60 25.01 45.96

6 1.25 1.96 0.04 6.78 0.52 21.97 34.47

Minimum 1.91 0.04 6.73 0.52 18.03 28.56

Maximum 1.99 0.51 7.69 0.71 70.12 195.93

Mean 1.94 0.22 7.22 0.63 37.64 89.35

Table A.2 indicates that when all objectives are given exponential weighting, a minimum

schedule deviation less than 0.10 can be achieved for values of the t f parameter, δ, of 1.10, 1.20
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and 1.25. However, the range of minimum achieved schedule deviation varies from 0.04 to 0.51,

and the average run time was 37.63 seconds.

Table A.3: Summary Results for Weight-Type Indicator Combination 2.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

7 1.00 1.97 0.75 7.23 0.68 33.02 85.47

8 1.05 1.93 0.49 7.12 0.65 44.18 108.38

9 1.10 1.95 0.08 7.09 0.67 45.03 96.97

10 1.15 1.98 0.13 6.90 0.60 60.62 149.51

11 1.20 2.00 0.08 7.14 0.70 29.23 45.98

12 1.25 1.96 0.04 7.39 0.52 49.03 170.45

Minimum 1.93 0.04 6.90 0.52 29.23 45.98

Maximum 2.00 0.75 7.39 0.70 60.62 170.45

Mean 1.97 0.26 7.14 0.64 43.52 109.46

Table A.3 indicates that when only the schedule deviation objective is given a linear weighting,

a minimum schedule deviation less than 0.10 can be achieved for values of the t f parameter, δ, of

1.10, 1.20 and 1.25. However, the range of minimum achieved schedule deviation varies from 0.04

to 0.75, and the average run time was 43.52 seconds.

Table A.4: Summary Results for Weight-Type Indicator Combination 3.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

13 1.00 1.97 0.71 7.30 0.71 39.84 98.60

14 1.05 1.93 0.71 7.69 0.57 45.33 125.33

15 1.10 1.95 0.08 7.21 0.70 56.38 138.40

16 1.15 1.97 0.14 7.52 0.57 25.99 50.77

17 1.20 2.00 0.06 7.31 0.65 23.90 38.00

18 1.25 1.97 0.05 7.06 0.65 35.71 104.20

Minimum 1.93 0.05 7.06 0.57 23.90 38.00

Maximum 2.00 0.71 7.69 0.71 56.38 138.40

Mean 1.97 0.29 7.35 0.64 37.86 92.55

Table A.4 indicates that when only the makespan objective is given a linear weighting, a

minimum schedule deviation less than 0.10 can be achieved for values of the t f parameter, δ, of
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1.10, 1.20 and 1.25. However, the range of minimum achieved schedule deviation varies from 0.05

to 0.71, and the average run time was 37.86 seconds.

Table A.5: Summary Results for Weight-Type Indicator Combination 4.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

19 1.00 1.98 0.69 7.32 0.65 43.90 124.78

20 1.05 1.93 0.35 7.61 0.63 52.47 131.13

21 1.10 1.96 0.08 7.66 0.68 59.28 168.61

22 1.15 1.96 0.11 6.73 0.71 39.95 124.59

23 1.20 1.96 0.06 7.34 0.65 35.93 72.55

24 1.25 1.97 0.06 6.78 0.60 28.15 46.91

Minimum 1.93 0.06 6.73 0.60 28.15 46.91

Maximum 1.98 0.69 7.66 0.71 59.28 168.61

Mean 1.96 0.22 7.24 0.66 43.28 111.43

Table A.5 indicates that when only the fuel consumption objective is given a linear weighting,

a minimum schedule deviation less than 0.10 can be achieved for values of the t f parameter, δ, of

1.10, 1.20 and 1.25. However, the range of minimum achieved schedule deviation varies from 0.06

to 0.69, and the average run time was 43.28 seconds.

Table A.6: Summary Results for Weight-Type Indicator Combination 5.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

25 1.00 1.98 0.71 7.22 0.75 24.69 39.77

26 1.05 1.99 0.75 7.30 0.62 37.64 74.14

27 1.10 1.95 0.08 7.21 0.67 50.61 95.70

28 1.15 1.91 0.17 7.58 0.65 46.55 86.98

29 1.20 1.99 0.09 7.17 0.73 35.43 63.96

30 1.25 1.97 0.05 7.04 0.71 26.27 58.83

Minimum 1.91 0.05 7.04 0.62 24.69 39.77

Maximum 1.99 0.75 7.58 0.75 50.61 95.70

Mean 1.97 0.31 7.25 0.69 36.86 69.90

Table A.6 indicates that when only the fuel consumption objective is given an exponential

weighting, a minimum schedule deviation less than 0.10 can be achieved for values of the t f
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parameter, δ, of 1.10, 1.20 and 1.25. However, the range of minimum achieved schedule deviation

varies from 0.05 to 0.75, and the average run time was 36.86 seconds.

Table A.7: Summary Results for Weight-Type Indicator Combination 6.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

31 1.00 2.00 0.75 7.14 0.68 27.51 56.85

32 1.05 2.00 0.71 7.12 0.67 46.41 82.38

33 1.10 1.96 0.14 7.21 0.67 44.67 156.00

34 1.15 1.98 0.15 6.90 0.67 51.98 141.04

35 1.20 1.99 0.04 7.12 0.79 32.67 48.77

36 1.25 1.96 0.09 7.01 0.56 27.80 43.02

Minimum 1.96 0.04 6.90 0.56 27.51 43.02

Maximum 2.00 0.75 7.21 0.79 51.98 156.00

Mean 1.98 0.31 7.08 0.67 38.51 88.01

Table A.7 indicates that when only the makespan objective is given an exponential weighting,

a minimum schedule deviation less than 0.10 can be achieved for values of the t f parameter, δ, of

1.20 and 1.25. However, the range of minimum achieved schedule deviation varies from 0.04 to

0.75, and the average run time was 38.51 seconds.

Table A.8: Summary Results for Weight-Type Indicator Combination 7.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

37 1.00 1.99 0.32 7.37 0.62 57.10 156.51

38 1.05 1.98 0.71 7.47 0.59 30.91 80.38

39 1.10 1.96 0.08 7.21 0.67 57.26 170.50

40 1.15 1.98 0.14 7.52 0.63 33.42 73.13

41 1.20 1.99 0.01 7.31 0.62 51.05 99.25

42 1.25 1.97 0.06 7.15 0.68 30.09 46.84

Minimum 1.96 0.01 7.15 0.59 30.09 46.84

Maximum 1.99 0.71 7.52 0.68 57.26 170.50

Mean 1.98 0.22 7.34 0.63 43.31 104.44

Table A.8 indicates that when only the schedule deviation objective is given an exponential

weighting, a minimum schedule deviation less than 0.10 can be achieved for values of the t f
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parameter, δ, of 1.10, 1.20 and 1.25. However, the range of minimum achieved schedule deviation

varies from 0.01 to 0.71, and the average run time was 43.31 seconds.

Table A.9: Summary Results for Weight-Type Indicator Combination 8.

Minimum Value Achieved Value Achieved

t f Parameter Fuel Schedule Total Success Mean Seconds Std Dev of Sec.

Treatment (δ) Measure Deviation Time Rate To Completion To Completion

43 1.00 1.98 0.32 7.14 0.68 26.59 43.58

44 1.05 2.00 0.77 7.30 0.60 42.83 103.32

45 1.10 1.97 0.14 7.21 0.71 37.58 120.30

46 1.15 1.96 0.17 7.58 0.62 44.05 93.43

47 1.20 1.96 0.04 7.14 0.76 35.83 56.70

48 1.25 1.97 0.09 7.56 0.67 33.23 68.44

Minimum 1.96 0.04 7.14 0.60 26.59 43.58

Maximum 2.00 0.77 7.58 0.76 44.05 120.30

Mean 1.97 0.26 7.32 0.67 36.69 80.96

Table A.9 indicates that when all objectives are given a linear weighting, a minimum schedule

deviation less than 0.10 can be achieved for values of the t f parameter, δ, of 1.20 and 1.25. However,

the range of minimum achieved schedule deviation varies from 0.04 to 0.77, and the average run

time was 36.69 seconds.

These results indicate that the t f parameter, δ, should be set to a value near 1.20 and 1.25.

However, since increasing the value of δ will likely decrease the accuracy of the discretized

optimization problem, the t f parameter, δ, should be set to a value near 1.20.

Figure A.1 plots the minimum achieved fuel, schedule deviation and makespan values for all

48 summary treatments. It indicates that treatments from Weight-Type Indicator Combinations 1

and 2 are most suitable for minimizing all three objectives. That is, exponential weightings appear

more suitable for the schedule deviation and makespan measures than linear weightings.
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Figure A.1: Minimum Achieved Objective Values

Therefore, this research will focus on formulating the generalized weighted-sum representation

of the multi-objective Air Traffic Management optimization problem using exponential weightings

for the schedule deviation and makespan objectives, and define the STOP fixed final time, t f , as

t f = 1.2 ×
(
max

{
t[ f ,1]max , . . . , t[ f ,A]max

})
.
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Appendix B: Air Traffic Management Conflict Region Generation

This sections details the methods used to analytically define the pair-wise state space conflict

region for a given ATM control mode.

B.1 Lateral Separation

In control mode µ, each aircraft α ∈ {1, 2, . . . , A} is assigned a set of nα way-points in the

three-dimensional airspace that must be visited in order. Define the set of way-points given as

WP[µ,α] =
{
(x[1,α], y[1,α], z[1,α]

)
, (x[2,α], y[2,α], z[2,α]

)
, . . . , (x[nα,α], y[nα,α], z[nα,α]

)}
, (B.1)

so the route of aircraft α is partitioned into a set of (nα − 1) route segments (or arcs) defined by

the airspace way-points. Thus, the total path-length for the route of aircraft α in control mode µ,

denoted l[µ,α], is given by

l[µ,α] =

nα−1∑
i=0

∥∥∥a[i,α]
∥∥∥, (B.2a)

where

a[i,α] ,


[
0, 0, 0

]
if i = 0,[

x[i+1,α], y[i+1,α], z[i+1,α]
]
−

[
x[i,α], y[i,α], z[i,α]

]
if i ≥ 1,

(B.2b)

is a vector representation of the heading of the route segment that connects way-point i to way-point

(i + 1). Thus, if aircraft α is traveling along route segment i, there exists some τ ∈ [0, 1] such that

[
xα(t), yα(t), zα(t)

]
=

[
x[i,α], y[i,α], z[i,α]

]
+ a[i,α]τ, (B.3)

where
[
xα(t), yα(t), zα(t)

]
is the three-dimensional airspace position of aircraft α as it travels along

route segment i at time t.

Therefore, given aircraft α1 and α2 in control mode µ, such that α1 ∈ {1, 2, . . . , A}, α2 ∈

{1, 2, . . . , A} and α1 , α2, the Minimum Lateral Distance (MLD) between aircraft α1, as it travels

along route segment i, and aircraft α2, as it travels along route segment j, is given by the MLD

between the any position of aircraft α1 defined as

[
x[i,α1], y[i,α1], z[i,α1]

]
+ a[i,α1]τ1, (B.4)
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for τ1 ∈ [0, 1], and any position of aircraft α2 defined as[
x[ j,α2], y[ j,α2 , z[ j,α2]

]
+ a[ j,α2]τ2, (B.5)

for τ2 ∈ [0, 1]. Thus, the positions of aircraft α1 and aircraft α2 that achieve the MLD between

aircraft α1, as it travels along route segment i, and aircraft α2, as it travels along route segment j,

are given by [
x∗[i,α1], y

∗
[i,α1], z

∗
[i,α1]

]
=

[
x[i,α1], y[i,α1], z[i,α1]

]
+ a[i,α1]τ

∗
1, (B.6a)[

x∗[ j,α2], y
∗
[ j,α2], z

∗
[ j,α2]

]
=

[
x[ j,α2], y[ j,α2], z[ j,α2]

]
+ a[i,α2]τ

∗
2, (B.6b)

where
[
x∗[i,α1], y

∗
[i,α1], z

∗
[i,α1]

]
and

[
x∗[ j,α2], y

∗
[ j,α2], z

∗
[ j,α2]

]
are the position of aircraft α1 and aircraft α2,

respectively, that achieve the MLD between aircraft α1, as it travels along route segment i, and

aircraft α2, as it travels along route segment j, and
(
τ∗1, τ

∗
2

)
is the solution to the optimization problem

minimize

DL[i, j] (τ1, τ2)2 ,
∥∥∥∥∥ ((

xyz[i,α1] + a[i,α1]τ1
)
−

(
xyz[ j,α2] + a[ j,α2]τ2

))
ML

∥∥∥∥∥2
(B.7a)

subject to

xyz[i,α1] ,
[
x[i,α1], y[i,α1], z[i,α1]

]
, (B.7b)

xyz[ j,α2] ,
[
x[ j,α2], y[ j,α2], z[ j,α2]

]
, (B.7c)

ML =


1 0 0

0 1 0

0 0 0

 , (B.7d)

0 ≤ τ1 ≤ 1, (B.7e)

0 ≤ τ2 ≤ 1. (B.7f)

where DL[i, j] (τ1, τ2) is the lateral distance between aircraft α1, as it travels along route segment i,

and aircraft α2, as it travels along route segment j.

If the τ∗1 < {0, 1}, then the MLD is achieved with an interior point of route segment i, and

if τ∗2 < {0, 1}, then the MLD is achieved with an interior point of route segment j. Therefore, if
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τ∗1 < {0, 1}, then define the new way-point i∗ at the position along route i that achieves the MLD,[
x∗[i,α1], y

∗
[i,α1], z

∗
[i,α1]

]
, re-define route segment i as the arc that connects way-point i to way-point i∗

and define the new route segment i∗ as the arc that connects way-point i∗ to way-point (i + 1). If

τ∗2 < {0, 1}, then define the new way-point j∗ at the position along route j that achieves the MLD,[
x∗[ j,α2], y

∗
[ j,α2], z

∗
[ j,α2]

]
, re-define route segment j as the arc that connects way-point j to way-point

j∗ and define the new route segment j∗ as the arc that connects way-point j∗ to way-point ( j + 1).

Thus, any pair of paths of aircraft α1 and aircraft α2 can be defined so that the MLD between any

route segment i of aircraft α1 and route segment j of aircraft α2 will occur only at route segment

end-points.

B.1.1 Minimum Lateral Distance of Zero.

Suppose the MLD between route segment i of aircraft α1 and route segment j of aircraft α2

occurs at way-point i for aircraft α1 and way-point j for aircraft α2, and that this MLD is zero. Then,∥∥∥∥∥ (
xyz[i,α1] − xyz[ j,α2]

)
ML

∥∥∥∥∥ = 0

=⇒
(
xyz[i,α1] − xyz[ j,α2]

)
ML = [0, 0, 0].

Therefore, the lateral separation between aircraft α1 as it moves along segment i and aircraft α2 as

it moves along segment j is given by∥∥∥∥∥ ((
xyz[i,α1] + a[i,α1]τ1

)
−

(
xyz[ j,α2] + a[ j,α2]τ2

))
ML

∥∥∥∥∥
=

∥∥∥∥∥ (
xyz[i,α1] − xyz[ j,α2]

)
ML +

(
a[i,α1]τ1 − a[ j,α2]τ2

)
ML

∥∥∥∥∥
=

∥∥∥∥∥ [0, 0, 0] +
(
a[i,α1]τ1 − a[ j,α2]τ2

)
ML

∥∥∥∥∥
=

∥∥∥∥∥ (
a[i,α1]τ1 − a[ j,α2]τ2

)
ML

∥∥∥∥∥ .
Therefore, the boundary of the pair-wise conflict region between aircraft α1 as it moves along

segment i and aircraft α2 as it moves along segment j is given by∥∥∥∥∥ (
a[i,α1]τ1 − a[ j,α2]τ2

)
ML

∥∥∥∥∥2
= (r(t))2 , (B.8)

or, equivalently,

(ĉ1)2 + (ĉ2)2 − 2ĉ1ĉ2
〈a[i,α1]ML, a[ j,α2]ML〉

‖a[i,α1]ML‖‖a[ j,α2]ML‖
= (r(t))2 , (B.9)
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where r(t) is the minimum allowable lateral separation between aircraft α1 and α2,

ĉ1 , τ1
∥∥∥a[i,α1]ML

∥∥∥ =⇒ ĉ1 ∈
[
0,

∥∥∥a[i,α1]ML
∥∥∥] , (B.10a)

and ĉ2 , τ2
∥∥∥a[ j,α2]ML

∥∥∥ =⇒ ĉ2 ∈
[
0,

∥∥∥a[ j,α2]ML
∥∥∥] . (B.10b)

Therefore, the boundary of the lateral conflict region in the original state space is given by

B
α1,α2
LC ,


 l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(ĉ1)2 + (ĉ2)2 2ĉ1ĉ2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2


(B.11a)

(B.11b)

(B.11c)

where

l[µ,α1](i) ,
i∑

k=0

∥∥∥a[k,α1]
∥∥∥, (B.12)

and

l[µ,α2]( j) ,
j∑

k=0

∥∥∥a[k,α2]
∥∥∥. (B.13)

Similarly, if the MLD between route segment i of aircraft α1 and route segment j of aircraft α2 is

zero and occurs at way-point i + 1 for aircraft α1 and way-point j for aircraft α2, the boundary of

the lateral conflict region in the original state space is given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(ĉ1)2 + (ĉ2)2 2ĉ1ĉ2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2


(B.14a)

(B.14b)

(B.14c)

If the MLD between route segment i of aircraft α1 and route segment j of aircraft α2 is zero

and occurs at way-point i for aircraft α1 and way-point j + 1 for aircraft α2, the boundary of the

lateral conflict region in the original state space is given by

B
α1,α2
LC ,




l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(ĉ1)2 + (ĉ2)2 2ĉ1ĉ2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2


(B.15a)

(B.15b)

(B.15c)
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If the MLD between route segment i of aircraft α1 and route segment j of aircraft α2 is zero

and occurs at way-point i + 1 for aircraft α1 and way-point j + 1 for aircraft α2, the boundary of the

lateral conflict region in the original state space is given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(ĉ1)2 + (ĉ2)2 2ĉ1ĉ2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2


(B.16a)

(B.16b)

(B.16c)

Note that equation (B.9) is the equation of an ellipse rotated ±45 degrees, centered at the origin

and intersecting the coordinates

(ĉ1, ĉ2) = (±r(t), 0) (B.17)

and (ĉ1, ĉ2) = (0,±r(t)) . (B.18)

If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
> 0 then the ellipse is oriented such that the semi-major axis extends into

Quadrants I and III of the c1c2-plane, and the values of the semi-major and semi-minor axes of the

ellipse are given by

Rmajor ,
r(t)√

1 −
〈a[i,α1] ML,a[ j,α2] ML〉∥∥∥a[i,α1] ML

∥∥∥∥∥∥a[ j,α2] ML

∥∥∥
(B.19)

Rminor ,
r(t)√

1 +
〈a[i,α1] ML,a[ j,α2] ML〉∥∥∥a[i,α1] ML

∥∥∥∥∥∥a[ j,α2] ML

∥∥∥
, (B.20)

where Rmajor is the value of the semi-major axis and Rminor is the value of the semi-minor axis.

If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
< 0 then the the ellipse is oriented such that the semi-major axis extends

into Quadrants II and IV of the c1c2-plane, and the values of the semi-major and semi-minor axes

of the ellipse are given by

Rmajor ,
r(t)√

1 +
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖

(B.21)

Rminor ,
r(t)√

1 −
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖

. (B.22)
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B.1.2 Non-Zero Minimum Lateral Distance.

This section describes how to define the conflict region boundary if the MLD between two

route segments is greater than zero.

B.1.2.1 Non-Parallel Lateral Headings.

Suppose the MLD between route segment i of aircraft α1 and route segment j of aircraft α2

occurs at way-point i for aircraft α1 and way-point j for aircraft α2, and that this MLD is greater

than zero.

If
∣∣∣∣ 〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖

∣∣∣ , 1, then segment i of aircraft α1 is not parallel to segment j of aircraft

α2. Therefore, there exists some
(
τ∗1, τ

∗
2

)
∈ R2 such that∥∥∥∥∥ ((

xyz[i,α1] + a[i,α1]τ
∗
1

)
−

(
xyz[ j,α2] + a[ j,α2]τ

∗
2

))
ML

∥∥∥∥∥ = 0.

That is, the lateral projection of segment i of aircraft α1 and the lateral projection of segment j of

aircraft α2 can be extended until they intersect. The parameters τ∗1 and τ∗2 that define the extension

necessary for the lateral segment projections to intersect can be obtained from problem (B.7) by

removing constraints (B.7e) and (B.7f) and solving.

After obtaining
(
τ∗1, τ

∗
2

)
from the relaxation of problem (B.7), the lateral distance from way-

point i to the point where the extended lateral projection of segment i would intersect with the

extended lateral projection of segment j is given by

D0[i,α1] ,
∥∥∥∥∥ (

xyz[i,α1] −
(
xyz[i,α1] + a[i,α1]τ

∗
1

))
ML

∥∥∥∥∥ (B.23)

where D0[i,α1] denotes the lateral distance from way-point i to the point where the extended lateral

projection of segment i would intersect with the extended lateral projection of segment j. The lateral

distance from way-point j to the point where segment j would intersect with segment i is given by

D0[ j,α2] ,
∥∥∥∥∥ (

xyz[ j,α2] −
(
xyz[ j,α2] + a[ j,α2]τ

∗
2

))
ML

∥∥∥∥∥ , (B.24)

where D0[ j,α2] denotes the lateral distance from way-point j to the point where the extended lateral

projection of segment j would intersect with the extended lateral projection of segment i. Thus,

segment i of aircraft α1 can be thought of as a sub-segment of the hypothetical segment i0 that

extends from xyz[i,α1] + a[i,α1]τ
∗
1 to way-point xyz[i+1,α1], and segment j of aircraft α2 can be thought
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of as a sub-segment of the hypothetical segment j0 that extends from xyz[ j,α2] +a[ j,α2]τ
∗
2 to way-point

xyz[ j+1,α2]. Since the MLD between hypothetical segments i0 and j0 is zero, the boundary of their

conflict region would be defined using equation (B.14).

Therefore, if the non-zero MLD between segment i and segment j is given by the distance

between way-point i of aircraft α1 and way-point j of aircraft α2, the boundary of the lateral conflict

region in the original state space would be given by

B
α1,α2
LC ,


 l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(c̃1)2 + (c̃2)2 2c̃1c̃2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2 ,


(B.25a)

(B.25b)

(B.25c)

where

c̃1 , ĉ1 + D0[i,α1] (B.26a)

and c̃2 , ĉ2 + D0[ j,α2]. (B.26b)

Similarly, if the non-zero MLD between segment i and segment j is given by the distance

between way-point i + 1 of aircraft α1 and way-point j of aircraft α2, the boundary of the lateral

conflict region in the original state space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(c̃1)2 + (c̃2)2 2c̃1c̃2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2 ,


(B.27a)

(B.27b)

(B.27c)

where

c̃1 , ĉ1 + D0[i+1,α1] (B.28a)

and c̃2 , ĉ2 + D0[ j,α2] (B.28b)

and D0[i+1,α1] is the lateral distance from way-point i + 1 to the point where the extended lateral

projection of segment i would intersect with the extended lateral projection of segment j.

If the non-zero MLD between segment i and segment j is given by the distance between way-

point i of aircraft α1 and way-point j + 1 of aircraft α2, the boundary of the lateral conflict region in
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the original state space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(c̃1)2 + (c̃2)2 2c̃1c̃2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2 ,


(B.29a)

(B.29b)

(B.29c)

where

c̃1 , ĉ1 + D0[i,α1] (B.30a)

and c̃2 , ĉ2 + D0[ j+1,α2] (B.30b)

and D0[ j+1,α1] is the lateral distance from way-point j + 1 to the point where the extended lateral

projection of segment j would intersect with the extended lateral projection of segment i.

If the non-zero MLD between segment i and segment j is given by the distance between way-

point i+1 of aircraft α1 and way-point j+1 of aircraft α2, the boundary of the lateral conflict region

in the original state space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
(c̃1)2 + (c̃2)2 2c̃1c̃2

〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= (r(t))2 ,


(B.31a)

(B.31b)

(B.31c)

where

c̃1 , ĉ1 + D0[i+1,α1] (B.32a)

and c̃2 , ĉ2 + D0[ j+1,α2]. (B.32b)

B.1.2.2 Parallel Lateral Headings.

Suppose the MLD between route segment i of aircraft α1 and route segment j of aircraft α2 is

achieved at way-point i for aircraft α1 and way-point j for aircraft α2, and that this MLD is greater

than zero. If
∣∣∣∣ 〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖

∣∣∣∣ = 1, then segment i of aircraft α1 is parallel to segment j of aircraft

α2. The relative angle of lateral approach between segment i and segment j is defined as

θ[i, j] = arccos
(
〈a[i,α1]ML,∆[i, j]ML〉

‖a[i,α1]ML‖‖∆[i, j]ML‖

)
, (B.33)
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where ∆[i, j]ML is the lateral projection of the vector that connects way-point i of aircraft α1 to

way-point j of aircraft α2.

Now, the boundary of the resulting conflict region will be evaluated by case.

1. Divergent Segments. If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= −1, then segment i of aircraft α1 is oriented

in the opposite direction of motion from segment j of aircraft α2, given the MLD between

route segment i of aircraft α1 and route segment j of aircraft α2 occurs at way-point i for

aircraft α1 and way-point j for aircraft α2. Thus, they are considered divergent. In this case,

as aircraft α1 moves toward way-point i + 1 and aircraft α2 moves toward way-point j, the

lateral distance between them will increase. Figure B.1 depicts an example of the given case.
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xyz [i,α1]ML

xyz [i,α1]ML + a[i,α1]MLτ1

xyz [j,α2]ML

xyz [j,α2]ML + a[j,α2]MLτ2

‖a[j,α2]MLτ2‖ sinθ [i,j ] ‖a[i,α1]MLτ1‖ sinθ [i,j ]

‖a[j,α2]MLτ2‖ cosθ [i,j ]

‖a[i,α1]MLτ1‖ cosθ [i,j ]

θ [i,j ]

‖∆[i,j ]ML‖

Figure B.1: Divergent Segment Geometry

250



From the given geometry,∥∥∥∥∥ ((
xyz[i,α1] + a[i,α1]τ1

)
−

(
xyz[ j,α2] + a[ j,α2]τ2

))
ML

∥∥∥∥∥2

=
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)2 (
sin θ[i, j]

)2

+ ‖∆[i, j]ML‖
2 + 2‖∆[i, j]ML‖

(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)
cos θ[i, j]

+
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)2 (
cos θ[i, j]

)2

=
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)2

+ ‖∆[i, j]ML‖
2 + 2‖∆[i, j]ML‖

(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)
cos θ[i, j]. (B.34)

Therefore, the boundary of the lateral conflict region is given by

(r(t))2 =
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)2

+ ‖∆[i, j]ML‖
2 + 2‖∆[i, j]ML‖

(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖

)
cos θ[i, j].

(B.35)

Completing the square gives

(r(t))2 − ‖∆[i, j]ML‖
2
(
sin θ[i, j]

)2

=
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖ + ‖∆[i, j]ML‖ cos θ[i, j]

)2

=⇒

√
(r(t))2 − ‖∆[i, j]ML‖

2
(
sin θ[i, j]

)2

= ±
(
‖a[i,α1]MLτ1‖ + ‖a[ j,α2]MLτ2‖ + ‖∆[i, j]ML‖ cos θ[i, j]

)
.

Thus, the boundary of the lateral conflict region becomes

τ1‖a[i,α1]ML‖ = −τ2‖a[ j,α2]ML‖

−‖∆[i, j]ML‖ cos θ[i, j]

±

√
(r(t))2 − ‖∆[i, j]ML‖

2
(
sin θ[i, j]

)2
(B.36)

or, equivalently,

ĉ1 = −ĉ2 − ‖∆[i, j]ML‖ cos θ[i, j] ±

√
(r(t))2 − ‖∆[i, j]ML‖

2
(
sin θ[i, j]

)2
(B.37)
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where

ĉ1 , τ1
∥∥∥a[i,α1]ML

∥∥∥ =⇒ ĉ1 ∈
[
0,

∥∥∥a[i,α1]ML
∥∥∥] ,

and ĉ2 , τ2
∥∥∥a[ j,α2]ML

∥∥∥ =⇒ ĉ2 ∈
[
0,

∥∥∥a[ j,α2]ML
∥∥∥] .

Therefore, the boundary of the lateral conflict region in the original state space would be

given by

B
α1,α2
LC ,


 l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
ĉ1 = −ĉ2 − ω1 ± ω2,


(B.39a)

(B.39b)

(B.39c)

where

ω1 = ‖∆[i, j]ML‖ cos θ[i, j],

and ω2 =

√
(r(t))2 − ‖∆[i, j]ML‖

2
(
sin θ[i, j]

)2
.

2. Aligned Segments. If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= 1, then segment i of aircraft α1 is oriented in the

same direction of motion as segment j of aircraft α2, given the MLD between route segment

i of aircraft α1 and route segment j of aircraft α2 occurs at way-point i for aircraft α1 and

way-point j for aircraft α2. Thus, they are considered aligned. Figure B.2 depicts an example

of the given case.
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‖∆[i,j ]ML‖

Figure B.2: Aligned Segment Geometry

From the given geometry,∥∥∥∥∥ ((
xyz[i,α1] + a[i,α1]τ1

)
−

(
xyz[ j,α2] + a[ j,α2]τ2

))
ML

∥∥∥∥∥2

=‖∆[i, j]ML‖
2 +

(∣∣∣∣‖a[i,α1]MLτ1‖ − ‖a[ j,α2]MLτ2‖

∣∣∣∣)2

=‖∆[i, j]ML‖
2 +

(
‖a[i,α1]MLτ1‖ − ‖a[ j,α2]MLτ2‖

)2

Therefore, the boundary of the lateral conflict region is given by

(r(t))2 = ‖∆[i, j]ML‖
2 +

(
‖a[i,α1]MLτ1‖ − ‖a[ j,α2]MLτ2‖

)2

=⇒ (r(t))2 − ‖∆[i, j]ML‖
2 =

(
‖a[i,α1]MLτ1‖ − ‖a[ j,α2]MLτ2‖

)2

=⇒ ±

√
(r(t))2 − ‖∆[i, j]ML‖

2 = ‖a[i,α1]MLτ1‖ − ‖a[ j,α2]MLτ2‖.

Thus, the boundary of the lateral conflict region becomes

τ1‖a[i,α1]ML‖ = τ2‖a[ j,α2]ML‖ ±

√
(r(t))2 − ‖∆[i, j]ML‖

2 (B.41)
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or, equivalently,

ĉ1 = ĉ2 − ±

√
(r(t))2 − ‖∆[i, j]ML‖

2 (B.42)

where

ĉ1 , τ1
∥∥∥a[i,α1]ML

∥∥∥ =⇒ ĉ1 ∈
[
0,

∥∥∥a[i,α1]ML
∥∥∥] ,

and ĉ2 , τ2
∥∥∥a[ j,α2]ML

∥∥∥ =⇒ ĉ2 ∈
[
0,

∥∥∥a[ j,α2]ML
∥∥∥] .

Therefore, the boundary of the lateral conflict region in the original state space would be

given by

B
α1,α2
LC ,


 l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
ĉ1 = ĉ2 − ±

√
(r(t))2 − ‖∆[i, j]ML‖

2.


(B.44a)

(B.44b)

(B.44c)

Similarly, if
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= 1 and the MLD between route segment i of aircraft α1 and

route segment j of aircraft α2 occurs at way-point i + 1 for aircraft α1 and way-point j for aircraft

α2, then the parallel segments are staggered, and the boundary of the lateral conflict region in the

original state space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,
l[µ,α2]( j)

+
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
ĉ1 = −ĉ2 − ω1 ± ω2,


(B.45a)

(B.45b)

(B.45c)

where

ω1 = ‖∆[i, j]ML‖ cos θ[i+1, j],

and ω2 =

√
(r(t))2 − ‖∆[i+1, j]ML‖

2
(
sin θ[i+1, j]

)2
.

If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= 1 and the MLD between route segment i of aircraft α1 and route segment

j of aircraft α2 occurs at way-point i for aircraft α1 and way-point j + 1 for aircraft α2, then the

254



parallel segments are staggered, and the boundary of the lateral conflict region in the original state

space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
ĉ1 = −ĉ2 − ω1 ± ω2,


(B.47a)

(B.47b)

(B.47c)

where

ω1 = ‖∆[i, j]ML‖ cos θ[i, j+1],

and ω2 =

√
(r(t))2 − ‖∆[i, j+1]ML‖

2
(
sin θ[i, j+1]

)2
.

If
〈a[i,α1] ML,a[ j,α2] ML〉

‖a[i,α1] ML‖‖a[ j,α2] ML‖
= −1 and the MLD between route segment i of aircraft α1 and route

segment j of aircraft α2 occurs at way-point i + 1 for aircraft α1 and way-point j + 1 for aircraft

α2, then the parallel segments are convergent, and the boundary of the lateral conflict region in the

original state space would be given by

B
α1,α2
LC ,




l[µ,α1](i)

+‖a[i,α1]‖

−
ĉ1‖a[i,α1]‖

‖a[i,α1] ML‖

,

l[µ,α2]( j)

+‖a[ j,α2]‖

−
ĉ2‖a[ j,α2]‖

‖a[ j,α2] ML‖


0 ≤ ĉ1 ≤

∥∥∥a[i,α1]ML
∥∥∥,

0 ≤ ĉ2 ≤
∥∥∥a[ j,α2]ML

∥∥∥,
ĉ1 = −ĉ2 − ω1 ± ω2,


(B.49a)

(B.49b)

(B.49c)

where

ω1 = ‖∆[i, j]ML‖ cos θ[i+1, j+1],

and ω2 =

√
(r(t))2 − ‖∆[i+1, j+1]ML‖

2
(
sin θ[i+1, j+1]

)2
.

B.2 Vertical Separation

In control mode µ, each aircraft α ∈ {1, 2, . . . , A} is assigned a set of nα way-points in the

three-dimensional airspace that must be visited in order. Define the set of way-points given as

WP[µ,α] =
{
(x[1,α], y[1,α], z[1,α]

)
, (x[2,α], y[2,α], z[2,α]

)
, . . . , (x[nα,α], y[nα,α], z[nα,α]

)}
, (B.51)
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so the route of aircraft α is partitioned into a set of (nα − 1) route segments (or arcs) defined by

the airspace way-points. Thus, the total path-length for the route of aircraft α in control mode µ,

denoted l[µ,α], is given by

l[µ,α] =

nα−1∑
i=0

∥∥∥a[i,α]
∥∥∥, (B.52a)

where

a[i,α] ,


[
0, 0, 0

]
if i = 0,[

x[i+1,α], y[i+1,α], z[i+1,α]
]
−

[
x[i,α], y[i,α], z[i,α]

]
if i ≥ 1,

(B.52b)

is a vector representation of the heading of the route segment that connects way-point i to way-point

(i + 1). Thus, if aircraft α is traveling along route segment i, there exists some τ ∈ [0, 1] such that

[
xα(t), yα(t), zα(t)

]
=

[
x[i,α], y[i,α], z[i,α]

]
+ a[i,α]τ, (B.53)

where
[
xα(t), yα(t), zα(t)

]
is the three-dimensional airspace position of aircraft α as it travels along

route segment i at time t.

Therefore, given aircraft α1 and α2 in control mode µ, such that α1 ∈ {1, 2, . . . , A}, α2 ∈

{1, 2, . . . , A} and α1 , α2, the vertical distance between aircraft α1, as it travels along route segment

i, and aircraft α2, as it travels along route segment j, is given by the vertical distance between the

any position of aircraft α1 defined as

[
x[i,α1], y[i,α1], z[i,α1]

]
+ a[i,α1]τ1, (B.54)

for τ1 ∈ [0, 1], and any position of aircraft α2 defined as

[
x[ j,α2], y[ j,α2 , z[ j,α2]

]
+ a[ j,α2]τ2, (B.55)

for τ2 ∈ [0, 1]. Thus, the square of the vertical distance between aircraft α1 and aircraft α2 is given

by

DV[i, j] (τ1, τ2)2 =
∥∥∥∥ ([

x[i,α1], y[i,α1 , z[i,α1]
]
+ a[i,α1]τ1 −

[
x[ j,α2], y[ j,α2 , z[ j,α2]

]
− a[ j,α2]τ2

)
MV

∥∥∥∥2
, (B.56)
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where DV[i, j] (τ1, τ2) is the vertical distance between aircraft α1, as it travels along route segment i,

and aircraft α2, as it travels along route segment j, and

MV ,


0 0 0

0 0 0

0 0 1

 (B.57)

Therefore, the boundary of the vertical conflict region is given by

h2 =
∥∥∥∥ ([

x[i,α1], y[i,α1 , z[i,α1]
]
+ a[i,α1]τ1 −

[
x[ j,α2], y[ j,α2 , z[ j,α2]

]
− a[ j,α2]τ2

)
MV

∥∥∥∥2

=⇒ h2 =
((

z[i,α1] +
(
z[i+1,α1] − z[i,α1]

)
τ1

)
−

(
z[ j,α2] +

(
z[ j+1,α2] − z[ j,α2]

)
τ2

))2

=⇒ h = ±
((

z[i,α1] +
(
z[i+1,α1] − z[i,α1]

)
τ1

)
−

(
z[ j,α2] +

(
z[ j+1,α2] − z[ j,α2]

)
τ2

))
Thus, the boundary of the vertical conflict region becomes

(
z[i+1,α1] − z[i,α1]

)
τ1 =

(
z[ j+1,α2] − z[ j,α2]

)
τ2 + z[ j,α2] − z[i,α1] ± h (B.58)

or equivalently,

c1

(
z[i+1,α1] − z[i,α1]

)
‖a[i,α1]‖

= c2

(
z[ j+1,α2] − z[ j,α2]

)
‖a[ j,α2]‖

+ z[ j,α2] − z[i,α1] ± h, (B.59)

where

c1 , τ1
∥∥∥a[i,α1]

∥∥∥ =⇒ c1 ∈
[
0,

∥∥∥a[i,α1]
∥∥∥] ,

and c2 , τ2
∥∥∥a[ j,α2]

∥∥∥ =⇒ c2 ∈
[
0,

∥∥∥a[ j,α2]
∥∥∥] .

Therefore, the boundary of the vertical conflict region in the original state space is given by

B
α1,α2
VC ,


(c1, c2)

0 ≤ c1 ≤
∥∥∥a[i,α1]

∥∥∥,
0 ≤ c2 ≤

∥∥∥a[ j,α2]
∥∥∥,

c1δz1 = c2δz2 + z[ j,α2] − z[i,α1] ± h,


(B.61a)

(B.61b)

(B.61c)

where

δz1 =

(
z[i+1,α1] − z[i,α1]

)
‖a[i,α1]‖

,

and δz2 =

(
z[ j+1,α2] − z[ j,α2]

)
‖a[ j,α2]‖

.
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B.3 Three-Dimensional Conflict Region

Given the lateral conflict boundary as defined in B.1 and the vertical conflict boundary as

defined in B.2, the three-dimensional conflict region is given by the intersection of the region within

the lateral conflict boundary and the region within the vertical conflict boundary.
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Appendix C: Settings for GPOPS-II Optimization Software

This research used the GPOPS-II Version 2.0 MATLAB software package developed by

Michael A. Patterson and Anil V. Rao to evaluate the multi-objective Air Traffic Management

optimization problem.

For each test case and treatment evaluated using the GPOPS-II software, the following user-

defined settings were set to the values indicated:

• setup.nlp.solver =‘snopt’

Each test case and treatment was evaluated using the SNOPT package provided with the

GPOPS software.

• setup.nlp.snoptoptions.tolerance = 5e − 06

Each test case and treatment was evaluated using the SNOPT Major Feasibility tolerance of

1e − 05, Minor Feasibility tolerance of 1e − 06, Major Optimality tolerance of 5e − 06 and

Minor Optimality tolerance of 1e − 06.

• setup.nlp.snoptoptions.maxiterations = 2000

Each test case and treatment was evaluated using no more than 2000 Major Iterations.

• setup.derivatives.supplier = ‘sparseCD’

Each test case and treatment was evaluated using the Central Difference derivative estimate.

• setup.derivatives.stepsize1 = 1e − 08

Each test case and treatment was evaluated using a derivative estimate step-size of 1e − 08.

• setup.derivatives.dependencies = ‘sparseNaN’

Each test case and treatment was evaluated using the ‘sparseNaN’ derivatives dependencies

option.

• setup.mesh.tolerance = 1e − 03
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Each test case and treatment was evaluated using a mesh error tolerance of 1e − 03.

• setup.mesh.maxiterations = 1

Each test case and treatment was evaluated using no more than 1 mesh adaptation.

• setup.mesh.colpointsmin = 6

Each test case and treatment was evaluated with at least 6 collocation nodes per mesh interval.

• setup.mesh.phase(1).colpoints = 6 ∗ ones(1, 15)

Each test case and treatment was evaluated with 15 mesh intervals.

• setup.mesh.phase(1).fraction = (1/15) ∗ ones(1, 15)

Each test case and treatment was evaluated with evenly allocated nodes per mesh.

• setup.method = ‘RPM-Integration’

Each test case and treatment was evaluated using the integral form of the collocation problem.

Each test case and treatment was evaluated with all other options at their default settings.
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