
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

9-18-2014

Improved Wireless Security through Physical Layer
Protocol Manipulation and Radio Frequency
Fingerprinting
Benjamin W. Ramsey

Follow this and additional works at: https://scholar.afit.edu/etd

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Ramsey, Benjamin W., "Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency
Fingerprinting" (2014). Theses and Dissertations. 543.
https://scholar.afit.edu/etd/543

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/543?utm_source=scholar.afit.edu%2Fetd%2F543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


IMPROVED WIRELESS SECURITY THROUGH PHYSICAL LAYER

PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING

DISSERTATION

Benjamin W. Ramsey, Captain, USAF

AFIT-ENG-DS-14-S-10

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, the Department of Defense, or
the United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENG-DS-14-S-10

IMPROVED WIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL

MANIPULATION AND RADIO FREQUENCY FINGERPRINTING

DISSERTATION

Presented to the Faculty

Graduate School of Engineering

and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Benjamin W. Ramsey, BSEE, MS, MSEE

Captain, USAF

September 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT-ENG-DS-14-S-10

IMPROVED WIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL

MANIPULATION AND RADIO FREQUENCY FINGERPRINTING

DISSERTATION

Benjamin W. Ramsey, BSEE, MS, MSEE
Captain, USAF

Approved:

/signed/

Barry E. Mullins, PhD (Chairman)

/signed/

Michael A. Temple, PhD (Member)

/signed/

Michael R. Grimaila, PhD, CISM, CISSP (Member)

8 Aug 2014

Date

8 Aug 2014

Date

8 Aug 2014

Date

Accepted:

/signed/

ADEDEJI B. BADIRU, PhD
Dean, Graduate School of Engineering
and Management

12 Aug 2014

Date



AFIT-ENG-DS-14-S-10
Abstract

Wireless networks are particularly vulnerable to spoofing and route poisoning attacks

due to the contested transmission medium. Traditional bit-layer defenses including

encryption keys and MAC address control lists are vulnerable to extraction and identity

spoofing, respectively. This dissertation explores three novel strategies to leverage the

wireless physical layer to improve security in low-rate wireless personal area networks.

The first, physical layer protocol manipulation, identifies true transceiver design within

remote devices through analysis of replies in response to packets transmitted with

modified physical layer headers. Results herein demonstrate a methodology that correctly

differentiates among six IEEE 802.15.4 transceiver classes with greater than 99%

accuracy, regardless of claimed bit-layer identity. The second strategy, radio frequency

fingerprinting, accurately identifies the true source of every wireless transmission in a

network, even among devices of the same design and manufacturer. Results suggest that

even low-cost signal collection receivers can achieve greater than 90% authentication

accuracy within a defense system based on radio frequency fingerprinting. The third

strategy, based on received signal strength quantification, can be leveraged to rapidly

locate suspicious transmission sources and to perform physical security audits of critical

networks. Results herein reduce mean absolute percentage error of a widely-utilized

distance estimation model 20% by examining signal strength measurements from

real-world networks in a military hospital and a civilian hospital.
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IMPROVED WIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL

MANIPULATION AND RADIO FREQUENCY FINGERPRINTING

I. Introduction

Modern wireless communications networks have revolutionized the ways in which

information is shared. Inexpensive low-rate wireless personal area networks (LR-WPANs)

can readily connect thousands of remote devices. Critical infrastructure, from hospitals to

smart grids and petroleum refineries, increasingly leverage low-cost wireless connectivity

in daily operations. Significant disruptions to these systems could endanger patient lives

or cause industrial sabotage, meanwhile open source tools designed to attack and degrade

wireless networks have rapidly grown in sophistication and effectiveness. With physical

security a low priority in the design of low-cost wireless systems, novel defensive

measures are necessary to protect these vulnerable networks.

1.1 Background

Many wireless security architectures rely upon safekeeping of symmetric keys to

uphold message confidentiality, message integrity, and device authentication. While the

small size and low complexity of LR-WPAN hardware make them effective to deploy in

large numbers, these traits also result in tight limitations on device memory and

computation. A single network key is shared by every device in the LR-WPAN, although

device-to-device confidentiality is also possible using link keys at the application layer.

Small, inexpensive wireless nodes lack robust defense against theft and tampering,

resulting in physical vulnerabilities to key confidentiality. Key extraction from first and

second-generation ZigBee chips is shown to be straightforward [Goo09], and inexpensive
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tools have recently been developed for locating LR-WPAN devices [RMW12][KP12].

Keys may also be compromised through social engineering, or intercepted (if transmitted

to end devices without encryption) by open source tools such as KillerBee [Wri09] and

Api-do [GBM+12]. Wireless device identities including Medium Access Control (MAC)

or network addresses are readily spoofed by such tools. While bit-layer identities and keys

are susceptible to spoofing attacks, physical layer attributes are significantly more difficult

for an attacker to mimic.

1.2 Research Goal

The overarching goal of this dissertation is to investigate state-of-the-art

methodologies for exploiting wireless physical layer features to improve network security.

The hypothesis herein is that physical layer features can be successfully exploited.

1.3 Research Approach

This dissertation investigates novel methods for leveraging the IEEE 802.15.4

physical layer protocol to improve LR-WPAN security and cyberspace situational

awareness. To this end three classes of techniques are examined: protocol manipulation,

radio frequency fingerprinting, and received signal strength analysis. The three techniques

are useful individually or can be combined for wireless defense-in-depth.

1.3.1 Physical Layer Protocol (PHY) Manipulation.

The IEEE 802.15.4 PHY specifies radio frequency and message synchronization

standards for LR-WPAN communication. Transceiver manufacturers design their

hardware to comply with this standard, but each design differs somewhat in its

implementation. Ramsey and Mullins [RM13] first reported that packet reception could be

degraded or completely blocked by manipulating the IEEE 802.15.4 PHY header of

outdoing transmissions, and that this behavior differed significantly among transceiver

designs. This opened a new field of research wherein PHY manipulation is leveraged to
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protect sensitive data, identify remote transceiver hardware, intrusion detection, and

provide PHY-augmented authentication.

1.3.2 Radio Frequency (RF) Fingerprinting.

Transmitter fingerprinting originally targeted military radar stations, and similar

techniques have been adapted in recent years to wireless communications networks. Many

physical layer features have been used to generated RF fingerprints to uniquely identify

transmitters, including frequency, phase, and amplitude metrics. Costs associated with RF

fingerprinting have historically been high due to the receiver sensitivity required for

precise physical layer measurements. However, low-cost software-defined radios show

promise toward making RF fingerprinting more accessible. This dissertation investigates

and compares the performance of both high-cost and low-cost RF fingerprinting receivers.

1.3.3 Received Signal Strength Indicator (RSSI).

RSSI is the quantification of RF power input to a wireless receiver. This unitless

metric decreases with increased distance from the transmitter. If the transmit power and

RSSI are both known, then the distance from receiver to transmitter can be estimated from

RSSI alone. The open-source KillerBee framework for exploiting and exploring IEEE

802.15.4 networks includes a tool named zbfind that uses a log-distance path loss model

to estimate distance to nearby LR-WPAN transmitters. This dissertation investigates the

performance of this tool and makes recommendations to improve its accuracy.

1.4 Dissertation Organization

This dissertation has four main chapters, each of which is closely based on research

papers that have either been published at academic conferences or that are undergoing

peer review for archival journal publication. Chapter 2 explores PHY manipulation for

intrusion detection, device fingerprinting, and device authentication applications; the

chapter is a significant extension of work presented at the International Federation for

Information Processing (IFIP) working group 11.10 International Conference on Critical
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Infrastructure Protection [RM13]. Chapter 3 is an extension of work published at the

IEEE Global Communications Conference [RTM12], in which IEEE 802.15.4 transmitters

are uniquely identified by RF fingerprints generated from PHY preamble responses.

Chapter 4 extends the work in Chapter 3 by performing comparative RF fingerprinting

experiments with high-cost and low-cost signal receivers. Chapter 5 presents results

toward improving a popular transmitter distance estimation model based on RSSI; the

results will be presented at the 2014 Military Communications Conference [RMLS14].

Chapter 6 concludes and proposes future work.

4



II. Wireless Intrusion Detection and Device Fingerprinting through PHY

Manipulation

2.1 Introduction

Properly securing low-rate LR-WPANs is challenging due to tight resource

constraints. LR-WPAN hardware is designed to be as inexpensive as possible, and tamper

resistance was not an early vendor priority; first and second-generation ZigBee chips were

found to be vulnerable to encryption key extraction [Goo09]. Flash memory available for

application development is typically limited to less than 100 kB, e.g., 48 kB on the

TmoteSky mote [DDT11] and 60 kB on the Freescale MC13213 [Fre08]. With flash at a

premium, application developer guides even discourage the use of security: “Do not use a

secure network unless required. ZigBee security is about 8K” [Fre08]. Security headers

increase packet overhead, expending additional wireless transmission energy and

presenting a trade-off for LR-WPANs reliant upon battery power. IEEE 802.15.4 leaves

key establishment to higher layers, such as the ZigBee stack, yet the entire LR-WPAN can

be compromised if keys are mishandled. Support for access control lists varies

substantially among LR-WPAN chipsets as well; the CC2420 only supports two device

entries [NW04].

Any network keys wirelessly distributed in plain text to end nodes can be intercepted

by eavesdroppers. The open source KillerBee framework for exploiting IEEE 802.15.4

LR-WPANs [Wri09] includes a script (zbdsniff ) that extracts any observed keys from

wireless capture files. KillerBee also includes tools for message replay attacks

(zbreplay), transmitter tracking (zbfind), and denial-of-service attacks

(zbassocflood).
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Figure 2.1: Association request failure due to zbassocflood attack.

The consequence of a successful denial-of-service attack by zbassocflood is shown in

Fig. 2.1. All available LR-WPAN network addresses have been allocated to devices that

do not exist, as reported in the ‘PAN full’ line highlighted. The zbassocflood tool made

repeated association requests using spoofed MAC addresses, exhausting the network

address pool. No new legitimate devices are thus able to join the network. Recent works

improve the quality and capabilities of LR-WPAN attack tools [GBM+12][RMW12],

motivating the need for novel defenses.

Recent works investigate transceiver fingerprinting techniques to accurately verify

wireless transceivers using unique physical features. However, utilization of unique

physical features as fingerprints necessitates training sessions in which wireless

transmissions from trusted devices are collected and differences useful for verification are

identified. Alternatively, the physical layer (PHY) manipulation techniques presented

herein verify actual transceiver type without the need for a training session or costly signal

analysis equipment. All security techniques have limitations; the primary PHY

manipulation framework limitation is that inter-type transceiver differentiation is possible

while intra-type differentiation is not. Attack tool firmware such as KillerBee typically

6



support a subset of all available transceiver types, so accurate inter-type verification is a

highly valuable component for wireless defense-in-depth.

This chapter addresses four primary research goals:

1. Determine whether the PHY preamble manipulation framework is invariant with

respect to received signal strength.

2. Identify PHY manipulations to discriminate among the eight transceiver types under

test.

3. Demonstrate intrusion detection and transceiver-type fingerprinting techniques on

real-world IEEE 802.15.4 networks.

4. Investigate PHY preamble manipulation framework potential for IEEE 802.11

networks.

These goals are addressed by transmitting packets with non-standard wireless

preambles and identifying the resultant differences in packet reception among transceiver

types.

This chapter is organized as follows. Section 2.2 describes recent work toward

LR-WPAN security, including intrusion detection and RF fingerprinting. Section 2.3

explains the process by which wireless PHY headers are manipulated. Section 2.4 reports

which preamble manipulations are useful for manufacturer discrimination. Section 2.5

describes and then demonstrates preamble manipulation for multi-factor device

authentication incorporating physical layer (PHY) attributes. Section 2.6 demonstrates

real-time intrusion detection using PHY manipulation. Section 2.7 presents a

methodology for accurately identifying the true tranceiver type of a LR-WPAN device.

Section 2.8 discusses possible attacks against PHY manipulation. Section 2.9 reports

preliminary success with applying PHY preamble manipulation techniques to IEEE

802.11 devices. Section 2.10 concludes and proposes directions for future work.
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2.2 Related Work

LR-WPANs fulfill critical functions in health care, automation, and smart energy

systems. However, LR-WPAN devices are challenging to secure due to tight design

constraints on cost, computing resources, and energy use. This section reviews recent

work toward wireless intrusion detection, RF fingerprinting, and PHY manipulation.

2.2.1 Intrusion detection.

Conti et al. [CPMM11] designed a distributed protocol for detecting node replication

attacks in wireless sensor networks. The proposed protocol was an improvement over

earlier techniques in terms of energy efficiency and resilience to attack. Li et al.

[LGZC13] addressed flood network attacks by malicious insiders though a distributed

protocol of enforced rate limits. Some LR-WPAN nodes cannot support even relatively

efficient bit-layer security protocols, so Yang et al. [YCTC13] detected and localized

spoofing attackers by analyzing received signal strength (RSS).

2.2.2 RF fingerprinting.

Identification of device spoofing is the primary goal of RF fingerprinting. Key

limitations of traditional RF fingerprinting techniques are that they require training and

management of RF fingerprint models and sophisticated signal measurement hardware

that is orders of magnitude more costly than the transceivers overseen. The resultant RF

fingerprint database is also specific to a particular collection of devices in an environment.

PHY preamble manipulation investigated herein exploits transceiver design characteristics

that are invariant with respect to the environment. Instead of precise phase or frequency

metrics, the only measurement required in this PHY manipulation techniques is whether

or not the device under test transmits a reply to a corresponding request. Furthermore,

PHY manipulation requires no signal measurement hardware and can even be performed

with standard LR-WPAN transceivers.
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Early research toward RF fingerprinting of LR-WPAN devices exploited spectral

components of the transmission turn-on transient region for device classification.

Rasmussen and Capkun [RC07] successfully classified CC1000 transceivers, while Danev

and Capkun [DC09] classified CC1000 and CC2420 devices. Later, Danev et al.

[DLCED10] demonstrated that signal replay attacks were effective against RF fingerprints

of only five spectral components when the attacker was in the expected location of the

spoofed device. More recent work by Ramsey et al. [RTM12] and Dubendorfer et al.

[DRT12] demonstrated CC2420 device classification and verification using RF

fingerprints of 99 to 297 time domain components. Successful replay attacks against

lengthy RF fingerprints have not been demonstrated as of this writing.

One of the most frequently cited works on RF fingerprinting is the PARDIS system

[BBGO08]. PARDIS utilizes a vector signal analyzer to classify the true identify of IEEE

802.11 transceivers from carefully analyzed wireless transmission features. As in

[RC07][DC09][DLCED10][RTM12], transceivers from the same manufacturer and of the

same type were correctly classified with greater than 99% accuracy. Actual

implementation of a real-time wireless security system based on RF fingerprinting,

however, remains a significant challenge. By limiting the wireless intrusion detection

scope to the identification of transceiver hardware type (e.g., manufacturer) rather than

serial number, it is demonstrated herein that PHY preamble manipulation can likewise

achieve greater than 99% accuracy. Furthermore, this classification accuracy is achieved

without the need for oscilloscopes or signal vector analyzers.

2.2.3 PHY manipulation.

Packet-in-packet frame injection attacks demonstrated by Goodspeed et al.

[GBM+11] rely upon wireless interference to corrupt a start of frame delimiter (SFD) of a

first packet such that a second packet placed within the first is the one actually received.

Instead of manipulating packet payloads and relying upon interference to corrupt PHY
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headers, this investigation manipulates and corrupts the PHY directly. Closely related to

the work herein is that of Muntwyler et al. [MLLP12] wherein LR-WPAN communication

was obfuscated through manipulated PHY spreading codes using a software-defined radio.

Only devices with the ability to interpret the random spreading codes can receive such

modified packets.

2.3 Wireless PHY Manipulation

2.3.1 Methodology.

LR-WPAN devices implement PHY features of the IEEE 802.15.4 standard in their

transceiver hardware. This experiment utilizes a National Instruments (NI) Universal

Software Radio Peripheral (USRP) NI USRP-2921 to explore PHY deviations from the

standard. The NI USRP-2921 receives and stores standard (unmodified PHY) LR-WPAN

packets as vectors of instantaneous In-phase and Quadrature (I/Q) measurements. The I/Q

data array takes the interleaved form

[I0 Q0 I1 Q1 I2 Q2 ... In Qn],

where n is the number of acquired samples. After manipulating the packet preambles in

MATLAB, altered packets are replayed on the USRP. Beacon requests feature PHY

payloads of 10 bytes. Given the standard IEEE 802.15.4 PHY header length of six byes

(4-byte preamble + 1-byte SFD + 1-byte frame length), total transmission length is 16

bytes for beacon requests. Two O-QPSK symbols represent each byte for total

transmission lengths of 32 symbols. Symbol duration is 16 µs [Soc06] resulting in total

transmissions of 512 µs. The USRP collection rate is two million in-phase and quadrature

(I/Q) sample pairs per second, sufficient for successful RF replays. The USRP streams RF

recordings of standard packets to a Dell Precision M4500 laptop via a gigabit Ethernet

cable.

Short packets for which receiver reply is compulsory are used to assess differences in

transceiver implementations among manufacturers. LR-WPAN transceivers automatically
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respond to acknowledgment requests within 5 ms [Atm09]. Packets for which reply is

compulsory include beacon requests and data requests with the acknowledgment flag set.

Both beacon requests and data requests can be addressed to solicit a reply from one

networked device at a time. If the receiver under test responds to packets with modified

preambles, it means the receiver is able to correctly receive and interpret the messages. If

the device never generates a reply in response to repeated messages, the packets must have

been either corrupted by wireless interference or are completely uninterpretable by the

receiver. Influence of wireless noise is mitigated by operating on IEEE 802.15.4 channel

26 (2.480 GHz), outside the spectrum of nearby IEEE 802.11g access points. Trial

repetitions of 500 packets for each scenario further mitigate random wireless interference

as a confounding influence.

Table 2.1 lists the eight transceiver types under test. Rather than refer to the eight

transceiver types by their full device name throughout, the two letter abbreviations are

used throughout Section 2.4. It is important to note that the internal radio components of

XB, EM, and ST are all produced by Ember.

The standard IEEE 802.15.4 preamble consists of eight symbols, each representing

the hexadecimal value 0x0. In this chapter the standard preamble is manipulated in three

ways: 1) the number of preamble symbols is decreased to fewer than eight, 2) the

preamble symbol composition is altered, and/or 3) the Frame Length field is altered. All

manipulations involve the removal or replacement of entire O-QPSK symbols. Individual

symbols are removed from the preamble by replacing them with background noise of

equal duration (16 µs) from elsewhere in the signal collection. Symbol replacement

consists of copying symbols representing other binary values from elsewhere in the packet

to the PHY header region. Validation of these processes is discussed in Section 2.3.2.

It is important to note that the author leveraged this I/Q manipulation technique

solely due to familiarity with the experimental hardware. Any hardware with sufficient
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Table 2.1: Eight transceiver types under test.

Manufacturer Type Abbrev.

Atmel AT86RF230 AT

Digi International XBP24CZ7PIS XB

Freescale MC13213 FS

Jennic JN5148 JN

Microchip Technology MRF24J40MA MC

Silicon Labs EM357 EM

STMicroelectronics STM32W ST

Texas Instruments CC2420 TI

transceiver flexibility can be used to transmit packets with manipulated PHY preambles;

this includes at least one standard LR-WPAN transceiver, the CC2420. Since the CC2420

can transmit any byte as the SFD in outgoing transmissions [Ins14], it can also be used to

generate manipulated PHY headers for crafted packets. CC2420 packet reception

characteristics, however, are not as flexible as explained in Section 2.8.

2.3.2 Process Validation.

Contents of the IEEE 802.15.4 PHY header, including the preamble, are stripped by

the transceiver and are not accessible to higher layers of the network stack. It is therefore

necessary to validate that symbol-wise preamble manipulations actually result in the

intended changes.

In order to demonstrate that the preamble manipulation methodology is successful,

arbitrary symbols are copied from the PHY header to the Frame Check Sequence (FCS) at

the end of the transmission. In one such demonstration the SFD symbols 0xA7 are copied

to the FCS in a beacon request (Fig. 2.2). This requires understanding of the data content
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Figure 2.2: Conceptual illustration of MATLAB PHY manipulation featuring an altered

FCS.

Figure 2.3: Wireshark capture showing successful PHY manipulation of the FCS.

of the beacon request and a geometric conception of where the SFD is within the

transmission. Since the SFD immediately follows the preamble, knowledge of its exact

location in the file to be manipulated and replayed by the USRP confirms that

symbol-wise PHY manipulation of the preamble is also accurate. A beacon request is

transmitted with this precisely-corrupted FCS to a packet sniffer for observation in

Wireshark. The screenshot in Fig. 2.3 demonstrates that the FCS corrupts as expected.

The correct FCS value of 0xc537 changes to 0xa737, read in reverse byte order.
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2.4 PHY Manipulation Results

2.4.1 Experiment Setup.

The IEEE 802.15.4 specification mandates a standard wireless preamble for every

transmission. Manufactures design their receiver hardware to use this preamble for

O-QPSK symbol synchronization of incoming transmissions [Soc06]. Exact receiver

implementations of this process vary among manufacturers, however, due to the

proprietary nature of hardware design. These subtle variations in hardware design are

what this process seeks to leverage. Ultimately, the goal is to differentiate among

transceiver manufacturers simply by observing how each device type responds to packets

with PHY headers that deviate from the IEEE 802.15.4 standard.

The standard preamble consists of eight identical symbols, each representing the

hexadecimal nibble 0x0. Thousands of symbol-wise alterations to this standard are

possible. The preamble can lengthen or shorten, and non-zero symbols can replace the

standard zero symbols. This section reports packet reception rates for the eight transceiver

types listed in Table 2.1 in response to PHY manipulation.

The eight transceiver types listed in Table 2.1 are powered one at a time, 0.5 meters

from the USRP with an attached 3 dBi gain dipole antenna oriented vertically. An Atmel

RZUSBstick [Atm09] reports mean received signal strength 0.5 meters from the

transmitter of -61 dBm.

As each of the eight transceiver types are powered, the USRP transmits one beacon

request per second for 500 consecutive seconds. The outcome of each beacon request

transmission is a binomial process wherein one of two possible outcomes is realized;

either the device under test correctly receives the packet and replies or it does not. Prior to

each manipulated beacon request trial, the USRP transmits standard beacon requests

without manipulation to establish that the transceiver under test is functioning normally.

During subsequent trials outlined in Tables 2.2-2.8, the USRP transmits beacon requests
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with a particular manipulation (performed in MATLAB as described in Section 2.3) of the

standard PHY.

2.4.2 Analysis of Device Replies.

The exact response percentages are not significant for the framework. The significant

preamble manipulations are only those that never garner a response from a subset of

transceiver types. Thus, if only one transceiver type ever responds to beacon requests with

particular manipulated PHY, a single successful response (acknowledgment packet) is all

that is necessary to correctly identify the true transceiver type of the device under test.

Tables 2.2-2.8 report transceiver response rates during the PHY manipulations under

test. Reply rates for all transceiver types decline monotonically as additional trailing 0xF

nibbles replace the standard 0x0 nibbles within the preamble (Table 2.2). Dashes indicate

that no replies are observed in response to the 500 manipulated beacon requests, and thus

identify manipulations of greatest interest. For example, transceivers FS, JN, MC, and TI

are never able to correctly receive beacon requests with 0xF as the last nibble in incoming

preambles (Table 2.2). Device reply rates and thresholds remain consistent even when

received signal power at the transceivers under test decreases from -61 dBm (Table 2.2) to

-76 dBm (Table 2.3). Received signal power is decreased by maintaining the

transmitter/receiver distance and removing the transmission antenna from the USRP.

These results demonstrate the salient nature of this PHY manipulation framework in

response to varying signal-to-noise ratios. For all subsequent trials (Tables 2.4-2.8)

received signal strength at the transceiver under test is -61 dBm.

Pilot studies established that packet replies in response to shortened preambles are

equivalent to those in response to preambles with an equal number of leading 0xF nibbles.

For example, transceiver reply rates in response to a preamble of only four 0x0 nibbles

were equivalent to reply rates in response to preambles with four leading 0xF nibbles. For

brevity, Table 2.4 is a packet reply report for both manipulation types. Here again, packet
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Table 2.2: Packet reception versus modified preambles with trailing 0xF nibbles (-61 dBm).

Dashes represent zero packet reception.

Preamble AT XB FS JN MC EM ST TI

0000000F 100% 100% - - - 100% 100% -

000000FF 100% 79% - - - 90% 100% -

00000FFF 93% 65% - - - 83% 17% -

Table 2.3: Packet reception versus modified preambles with trailing 0xF nibbles (-76 dBm).

Preamble AT XB FS JN MC EM ST TI

0000000F 100% 100% - - - 100% 100% -

000000FF 100% 86% - - - 79% 100% -

00000FFF 96% 78% - - - 71% 20% -

replies decrease monotonically as the preambles deviate more significantly from the IEEE

802.15.4 standard. Notably, none of the eight transceivers successfully receive packets

with preambles that lack a 0x00 byte at the preamble tail. Only transceivers JN and TI

successfully receive packets with the first three quarters of the standard preamble removed

or replaced with 0xF nibbles, so a successful reply in response to such packets narrows the

true identify of the transceiver under test to JN or TI. The CC2420 transceiver (“TI”) also

serves as the radio core of more recent systems-on-a-chip, such as the CC2430 and

CC2531. Analysis confirms that all such Texas Instruments chips follow equivalent

response patterns.

Another interesting preamble manipulation is the replacement of one preamble byte

with a false SFD byte 0xA7. Table 2.5 reports transceiver reply rates in response to the
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Table 2.4: Packet reception rates versus modified preambles with leading ones.

Preamble AT XB FS JN MC EM ST TI

F0000000 100% 100% 100% 100% 100% 100% 100% 100%

FF000000 92% 93% 96% 100% 100% 69% 100% 100%

FFF00000 - - 68% 100% 63% - - 100%

FFFF0000 - - 67% 100% - - - 100%

FFFFF000 - - 6% 100% - - - 94%

FFFFFF00 - - - 73% - - - 90%

FFFFFFF0 - - - - - - - -

seven possible SFD insertions within a standard eight-nibble preamble. The false SFD

presents significant challenges to packet reception, depending on its position within the

preamble. The AT transceiver is the most resilient to this manipulation, replying to at least

some of the beacon requests in every scenario. Contrastingly, packet reception ceases

completely for transceivers XB, MC, and EM, and ST when the false SFD replaces the

second byte or later.

Results confirm that the presence of a false SFD in the preamble causes packet

reception failure due to misinterpreted length by analyzing packet reception with a Texas

Instruments CC2531 packet sniffer. The screenshot in Fig. 2.4 is from the TI SmartRF

Packet Sniffer interface. Three incorrectly received packets are in view, all modified with

the 0x0000A700 preamble. For each observed packet the transceiver reports to the higher

layers that the packet was of invalid length and is therefore indiscernible.

Table 2.6 reports packet reception rates in response to preambles with seven different

0xA nibble sequences. These preambles are non-standard, but do not cause disruption as

significant as reported in Tables 2.4 and 2.5. These results provide valuable insight into
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Table 2.5: Packet reception rates versus preambles with injected start frame delimiters.

Preamble AT XB FS JN MC EM ST TI

A7000000 100% 100% 100% 100% 100% 100% 100% 100%

0A700000 1% 53% 87% 83% 6% 59% 46% 100%

00A70000 5% - 81% 20% - - - 6%

000A7000 100% 29% 9% - - 7% 20% 80%

0000A700 100% - - - - - - -

00000A70 100% - 94% - - - - -

000000A7 18% - - - - - - -

Figure 2.4: Invalid packet lengths reported by TI hardware in response to 0000A700

preambles.

the packet reception limitations of the eight transceivers. For example, from data in Tables

2.2-2.6 it becomes clear that the MC transceiver requires five trailing 0x0 nibbles in

incoming packet preambles for successful message reception. Similarly, the TI and JN

transceivers require two trailing 0x0 nibbles in incoming packet preambles for successful

reception.
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Table 2.6: Packet reception rates versus modified preambles with 0xA nibbles.

Preamble AT XB FS JN MC EM ST TI

AA000000 100% 100% 100% 100% 100% 100% 100% 100%

0AA00000 1% 71% 88% 100% 89% 75% 74% 100%

00AA0000 7% - 83% 100% - - - 100%

000AA000 88% 61% 13% 100% - 67% 48% 95%

0000AA00 91% 49% 88% 78% - 39% 28% 90%

00000AA0 94% 100% 88% - - 100% 62% -

000000AA 100% 72% 82% - - 73% 55% -

0000000A 100% 84% 90% - - 75% 58% -

In addition to the preamble and SFD, there is a third field in the IEEE 802.15.4 PHY

header: Frame Length. The Frame Length field consists of the byte following the SFD, as

briefly mentioned in Section 2.3. Maximum frame length as specified by IEEE 802.15.4 is

127 bytes, so the most significant bit in the Frame Length byte should be ignored.

However, the eight transceivers under test are evenly split as to how this most significant

bit is handled. Table 2.7 reports that when the Frame Length field is set to the standard

10d, all eight transceivers receive and reply to incoming beacon requests. When the most

significant bit of the Frame Length field is changed to a one, implying a frame length of

138d, transceivers XB, EM, ST, and TI cease to reply. This Frame Length manipulation

significantly compliments the preamble manipulations in Tables 2.2-2.6 and narrows the

true hardware of the device under test to within one of four types.

Given the thousands of possible PHY manipulations, an exhaustive analysis of all

permutations is beyond the scope of this work. However, in order to predict transceiver

response rates to various manipulations, a decision tree model in MATLAB is generated

using the data presented in Tables 2.2-2.7. PHY manipulations predicted to be useful by
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Table 2.7: Packet reception rates versus frame length field in the PHY header (standard

preambles).

Length AT XB FS JN MC EM ST TI

10d 100% 100% 100% 100% 100% 100% 100% 100%

138d 100% - 100% 100% 100% - - -

Table 2.8: Packet reception rates versus notable PHY header manipulations.

Preamble Length AT XB FS JN MC EM ST TI

0000A700 138d 100% - - - - - - -

0F070AFF 10d - 16% - - - 3% 2% -

0A07AA0A 138d - - 20% - - - - -

7A77A700 138d - - - 100% - - - -

FFFFFF00 10d - - - 73% - - - 90%

the model are then randomly selected, tested, and the results are incorporated to generate

new and more accurate models. This process is repeated for 200 generations, at which

point five PHY manipulations are identified as notable in their exclusivity of reception.

These five PHY manipulations are shown in Table 2.8.

The first preamble manipulation in Table 2.8 is also reported in Table 2.5. The

uniqueness of this preamble is made more robust by combining it with the Frame Length

manipulation 138d reported in Table 2.7. Only the AT transceiver is able to receive beacon

requests using this manipulated PHY. Similarly, only the FS transceiver can receive

beacon requests with the third PHY manipulation listed in Table 2.8. The JN transceiver,

which cannot be differentiated from the TI transceiver through preamble manipulations
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alone, can be uniquely identified when an invalid Frame Length is used in conjunction

with the fourth preamble listed in Table 2.8. Results also strongly suggest that the RF

circuitry designs within the XB, EM, and ST transceivers are so closely related that the

three chips are not distinguishable through PHY manipulation.

The following sections demonstrate the practical use of these results for

PHY-augmented multi-factor authentication, wireless intrusion detection, and remote

device type fingerprinting.

2.5 PHY-Augmented Authentication

2.5.1 Background.

Device authentication is a fundamental process in communication networks.

Ostensibly immutable hardware addresses (e.g., MAC addresses) often serve as the “true”

hardware identity. However, MAC address spoofing is straightforward with open source

tools such as macchanger for IEEE 802.11 and zbassocflood for IEEE 802.15.4.

Cryptographic credentials are another method for establishing device authentication, as

long as the credentials have not been compromised. Multi-factor authentication relies

upon two or more presentations by the device in question. For example, LR-WPANs may

utilize both MAC address filtering and a private NWK key as two-factor authentication.

The investigation and demonstration of PHY fingerprints as a third authentication factor is

the subject of much recent work, as reviewed in Section 2.2.

A fundamental authentication exchange in IEEE 802.15.4 networks is the association

request. Fig. 2.5 illustrates the association request message sequence between a device

seeking to join the network and the LR-WPAN coordinator. The message sequence begins

with an association request from the joining device. The association request includes the

joining device’s 64-bit (claimed) MAC address and is sent to the network coordinator’s

NWK address (0x0000). The coordinator’s transceiver automatically replies with an

acknowledgment while the coordinator begins determining whether or not the device may
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join the network. If the coordinator uses a MAC address white list for authentication, a

network address will only be provided to a device presenting an approved MAC address.

The coordinator also determines whether or not there are any unused network addresses in

its address pool available for dissemination. While the coordinator performs these

computations, the joining device waits a short period of time (e.g., one second) before

requesting a response. After the response wait time the joining device sends a data request

to the coordinator, generating another automatic acknowledgment. The final message is an

association response from the coordinator. The association response either includes a

valid network address assigned to the joining device, or it declines the association request

(as in Fig. 2.1 for a full LR-WPAN).

2.5.2 Coordinator Authentication.

PHY manipulation is used to authenticate a coordinator based on its transceiver

hardware type. As shown in Fig. 2.6, a USRP serves as the joining device that initiates the

association request, a Freescale MC13213 serves as the network coordinator, Freescale

MC13213 end devices form a functional network, and an Atmel AT86RF230 serves as a

traffic sniffer to observe all message traffic.

In the first scenario PHY-augmented authentication is not active. The USRP

transmits an association request to the coordinator using a standard PHY preamble,

receives an acknowledgment, transmits a standard data request after a one-second wait,

etc., completing the message sequence in Fig. 2.5. The wireless sniffer records the

successful association request handshake as five packets displayed in Fig. 2.7. The

coordinator informs the joining device that it has been accepted into the network and that

is has been assigned the NWK address 0x796f.

Next, a PHY-augmented authentication process is active. The joining device tests the

true transceiver type of the coordinator to ensure it is of the expected type and not an
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Figure 2.5: IEEE 802.15.4 association request message sequence.

Figure 2.6: Demonstration setup (coordinator authentication).

impostor. In this scenario the trusted coordinator should have an AT86RF230 transceiver,

but the device claiming to be the coordinator is actually a MC13213. The joining device

authenticates the coordinator by modifying its transmissions such that only an
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Figure 2.7: Successful association request sequence.

Figure 2.8: Failed association request sequence due to coordinator impostor.

AT86RF230 can receive them all. Specifically, its initial association request uses the

0000A700 preamble and its data request one second later has a 0000000A preamble. Of

the eight devices types under test, only the AT86RF230 can receive both of these packets.

Fig. 2.8 shows the resulting message traffic. The coordinator cannot receive the modified

association request, but it is observed by the AT86RF230 traffic sniffer. One second later

the coordinator correctly receives the modified data request and its transceiver

automatically replies with an acknowledgment, but no association response is sent

because the coordinator is unaware of the initial association request. The joining device is

then aware that the coordinator is not of the expected transceiver type.

This basic PHY-augmented authentication process is readily extendable to more

complex handshakes including those using cryptography. If any part of the message

handshake is not received by the intended recipient, the authentication fails. By crafting

PHY manipulations for reception by the smallest possible number of transceiver types,

PHY-augmented authentication of remote hardware is achieved.

24



Figure 2.9: Demonstration setup (joining device authentication).

2.5.3 Joining Device Authentication.

PHY-manipulation-based authentication of joining devices mirrors the concept

described in Section 2.5.2, but with the USRP serving as the coordinator and an impostor

device attempting the join the LR-WPAN (Fig. 2.9). In order to implement this system in

real-world hardware one additional feature must be implemented: sequence number

management. When the USRP serves as the joining device, it determines the sequence

numbers of its association request and data request packets, requiring the coordinator to

reply with matching acknowledgment sequence numbers. When the coordinator is a

standard device, sequence number management is handled automatically by its software.

Since the Fig. 2.9 scenario requires PHY manipulation by the coordinator to authenticate

the joining device, acknowledgment sequence numbers from the USRP must match those

originating from the joining device. This is not possible though the signal replays

performed previously. Instead, the USRP must be configured with actual LR-WPAN

network functionality.

IEEE 802.15.4 network functionality is configured on the USRP using GNU Radio.

IEEE 802.15.4 transmit and receive capabilities for USRP hardware via GNU radio have

been steadily developed in recent years [Tha12] [SCTD09]. The implementation uses
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USRP Hardware Driver (UHD) version 003.004.005 and GNU Radio version 3.6.1,

running in Ubuntu 13.04 on a Dell Precision M4500 laptop. Preamble manipulations of

outgoing transmissions from the USRP are accomplished through altering the

ieee802 15 4 pkt.py script, wherein the preamble composition is specified.

The impostor CC2420 transmitter attempts to join the LR-WPAN by transmitting a

standard association request. The USRP coordinator ensures that the joining device is

actually a MC13213 transceiver by sending its acknowledgments with a 0A07AA0A

preamble and 138d Frame Length. As reported in Table 2.8, this particular PHY

manipulation is receivable by MC13213 transceivers, but not by any of the other

transceiver types under test. As a result, the authentication handshake fails and the

CC2420 is unable to join the network. Even if the impostor joining device “fakes”

reception of the acknowledgment and proceeds with a data request anyway, the joining

device will not be able to receive the PHY-manipulated association response which

contains address and joining information. Furthermore, the impostor will not be able to

correctly reply to any further PHY-manipulated interrogations or inquiries from the

coordinator, and thus will not be advertised to the LR-WPAN as an authorized peer.

This authentication demonstration is a proof of concept that is straightforward to

adapt to any IEEE 802.15.4-based network. Advanced adaptations of these techniques

warrant future work, including obfuscated encryption key distribution in which only

trusted end devices are able to receive sensitive data from the coordinator.

2.6 Wireless Intrusion Detection

Real-time intrusion detection is another promising use for preamble modification. In

this experiment a sensor network utilizing Jennic JN5148 transceivers is placed throughout

a building. Three intruder devices with alternate hardware are also placed throughout: a

Digi International XBP24CZPIS, a Freescale MC13213, and a Silicon Labs EM357.

Without PHY-based discrimination techniques, all transceiver types are indistinguishable
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Figure 2.10: Device placement for intrusion detection demonstration within an office

building.

to the network. A USRP serves as the intrusion detection system transmitter. Fig. 2.10

illustrates the demonstration topology. The four Jennic devices form a mesh sensor

network reporting temperature, humidity, and light levels to a graphic display.

Jennic JN5148 transceivers cannot receive packets with the 000000AA preamble

modification. In this intrusion detection demonstration the USRP transmits a beacon

request with a 000000AA preamble modification once every few seconds at random

intervals. The requests are dismissed as channel noise by the Jennic sensor network being

protected and rarely interfere with legitimate traffic.

All three intruder devices receive packets with 000000AA preambles. The IEEE

802.15.4 standard requires all full function devices to reply to beacon requests, so all

intruding devices reveal themselves upon receiving each request.
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The USRP transmits ten 000000AA beacon requests within 70 seconds; ten replies

are observed from the XBP24CZ7PIS and nine replies each are observed from the

MC13213 and EM357. All three intruder devices reply to the first nine requests, each time

revealing their differing hardware within milliseconds. No replies are generated from any

of the JN5148 devices, as expected.

In an alternative protection scheme, devices already joined to the network are

periodically audited with unicast packets. Any intruder device transceiver automatically

replies to packets requesting acknowledgment, irrespective of software, thus immediately

revealing its untrusted hardware. This alternative scheme is preferable for heterogeneous

networks with multiple transceiver types because devices are audited individually.

These intrusion detection techniques compliment the authentication framework

demonstrated in Section 2.5. If cryptographic credentials (such as a new NWK key) are

distributed using the fourth PHY manipulation listed in Table 2.8, all three intruder

devices will not have been able to intercept them. False keys could also be disseminated

using 000000AA preambles, and the three intruders would reveal themselves upon trying

to use them.

2.7 Remote Device Type Fingerprinting

This section presents and demonstrates a methodology for classifying unknown

transceiver hardware with high accuracy.

Tables 2.2-2.8 present preamble and Frame Length manipulations which can be used

to accurately identify the transceiver type within an unknown or suspicious device. As a

proof-of-concept, a classification decision tree is presented in Fig. 2.11. Note, this

example is but one of the many possible decision trees possible and optimization of such

trees warrants is own future work.

The process begins with successful reception of an ACK from the device under test

using the standard IEEE 802.15.4 PHY. This establishes that the device under test is
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Figure 2.11: Example classification decision tree for IEEE 802.15.4 transceivers.

powered and responsive. Next, up to two packets requiring acknowledgments are

transmitted to the device under test with the most significant bit of the Frame Length

incorrectly manipulated to a one. Once an ACK is observed in response to a manipulated

packet, additional packets are not necessary at that decision step in the classification tree.

As shown in Table 2.7, a reply in response to this manipulation narrows the true

transceiver to one of four types. Two tries are allowed during the first test (falsified Frame

Length) to account for any interference or a dropped packet. Note that the number of tries

can be arbitrarily increased at any decision point in the tree to suit desired accuracy and

energy efficiency requirements. The number of tries suggested throughout Fig. 2.11 is

designed to result in greater than 99% correct classification accuracy, assuming the

experimentally-observed packet response rates reported in Section 2.4.
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While this model is predicted to be effective mathematically, it must also be evaluated

against real-world devices to demonstrate its effectiveness. Therefore, each of the eight

device types are concealed one at a time in a cardboard box and the classification decision

tree is used to determine the true transceiver type within. A NI USRP-2921 served as the

PHY manipulation transmitter and responses are observed by an AT86RF230 packet

sniffer 0.5 meters distant. Table 2.9 reports the classification results of the eight trials. The

number of packets required includes the initial packet(s) used to confirm that the device

under test is responsive. As expected, all transceivers under test are correctly identified.

2.8 Attacks against PHY Manipulation

This section discusses the potential for countermeasures to PHY manipulation

intrusion detection and fingerprinting strategies. An attacker utilizing a trusted transceiver

type against a PHY manipulation defense will not be detected. Of course, a

physically-compromised trusted device will not be detected by sophisticated RF

fingerprinting systems either. It is important to note that PHY manipulation is envisioned

as a novel tool for wireless situational awareness and a powerful component within a

layered defense, rather than a security panacea.

One tactic for defeating PHY manipulation is to determine whether or not the PHY

of an incoming packet has been manipulated (and thus a test). If an attacker can determine

that an incoming packet preamble has been manipulated, she can selectively ignore

incoming packets to mirror the response behavior of a particular transceiver type. Such

deception is reminiscent of firewall-based obstructions to nmap operating system

fingerprinting [KS05]. Some arbitrary waveform generators and software-defined radios

are able to provide this insight, which is not accessible to low-cost end devices. PHY

information can be nontrivial to garner, even with a software-defined radio. For example,

IEEE 802.15.4 GNU Radio scripts developed by Schmid et al. [SSS07] for the USRP do

30



Table 2.9: Classification results (eight real-world devices) using decision tree in Fig. 2.11.

Device Packets Required Accuracy

AT86RF230 4 correct

XBP24CZ7PIS or EM357 or STM32W 6, 6, and 6 correct × 3

MC13213 5 correct

JN5148 6 correct

MRF24J40MA 7 correct

STM32W 8 correct

CC2420 4 correct

not report incoming PHY headers. Instead, the entire incoming PHY header is abstracted

away and a placeholder byte “0xff” is printed to the terminal when scripts based on the

uhd cc2420 rxtext.py are executed. Modification of the IEEE 802.15.4 GNU Radio scripts

to reveal incoming preamble composition is presently beyond the technical abilities of the

author. Nevertheless, there do not appear to be any technical reasons why such changes

cannot be implemented in future work.

The alternative to analyzing incoming PHY headers is to physically alter the receiver

characteristics of an attacking device to match those of the spoofed type. A review of the

eight device type datasheets reveals few options for PHY customization through registry

value changes. The most promising flexibility is offered by CC2420 hardware. By altering

the CC2420 SYNCWORD register, the required synchronization sequence for incoming

transmissions can change from 0x00A7 (as observed in Section 2.4) to 0x000A7. That is,

a CC2420 transceiver can made to require either two or three trailing 0x0 nibbles in

incoming preambles. Fortunately, this minor flexibility is not sufficient to defeat the

device classification tree in Fig. 2.11. In addition, no registry configurations alter the fact
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that CC2420 transceivers cannot receive packets with a manipulated Frame Length field.

In summary, no evidence is found of significant threats to PHY manipulation posed by

standard end devices.

2.9 Preliminary IEEE 802.11 Results

Transmission preambles are featured in numerous wireless standards, including

proprietary sub-GHz protocols and IEEE 802.11 local area networks (LANs). The goal is

to discover whether preamble modification techniques are also useful for classifying IEEE

802.11 device types. Preliminary results strongly suggest such classification is possible

[Kul14].

IEEE 802.11 protocols are significantly more complex than IEEE 802.15.4. For

simplicity the analysis begins by examining two transceivers operating at 2 Mbps on an

IEEE 802.11b LAN: an Atheros AR928X and an Intel 4965AG. Standard long preambles

consist of 128 bits modulated at 1 Mbps. Each preamble bit is thus 1 µs long. One bit is

removed at a time from the preamble for up to ten bits, forming preambles ranging from

127 to 118 bits long. Although the IEEE 802.11b PHY, transmission frequency, and

preamble durations all differ from IEEE 802.15.4, a similar methodology may be followed

as that described in Sections 2.3-2.4 of signal recording, modification in MATLAB, and

replay on the USRP. Wireshark monitors the wireless interface to observe incoming

packets. Thirty modified packets are transmitted to the device under test for each

preamble length and a 99% confidence interval is calculated for the mean. Fig. 2.12

reports packet reception probabilities for the Atheros AR928X, while Fig. 2.13 reports the

equivalent probabilities for the Intel 4965AG.

Packet reception on the two devices vary significantly in response to shortened

preambles. Reception rates decline abruptly on the Atheros transceiver, but decline

somewhat linearly on the Intel transceiver. Notable preamble lengths are 124 bits and 120

bits. The Atheros transceiver does not receive packets with 124 bit preambles, while the
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Figure 2.12: Packet reception versus preamble length on Atheros AR928X. Bars represent

99% CI based on thirty trials.

Intel transceiver receives approximately 50% of the packets. Neither transceiver receives

packets with preambles shorter than 121 bits.

This investigation of IEEE 802.11 preamble manipulation is ongoing. The

significantly longer preambles of IEEE 802.11 result in a wider range of possible bit-wise

manipulations than for IEEE 802.15.4. Preliminary results demonstrate that preamble

modification can augment bit-layer security processes for multiple wireless protocols.

2.10 Conclusion and Future Work

Radio frequency fingerprinting of wireless devices has attracted significant research

attention in recent years. The ability to differentiate between wireless devices from subtle

physical properties is a powerful defense against counterfeiting and network intrusion.

Results herein demonstrate how preamble and Frame Length manipulation can be used for

PHY-augmented device authentication, intrusion detection, and remote device type

fingerprinting. Advantages to PHY manipulation include relatively low transmitter
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Figure 2.13: Packet reception versus preamble length on Intel 4965AG. Bars represent 99%

CI based on thirty trials.

hardware cost, simplicity of implementation, and low computational complexity. The

disadvantage of PHY manipulation over traditional RF fingerprinting is that it cannot be

used to differentiate among devices within the same hardware class. However, bit-layer

intrusion detection can compliment PHY manipulation to identify intruders using

like-model (or even compromised legitimate devices) on the network.

Energy efficiency and throughput utilization are substantial considerations in many

LR-WPANs. Preamble manipulation can be paired with traditional RF fingerprinting

techniques to improve their efficiency. Intruders using untrusted hardware types can be

rejected rapidly so that traditional RF fingerprints need only be generated and maintained

for devices within the correct hardware class. Quantification of this benefit should be

studied as traditional RF fingerprinting transitions from proof-of-concept to effective

real-time systems.

In addition to preamble manipulation on IEEE 802.11 devices, other protocols that

use preambles or similar synchronization features should be investigated. For example,
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midambles are a component of GSM networks that may also be exploited through PHY

manipulation.
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III. PHY Foundation for Multi-Factor LR-WPAN Node Authentication

3.1 Introduction

The primary limitation of the PHY manipulation framework outlined in Chapter 2 is

that it cannot distinguish among transcievers from the same manufacturer and model

number. In order to uniquely identify devices of the same type, RF fingerprinting must be

used.

Previous work on RF fingerprinting for wireless sensor networks has exploited

features within the signal turn-on transient region lasting approximately 125 ns

[RC07][DC09][KK10], with percent correct classification of %C≈70% achieved using

five relative amplitude features from ten CC1000 radios operating at 433 MHz [RC07].

Work in [DC09] shows improvement to %C≈97% using ten different CC1000 radios at

distances of 15 cm. The use of three transient features is promising for classifying

2.4 GHz ZigBee node radios at distances of 40 meters [DC09]. RF fingerprinting based on

differences in Automatic Gain Control (AGC) circuitry response have been less

successful, with limited feature differences observed between six ZigBee devices from the

same manufacturer at distances of 10 cm [KK10].

The IEEE 802.15.4 standard [Soc06] mandates use of a preamble based on 30 to 40

bits, with the actual length based on signal modulation type/order and operating frequency

band. The 32-bit preamble for 2.4 GHz ZigBee nodes is 128 µs long, or approximately

1024 times longer than typical signal transients that have been exploited

[RC07][DC09][KK10]. Preamble RF features have been effectively used to reliably

differentiate IEEE 802.11a radios [STMM08][KTMR09] and IEEE 802.15.4 CC2420

radios [RTM12]. Relative to these earlier works, the work here 1) revalidates device

differentiability of like-model 2.4 GHz CC2420 ZigBee transceivers at varying

signal-to-noise ratio (SNR) using RF preamble fingerprint features, 2) extends validation
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to include differentiation of like-model sub-GHz (915 MHz) CC1000 radios, and 3)

formalizes and validates a quantitative, statistic-based, pre-classification feature selection

process that was conceptually introduced and qualitatively assessed in [RTM12]. Results

herein are foundational to continued development of the envisioned PHY-MAC-NWK

multi-factor authentication processor to augment current ZigBee bit-level authentication

with information contained in RF fingerprint features. The passive monitoring approach is

key to achieving backward compatibility with existing ZigBee devices.

3.2 Envisioned ZigBee Multi-Factor Framework

The concept of an “air monitor” that observes wireless network transmission

characteristics to augment bit-layer security mechanisms is not new. However, many of

the challenges associated with practical network integration have not been adequately

addressed. The work here builds upon the air monitor concept and describes the

envisioned integration into ZigBee LR-WPANs to improve security.

3.2.1 ZigBee Nodes & Topologies.

The IEEE 802.15.4 standard specifies two node classes, including: Full Function

Devices (FFDs) and Reduced Function Devices (RFDs). FFDs are always actively

listening on the network and are typically powered by a constant external power supply.

RFDs are battery-powered and primarily operate in sleep mode, waking only to check for

pending messages or periodic updates.

ZigBee uses FFD and RFD elements for three node classes: ZigBee Coordinator

(ZC), ZigBee Router (ZR) and ZigBee End Device (ZED). The ZC and ZRs must be

FFDs, while ZEDs can be either FFDs or RFDs. There can only be one ZC per

LR-WPAN, and it is responsible for establishing the network, allocating NWK addresses,

and routing traffic. The LR-WPAN fails without its ZC. ZRs extend the LR-WPAN

physical range by routing messages between their child RFD ZEDs using multi-hop

topologies, such as the Cluster Tree and Mesh topologies illustrated in Fig. 3.1 [RTM12].
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Figure 3.1: ZigBee LR-WPAN topologies [RTM12].

The Star topology is shown for completeness and does not support multi-hop

communication. In a Cluster Tree topology, ZEDs have no children and can only

communicate with the ZC and other ZEDs through their parent ZR. ZigBee Stack Profile

0x01 limits the number of children for each ZR to Nc=20, 6 of which can be ZRs. The

ZigBee PRO specification (Stack Profile 0x02) increases this limit to Nc=254 children per

ZR. Mesh topologies are only allowed using ZigBee PRO, and permit FFD ZEDs to

communicate directly with one another.

3.2.2 Air Monitor Integration.

Air monitoring would be implemented using electronic devices that are separate

from, but interfaced with FFD ZigBee devices to enable exchange of RF fingerprint

information. A single air monitor would be sufficient for a Star topology if co-located

with the ZC. For a Cluster Tree topology, an air monitor would be co-located with every

ZR given that ZED communication is concentrated through its parent ZR. Mesh
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topologies pose significantly greater security challenges as memory overhead required for

link key storage (confidentiality for every hop) can grow exponentially larger relative to

cluster tree topologies. Air monitoring of large mesh topologies will be challenging for

similar reasons.

Nodes are largely stationary in ZigBee applications used in Smart Energy, Building

Automation, and Home Automation, which will simplify required air monitor coverage.

However, ZigBee applications requiring mobile ZEDs, such as those commonly used in

Health Care, pose significantly greater air monitoring challenges. Regardless, mobile

ZED security must be addressed as they are inherently more vulnerable to physical attacks

such as key extraction, theft, and tampering.

3.2.3 Air Monitor & Trust Center Integration.

ZigBee LR-WPANs under either security mode (standard or high) must appoint an

FFD (usually the ZC) to serve as the Trust Center, recognized and trusted by all nodes on

the LR-WPAN. The Trust Center is responsible for security and key management. A new

node n* can only join the LR-WPAN if it receives permission from the Trust Center.

Permission to join can be restricted by an access control list of valid MAC addresses. If n*

presents a valid MAC address but does not know the network key, the Trust Center can

transmit the key in plain text. ZigBee advocates assume that this window of vulnerability

is “quite small and acceptable” [Ins12], but tools such as zbdsniff can endlessly sniff a

LR-WPAN until such keys are intercepted [Wri09]. The proposed air monitor framework

for ZigBee LR-WPANs would defend against active attacks such as fuzzing, associate

request flooding, and packet injection by establishing a three-factor authentication process:

1. “Something you know” (NWK – Network keys);

2. “Something you have” (MAC – MAC address);

3. “Something you are” (PHY – RF fingerprint).
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While the network keys and MAC addresses are vulnerable to current attacks, RF

fingerprints from physical radio emissions are unique and technically infeasible to mimic.

In the Star topology in Fig. 3.1, the combined ZC/Trust Center receives feedback

from its air monitor as to how well the current RF fingerprint from every incoming

transmission matches the stored fingerprint profile established for the claimed sender.

Thresholds for packet rejection must be tailored based on operational conditions to

prevent undue denial of service. In Cluster Tree topologies, the ZRs only forward

transmissions “cleared” as sufficiently well-matched by their respective air monitors. Air

monitors maintain an evolving RF fingerprint profile of the devices assigned to its ZR to

account for variations in environment and device operating characteristics. Sufficiently

complex mesh networks require larger and more flexible RF fingerprint databases and air

monitor placement.

An air monitor framework would be most valuable if every transmission is validated

by the current RF fingerprint. This is because many exploits, such as replay attacks and

packet injection, may be effective if a single malicious transmission is accepted as valid by

the LR-WPAN. However, even fractional air monitor protection may mitigate active denial

of service attacks such as associate request flooding.

Despite the challenges that must still be addressed before the envisioned air monitor

framework is successfully implemented, the relatively low data rate ZigBee LR-WPANs,

short, low-power transmission ranges, and an inherent limitation to Nc=20 or Nc=254

child devices per ZR makes them an ideal early candidate for emerging air monitor

experimental research.

3.3 Background

3.3.1 Signal Collection Methodology.

An Agilent E3238S-based system [Tec09] serves as the RF Signal Intercept

Collection System (RFSICS). All signal collections are down-converted to near-baseband,
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digitized using 12-bit analog-to-digital conversion and stored as complex in-phase and

quadrature (I-Q) components for sub-sequent post-collection processing. Collection

parameters included a sample frequency fs=11.875 Msps and 4th-order Butterworth

baseband filter bandwidth of WBB=1 MHz. Signal collections included a total of NP=1000

transmission preambles from ND=7 CC2420 2.4 GHz IEEE 802.15.4 devices. Transceiver

positioning was consistently maintained between collections in a Ramsey STE3000B RF

test enclosure with RF-absorbent foam lining, 20 cm from a dipole antenna connected to

the RFSICS input by a shielded cable.

Amplitude-based threshold detection was used with a leading edge value of

TD=−6.0 dB used to identify and extract individual burst transmissions from the

multi-second RF collections. The approximate duration of experimentally collected

preamble responses is 1536 samples (129 µs), which closely matches the 128 µs

specification [Soc06]. The collection SNR for all bursts was S NRC>50 dB.

3.3.2 Statistical Fingerprint Generation.

The statistical fingerprint (F) for a signal is derived from its instantaneous amplitude

(a), phase (ϕ) and/or frequency (f ) characteristics. More specifically, the sequences a[n],

ϕ[n], and/or f [n] are generated from complex samples of the signal region of interest,

centered (mean removal) and then normalized (division by maximum value)

[STMM08][KTMR09]. Statistical fingerprint features are generated as variance (σ2),

skewness (γ), and/or kurtosis (κ) within specific signal regions. The regional fingerprint

markers are generated by: 1) dividing each characteristic sequence into NR contiguous,

equal length sub-sequences, 2) calculating NS=3 statistical metrics for each sub-sequence,

plus the entire fingerprinted region as a whole (NR + 1 total regions), and 3) arranging the

metrics in a vector of the form

FRi = [σ2
Ri
γRi κRi]1×3 , (3.1)
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Figure 3.2: Representative burst preamble response with NR=32 fingerprint sub-regions

used for full-dimensional fingerprint generation [RTM12].

where i = 1, 2, ...,NR + 1. The marker vectors from (3.1) are concatenated to form the

composite characteristic vector for each characteristic and are given by

FC =

[
FR1

... FR2

... . . . FRNR+1

]
1×NS (NR+1)

. (3.2)

If only one signal characteristic is used (a, ϕ, or f ), the expression in (2) represents

the final classification fingerprint. When all NC=3 signal characteristics are used, the final

RF fingerprint is generated by concatenating vectors from (2) according to

FC =

[
Fa ... Fϕ

... . . . F f
]

1×NS (NR+1)×NC

. (3.3)

While not optimally determined, empirical analysis revealed that NR = 32 preamble

sub-regions, or four regions per each of the eight repeated preamble sub-responses, was
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sufficient for establishing a proof-of-concept baseline. The subregions are illustrated in

Fig. 3.2 for a representative preamble response.

3.3.3 MDA/ML Device Classification Methodology.

Statistical RF fingerprints are generated using (3.3) for device preamble

transmissions from ND=7 IEEE 802.15.4 CC2420 radios. The resultant RF fingerprints

are classified here using a Multiple Discriminant Analysis, Maximum Likelihood

(MDA/ML) process. MDA is a straightforward extension of the Fisher Linear

Discriminant process when discrimination of more than two classes (devices) is required.

MDA reduces the higher-dimensional input feature space with the goal of maximizing

inter-class separation while reducing intra-class spread [DHS99]. For the NC=3 class

problems considered here, MDA/ML projects the multidimensional RF fingerprints into a

2-dimensional space. RF fingerprints are classified as being affiliated with one of NC=3

possible classes based on Bayesian decision criteria using prior known probabilities,

probability densities, and relevant costs associated with making a decision [HFT09]. For

all results presented herein the associate costs are assumed equal for all classes.

The MDA/ML models are developed here using a K-fold cross-validation training

process with K=5 to improve reliability. This value is consistent with literature which

suggests values of K=5 and K=10 are sufficient [HFT09]. The best-performing model

generated during the training process is subsequently used to generate testing results using

a previously unseen collection of input features from each device. Unless otherwise noted,

only classification testing accuracy results are reported in Section 3.4.

3.3.4 Pre-Classification Feature Selection.

This section formalizes a quantitative, statistic-based, pre-classification feature

selection process that was conceptually introduced and qualitatively assessed in [RTM12].

In the aggregate, the assembled RF feature sets are effective for inter-device classification.

However, RF fingerprinting work using other types of classifiers that provide a
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post-classification indication of feature relevance, e.g., Generalized Relevance Learning

Vector Quantized Improved (GRLVQI) [RTO12] and Differential Evolution

(DE)-Optimized Learning From Signals (LFS) classifiers [HWT11], have shown that

individual RF fingerprint features do not generally contribute uniformly to overall

classification performance. Although much less complex and more computationally

efficient than the GRLVQI and LFS classifiers (for a given number of input feature

dimensions), the MDA/ML classifier is inherently limited in that it provides no insight

into feature relevance. The best characteristics of these various classifiers is desired, i.e,

computational efficiency and the ability to use a minimum number of input feature

components (dimensional reduction) to increase operational efficiency when fielded.

Intuitively, RF fingerprint components that exhibit maximal inter-device dissimilarity

and minimal intra-device dissimilarity should be advantageous for MDA/ML

classification. This form of pre-classification feature selection (input dimensionality

reduction) is addressed here statistically by examining RF fingerprint components prior to

MDA/ML classification. For a given signal type, the goal is to identify fingerprint

components that possess statistical properties that are most advantageous for achieving

reliable MDA/ML classification; the dimensional reduction goal is to reduce the RF

fingerprint size (minimize NF) while having minimal or tolerable impact on overall

classification accuracy.

Empirical analysis has shown that RF fingerprint features extracted from collected

signal preambles are non-normally distributed. Thus, nonparametric statistical analysis is

appropriate and the Kolmogorov-Smirnov goodness-of-fit test (KS-test) is a suitable

option for analyzing statistical feature differences. The KS-test is used here to quantify

differences in cumulative distribution functions (CDF) between two sample distribution

functions S (X) and T (X), e.g., RF fingerprint features from two devices. The numeric

difference between S (X) and T (X) is defined as
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S (X) = j/n , (3.4)

where j is the number of points less than or equal to x and n is the total number of

samples. If the sample X1, X2, ..., Xn has been sorted in ascending order such that

X1 ≤ X2 ≤ ... ≤ Xn, the KS deviations K+max (maximum positive), K−max (maximum

negative), and Kmax (maximum absolute) can be computed by

K+max = n1/2 max
1≤ j≤n

{
j/n − T (X j)

}
, (3.5)

K−max = n1/2 max
1≤ j≤n

{
F(X j) − ( j − 1)/n

}
, (3.6)

Kmax = max
{
K+max,K

−
max

}
. (3.7)

The distribution functions of K+max, K−max, and Kmax are known and tabulated, such that

the null hypothesis is rejected when the computed statistics exceed critical values

tabulated for the selected level of significance, i.e., alpha value. When KS-test results are

presented as p-values, lower p-values indicate a more significant difference between data

sets. When originally considered in the context of MDA/ML processing [RTM12], it was

conjectured and qualitatively shown that lower KS-test p-value features possessed greater

discrimination information and provided improved classification performance relative to

higher p-value features.

The qualitative feature reduction assessment in [RTM12] provides a baseline for the

quantitative process that is formalized next. Considering ND=7 devices, all Np=21

possible unique pairwise device combinations are considered, i.e., Np=21 KS-tests

(α=0.1) conducted at SNR=8.0 dB for NF=(NR + 1=33)×(NS = 3)×(NC = 3)=297

features. Fig. 3.3 shows summed p-values for the corresponding KS-tests. As visually

indicated by the collection of lowest p-values, phase features collectively possess greater
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Figure 3.3: Sum of Np=21 pairwise KS-test p-values for each fingerprint component of

full-dimensional (NF=297) features at SNR=8.0 dB [RTM12].

variation when compared to frequency features, which in turn possess greater variation

when compared to amplitude features. The indicated robustness of phase features in

Fig. 3.3 is consistent with what has been reported in earlier related work [RTM12].

As formalized here, a quantitative pre-classification KS-test feature selection process

can be used to identify and select a most relevant, arbitrary-length l, subset of the

full-dimensional RF feature set F prior to MDA/ML classification. The process is

completed in six steps as follows:

1. Generate a full-dimensional (NF) feature set using (3.1) through (3.3) for NP

preambles from each of the ND devices to be classified. The preamble responses are

combined with like-filtered Additive Gaussian White Noise (AWGN) to establish

the desired SNR.
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2. Conduct pairwise two-sample KS-tests using the NF dimensional feature sets

(n=NP) between every two devices under test (α=0.1). Form a matrix of resultant

p-values with dimension ND×NF .

3. Rank-order the p-values in each row in non-increasing order.

4. Determine the feature index number corresponding to the lowest p-value in every

row. If not already present in subset S , add the feature index number.

5. Check size[S] and remove indices corresponding to the largest p-values if

size[S ] > l.

6. Repeat Step 4 and Step 5 until S is of length l.

The quantitative pre-classification feature reduction process is applied for the ND=7

devices under test. Results are presented in Fig. 3.4, Fig. 3.5, and Fig. 3.6 for the

highest-ranked (lowest p-values), mid-ranked (middle p-values), and lowest-ranked

(highest p-values) NF=33 features in Fig. 3.3, respectively. Note that the vertical axis

scales are different for visual clarity. As shown in Fig. 3.4, the most relevant (Top) NF=33

components are exclusively derived from phase features, reinforcing the qualitative

assessment made from Fig. 3.3 and results in [RTM12] that phase-derived features tend to

be most effective for MDA/ML classification. Likewise, the lowest-ranked (Bottom)

NF=33 features in Fig. 3.6 are predominantly amplitude-derived which is again consistent

with the qualitative assessment made from Fig. 3.3 and results in [RTM12].

3.4 2.4 GHz CC2420 Device Assessment

The IEEE 802.15.4 specification mandates the use of a Synchronization Header

(SHR) containing a Preamble and Start-of-Frame Delimiter (SFD) sequence for all

transmission bursts. Although the entire SHR can be used for generating RF fingerprints,

empirical analysis revealed that inclusion of the SFD response did not significantly
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Figure 3.4: Highest-ranked (lowest p-values) NF=33 features in Fig. 3.3.
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Figure 3.5: Mid-ranked (middle p-values) NF=33 features in Fig. 3.3.
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Figure 3.6: Lowest-ranked (highest p-values) NF=33 features in Fig. 3.3.
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improve MDA/ML classification accuracy. Additional analysis revealed that features

based on power spectral density (PSD) significantly underperformed relative to features

based on the instantaneous a, ϕ, and f time-domain responses considered here.

MDA/ML inter-device classification results were generated for all NPrm=35 possible

3-class permutations of ND=7 ZigBee devices. Classification experiments were conducted

using NP=1000 independent preamble responses (500 each for MDA/ML training and

testing) and NNz=5 Monte Carlo noise realizations per preamble response at each SNR; a

total of NT st=(500 Preambles)×(NNz = 5)=2500 independent classification decisions per

device in each 3-device trial. This large number of trials reduced the mean error bars to

within the vertical extent of the plotted data markers. Therefore, trial mean error bars are

intentionally omitted in all results plots to enhance visual clarity.

3.4.1 Full-dimensional RF Fingerprinting Performance.

Full-dimensional RF fingerprints include features based on NC=3 signal

characteristics (a, ϕ, and f ), NS=3 statistical fingerprint features (σ2, γ, κ), and NR + 1=33

regions, for a total fingerprint F comprised of NF=297 RF fingerprint features as given by

(3.3).

Fig. 3.7 shows aggregate full-dimensional classification (testing) performance

accuracies for NPrm=35 device permutations at SNR∈[0 20] dB. The cross-permutation

average is shown as filled circle markers. Considering an arbitrary average percent correct

classification of %C≥90% as a reasonable benchmark for assessing the potential

contribution of PHY information to an overall PHY-MAC-NWK multi-factor

authentication solution, the full-dimensional feature set successfully achieves the

%C=90% benchmark at SNR=8.0 dB and would be suitable for a PHY-MAC-NWK

integration.
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Figure 3.7: 2.4 GHz CC2420 MDA/ML classification: Full-dimensional (NF=297) feature

set and NPrm=35 3-class permutations. Permutation average shown as filled circle markers

[RTM12].

3.4.2 Reduced-Dimensional Qualitative Feature Selection.

While full-dimensional RF fingerprinting is effective, qualitative visual assessment of

KS-test p-values in Fig. 3.3 reveals significant differences among RF fingerprint features

derived from the instantaneous a[n], ϕ[n], and f [n] sequences. Classification results are

presented here using dimensionally-reduced feature sets containing approximately 33% of

the full-dimensional features (NF=99 of 297). This is done by evaluating classification

performance using only amplitude (Amp-Only), phase (Phz-Only) and frequency

(Frq-Only) feature subsets.

Fig. 3.8 provides an overlay of the average cross-permutation classification

performance for the full-dimensional feature set taken from Fig. 3.7 and the
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Figure 3.8: 2.4 GHz CC2420 MDA/ML classification: Permutation averages for full-

dimensional (NF=297) and reduced-dimensional (NF=99) feature sets based on qualitative

assessment of p-values in Fig. 3.3. [RTM12].

reduced-dimensional Amp-Only, Phz-Only) and Frq-Only feature sets for SNR∈[0 20] dB.

Again considering the arbitrary %C≥90% benchmark for assessing PHY contribution to

an PHY-MAC-NWK multi-factor authentication solution, the reduced-dimensional

(NF=99 of 297) Phz-Only feature sets provide near equivalent performance as the

full-dimensional set and would perform reliably for SNR≥8.0 dB.

However, the reduced-dimensional Phz-Only feature set has an inherent advantage

over the full-dimensional set in that it would only require calculation and processing of

one-third the number of RF fingerprint features. This is a significant advantage when

considering computational efficiency, speed and storage requirements for fielding an

operational PHY-MAC-NWK authentication system.
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With regard to the other reduced-dimensional results in Fig. 3.8, average

cross-permutation classification accuracy using Amp-Only feature sets significantly

under-performs all others as predicted by having the highest KS-test p-values in Fig. 3.3.

The average cross-permutation classification accuracy for Frq-Only features falls between

that of the Amp-Only and Phz-Only feature sets and achieves the arbitrary %C≥90%

benchmark for SNR≥14.0 dB.

3.4.3 Reduced-Dimensional Quantitative Feature Selection.

The statistical, quantitative p-value assessment process enables identification and

selection of a most relevant subset of the full-dimensional features. The process is

demonstrated here using reduced-dimensional feature sets comprised of a specific number

of most relevant features. In this case, the specific number of NF=33 features was chosen

based on using a sufficient number of the highest ranked (lowest p-value) features

required to achieve near identical classification accuracy as the full-dimensional set.

Fig. 3.9 provides an overlay of average cross-permutation classification accuracies

using the top-ranked, middle-ranked, and bottom-ranked NF=33 RF fingerprint features

from Fig. 3.3 for the CC2420 devices. As indicated, the top-ranked NF=33 feature set

achieves the arbitrary %C≥90% benchmark for SNR≥9.0 dB-actually less than a 1.0 dB

difference relative to using full-dimensional and Phz-Only feature sets. The dimensional

reduction versus performance trade-off is quite notable when considering that NF=33 of

297 full-dimensional and NF=33 of 99 Phz-Only features represent dimensional

reductions of approximately 88% and 66%, respectively.

While the qualitative assessment in Section 3.4 was insightful, quantitative results

here clearly indicate that the proposed KS-test approach to pre-classification feature

selection, as formalized in section Section 3.4, is indeed valid and provides an effective

means for identifying and rank-ordering the most relevant features for MDA/ML

classification.
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Figure 3.9: 2.4 GHz CC2420 MDA/ML classification: Permutation averages for full-

dimensional (NF=297) and quantitatively selected top-ranked, middle-ranked, and bottom-

ranked reduced-dimensional (NF=33) feature sets.

3.5 915 MHz CC1000 Device Assessment

The preamble-based fingerprinting and dimensional reduction techniques in Section

3.4 for CC2420 ZigBee devices was repeated to assess sub-GHz device authentication.

This was done with CC1000 devices which use a proprietary PHY protocol and provide

service in the Industrial, Scientific, and Medial (ISM) frequency bands: fIS M=315, 433,

868, or 915 MHz. The CC1000 devices are used in home automation and Automatic

Meter Reading (AMR) applications, each of which can be supported within the Smart

Grid [Ins09].

As in Section 3.4, inter-device classification results and feature dimensional

reduction assessment is demonstrated for ND=7 CC1000 transceivers operating at
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fc=915 MHz. Given operational differences, the CC1000 collection parameters differed

from those used for the 2.4 GHz ZigBee devices and included a final sample frequency of

fs=59.3755 Msps and a 4th-order Butterworth baseband filter bandwidth of

WBB=100 KHz. The number of collected preambles processed per device remained at

NP=1000.

The preamble length for the Frequency-Shift-Keyed (FSK) CC1000 PHY waveforms

can be configured based on the intended transmission range. For the ND=7 CC1000

devices used here, the experimentally observed preamble responses lasted approximately

4,000 µs. Initial exploratory analysis showed that RF features extracted from the entire

preamble region did not contain sufficient information to perform reliable inter-device

classification. However, features extracted from the first 253 µs of the preamble proved to

have sufficient information and were adequate for initial proof-of-concept assessment.

Fig. 3.10 shows the CC1000 preamble response and the NR=15 sub-regions for RF feature

extraction. The amplitude-based tD=−6.0 dB burst detection point corresponds to sample

number 501, while the preceding 500 samples are collected background noise. Relative to

the CC2420 ZigBee devices, the CC1000 devices use a simpler PHY waveform structure

and operate at lower data rates (less than 20 Kbps). Subsequent results will show that this

increases the inter-device differentiation challenge and that future work remains to

optimize parameter selection for associated signal collection, burst detection, and RF

fingerprint generation.

3.5.1 Full-Dimensional RF Fingerprinting Performance.

Full-dimensional RF fingerprints include features based on NC=3 signal

characteristics (a, ϕ, and f ), Ns=3 statistical fingerprint features (σ2, γ, and κ), and

NR + 1=16 regions, for a total fingerprint F comprised of NF=144 RF fingerprint

components as given by (3.3). Fig. 3.11 shows the aggregate full-dimensional
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Figure 3.10: Provisioning of CC1000 burst response into NR=15 sub-regions.

classification accuracies for NPrm=35 device permutations at SNR∈[0 20] dB. The

cross-permutation average is shown as filled circle markers.

As shown in Fig. 3.12, the mean classification accuracy achieves the arbitrary

%C≥90% benchmark for SNR≥18.0 dB. While classification performance is lower than

achieved with 2.4 GHz ZigBee devices in Fig. 3.7, these results do illustrate the potential

for CC1000 inter-device differentiation using RF fingerprint features. Furthermore, the

%C≥90% benchmark was arbitrarily introduced in Section 3.4 for convenience and to

enable comparative performance assessment. As planned development of the envisioned

PHY-MAC-NWK authentication framework continues, it may be shown that %C≥80%

performance is a sufficient PHY contribution to the overall multi-factor solution. If so, the
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Figure 3.11: 915 MHz CC1000 MDA/ML classification: Full-dimensional (NF=144)

performance for NPrm=35 3-class permutations. Permutation average shown as filled circle

markers.

current technique is sufficient given that %C=80% CC1100 discrimination is achieved for

SNR≥8.0 dB.

3.5.2 Reduced-Dimensional Quantitative Feature Selection.

Final CC1000 results include reassessment of the quantitative pre-classification

feature selection process in Section 3 using reduced-dimensional sets having 50% of the

full-dimensional features. The top-ranked and bottom-ranked NF=72 of 144 features were

used to produce results in Fig. 3.12 and Fig. 3.13, respectively. Classification performance

for NPrm=35 3-class permutations is provided along with average classification. Two

notable conclusions can be drawn, including: 1) average top-ranked feature results in

Fig. 3.12 are statistically equivalent to full-dimensional results in Fig. 3.11 for all SNR
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Figure 3.12: 915 MHz CC1000 MDA/ML classification: Quantitatively selected top-

ranked reduced-dimensional (NF=72 of 144 features) performance for NPrm=35

3-class permutations. Permutation average shown as filled circle markers.

considered, and 2) average bottom-ranked results in Fig. 3.13 are statistically poorer by an

average of 20% or more for SNR≥8.0 dB.

3.6 Quantitative Feature Selection Assessment

Reduced-dimensional results in Fig. 3.9 for CC2420 devices (NF=33 of 297

features), and Fig. 3.12 for the CC1000 devices (NF=72 of 144 features), clearly

demonstrate the effectiveness of the KS-test p-value feature selection method developed

in Section 3.3. While successful, it is important to note that the number of

reduced-dimensional features was selected non-optimally with a goal of achieving

near-identical performance using both reduced and full-dimensional sets. The relationship

between selected reduced-dimensional features and the full-dimensional sets is illustrated
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Figure 3.13: 915 MHz CC1000 MDA/ML classification: Quantitatively selected

bottom-ranked reduced-dimensional (NF=72 of 144) performance for NPrm=35 3-class

permutations. Permutation average shown as filled circle markers.

in Fig. 3.14 using sorted p-values. Components left of the vertical line are top-ranked

features sufficient to achieve near-equivalent reduced and full-dimensional performance.

These results establish the desired one-to-one relationship between p-value and

component relevance to classification. Through simple inversion, a sorted descending plot

of 1/p values would reflect most-to-least relevance, much like ranked eigenvalues do in

Principal Component Analysis [GWM+02]. This opens the door to a large body of related

research on rank-ordered feature selection that remains to be investigated in support of

future research aimed at formalizing an optimal feature selection method using

pre-classification 1/p values.
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Figure 3.14: Sorted KS-test p-value sums for full-dimensional feature sets of 915 MHz

CC1000 (NF=144) and 2.4 GHz CC2420 (NF=297) devices at SNR=8.0 dB. Components

left of the vertical line are top-ranked subsets sufficient for near equivalent reduced and

full-dimensional performance.

3.7 Summary & Conclusion

The low-cost, low complexity, and low power consumption benefits of ZigBee

LR-WPANs make them an attractive alternative for critical infrastructure elements

requiring wireless sensing and control. However, the attractiveness is diminished when

considering that networks using these devices are relatively easy to exploit using readily

available tools. Considering a defense-in-depth approach to mitigating security

vulnerabilities, the work here addresses multi-factor PHY-MAC-NWK authentication by

adding previously under-exploited PHY information to augment bit-level mechanisms.
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PHY features are captured in RF fingerprints and used here to assess device

differentiability of like-model 2.4 GHz CC2420 ZigBee transceivers and 915 MHz

CC1000 transceivers under varying SNR conditions. Performance of a quantitative,

statistic-based, pre-classification feature selection process is validated and dimensional

efficiency demonstrated using an MDA/ML classification process. The contribution here

is development and formalization of a concept that was only qualitatively assessed in

previous related work.

Results here demonstrate that 2.4 GHz CC2420 ZigBee devices can be accurately

and reliably discriminated using RF statistical features extracted from signal preamble

responses. Most notably, a comparative performance benchmark of %C≥90% average

classification accuracy is achieved for SNR≥8.0 dB using like-model devices and

full-dimensional RF fingerprints (NF=297 PHY features). Of equal significance,

effectiveness of the proposed pre-classification feature selection process is demonstrated

using a rank-ordering of KS-test p-values, with p-value shown to correlate directly with

classification feature relevance. The rank-ordering enables reduced dimensional analysis

using a small subset (NF=33) of most relevant features which achieve nearly equivalent

%C as the full-dimensional (NF=297) feature set; less than a 1.0 dB trade-off in required

SNR is required for an approximate 88% reduction in required features.

While not as effective from an overall average %C versus SNR perspective,

classification performance using like-model 915 MHz CC1000 ZigBee devices is

promising and the potential for PHY-based multi-factor authentication exists; %C≥80%

performance is achieved for SNR≥8.0 dB. Of greater importance to continued

development of a PHY-MAC-NWK authentication framework, reduced-dimensional

results for the CC2420 and CC1000 devices collectively demonstrate the desired

one-to-one relationship between p-value and feature relevance to classification. Using
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rank-ordered 1/p-values to identify most-to-least relevant features opens the doorway for

optimal selection methods similar to what is used in PCA eigenvector analysis.
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IV. Wireless Critical Infrastructure Protection using Low-Cost RF Fingerprinting

Receivers

4.1 Introduction

One promising solution for securing LR-WPANs without placing additional burdens

on end devices is Radio Frequency (RF) fingerprinting. In such systems, an air monitor

passively observes all LR-WPAN packets and identifies message spoofing (e.g., packet

replay attacks) through device-unique RF fingerprints. Wireless device classification

accuracies exceeding 99% have been demonstrated using high-end signal collection

receivers (cost exceeding 50K U.S. dollars), including: a 4 Gigasample-per-second (Gsps)

oscilloscope [DC09], 8 Gsps oscilloscope [DLCED10], 50 Gsps oscilloscope [PDG11], a

95 Gsps Agilent E3238S signal intercept system [DRT12][RTM12], and an Agilent PSA

E4448A Spectrum Analyzer combined with a 4 Gsps oscilloscope [RSC12]. The high cost

of these signal receivers prohibits their use in practical RF fingerprinting systems. Thus,

techniques developed using high-end receivers must be successfully transitioned to

low-cost (less than 2K U.S. dollars) hardware such as the Universal Software Radio

Peripheral (USRP). Transient-based fingerprinting requires at least 4 Gsps

[DC09][DLCED10], which is not possible on the USRP which is limited to 25 Msps.

Spectral fingerprinting using wireless preambles, however, was recently demonstrated

with the USRP [RSC12][RSC14]. Initial results suggest lower device differentiation

accuracy and higher receiver-specific variability with USRP receivers than with high-end

receivers.

The inexpensive analog components in low-end receivers contribute noise and

variability during signal reception, and confound the RF fingerprinting process. While

some distortion is unavoidable, the hypothesis is that the variability in collection center

frequency and environmental noise can be mitigated through post-collection signal
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processing. Herein, signal processing techniques to mitigate RF fingerprinting limitations

of low-cost receivers are demonstrated. RF fingerprinting performance is compared

between two RF receivers under identical signal collection conditions, i.e., a high-end

National Instruments (NI) PXIe-1085 system and a low-cost NI USRP-2921 were used to

simultaneously collect device emissions for a given experimental setup. Accurate device

spoofing identification in scenarios involving real-world attack hardware and actual smart

utility meters are also demonstrated.

The rest of this chapter is organized as follows: Section 4.2 provides a review of RF

fingerprinting. Section 4.3 describes realistic threats to critical infrastructure networks.

Section 4.4 details the RF fingerprinting methodology. Section 4.5 presents device

classification results for realistic attack hardware. Section 4.6 reports device classification

results for smart utility meters. In Section 4.7 accurate device identity verification and

anti-spoofing capability using RF fingerprints generated with a low-cost software defined

radio are demonstrated. Finally, Section 4.8 presents main conclusions and suggests areas

for future work.

4.2 RF Fingerprinting Background

The earliest RF fingerprinting systems were developed by militaries to differentiate

among friendly and hostile radar transmissions [HY12]. Costs associated with RF

fingerprinting have declined over the last few decades to such a degree that commercial

cell phone companies can now use some form of RF fingerprinting to detect device

cloning [KS99]. In order to be commercially viable, RF fingerprinting low-cost

LR-WPANs in critical infrastructure applications must be practical and use the smallest,

least expensive receiver technology.

The authors in [RSC12][RSC14] are among the first to attempt robust RF

fingerprinting using low-cost USRP receivers. Their RF fingerprints consist solely of

Power Spectral Density (PSD) features of IEEE 802.11a (5GHz WiFi) preambles. IEEE
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802.15.4-based LR-WPANs (e.g., ZigBee) likewise feature a preamble at the start of every

burst transmission that is amenable to RF fingerprinting. However, recent work with

high-end receivers [RTM12] reports that RF fingerprints based solely on PSD features

under perform those based on time-domain features. The hypothesis is that RF

fingerprinting performance using the USRP can nearly match that of high-end receivers

with proper feature selection and a sufficiently robust processing.

Instead of using PSD features, this chapter utilizes a series of instantaneous

time-domain features that improve the relative fingerprinting accuracy of the USRP; the

robust RF fingerprinting methodology is presented in Section 4.3.

4.3 RF Fingerprinting Methodology

Since the USRP sampling rate is insufficient for transient-based RF fingerprinting

[DC09][DLCED10], and recent works highlight PSD-based fingerprinting accuracy

limitations [RTM12][RSC12][RSC14], the process outlined in this chapter instead

leverages instantaneous time-domain features of the wireless preamble. Robust signal

processing techniques including frequency down-conversion and baseband filtering

strategies further improve performance.

4.3.1 RF Collection Topologies.

In order to compare the relative RF fingerprinting performance of high-end and

low-cost receivers, as many parameters as possible are controlled during signal collection.

Fig. 4.1. illustrates the collection topology. Table 4.1 lists the parameters controlled

between collections made on the high-end NI PXIe-1085 system and the low-cost NI

USRP-2921. Six Atmel RZUSBsticks serve as the fingerprinted transmitters, each

transmitting 600 IEEE 802.15.4 packets toward both collection receivers at the same time.

RZUSBsticks are selected as transmitters because they are the first hardware supported by

KillerBee LR-WPAN attack tools. All previous work on LR-WPAN RF fingerprinting

investigated the CC 2420 transceiver, so selection of the RZUSBstick broadens the
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literature to a new transceiver type (Atmel AT86RF230). During an actual spoofing attack,

the malicious device will most likely be transmitting from a different location than the

impersonated device and with different hardware than used on the victim LR-WPAN. This

variance in location and hardware add to the distinctiveness of an attacker’s RF fingerprint.

Signal collection described in Table 4.1 and Fig. 4.1. is thus a worst-case scenario as

would be experienced from an RF fingerprinting perspective, since all of the transmitters

differ in only subtle physical variations in hardware due to manufacturing tolerances.

In a second collection scenario the USRP is used to fingerprint three OpenWay

CENTRON Smart Meters at Oak Ridge National Laboratory. This expands the RF

fingerprinting literature to yet another LR-WPAN hardware type. The smart meter

transmit power significantly exceeded 1 mW, so short-range line-of-sight collection as in

Fig. 4.1. was not practical without significant attenuation. In order to collect the smart

meter transmissions without saturating the USRP receiver, a -30 dB attenuator was added

between the collection antenna and the USRP (Fig. 4.2.). The high-end collection receiver

is not portable enough to move to the stationary smart meter test bed, so direct high-end

versus low-cost comparisons are only conducted using results from the first collection

scenario (Fig. 4.1.).

4.3.2 Signal Collection Methodology.

The signal collection methodology was consistent between the receiver systems: NI

PXIe-1085 and NI USRP-2921. Both systems record RF in-phase and quadrature (I/Q)

data as 16-bit integers, sampled at 20 Msps. This file format takes the form of an

interleaved array

[I0 Q0 I1 Q1 I2 Q2 ... In Qn],
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Table 4.1: RF collection parameters for high-end NI PXIe-1085 and low-cost NI USRP-

2921 receivers.

Parameter Value

Tx-RX separation distance 2 m

TX-RX height above floor 1 m

Collection time frame Concurrent

Transmitter Atmel RZUSBstick

Transmit power 1 mW

Transmitter orientation Vertical USB port

Receiver antenna 3 dBi gain VERT2450

Receiver antenna orientation Vertical

Figure 4.1: RF collection topology for simultaneous collection of RF emissions from six

Atmel RZUSBsticks using NI PXIe-1085 and NI USRP-2921 systems.

where n is the number of collected I/Q sample pairs. This interleaved I/Q data is first

converted to complex values in the format
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Figure 4.2: RF collection topology for the three OpenWay CENTRON smart meters using

the NI USRP-2921.

[I0 + iQ0, I1 + iQ1, I2 + iQ2, ...In + iQn],

for convenient signal processing in MATLAB. A total of 600 transmission preambles were

sampled in this way from six RZUSBsticks using both collection receivers. Transmission

detection from background noise was accomplished through amplitude-based leading

edge detection using a -6 dB threshold. As outlined in the IEEE 802.15.4 standard, the

first 128 µs of each transmission constitutes the preamble. At 20 Msps the first 2560

instantaneous I/Q samples represent the preamble region of each transmission. Fig. 4.3.

illustrates a representative IEEE 802.15.4 preamble baseband response, which begins at

sample number 500 and ends at sample number 3060. The vertical dashed lines indicate

division of the preamble into 32 fingerprint regions, a process further discussed in Section

4.3.3. The transmitter operating frequency was IEEE 802.15.4 channel 26 (2.480 GHz) for

all collections to mitigate interference from nearby IEEE 802.11g traffic (2.401-2.473

GHz). Collected signal-to-noise ratio (SNR) was approximately 30 dB on the PXIe-1085

and 24 dB on the USRP.

Inter-device variability in RF fingerprint performance on USRPs was noted in

[RSC12]. To mitigate possible variability in collection center frequency due to clock
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Figure 4.3: Provision of baseband LR-WPAN preamble magnitude response into 32 sub-

regions for RF fingerprinting.

skew, collection center frequency is set to 3 MHz below the transmission center frequency

(2.477 GHz versus 2.480 GHz). Fig. 4.4. illustrates normalized Power Spectral Density

(PSD) of a representative transmission collected on a USRP using this 3 MHz offset. The

2 MHz-wide spectrum of the transmitter is notably higher than the noise floor and is

clearly evident, centered 3 MHz above baseband.

The collected transmission is down-converted to baseband using gradient-based

frequency estimation performed using MATLAB. A WBB = 1 MHz-wide, 4th-order

Butterworth filter removes background noise from outside the IEEE 802.15.4 channel,

resulting in a low-noise, baseband representation of the collected transmission (Fig. 4.5).

Background noise filtering was not discussed in [RSC12][RSC14], which may have

contributed to the erratic RF fingerprinting performance observations therein.
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Figure 4.4: Normalized Power Spectral Density (PSD) of an IEEE 802.15.4 transmission

collected at 20 Msps using a 3 MHz center frequency offset.

Figure 4.5: Normalized PSD of an IEEE 802.15.4 transmission down-converted to

baseband and filtered with a WBB=1 MHz 4th-order Butterworth filter.

4.3.3 RF Fingerprint Generation.

The RF fingerprint (F) for a signal is derived from its instantaneous amplitude (a),

phase (ϕ) and/or frequency (f) characteristics. More specifically, the sequences {a[n]},

{ϕ[n]}, and/or {f[n} are generated from complex samples of the signal region of interest,

centered (mean removal) and then normalized (division by maximum value) [RTM12].

Instantaneous features are computed from I/Q characteristics of collected preambles.
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Consistent with the RF fingerprinting process introduced in [RTM12], 32 preamble

sub-regions, or four regions per each of the eight repeated LR-WPAN preamble

sub-responses are used (Fig. 4.3) The preamble as a whole serves as the 33rd region.

4.3.4 MDA/ML device classification methodology.

Statistical RF fingerprints are generated using (3.3) for device preamble

transmissions from six Atmel RZUSBStick transmitters. The resultant RF fingerprints are

classified here using a Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)

process in MATLAB. MDA is a straightforward extension of the Fisher Linear

Discriminant process when discrimination of more than two classes (devices) is required.

MDA reduces the higher-dimensional input feature space with the goal of maximizing

inter-class separation while reducing intra-class spread [HFT09]. For the six-class

problems considered here, MDA/ML projects the multidimensional RF fingerprints into a

5-dimensional space. RF fingerprints are classified as being affiliated with one of six

possible classes based on Bayesian decision criteria using prior known probabilities,

probability densities, and relevant costs associated with making a decision [DHS99]. For

all results presented herein the associate costs are assumed equal for all classes.

The MDA/ML models were developed using a K-fold cross-validation training

process with K=5 to improve reliability. This value is consistent with literature which

suggests values of K=5 and K=10 are sufficient [DHS99]. The best-performing model

generated during the training process is subsequently used to generate testing results using

a previously unseen collection of input features from each device. Model training is

performed using Ntng=300 randomly-selected collected transmissions from each

RZUSBstick, and testing is performed on the remaining Ntst=300 collected transmissions

that did not take part in model training.
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4.4 RZUSBstick device classification performance

This section evaluates the relative performance of the two collection receivers with

respect to device classification using RF fingerprints. RZUSBstick devices were selected

as transmitters due to their use in LR-WPAN attacks from KillerBee and Api-do.

MDA/ML inter-device classification results were generated for all six RZUSBsticks

using the high-end and low-end receivers. Classification experiments incorporated a total

of 600 independent transmissions, each beginning with the IEEE 802.15.4 preamble, and

15 Monte Carlo noise realizations per preamble at each test SNR. Model development

used only the first 300 preambles, while testing was independently performed using the

second 300 preambles. This resulted in (300 test preambles) x (15 noise realizations) =

4500 total classification decisions per device at each test SNR. This large number of trials

reduced the 95% confidence intervals to within the vertical extent of the plotted markers.

For visual clarity, confidence interval bars are not presented in classification plots.

4.4.1 Full-dimensional RF fingerprints at a 20 Msps sample rate.

Full-dimensional RF fingerprints include features based on all three signal

characteristics (a, ϕ, and f), three statistical features (σ2, γ, and k), and 32+1 preamble

regions, for a total RF fingerprint length of NF = 3 × 3 × 33 = 297 features. Both

collection receiver sample rates were 20 Msps. Fig. 4.6 presents the full-dimensional

classification accuracies for six RZUSBsticks using the PXIe-1085 collection receiver,

and Fig. 4.7 presents the full-dimensional classification accuracies for the same six

RZUSBsticks using the USRP-2921 collection receiver. The solid black lines with circle

markers in the figures show the mean classification accuracy for the collections of the six

transmitters.

Classification accuracies between the two collection receivers are substantially more

consistent than observations reported in [RSC12][RSC14] for IEEE 802.11a devices. The

low-end USRP receiver is capable enough to classify all six devices with an average of
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Figure 4.6: Classification accuracy using the NI PXIe-1085 and NF=297 full-dimensional

RF fingerprints at 20 Msps.

90% accuracy when SNR≥15 dB. The high-end PXIe-1085 system achieves an average of

90% classification accuracy when S NR ≤11 dB. This high-end PXIe-1085 result closely

matches findings in [DRT12] using the high-end Agilent E3238S receiver system, where

average classification accuracy of seven CC2420 transmitters reached 90% by SNR=10

dB. Average device classification accuracy using the USRP is 9% lower than with the

high-end PXIe-1085 receiver at SNR=12 dB, but this difference narrows to 3% for

SNR=24 dB. These full-dimensional device classification results are consistent with the

intuitive assumption that device classification accuracy using low-cost USRP hardware

measurably underperforms that of high-end signal receiver hardware. However, the

difference in classification accuracy between low-end and high-end hardware narrows to a

few percent under high SNR conditions.

Given the relatively low-cost of software-defined radios such as the USRP, multiple

receivers can be purchased for far less than a single high-end receiver. Combining RF

fingerprint decisions from multiple low-cost receivers may be an effective strategy to
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Figure 4.7: Classification accuracy using the NI USRP-2921 and NF=297 full-dimensional

RF fingerprints at 20 Msps.

improve device classification performance. For example, if two out of three USRP-based

air monitors determine the same device classification of an incoming packet, their

decision may be more accurate than that of the dissenting receiver.

4.4.2 Full-dimensional RF fingerprints at a 5 Msps sample rate.

While the PXIe-1085 and USRP-2921 both support sampling rates as high as 25

Msps, it is not clear that a higher sampling rate necessarily results in greater RF

fingerprinting accuracy of LR-WPAN transmitters. This section investigates

full-dimensional RF fingerprinting at a reduced sampling rate of 5 Msps. The original RF

signal collections were properly decimated from 20 Msps to 5 Msps by utilizing every

fourth I/Q sample and excluding the rest from the RF fingerprinting process. A sample

rate of 5 Msps is approximately the lowest possible sample rate with which the

near-baseband RF collection process will work, since a sample rate of 5 Msps on the

USRP equates to a collection bandwidth spanning 2.5 MHz above and below the

collection center frequency (IEEE 802.15.4 channel width is 2 MHz). If RF fingerprinting
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Figure 4.8: Classification accuracy using the NI PXIe-1085 and NF=297 full-dimensional

RF fingerprints at 5 Msps.

at low sample rates is effective, it decreases hardware requirements of RF air monitor

hardware deployed in operational systems.

Fig. 4.8 presents the full-dimensional classification accuracies at 5 Msps while using

the PXIe-1085 collection receiver, and Fig. 4.9 presents the full-dimensional classification

accuracies at 5 Msps while using the USRP-2921 collection receiver. There is a negligible

functional difference between device classification accuracies at 20 MHz and 5 MHz

while using the high-end PXIe-1085. Similarly, classification accuracies are functionally

indistinguishable while using the USRP-2921 at 20 Msps and 5 Msps. A sample rate of 5

Msps meets the Nyquist requirement for 2 MHz IEEE 802.15.4 signals and also appears to

provide maximum RF fingerprinting performance. Low-cost RF receiver hardware that

supports 5 Msps may be practical systems for RF fingerprinting of LR-WPAN devices.

4.4.3 Phz-only RF fingerprints at a 20 Msps sample rate.

Investigation into relative relevance among instantaneous amplitude, phase, and

frequency characteristics toward device classification was previously investigated in
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Figure 4.9: Classification accuracy using the NI USRP-2921 and NF=297 full-dimensional

RF fingerprints at 5 Msps.

[RTM12] for the high-end Agilent E3238S system and CC 2420 LR-WPAN transmitters.

Results strongly suggested that instantaneous phase features were the most useful for

inter-device differentiation, followed by frequency, and that instantaneous amplitudes

tended to be the least relevant. Instantaneous phase features were robust enough that

phase-only fingerprints (99 features long) were as effective as using full-dimensional

fingerprints of 297 features. The advantage of phase-only fingerprints is that they require

calculation and processing of only one-third the number of RF features. Fig. 4.10 reports

device classification accuracies using RF fingerprints of only 99 instantaneous phase

characteristics using the PXIe-1085 receiver. Fig. 4.11 reports device classification

accuracies using RF fingerprints of only 99 instantaneous phase characteristics using the

USRP-2921 receiver.

Consistent with high-end receiver results in [RTM12], phase-only RF fingerprints are

as effective as full-dimensional fingerprints when the high-end PXIe-1085 system serves

as collection receiver. Conversely, phase-only classification results while using the

USRP-2921 as the collection receiver significantly underperform full-dimensional RF
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Figure 4.10: Classification accuracy using the NI PXIe-1085 and NF=99 Phz-Only RF

fingerprints at 20 Msps.

fingerprinting. Average device classification using the USRP-2921 falls below 90%, even

when SNR = 24 dB. Results indicate that the MDA/ML device fingerprint model

incorporates additional RF fingerprint characteristics (more frequency or amplitude traits)

when a low-end receiver is used than when a high-end RF receiver is used. The hypothesis

is that the inexpensive analog components within the USRP introduce additional RF

fingerprint distortion that the MDA/ML model overcomes by diversifying the

instantaneous characteristics given the most weight during model development.

To test this hypothesis device classification is performed using both collection

receivers and RF fingerprints consisting of only one of the three RF characteristics

(amplitude, phase, or frequency). The classification results report relative feature

relevance to MDA/ML model development on signals collected on the two receivers

(Fig. 4.12 and Fig. 4.13). The phase-only classification results reported in Fig. 4.12 and

Fig. 4.13 are the classification means in Fig. 4.10 and Fig. 4.11, respectively.
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Figure 4.11: Classification accuracy using the NI USRP-2921 and NF=99 Phz-Only RF

fingerprints at 20 Msps.

Figure 4.12: Classification accuracy using the NI PXIe-1085 and NF=99 single-

characteristic RF fingerprints at 20 Msps.

While the relative relevance of instantaneous RF characteristics remains the same

among the Agilent E3238S [RTM12], PXIe-1085, and USRP-2921 (phase > frequency >

amplitude), classification accuracy attainable using any one instantaneous characteristic is
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Figure 4.13: Classification accuracy using the NI USRP-2921 and NF=99 single-

characteristic RF fingerprints at 20 Msps.

significantly lower for the USRP-2921; the arbitrary 90% correct classification benchmark

is not achieved in any case.

For example, mean device classification accuracy using RF fingerprints consisting

solely of phase or frequency characteristics is sufficient for near-100% accuracy for

S NR ≥21 on high-end receivers. However, device classification accuracies achieved using

equivalent single-characteristic RF fingerprints with USRP-2921 hardware underperform

high-end receivers by 10% or greater at SNR = 24 dB. Dimensionality reduction of RF

fingerprints generated with low-end collection receivers is still possible through feature

ranking, but trivial reduction through selection of a single RF fingerprint characteristic to

incorporate is clearly not possible when a low-cost USRP serves as the collection receiver.

4.5 Smart meter classification performance

Smart meter device classification was evaluated using RF fingerprints and the

USRP-2921 collection receiver. The high-end PXI-1085 was not portable enough to be

relocated to the stationary test bed of OpenWay CENTRON Smart Meters at Oak Ridge
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Figure 4.14: Smart meter classification accuracy using the NI USRP-2921 and NF=297

full-dimensional RF fingerprints at 20 Msps.

National Laboratory. The collection topology is illustrated in Fig. 4.2. The -30 dB signal

attenuator placed between the receiver antenna and USRP-2921 decreased the collected

SNR to 14 dB. Device classification results are reported for SNR in [0, 12] dB since added

white Gaussian noise (AWGN) can only be added to the original signal collections to

produce the test SNR environments, not further reduced.

Fig. 4.14 presents device classification results using the USRP-2921 and

full-dimensional RF fingerprints at 20 Msps. Mean device classification accuracy reaches

90% when SNR = 6 dB and increases to 96% at SNR = 12. Fig. 4.15 presents device

classification results using the USRP-2921 and full-dimensional RF fingerprints

calculated from properly decimated RF collections at 5 Msps. As observed earlier for the

six RZUSBsticks, mean device classification accuracy does not diminish when the sample

rate decreases from 20 Msps to 5 Msps. This is additional evidence that 5 Msps is

sufficient for maximum RF fingerprinting performance involving IEEE 802.15.4 devices.
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Figure 4.15: Smart meter classification accuracy using the NI USRP-2921 and NF=297

full-dimensional RF fingerprints at 5 Msps

4.6 Device identity verification

Device classification results in earlier sections establish that this RF fingerprinting

methodology is effective at inter-device differentiation. In this section, the capability is

demonstrated for RF fingerprinting to detect device spoofing attacks against critical

infrastructure LR-WPANs.

As described previously, RF fingerprints are generated for nine devices: six

RZUSBsticks and three smart meters using the USRP-2921 as the collection receiver. In

an RF-fingerprint-defended LR-WPAN, the air monitor system trains on RF fingerprints

calculated from transmissions made by its trusted member devices. Spoofing attacks

originate from untrusted devices with hardware-unique RF fingerprints that do not exactly

match those of any trusted device in the LR-WPAN.

4.6.1 Device verification scenario.

The verification methodology in [DRT12] was adopted here with a subset of

authorized devices used for air monitor training, and the remaining devices used to

perform spoofing attacks against each of the authorized devices. Since RZUSBsticks are a
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popular LR-WPAN hardware attack platform, three RZUSBsticks (Devices 1-3, as labeled

in Figures 4.6-4.11) served as the spoofing devices. The three remaining RZUSBsticks

(Devices 4-6) and three smart meters (Meters 1-3) formed the pool of authorized

LR-WPAN devices. The combination of smart meters and RZUSBsticks is consistend

with a smart grid LR-WPAN implementation using interconnected smart meters and

industrial appliances.

First, an MDA/ML device classification model was generated for the six authorized

devices using NT NG=300 preamble-based full-dimensional RF fingerprints each, as

described in Sections 4.5-4.6. This created a five-dimensional Fisher projection

maximizing inter-device differentiability. RF fingerprints from the three spoofing devices

underwent the same Fisher projection as the authorized devices. Each of the three

spoofing devices was introduced as an impersonator for each of the six authorized devices,

for a total of 3 × 6 = 18 spoofing scenarios. SNR was introduced for verification and

spoofing rejection was assessed at SNR=12 dB.

The posterior output variable from MATLABs classify function provides the

verification test statistic for a spoofing device as it impersonates each authorized device.

Spoofing device verification is assessed by inputting the posterior output into MATLABs

ROC (Receiver Operating Characteristic) function, which yields verification performance

curve data.

4.6.2 Device verification accuracy.

Given spoofing Device j presenting a claimed identity of Device i, there are two

probabilities used to generate verification performance curves for spoofing scenarios: 1)

P[Di|Fi] provides a measure of how much authorized Device i projected fingerprints “look

like” authorized Device i, and 2) P[Di|Fj] provides a measure of how much spoofing

Device j “looks like” authorized Device i. These probabilities were used to generate

81



results presented in Fig. 4.16. The ROC legend for each of the 18 spoofing scenarios is in

the format {spoofing device: spoofed device}.

Results in Fig. 4.16 are interpreted as follows. The vertical axis represents the

probability that the authorized device is recognized as legitimate (True Verification Rate),

and thus accepted by the LR-WPAN. The horizontal axis represents the probability that the

spoofing device successfully impersonates the authorized device (Rogue Accept Rate). A

ROC curve that approaches the upper left corner of Fig. 4.16 (TVR=100% and RAR=0%)

indicates that a statistical threshold exists where all transmissions from an authorized

device are accepted as legitimate and all spoofing attacks are rejected. Conversely, ROC

curves removed from the upper left corner indicate only imperfect spoofing detection.

In 16 out of 18 spoofing scenarios (collection of curves near the upper left corner), a

threshold of TVR>90% authorized packet acceptance resulted in less an RAR<2%

acceptance of spoofed packets. Spoofing detection was 100% accurate for all scenarios in

which Dev 1-3 impersonated the three smart meters. In the two most challenging scenarios

(Dev 1: Dev 4 and Dev 3: Dev 6) the TVR>90% threshold resulted in spoofed packet

acceptances of 54% and 32%, respectively. It is important to recall that the RZUSBsticks

were fingerprinted under atypically challenging conditions where many factors were

controlled that would otherwise have contributed to inter-device differentiability,

including device position and transmit antenna orientation. Given the challenges imposed,

the robustness of this verification process is evident. Even LR-WPAN devices of the same

hardware type and in the same antenna orientation can be reliably verified using RF

fingerprints generated from signals collected on a low-cost USRP receiver.

A useful technique for visually representing RF fingerprints is through RF-DNA

(Radio Frequency - Distinct Native Attributes) markers, adopted here from [DRT12]. Fig.

4.17 illustrates average RF-DNA responses for the six RZUSBstick transmitters, generated

using the NI USRP-2921 at 20 Msps. Averages were calculated based on 400 preambles at
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Figure 4.16: Device verification using the USRP-2921 and full-dimensional RF fingerprints

at SNR=12 dB.

SNR=12 dB. Full-dimensional NF=297 RF fingerprints include 99 markers for each of the

three statistics (variance (var), skewness (skw), and kurtosis (kur)), as described in Section

4.3. It is important to note that this normalized (within statistic) representation was

developed to help visualize feature variation across devices. This particular normalization

is not included when using RF fingerprints for classification and verification.
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Figure 4.17: Average RF-DNA markers for Devices 1-6 at SNR=12 dB.

Dev 1 and Dev 4 appear the most similar in the RF-DNA visualization shown in

Fig. 4.17. The similarity between these devices mirrors the spoofing detection challenge

reported by the {Dev 1: Dev 4} ROC curve in Fig. 4.16. The second most challenging

spoofing scenario in Fig. 4.16 is the impersonation of Dev 6 by Dev 3. Inter-device

similarities are apparent from the RF-DNA markers of Dev 3 and Dev 6 shown in

Fig. 4.17.

4.7 Conclusions and Future Work

This chapter demonstrates that reliable RF fingerprinting of critical IEEE 802.15.4

networks is practical using low-cost signal receivers. Distortions introduced by

inexpensive analog components are mitigated by conducting signal collection with a small

frequency offset and by filtering out background noise effects. Findings suggest that the

25 Msps sample rate of the NI USRP-2921 is not essential to IEEE 802.15.4

fingerprinting, and that lower cost receivers supporting 5 Msps could be sufficient to

defend operational systems. It is also found that frequency-based RF fingerprint features

are more relevant to device classification when a low-cost signal receiver is used than in
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high-end receivers. This work represents a significant step toward realizing a practical,

low-cost RF fingerprinting solution.

Near-term work continues to lower costs associated with implementing practical RF

fingerprinting solutions. The Nuand bladeRF software-defined radio is a fraction of the

cost of the NI USRP-2921 and is a promising candidate for upcoming work. IEEE

802.15.4 LR-WPANs are of particular interest in future RF fingerprinting experiments due

to their widespread use in critical infrastructure (CI) and supervisory control and data

acquistion (SCADA) applications and the unique security challenges they pose.
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V. Tuning KillerBee for Critical Infrastructure Warwalking

5.1 Introduction

The National Institute of Standards and Technology highlights the open-source

KillerBee framework as an important vulnerability research tool for examining critical

infrastructure, particularly with regard to ZigBee and smart grids [NIS10]. KillerBee has

been under active development since its initial release by Joshua Wright in 2010 [Wri09].

The Api-do project [GBM+12] recently extended KillerBee code to analyze and jam smart

meter traffic. Apa and Penagos used KillerBee code during their wireless compromise of

industrial facilities over a distance of 60 kilometers [AHP13]. For penetration testers

exploring on foot (“warwalking”), the KillerBee tool zbfind estimates distance to nearby

ZigBee transmitters via received signal strength measurements. Once located, ZigBee

devices can be inspected, tampered with, or stolen. Encryption key extraction is a serious

concern for low-cost wireless devices [Goo09].

The first empirical evaluation of zbfind [RMW12] reveals that its log-distance path

loss model, as originally implemented, is inaccurate. In zbfind version 1.0 the maximum

estimated distance to indoor transmitters is a scant 13 m. Improvements to the zbfind

distance estimation model (revision r47) incorporate findings from [RMW12], increasing

the maximum indoor distance estimate to a more realistic 20.4 m. Empirical evaluation of

warwalking tools requires real-world measurements which are challenging and time

consuming to collect. However, mathematical modeling alone is insufficient and any

model must be operationally validated before it can be relied upon.

The initial KillerBee release supported a single transceiver board, the Atmel

RZUSBstick. KillerBee has since expanded its hardware support to include the CC2420

transceiver found in open source hardware such as TelosB motes and the newly-developed

ApiMote. To date, these CC2420-based transceiver boards have not been empirically
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evaluated for use with zbfind. This work evaluates CC2420-based transceiver boards for

zbfind-powered warwalking for the first time.

A limitation highlighted in [RMW12] is that the warwalking paths examined are all

within office buildings. Alternatively, this chapter extends the literature by investigating

warwalks against two targets commonly recognized as critical infrastructure: hospitals

and smart utility meters.

This work is organized as follows. Section 5.2 provides background information on

distance estimation based on Received Signal Strength Indication (RSSI). Section 5.3

evaluates the suitability of various transceiver boards for zbfind warwalking. Section 5.4

examines distance estimation model accuracy in hospital environments. Section 5.5

examines distance estimation model accuracy outdoors against smart utility meters.

Section 5.6 concludes.

5.2 Background

Received radio frequency signal strength declines with increasing distance from the

transmitter. Wireless devices quantify received signal strength as RSSI, and conversion

from RSSI to dBm is unique to a given hardware configuration. This principle has long

been used to approximate transmitter distance because it requires no additional

measurements or infrastructure [HLK+10]. Recent works investigate and improve wireless

network RSSI-based algorithms in security, tracking, and communication applications

[MKP+12][BD13]. Accurate RSSI-based positioning techniques frequently rely upon a

grid of static sensor nodes with well-known received signal strength characteristics

[TC13]. However, a penetration tester interested in rapidly locating ZigBee transmitters

does not have access to such extensive infrastructure. Instead, she must rely solely upon

real-time RSSI measurements while walking the target environment.

A popular distance estimation model with demonstrated success indoors is

the log-distance path loss model. zbfind uses the log-distance estimate
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d ≈ 10(A−r)/10P (5.1)

where d is the estimated distance to the transmitter in meters, P is the environmental path

loss constant, A is the reference received signal strength at d = 1 m, and r is the received

signal strength converted to dBm as measured at an unknown distance from the

transmitter.

The Atmel RZUSBstick (Fig. 5.1a) features an AT86RF230 transceiver and printed

circuit board antenna. The AT86RF230 quantifies RSSI from detected signal energy and

stores it as a discrete integer RSSI∈ {0, 1, ..., 28} in the least significant five bits of its

PHY RSSI register [Atm09]. For this device RSSI measurements convert to dBm by

r = 3(RS S I) − 91 (5.2)

for the computation of A and r in (5.1). An RSSI of zero represents less than -91 dBm

received signal power. The RZUSBstick includes a fixed 100 Ω printed 5 dBi gain loop

antenna connected directly to the transceiver. RSSI is quantified in steps of 3 dBm, as

shown in (5.2). RSSI tolerance is ±5 dBm, so measurements taken under nearly identical

reception conditions regularly vary among two or three concurrent RSSI values.

The relationship between RSSI and received signal power on CC2420-based boards

is more challenging to establish a priori, since the hardware front ends vary among

CC2420-based boards, including the TelosB platform (Fig. 5.1b) and the ApiMote

(Fig. 5.1c). The CC2420 conversion equation

P = RS S I VAL + RS S I OFFS ET (5.3)
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Figure 5.1: Three wireless transceiver boards under test [RMLS14]. Devices shown to

scale.

includes an RS S I OFFS ET term that must be found empirically during system

development; the CC2420 datasheet [Ins14] estimates a typical offset of −45 dBm.

CC2420 transceivers store RS S I VAL as the least significant eights bits of its register

0x13. RSSI tolerance on the CC2420 (±6 dBm) is wider than on the AT86RF230

(±5 dBm).
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KillerBee currently supports CC2420-based hardware for packet sniffing, packet

injection, and all other bit-layer security evaluation functions originally supported on

RZUSBstick hardware. The recently-developed ApiMote is based on the Berkley TelosB

mote, but with increased emphasis on hardware modification and security research.

Section 5.3 addresses the open question of whether or not these two CC2420-based boards

are also compatible with zbfind warwalking.

5.3 Preliminary Transceiver Evaluation

This section examines the results of a pilot study to determine the applicability of

three transceiver configurations for use with KillerBee’s zbfind warwalking tool. The

three configurations under test are as follows: Atmel RZUSBstick (Fig. 5.1a), TelosB

(Fig. 5.1b), and ApiMote (Fig. 5.1c) with an attached 5 dBi dipole antenna oriented

vertically.

A 1 mW IEEE 802.15.4 transmitter (Freescale 1321x Sensor Reference Board) is

placed at the end of an office corridor 2.5 m wide at its narrowest, represented by the star

in Fig. 5.2. Given that a corridor width of 2.5 m is standard in U.S. hospitals, this pilot

study serves as a reasonable approximation of a hospital environment prior to trials in

real-world hospitals discussed in Section 5.4. A 1 mW transmitter is selected because

1 mW is the nominal transmit power of indoor systems, including TelosB motes and

ZigBee-based medical sensors. The transceiver board configurations are connected via

USB port to a Dell Precision M4500 laptop computer running Ubuntu 13.10 and

KillerBee software, one at a time. Received signal strengths are recorded to a text file for

post-collection statistical analysis. Three hundred RSSI measurements at one per second

are recorded from each of the three board configurations at ten warwalking distances.

Measurements occur at d ∈ {1 4 7 ... 28} m, for a total of 3000 RSSI measurements per

transceiver configuration.
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Figure 5.2: Warwalking path during preliminary transceiver evaluation [RMLS14].

zbfind provides the user with a distance estimate based solely on RSSI

measurements. In order for RSSI to be an effective predictor of distance to the transmitter,

there must be a significant correlation between RSSI values and actual distances. Fig. 5.3

plots the relationship between RSSI and distance for the transceiver board configurations

under test, and the red dots illustrate all observed RSSI values at each distance. The blue

lines show the simple linear regressions.

Distance and RSSI are significantly correlated for RZUSBstick hardware (Fig. 5.3),

consistent with [RMW12]. The linear fit has an adjusted coefficient of determination of

R2
ad j = 58.2%. RSSI observations tend to decrease with respect to distance, particularly for

d ≤ 10 m, where there is a statistically significant (α = 0.05) and monotonic decrease in

mean observed RSSI from d = 1 m (14.82) to d = 10 m (6.75). These results suggest that

the RZUSBstick is a viable transceiver board for zbfind warwalking.

The relationship between RSSI and distance is less significant for the TelosB

(Fig. 5.4). The linear fit has an adjusted coefficient of determination R2
ad j = 17.3%. While

the statistically significant monotonic decrease in mean observed RSSI also holds true for
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Figure 5.3: RSSI versus distance for the Atmel RZUSBstick [RMLS14].

d ≤ 10 m, the difference is approximately equal to one (77.95 vs 76.88). This difference in

mean RSSI is quantifiable as a real number in positioning systems consisting of a grid of

receivers [WLY+14], but is too subtle when RSSI is reported as integer values from a

single receiver, as with zbfind. Given that ZigBee transmission rates of 1 packet per

second or fewer are prevalent [RMSB13], a warwalker would need to pause for a

sufficient number of RSSI measurements to accumulate before distance could be

estimated. Such measurement accumulation alternatives may warrant exploration in future

work, but for the purposes of this work the TelosB is to be dismissed as an impractical for

use with zbfind.

The ApiMote, with a radio frequency front end based closely off of the TelosB,

likewise exhibits a low RSSI/distance correlation. The R2
ad j value for the ApiMote with an

antenna (Fig. 5.5) is less than 1%. An additional trial with the ApiMote with no antenna

on its RP SMA connector (figure omitted for brevity) was also unsuccessful (R2
ad j = 0).
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Figure 5.4: RSSI versus distance for the TelosB mote [RMLS14].

Intuitively, the addition of an antenna increases the maximum RSSI values reported, but

mean RSSI variability remains low. As with the TelosB, the ApiMote is determined to be

impractical for use with zbfind as currently designed.

Based on results in this section, subsequent experiments in this work examine Atmel

RZUSBstick hardware exclusively.

5.4 Distance Estimation in Hospitals

ZigBee networks in hospitals enable diverse services, from device tracking and

distributed sensor measurements to lighting automation. Given the mobile and distributed

nature of these networks, establishing physical security is a challenge. In some medical

systems this physical security is essentially limited to a notice on the router’s plastic

enclosure that reads “Do not remove.” ZigBee devices may be hidden behind potted plants
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Figure 5.5: RSSI versus distance for the ApiMote with a 5 dBi dipole antenna [RMLS14].

or other obstructions to minimize visibility, so effective warwalking tools are necessary to

rapidly locate both benign and malicious transmitters.

There are three broad classes of hospital environments where ZigBee devices may

be: 1) corridors, 2) rooms connecting to said corridors, and 3) wide open spaces such as

patient waiting areas. Fig. 5.6 illustrates a real-world medical equipment position plot

within a military medical facility [Geo10] where devices are in each of these three

environments. A warwalker cannot know in advance in which environment the transmitter

of interest is located, so an effective distance estimation model must be successful in all

three scenarios.

5.4.1 Methodology.

The RSSI measurement methodology herein is closely based on that in [RMW12],

but with improved data resolution (3 m versus 5 m), additional measurements at each
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Figure 5.6: Sample equipment location plot in a military hospital [RMLS14].

distance (150 versus 100), and longer maximum distance examined (31 m versus 26 m). A

1 mW Freescale 3121x Sensor Reference Board is placed within a military hospital in

each of the three environment classes listed above. RSSI measurements are recorded at

three meter warwalking increments from d = 1 m to d = 31 m to the three transmitter

locations. One hundred and fifty RSSI measurements are recorded to a text file at each

distance for post-collection processing. This number of RSSI measurements allows for

k-fold cross-validation with k = 5. Model development incorporates 120 measurements

and model testing incorporates the remaining 30 measurements during each of the five

rounds to limit model overfitting. Model accuracy is also tested against a warwalk

conducted around a real-world ZigBee sensor network operating in a civilian hospital.

RSSI measurements from the civilian hospital are not incorporated into model

development so that they can be used in unbiased error testing.
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Comparative distance estimation model accuracies are compared using mean

absolute percentage error (MAPE). For a given distance estimation model, MAPE M is

the percentage error defined by

M =
100%

n

n∑
t=1

(∣∣∣∣∣At − Ft

At

∣∣∣∣∣) (5.4)

where n is the number of fitted points, At is the measured value, and Ft is the model fitted

value.

5.4.2 RSSI Measurements.

Fig. 5.7 presents mean RSSI observations at each warwalking distance toward three

different transmitter locations in a military hospital. The solid black line reports the

combined mean for all three environment classes. A trend toward lower RSSI with

increasing distance is observed as expected, while the respective plots also reveal the

variable nature of RSSI measurements. The solid black line in Fig. 5.9 presents mean

RSSI observations in the civilian hospital corridor, restricted to a maximum d = 28 m by

the corridor length. The solid black line in Fig. 5.10 reports mean RSSI observations in an

office building presented in prior work [RMW12].

5.4.3 Indoor Log-Distance Path Loss Model Evaluation.

Two components of the log-distance path loss model (5.1) require estimation:

reference RSSI A and path loss constant P. Cross-validation with k = 5 of the three

military hospital warwalks at d = 1 m reports mean RSSI of 13.54 (A = -50.38 dBm),

slightly higher than A = -51.72 dBm in [RMW12]. If the model path loss constant P = 3,

as in zbfind revision r47, maximum estimated distance increases from 20.4 m to 22.6 m.

Even the updated maximum indoor distance estimate is shorter than distances examined

herein, therefore the log-distance path loss model requires a smaller value for P to fit

experiment results.
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Figure 5.7: Mean RSSI versus distance measurements in a military hospital [RMLS14].

Figure 5.8: Observed RSSI and model predictions in a military hospital [RMLS14].

Fig. 5.8 overlays the combined mean RSSI measurements in Fig. 5.7 with predictions

from two distance estimation models. One model uses path loss constant P = 2.1 (best fit

to the military hospital data) and the other uses P = 3.0 (as in zbfind r47). The tuned log

distance path loss model fits the real-world RSSI measurements with significantly lower
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Figure 5.9: Observed RSSI and model predictions in a civilian hospital [RMLS14].

Figure 5.10: RSSI and model predictions in office buildings [RMLS14].

error than the zbfind r47 model. Fig. 5.9 overlays the same two distance estimation

models over the civilian hospital data. Here, too, the P = 2.1 model appears to reduce

distance estimation error over the P = 3.0 model. Table 5.1 quantifies distance estimation

error as MAPE for the military and civilian hospital scenarios. The P = 2.1 model reduces
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Table 5.1: Distance estimation error in hospitals.

P Distance Military Hospital Civilian Hospital

2.1 d ≤ 16 m MAPE = 23.5% MAPE = 25.8%

2.1 d ≤ 28 m MAPE = 23.1% MAPE = 54.9%

3.0 d ≤ 16 m MAPE = 43.2% MAPE = 54.2%

3.0 d ≤ 28 m MAPE = 50.2% MAPE = 53.8%

error from M = 43.2% to M = 23.5% in the military hospital and from from M = 54.2% to

M = 25.8% in the civilian hospital for d ≤ 16 m. Furthermore, error reduces from 50.2%

to 23.1% in the military hospital for d ≤ 28 m, but long-range error in the civilian hospital

varies by only 1.1% between the two models.

Hospitals feature wide corridors and open waiting areas that do not appear as

frequently in office buildings. The path loss constant P may have a higher value in office

buildings, where corridors are narrower and there is more compartmentalization of space

than in hospitals. Results in Fig. 5.10 are consistent with this hypothesis, illustrating the

best fit reported in [RMW12] for office building warwalking of P = 2.6. The model curves

for P = 2.1 and P = 3.0 appear to overestimate and underestimate distance, respectively.

Given these findings, use of P = 2.1 for hospital warwalking and P = 2.6 are

recommended inside office buildings for the most accurate distance estimates currently

available.

5.5 Smart Meter Distance Estimation

ZigBee-enabled smart meters operate from the outdoor walls of homes and

businesses, yet must also be able to communicate wirelessly with any smart appliances

within their Home Area Network. Smart meters address this by transmitting at higher
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Figure 5.11: RSSI and model predictions for smart meters [RMLS14].

power than the 1 mW indoor devices considered in Section 5.4. A study involving two

hundred thousand smart meters reports a median transmit 2.4 GHz ZigBee power of

66.1 mW [Ins10]. This significantly higher transmit power necessitates different values

for reference RSSI A and path loss constant P in the outdoor distance estimation model.

RSSI measurements are recorded at ten-meter warwalking increments d = 1 m to

d = 100 m from an Itron model CP2SOA smart electric meter. The meter is mounted

outdoors on the side of an industrial warehouse. Twenty-five RSSI measurements are

recorded at each distance.

Fig. 5.11 presents mean RSSI versus distance measurements for the Itron CP2SOA

transmitter. If mean RSSI at d = 1 m serves as A, the best path loss constant fit is

A =-39.7 dBm and P = 2.05. However, if both parameters are tuned, the best fit model

utilizes A = -32.2 dBm and P = 2.06. The path loss constants in these two models are

reasonable at slightly higher than free space (P = 2.0), given the presence of trees, cars,

and other obstructions that impede line-of-sight. Selection of A has a significant influence

on distance estimation error for d ≤ 101 m; MAPE M is 47.4% for the A = -32.2 dBm
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model, versus M = 74.9% for the A = -39.7 dBm model. Additional evidence in favor of

the alternative A = -32.2 dBm model is that this reference RSSI is higher, matching

expected signal strength from a 66.1 mW transmitter. Given these results, model

parameters A = -32.2 dBm and P = 2.06 are recommended for zbfind warwalking

against smart utility meters.

5.6 Conclusion

This work is the first to investigate the effectiveness of CC2420-based transceiver

boards for use with the zbfind warwalking tool. The data strongly suggest that the only

KillerBee-supported hardware currently viable for use with zbfind is the Atmel

RZUSBstick. Best-fit parameters for the log-distance path loss model are established from

RSSI data collected during warwalks. Results demonstrate that the updated model

parameters significantly improve distance estimation.
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VI. Conclusion

Wireless security based solely on encryption keys, access control lists, and other

bit-layer defenses can be made more robust by leveraging aspects of the physical layer.

Such exploitation provides security measures that are simply not possible from a bit-only

perspective. PHY manipulation described in Chapter 2 can be leveraged to identify the

true transceiver type within a remote device, even if the remote device presents a spoofed

Organizational Unique Identifier in its claimed MAC address. RF fingerprinting described

in Chapters 3 and 4 can identify the true source of a spoofed transmission, even among

devices from the same manufacturer. Furthermore, physical security audits and intruder

localization are both made significantly easier with accurate RSSI-based distance

estimation models, such as those developed in Chapter 5.

6.1 Research Contributions

The potential for novel physical layer security techniques remains largely unexplored.

Processes investigated in this dissertation have spurred a series of scientific publications.

6.1.1 PHY Manipulation.

A practical demonstration of PHY manipulation was first demonstrated in [RM13],

with an emphasis on the technique’s potential for obscuring sensitive data (e.g.,

encryption keys) from eavesdroppers. Results in Chapter 2 demonstrate that true IEEE

802.15.4 transciever type can be established among six device classes with greater than

99% accuracy. A follow-up publication demonstrated that PHY manipulation is also

effective for IEEE 802.11b transceivers [KRM14b]; a revised version is to appear in the

Journal of Information Warfare [KRM14a]. These works confirm the hypothesis that PHY

manipulation is an effective technique for physical layer exploitation. More advanced
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PHY manipulation techniques also warrant investigation, such as subtle deviations from

the IEEE 802.15.4 symbol-to-chip mapping sequence.

6.1.2 RF Fingerprinting.

Preliminary adaptation of RF-DNA fingerprinting techniques to IEEE 802.15.4 PHY

responses for device classification was presented in [RTM12]. The addition of device

verification appeared in [DRT12]. Verification resilience in response to indoor device

mobility was demonstrated in [DRT13]. Investigation of decision tree classifiers for IEEE

802.15.4 fingerprinting appeared in [PTBR14a] and a revised version is to appear in the

Journal of Information Warfare [PTBR14b]. Random forest techniques for differentiating

LR-WPAN transmitter RF fingerprints collected for Chapter 4 will be presented at the

2014 Military Communications Conference [PTR14]. These works confirm that RF

fingerprinting with greater than 90% accuracy is possible, even when a low-cost signal

receiver is used.

6.1.3 RSSI and KillerBee.

Exploratory analysis toward improving the log-distance path loss model in zbfind

was presented in [RMW12]. Observation of real-world IEEE 802.15.4 network traffic

using KillerBee in conjunction with additional hardware platforms was published in

[RMSB13]. Chapter 5 extends both earlier works by improving zbfind distance

estimation by 20% and will be presented at the 2014 Military Communications

Conference [RMLS14]. These works confirm that RSSI-based exploitation can be an

effective tool for improved cyberspace situational awareness.

6.2 Recommendations for Future Work

6.2.1 PHY Manipulation.

Results in Chapter 2 establish that PHY manipulation techniques are likely to be

effective for a diverse range of wireless network protocols. Near-term work will continue

to investigate the applicability of PHY manipulation to other Local Area Network

103



protocols, such as IEEE 802.11g, IEEE 802.11a, and IEEE 802.11ac. Similarly, cellular

telephone protocols utilize PHY preambles that may prove useful for differentiating

among transceiver variants.

6.2.2 RF Fingerprinting.

A significant benchmark for upcoming RF fingerprinting research is the

establishment of a real-time network protection system that can accept or reject wireless

traffic as valid or spoofed. Such work is already underway, and will doubtlessly leverage

and improve upon the techniques reported in Chapter 3 and Chapter 4. Future work should

also investigate the potential for synergy when PHY manipulation and RF fingerprinting

techniques are combined. For example, RF fingerprinting accuracy should improve

significantly if every device in the LR-WPAN utilizes a minor and device-unique change

to the PHY preamble of outgoing transmissions that does not impact communication.

Table 2.4 indicates that up to four of the PHY preamble nibbles can deviate from the

standard without impacting packet reception on CC2420 devices. Preliminary work

toward the quantification of this benefit, particularly at low signal to noise ratios, is

already underway.

6.2.3 RSSI and KillerBee.

Results in Chapter 5 conclusively demonstrate that current CC2420-based transceiver

boards are not effective for RSSI-based rangefinding at warwalking distances. However,

there are other hardware platforms that can be incorporated into KillerBee in the future

and evaluated for use with zbfind. Proposed improvements to zbfind in Chapter 5 will be

incorporated into KillerBee upon publication.

There is also a great deal of work to be done to further improve the bit-layer

effectiveness of KillerBee. The author contributed three significant improvements to

KillerBee source code to date: revisions r33 (May 2012), r47 (September 2012), and r48

(October 2012). KillerBee was originally designed with an emphasis on the ZigBee
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protocol stack, however newer IEEE 802.15.4-based protocols including WirelessHART

and ISA 100.11a are increasingly prevalent in industrial control systems. Advanced tools

should be created within the KillerBee framework to specifically target and explore these

newer protocols. As Wright’s Law states [GBM+12]: “Practical security does not improve

until tools for exploration of the attack surface are made available.”
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