
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-19-2014

Different Formulations of the Orthogonal Array
Problem and Their Symmetries
Andrew J. Geyer

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Geyer, Andrew J., "Different Formulations of the Orthogonal Array Problem and Their Symmetries" (2014). Theses and Dissertations.
514.
https://scholar.afit.edu/etd/514

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277527377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/514?utm_source=scholar.afit.edu%2Fetd%2F514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DIFFERENT FORMULATIONS OF THE ORTHOGONAL

ARRAY PROBLEM AND THEIR SYMMETRIES

DISSERTATION

Andrew J. Geyer, Major, USAF

AFIT-ENC-DS-14-J-16

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENC-DS-14-J-16

DIFFERENT FORMULATIONS OF THE ORTHOGONAL

ARRAY PROBLEM AND THEIR SYMMETRIES

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Applied Mathematics (Statistics)

Andrew J. Geyer, M.S.

Major, USAF

June 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENC-DS-14-J-16

DIFFERENT FORMULATIONS OF THE ORTHOGONAL

ARRAY PROBLEM AND THEIR SYMMETRIES

Andrew J. Geyer, M.S.
Major, USAF

Approved:

//signed//

Dr. Dursun A. Bulutoglu, PhD (Chairman)

//signed//

Dr. Matthew C. Fickus, PhD (Member)

//signed//

Dr. Raymond R. Hill, PhD (Member)

27 May 2014

Date

27 May 2014

Date

22 May 2014

Date

Accepted:

//signed//

Dr. Adedeji B. Badiru
Dean, Graduate School of Engineering and Management

27 May 2014

Date

AFIT-ENC-DS-14-J-16
Abstract

Modern statistical experiments routinely feature a large number of input variables

that can each be set to a variety of different levels. In these experiments, output response

changes as a result of changes in the individual factor level settings. Often, an individual

experimental run can be costly in time, money or both. Therefore, experimenters generally

want to gain the desired information on factor effects from the smallest possible number of

experimental runs. Orthogonal arrays provide the most desirable designs. However, finding

orthogonal arrays is a very challenging problem.

There are numerous integer linear programming formulations (ILP) in the literature

whose solutions are orthogonal arrays. Because of the nature of orthogonal arrays,

these ILP formulations contain symmetries where some portion of the variables in the

formulation can be swapped without changing the ILP. These symmetries make it possible

to eliminate large numbers of infeasible or equivalent solutions quickly, thereby greatly

reducing the time required to find all non-equivalent solutions to the ILPs.

In this dissertation, a new method for identifying symmetries is developed and tested

using several existing and new ILP formulations for enumerating orthogonal arrays.

iv

For my Dad, who always taught me the value of learning.

v

Acknowledgments

I would like to sincerely thank my advisor, Dr. Dursun Bulutoglu, for his countless

hours of hard work and dedication. He went above and beyond at every turn to ensure the

success of this research effort.

This research was supported by the AFOSR grant F1ATA03039J001.

Andrew J. Geyer

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

Table of Contents . vii

List of Figures . ix

List of Tables . x

List of Acronyms . xi

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Contribution . 4
1.3 Organization of Dissertation . 6

II. Literature Review . 8

2.1 Chapter Introduction . 8
2.2 ILPs That Generate OAs . 8
2.3 Symmetry Groups in ILPs . 19
2.4 Symmetry in ILPs and Isomorphism of OAs 21
2.5 Identifying Symmetries in ILPs . 23
2.6 Margot ILP Solver [22] . 25

III. Theoretical Research . 26

3.1 Chapter Introduction . 26
3.2 The Linear Relaxation OA Polytope . 26
3.3 Permutation Symmetries of the OA Polytope 30

IV. Computational Research . 41

4.1 Chapter Introduction . 41

vii

Page

4.2 Research Objective 1 . 43
4.2.1 Computing G(A(k, 2, t), λ1)LP . 43
4.2.2 Finding a Large Subgroup of G(A(k, 2, t), λ1)LP 47

4.3 Research Objective 2 . 50
4.4 Research Objective 3 . 53
4.5 Research Objective 4 . 57

V. Conclusions and Future Research . 61

5.1 Conclusions . 61
5.2 Open Problems . 63
5.3 Conjectures . 64
5.4 Computational Research Improvements 64

Appendix A: Computer Code for Theoretical Research 66

Appendix B: Computational Research Computer Code 87

Bibliography . 154

Vita . 157

viii

List of Figures

Figure Page

2.1 Improved Bulutoglu and Margot ILP [8] Based Algorithm 11

2.2 Algorithm to Generate OA(N,N − 1, 2, 2) from Williamson Matrices 14

2.3 Identity Group Algorithm from Bulutoglu and Ryan [8] 16

2.4 Extension to Improved Bulutoglu and Margot ILP [8] 17

2.5 Additional Steps to Figure 2.4 to Enumerate Non-Isomorphic OA(N, k, s, t) [8]. 18

2.6 New Step 6 in Figure 2.5 Algorithm to Find kmax(N, 2, t) [6]. 19

ix

List of Tables

Table Page

4.1 Formulation Comparisons . 45

4.2 G(A,b, c,d)LP of Liberti [18] Problems Via Double Coset Decomposition . . . 51

4.3 G(i, s, t) and rank(B) . 56

4.4 Method Comparisons . 60

x

List of Acronyms

Acronym Definition

BILP Binary Integer Linear Program

GMA Generalized Minimum Aberration

GWP Generalized Wordlength Pattern

LP Linear Program

MILPs Mixed Integer Linear Programs

MOLS Mutually Orthogonal Latin Squares

OA Orthogonal Array

OD Orthogonal Design

OLS Orthogonal Latin Squares

USAF United States Air Force

xi

DIFFERENT FORMULATIONS OF THE ORTHOGONAL

ARRAY PROBLEM AND THEIR SYMMETRIES

I. Introduction

1.1 Motivation

Since the discovery of the scientific method in the 17th century, the analysis of

experimental results has been the mechanism through which virtually all hypotheses have

been tested. Montgomery [26] defines an experiment as “a test or series of runs in which

purposeful changes are made to the input variables of a process or system so that we may

observe and identify the reasons for changes that may be observed in the output response.”

Here in the early 21st century, human knowledge and technology have advanced so far that

today’s experiments routinely feature a large number of input variables (commonly called

factors) that can each be set to several different levels. In these experiments, the output

response changes as a result of changes in the individual factor level settings. One can

easily see that for most modern experiments, conducting a full factorial design experiment,

where all possible combinations of all factor levels are tested, can be too difficult to conduct

either due to cost or time constraints. One prominent way to obtain the required output

responses from an experiment at a lower cost than a full factorial experiment is to design

an experiment, such as a fractional factorial design [26]. A fractional factorial design is

essentially a subset of a full factorial design experiment where only a fraction of the runs

are used. The fraction is selected to make optimal use of the sparsity-of-effects principle to

isolate out the main effects and interactions of interest [26].

Fractional factorial designs have been used for product development and testing in

industry for decades with great success. In particular, these designs have been used by

1

the United States Department of Defense to both improve the quality of weapons systems

and other equipment as well as to lower maintenance, operation and replacement costs.

The United States Air Force (USAF) is particularly dedicated to this type of testing and

evaluation. The USAF operates a number of test and evaluation centers that examine

and evaluate the full spectrum of its systems and equipment. These centers use designed

experiments to test aircraft, motor vehicles, communication networks, avionics, radars,

lasers, computer systems, automated information systems, directed energy weapons,

ordinance, missiles, air traffic control systems, aircraft landing systems, reconnaissance

platforms, nuclear weapons systems, weather sensors and space systems to name a few.

These tests provide engineers with the data needed to make valid inferences about the

capabilities of equipment and systems in order to improve quality and performance.

More in-depth discussions of these types of tests conducted by the USAF test and

evaluation community can be found in Tucker et al. [33], Hill and Chambal [14] and

Hutto and Higdon [16]. It is clear from the level of effort put into testing and evaluation

by the USAF that there is a need for efficient large-scale factorial designs to ensure that

increasingly complex USAF systems operate at their peak of efficiency for the lowest

possible cost.

When looking at costs, the USAF is not just concerned with evaluating the life cycle

cost of its systems and equipment. The cost of testing and evaluation is also of great

concern, particularly in times of shrinking federal budgets. As previously discussed,

conducting test runs of factor level combinations can be very expensive and often a full

factorial design experiment is prohibitively expensive. For example, the test of a particular

missile system may cost several million dollars per missile test. In these cases, fractional

factorial designs are best used to determine optimal operational factor settings. A properly

selected fractional factorial design is critical if one wishes to obtain as much pertinent

2

information as possible at a fixed cost. It is well known that orthogonal arrays can serve as

the paragon of efficient fractional factorial designs.

An Orthogonal Array (OA) with strength t is an array consisting of elements drawn

from a fixed, finite set of symbols that are arranged in such a way that for every t columns of

the array, all ordered t-tuples of the symbols appear an equal number of times. In statistical

experiments, a factorial design D with N runs, k factors, and s levels is an OA of strength t,

where 1 ≤ t ≤ k, if each of the st t-level combinations appear exactly λ = N/st times when

D is projected onto any t factors. The integer λ is called the index of the OA. Such an OA is

usually referred to using the shorthand OA(N, k, s, t). Xu and Wu [35] showed that, under

the hierarchical ordering principle of factorial effects, a factorial design with a Generalized

Wordlength Pattern (GWP) that is lexicographically smaller is more desirable. Hence, OAs

with the Generalized Minimum Aberration (GMA) (designs that sequentially minimize the

GWP criterion) are the most desirable designs. Finding such orthogonal arrays remains a

very challenging problem.

OAs have additional applications outside the realm of designed experiments. In

the 2012 U.S. Defense Strategic Guidance, the Secretary of Defense listed the ability

to “operate effectively in cyberspace and space” as one of the primary missions of the

U.S. Armed Forces [28]. In that same document, the Secretary further emphasized the

need to build on advancements in network warfare and capitalize on the interconnected

nature of every individual and piece of equipment on the modern battlefield [28]. As such,

it is obvious that U.S. military information networks will only continue to grow in the

future. In an unpredictable and fast-moving combat environment, network reliability will

become essential to mission effectiveness. OAs can be used to assist in maintaining the

security of these vital networks. In particular, Fecko and Steinder [10] demonstrated that

3-level OAs can be used for multiple fault localization in an unreliable environment like

a modern battlefield. In their research, OAs were able to reduce the exponential number

3

of failure configurations in a battlefield network to a small enough subset that statistical

analysis could be performed to locate the likely causes of failures. The ability to efficiently

and accurately generate OAs would be of great use to a wide variety of research and

testing organizations within the USAF as well as to the larger scientific and engineering

community.

1.2 Research Contribution

The next chapter provides a review of recent best efforts to develop algorithms

that generate GMA OA(N, k, s, t) for many values of N, k, s and t. These algorithms

generate OAs by enumerating all solutions of different ILP formulations. The research

in this dissertation seeks to build upon the current ILP-based algorithms for finding

GMA or near-GMA OAs in Bulutoglu and Margot [7], Bulutoglu and Ryan [8] as well

as new formulations developed from results in Rosenberg [29], Williamson [34] and

Seberry and Yamada [31]. It features a thorough investigation of proposed enhancements to

the best known algorithms for finding GMA OA(N, k, s, t). These enhancements are based

on a generalization of the symmetry group of a Linear Program (LP) in Margot [23].

In Chapter 3, it is shown that there are no redundant inequalities in the LP relaxation

of the Rosenberg [29] ILP that describes OA(N, k, s, t)s. This implies that each inequality

is a facet of the LP relaxation. In Section 3.3, this result is used to determine the order of

the symmetry group of the LP relaxation of the Rosenberg [29] ILP. The practical value

of this result is that it exhibits the shortcomings of the Rosenberg [29] ILP LP relaxation

symmetry group in describing the symmetries of the OA problem.

Bulutoglu and Margot [7] previously proved that the isomorphism group, the group

that sends OAs to OAs by permuting factors or levels within each factor, is a subgroup of

the ILP automorphism group that they used to enumerate OAs. Based on computational

observations, they conjectured that these two groups are equal. This conjecture is proved

in Chapter 3.

4

In Section 4.2.1, for many N, k, s, t combinations, the Margot ILP solver [22] is used

to find a set of all non-isomorphic solutions to the Rosenberg [29] ILP by exploiting the

symmetry group of its LP relaxation. For the same N, k, s, t combinations, this is compared

to finding all non-isomorphic solutions to the Bulutoglu and Margot [7] ILP formulation

by exploiting the larger isomorphism group. In most cases, enumerating a set of all non-

isomorphic solutions to this ILP is faster, even though it has more variables. This provides

a plethora of ILPs where exploiting a larger symmetry group more than overcomes the

additional burden of having a larger number of variables. This is significant since it is

contrary to the preprocessing step in mathematical programming that calls for deleting as

many variables as possible from an ILP formulation.

It is essential to find larger subgroups of the ILP’s symmetry group to speed up the

Margot ILP solver [22] enumeration. The Margot ILP solver [22] uses the automorphism

group of the formulation. This group is eqaul to the symmetry group of the LP relaxation,

if the LP relaxation has no redundant inequalities and is full dimensional. Otherwise, a

non-full dimensional LP relaxation may contain hidden symmetries not captured by the

formulation automorphism group.

Section 4.2 results suggest that converting an ILP with inequality constraints into

an equality constrained ILP by adding slack integer variables can be beneficial if one is

to use the Margot ILP solver [22]. This, in turn, underscores the importance of finding

larger subgroups of the symmetry group of an ILP with equality constraints. Currently, the

Margot ILP solver [22] exploits the automorphism group of the ILP formulation. This

group is always a subgroup of the LP relaxation symmetry group. Thus, it is more

desireable to exploit the LP relaxation symmetry group. The LP relaxation of an ILP

with equality constraints is not full dimensional. Hence, there is a need for algorithms

that find the symmetry group of a general linear program with equality constraints. In

Sections 4.2 and 4.3, an algorithm is developed that satisfies this need. This is the first time

5

in the literature that an algorithm for finding the symmetry group of a non-full dimensional

linear program is developed.

In Section 4.2, the developed algorithm is implemented on LP relaxations of ILPs

with equality constraints that describe orthogonal arrays. Computational results reveal

previously unknown hidden symmetries of the Bulutoglu and Ryan [8] ILP formulation of

the OA problem. Consequently, exploiting the newly found symmetries decreases solution

times significantly.

In Section 4.3, the newly developed algorithm is tested with the LP relaxation

symmetry groups of modified versions of Mixed Integer Linear Programs (MILPs) featured

in Liberti [18]. It reveals hidden symmetries of the modified MILPs that could not

otherwise be detected.

In general, the symmetry group of an ILP contains the symmetry group of its LP

relaxation. One fundamental question is: “How close is the LP relaxation symmetry group

to capturing all the symmetries in the ILP?” In Section 4.4, attempts are made to answer

this question for the OA problem. This is accomplished by calculating the symmetry group

of the Bulutoglu and Ryan [8] ILP, for several OA(N, k, s, t).

In Section 4.5, attempts were made to speed up the Bulutoglu and Ryan [8]

OA extension algorithm by exploiting the LP relaxation symmetry groups of various

formulations.

In Section 5.2, some open problems resulting from the research in this dissertation

are presented. In Section 5.3, several conjectures are made based on the Chapter 4

computational research results. In Section 5.4, several follow-up computational projects

are proposed.

1.3 Organization of Dissertation

This dissertation is organized into five chapters and two appendices. Chapter 2

provides a review of recent publications that have directly lead to the study of the

6

research problem discussed in this dissertation. Chapter 3 discusses theoretical work

derived from the literature review. Chapter 4 discusses the four computational research

objectives. Chapter 5 provides a list of conjectures and research directions for future

efforts. Appendix A contains part of the computer code that was used to achieve the results

in Chapters 2 and 3. Finally, Appendix B contains the computer code that was used to

achieve the computational research results in Chapter 4.

7

II. Literature Review

2.1 Chapter Introduction

This chapter first discusses various methods that have been developed to generate OAs

using ILPs. It then presents background material on permutation groups. This is followed

by an explanation of the relationship between permutation groups as symmetry groups of

OA-generating ILPs and isomorphisms of OAs. This leads to a discussion of how to find

large subgroups of the symmetry groups of ILPs more efficiently. The chapter concludes

with a summary of the solver developed by Margot [22] that takes advantage of symmetry

groups of ILPs to more rapidly enumerate solutions.

2.2 ILPs That Generate OAs

One efficient and effective approach to generating OAs is to formulate an ILP whose

feasible set is the set of all OA(N, k, s, t). If the ILP has no feasible solution, then an

OA(N, k, s, t) does not exist.

Rosenberg [29] proved the following Lemma.

Lemma 1. Define a sequence {ac} recursively by

a0 = λ, ac = λ −

c−1∑
e=0

ae

(
k − t
c − e

)
(s − 1)c−e for c ≥ 1. (2.1)

Let z, x and y ∈ {1, · · · , s}k be row vectors with 0 ≤ d(z, x) ≤ t where d(z, x) is

the number of non-zero entries in z − x. Also, let Ix = {i ∈ {1, · · · , k} : xi , zi} and

Jx = {y ∈ {1, · · · , s}k : yi = xi ∀i ∈ Ix}. Then

Nx = at−d(z,x) + (−1)t−d(z,x)+1
∑
y∈Jx

d(z,y)>t

(
d(z, y) − d(z, x) − 1

t − d(z, x)

)
Ny,

Ny ≥ 0, for y such that d(z, y) > t,

(2.2)

8

where Nx, Ny are the number of times factor level combinations x, y appear in a conjectured

OA(λst, k, s, t).

If we are given the values of Nx for every x ∈ {1, 2, ..., s}k where d(x, z) > t, then

equation (2.2) has at most one integer solution with Nx ≥ 0 for the remaining Nx’s. The

system of linear equations in equation (2.2) can be viewed as the constraints of an ILP with

equality constraints, where the objective function cT x is chosen to be zero. All feasible

solutions of this ILP are the indicator vectors of all OA(N, k, s, t).

In a separate effort, Appa et al. [3] examined two different ways to use a combination

of constraint and integer programming to find p × p Orthogonal Latin Squares (OLS) for

3 ≤ p ≤ 12 and three p × p Mutually Orthogonal Latin Squares (MOLS). In terms of

the notation used here, k p × p MOLS correspond to an OA(p2, k + 2, p, 2). Appa et al. [2]

successfully used an ILP formulation to generate p×p OLS’s for 4 ≤ p ≤ 5 and 7 ≤ p ≤ 12.

Additionally, they proved that 6 × 6 OLS do not exist.

Without the knowledge of Lemma 1 in Rosenberg [29], Bulutoglu and Margot [7]

used an ILP formulation to enumerate OAs. They defined Dsk to be the full factorial

design where each run is treated as a base-s integer and placed in lexicographical order.

They then defined the indicator vector x where every xi is the number of times the ith

run of Dsk appears in a particular k-factor, s-level fractional factorial design D. Next, they

defined a set T of st × sk matrices obtained by taking the Kronecker products of t Is’s

and (k − t)1T
s ’s in every possible order, where Is represents the s × s identity matrix and

1s is an s × 1 vector of 1’s. As such, |T | =
(

k
t

)
and every matrix A j ∈ T has the form

A j = M1 j ⊗M2 j ⊗ ... ⊗Mk j where 1 ≤ j ≤ |T | and Mi j ∈ {1T
s , Is}. Finally, they observed

that for the set L j = {i1 j, i2 j, ..., it j |Mi j = Is}, A jx = λ1st if and only if when D is projected

onto the factors indexed by L j, all st factor level combinations appear exactly λ times. This

means that a solution to

A jx = λ1st for x ≥ 0 for j = 1, 2, ...,
(
k
t

)

9

is integral if and only if OA(N, k, s, t) exists and that each integer solution identifies an

OA(N, k, s, t) [7].

Let rmax be the maximum number of times a factor level combination can appear in an

OA(N, k, s, t) then Lemma 5 in Bulutoglu and Margot [7] implies rmax ≤ pmax, where

pmax = max Y0

s.t.
k∑

i=h

(
i
k

)
Yk−i = λst−h

(
k
h

)
for 0 ≤ h ≤ t,

Yi ∈ Z≥0 for 0 ≤ i ≤ k.

(2.3)

The computer code that they used to find pmax was also used in this dissertation.

Letting 1(k
t)st be the

(
k
t

)
st × 1 vector of 1’s and A(k, s, t) be the

(
k
t

)
st × sk matrix

A(k, s, t) =

A1

A2

...

A(k
t)

,

then Theorem 2 in Bulutoglu and Margot [7] implies that the set of all solutions to the ILP

min 1T
skx

s.t. A(k, s, t)x = λ1(k
t)st

x ∈ {0, 1, 2, ..., pmax}
sk

(2.4)

is precisely the set of indicator vectors for all OA(N, k, s, t). In ILP (2.4) the objective

function 1T
skx was introduced only for convenience and is equal to N for every feasible

solution.

10

Bulutoglu and Ryan [8] provided a more efficient version of this ILP that has only∑t
q=0 (s − 1)q

(
k
q

)
equality constraints with no redundant constraints:

min 0

s.t.
∑

(i1,...,ik)∈{0,...,s−1}k

(i j1 ,...,i jq)∈{0,...,s−2}q

x[∑k
j=1 i j sk− j+1

] =
N
sq

for q = 0, ..., t and

each subset of q

indices
{
i j1 , i j2 , ..., i jq

}
,

x1 ≥ 1,

x ∈ {0, 1, 2, ..., pmax}
sk
.

(2.5)

The constraint x1 ≥ 1 in ILP (2.5) ensures that (0, 0, ..., 0) appears at least once and helps

the solver find feasible solutions faster [8]. Using 0 as the objective function also speeds up

the enumeration process. The algorithm in Figure 2.1 summarizes how to utilize ILP (2.5)

to enumerate all OA(N, k, s, t).

1. Input N, k, s and t. Let T = ∅.

2. Determine pmax using ILP (2.3).

3. Find the set of all feasible solutions X to ILP (2.5).

4. For each solution xq ∈ X,

(a) Let the factor level combination (i1, ..., ik) appear in Tq x[∑k
j=1 i j sk− j+1

]
,q many times.

(b) Set T = T ∪ Tq.

5. Return T.

Figure 2.1: Improved Bulutoglu and Margot ILP [8] Based Algorithm

An additional formulation for strength-2 OAs arises from Hadamard matrices. A

Hadamard matrix is an orthogonal N × N matrix with entries that are either −1 or +1.

11

For any n ∈ Z≥0, OA(4n, 4n − 1, 2, 2) exist if and only if there exists a Hadamard matrix of

order 4n [13]. This is true because deleting the column of all +1’s from a N ×N Hadamard

matrix, results in an OA(N,N−1, 2, 2) where the levels are coded as −1 and +1 (Hadamard

matrices exist only if N is divisible by 4).

Williamson [34] defined Williamson matrices to be any four n × n circulant matrices

W1, W2, W3 and W4 with entries equal to −1 or +1 such that

W2
1 + W2

2 + W2
3 + W2

4 = 4nIn.

Using the Williamson matrices, a 4n × 4n Hadamard matrix H4n is constructed as

H4n =

W1 W2 W3 W4

−W2 W1 W4 −W3

−W3 −W4 W1 W2

−W4 W3 −W2 W1

. (2.6)

Let ω j be the primitive jth root of unity and ω j = ω j + ωn− j. Williamson [34] showed that

Williamson matrices exist if and only if

T 2
1 + T 2

2 + T 2
3 + T 2

4 = 4n

where each Ti has the form 1± 2ω j1 ± 2ω j2 ± ... and each ω j appears only once in only one

member of the set {T1,T2,T3,T4}. Noting that ω j = cos
(

2 jπ
n

)
+
√
−1 sin

(
2 jπ
n

)
leads to the

following theorem:

Theorem 1. Let
∑4

k=1 µ
2
k,l = 4n where n is an odd integer, l | n, µk,l , 0, and µk,l =∑b n

2c
i=0 4 cos

(
2πil

n

)
(ti2k − ti1k). Williamson matrices of order n exist if and only if there is at

least one feasible solution to the following system of equations in ti jk

4∑
k=1

µ2
k,l =

4∑
k=1

b n

2c∑
i=0

4 cos
(
2πil

n

)
(ti2k − ti1k)

2

= 4n for l | n,

4∑
k=1

2∑
j=1

ti jk = 1 for i = 1, 2, ...,
⌊n
2

⌋
,

ti jk ∈ {0, 1} for i = 1, 2, ...,
⌊n
2

⌋
, j = 1, 2 and k = 1, 2, 3, 4.

(2.7)

12

The nonlinear constraints in constraints (2.7) can be linearized as follows. First, using

t2
i jk = ti jk, expand the constraints:

4n =

4∑
k=1

µ2
k,l =

4∑
k=1

b n

2c∑
i=0

4 cos
(
2πil

n

)
(ti2k − ti1k)

2

= 16
4∑

k=1

b n

2c∑
i=0

cos2
(
2πil

n

)
(ti2k + ti1k − 2ti2kti1k)

+ 32

4∑
k=1

∑
i′<i′′

i′′≤b n
2c

cos
(
2πi′l

n

)
cos

(
2πi′′l

n

)
(ti′2kti′′2k − ti′2kti′′1k − ti′1kti′′2k + ti′1kti′′1k)

(2.8)

Next, let y(i1 j1k1)(i2 j2k2) = ti1 j1k1ti2 j2k2 , add constraints 0 ≤ ti1 j1k1 + ti2 j2k2 − 2y(i1 j1k1)(i2 j2k2) ≤ 1

for each y(i1 j1k1)(i2 j2k2) and substitute the y(i1 j1k1)(i2 j2k2)’s into equalities (2.8). The nonlinear

system of equations (2.7) is now written as the linear system of constraints (2.9):

4n = 16
4∑

k=1

b n

2c∑
i=0

cos2
(
2πil

n

) (
ti2k + ti1k − 2y(i2k)(i1k)

)
+ 32

4∑
k=1

∑
i′<i′′

i′′≤b n
2c

cos
(
2πi′l

n

)
cos

(
2πi′′l

n

) (
y(i′2k)(i′′2k) − y(i′2k)(i′′1k) − y(i′1k)(i′′2k) + y(i′1k)(i′′1k)

)
for l | n,

2y(i1 j1k1)(i2 j2k2) − ti1 j1k1 − ti2 j2k2 ≤ 0

ti1 j1k1 + ti2 j2k2 − 2y(i1 j1k1)(i2 j2k2) ≤ 1
for each y(i1 j1k1)(i2 j2k2),

4∑
k=1

2∑
j=1

ti jk = 1 for i = 1, 2, ...,
⌊n
2

⌋
,

y(i1 j1k1)(i2 j2k2) ∈ {0, 1}, ti jk ∈ {0, 1} for i = 1, 2, ...,
⌊n
2

⌋
, j = 1, 2 and k = 1, 2, 3, 4.

(2.9)

Hence, the system of quadratic constraints (2.8) with 4n − 4 binary variables is turned into

a linear system of constraints with 4n − 4 + 4
⌊

n
2

⌋
+ 4

(
b n

2c
2

)
= (n2 − 1)/2 + 4n − 4 binary

variables. Combining Theorem 1 and Example 9.1 in Seberry and Yamada [31] leads to

the algorithm in Figure 2.2.

13

1. Let n ∈ Z≥0, N = 4n, and n
2 < Z≥0. Let U be an empty set of OA(N,N − 1, 2, 2).

2. Find all solutions to the Binary Integer Linear Program (BILP) (using constraints (2.9)):

min 0

s.t. 4n = 16
4∑

k=1

b n

2 c∑
i=0

cos2
(

2πil
n

) (
ti2k + ti1k − 2y(i2k)(i1k)

)
+ 32

4∑
k=1

∑
i′<i′′

i′′≤b n
2 c

cos
(

2πi′l
n

)
cos

(
2πi′′l

n

) (
y(i′2k)(i′′2k) − y(i′2k)(i′′1k) − y(i′1k)(i′′2k) + y(i′1k)(i′′1k)

) for l | n,

2y(i1 j1k1)(i2 j2k2) − ti1 j1k1 − ti2 j2k2 ≤ 0

ti1 j1k1 + ti2 j2k2 − 2y(i1 j1k1)(i2 j2k2) ≤ 1
for each y(i1 j1k1)(i2 j2k2),

4∑
k=1

2∑
j=1

ti jk = 1 for i = 1, 2, ...,
⌊n
2

⌋
,

y(i1 j1k1)(i2 j2k2) ∈ {0, 1}, ti jk ∈ {0, 1} for i = 1, 2, ...,
⌊n
2

⌋
, j = 1, 2 and k = 1, 2, 3, 4.

(2.10)

3. Let Y be the set of all solutions to ILP (2.10) and tq =
(
ti jkq

)
∈ Y be the qth solution to ILP (2.10).

Let Wkq for k = 1, 2, 3, 4 be the set of Williamson matrices calculated from the solution Yq. Also, let

wk, j,q denote the jth element of the first row of Wkq. Finally, let Hq be the 4n × 4n Hadamard matrix

calculated from the Wkq’s.

4. For each tq ∈ Y

(a) Set wk,1,q = 1, wk, j,q = t(j−1),2,k,q − t(j−1),1,k,q and wk,n− j+2,q = wk, j,q for j = 2, 3, ...
⌊

n
2

⌋
+ 1 and

k = 1, 2, 3, 4.

(b) For each k = 1, 2, 3, 4, Wkq =

wk,1,q wk,2,q · · · wk,n,q

wk,n,q wk,1,q · · · wk,n−1,q

wk,n−1,q wk,n,q · · · wk,n−2,q

...
...

. . .
...

wk,2,q wk,3,q · · · wk,1,q

.

(c) Use equation (2.6) to calculate Hq using the Wkq’s found in previous step. Update Hq by

removing its first column and set U = U ∪
{
Hq

}
.

5. Return U.

Figure 2.2: Algorithm to Generate OA(N,N − 1, 2, 2) from Williamson Matrices

14

The most efficient ILP formulations for enumerating all OA(N, k, s, t) extend all

OA(N, i, s, t) to all OA(N, i+1, s, t) for t ≤ i ≤ k−1. Bulutoglu and Ryan [8] demonstrated a

BILP formulation that extends a given OA(N, k − 1, s, t) to all possible OA(N, k, s, t). Their

BILP formulation is based on the following lemma in [8]

Lemma 2. Let D be a N-run, k-factor, s-level factorial design with columns {d1, d2, ..., dk}.

Let D′ be the N × (s − 1) k matrix with columns {d′1, d
′
2, ..., d

′
(s−1)k} where for j = 1, 2, ..., k

and r = 1, 2, ..., s − 1 the ith entry of d′(s−1)(j−1)+r is 1 if the ith entry of d j is r − 1 and is 0

otherwise. Then D is an OA(N, k, s, t) if and only if

N∑
i=1

d′ih1
d′ih2
· · · d′ihq

=
N
sq for q = 1, 2, · · · , t, (2.11)

and for all subset of size q columns {d′h1
, d′h2

, ..., d′hq
} of D′ such that dhi′/ (s − 1)e ,⌈

h j′/ (s − 1)
⌉
∀ 1 ≤ i′ < j′ ≤ (s − 1) k.

Let D′ be a solution to the system of equations (2.11). Let the jth column of D, D j be

D j =

s−1∑
r=1

(r − 1)d′(s−1)(j−1)+r + (s − 1)

1N −

s−1∑
r=1

d′(s−1)(j−1)+r

for j = 1, 2, ..., k [8]. Then, D is the corresponding OA(N, k, s, t) obtained from D′. For a

known N-run, (k−1)-factor, s-level OA(N, k−1, s, t) D, Bulutoglu and Ryan [8] showed that

all OA(N, k, s, t) extensions of D can be constructed by utilizing a BILP via the algorithm

described in Figure 2.3. All possible extensions of all OA(N, k − 1, s, t) to all OA(N, k, s, t)

are obtained by implementing the algorithm in Figure 2.3 with each OA(N, k − 1, s, t) D as

input.

15

1. Follow Lemma 2 to construct D′ from input D.

2. Append to D′ s−1 columns of binary variables xr = (x1r, x2r, ..., xNr)T for each r = 1, 2, ..., s−1. (The

system of equations (2.11) is linear with binary variables.)

3. For each pair of replicated run indices 1 ≤ i′′ < j′′ ≤ N in the input design and for any q − 1 columns

d′h1
,d′h2

, ...,d′hq−1
as in Lemma 2 with the last (s − 1) columns of D deleted, find all feasible solutions

to the BILP

min 0

s.t.
N∑

i=1

xir =
N
s

for r = 1, 2, ..., s − 1,

N∑
i=1

d′ih1
d′ih2
· · · d′ihq−1

xir =
N
sq for q = 2, ..., t and r = 1, 2, ..., s − 1,

s−1∑
r=1

xir ≤ 1 for i = 1, 2, ...,N,

r∑
m=1

(
xi′′m − x j′′m

)
≥ 0 for r = 1, 2, ..., s − 1,

x1,1 = 1,

xr ∈ {0, 1}N for r = 1, 2, ..., s − 1.

(2.12)

4. Each solution matrix [x1, x2, ..., xs−1] to BILP (2.12) corresponds to an OA(N, k, s, t) extension of the

input OA(N, k − 1, s, t) and every extension corresponds to a solution matrix.

Figure 2.3: Identity Group Algorithm from Bulutoglu and Ryan [8]

Bulutoglu and Ryan [8] combined the ILP formulations in Figures 2.1 and 2.3 to create

another formulation that extends all OA(N, k − 1, s, t) to all OA(N, k, s, t) as in the above

algorithm. This new formulation reduces the number of variables from sk in ILP (2.5) to

hs, where h is the number of distinct runs in the extended OA(N, k−1, s, t). This additional

extension formulation is described in Figure 2.4.

16

1. Follow Lemma 2 to construct D′ from input D. Let ri for i = 1, 2, · · · , sk−1 be the number of

times the ith row of Dk−1
s appears in the input design, where Dk−1

s is all the sk−1 level combinations

with k − 1 factors ordered lexicographically. Set h equal to the number of distinct runs in D. Let

1 ≤ i1 ≤ i2 ≤ · · · ≤ ih ≤ sk−1 be such that ril > 0 for l = 1, 2, · · · , h.

2. Define 1 = p1 ≤ p2 ≤ ... ≤ ph ≤ N such that the pl+1th row is the first row that differs from the

plth row. Also, let x be the indicator vector for the desired OA(N, k, s, t) formatted as a solution to

ILP (2.5) and xh(s−1) be x with all of the entries that do not appear in the constraint matrix of ILP (2.13)

deleted. This leaves the vector xh(s−1) with h(s − 1) entries.

3. For any q − 1 columns d′α1
,d′α2

, ...,d′αq−1
as in Lemma 2 with the last (s − 1) columns of D′ deleted,

find all solutions to ILP (2.13).

min 0

s.t.
h∑

l=1

x(il−1)s+ j = λst−1,

h∑
l=1

d′plα1
d′plα2

· · · d′plαq−1
x(il−1)s+ j = λst−q,

s−1∑
j=1

x(il−1)s+ j ≤ ril ,

x1 ≥ 1,

x(il−1)s+ j ∈
{
0, 1, ...,min

(
ril , pmax

)}
,

for q = 2, ..., t, j = 1, 2, ..., s − 1, l = 1, 2, ..., h and dαi′/(s − 1)e ,
⌈
α j′/(s − 1)

⌉
∀ 1 ≤ i′ < j′ ≤ (s − 1)(k − 1).

(2.13)

4. Each solution xh(s−1) corresponds to an OA(N, k, s, t) extension of the input OA(N, k−1, s, t) and every

such extension corresponds to a solution.

Figure 2.4: Extension to Improved Bulutoglu and Margot ILP [8]

Permuting the levels (symbols) of a factor in a factorial design is called a level

permutation. Two k-factor factorial designs are called isomorphic if one can be obtained

from the other by permuting its columns, rows, and applying level permutations in its

17

factors. For a given s-level, k-factor, N-run factorial design D, Bulutoglu and Ryan [8]

defined a graph G(D). They showed that D1 and D2 are isomorphic designs if and only

if G(D1) and G(D2) are isomorphic graphs. The following steps extend the algorithm in

Figure 2.4 to enumerate all non-isomorphic OA(N, k, s, t) for t+1 ≤ k ≤ kmax(N, s, t), where

kmax(N, s, t) is the maximimum number of factors such that an OA(N, kmax(N, s, t), s, t)

exists.

5. If there are no solutions, STOP.

6. Convert each OA(N, k, s, t) from Step 4 to the graph defined by Bulutoglu and Ryan [8]. Let Ω be the

set of resulting graphs.

7. Reduce Ω to a set of nonisomorphic graphs by using Nauty [25].

8. Retain only the OA(N, k, s, t)’s that correspond to the retained graphs.

9. Set k = k + 1 and GO TO Step 1.

Figure 2.5: Additional Steps to Figure 2.4 to Enumerate Non-Isomorphic OA(N, k, s, t) [8].

For s = 2, the following definitions and theorem were used by Bulutoglu [6] to extend

the algorithm in Figure 2.4 to find the maximum number of factors, kmax such that an

OA(N, kmax, 2, t) exists.

Definition 1. Let Y1 and Y2 be 2-level, k-factor factorial designs whose levels are ±1.

Then, Y1 and Y2 are called Hadamard equivalent if Y2 can be obtained from Y1 by applying

signed permutations to the columns and/or rows of Y1 [24].

Definition 2. Let X1 and X2 be 2-level, k-factor factorial designs whose levels are ±1.

Then, X1 and X2 are called Orthogonal Design (OD) equivalent if [1 X2] is Hadamard

equivalent to [1 X1] [6].

Bulutoglu [6] showed the following result:

18

Theorem 2. Let k1 < k2 and X1 be an OA(N, k1, 2, t) that extends to an OA(N, k2, 2, t). If X2

is an OA(N, k1, 2, t) that is OD equivalent to X1, then X2 also extends to an OA(N, k2, 2, t).

For a 2-level, k-factor, N-run design Y1, McKay [24] defined a graph X(Y1) with

2 (k + N) vertices and showed that Y1 is Hadamard equivalent to Y2 if and only if X (Y1)

and X (Y2) are isomorphic graphs.

For s = 2, the algorithm in Figure 2.5 is modified to find a set of all non-OD equivalent

OA(N, k, 2, t) for k ≤ kmax(N, 2, t) by replacing Step 6 with the following step:

6. Add a column of 1’s to each OA(N, k, 2, t) from Step 4. Convert each resulting design to the graph

defined by McKay [24]. Let Ω be the set of resulting graphs.

Figure 2.6: New Step 6 in Figure 2.5 Algorithm to Find kmax(N, 2, t) [6].

The modified Figure 2.5 algorithm is faster as it requires solving much fewer ILPs at each

extension step. Also, a set of all non-isomorphic OA(N, k, 2, t) can be extracted from a set

of non-OD equivalent OA(N, k, 2, t). Hence, the modified Figure 2.5 algorithm can be used

to enumerate all non-isomorphic OA(N, k, 2, t) for k ≤ kmax(N, 2, t).

These are just a few different ways that ILPs are used to enumerate OAs. The next

section defines the symmetry group of an ILP.

2.3 Symmetry Groups in ILPs

In order to study the symmetries of an ILP, some definitions are introduced. In =

{i ∈ Z>0 | i ≤ n} is the ground set of size n. Let S n be the set of all permutations of

the elements in In. Let πi be the image of i ∈ In under the permutation π. The identity

permutation I is such that πi = i ∀ i ∈ In. For any v ∈ Rn, let w = π(v) indicate the

vector w ∈ Rn that results from applying the permutation π to v. For any two permutations

π1, π2 ∈ S n, the composition of these two permutations is π1(π2). The common notation

19

for this is π1 · π2. The identity for the composition of permutations is the aforementioned

identity permutation I, where π · I = I · π = π ∀ π ∈ S n. For any π1, π2, π3 ∈ S n,

(π1 · π2) · π3 = π1 · (π2 · π3) i.e. the composition of permutations is associative [23].

The subset G ⊆ S n is called a group if it has the following properties:

1. I ∈ G.

2. π1 · π2 ∈ G ∀ π1, π2 ∈ G.

3. For all π ∈ G, there exists a unique inverse π−1 ∈ G such that π · π−1 = π−1 · π = I.

The number of permutations in G is called the order of the group, denoted by |G|. For

example, |S n| = n!. A subgroup is a subset of G that is also itself a group. All groups in

this dissertation have finite order, as their elements are permutations of finite sets [23].

Margot [23] defined the symmetry group G of an ILP as

G = {π ∈ S n | cT x = cTπ(x) and π(x) ∈ F ∀ x ∈ F },

where F is the set of all feasible solutions to the ILP. Elements of a set Ω ⊆ S n which can

be composed in some way some number of times to obtain each permutation in the group

G ⊆ S n, are called generators of the group G, and G is said to be generated by Ω. A set

of O(n2) generators is all that is needed to generate any subgroup of S n [23]. Additionally,

the stabilizer of a vector v ∈ Rn under G is

stab(v,G) = {π ∈ G | v = π(v)}

and the orbit of a vector v ∈ Rn under G is

orb(v,G) = {w ∈ Rn | w = π(v) for at least one π ∈ G ⊆ S n}.

The restriction of G to J is the set of all permutations of just the elements of a nonempty set

J ⊆ {1, 2, ..., n} that are induced by the permutations in stab(J,G). The restriction is itself

a group. Finally, v ∈ Rn is lexicographically smaller (larger) than w ∈ Rn if v j = w j and

vk < wk (vk > wk) for some k with 1 ≤ j < k and 1 ≤ k ≤ n. The notation for this is v <L w

(v >L w) [23].

20

The definitions provided in this section provide a framework for the discussions in the

next section. Next section discusses how symmetry groups in OA-generating ILPs relate to

isomorphism of OAs.

2.4 Symmetry in ILPs and Isomorphism of OAs

As previously discussed, OAs are known to be universally optimal for estimating

certain statistical models [35]. It is well known that isomorphic designs have the same

GWP. Thus, the GMA property is invariant between isomorphic designs. It is often quite

difficult to determine whether an OA(N, k, s, t) exists for a given N, k, s, t combination.

However, if one OA(N, k, s, t) is found, it is just a matter of permuting symbols, rows

and/or columns to find other OAs that are isomorphic to this OA.

Additionally, since the ILPs of interest are constructed to generate OAs that are

isomorphic to many other OAs, these ILPs all contain variables that can be permuted

without changing the problem. Any ILP that contains at least some variables that

can be permuted without changing the feasibility and optimality of its solutions is said

to be symmetric. Many classical problems in operations research, combinatorics and

statistical experimental design are formulated as symmetric ILPs. In addition to generating

orthogonal arrays, symmetric ILPs are frequently encountered in job scheduling, code

construction, covering design construction and graph coloring problems [23].

There are a number of commercial and academic solvers available that are designed to

find all optimal solutions to ILPs. The Branch-and-Bound and Branch-and-Cut algorithms

are commonly used. Several researchers have been successful in using variations of these

algorithms to generate OAs from symmetric ILPs (see [2], [3], [8], and [7]).

For symmetric ILPs, many of the subproblems in the ILP enumeration tree are

isomorphic, meaning that a substantial amount of computational effort is wasted on solving

subproblems that are identical to each other [23]. Hence for symmetric ILPs with large

symmetry groups, it can be very difficult to find optimal solutions or prove infeasibility

21

using the classical algorithms. Margot [22] developed a solver that eliminates evaluation

of isomorphic subproblems in the ILP enumeration tree, thereby greatly speeding up the

enumeration of the ILP solutions. The Margot ILP solver [22] exploits the symmetry group

of an ILP in pruning its enumeration tree.

Bulutoglu and Margot [7] defined the isomorphism group Gs,k of a k factor, s-level

design D to be the group of all permutations of factors as well as permutations of levels

within each factor in D. The definition of Gs,k does not mention runs. This is because

run order is irrelevant when a factorial design is viewed as a set of frequencies for the

set of distinct runs possible in the design [7]. There exists an element g ∈ Gs,k such that

g (x1) = x2 if and only if x1 and x2 are the indicator vectors of isomorphic designs D1

and D2. Note that
∣∣∣Gs,k

∣∣∣ = k!(s!)k and Gs,k � S s o S k, where o is the wreath product.

Bulutoglu and Margot [7] showed that the Branch-and-Cut with isomorphism pruning

algorithm in Margot [22] returns exactly one OA(N, k, s, t) for each isomorphism class if it

uses the group Gs,k [7].

The automorphism group of an ILP of the form

min cT x

s.t. Ax = b,

d ≥ x ≥ 0, di, xi ∈ Z≥0,

(2.14)

is defined as

G (A,b, c,d) = {π ∈ S n | π(c) = c, π(d) = d and ∃ σ ∈ S m : A(π, σ) = A and σ(b) = b} , (2.15)

where A (π, σ) is the matrix obtained by permuting the rows of A according to σ and

columns according to π. Bulutoglu and Margot [7] proved the following theorem:

Theorem 3. For ILP (2.4), let G(A, λ1, 1, pmax1) be the automorphism group of the ILP, Gs,k

be the isomorphism group of an OA(N, k, s, t) and S sk be the set of all possible permutations

of
{
1, 2, ..., sk

}
. Then, Gs,k ⊆ G(A, λ1, 1, pmax1) for 0 < t < k and Gs,k ⊂ G(A, λ1, 1, pmax1) =

S sk otherwise.

22

Margot [23] declares two solutions to ILP (2.14) to be isomorphic if one can

be obtained from the other by applying a permutation belonging to the automorphism

group G (A,b, c,d). Bulutoglu and Margot [7] used the isomorphism pruning integer

programming solver developed by Margot [22] to enumerate all non-isomorphic orthogonal

arrays for many N, k, s, t combinations. Their enumeration was based on finding all non-

isomorphic solutions to ILP (2.4) using the group G(A, λ1, 1, pmax1). This was allowed, as

in all the cases they considered,
∣∣∣Gs,k

∣∣∣ = |G(A, λ1, 1, pmax1)|.

The results obtained by Bulutoglu and Margot [7] based on Theorem 3 indicate that

there are major efficiencies to be gained by using the isomorphism pruning method in

Margot [22] to solve ILPs of the form in ILPs (2.4) and (2.13). However, in order for

the Margot ILP solver [22] to be more effective, an efficient methodology for identifying

all symmetries in ILPs is required.

2.5 Identifying Symmetries in ILPs

Clearly, the automorphism group of an ILP of the form (2.14) is a subgroup of its

symmetry group. However, there is no guarantee that all symmetries of such an ILP

will be captured by its automorphism group. In fact, it is easy to construct examples of

ILPs with equality constraints only in which the symmetry group is much larger than the

automorphism group. On the other hand, identifying the full symmetry group G for an ILP

formulation is a difficult open problem.

Therefore, it is worthwhile to develop techniques to find a set of generators of the

symmetry group for any ILP. The most difficult obstacle to overcome when developing such

a technique is that the makeup of G is inherently determined by the ILP’s feasible set [23].

For example, the definition of a symmetry group says that G = S n for an infeasible ILP

with n variables. Margot [23] proved that deciding if G = S n is an NP-Complete problem.

Hence, finding the symmetry group G of an ILP is NP-Hard. Assuming P , NP, there is

no way to find a polynomial-time algorithm for finding generators of G. One approach that

23

is often effective is to find the symmetry group of the LP relaxation of the ILP. Margot [23]

defined this group as the set of all permutations of the LP that send feasible points to

feasible points with the same objective function value. GLP is the set of all permutations

that send facets of the LP relaxation to facets and fixes the objective function provided that

the LP relaxation is full dimensional. Then for an ILP in the form

min cT x,

s.t. Ax ≥ b,

x ∈ Zn
≥0,

(2.16)

G(A,b, c) = GLP provided that the LP relaxation of the ILP has no redundant constraints

and contains interior points (i.e. it is full dimensional). On the other hand, for an ILP of the

form (2.14), all we can say is G(A,b, c) ≤ GLP. In Chapter 4, methods are developed to find

GLP for ILPs with equality constraints only. GLPs of LPs with equality constraints have not

yet been studied in the literature. F (k, s, t) ⊆ F (k, s, t)LP implies GLP ≤ G as non-integer

solutions in F (k, s, t)LP can break symmetries that would otherwise be present in G [23]. It

is possible that working with GLP may be less efficient, but for most ILP formulations of

OAs are such that GLP is either a large subgroup of G or it is equal to G itself.

Now, consider the matrix

L =

0 AT

A 0

where A is the (0, 1) ILP (2.16) constraint matrix. The matrix L can be seen as the

adjacency matrix of a bipartite graph K with colored vertices. K has one vertex for each

row and one vertex for each column of A. The set of vertices for the rows constitute one

side of the bipartition and the vertices for the columns constitute the other. Two column

(row) vertices in K have the same color if and only if their corresponding objective function

(right hand side) coefficients are equal. Margot [23] showed that the automorphism group

of K is equal to G(A,b, c). (The automorphism group of a vertex colored graph is the set of

24

all permutations of its vertices that send adjacent vertices to adjacent vertices and preserve

colors.)

In cases where the ILP constraint matrix A is not (0, 1), there are many mappings of the

ILP to an edge colored vertex colored graph such that the color preserving automorphisms

of the graph correspond to the symmetries of the ILP. One example in the literature

is in [30]. In this work, the code created by Bulutoglu and Ryan [8] is used for this

purpose. The problem of determining the automorphism group of a graph is at least

as computationally complex as the famous Graph Isomorphism problem [23]. However,

there are software packages available such as Nauty [25] and GAP [12] that can solve this

problem in most instances.

2.6 Margot ILP Solver [22]

The Margot ILP solver [22] utilizes a modified version of the Branch-and-Cut

algorithm for solving ILPs. The modification is in the pruning step. Instead of pruning

just one subproblem, the Margot ILP solver [22] prunes the entire set of isomorphic

subproblems. For ILPs whose symmetry groups are large, this modification greatly

increases the efficiency of the Branch-and-Cut if one is able to exploit a large subgroup

of the symmetry group.

Margot developed his modified Branch-and-Cut algorithm over a series of papers

[19], [20], [21] and [22]. The reader is referred to [21] for the most basic version of his

Branch-and-Cut algorithm for binary ILPs. In [19], he made his algorithm more efficient by

introducing zero setting. In [20], he incorporated strict zero setting and ranked branching.

In [22], he generalized his algorithm in [20] to bounded ILPs where each variable is

bounded by a constant.

The next chapter discusses theoretical work that lead to the research objectives and

results listed in Chapter 4.

25

III. Theoretical Research

3.1 Chapter Introduction

This chapter dicusses the theoretical research efforts based on the review of current

literature provided in Chapter 2. In Section 3.2, Lemma 1 is used to define the linear

relaxation orthogonal array polytope of an OA(λst, k, s, t). An OA(λst, k, s, t) exists if

and only if its linear relaxation orthogonal array polytope contains integer vectors where

each integer vector represents an OA(λst, k, s, t). In this section, it is shown that the

stated formulation defining the linear relaxation orthogonal array polytope does not contain

redundant inequalities. This implies that each inequality is a facet. In Section 3.3, a

large subgroup of all the permutation symmetries of the linear relaxation orthogonal array

polytope of OA(λst, k, s, t) is found. It is shown that the subgroup found is equal to the

group of all the permutation symmetries. This result is computationally verified for many

cases.

3.2 The Linear Relaxation OA Polytope

The following theorem follows immediately from Lemma 1 in Section 3.2 by taking

z = 1 and observing that Nx ≥ 0.

Theorem 4. Let {ac} and Ix be as in Lemma 1. Let 0 ≤ d(1, x) ≤ t and

at−d(1,x) + (−1)t−d(1,x)+1
∑
y∈Jx

d(1,y)>t

(
d(1, y) − d(1, x) − 1

t − d(1, x)

)
Ny ≥ 0,

Ny ≥ 0,

(3.1)

where Jx = {y ∈ {1, · · · , s}k : yi = xi ∀i ∈ Ix}. Then an OA(λst, k, s, t) exists if and only if

there exist integers Ny satisfying the inequalities (3.1).

Theorem 4 converts the Bulutoglu and Margot [7] ILP with equalities to an ILP

problem with inequalities only. This is done by deleting the set of basic variables Nx with

26

d(x, 1) ≤ t after implementing Gaussian elimination. Deletion of these variables is only

possible because the coefficients of all Nx are 1 and the coefficients of Ny with d(y, 1) > t

are all integers at the end of Gaussian elimination. The substance of Lemma 1 from [29]

is that it correctly identifies which set of basic variables has elements that are all integer

combinations of the remaining variables. This enables the deletion of this set of variables

from the Bulutoglu and Margot [7] ILP. The new ILP has the form

min 0

s.t. A′(k, s, t)x′ ≥ bm

x ∈ {0, 1, 2, ..., pmax}
sk−m,

(3.2)

where m =
∑t

i=0

(
k
i

)
(s − 1)i, and A′(k, s, t), bm, x′ are the results of applying Gaussian

elimination to
[
A(k, s, t) | λ1(k

t)st

]
and deleting the basic variables Nx.

For a general ILP with only equality constraints over non-negative integer vectors,

deleting variables by using Gaussian elimination may not always be possible. This can be

the case for one of two reasons. First, there may be no set of basic variables whose elements

are integer combinations of the remaining variables plus some integer. Second, it may be

very difficult to identify such a set of basic variables. For example, for the ILP in [7] when

k = 8, s = 2 and t = 3, the proportion of such sets of of basic variables to all sets of basic

variables was estimated to be .5%. This estimate was calculated by repeating the following

procedure 1000 times.

1. Randomly permute the columns of the constraint matrix.

2. Augment the resulting matrix with its right hand side.

3. Row reduce it to its reduced row echelon form.

4. Record if the output has only integer entries.

The MATLAB code to execute this procedure is given in Section A.2.

27

The following definition arises naturally from Theorem 4.

Definition 3. Let m =
∑k

i=(t+1)

(
k
i

)
(s − 1)i. The set of Ny ∈ Rm with k ≥ d(1, y) ≥ t + 1

that satisfy the system of inequalities (3.1) is called the linear relaxation polytope of

OA(λst, k, s, t).

Let OAP(k, s, t, λ) denote the linear relaxation polytope of OA(λst, k, s, t). Note that

OAP(k, s, t, λ) is a polytope not an unbounded polyhedron because it can be embedded

inside the hypercube [0, λ]m.

Theorem 5. The OAP(k, s, t, λ) is full dimensional for all λ.

Proof. Let m be as above and 1m be the m × 1 vector of all 1s. This result is proven by

showing that λ/sk−t1m is an interior point of the OAP(k, s, t, λ). Rosenberg [29] showed that

the system of equations in Lemma 1 is equivalent to

∑
x∈[s]k

xi=ai∀i∈I

Nx = λ for all t-subsets I of [k] and all a ∈ [s]k (3.3)

where [s]k = {1, 2, · · · , s}k and [k] = {1, 2, · · · , k}. It is clear that λ/sk−t1sk solves the

system of equations (3.3) in Rsk

≥0. Then Nx = λ/sk−t and Ny = λ/sk−t for d(x, 1) ≤ t and

d(y, 1) > t respectively solves the system of equations (2.2) Lemma 1 in Rsk

≥0. Now, clearly

λ/sk−t1m satisfies all the inequalities defining the OAP(k, s, t, λ) strictly. Hence, it is an

interior point. �

The following theorem proves that no constraint in Theorem 4 is redundant unless

k = t + 1 and s = 2.

Theorem 6. Each one of the distinct sk inequalities in Theorem 4 defining the OAP(k, s, t, λ)

is a facet and no facet is repeated unless k = t + 1 and s = 2.

Proof. At least one of the inequalities in (3.1) is a facet since otherwise OAP(k, s, t, λ)

would be an unbounded polyhedron. Then there exists Ny ∈ Rm satisfying all but the

28

facet defining inequality in (3.1). Let N f (u0)
u0 < 0, N f (u0)

u0 ∈ R be the left hand side in

constraints (2.2) corresponding to the facet defining inequality in (3.1), where

f (u) =

x if d(u, 1) ≤ t,

y otherwise.

Hence, there exists vectors Ny ∈ Rm and Nx ∈ Rsk−m that satisfy the equations in

constraints (2.2) such that Ny
y ≥ 0 and N x

x ≥ 0 for x , u0 and y , u0, where N f (u0)
u0 < 0 . The

group Gs,k � S s o S k sends vectors in Rsk
that satisfy the equations in constraints (2.2) to

vectors that satisfy the same equations. Furthermore Gs,k acts transitively on the variables

of constraints (2.2). Hence, for each u0 ∈ [s]k, there exists a solution with N f (u0)
u0 < 0

and N f (w)
w ≥ 0 for w , u0, w ∈ [s]k . Then there exists Ny ∈ Rm satisfying all but one

facet defining inequality in (3.1) whose left hand side is N f (u0)
u0 < 0 in constraints (2.2) for

arbitrary u0 ∈ [s]k. Hence, there are no distinct redundant inequalities in (3.1) and each

distinct inequality is a facet.

Observe that unless k = t + 1 and s = 2, {y ∈ Jx1 : d(1, y) > t} , {y ∈ Jx2 : d(1, y) > t}

whenever x1 , x2. Hence, no facet is repeated unless k = t+1 and s = 2. For the degenerate

case k = t + 1 and s = 2, there is only one variable Ny
(2,2,··· ,2) and one gets Ny

(2,2,··· ,2) ≥ 0 and

−Ny
(2,2,··· ,2) ≥ −λ each repeated 2k−1 times. �

Remark 1. While it is true that S s oS k acts as a group of symmetries on OAP(k, s, t, λ), this

action is no longer as a group of linear transformations (as is the case for the full system of

equations (3.3)), but rather as a group of affine transformations. In particular S s o S k does

not permute the variables of OAP(k, s, t, λ), but rather, it acts by permuting the half-spaces

defined by inequalities (3.1). Furthermore, this action is transitive.

Theorem 6 was verified when λ = 1 for each of s = 2, 4 ≤ k ≤ 13, 2 ≤ t ≤ k − 2,

s = 3, 3 ≤ k ≤ 8, 2 ≤ t ≤ k − 1 and s = 4, 3 ≤ k ≤ 6, 2 ≤ t ≤ k − 1 cases. This verification

was based on finding interior points on each facet of the OAP(k, s, t, λ).

29

Let Bx ≤ d be the system of inequalities in Theorem 4 defining the OAP(k, s, t, λ).

Let Bix ≤ di be the same system after the i’th inequality is deleted. Also, let (bi)T be the

i’th row of B and Fi be the hyperplane defined by the equality (bi)T x = di. To find interior

points on Fi ∩OAP(k, s, t, λ), each face of the OAP(k, s, t, λ), feasible solutions were found

to the following linear program

min 1T x

such that (bi)T x = di

Bix ≤ di − 1
10001.

The MATLAB code to implement this test is found in Section A.4.

3.3 Permutation Symmetries of the OA Polytope

First, a definition for the permutation symmetries of a polytope:

Definition 4. Let P be a full dimensional polytope in Rm. A permutation of coordinates of

Rm that also sends P onto itself is called a permutation symmetry of P. The set of all such

transformations forms a group called the permutation symmetry group (Π(P)) of P.

The variables Ny in Theorem 4 are indexed by all factor level combinations y ∈ [s]k

with d(y, 1) > t and Π(OAP(k, s, t, λ)) permutes those variables. The following theorem

explicitly describes a nontrivial subgroup of Π(OAP(k, s, t, λ)).

Theorem 7. Let

Hk,s,t �

S sk−1 if t = 0,

S (s−1) o S k if 0 < t < k and (k > t + 1 or s > 2),

I otherwise,

and I be the identity group. Also, let Y = {y ∈ [s]k : d(y, 1) > t}. Then, when Hk,s,t is

not defined to be I, it naturally embeds as the group of permutations that preserve Y, and

Hk,s,t ⊆ Π(OAP(k, s, t, λ)).

30

Proof. It is easy to see that each element of Hk,s,t maps Definition 3 defining constraints

of the OAP(k, s, t, λ) to each other. Then, v ∈ OAP(k, s, t, λ) ⇒ h(v) ∈ OAP(k, s, t, λ) for

all h ∈ Hk,s,t. Hence, Hk,s,t maps the OAP(k, s, t, λ) into itself. On the other hand, for a

given v ∈ OAP(k, s, t, λ), one has h(h−1(v)) = v as h−1(v) ∈ OAP(k, s, t, λ). This implies

that h(OAP(k, s, t, λ)) = OAP(k, s, t, λ) for each h. Hence, Hk,s,t ⊆ Π(OAP(k, s, t, λ)).

The second part of the theorem follows directly from the definition of wreath product of

groups. �

Remark 2. For k = t + 1 and s = 2 there is only one variable Ny with d(y, 1) > t, hence

Π(OAP(k, s, t, λ)) = I. For the case t = 0, there is one constraint on the sk − 1 variables.

The coefficients of this constraint are all −1s, hence Hk,s,0 � S sk−1. If t = k there are no

variables in inequalities (3.1).

Next, tools are developed for computing Π(OAP(k, s, t, λ)). As noted in [23], the set of

all permutations of coordinates in Rm mapping P onto itself consists of all permutations of

coordinates that map facets of P onto its facets. Hence, if all the facets of an OAP(k, s, t, λ)

are known, then Π(OAP(k, s, t, λ)) can be computed explicitly. Π(OAP(k, s, t, λ)) were

computed explicitly for all the k, s, t combinations in which Theorem 6 was verified. This

was done by first finding

Gk,s,t = {π | ∃ σ : Ak,s,t(π, σ) = Ak,s,t}

where Ak,s,t is the constraint matrix of inequalities (3.1) in Theorem 4 and Ak,s,t(π, σ) is

the resulting matrix when the rows of Ak,s,t are permuted according to σ and columns

according to π. Then, Hk,s,t ≤ Π(OAP(k, s, t, λ)) ≤ Gk,s,t as Π(OAP(k, s, t, λ)) must preserve

the constraint matrix. Calculating Gk,s,t over directly calculating Π(OAP(k, s, t, λ)) was

done for the sake of convenience. Finding only Gk,s,t proved to be sufficient in all the cases

31

considered. Gk,s,t was calculated as described in [23], by first mapping the matrix 0 Ak,s,t

AT
k,s,t 0

to an edge colored graph and then finding the automorphism group. The code to generate

the constraints (3.1) is found in Section A.3. The code used to generate Gk,s,t for various

values of k, s and t can be found in Section A.4. Nauty software [25] was used to

find the automorphism groups. In all the k, s, t cases studied, it was found that |Gk,s,t| =

((s − 1)!)kk! = |Hk,s,t| implying Hk,s,t = Π(OAP(k, s, t, λ)). To prove this observation, the

following two lemmas are required.

Lemma 3. Let GG be the group of maps φ from [s]k to [s]k that preserve the Hamming

distance, i.e. d(x, y) = d(φ(x), φ(y)) for all φ ∈ GG then GG � S s o S k. Furthermore, if G1

is the subgroup of GG such that τ(1) = 1 for all τ in G1 then G1 � S (s−1) o S k.

Proof. Replace Fq with Zs, the ring of integers mod s and F∗q with Zs − {0} in Theorem 5

and Theorem 6 as well as in their proofs in [11]. Also, replace the term “vector space”

with “Zn
s”. Then the resulting theorems and their proofs are still valid as the proofs never

use the multiplicative invertibility of non-zero elements. Now, replace {0, 1, · · · , s−1} with

{1, · · · , s} to get

GG = S {1,··· ,s} o S k � S s o S k

and

G1 = S {2,··· ,s} o S k � S (s−1) o S k.

�

Lemma 4. If k − t ≥ 2 then {ac}
t
c=0 in Theorem 4 are all non-zero and distinct.

Proof. {ac}
t
c=0 in Lemma 1 are the same {ac}

t
c=0 in Theorem 4. Nx = λ/sk−t and Ny = λ/sk−t

solves the Lemma 1 system of constraints. Plugging in Nx = λ/sk−t, Ny = λ/sk−t and

32

multiplying both sides of equations (2.2) by sk−t/λ leads to

sk−t

λ
at−d(z,x) = 1 + (−1)t−d(z,x)

∑
y∈Jx

d(z,y)>t

(
d(z, y) − d(z, x) − 1

t − d(z, x)

)
. (3.4)

Taking z = 1 and x = (2(1r)T , (1k−r)T) equation (3.4) implies that

sk−t

λ
at−r = 1 + (−1)t−r

k−t∑
i=1

(s − 1)(t−r+i)
(

k − r
t + i − r

)(
t + i − r − 1

t − r

)
. (3.5)

There are k − t ≥ 2 positive integers inside the summation in equation (3.5). This implies

that ac , 0 for 0 ≤ c ≤ t and acac+1 < 0 ⇒ ac , ac+1 for 0 ≤ c ≤ t − 1. Furthermore, if

at−r1 = at−r2 for some 1 ≤ r2 < r1 ≤ t, then one must have r1 ≡ r2 (mod 2). This further

implies that

k−t∑
i=1

(s − 1)(t−r1+i)
(

k − r1

t + i − r1

)(
t + i − r1 − 1

t − r1

)
=

k−t∑
i=1

(s − 1)(t−r2+i)
(

k − r2

t + i − r2

)(
t + i − r2 − 1

t − r2

)
for some 0 ≤ r2 < r1 ≤ t. However, this is impossible as

0 < (s − 1)(t−r1+i)
(

k − r1

t + i − r1

)(
t + i − r1 − 1

t − r1

)
< (s − 1)(t−r2+i)

(
k − r2

t + i − r2

)(
t + i − r2 − 1

t − r2

)
.

Hence, at−r1 , at−r2 and |at−r1 | < |at−r2 | for all 1 ≤ r2 < r1 ≤ t. Finally, each ac is divisible

by λ = a0 by the nature of the difference equation defining ac and |ac| is strictly increasing

with c as c goes from 1 to t. Hence, ac , a0 = λ for c , 0. �

Equation (3.5) provides a closed form formula for the solution of the inhomogeneous

recurrence relation of degree k− t + 1 in Lemma 1. This recurrence relation is equivalent to

a homogeneous recurrence relation of degree k − t + 2. Solving such an equation requires

finding all complex roots of a degree k− t +2 polynomial. Coming up with this closed form

formula for arbitrary values of k − t without relating ac to the orthogonal array problem

appears to be difficult.

Theorem 8. Π(OAP(k, s, t, λ)) = Hk,s,t.

33

Proof. By Remark 2 it suffices to consider the case 1 ≤ t ≤ k − 1 and (k > t + 1 or s > 2).

For z = 1, let GR be the group of all coordinate permutations of [s]k which permute the

facets in Theorem 4. Then,

y ∈ Jx ⇔ σ(y) ∈ Jσ(x) (3.6)

and at−d(1,x) = at−d(σ(1),σ(x)) for all x such that 0 ≤ d(1, x) ≤ t and all σ ∈ GR. The

distinctness of {ac}
t
c=0 further implies that

d(1, x) = d(σ(1), σ(x)) if d(1, x) ≤ t.

Since

at−d(1,1) + (−1)t−d(1,1)+1
∑
y∈J1

d(1,y)>t

(
d(1, y) − d(1, 1) − 1

t − d(1, 1)

)
Ny ≥ 0,

when x = 1, is the only inequality in inequalities (3.1) that has at as its constant term,

it must be mapped to itself by GR. Then, GR must preserve 1, otherwise J1 , Jσ(1) as

k > t + 1 or s > 2. Furthermore, GR must also preserve the set {y : d(1, y) > t}. Let GR′

be the subgroup of GR consisting of all permutations that only permute the variables of

the facet defining inequalities in Theorem 4 without changing their coefficients. Then GR′

must preserve the coefficients
(

d(1,y)−d(1,1)−1
t−d(1,1)

)
for {y : d(1, y) > t}. Hence,

d(1, y) = d(τ(1), τ(y)) = d(1, τ(y)) if d(1, y) > t

for all τ ∈ GR′. Since GR′ ≤ GR, this leads to

d(1, y) = d(τ(1), τ(y)) = d(1, τ(y)) if d(1, y) ≤ t.

This shows that all elements in GR′ are rotations around 1.

Let T = {u ∈ [s]k : d(u, 1) = 1}. Then |T | = (s − 1)k and |Ju| = sk−1 for each u ∈ T .

Since each τ ∈ GR′ is an invertible rotation around 1,

τ(T) = {τ(u) : u ∈ T } = T for all τ ∈ GR′,

34

and consequently

{Ju : u ∈ T } = {Jτ(u) : u ∈ T } for all τ ∈ GR′. (3.7)

For x, y ∈ [s]k, let r1(x, y), r2(x, y), r3(x, y), and r4(x, y) be the number of u ∈ T such that

x, y ∈ Ju, x, y < Ju, x ∈ Ju, y < Ju and x < Ju, y ∈ Ju respectively. Let

W =

[
x
y

]
and a1, a2, a3, a4, a5 ∈ {2, · · · , s} such that a4 , a5. Now, let α1(x, y), α2(x, y), α3(x, y),

α4(x, y), α5(x, y) be the number of columns in W of the form 1

1

 ,
 1

a1

 ,
 a2

1

 ,
 a3

a3

 ,
 a4

a5

respectively. Then,

r1(x, y) = α4(x, y),

r2(x, y) = k(s − 1) − (r1(x, y) + r3(x, y) + r4(x, y)),

r3(x, y) = α3(x, y) + α5(x, y),

r4(x, y) = α2(x, y) + α5(x, y).

(3.8)

By (3.6) and (3.7), one can see that

ri(x, y) = ri(τ(x), τ(y)), (3.9)

for all τ ∈ GR′ and i = 1, 2, 3, 4.

Let Ri(x′) be the set of all x obtained from x′ ∈ {2, · · · , s}k by replacing exactly

i coordinates in x′ with 1. Let B(x′) = ∪k
i=0Ri(x′) and B(x′) be the matrix whose

(
∑i−1

j=0

(
k
j

)
+ 1)th row to (

∑i
j=0

(
k
j

)
)th row be the elements of Ri(x′) in some order. Then,

the multiset ⊎
x′∈{2,··· ,s}k

B(x′)

35

covers every element in [s]k at least once, and each element of Ri(x′) is covered exactly

(s − 1)i times. Also, |B(x′)| = 2k for each x′ ∈ {2, · · · , s}k and there are (s − 1)k such B(x′)

. Furthermore, |B(x′) ∩ B(y′)| = 2(k−d(x′,y′)), the ith column of B(x′) has only 1 and x′[i] as

its entries and consequently for any pair x, y ∈ B(x′), α5(x, y) = 0. Then, equations (3.8)

and (3.9) imply that αi(x, y) for i = 1, 2, 3, 4, 5 remain invariant under the action of GR′.

Hence,

d(x, y) = d(τ(x), τ(y)) = α2(x, y) + α3(x, y) + α5(x, y) (3.10)

for all x, y ∈ B(x′) and τ ∈ GR′.

Let τ(B(x′)) = {τ(x) : x ∈ B(x′)}. Since each τ ∈ GR′ is a rotation permutation

around 1 that preserves distances between the elements of B(x′), it is apparent that

τ(B(x′)) = B(τ(x′)). Let B(x′) = [2]k and x be obtained from B(x′) and x by replacing

the non-one entries with 2 respectively. Then for each x′ ∈ {2, · · · , s},

d(x, y) = d(x, y) for all x, y ∈ B(x′) (3.11)

Let GR′ act on B(x′) by τ(x) = τ(x). Then, since τ(B(x′)) = B(τ(x′)) by (3.11),

d(τ(x), τ(y)) = d(τ(x), τ(y)), (3.12)

and

{τ(x) : x ∈ B(x′)} = {τ(x) : x ∈ B(x′)} = τ(B(x′)) = B(τ(x′)) = [2]k. (3.13)

Now, (3.10), (3.11) and (3.12) lead to

d(τ(x), τ(y)) = d(τ(x), τ(y)) = d(τ(x), τ(y)) = d(x, y) = d(x, y). (3.14)

for all x, y ∈ B(x′). Hence, by (3.13) and (3.14) GR′ acts on B(x′) = [2]k as rotation

isometries. Then by Lemma 3 each element τ of GR′ acting on the elements of the set

B(x′) can be written as τ = γx′ , where γx′ is a permutation of columns of B(x′). Let γx′

permute the columns of B(x′) the same way it permutes the columns of B(x′). Also, let

36

µx′ = (γx′)−1τ then µx′(x) = (γx′)−1τ(x) = x for each x ∈ B(x′). This implies that µx′ only

changes the non-one elements to non-one elements in the rows of B(x′). Since,

d(x, y) = d(τ(x), τ(y)) = d((γx′)−1τ(x), (γx′)−1τ(y)) = d(µx′(x), µx′(y))

for all x, y ∈ B(x′), and µx′ fixes 1, µx′ is a rotation around 1 and an isometry on the set

B(x′). Let µx′(B(x′)) = ∪k
i=0µ

x′(Ri(x′)) and µx′(B(x′)) be the matrix whose (
∑i−1

j=0

(
k
j

)
+ 1)th

row to (
∑i

j=0

(
k
j

)
)th row be the elements of µx′(Ri(x′)) in some order, where µx′(Ri(x′)) is

the set obtained by applying µx′ elementwise. Now, for j = 1, · · · , k, the non-one entry

appearing in the j’th column of B(x′) must be mapped by µx′ to the same non-one element

every time it appears. Otherwise, µx′ is not an isometry rotation around 1 on the set B(x′).

Hence, by taking τx′ = γx′µx′ one can deduce that there exists some τx′ ∈ S {2,··· ,s} o S k such

that

τ(x) = τx′(x)

for all x ∈ B(x′) and τ ∈ GR′. Next, it is shown that proving the following claim is

sufficient.

Claim: There exists some τfull ∈ S {2,··· ,s} o S k acting on [s]k such that, for each x′ ∈

{2, · · · , s}k, τfull(x) = τx′(x) = τ(x) for all x ∈ B(x′).

First, the claim implies that τ ∈ S {2,··· ,s} oS k for arbitrary τ ∈ GR′. Then, |GR′| ≤ |S (s−1) o

S k|. By Theorem 7, GR′ contains an isomorphic copy of S (s−1)oS k as a subgroup as 0 < t < k

was assumed and (k > t + 1 or s > 2). Hence, GR′ = Hk,s,t � S (s−1) o S k. Now, it is clear that

Π(OAP(k, s, t, λ)) = GR′
{y:d(1,y)>t}, where GR′

{y:d(1,y)>t} is the restriction of GR′ to variables

{y : d(1, y) > t}. Finally, since GR′ preserves the set {y : d(1, y) > t}, no permutations are

lost by restricting GR′. Hence, Π(OAP(k, s, t, λ)) = GR′
{y:d(1,y)>t} = Hk,s,t � S (s−1) o S k.

Proof of the Claim: Let x′1, x
′
2 ∈ {2, · · · , s}

k be such that x′1 and x′2 are different only on the

lth coordinate. Let B(x′1, x
′
2) be the matrix obtained by taking the elements in B(x′1)∩ B(x′2)

as rows in some order. Then, the lth column of B(x′1, x
′
2) is the column of all 1s and the jth

column of B(x′1, x
′
2) for j , l has only entries from the set {1, x′1[j]}, where x′1[j] = x′2[j] is

37

the jth entry of x′1. Furthermore, B(x′1, x
′
2)−l consists of all 2k−1 one\non-one combinations,

where B(x′1, x
′
2)−l is obtained from B(x′1, x

′
2) by deleting its lth column.

Now write

τ(x) =

τx′1(x) = γx′1µx′1(x) if x ∈ B(x′1),

τx′2(x) = γx′2µx′2(x) if x ∈ B(x′2),
(3.15)

where γx′i (x) is a permutation of columns of x and µx′i (x) only changes the non-one elements

in the columns of B(x′i). First, γx′i , µx′i ∈ S {2,··· ,s} o S k. Secondly,

τx′1(x) = τx′2(x) = τ(x)

for all x ∈ B(x′1, x
′
2). Hence, µx′2γx′2(x) = γx′2µx′2(x) = µx′1γx′1(x) = γx′1µx′1(x) for all

x ∈ B(x′1, x
′
2). This implies that

γx′1(x) = γx′2(x) for x ∈ B(x′1, x
′
2). (3.16)

Since B(x′1, x
′
2) is [2]k−1 with an all 1s column attached to it, columns of B(x′1, x

′
2) are

distinguishable. Hence, equation (3.16) completely (uniquely) determines how columns of

x are permuted by

γx′1(x) = γx′2(x) for x ∈ B(x′1) ∪ B(x′2). (3.17)

Now, one can see that

µx′1(x) = µx′2(x) for x ∈ B(x′1, x
′
2). (3.18)

Then, µx′1((x)−l) = µx′2((x)−l) for each (x)−l appearing as a row of
[

B(x′1)−l

B(x′2)−l

]
as B(x′1)−l =

B(x′2)−l, where B(x′j)
−l is the set of rows of B(x′j)

−l for j = 1, 2. Now, extend the domain of

µx′1 from B(x′1) to B(x′1) ∪ B(x′2) by setting

µ
x′1
ext(x) =

µx′1(x) if x ∈ B(x′1),

µx′2(x) if x ∈ B(x′2).
(3.19)

By equation (3.18) this extension is well defined.

38

Next, it is shown that µx′1
ext(x) is injective and that µx′1

ext(x) ∈ S k
{2,··· ,s} ⊂ S {2,··· ,s} o S k. First,

by the preceeding arguments, µx′1
ext acts on

[
B(x′1)−l

B(x′2)−l

]
as an element of S k−1

{2,··· ,s}. Hence, it suffices

to show that µx′1
ext acts on

[
B(x′1)l

B(x′2)l

]
as an element of S {2,··· ,s} and µx′1

ext is injective, where B(x′j)
l

is the lth column of B(x′j). Note that µx′j fixes 1 in every column of B(x′j). Hence, µx′1
ext fixes

1 in every column of
[

B(x′1)
B(x′2)

]
and consequently in

[
B(x′1)l

B(x′2)l

]
. Furthermore, since each µ

x′j
ext must

map each non-one entry in B(x′j)
l to the same non-one element in [s]k, so does µx′1

ext. Hence,

µ
x′1
ext acts on

[
B(x′1)
B(x′2)

]
as an element of S k

{2,··· ,s}. Now by equations (3.15), (3.17) and (3.19), one

can see that

µ
x′1
ext(x) = (γx′1)−1τ(x) for x ∈ B(x′1) ∪ B(x′2). (3.20)

Injectivity of µx′1
ext follows from equation (3.20). Now, extend the domain of τx′1(x) for

x ∈ B(x′1) with B(x′2) by defining

τ
x′1
ext(x) = γx′1µ

x′1
ext(x) for x ∈ B(x′1) ∪ B(x′2).

To finish the proof, notice that there exists a finite sequence {x′i}
m
i=1 such that d(x′i , x

′
i+1) = 1

and
m⋃

i=1

{x′i} = {2, · · · , s}k,

where x′i are not necessarily distinct. Extend the domain of τx′1 along this sequence. It

is understood that an extension in the domain is made only for x′i appearing for the first

time. Let τfull be the resulting map. Since each extension is injective, acts as an element of

S {2,··· ,s} o S k in its extended domain, and the domain of τfull is

(s−1)k⋃
i=1

B(x′i) = [s]k,

τfull acts on [s]k as an element of S {2,··· ,s} o S k.

�

Theorem 9. Unless t = 0 or t = k, Gs,k � S s oS k in Theorem 9 of Bulutoglu and Margot [7]

is the largest subgroup of S sk that sends equations (3.3) to themselves. For t = 0 or t = k

the largest such group is S sk .

39

Proof. First, consider the case when 0 < k − t < k. Let G be the group of all coordinate

permutations of [s]k which permute the rows of the constraint matrix A pertaining to

equations (3.3) in the full space Rsk
. It was shown in Bulutoglu and Margot [7] that G

contains Gs,k as a subgroup. Hence, it suffices to show that G ≤ Gs,k. First, it is shown that

every element in G is an isometry.

Let σ ∈ G and z ∈ [s]k. Since Gs,k acts transitively on [s]k and itself consists of

isometries, one may assume σ(z) = z. Consider the set S of all rows of A in which z

appears. Since σ(z) = z, σ must permute S . Let w ∈ [s]k be such that d(z,w) = i, where

i ∈ {0, 1, · · · , k − t}. Then w appears in exactly
(

k−i
t

)
rows in S . Since σ preserves S , σ(w)

also appears in exactly
(

k−i
t

)
rows in S . Then one must have d(z, σ(w)) = i as no element

is repeated in the set {
(

k−i
t

)
}k−t
i=0. Hence, d(z,w) = d(σ(z), σ(w)) for all z and w such that

0 ≤ d(z,w) ≤ k − t.

Now, for any z and y such that d(z, y) = k − t + 1 there exists y1 such that

d(z, y) = d(z, y1) + d(y1, y), where d(z, y1) = k − t and d(y1, y) = 1 ≤ k − t. By the

triangle inequality d(σ(z), σ(y)) ≤ d(σ(z), σ(y1)) + d(σ(y1), σ(y)) = k − t + 1 = d(z, y). By

repeating the same argument for z and y such that d(z, y) = k − t + i for i = 2, · · · , t,

d(σ(z), σ(y)) ≤ d(z, y) (3.21)

for all z, y and σ. Let z′ = σ(z), y′ = σ(y) and h = σ−1 then

d(z′, y′) ≤ d(h(z′), h(y′)) (3.22)

for all z′, y′ and h. Combining inequalities (3.21) and (3.22) leads to

d(σ(z), σ(y)) = d(z, y)

for all z, y ∈ [s]k and σ ∈ G. Hence, by Lemma 3, an isomorphic copy of G is contained

in S s o S k. Now, this implies that G ≤ Gs,k � S s o S k. The cases t = 0 and t = k are easy to

see. �

40

IV. Computational Research

4.1 Chapter Introduction

As discussed in Section 2.5, Margot [23] defined the symmetry group of an LP to

be the set of all permutations of the variables of an LP that send feasible points to feasible

points with the same objective function value. Margot [23] and Ostrowski et al. [27] defined

the symmetry group of an ILP to be the set of all permutations of the variables that map

a feasible solution to a feasible solution with the same objective value. Let the symmetry

group of ILP (2.4) be

G(k, s, t) = {π ∈ S sk | π(x) ∈ F (k, s, t)}

and the symmetry group of ILP (3.2) be

G′(k, s, t) = {π ∈ S sk−m| π(x) ∈ F ′(k, s, t)}.

Let T be the set of deleted variables to get ILP (3.2) from ILP (2.4). It is not hard to

see that stab(T,Gs,k) is the set of all permutations that permute indices of x′ by permuting

coordinates in (α j
1 + 1, α j

2 + 1, · · · , α j
k + 1) and/or by independently sending a subset of

non-one coordinates to non-one coordinates. Hence |stab(T,Gs,k)| = (s − 1)!kk!. Let

G(A(k, s, t), λ1)LP and G(A′(k, s, t),b)LP denote the LP relaxation symmetry groups of

ILP (2.4) and ILP (3.2) respectively. Let G (A,b) be as in equation (2.15) in Section 2.4

with c = 1 and d = pmax1. Recall from Section 3.3 that stab(T,Gs,k) = G(A′(k, s, t),b) and

Gs,k = G(A(k, s, t), λ1). These results imply that |G′(k, s, t)| ≥ |G(A′(k, s, t),b)| = (s− 1)!kk!

and |G(k, s, t)| ≥
∣∣∣Gs,k

∣∣∣ = |G(A(k, s, t), λ1)| = s!kk!.

In Section 3.2, it is shown that all the inequalities in the LP relaxation of ILP (3.2)

are facets. Hence, by the Margot [23] symmetry group definition, this implies that

G(A′(k, s, t),b)LP = G(A′(k, s, t),b) � S {2,3,··· ,s} o S k. However, since ILP (2.4) has equality

constraints it is not clear whether G(A(k, s, t), λ1) = G(A(k, s, t), λ1)LP or not. The most

that can be said presently is that G(A(k, s, t), λ1) ⊆ G(A(k, s, t), λ1)LP. In Section 4.2 an

41

efficient, practical method for computing G(A(k, s, t), λ1)LP is developed and implemented.

It is observed that for 1 ≤ t ≤ k − 1

∣∣∣G(A(k, s, t), λ1)LP
∣∣∣ =

(k + 1) |G(A(k, s, t), λ1)| = (k + 1)!2k s = 2 and even t,

|G(A(k, s, t), λ1)| = k! (s!)k otherwise.

For s = 2 and even t, using the larger symmetry group drastically reduces solution times.

In fact, in all almost all cases considered, deleting variables from the ILP (2.5) formulation

to get the ILP (3.2) formulation proved to be counterproductive. The reason for this is that

for 1 ≤ t ≤ k − 1

|G(A(k, s, t), λ1)| = sk |G(A′(k, s, t),b)|

and ∣∣∣G(A(k, s, t), λ1)LP
∣∣∣ =

(k + 1) 2k |G(A′(k, s, t),b)| s = 2 and even t,

sk |G(A′(k, s, t),b)| otherwise.

Hence, exploiting a larger symmetry group more than overcomes the additional computa-

tional burden of having a larger number of variables. This underscores the importance of

developing tools for finding larger subgroups of the full symmetry group of an ILP.

As discussed in Section 2.5, whenever the Margot [22] isomorphism pruning

algorithm is used for solving a symmetric ILP in the form of ILP (2.14) or ILP (2.16),

G(A,b)LP or a subgroup of G(A,b)LP is used for isomorphism pruning. However, when

the goal is to find at least one OA(N, k, s, t) for a given N, k, s, t or to prove that no

OA(N, k, s, t) exists, it is viable to use G(k, s, t)
(
G′(k, s, t)

)
instead of G(A(k, s, t), λ1)LP(

G(A′(k, s, t),b)LP
)
. This will yield significant increases in computational efficiency

if |G(k, s, t)|
(
|G′(k, s, t)|

)
is much larger than

∣∣∣G(A(k, s, t), λ1)LP
∣∣∣ (∣∣∣G(A′(k, s, t),b)LP

∣∣∣).
Hence, one open, fundamental question regarding ILP (2.5) is: How much larger is

|G(k, s, t)|
(
|G′(k, s, t)|

)
than

∣∣∣G(A(k, s, t), λ1)LP
∣∣∣ (∣∣∣G(A′(k, s, t),b)LP

∣∣∣)? A method for

computing G(k, s, t) is given in Section 4.4. This method requires all possible solutions to

ILP (2.5) as an input. Hence, it cannot be used for solving unsolved problems. However, it

42

is a good diagnostic test telling us how close we are to exploiting all possible symmetries of

ILP (2.5) when G(A(k, s, t), λ1)LP is used with Margot [22] isomorphism pruning algorithm.

One interesting question that is investigated is how the number of isomorphism classes of

solutions to ILP (2.5) and ILP (3.2) compare using G(A(k, s, t), λ1)LP and G(A′(k, s, t),b)LP,

respectively.

In Section 4.3, the Section 4.2 method is generalized and the generalized method is

tested on the MILP library problems studied in Liberti [18].

The improvements in Section 4.5 enable the use of Margot [22] isomorphism pruning

solver in the algorithm in Figure 2.4 ILP formulation without losing OD classes or

isomorphism classes of OA(N, k, s, t). Also, a previously unknown large subgroup of

G(A(k, 2, t), λ1)LP is found.

All computations in this chapter were performed on an HP Z820 workstation with

64GB of RAM and a 3.10 GHz Intel Xeon E5-2687W processor.

4.2 Research Objective 1

4.2.1 Computing G(A(k, 2, t), λ1)LP.

Every solution to the LP relaxation of ILP (2.4) can be written in the form

pmax1 ≥ x =
λ

sk−t 1 + v ≥ 0

for some v ∈ Null(A(k, s, t))
⋂

[−λsk−t , pmax −
λ

sk−t]sk
. This is true because st−k1 is a particular

solution and x ≥ 0. Since any permutation of sk coordinates preserves [−λsk−t , pmax −
λ

sk−t]sk
,

G(A(k, s, t), λ1)LP is the set of all permutations in S sk that preserve the elements of

Null(A(k, s, t)). Null(A(k, s, t)) is the orthogonal complement of the row space of A(k, s, t),

hence the same set is also characterized as the set of all permutations that stabilize the row

space of A(k, s, t). Such a set is computed as the automorphism group of PAT (k,s,t), where

PAT (k,s,t) = AT (k, s, t)
(
A(k, s, t)AT (k, s, t)

)+
A(k, s, t) (4.1)

43

is the orthogonal projection matrix on to the row space of A(k, s, t), and
(
A(k, s, t)AT (k, s, t)

)+

is the Moore-Penrose pseudoinverse of A(k, s, t)AT (k, s, t) [17]. The automorphism group

of PAT (k,s,t) is the set of all π ∈ S sk that send PAT (k,s,t) to itself when rows and columns of

AT (k, s, t) are permuted according to π. This automorphism group is computed as the auto-

morphism group of an edge colored graph with sk vertices. Each distinct entry in PAT (k,s,t)

is labeled with a distinct color. There is an edge between ith and jth vertices labeled with

color l, if and only if the (i, j)th entry of PAT (k,s,t) is labeled with color l.

Let A(k, s, t) be m × n (where n = sk), p = rank (A(k, s, t)), and A(k, s, t) = UDVT

be the singular value decomposition of A(k, s, t). Then, by using the results in [17],

equation (4.1) simplifies to

PAT (k,s,t) = VI(p)
n VT , (4.2)

where

I(p)
n =

 Ip×p 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)

 .
Equation (4.2) was used to calculate PAT (k,s,t) as it requires fewer floating point operations,

leading to improved accuracy.

The automorphism group of PAT (k,s,t) was computed by using Nauty, where edge

coloring was implemented as described in McKay [25]. G(A(k, s, t), λ1)LP was computed

for many k, s, t combinations by using the aforementioned method. In all cases considered,

G(A(k, s, t), λ1) (G(A(k, s, t), λ1)LP for s = 2 and even t, and G(A(k, s, t), λ1) =

G(A(k, s, t), λ1)LP otherwise. Consequently, for s = 2 and even t, using the group

G(A(k, s, t), λ1)LP significantly decreased solution times. This method generalizes the

concept of G(A,b)LP first defined in Margot [23]. A further generalization of this method

that finds G(A,b)LP for arbitrary A and b, where a particular solution with equal coordinates

is not available, is developed in Section 4.3.

ILP (2.5) was solved for many k, s, t combinations using the groups G(A(k, s, t), λ1)

and G(A(k, s, t), λ1)LP. This is legitimate as ILPs (2.4) and (2.5) have the same feasible

44

set. ILP (3.2) was solved for the same k, s, t combinations using G(A′(k, s, t),b)LP. A speed

comparison of these three formulations using Margot ILP solver [22] is made in Table 4.1.

For each OA(N, k, s, t), the second, third and fourth columns report the number of solutions

enumerated for ILP (2.5) using G(A(k, s, t), λ1), ILP (2.5) using G(A(k, s, t), λ1)LP), and

ILP (3.2) using G(A′(k, s, t),b)LP. Likewise, the fifth, sixth and seventh columns report

the time it took to enumerate these solutions. Even though ILP (3.2) has fewer variables,

computational experiments summarized in Table 4.1 suggest that it should not be preferred

over ILP (2.5). It is evident from Table 4.1 that exploiting the larger symmetry group

more than overcomes the additional computational burden of having a larger number of

variables. In fact, the computational savings appear to grow exponentially with the number

of variables. On the other hand, the cases OA(64, 7, 2, 4) and OA(24, 11, 2, 3) do buck this

trend.

Table 4.1: Formulation Comparisons

ILP (2.5) ILP (2.5) ILP (3.2) ILP (2.5) ILP (2.5) ILP (3.2)

OA(N, k, s, t) G(A(k, s, t), λ1) G(A(k, s, t), λ1)LP G(A′(k, s, t),b)LP G(A(k, s, t), λ1) G(A(k, s, t), λ1)LP G(A′(k, s, t),b)LP

Designs # Designs # Designs Times (sec.) Times (sec.) Times (sec.)

OA(20,6,2,2) 75 23 3069 1.42 6.74 63.99

OA(20,7,2,2) 474 102 51695 13.4 9.22 2578.82

OA(20,8,2,2) 1603 211 383729 108.96 21.98 66377

OA(20,9,2,2) 2477 351 1157955 484.55 66.91 879382

OA(20,10,2,2) 2389 260 ≥ 28195 1683.95 215.24 ≥ 37214

OA(24,5,2,2) 63 31 723 1.07 10.06 18.36

OA(24,6,2,2) 1350 274 62043 22.03 12.05 1381.39

OA(24,7,2,2) 57389 7990 6894001 1720.96 257.27 428220

OA(24,8,2,2) 1470157 165596 4505018 99738 10082 653671

OA(24,9,2,2) 3815882 1309475 - 763643 223138 -

OA(24,5,2,3) 1 1 2 0.13 6.38 11.64

OA(24,6,2,3) 2 2 5 0.25 6.62 11.67

OA(24,7,2,3) 1 1 5 0.32 9.09 16.04

OA(24,8,2,3) 1 1 6 1 14.11 22.88

OA(24,9,2,3) 1 1 6 5.9 25.9 44.02

OA(24,10,2,3) 1 1 5 55.49 103.59 128.95

Continued on next page

45

Table 4.1 – continued from previous page

ILP (2.5) ILP (2.5) ILP (3.2) ILP (2.5) ILP (2.5) ILP (3.2)

OA(N, k, s, t) G(A(k, s, t), λ1) G(A(k, s, t), λ1)LP G(A′(k, s, t),b)LP G(A(k, s, t), λ1) G(A(k, s, t), λ1)LP G(A′(k, s, t),b)LP

Designs # Designs # Designs Times (sec.) Times (sec.) Times (sec.)

OA(24,11,2,3) 1 1 3 519.62 540 460.59

OA(32,6,2,3) 10 10 31 1.85 7.89 12.2

OA(32,7,2,3) 17 17 76 1.82 8.21 16.13

OA(32,8,2,3) 33 33 194 6.59 13.97 77.49

OA(32,9,2,3) 34 34 364 23.75 33.24 658.38

OA(32,10,2,3) 32 32 561 102.39 112.39 7338

OA(32,11,2,3) 22 22 ≥ 441 560.29 597 ≥ 36463

OA(40,6,2,3) 9 9 65 0.52 6.66 12.92

OA(40,7,2,3) 25 25 580 2.01 8.5 40.68

OA(40,8,2,3) 105 105 6943 19.71 27.16 4178

OA(40,9,2,3) 213 213 43713 206.25 215.22 260919

OA(40,10,2,3) 353 353 ≥ 1511 1764.73 1693.85 ≥ 36279

OA(48,6,2,3) 45 45 355 2.01 8.12 18.27

OA(48,7,2,3) 397 397 13469 33.73 40.11 862.1

OA(48,8,2,3) 8383 8383 896963 2231.77 2237.34 552154

OA(54,5,3,3) 4 4 49 1.9 10.26 36.01

OA(54,6,3,3) 0 0 0 17.14 36.84 167.07

OA(56,6,2,3) 86 86 1393 4.44 10.88 36.02

OA(56,7,2,3) 4049 4049 285184 443.4 449.78 20415

OA(64,7,2,4) 7 4 21 98.83 259.84 15.45

OA(64,8,2,4) 3 2 10 12.17 37.58 23.39

OA(80,6,2,4) 1 1 6 0.52 6.82 11.86

OA(80,7,2,4) 0 0 0 0.37 7.97 15.01

OA(81,5,3,4) 1 1 2 15.75 22.8 19.56

OA(96,7,2,4) 4 2 31 3.14 9.75 15.41

OA(96,8,2,4) 0 0 0 2.28 10.73 60.39

OA(112,6,2,4) 3 2 25 1.24 7.57 12.7

OA(112,7,2,4) 0 0 0 1.24 7.74 17.36

OA(144,8,2,4) 20 7 3392 1792.82 774.49 1535314

OA(162,6,3,4) 0 0 0 19.8 31.93 266.8

The code used to compute column 2 of Table 4.1 is found in Bulutoglu and Ryan [8].

The code used to compute column 3 via modification of the Bulutoglu and Ryan [8] code is

46

found in Section B.1. The code used to compute column 4 via modification of the Bulutoglu

and Ryan [8] is found in Section B.2.

4.2.2 Finding a Large Subgroup of G(A(k, 2, t), λ1)LP.

Switch to ±1 coding of the 2k full factorial design using the function

(x1, x2, · · · , xk)T φ1
−→ ((−1)x1 , (−1)x2 , · · · , (−1)xk)T

if (x1, x2, · · · , xk)T
∈ {0, 1}k and

(x1, x2, · · · , xk)T φ2
−→

(
(−1)x1−1, (−1)x2−1, · · · , (−1)xk−1

)T

if (x1, x2, · · · , xk)T
∈ {1, 2}k. Both φ1 and φ2 are invertible functions. So, we can switch

between {0, 1}, {1, 2} and {±1} codings as necessary. Let N x
x , N x′

x′ and N x′′
x′′ be the number

of times x ∈ {0, 1}k, x′ ∈ {1, 2}k and x′′ ∈ {±1}k appears in a sought after k-factor factorial

design. Let Nx, Nx′ and Nx′′ be the sk × 1 vectors whose xth, x′th and x′′th variables are N x
x ,

N x′
x′ and N x′′

x′′ . Functions φ1 and φ2 are chosen so as to preserve the ordering of the variables

in Nx, Nx′ and Nx′′ in such a way that 0, 1 and 1 are the low levels in the {0, 1}, {1, 2} and

{±1} codings.

Let X′′k2k =
(
x′′i j

)
be the full factorial 2k design in {−1, 1} coding. For an indicator vector

Nx′′ ∈ R2k
with Nx′′ ≥ 0, define

J{ j1, j2,··· , jp} =

2k∑
i=1

x′′i j1 x′′i j2 · · · x
′′
i jp

N x′′

(x′′i1,x
′′
i2,··· ,x

′′
ik)
,

J∅ =

2k∑
i=1

N x′′

(x′′i1,x
′′
i2,··· ,x

′′
ik)
.

(4.3)

Then, J{ j1, j2,··· , jp} is called the J-characteristic of length p of Nx [32].

Theorem 10. Nx′′ is the indicator vector of an OA(N, k, 2, t) if and only if Nx′′ ∈ Z2k

≥0 and

J∅ =

2k∑
i=1

N x′′

(x′′i1,x
′′
i2,··· ,x

′′
ik)

= N,

J{ j1, j2,··· , jp} =

2k∑
i=1

x′′i j1 x′′i j2 · · · x
′′
i jp

N x′′

(x′′i1,x
′′
i2,··· ,x

′′
ik)

= 0,

(4.4)

47

for all size p subsets { j1, j2, · · · , jp} of {1, 2, · · · , k} and all p ∈ {1, 2, · · · , t} [32].

For each equation in (4.4) whose right hand side is zero, multiply both sides by -1 and

append it to (4.4). Let GJ
k,t be the automorphism group of the resulting system of equations.

Theorem 10 implies that every equation in ILPs (2.4) and (2.5) is a linear combination

of equations in (4.4). Hence, GJ
k,t ≤ G(A(k, 2, t), λ1)LP. S 2 o S k acts on x′′ as signed

permutations of columns of x′′, where x′′ is a row of X′′k2k . For a given indicator vector

Nx′′ , this action extends to an action on J-characteristics of Nx′′ via equation (4.3). S 2 o S k

acts as signed permutations on J-characteristics of Nx′′ as well. Hence, S 2 o S k ≤ GJ
k,t.

For each row x′′ = (x′′1 , x
′′
2 , · · · , x

′′
k) of X′′k2k , let

a f x′′ = (x′′f x′′1 , x
′′
f x′′2 , · · · , x

′′
f x′′f−1, x

′′
f , x

′′
f x′′f +1, · · · , x

′′
f x′′k),

for 1 ≤ f ≤ k. Then, a f permutes the variables Nx′′ by

Nx′′
a f
−→ Na f x′′ .

This action extends to an action on J-characteristics of Nx′′ , where

J{ j1, j2,··· , jp}

a f
−→

2k∑
i=1

(
x′′i f

)p
x′′i j1 x′′i j2 · · · x

′′
i jp

N(x′′i f x′′i1,x
′′
i f x′′i2,··· ,x

′′
i f x′′i(f−1),x

′′
i f ,x

′′
i f x′′i(f +1),··· ,x

′′
i f x′′ik).

Each a f acts as permutations of J-characteristics of Nx′′ . Now, the following theorem

follows.

Theorem 11. The action of a f sends a J-characteristic of length p to a J-characteristic of

length p if p is even and to a J-characteristic of length p + 1 if p is odd.

The following corrolary immediately follows from Theorem 11.

Corrolary 1. The action of a f sends the extended system of equations (4.4) to itself if t is

even. Hence, if t is even, a f ∈ GJ
k,t and consequently 〈a1, a2, · · · , ak, S 2 o S k〉 ≤ GJ

k,t, where

〈a1, a2, · · · , ak, S 2 o S k〉 is the group generated by a1, a2, · · · , ak and S 2 o S k.

48

Theorem 12. |〈a1, a2, · · · , ak, S 2 o S k〉| = (k + 1)!2k

Proof. Let Gk = 〈a1, a2, · · · , ak, S 2 o S k〉. Let D = [x1, x2, · · · , xk] be a k factor, 2 level, N

run generic design. Let O be the orbit of of D under the action of Gk. Each element of Gk

is completely determined by its action on D. Hence |Gk| = |O|. For two vectors, x, y ∈ Rk,

let x � y = (x1y1, x2y2, · · · , xkyk)T . Let

B0 = {x1, x2, · · · , xk}

and for i = 1, 2, · · · , k let

Bi = {x1 � xi, x2 � xi, · · · , xi−1 � xi, xi, xi+1 � xi, · · · , xi � xk}.

Then, for each i = 0, 1, 2, · · · , k there exists an element in O whose set of columns is Bi.

Then each 2kk! distinct signed permutations of the columns in Bi is a distinct element in O.

Hence, |O| ≥ 2k(k + 1)!. Observing that the set of columns (up to multiplication by ±1) of

each element in O is equal to Bi for some i ∈ {0, 1, · · · , k} finishes the proof. �

Hence, for even t and s = 2, (k + 1)!2k ≤
∣∣∣GJ

k,t

∣∣∣. Based on computer observations, the

following conjecture is made:

Conjecture 1.

GJ
k,t =

〈a1, a2, · · · , ak, S 2 o S k〉 if t is even and 1 ≤ t ≤ k,

S 2 o S k if t is odd and 1 ≤ t ≤ k,

S 2k otherwise.

Hence,

|GJ
k,t| =

(k + 1)!2k if t is even and 1 ≤ t ≤ k,

k!2k if t is odd and 1 ≤ t ≤ k,

2k! otherwise.

49

4.3 Research Objective 2

Let A be the m × n constraint matrix of an ILP in the form of ILP (2.14) and b be the

right hand side. Let G(A, 0, c,d)LP be the automorphism group of PAT = AT
(
AAT

)+
A that

preserves c and d. Let B = {e1, e2, · · · , en} be the standard orthonormal basis of Rn and

O1,O2, · · · ,Or be the orbits of G(A, 0, c,d)LP in B. The fixed subspace of Rn under the

action of G(A, 0, c,d)LP is defined as

FixG(A,0,c,d)LP(Rn) := {x ∈ Rn|γx = x for all γ ∈ G(A, 0, c,d)LP}.

Lemma 3 in Bödi et al. [4] implies that

FixG(A,0,c,d)LP(Rn) = Span (β(O1), β(O2), · · · , β(Or)) ,

where β(S) = (
∑

v∈S v)/|S |. Let the rows of E be a basis for Span (β(O1), β(O2), · · · , β(Or))⊥.

If the LP relaxation set intersected with the fixed space,

T LP
FixG(A,0,c,d)LP

= {x ∈ Zn
≥0|Ex = 0 and x satisfies equations (2.14)},

is non-empty then G(A, 0, c,d)LP = G(A,b, c,d)LP. This follows from the argument in the

beginning of Section 4.2.

On the other hand, if T LP
FixG(A,0,c,d)LP (Rn) is empty, one must have G(A,b, c,d) ⊆

G(A,b, c,d)LP (G(A, 0, c,d)LP, where G(A,b, c,d) is defined as in Section 2.4. To find

G(A,b, c,d)LP in this case, let

G(A, 0, c,d)LP =

p⋃
i=1

G(A,b, c,d)giG(A,b, c,d)

be the double coset decomposition of G(A, 0, c,d)LP using the subgroup G(A,b, c,d). Then,

as discussed in Bremner et al. [5], either (G(A,b, c,d)giG(A,b, c,d))
⋂

G(A,b, c,d)LP = ∅

or G(A,b, c,d)giG(A,b, c,d) ⊂ G(A,b, c,d)LP. Let Gext = 〈g1, G(A,b, c,d)〉 be the group

generated by g1 and G(A,b, c,d). Calculate FixGext(Rn) and T LP
FixGext

, as described in the

previous paragraph, by replacing G(A, 0, c,d)LP with Gext. If T LP
FixGext

is non-empty update

50

G(A,b, c,d) with Gext. Repeat the same procedure with Gext = 〈gi, G(A,b, c,d)〉 for

i = 2, · · · , p. The resulting G(A,b, c,d) in the end is equal to G(A,b, c,d)LP.

This method was first tested on the OA(N, k, s, t) cases listed in Table 4.1 by using both

the constraints (2.2) with a 0 objective function as well as using ILP (2.4). As expected,

this method found G(A, 0, c,d)LP = G(A,b, c,d)LP in all cases. To further test this method,

a number of library MILPs featured in Liberti [18] were studied. Each inequality constraint

was converted to an equality constraint by adding a slack variable. Each added slack

variable was labeled to be to be an integer variable if the integrality of the variable could

be deduced from the constraint to which it was added. The results of that study are listed in

Table 4.2. The G(A,b, c,d) groups sizes found are the same as those found by Liberti [18].

The code used to generate this table is found in Section B.6.

Table 4.2: G(A,b, c,d)LP of Liberti [18] Problems Via Double Coset Decomposition

Problem
∣∣∣G(A, 0, c,d)LP

∣∣∣ ∣∣∣G(A,b, c,d)LP
∣∣∣ |G(A,b, c,d)|

G(A, 0, c,d)LP G(A,b, c,d)LP G(A,b, c,d)

Times (sec.) Times (sec.) Times (sec.)

air03 268435456 268435456 8192 189000 - 1710

arki001 6.36 × 1061 6.36 × 1061 5.23 × 1044 1270 - 433

blend2 362880 362880 362880 99.2 - 19.7

enigma 2 2 240 4.2 - 0.705

gen 2 2 2 921 - 125

mas74 4 4 4 10.8 - 1.81

mas76 4 4 4 10.2 - 1.88

misc03 48 48 12 19 - 3.69

misc06 3456000 1728000 1728000 17200 34.9 211

misc07 48 48 6 77.3 - 12.1

mzzv11 1.26 × 1056 1.26 × 1056 4.57 × 1044 3390000 - 22900

mzzv42z 1.83 × 1053 1.83 × 1053 1.3 × 1032 3040000 - 25700

noswot 2 2 2 38.7 - 6.25

opt1217 2 2 2 570 - 16.8

Continued on next page

51

Table 4.2 – continued from previous page

Problem
∣∣∣G(A, 0, c,d)LP

∣∣∣ ∣∣∣G(A,b, c,d)LP
∣∣∣ |G(A,b, c,d)|

G(A, 0, c,d)LP G(A,b, c,d)LP G(A,b, c,d)

Times (sec.) Times (sec.) Times (sec.)

p0201 4 4 4 42.4 - 5.98

p2756 5.15 × 1010 536870912 536870912 5320 3360 403

protfold 4 4 4 55600 - 584

qiu 24 24 24 2600 - 194

rgn 120 120 120 12.1 - 1.43

rout 120 120 120 288 - 33.4

seymour 2.78 × 10232 2.78 × 10232 2.78 × 10232 811000 - 1540

stein27 303264 303264 303264 7.36 - 2.01

swath 4.24 × 101021 4.24 × 101021 3.36 × 10816 87700 - 3850

timtab1 8 2 2 67.3 26.6 7.59

timtab2 256 2 2 265 628 20.8

In this set of problems, G(A,b, c,d)LP is either G(A, 0, c,d)LP or G(A,b, c,d),

with G(A,b, c,d)LP = G(A, 0, c,d)LP in most of the cases. In many of these cases,∣∣∣G(A,b, c,d)LP
∣∣∣ > |G(A,b, c,d)|. Hence, this theory reveals hidden symmetries that could

not otherwise be detected. If a mixed integer solver with isomorphism pruning is used

on these problems, it is expected that exploiting the larger groups would overcome the

computational burden of added slack variables to convert all constraints to equalities.

This method can also be applied to solve ILP (2.10). However, this requires adding

n2 − 1 binary slack variables. This increases the total number of binary variables in

ILP (2.10) to (3n + 11)(n − 1)/2. Holzmann et al. [15] found all nonequivalent Williamson

matrices up to order n = 59. The next open case is n = 61, which would require

solving an ILP with 5,820 variables. The computer used for this research was unable to

find G(A(12, 2, 2), 0)LP for ILP (2.4), which is an ILP with 4,096 variables. Therefore,

the first open case, n = 61, is beyond the reach of the current available resources. The

52

nonlinear form of this ILP has only 240 variables and it may be possible to solve that

version. However, binary nonlinear programming is beyond the scope of this dissertation.

4.4 Research Objective 3

For fixed k, s and t, the number of non-isomorphic OA(λst, k, s, t) grows exponentially

with λ; see Bulutoglu and Margot [7] and Bulutoglu and Ryan [8]. This makes it impossible

to enumerate all non-isomorphic OA(λst, k, s, t) for k close to kmax(N, s, t) and large λ using

any of the extension algorithms of Bulutoglu and Ryan [8], since these algorithms require

finding all non-isomorphic OA(λst, i, s, t) for i ≤ k. On the other hand, all non-isomorphic

OA(λst, k, s, t) can be enumerated by solving ILP (2.4) with the Margot [22] Branch-and-

Cut algorithm with isomorphism pruning using group G(A(k, s, t), λ1)LP. However, this

approach also fails for k ≥ 12 or large λ, as it suffers from the exponential growth of the

Branch-and-Cut enumeration tree with k and λ.

If |G(k, s, t)|/|G(A(k, s, t), λ1)LP| is large, using G(k, s, t) instead of G(A(k, s, t), λ1)LP

will significantly reduce the Branch-and-Cut enumeration tree without compromising

the correctness of the answer to the feasibility question of an OA(λst, k, s, t). For i =

t, t + 1, · · · , k − 1, a permutation πi ∈ G(i, s, t) extends to a permutation πk ∈ G(k, s, t) if

and only if the action of permutation πk on the first i factors of each of sk possible k factor

level combinations is identical to that of πi. Using G(i, s, t) instead of G(A(i, s, t), λ1)LP

for i = t, t + 1, · · · , k (when |G(i, s, t)|/|G(A(i, s, t), λ1)LP| is large) will also improve the

efficiency of extension algorithm in Figure 2.4 significantly by decreasing the enumeration

tree sizes, the number of solutions to the ILPs to be solved and consequently the total

number of ILPs to be solved. However, using G(i, s, t) may cause the algorithm in

Figure 2.4 to incorrectly declare an OA(λst, k, s, t) to be infeasible. The correctness of

the answer to the feasibility question of an OA(λst, k, s, t) will not be compromised if and

only if each permutation in G(i, s, t) extends to a permutation in G(k, s, t).

53

We computed G(i, s, t) for i ≤ k for many k, s, t combinations to determine

|G(i, s, t)|/|G(A(i, s, t), λ1)LP|. This was accomplished as follows:

1. Find the indicator vectors of all OA(λst, i, s, t) either by finding all solutions to

ILP (2.4) or by generating them from a set of all non-isomorphic OA(λst, i, s, t).

2. Let M be a n × si matrix whose rows are the indicator vectors of all OA(λst, i, s, t),

where n is the number of all OA(λst, i, s, t).

3. Compute G(M, 1, 1, 1) = G(i, s, t) by computing the automorphism group of a vertex

colored bipartite graph (the same way G(A, 1, 1, 1) in equation (2.15) is computed

by Margot [23]). If M is not a binary matrix, then an edge colored vertex colored

bipartite graph, where each color represents a distinct value in M, must be used.

Edge coloring of such a graph was implemented as described in the Nauty software

documentation [25].

For many non-trivial OA(λst, i, s, t) cases, M is huge. Hence, for such cases Step 3 is

disk space intensive. The following theorem provides a more efficient way of determining

G(i, s, t) by converting this problem to finding the automorphism group of BT
(
BBT

)+
B,

where B is a basis of the row space of
(
M − λ

sk−t Jsi

n

)
, and Jsi

n is a n × si matrix of 1’s:

Theorem 13. Let M be the n × si matrix above. Let the rows of B be a basis for the row

space of M− λ
sk−t Jsi

n . Then the automorphism group of PBT = BT
(
BBT

)+
B, GPBT is equal to

G(i, s, t)

Proof. By the argument in Section 4.2, the automorphism group of PBT is the set of all

permutations in S si that preserve R
((

M − λ
sk−t Jsi

n

)T
)
, the row space of M − λ

sk−t Jsi

n . Clearly,

R

((
M − λ

sk−t Jsi

n

)T
)

is a subspace of Null(A(k, s, t)). Every solution to ILP (2.4) has the

form x = v + λ
sk−t 1si for some v ∈ R

((
M − λ

sk−t Jsi

n

)T
)
⊆ Null(A(k, s, t)). For g ∈ G(i, s, t),

x = v+ λ
sk−t 1si and gx = gv+ λ

sk−t 1si both solve ILP (2.4). Hence, gv ∈ R
((

M − λ
sk−t Jsi

n

)T
)

and

54

G(i, s, t) ⊆ GPBT . Furthermore, gx = gv + λ
sk−t 1si also solves ILP (2.4) for g ∈ GPBT . Hence,

GPBT ⊆ G(i, s, t). �

The entries in Table 4.3 were computed as follows:

1. Compute a basis B for the row space of
(
M − λ

sk−t Jsi

n

)
via successive applications of Q-

R decomposition, taking 100 vectors at a time. Report rank
(
M − λ

sk−t Jsi

n

)
= rank(B).

2. Calculate PBT = BT
(
BBT

)+
B.

3. Convert PBT to an edge colored graph with si vertices as described in Section 4.2.

4. Use Nauty [25] to find the automorphism group of the graph.

The following theorem connects the Table 4.3 results to a conjecture on OA(st, k, s, t):

Theorem 14. Let k = i and assume that an OA(λst, k, s, t) exists. Let Conv(M) be the

convex hull of the rows of M. Then, rank(B) = dim(Conv(M)).

Proof. Let B = {ex | x ∈ Dsk} be the standard orthonormal basis for Rsk
indexed with the

full factorial design Dsk . Let Gs,k = G(A, λ1) = S {1,2,··· ,s} o S k act on elements of B by

ex
g
−→ egx for each g ∈ S {1,2,··· ,s} oS k. Let O be the orbit of e1. As the action of S {1,2,··· ,s} oS k on

B is transitive, each element in B appears in O. Then, β(O) = s−k1sk , where β(O) is defined

as in Section 4.3. Hence, by Lemma 3 in Bödi et al. [4],

FixG(A,λ1)

(
Rsk)

= Span (1sk) .

Now, let yT
1×sk be a row of M. Then, β (y) = α1sk for some α ∈ R as β is the projection

operator onto FixG(A,λ1)

(
Rsk

)
. For y ∈ Rsk

, S {1,2,··· ,s} o S k acts on coordinates yx of y by

yx
g
−→ yg−1(x). Let Oy be the orbit of y under this action. Then,

β(y) =
∑
v∈Oy

v∣∣∣Oy
∣∣∣ = α1sk .

55

Each v satisfies the equality constraints in ILP (2.4). Then,
∑

v∈Oy
v
|Oy|

= α1sk also satisfies

the same constraints. This forces α = λ/sk−t. Hence, (λ/sk−t)1sk is in Conv(M). Then,

rank(B) = rank
(
M − λ

sk−t Jsk

n

)
= dim(Conv(M)). �

The second column of Table 4.3 is the size of the automorphism group, the third

indicates if |G(i, s, t)| =
∣∣∣G(A(i, s, t), λ1)LP

∣∣∣, the fourth is the number of rows in BT
(
= si

)
,

the fifth is the upper bound on the rank of B
(
=

∑i
j=t+1

(
i
j

)
(s − 1) j

)
, the sixth is the rank of B,

and the seventh column is the minimum difference between two entries in PBT . The code

used to compute this table is found in Section B.3.

Table 4.3: G(i, s, t) and rank(B)

OA(N, i, s, t) |G(i, s, t)| =
∣∣∣GLP

∣∣∣? rows BT UB(rank(B)) rank(B) PBT diff

OA(32, 6, 2, 4) 322560 Y 64 7 7 0.0625

OA(80, 6, 2, 4) 322560 Y 64 7 7 0.0625

OA(64, 6, 2, 4) 322560 Y 64 7 7 0.0625

OA(112, 6, 2, 4) 322560 Y 64 7 7 0.0625

OA(64, 7, 2, 4) 5160960 Y 128 29 29 0.03125

OA(24, 7, 2, 3) 5.95 × 1024 N 128 64 42 0.03125

OA(96, 7, 2, 4) 5160960 Y 128 29 29 0.03125

OA(64, 8, 2, 4) 92897280 Y 256 93 84 0.015625

OA(24, 8, 2, 3) 1.76 × 1045 N 256 163 99 0.0078125

OA(32, 7, 2, 3) 645120 Y 128 64 63 0.015625

OA(24, 9, 2, 3) 1.08 × 1085 N 512 382 219 1 × 10−10

OA(32, 8, 2, 3) 10321920 Y 256 163 156 1 × 10−10

UB(rank(B)) is the dimension of the affine space to which each indicator vector of the

OA(λst, i, s, t) belongs. For OA(st, i, s, t), Appa et al. [1] conjectured that UB(rank(B)) =

56

dim(Conv(M)), where Conv(M) is the convex hull of the rows of M. By Theorem 14,

rank(B) = dim(Conv(M)). Hence, Table 4.3 appears to invalidate this conjecture for

general OA(λst, i, s, t). However, there may be inaccuracies in the reported rank(B)

values since not all solutions may have been enumerated by the solver or performing Q-R

decomposition with 100 vectors at a time may have introduced numerical precision errors

that lead to rejecting linearly independent rows of
(
M − λ

sk−t Jsi

n

)
from B. If B is not a basis

for
(
M − λ

sk−t Jsi

n

)
, the calculation of G(i, s, t) would be incorrect. Hence, it is essential to

make sure that the elements in column 6 are calculated correctly. For smaller cases, in

which errors are less likely, Table 4.3 not only verifies the Appa et al. [1] conjecture, but

also suggests that G(i, s, t) = G(A(i, s, t), λ1)LP.

4.5 Research Objective 4

Let Aeq and beq be the constraint matrix and the corresponding right hand side of the

equality constraints in ILP (2.13). Let G(Aeq, 0) and G(Aeq,beq) be computed as described

in Sections 4.2 and 4.3 respectively. Let HLP
eq1

and HLP
eq2

be the maximal subgroups of

G(Aeq, 0)LP and G(Aeq,beq)LP that map the input OA(λst, k − 1, s, t) to itself.

Theorem 15. HLP
eq1

= HLP
eq2

.

Proof. Since G(Aeq,beq)LP ⊆ G(Aeq, 0)LP, then HLP
eq2
⊆ HLP

eq1
. Let x̂ be such that

x̂(il−1)s+ j =
ril

s

where j = 1, 2, · · · , s − 1, and il be as in the modified ILP (2.13). Then, x̂ is a fractional

solution to the modified ILP (2.13). Hence, every solution to the LP relaxation of the

modified ILP (2.13) can be written in the form

pmax1 ≥ x = x̂ + v ≥ 0

for some v such that −x̂ ≤ v ≤ pmax1 − x̂ and v ∈ Null(Aeq). This is true because

x̂ is a particular solution to Aeqx = beq and x ≥ 0. Now, the set of all permutations

57

of variables that map the input OA(λst, k − 1, s, t) to itself must map x̂ to itself. Then,

G(Aeq,beq)LP ∩ HLP
eq2

= G(Aeq, 0)LP ∩ HLP
eq1

. Thus, HLP
eq1

= HLP
eq2

. �

Add back the variables
{
x(il−1)s+s

}h
l=1 to ILP (2.13), and replace

∑s−1
j=1 x(il−1)s+ j ≤

ril with
∑s

j=1 x(il−1)s+ j = ril . Also, add the constraints
∑h

l=1 x(il−1)s+s = λst−1 and∑h
l=1 d′plα1

d′plα2
· · · d′plαq−1

x(il−1)s+s = λst−q. Let Aall be the resulting matrix whose rows

correspond to the equality constraints in the modified ILP (2.13), and ball be the

corresponding right hand side. Let G(Aall, 0)LP and G(Aall,ball)LP be computed as described

in Sections 4.2 and 4.3 respectively. Let HLP
all1

and HLP
all2

be the maximal subgroups of

G(Aall, 0)LP and G(Aall,ball)LP that map the input OA(λst, k − 1, s, t) to itself.

Theorem 16. HLP
all1

= HLP
all2

.

The proof is skipped as it is analogous to the proof of Theorem 15.

Let Hs,k be the maximal subgroup of G(A(k, s, t), λ1) (as defined in Section 2.4) that

maps the input OA(λst, k − 1, s, t) to itself and preserves {x(il−1)s+s : l = 1, 2 · · · , h}. Let

HLP
s,k be the maximal subgroup of G(A(k, s, t), λ1)LP from Section 4.2 that maps the input

OA(λst, k − 1, s, t) to itself and preserves {x(il−1)s+s : l = 1, 2, · · · , h}. When HLP
s,k or HLP

all1
is

used, some OD classes of OA(λst, k, s, t) may be lost. However, at least one OA(λst, k, s, t)

will be found if the input OA(λst, k − 1, s, t) can be extended to an OA(λst, k, s, t).

The Figure 2.6 algorithm was used to enumerate all non-OD equivalent OD(160, k, 2, 4)

for k ≤ kmax(160, 2, 4) by solving ILPs (2.13) and modified ILPs (2.13). The modified

ILPs (2.13) were solved using HLP
all1

and HLP
s,k . Hs,k and HLP

eq1
were used to solve the original

ILPs (2.13). Comparisons were made for efficiency. Only using Hs,k or HLP
eq1

guarantee that

no OD classes are lost. However, a comparison of the found number of non-OD equivalent

OAs to those found using Hs,k shows that none of the methods lost OD classes of OAs. At

the end of each extension step, right before the Nauty [25] reduction, using Hs,k and HLP
eq1

produced the exact same number of solutions. In three of the extensions to k = 8, HLP
eq1

was

in the order of 1035. These extensions were the only infeasibles. For the remaining feasible

58

extensions,
∣∣∣HLP

eq1

∣∣∣ =
∣∣∣Hs,k

∣∣∣. Also, for each extension to k = 9, 10,
∣∣∣HLP

eq1

∣∣∣ =
∣∣∣Hs,k

∣∣∣. Hence, us-

ing HLP
eq1

was slightly slower than using Hs,k as it requires calculating the projection matrix

PAT
eq

for each extension. In the extensions to k = 11,
∣∣∣HLP

eq1

∣∣∣ =
∣∣∣Hs,k

∣∣∣ in all but four of the

extensions. In those four extensions,
∣∣∣HLP

eq1

∣∣∣ is much larger than
∣∣∣Hs,k

∣∣∣. This explains why

using HLP
eq1

was about seven times faster than using Hs,k in the extension to k = 11. How-

ever, using Hs,k was still slightly faster for the whole OA(160, k, 2, 4) enumeration starting

at k = 7.

Using HLP
s,k and HLP

all1
resulted in similar solution times. Using HLP

all1
outperformed Hs,k

for extensions up to eight factors. However, Hs,k was much faster than HLP
all1

for the extension

from eight factors to nine factors. Since this is the bottleneck extension, overall, using Hs,k

was faster than using HLP
all1

or HLP
s,k . The number of non-OD equivalent OAs found by each

extension method and their respective run times are listed in Table 4.4.

OA(176, k, 2, 4) enumerations were also made to asses the speed of solving modified

ILPs (2.13) with HLP
all1

. The same sequence of enumerations will be implemented by solving

ILPs (2.13) with Hs,k. The increasing computational time in solving modified ILPs (2.13)

with HLP
all1

for the OA(176, k, 2, 4) cases suggests that the OA(192, k, 2, 4) cases are out of

computational reach even if ILPs (2.13) are solved with Hs,k.

59

Table 4.4: Method Comparisons

of Non-OD Equivalent OAs Times (sec.)
OA(N, k, s, t)

HLP
s,k HLP

all1
Hs,k HLP

eq1
HLP

s,k HLP
all1

Hs,k HLP
eq1

OA(160,7,2,4) 106 106 106 106 339.85 443.37 810.73 881.41

OA(160,8,2,4) 11712 11712 11712 11712 71410 72433 82800 92509

OA(160,9,2,4) 1608 1608 1608 1608 598324 629048 412753 473562

OA(160,10,2,4) 0 0 0 0 43299 17295 73159 10333

OA(176,7,2,4) - 179 - - - 917 - -

OA(176,8,2,4) - 129138 - - - 1134186 - -

OA(176,9,2,4) - 4 - - - 19313974 - -

OA(176,10,2,4) - 0 - - - 4 - -

The code to compute Hs,k is found in Bulutoglu and Ryan [8]. The modification to the

Bulutoglu and Ryan [8] code to make it use HLP
s,k is found in Section B.4. The modification

to the Bulutoglu and Ryan [8] code to make it use HLP
all1

is found in Section B.5.

60

V. Conclusions and Future Research

5.1 Conclusions

In Chapter 3, it was first shown that none of the inequalities in the LP relaxation of

ILP (3.2) that describes OA(N, k, s, t)s is redundant. This renders each inequality to be a

facet of the LP relaxation. In Section 3.3, this result was used to explicitly show that the

symmetry group G(A′(k, s, t),bm)LP of the LP relaxation of ILP (3.2) is S {2,··· ,s} o S k. Even

though it is easy to see that S {2,··· ,s} o S k ⊆ G(A′(k, s, t),bm)LP, it is far from trivial to show

that S {2,··· ,s} o S k = G(A′(k, s, t),bm). The practical value of this result is that there are no

additional symmetries that can be exploited by using a subgroup of G(A′(k, s, t),bm)LP to

find OAs by solving ILP (3.2).

Bulutoglu and Margot [7] previously proved that Gs,k = S {1,··· ,s} oS k is a subgroup of the

automorphism group G(A, λ1, 1, pmax1) of ILP (2.4). Based on computational observations,

they conjectured that Gs,k = G(A, λ1, 1, pmax1). This conjecture was proved in Chapter 3.

In Section 4.2.1, the Margot ILP solver [22] was used to find a set of all non-

isomorphic solutions to ILP (3.2) exploiting G(A(k, s, t),bm)LP. This was compared to

finding all non-isomorphic solutions to ILP (2.5), which has more variables, by exploiting

the larger group Gs,k. It is legitimate to use Gs,k to solve ILP (2.5) as ILP (2.5) and ILP (2.4)

have the same feasible sets defined by the same variables. For most of the cases, a set of all

non-isomorphic solutions to ILP (2.5) with the larger number of variables was found faster.

When the Margot ILP solver [22] is used to solve a symmetric ILP, it is essential to find

larger subgroups of the ILP’s symmetry group to speed up the enumeration. One easy-to-

compute subgroup is the automorphism group of the formulation, G(A,b, c,d). This group

coincides with the symmetry group of the LP relaxation G(A,b, c,d)LP, provided that the

LP relaxation has no redundant constraints and is full dimensional. Hence, given an ILP

formulation whose LP relaxation is full dimensional, finding G(A,b, c,d)LP is a matter of

61

culling the redundant constraints and computing the automorphism group of the resulting

formulation. On the other hand, for an ILP whose LP relaxation is not full dimensional,

the LP relaxation may contain hidden symmetries not captured by G(A,b, c,d), even after

removing all the redundant constraints.

The LP relaxation symmetry group always contains the automorphism group of an

ILP formulation. Thus, it is more desireable to exploit the LP relaxation symmetry group.

The LP relaxation of an ILP with equality constraints is not full dimensional. Hence, it is

possible that the LP relaxation symmetry group of such an ILP strictly contains the ILP

formulation automorphism group. In Sections 4.2 and 4.3, an algorithm was developed

for finding this potentially larger group. This is the first algorithm for this purpose in the

literature.

In Section 4.2, a special case of the developed algorithm is applied to LP relaxations

of ILPs with equality constraints that describe orthogonal arrays. Computational results not

only revealed previously unknown hidden symmetries of the ILP (2.5) formulation of the

OA problem, but also demonstrated that exploiting the newly found symmetries decreases

solution times significantly. In Section 4.2.2, these newly found hidden symmetries were

explicitly described as the automorphism group GJ
k,t of a system of equations derived from

equations (4.4). Furthermore, for each k, t combination, GJ
k,t was conjectured to be the same

as the symmetry group of the LP relaxation of ILP (2.5).

In Section 4.3, the newly developed algorithm was used to find the LP relaxation

symmetry groups of modified versions of MILPs featured in Liberti [18]. All inequalities

in each MILP were first converted to equality constraints by adding slack variables. In

many of these cases,

|G(A,b, c,d)LP| > |G(A,b, c,d)|.

Hence, this algorithm reveals hidden symmetries that do not exist in G(A,b, c,d). If a MILP

solver with isomorphism pruning is used on these problems, it is expected that exploiting

62

the larger groups would overcome the additional computational burden due to the added

slack variables.

In Section 4.4, G(k, s, t), the symmetry group of ILP (2.5), was calculated for several

k, s, t combinations. For most cases, all the symmetry in the OA problem was captured by

the symmetry group of its LP relaxation. Differences between these groups occurred in

larger cases where numerical precision errors were more likely to throw off calculations.

As a side benefit, the method developed for calculating G(k, s, t) also checked the validity

of a conjecture made by Appa et al. [1]. The fact that this conjecture was verified only in

the smaller cases suggests that this method suffers from numerical precision errors for the

larger cases.

In Section 4.5, the LP relaxation symmetry group was used in various ways for each

of the OA extensions based on ILPs (2.13) in the Bulutoglu and Ryan [8] OA extension

algorithm. Even though there were some extensions in which larger groups were found,

the computational savings did not make up for the time lost finding these groups. The OA

extension algorithm developed by Bulutoglu and Ryan [8] still remains the fastest known

for enumerating all non-isomorphic OA(160, k, 2, 4) and OA(176, k, 2, 4).

In the next section, some open problems are presented that arose from the research in

this dissertation. In Section 5.3, a set of conjectures is provided based on observations from

the computational research in Chapter 4. It is proposed that future research efforts resolve

these conjectures by either proving them or finding counterexamples. In Section 5.4, a

list of computational projects is proposed to improve upon the computional research in

Chapter 4.

5.2 Open Problems

Problem 1. Determine the isomorphism class of the group G(A(k, s, t), λ1)LP in Section 4.1

by determing how it relates to its subgroup G(A(k, s, t), λ1) = S {1,2,··· ,s} o S k.

Problem 2. Develop the theory and computational tools in this dissertation for t-designs.

63

5.3 Conjectures

Conjecture 2. If an OA(λst, i, s, t) exists, then dim(Conv(M)) =
∑i

j=t+1

(
i
j

)
(s − 1) j, where

M is as in Section 4.4.

Conjecture 3. If an OA(λst, i, s, t) exists, then G(i, s, t) = G(A(i, s, t), λ1)LP, where

G(A(i, s, t), λ1)LP is as in Section 4.2 and G(i, s, t) is as in Section 4.4.

Conjecture 4. Let G(A(k, s, t), λ1)LP be as in Section 4.1. Then,

∣∣∣G(A(k, s, t), λ1)LP
∣∣∣ =

(k + 1)!2k if t is even, s = 2, and 1 ≤ t < k,

k!(s!)k if (t isodd or s > 2) and 1 ≤ t < k,

sk! otherwise.

To prove this conjecture, let E(N, k, t) be the constraint matrix of the system of

equations (4.4). Now, let PE(N,k,t)T be the projection matrix onto the row space of

E(N, k, t). Then, as the rows of E(N, k, t) are orthogonal, PE(N,k,t)T = 1
N E(N, k, t)T E(N, k, t).

Furthermore, G(A(k, 2, t), λ1)LP is the automorphism group of this matrix. After fixing an

order for the variables, come up with a closed form formula for PE(N,k,t)T . Use this formula

to calculate the automorphism group.

Conjecture 5. Let Aall, ball, and HLP
s,k be as in Section 4.5. Let Âall and b̂all be obtained from

Aall and ball by deleting the constraints
∑s

j=1 x(il−1)s+ j = ril . Let G(Âall, 0)LP and G(Âall, b̂all)LP

be computed as described in Sections 4.2 and 4.3, respectively. Let ĤLP
all1

and ĤLP
all2

be the

maximal subgroups of G(Âall, 0)LP and G(Âall, b̂all)LP that map the input OA(λst, k − 1, s, t)

to itself. Then, ĤLP
all1

= ĤLP
all2

= HLP
s,k .

5.4 Computational Research Improvements

Project 1. Resolve the numerical precision issues in the methods and algorithms used to

develop Table 4.3.

64

Project 2. If Conjecture 5 is proven, compute ĤLP
all1

by calculating the singular value

decomposition of Âall as described in Section 4.2 for all of the algorithms in this dissertation

that require HLP
s,k .

65

Appendix A: Computer Code for Theoretical Research

A.1 MATLAB Code for ILP (2.4) Constraints

Appendix1/Constraintoa.m

1 function A = Constraintoa(k,s,t)

2 % Usage: A<-constraintoa(8,2,2)

3

4 filePath = mfilename(’fullpath’);

5 filePath = filePath(1:(length(filePath)-length(mfilename(’’))));

6 [˜, ˜] = system(strcat(’mkdir’,32,filePath ,’A_Matrices’));

7 filePath = ...

strcat(filePath,’A_Matrices/Ak’,num2str(k),’s’,num2str(s),...

8 ’t’,num2str(t),’.txt’);

9

10 % Vector of 1’s of length s

11 ps = ones(1,s);

12 % Identity matrix of size s

13 iss = eye(s);

14 % Generate all k choose t combinations

15 indexmat = combntns(1:k,t);

16

17 % Count the number of cases

18 numcases = size(indexmat, 1);

19

20 % Initialize A with an empty matrix

21 %A=[];

22

23 fcoa = fopen(filePath,’w’);

24

25 % Build the A matrix

66

26 for j = 1:1:numcases

27 temp = 1;

28 for i = 1:1:k

29 if sum(i*ones(1,t)==indexmat(j,:))==1

30 temp = kron(temp,iss);

31 else

32 temp = kron(temp,ps);

33 end;

34 end;

35 %A = [A; temp];

36 for i = 1:1:size(temp,1)

37 fprintf(fcoa,strcat(repmat(’%d ...

’,1,size(temp,2)-1),32,’%d\n’),temp(i,:));

38 end;

39 end;

40

41 fclose(fcoa);

42

43 A = dlmread(filePath);

A.2 Column Permutations of ILP (2.4) Constraint Matrix

Appendix1/kstRandPermProb.m

1 clear; clc;

2

3 %----Determine folder containing the m file

4 filePath = mfilename(’fullpath’);

5 filePath = filePath(1:(length(filePath)-length(mfilename(’’))));

6

7 %----List of fraction probabilities ----

8 fileName = strcat(filePath,’FractionProb.csv’);

9 fprob = fopen(fileName,’w’);

67

10 fprintf(fprob,strcat(’k,s,t,# Frac,# Total,P(Frac)\n’));

11 fclose(fprob);

12

13 for s = 2:1:4

14 for k = 4:1:round(26/s)

15 for t = 1:1:(k-2)

16

17 X = [k s t zeros(1,3)];

18

19 %----Display current OA to user----

20 disp(strcat(’Processing OA(k=’,num2str(k),’, ...

s=’,num2str(s), ...

21 ’, t=’, num2str(t),’)....’));

22

23 %----Constraint OA matrix----

24 A = Constraintoa(k,s,t);

25 n = size(A,2);

26 X(5) = 1000;

27 for i = 1:1:X(5)

28 R = A(:,randperm(n));

29 R = [R ones(size(R,1),1)];

30 R = rref(R);

31 if sum(sum((R-round(R))>0))>0

32 X(4) = X(4) + 1;

33 end;

34 end;

35 clear A R;

36 X(6) = X(4) / X(5);

37

38 dlmwrite(fileName,X,’-append’,’delimiter’,’,’);

39 end;

40 end;

68

41 end;

A.3 MATLAB Code to Generate Rosenberg [29] Constraints

Appendix1/Rosenberg.m

1 function [a, A, rhs] = Rosenberg(k, s, t, lam)

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4

5 %Rosenberg=function(k,s,t,lam){

6 %a=as.matrix(c(rep(0,(t+1))))

7 a = zeros(t + 1, 1);

8 a(1,1) = lam;

9 cc = 1;

10 while cc < t + 1

11 tut = lam;

12 for i = 1:1:cc

13 if (cc-i+1) <= (k-t)

14 tut = tut-a(i,1)*nchoosek((k-t),(cc-i+1))*(s-1)ˆ(cc-i+1);

15 end;

16 end;

17 a(cc + 1, 1) = tut;

18 cc = cc + 1;

19 end;

20

21 N = 0;

22 for i = 0:1:t

23 N = N + nchoosek(k, i) * (s - 1)ˆi;

24 end;

25 m = sˆk - N;

26 A = zeros(N,m);

27 rhs = zeros(N,1);

69

28 r1 = 1;

29 for j = 1:1:(sˆk)

30 mm1 = dec2base(j-1, s, 32)-’0’;

31 m1 = sum(mm1>0);

32 x = find(mm1>=1);

33 if m1 <= t

34 ccc = t - m1;

35 r2 = 1;

36 for i = 1:1:(sˆk)

37 mm2 = dec2base(i-1, s, 32)-’0’;

38 m2 = sum(mm2>0);

39 if m2 > t

40 if sum((mm2(x)-mm1(x)).ˆ2>0) == 0 && ccc <= m2-t+cc-1

41 A(r1,r2) = (-1)ˆ(ccc+1)*nchoosek(m2-t+ccc-1,ccc);

42 end;

43 r2 = r2 + 1;

44 end;

45 end;

46 rhs(r1,1) = -1*a(ccc+1,1);

47 r1 = r1 + 1;

48 end;

49 end;

50

51 end

A.4 MATLAB Code to Test Theorem 6

Appendix1/newFacetTest.m

1 clear; clc;

2

3 %if matlabpool(’size’) == 0

4 % matlabpool open local 3

70

5 %end;

6

7 options=optimset(’MaxIter’, 100000, ’TolFun’, 10e-8);

8 filePath = strrep(mfilename(’fullpath’),mfilename(’’),’’);

9 addpath(filePath);

10 cmd_line = strcat(’mkdir’,32,filePath,’Facet_Solutions’);

11 [˜,˜] = system(cmd_line);

12 filePath = strcat(filePath,’Facet_Solutions/’);

13

14 Cases=[6,2,3,5

15 5,2,2,1

16 5,2,2,2

17 5,3,2,2

18 5,3,3,2

19 5,3,3,3

20 5,3,2,3

21 4,2,2,1

22 8,2,2,2

23 7,2,2,1

24 6,2,2,1

25 9,2,2,2

26 7,2,2,2

27 6,2,2,2

28 7,2,3,7

29 8,2,4,5

30 9,2,4,5

31 9,2,5,5

32 9,2,3,6

33 10,2,4,11

34 10,2,5,12

35 6,3,3,2

36 7,3,3,7

71

37 8,3,3,7

38 9,3,2,2];

39

40 CaseCount = size(Cases ,1);

41 k = Cases(:,1);

42 s = Cases(:,2);

43 t = Cases(:,3);

44 l = Cases(:,4);

45

46 for i=1:1:CaseCount

47 ko = k(i);

48 so = s(i);

49 to = t(i);

50 lo = l(i);

51 [˜,A,b]=Rosenberg(ko,so,to,lo);

52 n=size(A,2);

53 b = -1*[b;zeros(n,1)];

54 A = -1*[A;eye(n)];

55 m=size(A,1);

56 fileName1 = ...

strcat(filePath,’edgeXk’,num2str(ko),’s’,num2str(so),’t’, ...

57 num2str(to),’lam’,num2str(lo),’.csv’);

58 fileName2 = ...

strcat(filePath,’cornerXk’,num2str(ko),’s’,num2str(so),’t’, ...

59 num2str(to),’lam’,num2str(lo),’.csv’);

60 for j = 0:1:((ko+1)ˆn-1) %#ok<PFRNG>

61 Xo = (dec2base(j,ko+1,n)-’0’)’;

62 d = b - A*((lo/soˆ(ko-to))*Xo);

63 if min(d) >= 0 && sum(d==0) > 0

64 display(sum(d==0));

65 display(Xo’);

66 if sum(d==0) == 1

72

67 fileName = fileName1;

68 else

69 fileName = fileName2;

70 end;

71 dlmwrite(fileName,Xo’,’-append’,’delimiter’,’,’);

72 end;

73 end;

74 end;

75

76 %matlabpool close;

A.5 MATLAB Code to Implement Espinoza [9]

Appendix1/ExactSolve.m

1 function [status, X] = ExactSolve(f, A, b, Aeq, beq, lb, ub, ...

FileName)

2 %UNTITLED2 Summary of this function goes here

3 % Detailed explanation goes here

4

5 n = max([size(A,2), size(Aeq,2)]);

6 X = zeros(n,1);

7

8 FilePath = strrep(mfilename(’fullpath’),mfilename(’’),’’);

9 addpath(strcat(FilePath,’BuildMPS’));

10 InputPath = strcat(’mkdir’,32,FilePath,’MPS_Files’);

11 [˜,˜] = system(InputPath);

12 InputPath = strcat(FilePath,’MPS_Files’);

13 OutputPath = strcat(’mkdir’,32,FilePath ,’Solver_Output’);

14 [˜,˜] = system(OutputPath);

15 OutputPath = strcat(FilePath ,’Solver_Output’);

16 addpath(strcat(FilePath,’Projection_Matrices’));

17

73

18 InputPath = strcat(InputPath ,’/’,FileName,’.mps’);

19 OutputPath = strcat(OutputPath ,’/’,FileName ,’.sol’);

20

21 [˜, OK]=BuildMPS(A, b, Aeq, beq, f, lb, ub,’INPUT’, ...

22 ’MPSfilename’,strcat(’MPS_Files/’,FileName ,’.mps’));

23

24 if OK == 0

25 return;

26 end;

27

28 cmd_line = strcat(FilePath,’QSopt_ex -2.5.10/bin/./mpq_solver -O’,32, ...

29 InputPath ,32,’>’,32,OutputPath);

30

31 [status, ˜] = system(cmd_line);

32

33 if status == 0

34 fin = fopen(OutputPath);

35 tline = fgets(fin);

36 while ischar(tline) && length(tline) == ...

37 length(strrep(tline,’Solution Values’,’’))

38 tline = fgets(fin);

39 end;

40 if length(tline) > length(strrep(tline,’Solution Values’,’’))

41 while ischar(tline) && length(tline) == ...

length(strrep(tline,’=’,’’))

42 tline = fgets(fin);

43 end;

44 while ischar(tline)

45 if length(tline) > length(strrep(tline,’=’,’’))

46 i = strfind(tline, ’=’)-1;

47 j = str2double(strrep(tline(1:i),’X’,’’));

48 k = sym(tline((i+2:length(tline))));

74

49 X(j,1) = k;

50 end;

51 tline = fgets(fin);

52 end;

53 else

54 status = 2;

55 end;

56 fclose(fin);

57 end;

58

59 end

A.6 MATLAB Code to Remove Layers in Nauty [25] Output

Appendix1/GLPRemoveLayers.m

1 function GLPRemoveLayers(dfix, numvar, infile, outfile)

2 % This function removes layers for the GLP group

3

4 fin = fopen(infile);

5 fout = fopen(outfile, ’w’);

6

7 tline = fgets(fin);

8 A = [];

9 linelen = 78;

10

11 while ischar(tline)

12 % set correct number of vertices

13 if length(tline) > length(strrep(tline,’n=’,’’))

14 j = 1;

15 while j < (length(tline)-8) && ...

16 ˜strcmp(tline(j:(j + 1)),’n=’)

17 j = j + 1;

75

18 end;

19 j = j + 2;

20 q = j;

21 while q < length(tline) && ˜strcmp(tline(q),’ ’)

22 q = q + 1;

23 end;

24 n = str2double(tline(j:q));

25 tline = strrep(tline,strcat(’n=’, num2str(n)), ...

strcat(’n=’,num2str(numvar)));

26 end;

27 if length(tline) > length(strrep(tline,’linelen=’,’’))

28 j = 1;

29 while j < (length(tline)-8) && ...

30 ˜strcmp(tline(j:(j + 7)),’linelen=’)

31 j = j + 1;

32 end;

33 j = j + 8;

34 q = j;

35 while q < length(tline) && ˜strcmp(tline(q),’ ’)

36 q = q + 1;

37 end;

38 n = str2double(tline(j:q));

39 tline = strrep(tline,strcat(’linelen=’, num2str(n)), ...

strcat(’linelen=’,num2str(linelen)));

40 end;

41 B = str2num(tline); %#ok<ST2NM>

42 if max(size(B)) == 0 || ˜strcmp(tline(1:4),’ ’)

43 if max(size(A)) > 0

44 A = floor(A./dfix);

45 [˜,index] = unique(A,’first’); % Capture the index, ...

ignore junk

76

46 A = A(sort(index)); % Index A with the ...

sorted index

47 k = max(size(A));

48 outtext = ’ ’;

49 for i=1:1:k

50 if length(outtext) + length(num2str(A(i))) < linelen

51 outtext = strcat(outtext ,32,num2str(A(i)));

52 else

53 fprintf(fout,strcat(outtext,’\n’));

54 outtext = strcat(32,32,32,32,num2str(A(i)));

55 end;

56 end;

57 fprintf(fout,strcat(outtext,’\n’));

58 A = [];

59 end;

60 if max(size(B)) == 0

61 fprintf(fout,strcat(tline,’\n’));

62 else

63 A = B;

64 end;

65 else

66 A = [A, B]; %#ok<AGROW>

67 end;

68 % if length(tline) > length(strrep(tline,’linelen ’,’’))

69 % j = 1;

70 % while j < (length(tline)-8) && ...

71 % ˜strcmp(tline(j:(j + 7)),’linelen=’)

72 % j = j + 1;

73 % end;

74 % j = j + 8;

75 % q = j;

76 % while q < length(tline) && ˜strcmp(tline(q),’ ’)

77

77 % q = q + 1;

78 % end;

79 % linelen = str2double(tline(j:q));

80 % end;

81 tline = fgets(fin);

82 end;

83

84 fclose(fin);

85 fclose(fout);

86

87 end

A.7 MATLAB Code to Test Theorem 8

Appendix1/ProjMatrix.m

1 clear; clc;

2

3 %----Determine folder containing the m file

4 filePath = mfilename(’fullpath’);

5 filePath = filePath(1:(length(filePath)-length(mfilename(’’))));

6 Linux_Command = strcat(filePath,’Linux_Command.txt’);

7 fcom = fopen(Linux_Command ,’w’);

8

9 %----Make subdirectories for files----

10 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Projection_Matrices’));

11 addpath(strcat(filePath,’Projection_Matrices’));

12 [˜,˜] = system(strcat(’mkdir’,32,filePath,’g6_Files’));

13 addpath(strcat(filePath,’g6_Files’));

14 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Junk’));

15 addpath(strcat(filePath,’Junk’));

16 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Gap_Input’));

17 addpath(strcat(filePath,’Gap_Input’));

78

18 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Dreadnaut_Input’));

19 addpath(strcat(filePath,’Dreadnaut_Input’));

20 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

21 ’Dreadnaut_Input/Permutation’));

22 addpath(strcat(filePath,’Dreadnaut_Input/Permutation’));

23 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Dreadnaut_Input/Cycle’));

24 addpath(strcat(filePath,’Dreadnaut_Input/Cycle’));

25 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Dreadnaut_Output’));

26 addpath(strcat(filePath,’Dreadnaut_Output’));

27 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

28 ’Dreadnaut_Output/Original’));

29 addpath(strcat(filePath,’Dreadnaut_Output/Original’));

30 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

31 ’Dreadnaut_Output/Original/Permutation’));

32 addpath(strcat(filePath,’Dreadnaut_Output/Original/Permutation’));

33 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

34 ’Dreadnaut_Output/Original/Cycle’));

35 addpath(strcat(filePath,’Dreadnaut_Output/Original/Cycle’));

36 [˜,˜] = system(strcat(’mkdir’,32,filePath,’Dreadnaut_Output/Reduced’));

37 addpath(strcat(filePath,’Dreadnaut_Output/Reduced’));

38 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

39 ’Dreadnaut_Output/Reduced/Permutation’));

40 addpath(strcat(filePath,’Dreadnaut_Output/Reduced/Permutation’));

41 [˜,˜] = system(strcat(’mkdir’,32,filePath, ...

42 ’Dreadnaut_Output/Reduced/Cycle’));

43 addpath(strcat(filePath,’Dreadnaut_Output/Reduced/Cycle’));

44

45 %----Linux command to run gap silently----

46 gap = ’/usr/share/gap4r5/bin/gap-default64.sh -q’;

47

48 %----Linux command line script for Hnosigneff executable ----

49 Hnosigneff = strcat(filePath ,’Hnosigneff’);

79

50

51 %----Nauty Linux command line scripts----

52 nautyFile = strcat(filePath,’nauty25rc1/’); % Folder ...

containing nauty

53 listg = strcat(nautyFile ,’listg -d’); % listg executable

54 dreadnaut = strcat(nautyFile ,’dreadnaut <’); % dreadnaut executable

55

56 %----List of permutation group sizes----

57 ftime = fopen(strcat(filePath,’Run_Times.csv’),’w’);

58 fprintf(ftime,strcat(’k,s,t,Constraintoa ,’, ...

59 ’Projection Matrix,Lower Half of P,Hnosigneff ,listg,dreadnaut ,’, ...

60 ’RemoveLayers ,Gap\n’));

61 fsizes = fopen(strcat(filePath,’Group_Sizes.csv’),’w’);

62 fprintf(fsizes,strcat(’k,s,t,dfix,k!(((s-1)!)ˆk,Stabilizer ,’, ...

63 ’(k+1)k!(s!)ˆk,Group Size\n’));

64

65 for k = 4:1:7

66 for s = 2:1:4

67 for t = 2:1:min([(k-1) 4])

68 %----Display current OA to user----

69 disp(strcat(’Processing OA(k=’,num2str(k),’, ...

s=’,num2str(s), ...

70 ’, t=’, num2str(t),’)....’));

71 fileLabel = strcat(’k’,num2str(k),’s’,num2str(s),’t’, ...

72 num2str(t));

73 PfileName = strcat(filePath,’Projection_Matrices/P’, ...

74 fileLabel ,’.txt’);

75 g6fileName = strcat(filePath ,’g6_Files/P’,fileLabel ,’.g6’);

76 dreadInPerm = strcat(filePath , ...

77 ’Dreadnaut_Input/Permutation/aa’,fileLabel ,’.naut.inp’);

78 dreadInCycle = ...

strcat(filePath,’Dreadnaut_Input/Cycle/aa’, ...

80

79 fileLabel ,’.naut.inp’);

80 dreadOutPerm = strcat(filePath, ...

81 ’Dreadnaut_Output/Original/Permutation/aa’,fileLabel ,’.out’);

82 dreadOutCycle = strcat(filePath, ...

83 ’Dreadnaut_Output/Original/Cycle/aa’,fileLabel ,’.out’);

84 PermLayer = strcat(filePath, ...

85 ’Dreadnaut_Output/Reduced/Permutation/aa’,fileLabel ,’.out’);

86 CycleLayer = strcat(filePath , ...

87 ’Dreadnaut_Output/Reduced/Cycle/aa’,fileLabel ,’.out’);

88 junk = strcat(filePath ,’Junk/junk’,fileLabel);

89 gapInput = ...

strcat(filePath,’Gap_Input/gap’,fileLabel ,’.txt’);

90 tic;

91 A = Constraintoa(k,s,t)’;

92 fprintf(ftime,strcat(num2str(k),’,’,num2str(s),’,’, ...

93 num2str(t),’,’,num2str(toc),’,’));

94

95 %----Projection matrix using M o o r e P e n r o s e ...

pseudoinverse ----

96 tic;

97 P = A * pinv(A’*A) * A’;

98 fprintf(ftime,strcat(num2str(toc),’,’));

99 clear A;

100

101 %----Save lower half of P as a vector in a text file-----

102 tic;

103 p = zeros(1,sum(1:size(P,1)));

104 for n = 1:1:size(P,1)

105 p(1,(sum(1:(n-1))+1):(sum(1:(n-1))+n)) = P(n,1:n);

106 end;

107 clear P;

108 fp = fopen(PfileName ,’w’);

81

109 fprintf(fp,’%.11f ’,p);

110 fclose(fp);

111 fprintf(ftime,strcat(num2str(toc),’,’));

112

113 clear p m n j;

114

115 %----Call Hnosigneff ----

116 tic;

117 lin_com = ...

strcat(Hnosigneff ,32,PfileName ,32,g6fileName ,32, ...

118 num2str(sˆk));

119 fprintf(fcom,strcat(lin_com,’\n’));

120

121 [status, result] = system(lin_com);

122 if status ˜= 0

123 disp(strcat(’Error from Hnosigneff:’,10,result ,10));

124 fprintf(ftime,’\n’);

125 fprintf(fsizes,’\n’);

126 break;

127 end;

128 fprintf(ftime,strcat(num2str(toc),’,’));

129

130 %---Load value for dfix----

131 j = 1;

132 while j < (length(result)-8) && ...

133 ˜strcmp(result(j:(j + 6)),’ncolor=’)

134 j = j + 1;

135 end;

136 j = j + 7;

137 n = j;

138 while n < length(result) && ˜strcmp(result(n),’:’)

139 n = n + 1;

82

140 end;

141 dfix = str2double(strrep(result(j:n),’:’,’’));

142

143 %----Call listg----

144 tic;

145 lin_com = strcat(listg ,32,g6fileName);

146 fprintf(fcom,strcat(lin_com,’\n’));

147

148 [status, result] = system(lin_com);

149 if status ˜= 0

150 disp(strcat(’Error from listg:’,10,result ,10));

151 fprintf(ftime,’\n’);

152 fprintf(fsizes,’\n’);

153 break;

154 end;

155 fprintf(ftime,strcat(num2str(toc),’,’));

156 fjunk = fopen(junk,’w’);

157 fprintf(fjunk,result);

158 fclose(fjunk);

159

160 %---Make input file for dreadnaut (permutations)----

161 fperm = fopen(dreadInPerm , ’w’);

162 fprintf(fperm,strcat(’<’,32,junk,’\np\n>’,32,dreadOutPerm , ...

...

163 ’\n?\nx\n’));

164 fclose(fperm);

165

166 %---Call dreadnaut (permutations)----

167 % tic;

168 % lin_com = strcat(dreadnaut ,32,dreadInPerm);

169 % fprintf(fcom,strcat(lin_com ,’\n’));

170 % [˜, ˜] = system(lin_com);

83

171 % toc;

172

173 %---Make input file for dreadnaut (cycles)----

174 fcyc = fopen(dreadInCycle , ’w’);

175 fprintf(fcyc,strcat(’<’,32,junk,’\n?\nx\n’));

176 fclose(fcyc);

177

178 %---Call dreadnaut (cycles)----

179 tic;

180 lin_com = strcat(dreadnaut ,32,dreadInCycle);

181 fprintf(fcom,strcat(lin_com,’\n’));

182

183 [status, result] = system(lin_com);

184 if status ˜= 0

185 disp(strcat(’Error from dreadnaut:’,10,result ,10));

186 fprintf(ftime,’\n’);

187 fprintf(fsizes,’\n’);

188 break;

189 end;

190 fread = fopen(dreadOutCycle ,’w’);

191 fprintf(fread,result);

192 fclose(fread);

193 fprintf(ftime,strcat(num2str(toc),’,’));

194

195 %---Remove layers (permutations)---

196 % tic;

197 % RemoveLayers(dfix, dreadOutPerm , PermLayer , 0);

198 % toc;

199

200 %---Remove layers (cycles)---

201

202 tic;

84

203 RemoveLayers(dfix, dreadOutCycle , CycleLayer , 1);

204 fprintf(ftime,strcat(num2str(toc),’,’));

205

206 %---Create Gap Input file---

207 result = num2str(StabilizerGroup(k, s, t));

208 while length(strrep(result,’ ’,’’)) < length(result)

209 result = strrep(result,’ ’,’ ’);

210 end;

211 result = strrep(strtrim(result),’ ’,’,’);

212 fgap = fopen(gapInput, ’w’);

213 fprintf(fgap,strcat(’Read("’,CycleLayer , ...

214 ’");\nSize(sys);\nSize(Stabilizer(sys,[’, result, ...

215 ’],OnSets));\nquit;\n’));

216 fclose(fgap);

217

218 %---Run Gap to get size---

219 tic;

220 lin_com = strcat(gap,32,’<’,32,gapInput);

221 fprintf(fcom,strcat(lin_com,’\n’));

222

223 [status, result] = system(lin_com);

224 result = FormatResult(result);

225 if status ˜= 0 || max(size(result)) ˜= 2 %#ok<BDSCA>

226 disp(strcat(’Error from gap:’,10,result ,10));

227 fprintf(ftime,’\n’);

228 fprintf(fsizes,’\n’);

229 break;

230 end;

231

232 fprintf(fsizes,strcat(num2str(k),’,’,num2str(s),’,’, ...

233 num2str(t),’,’, num2str(dfix),’,’, ...

234 num2str(factorial(k)*(factorial(s-1))ˆk),’,’, ...

85

235 num2str(result(2)),’,’,num2str((k+1)*factorial(k)*...

236 (factorial(s))ˆk),’,’,num2str(result(1)),’\n’));

237 fprintf(ftime,strcat(num2str(toc),’\n’)); % (k+1)k!(s!)ˆk

238 end;

239 end;

240 end;

241

242 fclose(fcom);

243 fclose(fsizes);

244 fclose(ftime);

86

Appendix B: Computational Research Computer Code

B.1 Code For Table 4.1 Column 3

Appendix2/BF6GLP.m

1 function BF6GLP(nautyFile , Hnosigneff , k, s, t)

2

3 AAout = ’’; %#ok<NASGU> Set the output to an empty string ...

(default)

4

5 numDigit = 12; % Number of digits for ...

precision

6

7 %---UNIX command line passes all inputs as strings, convert to ...

integers ----

8 if ischar(k)

9 k = str2double(k);

10 end;

11

12 if ischar(s)

13 s = str2double(s);

14 end;

15

16 if ischar(t)

17 t = str2double(t);

18 end;

19

20 %----Determine folder containing the m file

21 [˜, filePath] = system(’pwd’);

22 addpath(filePath);

23

87

24 %----Set intermediate file names----

25 fileLabel = strcat(num2str(k),’.’,num2str(s),’.’, num2str(t));

26 aaSizefileName = strcat(filePath ,’/aa’, fileLabel ,’.naught.size’);

27 PfileName = strcat(filePath,’/P’, fileLabel ,’.txt’);

28 g6fileName = strcat(filePath ,’/P’,fileLabel ,’.g6’);

29 dreadInPerm = strcat(filePath ,’/aa’, fileLabel ,’.naut.inp’);

30 dreadOutPerm = strcat(filePath,’/aa’, fileLabel ,’.out’);

31 dreadOutLayer = strcat(filePath,’/aa’, fileLabel ,’.red.out’);

32 junk = strcat(filePath ,’/junk’,fileLabel ,’.txt’);

33 aagrp = strcat(filePath,’/aa’, fileLabel ,’.grp’);

34

35 %----Nauty Linux command line scripts----

36 listg = strcat(nautyFile ,’listg -d’); % listg executable

37 dreadnaut = strcat(nautyFile ,’dreadnaut <’); % dreadnaut executable

38

39 %----Generate Rosenberg constraint matrix----

40 %[˜,A,˜] = Rosenberg(k,s,t,1);

41 %A = [eye(size(A,1)), -1*A]’;

42

43 A = Constraintoa(k,s,t)’;

44

45 %----Projection matrix using M o o r e P e n r o s e pseudoinverse ----

46 P = A * pinv(A’*A) * A’;

47 clear A;

48

49 %----Save lower half of P as a vector in a text file-----

50 p = zeros(1,sum(1:size(P,1)));

51 for n = 1:1:size(P,1)

52 p(1,(sum(1:(n-1))+1):(sum(1:(n-1))+n)) = P(n,1:n);

53 end;

54 for n = 1:1:size(p,2)

55 if abs(p(1,n)) <= 10ˆ(-1*numDigit)

88

56 p(1,n) = 0;

57 end;

58 end;

59 clear P;

60

61 fp = fopen(PfileName ,’w’);

62 fprintf(fp,strcat(’%.’,num2str(numDigit),’f’,32),p);

63 fclose(fp);

64

65 clear p n j;

66

67 %----Call Hnosigneff ----

68 lin_com = strcat(Hnosigneff ,32, PfileName ,32, g6fileName ,32, ...

num2str(sˆk));

69

70 [status, result] = system(lin_com);

71 if status ˜= 0

72 AAout = strcat(’Error from Hnosigneff:’,10,result ,10);

73 disp(AAout);

74 return;

75 end;

76

77 %---Load value for dfix----

78 j = 1;

79 while j < (length(result)-1) && ...

80 ˜strcmp(result(j:(j + 1)),’d=’)

81 j = j + 1;

82 end;

83 j = j + 2;

84 q = j;

85 while q < length(result) && ˜strcmp(result(q),’ ’)

86 q = q + 1;

89

87 end;

88 dfix = str2double(strrep(result(j:q),’ ’,’’));

89

90 %----Call listg----

91 lin_com = strcat(listg ,32,g6fileName ,32,’>’,32,junk);

92

93 [status, ˜] = system(lin_com);

94 if status ˜= 0

95 AAout = strcat(’Error from listg:’,10,result ,10);

96 disp(AAout);

97 return;

98 end;

99

100 %---Make input file for dreadnaut (permutations)----

101 fperm = fopen(dreadInPerm , ’w’);

102 fprintf(fperm,strcat(’<’,32,junk,’\np\n?\nx\n’));

103 fclose(fperm);

104

105 %---Call dreadnaut (cycles)----

106 lin_com = strcat(dreadnaut ,32,dreadInPerm);

107

108 [status, AAout] = system(lin_com);

109

110 %---Get rid of ’Mode=dense’ in nauty output so it can be read by ...

Margot---

111 AAout = strrep(AAout,’Mode=dense ’,’’);

112

113 if status ˜= 0

114 AAout = strcat(’Error from dreadnaut:’,10,AAout ,10);

115 disp(AAout);

116 return;

117 end;

90

118

119 %---Make output file for dreadnaut (cycles)----

120 fout = fopen(dreadOutPerm , ’w’);

121 fprintf(fout,AAout);

122 fclose(fout);

123

124 %---Remove layers (cycles)---

125 GLPRemoveLayers(dfix, sˆk, dreadOutPerm , dreadOutLayer);

126

127 %---create aa.naught.size file---

128 dreadOutLayer = strrep(dreadOutLayer , strcat(filePath,’/’),’’);

129 fsize = fopen(aaSizefileName , ’w’);

130 fprintf(fsize,strcat(dreadOutLayer ,’\n’, num2str(sˆk),’\n’,’aa’, ...

fileLabel ,’.grp’,’\n’));

131 fclose(fsize);

132

133 %---Call Margot script----

134 [˜, ˜] = system(strcat(’/scratch/Obj2/Margot/gen_group <’, ...

32,aaSizefileName));

135

136 %---Copy to bidon.grp---

137 [˜, ˜] = system(strcat(’rm’,32,’bidon.grp’));

138 [˜, ˜] = system(strcat(’cp’,32,aagrp,32,’bidon.grp’));

139

140 end

B.2 Code For Table 4.1 Column 4

Appendix2/BF7GLP.m

1 function BF7GLP(nautyFile , Hnosigneff , N, k, s, t)

2

91

3 AAout = ’’; %#ok<NASGU> Set the output to an empty string ...

(default)

4

5 %---UNIX command line passes all inputs as strings, convert to ...

integers ----

6 if ischar(N)

7 N = str2double(N);

8 end;

9

10 if ischar(k)

11 k = str2double(k);

12 end;

13

14 if ischar(s)

15 s = str2double(s);

16 end;

17

18 if ischar(t)

19 t = str2double(t);

20 end;

21

22 %----Determine folder containing the m file

23 [˜, filePath] = system(’pwd’);

24 addpath(filePath);

25

26 %----Set intermediate file names----

27 fileLabel = strcat(num2str(N), ’.’,num2str(k), ’.’,num2str(s), ’.’, ...

num2str(t));

28 aaSizefileName = strcat(filePath , ’/aa’, fileLabel , ’.naught.size’);

29 PfileName = strcat(filePath,’/P’, fileLabel ,’.txt’);

30 g6fileName = strcat(filePath ,’/P’, fileLabel ,’.g6’);

31 dreadInPerm = strcat(filePath ,’/aa’, fileLabel ,’.naut.inp’);

92

32 dreadOutPerm = strcat(filePath,’/aa’, fileLabel ,’.out’);

33 dreadOutLayer = strcat(filePath,’/aa’, fileLabel ,’.red.out’);

34 junk = strcat(filePath ,’/junk’, fileLabel ,’.txt’);

35 aagrp = strcat(filePath,’/aa’, fileLabel ,’.grp’);

36 myLP = strcat(filePath ,’/OA’, fileLabel ,’.mylp’);

37

38 %----Nauty Linux command line scripts----

39 listg = strcat(nautyFile ,’listg -d’); % listg executable

40 dreadnaut = strcat(nautyFile ,’dreadnaut <’); % dreadnaut executable

41

42 %----Generate Rosenberg constraint matrix----

43 [˜,A,b] = Rosenberg(k,s,t,floor(N/sˆt));

44 A = -1* A;

45 b = -1* b;

46 m = size(A,1);

47 n = size(A,2);

48 c = zeros(1,n);

49 eq = -1*ones(m,1);

50

51 %---Modify bidon.inp file---

52 bidoninp = strcat(filePath,’/bidon.inp’);

53 newbidoninp = strcat(filePath ,’/newbidon.inp’);

54 fb = fopen(bidoninp,’r’);

55 tline = fgets(fb);

56 if ischar(tline)

57 fn = fopen(newbidoninp ,’w’);

58 fprintf(fn,tline);

59 tline = fgets(fb);

60 fprintf(fn,strcat(tline,’\n’,num2str(min([n,N+1])),’\n’));

61 tline = fgets(fb); %#ok<NASGU>

62 tline = fgets(fb);

63 fprintf(fn,tline);

93

64 fclose(fb);

65 [˜, ˜] = system(strcat(’mv’,32,newbidoninp ,32,bidoninp));

66 else

67 fclose(fb);

68 end;

69

70 %---Build the mylp file----

71 BuildMyILP(c, A, b, eq, 1, 0, myLP)

72

73 %----Matrix representing the graph----

74 %P = ILPAdjacencyMatrix(A, b, c);

75 P = [zeros(n) A’; A zeros(m)];

76 %A = [-1*A, eye(m)];

77 %P = A * pinv(A’*A) * A’;

78 clear A b c eq;

79

80 %----Save lower half of P as a vector in a text file-----

81 fp = fopen(PfileName ,’w’);

82 p = num2str(P(1,1));

83 fprintf(fp,p);

84 for i = 2:1:(m+n)

85 p = num2str(P(i,1:i) ,strcat(’%i’,32));

86 while length(p) > length(strrep(p,’ ’,’ ’))

87 p = strrep(p,’ ’,’ ’);

88 end;

89 fprintf(fp,strcat(32,p));

90 end;

91

92 fclose(fp);

93 clear P p i;

94

95 %----Call Hnosigneff ----

94

96 lin_com = strcat(Hnosigneff ,32,PfileName ,32,g6fileName ,32, ...

97 num2str(sˆk));

98

99 [status, result] = system(lin_com);

100 if status ˜= 0

101 AAout = strcat(’Error from Hnosigneff:’,10,result ,10);

102 disp(AAout);

103 return;

104 end;

105

106 %---Load value for dfix----

107 j = 1;

108 while j < (length(result)-1) && ...

109 ˜strcmp(result(j:(j + 1)),’d=’)

110 j = j + 1;

111 end;

112 j = j + 2;

113 q = j;

114 while q < length(result) && ˜strcmp(result(q),’ ’)

115 q = q + 1;

116 end;

117 dfix = str2double(strrep(result(j:q),’ ’,’’));

118

119 %----Call listg----

120 lin_com = strcat(listg ,32,g6fileName ,32,’>’,32,junk);

121

122 [status, ˜] = system(lin_com);

123 if status ˜= 0

124 AAout = strcat(’Error from listg:’,10,result ,10);

125 disp(AAout);

126 return;

127 end;

95

128

129 %---Make input file for dreadnaut (permutations)----

130 fperm = fopen(dreadInPerm , ’w’);

131 fprintf(fperm,strcat(’<’,32,junk,’\np\n?\nx\n’));

132 fclose(fperm);

133

134 %---Call dreadnaut (cycles)----

135 lin_com = strcat(dreadnaut ,32,dreadInPerm);

136

137 [status, AAout] = system(lin_com);

138

139 %---Get rid of ’Mode=dense’ in nauty output so it can be read by ...

Margot---

140 AAout = strrep(AAout,’Mode=dense ’,’’);

141

142 if status ˜= 0

143 AAout = strcat(’Error from dreadnaut:’,10,AAout ,10);

144 disp(AAout);

145 return;

146 end;

147

148 %---Make output file for dreadnaut (permutations)----

149 fout = fopen(dreadOutPerm , ’w’);

150 fprintf(fout,AAout);

151 fclose(fout);

152

153 %---Remove layers (cycles)---

154 GLPRemoveLayers(dfix, sˆk, dreadOutPerm , dreadOutLayer);

155

156 %---create aa.naught.size file---

157 dreadOutLayer = strrep(dreadOutLayer ,strcat(filePath,’/’),’’);

158 fsize = fopen(aaSizefileName , ’w’);

96

159 fprintf(fsize,strcat(dreadOutLayer , ’\n’,num2str(n), ’\n’, ...

’aa’,fileLabel ,’.grp’,’\n’));

160 fclose(fsize);

161

162 %---Call Margot script----

163 [˜, ˜] = system(strcat(’/scratch/Obj2/Margot/gen_group <’, 32, ...

aaSizefileName));

164

165 %---Copy to bidon.grp---

166 [˜, ˜] = system(strcat(’rm’,32,’bidon.grp’));

167 [˜, ˜] = system(strcat(’cp’,32,aagrp,32,’bidon.grp’));

168

169 %---Copy to bidon.mylp---

170 [˜, ˜] = system(strcat(’rm’,32,’bidon.mylp’));

171 [˜, ˜] = system(strcat(’cp’,32,myLP,32,’bidon.mylp’));

172

173 end

B.3 Code For Table 4.3

Appendix2/Obj1.m

1 clear; clc;

2

3 numDigit = 10;

4 QRnumDigit = 9;

5 mySMTP = ’ms-afit -03.afit.edu’;

6 myEmail = ’andrew.geyer@afit.edu’;

7 setpref(’Internet’,’SMTP_Server’,mySMTP);

8 setpref(’Internet’,’E_mail’,myEmail);

9

10 %----Determine folder containing the m file

11 filePath = mfilename(’fullpath’);

97

12 filePath = filePath(1:(length(filePath)-length(mfilename(’’))));

13

14 %----Linux command line script for Hnosigneff executable ----

15 Hnosigneff = strcat(filePath ,’Hnosigneff2’);

16

17 %----Nauty Linux command line scripts----

18 %nautyFile = ’/home/andrew/Documents/nauty25/’; % Folder ...

containing nauty

19 nautyFile = ’/usr/local/nauty25/’; % Folder containing nauty

20 listg = strcat(nautyFile ,’listg -d’); % listg executable

21 dreadnaut = strcat(nautyFile ,’dreadnaut <’); % dreadnaut executable

22

23 [˜,˜] = system(strcat(’mkdir’,32, filePath,’results’));

24 addpath(strcat(filePath,’results/’));

25 Linux_Command = strcat(filePath,’results/Linux_Command.txt’);

26 fcom = fopen(Linux_Command ,’w’);

27

28 %----Make subdirectories for files----

29 [˜,˜] = system(strcat(’mkdir’,32, filePath, ’results/Graph_Matrices’));

30 addpath(strcat(filePath,’results/Graph_Matrices’));

31 [˜,˜] = system(strcat(’mkdir’,32, filePath, ’results/g6_Files’));

32 addpath(strcat(filePath,’results/g6_Files’));

33 [˜,˜] = system(strcat(’mkdir’,32, filePath, ’results/Junk’));

34 addpath(strcat(filePath,’results/Junk’));

35 [˜,˜] = system(strcat(’mkdir’,32, filePath, ’results/Dreadnaut_Input’));

36 addpath(strcat(filePath,’results/Dreadnaut_Input’));

37 [˜,˜] = system(strcat(’mkdir’,32, filePath, ...

’results/Dreadnaut_Input/Cycle’));

38 addpath(strcat(filePath,’results/Dreadnaut_Input/Cycle’));

39 [˜,˜] = system(strcat(’mkdir’,32, filePath, ...

’results/Dreadnaut_Output’));

40 addpath(strcat(filePath,’results/Dreadnaut_Output’));

98

41 [˜,˜] = system(strcat(’mkdir’,32, filePath, ...

’results/Dreadnaut_Output/Cycle’));

42 addpath(strcat(filePath,’results/Dreadnaut_Output/Cycle’));

43

44 %----List of permutation group sizes----

45 fsizes = fopen(strcat(filePath,’Group_Sizes.csv’),’w’);

46 fprintf(fsizes,strcat(’N,k,s,t, M dfix,M Group Size, rows B, columns ...

B,’, ’summation , rank(reduced B), rank(full B),p diff\n’));

47

48 % bsol file names

49 bsol = [’ bsol32.6.2.4’;

50 ’ bsol80.6.2.4’;

51 ’ bsol64.6.2.4’;

52 ’bsol112.6.2.4’;

53 ’ bsol64.7.2.4’;

54 ’ bsol24.7.2.3’;

55 ’ bsol96.7.2.4’;

56 ’ bsol64.8.2.4’;

57 ’ bsol24.8.2.3’;

58 ’ bsol32.7.2.3’;

59 ’ bsol24.9.2.3’;

60 ’ bsol32.8.2.3’];

61

62 numbsol = size(bsol,1);

63

64 for i = 1:1:numbsol

65 % Set to the current bsol file path na

66

67

68 inputFile = strcat(filePath,’bsol/’,strtrim(bsol(i,:)));

69

70 % Find number of factors

99

71 k =str2num(strrep(strrep(strtrim(bsol(i,:)), ’bsol’,’’), ...

’.’,char(32))); %#ok<ST2NM>

72 N = k(1);

73 s = k(3);

74 t = k(4);

75 k = k(2);

76

77 fileLabel = strcat(’N’, num2str(N),’k’, num2str(k),’s’, ...

num2str(s),’t’, num2str(t));

78 PfileName = strcat(filePath, ’results/Graph_Matrices/P’, ...

fileLabel ,’.txt’);

79 g6fileName = strcat(filePath , ’results/g6_Files/P’, ...

fileLabel ,’.g6’);

80 dreadInCycle = strcat(filePath , ...

’results/Dreadnaut_Input/Cycle/aa’, fileLabel ,’.naut.inp’);

81 dreadOutCycle = strcat(filePath, ...

’results/Dreadnaut_Output/Cycle/aa’, fileLabel ,’.out’);

82 junk = strcat(filePath , ’results/Junk/junk’, fileLabel);

83

84 % Read in M file

85 [P,rowB,colB,rankB] = inputMP(inputFile , k, s,t, QRnumDigit);

86

87 %----Save lower half of P as a vector in a text file-----

88 p = zeros(1,sum(1:size(P,1)));

89 for j = 1:1:size(P,1)

90 p(1,(sum(1:(j-1))+1):(sum(1:(j-1))+j)) = P(j,1:j);

91 end;

92 clear P;

93 fp = fopen(PfileName ,’w’);

94 fprintf(fp,strcat(’%.’, num2str(numDigit), ’f’, 32),p);

95 fclose(fp);

96

100

97 p_entries = sort(unique(round(p .* (10ˆnumDigit)) ./ ...

(10ˆnumDigit)));

98 p_diff = p_entries(1,2) - p_entries(1,1);

99 for j = 3:1:max(size(p_entries))

100 if p_entries(1,j) - p_entries(1,j-1) < p_diff

101 p_diff = p_entries(1,j) - p_entries(1,j-1);

102 end;

103 end;

104

105 clear p j p_entries;

106

107 %----Call Hnosigneff ----

108 lin_com = strcat(Hnosigneff , 32, PfileName , 32, g6fileName , 32, ...

num2str(rowB));

109 fprintf(fcom,strcat(lin_com,’\n’));

110

111 [status, result] = system(lin_com);

112 if status ˜= 0

113 disp(strcat(’Error from Hnosigneff2:’, 10, result, 10));

114 sendmail(myEmail,fileLabel , ’Error from Hnosigneff2.’)

115 fprintf(fsizes,’\n’);

116 break;

117 end;

118

119 %---Load value for dfix----

120 j = 1;

121 while j < (length(result)-1) && ...

122 ˜strcmp(result(j:(j + 1)),’d=’)

123 j = j + 1;

124 end;

125 j = j + 2;

126 q = j;

101

127 while q < length(result) && ˜strcmp(result(q),char(32))

128 q = q + 1;

129 end;

130 dfix = str2double(strrep(result(j:q), ’:’,’’));

131

132 %----Call listg----

133 lin_com = strcat(listg, 32, g6fileName , 32, ’>’ ,32, junk);

134 fprintf(fcom,strcat(lin_com,’\n’));

135

136 [status, ˜] = system(lin_com);

137 if status ˜= 0

138 disp(strcat(’Error from listg:’, 10, result, 10));

139 sendmail(myEmail,fileLabel , ’Error from listg.’)

140 fprintf(fsizes,’\n’);

141 break;

142 end;

143

144 %---Make input file for dreadnaut (cycles)----

145 fcyc = fopen(dreadInCycle , ’w’);

146 fprintf(fcyc,strcat(’<’, 32, junk, ’\n?\nx\n’));

147 fclose(fcyc);

148

149 %---Call dreadnaut (cycles)----

150 lin_com = strcat(dreadnaut , 32, dreadInCycle , 32, ’>’, 32, ...

dreadOutCycle);

151 fprintf(fcom,strcat(lin_com,’\n’));

152 [status, result] = system(lin_com);

153

154 if status ˜= 0

155 disp(strcat(’Error from dreadnaut:’, 10, result, 10));

156 sendmail(myEmail,fileLabel , ’Error from dreadnaut.’)

157 fprintf(fsizes,’\n’);

102

158 break;

159 end;

160 fread = fopen(dreadOutCycle);

161 result = fgets(fread);

162 while ischar(result)

163 if length(strrep(result, ’grpsize=’,’’)) < length(result)

164 break;

165 end;

166 result = fgets(fread);

167 end;

168 fclose(fread);

169

170 %---find the group size in the dreadnaut result---

171 j = length(result)-8;

172 while j > 1 && ˜strcmp(result(j:(j+7)), ’grpsize=’)

173 j = j - 1;

174 end;

175 if j < 1

176 disp(’Unable to find group size in dreadnaut output.’);

177 sendmail(myEmail,fileLabel , ’Unable to find group size in ...

dreadnaut output.’);

178 break;

179 end;

180 j = j + 8;

181 q = j;

182 while q < length(result)-1 && ˜strcmp(’;’,result(q+1))

183 q = q + 1;

184 end;

185

186 ksum = 0;

187 for z=t+1:1:k

188 ksum = ksum+(s-1)ˆz * nchoosek(k,z);

103

189 end;

190

191 B = inputM(inputFile ,N,k,s);

192

193 fprintf(fsizes, strcat(num2str(N), ’,’, num2str(k), ’,’, ...

num2str(s), ’,’, num2str(t), ’,’, num2str(dfix),’,’, ...

num2str(result(j:q)),’,’, num2str(rowB),’,’, num2str(colB), ...

’,’, num2str(ksum), ’,’, num2str(rankB), ’,’, ...

num2str(rank(B)), ’,’, num2str(p_diff),’\n’));

194

195 sendmail(myEmail, fileLabel , ’Another case is done.’, ...

strcat(filePath, ’Group_Sizes.csv’));

196

197 end;

Appendix2/inputM.m

1 function [M] = inputM(fileName,N,k,s)

2 % Reads the bsol file to get the M matrix

3 % fileName is the path to the M matrix file

4 % k is the number of factors

5

6 fin = fopen(fileName);

7 tline = fgetl(fin);

8 Mline = [];

9 M = [];

10

11 while ischar(tline)

12 Mline = [Mline str2num(tline)]; %#ok<ST2NM>

13 Msize = max(size(Mline));

14 if Msize >= sˆk

15 newMline = [];

16 if Msize > sˆk

104

17 newMline = Mline(1,sˆk+1:Msize);

18 Mline = Mline(1,1:sˆk);

19 end;

20 M = [M (Mline - N/sˆk)’]; % N = sum(Mline)/sˆt

21 Mline = newMline;

22 end;

23 tline = fgetl(fin);

24 end;

25

26 fclose(fin);

27

28 end

Appendix2/inputMP.m

1 function [P, m, n, rankB] = inputMP(fileName ,k,s,t, numDigit)

2 % Reads the bsol file to get the M matrix

3 % fileName is the path to the M matrix file

4 % k is the number of factors

5

6 vecStep = 100;

7 fin = fopen(fileName);

8 tline = fgetl(fin);

9 Mline = [];

10 B = [];

11 numVec = 0;

12

13 while ischar(tline)

14 Mline = [Mline str2num(tline)]; %#ok<ST2NM>

15 Msize = max(size(Mline));

16 if Msize >= sˆk

17 newMline = [];

18 if Msize > sˆk

105

19 newMline = Mline(1,sˆk+1:Msize);

20 Mline = Mline(1,1:sˆk);

21 end;

22 B = [B (Mline - sum(Mline)/sˆk)’]; % N = sum(Mline)/sˆt

23 Mline = newMline;

24 numVec = numVec + 1;

25 end;

26 tline = fgetl(fin);

27 if numVec == vecStep || ˜ischar(tline)

28 i = 1;

29 [q,r] = qr(B);

30 rInd = [];

31 for j = 1:size(r,2)

32 if(abs(r(i,j)) >10ˆ(-1*numDigit))

33 rInd = [rInd r(:,j)];

34 i = i + 1;

35 end;

36 if(i > size(r,1))

37 break;

38 end;

39 end;

40 clear r;

41 B=q*rInd; %here’s your answer

42 clear q rInd;

43 numVec = 0;

44 end;

45 end;

46

47 fclose(fin);

48

49 [m n] = size(B);

50

106

51 rankB = rank(B);

52

53 P = B*pinv(B’*B)*B’;

54

55 clear B;

56

57 end

B.4 Code to Compute HLP
s,k

Appendix2/HYBRID5for6GLP.m

1 function HYBRID5for6GLP(nautyFile , Hnosigneff , Afile, ClassConst , k, ...

s, t)

2

3 AAout = ’’; %#ok<NASGU> Set the output to an empty string ...

(default)

4

5 numDigit = 12; % Number of digits for ...

precision

6

7 %---UNIX command line passes all inputs as strings, convert to ...

integers ----

8 if ischar(k)

9 k = str2double(k);

10 end;

11

12 if ischar(s)

13 s = str2double(s);

14 end;

15

16 if ischar(t)

17 t = str2double(t);

107

18 end;

19

20 %----Determine folder containing the m file

21 [˜, filePath] = system(’pwd’);

22 addpath(filePath);

23

24 %----Set intermediate file names----

25 fileLabel = strcat(num2str(k-1),’.’,num2str(s),’.’, num2str(t));

26 aaSizefileName = strcat(filePath ,’/aa’, fileLabel , ’.naught.size’);

27 PfileName = strcat(filePath,’/P’, fileLabel ,’.txt’);

28 g6fileName = strcat(filePath ,’/P’,fileLabel ,’.g6’);

29 dreadInPerm = strcat(filePath ,’/aa’, fileLabel , ’.naut.inp’);

30 dreadOutPerm = strcat(filePath,’/aa’, fileLabel ,’.out’);

31 dreadOutLayer = strcat(filePath,’/aa’, fileLabel ,’.red.out’);

32 junk = strcat(filePath ,’/junk’, fileLabel ,’.txt’);

33 aagrp = strcat(filePath,’/aa’, fileLabel ,’.grp’);

34

35 %----Nauty Linux command line scripts----

36 listg = strcat(nautyFile ,’listg -d’); % listg executable

37 dreadnaut = strcat(nautyFile ,’dreadnaut <’); % dreadnaut executable

38

39 %----Read in the constraint matrix----

40 A = [];

41 fAA = fopen(strcat(filePath,’/’,Afile), ’r’);

42 tline = fgets(fAA);

43 while ischar(tline)

44 a = zeros(1,sˆ(k-1));

45 ind = str2num(tline); %#ok<ST2NM>

46 ind = ind(2:size(ind,2))+1;

47 a(ind) = 1;

48 A = [A;a]; %#ok<AGROW>

49 tline = fgets(fAA);

108

50 end;

51

52 %dlmwrite(strcat(pwd,’/Atest.txt’),A);

53

54 %----Projection matrix using M o o r e P e n r o s e pseudoinverse ----

55 P = A’ * pinv(A*A’) * A;

56 clear A;

57

58 %----Save lower half of P as a vector in a text file-----

59 p = zeros(1,sum(1:size(P,1)));

60 for n = 1:1:size(P,1)

61 p(1,(sum(1:(n-1))+1):(sum(1:(n-1))+n)) = P(n,1:n);

62 end;

63 for n = 1:1:size(p,2)

64 if abs(p(1,n)) <= 10ˆ(-1*numDigit)

65 p(1,n) = 0;

66 end;

67 end;

68 clear P;

69

70 fp = fopen(PfileName ,’w’);

71 fprintf(fp,strcat(’%.’,num2str(numDigit),’f’,32),p);

72 fclose(fp);

73

74 clear p n j;

75

76 %----Call Hnosigneff ----

77 lin_com = strcat(Hnosigneff , 32, PfileName , 32, g6fileName , 32, ...

num2str(sˆ(k-1)), 32, num2str(10ˆ-6));

78

79 [status, result] = system(lin_com);

80 if status ˜= 0

109

81 AAout = strcat(’Error from Hnosigneff:’, 10, result, 10);

82 disp(AAout);

83 return;

84 end;

85

86 %---Load value for dfix----

87 j = 1;

88 while j < (length(result)-1) && ˜strcmp(result(j:(j + 1)),’d=’)

89 j = j + 1;

90 end;

91 j = j + 2;

92 q = j;

93 while q < length(result) && ˜strcmp(result(q),’ ’)

94 q = q + 1;

95 end;

96 dfix = str2double(strrep(result(j:q), ’ ’, ’’));

97

98 %----Call listg----

99 lin_com = strcat(listg ,32, g6fileName , 32, ’>’, 32, junk);

100

101 [status, ˜] = system(lin_com);

102 if status ˜= 0

103 AAout = strcat(’Error from listg:’, 10, result, 10);

104 disp(AAout);

105 return;

106 end;

107

108 %---Add color to the graph using the ClassConst file---

109 fcolor = ’f=[’;

110 fclass = fopen(strcat(filePath, ’/’, ClassConst), ’r’);

111 tline = fgets(fclass);

112 while ischar(tline)

110

113 a = str2num(tline); %#ok<ST2NM>

114 if max(size(a)) > 1

115 asize = max(size(a));

116 for i=2:1:asize

117 for j = (a(i) * dfix):1:((a(i) + 1) * dfix - 1)

118 fcolor = strcat(fcolor, num2str(j), ’,’);

119 end;

120 end;

121 fcolor = strcat(fcolor(1:length(fcolor) - 1), ’|’);

122 end;

123 tline = fgets(fclass);

124 end;

125

126 fclose(fclass);

127

128 fcolor = strrep(strcat(fcolor(1:length(fcolor) - 1),’]’), ’|’, ’ | ’);

129

130 %---Make input file for dreadnaut (permutations)----

131 fperm = fopen(dreadInPerm , ’w’);

132 fprintf(fperm, strcat(’<’, 32, junk, ’\n’, fcolor, ’\np\n?\nx\n’));

133 fclose(fperm);

134

135 %---Call dreadnaut (permutations)----

136 lin_com = strcat(dreadnaut , 32, dreadInPerm);

137

138 [status, AAout] = system(lin_com);

139

140 %---Get rid of ’Mode=dense’ in nauty output so it can be read by ...

Margot---

141 AAout = strrep(AAout, ’Mode=dense ’, ’’);

142

143 if status ˜= 0

111

144 AAout = strcat(’Error from dreadnaut:’, 10, AAout, 10);

145 disp(AAout);

146 return;

147 end;

148

149 %---Make output file for dreadnaut (permutations)----

150 fout = fopen(dreadOutPerm , ’w’);

151 fprintf(fout,AAout);

152 fclose(fout);

153

154 %---Remove layers (cycles)---

155 GLPRemoveLayers(dfix, sˆ(k-1), dreadOutPerm , dreadOutLayer);

156

157 %---create aa.naught.size file---

158

159 faaout = fopen(strcat(filePath, ’/new.aa.naught.size’), ’r’);

160 tline = fgets(faaout);

161 tline = fgets(faaout);

162 dreadOutLayer = strrep(dreadOutLayer , strcat(filePath,’/’), ’’);

163 fsize = fopen(aaSizefileName , ’w’);

164 fprintf(fsize,strcat(dreadOutLayer , ’\n’, tline, ’\n’, ’aa’, ...

fileLabel , ’.grp’, ’\n’));

165 fclose(fsize);

166

167 %---Call Margot script----

168 [˜, ˜] = system(strcat(’/scratch/Obj2/Margot/gen_group <’, 32, ...

aaSizefileName));

169

170 %---Copy to bidon.grp---

171 [˜, ˜] = system(strcat(’rm’,32, ’bidon.grp’));

172 [˜, ˜] = system(strcat(’cp’,32, aagrp, 32, ’bidon.grp’));

173

112

174 end

B.5 Code to Compute HLP
all1

Appendix2/HYBRID5for6GLPconst.m

1 function HYBRID5for6GLPconst(nautyFile , Hnosigneff , Afile, ...

ClassConst , k, s, t)

2

3 %---This function calculates the GLP group directly from the ...

constraints in the bidon.mylp file.

4

5 AAout = ’’; %#ok<NASGU> Set the output to an empty string ...

(default)

6

7 numDigit = 12; % Number of digits for ...

precision

8

9 %---UNIX command line passes all inputs as strings, convert to ...

integers ----

10 if ischar(k)

11 k = str2double(k);

12 end;

13

14 if ischar(s)

15 s = str2double(s);

16 end;

17

18 if ischar(t)

19 t = str2double(t);

20 end;

21

22 %----Determine folder containing the m file

113

23 [˜, filePath] = system(’pwd’);

24 addpath(filePath);

25

26 %----Set intermediate file names----

27 fileLabel = strcat(num2str(k - 1), ’.’, num2str(s), ’.’, num2str(t));

28 aaSizefileName = strcat(filePath , ’/aa’, fileLabel , ’.naught.size’);

29 PfileName = strcat(filePath,’/P’, fileLabel , ’.txt’);

30 g6fileName = strcat(filePath ,’/P’, fileLabel , ’.g6’);

31 dreadInPerm = strcat(filePath ,’/aa’, fileLabel , ’.naut.inp’);

32 dreadOutPerm = strcat(filePath,’/aa’, fileLabel , ’.out’);

33 dreadOutLayer = strcat(filePath,’/aa’, fileLabel , ’.red.out’);

34 junk = strcat(filePath ,’/junk’, fileLabel , ’.txt’);

35 aagrp = strcat(filePath,’/aa’, fileLabel , ’.grp’);

36

37 %----Nauty Linux command line scripts----

38 listg = strcat(nautyFile , ’listg -d’); % listg executable

39 dreadnaut = strcat(nautyFile , ’dreadnaut <’); % dreadnaut ...

executable

40

41 %----Read in the constraint matrix----

42 A = [];

43 fAA = fopen(strcat(filePath, ’/’, Afile), ’r’);

44 tline = fgets(fAA); %#ok<NASGU>

45 count = str2num(fgets(fAA)); %#ok<ST2NM>

46 nvars = count(1);

47 tline = fgets(fAA); %#ok<NASGU>

48 tline = fgets(fAA); %#ok<NASGU>

49 tline = fgets(fAA);

50

51 while ischar(tline)

52 a = zeros(1, nvars);

53 ind = str2num(tline); %#ok<ST2NM>

114

54 ind = ind(2:size(ind, 2)) + 1;

55 a(ind) = 1;

56 A = [A;a]; %#ok<AGROW>

57 tline = fgets(fAA); %#ok<NASGU>

58 tline = fgets(fAA);

59 end;

60

61 % dlmwrite(’Atest.txt’, A);

62

63 %----Projection matrix using M o o r e P e n r o s e pseudoinverse ----

64 P = A’ * pinv(A * A’) * A;

65 clear A;

66

67 %----Save lower half of P as a vector in a text file-----

68 p = zeros(1,sum(1:size(P, 1)));

69 for n = 1:1:size(P,1)

70 p(1, (sum(1:(n - 1)) + 1):(sum(1:(n - 1)) + n)) = P(n, 1:n);

71 end;

72 for n = 1:1:size(p,2)

73 if abs(p(1, n)) <= 10ˆ(-1 * numDigit)

74 p(1,n) = 0;

75 end;

76 end;

77 clear P;

78

79 fp = fopen(PfileName , ’w’);

80 fprintf(fp,strcat(’%.’, num2str(numDigit), ’f’, 32), p);

81 fclose(fp);

82

83 clear p n j;

84

85 %----Call Hnosigneff ----

115

86 lin_com = strcat(Hnosigneff , 32, PfileName , 32, g6fileName , 32, ...

num2str(nvars), 32, num2str(10ˆ-6));

87

88 [status, result] = system(lin_com);

89 if status ˜= 0

90 AAout = strcat(’Error from Hnosigneff:’, 10, result ,10);

91 disp(AAout);

92 return;

93 end;

94

95 %---Load value for dfix----

96 j = 1;

97 while j < (length(result) - 1) && ˜strcmp(result(j:(j + 1)), ’d=’)

98 j = j + 1;

99 end;

100 j = j + 2;

101 q = j;

102 while q < length(result) && ˜strcmp(result(q), ’ ’)

103 q = q + 1;

104 end;

105 dfix = str2double(strrep(result(j:q), ’ ’, ’’));

106

107 %----Call listg----

108 lin_com = strcat(listg, 32, g6fileName , 32, ’>’, 32, junk);

109

110 [status, ˜] = system(lin_com);

111 if status ˜= 0

112 AAout = strcat(’Error from listg:’, 10, result, 10);

113 disp(AAout);

114 return;

115 end;

116

116

117 %---Add color to the graph using the ClassConst file---

118 fcolor = ’f=[’;

119 fclass = fopen(strcat(filePath, ’/’, ClassConst), ’r’);

120 tline = fgets(fclass);

121 while ischar(tline)

122 a = str2num(tline); %#ok<ST2NM>

123 if max(size(a)) > 1

124 asize = max(size(a));

125 for i=2:1:asize

126 for j = (a(i) * dfix):1:((a(i) + 1) * dfix - 1)

127 fcolor = strcat(fcolor, num2str(j), ’,’);

128 end;

129 end;

130 fcolor = strcat(fcolor(1:length(fcolor) - 1), ’|’);

131 end;

132 tline = fgets(fclass);

133 end;

134

135 fclose(fclass);

136

137 fcolor = strrep(strcat(fcolor(1:length(fcolor) - 1), ’]’), ’|’, ’ | ’);

138

139 %---Make input file for dreadnaut (permutations)----

140 fperm = fopen(dreadInPerm , ’w’);

141 fprintf(fperm,strcat(’<’, 32, junk, ’\n’, fcolor, ’\np\n?\nx\n’));

142 fclose(fperm);

143

144 %---Call dreadnaut (cycles)----

145 lin_com = strcat(dreadnaut , 32, dreadInPerm);

146

147 [status, AAout] = system(lin_com);

148

117

149 %---Get rid of ’Mode=dense’ in nauty output so it can be read by ...

Margot---

150 AAout = strrep(AAout, ’Mode=dense ’, ’’);

151

152 if status ˜= 0

153 AAout = strcat(’Error from dreadnaut:’, 10, AAout, 10);

154 disp(AAout);

155 return;

156 end;

157

158 %---Make output file for dreadnaut (cycles)----

159 fout = fopen(dreadOutPerm , ’w’);

160 fprintf(fout,AAout);

161 fclose(fout);

162

163 %---Remove layers (cycles)---

164 GLPRemoveLayers(dfix, nvars, dreadOutPerm , dreadOutLayer);

165

166 %---create aa.naught.size file---

167

168 faaout = fopen(’new.aa.naught.size’,’r+’);

169 tline = fgets(faaout); %#ok<NASGU>

170 tline = fgets(faaout);

171 dreadOutLayer = strrep(dreadOutLayer , strcat(filePath,’/’), ’’);

172 fsize = fopen(aaSizefileName , ’w’);

173 fprintf(fsize,strcat(dreadOutLayer , ’\n’, tline, ’\n’, ’aa’, ...

fileLabel , ’.grp’,’\n’));

174 fclose(fsize);

175

176 %---Call Margot script----

177 [˜, ˜] = system(strcat(’/scratch/Obj2/Margot/gen_group <’, 32, ...

aaSizefileName));

118

178

179 %---Copy to bidon.grp---

180 [˜, ˜] = system(strcat(’rm’, 32, ’bidon.grp’));

181 [˜, ˜] = system(strcat(’cp’, 32, aagrp, 32, ’bidon.grp’));

182

183 end

B.6 Code For Table 4.2

Appendix2/DoubleCosetTest.m

1 clear; clc;

2

3 ProbList = {’Coak6s2t2lam5.lp.gz’;

4 ’Rosk6s2t2lam5.lp.gz’;

5 ’Coak7s2t2lam5.lp.gz’;

6 ’Rosk7s2t2lam5.lp.gz’;

7 ’Coak8s2t2lam5.lp.gz’;

8 ’Rosk8s2t2lam5.lp.gz’;

9 ’Coak9s2t2lam5.lp.gz’;

10 ’Rosk9s2t2lam5.lp.gz’;

11 ’Coak10s2t2lam5.lp.gz’;

12 ’Rosk10s2t2lam5.lp.gz’;

13 ’Coak5s2t2lam6.lp.gz’;

14 ’Rosk5s2t2lam6.lp.gz’;

15 ’Coak6s2t2lam6.lp.gz’;

16 ’Rosk6s2t2lam6.lp.gz’;

17 ’Coak7s2t2lam6.lp.gz’;

18 ’Rosk7s2t2lam6.lp.gz’;

19 ’Coak8s2t2lam6.lp.gz’;

20 ’Rosk8s2t2lam6.lp.gz’;

21 ’Coak9s2t2lam6.lp.gz’;

22 ’Rosk9s2t2lam6.lp.gz’;

119

23 ’Coak10s2t2lam6.lp.gz’;

24 ’Rosk10s2t2lam6.lp.gz’;

25 ’Coak11s2t2lam6.lp.gz’;

26 ’Rosk11s2t2lam6.lp.gz’;

27 ’Coak5s2t3lam3.lp.gz’;

28 ’Rosk5s2t3lam3.lp.gz’;

29 ’Coak6s2t3lam3.lp.gz’;

30 ’Rosk6s2t3lam3.lp.gz’;

31 ’Coak7s2t3lam3.lp.gz’;

32 ’Rosk7s2t3lam3.lp.gz’;

33 ’Coak8s2t3lam3.lp.gz’;

34 ’Rosk8s2t3lam3.lp.gz’;

35 ’Coak9s2t3lam3.lp.gz’;

36 ’Rosk9s2t3lam3.lp.gz’;

37 ’Coak10s2t3lam3.lp.gz’;

38 ’Rosk10s2t3lam3.lp.gz’;

39 ’Coak11s2t3lam3.lp.gz’;

40 ’Rosk11s2t3lam3.lp.gz’;

41 ’Coak6s2t3lam4.lp.gz’;

42 ’Rosk6s2t3lam4.lp.gz’;

43 ’Coak7s2t3lam4.lp.gz’;

44 ’Rosk7s2t3lam4.lp.gz’;

45 ’Coak8s2t3lam4.lp.gz’;

46 ’Rosk8s2t3lam4.lp.gz’;

47 ’Coak9s2t3lam4.lp.gz’;

48 ’Rosk9s2t3lam4.lp.gz’;

49 ’Coak10s2t3lam4.lp.gz’;

50 ’Rosk10s2t3lam4.lp.gz’;

51 ’Coak11s2t3lam4.lp.gz’;

52 ’Rosk11s2t3lam4.lp.gz’;

53 ’Coak6s2t3lam5.lp.gz’;

54 ’Rosk6s2t3lam5.lp.gz’;

120

55 ’Coak7s2t3lam5.lp.gz’;

56 ’Rosk7s2t3lam5.lp.gz’;

57 ’Coak8s2t3lam5.lp.gz’;

58 ’Rosk8s2t3lam5.lp.gz’;

59 ’Coak9s2t3lam5.lp.gz’;

60 ’Rosk9s2t3lam5.lp.gz’;

61 ’Coak10s2t3lam5.lp.gz’;

62 ’Rosk10s2t3lam5.lp.gz’;

63 ’Coak6s2t3lam6.lp.gz’;

64 ’Rosk6s2t3lam6.lp.gz’;

65 ’Coak7s2t3lam6.lp.gz’;

66 ’Rosk7s2t3lam6.lp.gz’;

67 ’Coak8s2t3lam6.lp.gz’;

68 ’Rosk8s2t3lam6.lp.gz’;

69 ’Coak5s3t3lam2.lp.gz’;

70 ’Rosk5s3t3lam2.lp.gz’;

71 ’Coak6s3t3lam2.lp.gz’;

72 ’Rosk6s3t3lam2.lp.gz’;

73 ’Coak6s2t3lam7.lp.gz’;

74 ’Rosk6s2t3lam7.lp.gz’;

75 ’Coak7s2t3lam7.lp.gz’;

76 ’Rosk7s2t3lam7.lp.gz’;

77 ’Coak7s2t4lam4.lp.gz’;

78 ’Rosk7s2t4lam4.lp.gz’;

79 ’Coak8s2t4lam4.lp.gz’;

80 ’Rosk8s2t4lam4.lp.gz’;

81 ’Coak6s2t4lam5.lp.gz’;

82 ’Rosk6s2t4lam5.lp.gz’;

83 ’Coak7s2t4lam5.lp.gz’;

84 ’Rosk7s2t4lam5.lp.gz’;

85 ’Coak5s3t4lam1.lp.gz’;

86 ’Rosk5s3t4lam1.lp.gz’;

121

87 ’Coak7s2t4lam6.lp.gz’;

88 ’Rosk7s2t4lam6.lp.gz’;

89 ’Coak8s2t4lam6.lp.gz’;

90 ’Rosk8s2t4lam6.lp.gz’;

91 ’Coak6s2t4lam7.lp.gz’;

92 ’Rosk6s2t4lam7.lp.gz’;

93 ’Coak7s2t4lam7.lp.gz’;

94 ’Rosk7s2t4lam7.lp.gz’;

95 ’Coak8s2t4lam9.lp.gz’;

96 ’Rosk8s2t4lam9.lp.gz’;

97 ’Coak9s2t4lam9.lp.gz’;

98 ’Rosk9s2t4lam9.lp.gz’;

99 ’Coak6s3t4lam2.lp.gz’;

100 ’Rosk6s3t4lam2.lp.gz’;

101 ’seymour.gz’;

102 ’mzzv42z.gz’;

103 ’air03.gz’;

104 ’arki001.gz’;

105 ’blend2.gz’;

106 ’enigma.gz’;

107 ’fiber.gz’;

108 ’gen.gz’;

109 ’glass4.gz’;

110 ’mas74.gz’;

111 ’mas76.gz’;

112 ’misc03.gz’;

113 ’misc06.gz’;

114 ’misc07.gz’;

115 ’mitre.gz’;

116 ’mkc.gz’;

117 ’mzzv11.gz’;

118 ’noswot.gz’;

122

119 ’opt1217.gz’;

120 ’p0201.gz’;

121 ’p2756.gz’;

122 ’protfold.gz’;

123 ’qiu.gz’;

124 ’rgn.gz’;

125 ’rout.gz’;

126 ’stein27.gz’;

127 ’swath.gz’;

128 ’timtab1.gz’;

129 ’timtab2.gz’};

130

131 numProb = size(ProbList ,1);

132 addSlack = 1;

133

134 [˜,hostname] = system(’hostname’);

135

136 if strcmp(cellstr(hostname),’Deep-Thought’)

137 gap = ’/etc/gap4r6/bin/gap-default64.sh -m 20000m -q’;

138 matlabpool(’open’,3);

139 elseif strcmp(cellstr(hostname),’ensphd01’)

140 gap = ’/usr/local/gap4r5/gap.shi -m 20000m -q’;

141 matlabpool(’open’,12);

142 else

143 gap = ’gap.sh -m 20000m -q’;

144 matlabpool(’open’,12);

145 end;

146

147 parfor i = 1:numProb

148 ProbName = strrep(strrep(ProbList{i},’.gz’,’’),’.lp’,’’);

149 filePath = strcat(ProbName,’/DoubleCoset/’);

150 [˜,˜] = system(strcat(’mkdir’,32,filePath));

123

151 subNautyCycle = strcat(filePath,ProbName,’.aa.sub’);

152 superNautyCycle = strcat(filePath,ProbName ,’.aa.sup’);

153 fileName = strcat(filePath,ProbName,’.csv’);

154 fout = fopen(fileName,’w’);

155 fileName = strcat(ProbName,’/’,ProbList{i});

156

157 %-----------Create supergroup --------------------

158

159 fprintf(1,strcat(10,10,’Starting work on’,32,ProbName ,32,’GLP ...

with cycles.’,10,10));

160

161 [cplex, numslack] = ...

BuildProblem(fileName,addSlack ,[],[],[],[],[],[],[],’’);

162 n = size(cplex.Model.A,2);

163 tic;

164 useAdj = 0;

165 [P, numDigit] = ProjMatrix(cplex.Model.A, cplex.Model.obj, ...

useAdj);

166 if ˜isempty(P)

167 [superdfix ,g6fileName , numP] = runHnosigneff(P,numDigit, ...

168 filePath ,ProbName);

169 if superdfix > 0

170 fcolor = ColorGraph(cplex.Model.obj,cplex.Model.lhs, ...

171 cplex.Model.rhs,cplex.Model.lb,cplex.Model.ub, ...

172 cplex.Model.ctype,superdfix ,useAdj);

173 [grpsize, ˜] = NautyGroup(g6fileName ,fcolor ,1);

174 fprintf(fout,’%i,’,[superdfix ,numP]);

175 fprintf(fout,strcat(grpsize,’,’));

176 fprintf(fout,’%d,’,toc);

177 fprintf(1,strcat(10,10,’Finishing work on’,32,ProbName , ...

178 32,’GLP with ...

cycles.’,10,10));

124

179 [˜,˜] = system(strcat(’mv’,32,filePath, ...

180 ProbName , ’.aa.out’,32, ...

superNautyCycle));

181

182 %----------------Make supergroup in Gap ...

format-----------------

183

184 G = Nauty2Gap(superdfix , n, superNautyCycle , ’G’);

185

186 %-----------Create subgroup--------------------

187

188 fprintf(1,strcat(10,10, ’Starting work on’,32, ...

ProbName ,32, ’Margot with cycles.’,10,10));

189

190 tic;

191 useAdj = 1;

192 [P, numDigit] = ProjMatrix(cplex.Model.A, ...

cplex.Model.obj, useAdj);

193 if ˜isempty(P)

194 [subdfix,g6fileName , numP] = ...

runHnosigneff(P,numDigit,filePath,ProbName);

195

196 if subdfix > 0

197 fcolor = ...

ColorGraph(cplex.Model.obj,cplex.Model.lhs, ...

198 cplex.Model.rhs,cplex.Model.lb,cplex.Model.ub, ...

...

199 cplex.Model.ctype,subdfix,useAdj);

200 [grpsize, ˜] = NautyGroup(g6fileName ,fcolor ,1);

201 fprintf(fout,’%i,’,[subdfix,numP]);

202 fprintf(fout,strcat(grpsize,’,’));

203 fprintf(fout,’%d,’,toc);

125

204 [˜,˜] = system(strcat(’mv’,32, ...

filePath ,ProbName , ’.aa.out’,32, ...

subNautyCycle));

205 else

206 fprintf(fout,’,,,,’);

207 end;

208 end;

209 fprintf(1,strcat(10,10, ’Finishing work on’, ...

32,ProbName , 32,’Margot with cycles.’,10,10));

210

211 %----------Supergroup orbit projection ...

matrix------------------

212

213 E = OrbitProj(filePath,ProbName,n,G, ’G’);

214 x = [];

215 if ˜isempty(E)

216 [˜,˜,exitflag] = cplexlp(cplex.Model.obj, [], [], ...

[cplex.Model.A;E], ...

217 [cplex.Model.rhs;zeros(n,1)], ...

cplex.Model.lb,cplex.Model.ub);

218 end;

219 if exitflag == -2

220 fprintf(1,strcat(10,10,’Beginning’, 32,ProbName ,32, ...

’double coset decomposition.’,10,10));

221 tic;

222 %------------Make subgroup in Gap ...

format-------------------

223 GAb = Nauty2Gap(subdfix, n, subNautyCycle , ’GAb’);

224

225 E = OrbitProj(filePath,ProbName,n,GAb, ’GAb’);

226 x = [];

227 if ˜isempty(E)

126

228 [˜,˜,exitflag] = ...

cplexlp(cplex.Model.obj,[],[],[cplex.Model.A;E], ...

...

229 [cplex.Model.rhs;zeros(n,1)], ...

cplex.Model.lb,cplex.Model.ub);

230 end;

231 if exitflag ˜= -2

232 passcheck = 1;

233 else

234 passcheck = 0;

235 end;

236 while passcheck == 1

237 passcheck = 0;

238 repFile = ...

DoubleCoset(filePath ,ProbName ,G,’G’,GAb,’GAb’);

239

240 fin = fopen(repFile,’r’);

241 tline = fgets(fin);

242 while ischar(tline)

243 %---iterate through double coset ...

representatives -------

244 if length(tline) - ...

length(strrep(strrep(tline, ’(’, ’’) ...

,’)’, ’’)) >= 2

245 Gtemp = ...

strrep(GAb,’);’,strcat(’,’,tline,’);’));

246 E = OrbitProj(...

filePath ,ProbName ,n,Gtemp, ’GAb’);

247 x = [];

248 if ˜isempty(E)

249 [˜,˜,exitflag] = ...

cplexlp(cplex.Model.obj,[],[], ...

127

250 [cplex.Model.A;E], ...

[cplex.Model.rhs;zeros(n,1)], ...

...

251 cplex.Model.lb,cplex.Model.ub);

252 if exitflag ˜= -2

253 GAb = Gtemp;

254 passcheck = 1;

255 end;

256 end;

257 end;

258 tline = fgets(fin);

259 end;

260 end;

261 gapIn = strcat(filePath,ProbName,’.gap.size’);

262 fsize = fopen(gapIn,’w’);

263 fprintf(fsize,strcat(GAb,’Size(GAb);\nquit;\n’));

264 fclose(fsize);

265 lin_com = strcat(gap,32,’<’,32,gapIn);

266 [˜,grpsize] = system(lin_com);

267 fprintf(fout,strcat(grpsize,’,’));

268 fprintf(fout,’%d,’,toc);

269

270 SendMeResults(strcat(filePath,ProbName,’.csv’));

271 fprintf(1,strcat(10,10,’Finishing’,32, ...

ProbName ,32,’double coset decomposition.’,10,10));

272 else

273 fprintf(fout,’G(A 0)ˆLP = G(A b)ˆLP’);

274 fprintf(1,strcat(10,10, ’G(A 0)ˆLP = G(A b)ˆLP ...

for’,32,ProbName ,32,10,10));

275 end;

276 else

277 fprintf(fout,’,,,,,,,,’);

128

278

279 end;

280 else

281 fprintf(fout,’GLP N/A,,,,,,,,’);

282 fprintf(1,strcat(10,10, ’GLP does not apply ...

for’,32,ProbName,’.’,10,10));

283 end;

284

285 fclose(fout);

286

287 end;

288 matlabpool(’close’);

289

290 fout = fopen(’DoubleCosetResults.csv’,’w’);

291 fprintf(fout,’Problem, super dfix, super numP, super grpsize, super ...

time, sub dfix,sub numP, sub grpsize,sub time, G(A b)ˆLP grpsize, ...

G(A b)ˆLP time\n’);

292 for i = 1:numProb

293 ProbName = strrep(strrep(ProbList{i},’.gz’,’’),’.lp’,’’);

294 filePath = strcat(ProbName,’/DoubleCoset/’);

295 fileName = strcat(filePath,ProbName,’.csv’);

296 fin = fopen(fileName,’r’);

297 if fin > 1

298 fprintf(fout,strcat(ProbName,’,’,fgets(fin),’\n’));

299 fclose(fin);

300 else

301 fprintf(fout,strcat(ProbName,’,FAILED\n’));

302 end;

303 end;

304

305 fclose(fout);

306

129

307 SendMeResults(’DoubleCosetResults.csv’);

Appendix2/BuildProblem.m

1

2 function [cplex, numslack] = BuildProblem(fileName, addSlack, ...

Aineq, bineq, Aeq, beq, c, lb, ub, ctype)

3

4 numslack = [];

5

6 % Add cplex to the MATLAB path

7 addpath(genpath(’/opt/ibm/ILOG/CPLEX_Studio1251/cplex/’));

8

9 % Aineq <= bineq

10

11 % The problem name and its file path

12 [filePath,ProbName ,˜] = fileparts(strrep(strrep(strrep(fileName, ...

13 ’.mps’,’’),’.gz’,’’),’.lp’,’’));

14

15 if strcmp(filePath,pwd)

16 filePath = ’’;

17 end;

18

19 if ˜isempty(filePath)

20 filePath = strcat(pwd,’/’,strrep(filePath,strcat(pwd,’/’),’’),’/’);

21 end;

22

23 % Initialize cplex

24 cplex = Cplex();

25

26 % If the input matrices are empty and the fileName is an mps or lp ...

file, use

27 % cplex to read in the mps file

130

28 if isempty(Aineq) && isempty(Aeq) && ...

length(strrep(strrep(strrep(fileName, ’.mps’,’’), ’.lp’,’’), ...

’.gz’,’’)) < length(fileName)

29

30 % Read the model file into cplex

31 cplex.readModel(fileName);

32

33 elseif max(size(Aineq)) + max(size(Aeq)) == 0

34

35 fprintf(1,’You either need an mps or lp format input file or you ...

need to enter the correct matrices.\n’);

36 clear cplex;

37 return;

38

39 else

40

41 % Sense if it is min or max

42 cplex.Model.sense = ’minimize’;

43

44 % The constraint matrix

45 cplex.Model.A = [Aeq;Aineq];

46

47 % The right hand side

48 cplex.Model.rhs = [beq;bineq];

49

50 % The left hand side

51 cplex.Model.lhs = [beq; -Inf*ones(size(bineq))];

52

53 % Objective function

54 cplex.Model.obj = c;

55

56 % Lower bounds

131

57 cplex.Model.lb = lb;

58

59 % Upper bounds

60 cplex.Model.ub = ub;

61

62 % If no variable type is given, we assume all are continuous

63 if isempty(ctype)

64 ctype = repmat(’C’,1, numel(c));

65 end;

66

67 % Types of variables

68 cplex.Model.ctype = ctype;

69

70 end;

71

72 % Find >= constraints

73 x = find(˜isinf(cplex.Model.lhs’) & cplex.Model.lhs’ ˜= ...

cplex.Model.rhs’);

74 if ˜isempty(x)

75 % Find constraints that are both >= and <=

76 y = find(˜isinf(cplex.Model.rhs(x)));

77 z = x(y);

78 clear y;

79 if ˜isempty(z)

80 cplex.addRows(-Inf * ones(numel(z),1), -1 * ...

cplex.Model.A(z,:), -1 * cplex.Model.lhs(z));

81 end;

82 clear z;

83

84 % Convert >= constraints to <=

85 y = find(isinf(cplex.Model.rhs(x)));

86 z = x(y);

132

87 clear y;

88 if ˜isempty(z)

89 cplex.Model.rhs(z) = -1 * cplex.Model.lhs(z);

90 cplex.Model.A(z,:) = -1 * cplex.Model.A(z,:);

91 cplex.Model.lhs(z) = -Inf;

92 end;

93 clear z x;

94

95 end;

96

97 if addSlack == 1

98 ineqconst = find(isinf(cplex.Model.lhs’));

99 if ˜isempty(ineqconst)

100 numDigit = SigDigit(cplex.Model.ub(˜isinf(cplex.Model.ub)));

101 numslack = numel(ineqconst);

102 Z = zeros(size(cplex.Model.A,1), numslack);

103 ctype = ’’;

104 lb = zeros(numslack ,1);

105 ub = Inf*ones(numslack ,1);

106 for i = 1:1:numslack

107 Z(ineqconst(i),i) = 1;

108 ctype = strcat(ctype, ’C’);

109 end;

110 cplex.addCols(zeros(numslack ,1), Z, lb, ub, ctype);

111 cplex.Model.lhs(ineqconst) = cplex.Model.rhs(ineqconst);

112 numvar = size(cplex.Model.A, 2) - numslack;

113

114 x0 = [];

115 cplex.Model.ctype = strrep(cplex.Model.ctype, ’B’,’I’);

116 for i = 1:1:numslack

117 y = [cplex.Model.A(ineqconst(i),:), ...

cplex.Model.rhs(ineqconst(i))];

133

118 findA = find(cplex.Model.A(ineqconst(i), 1:numvar) ˜= 0);

119 ctype = cplex.Model.ctype(findA); %#ok<FNDSB>

120

121 if (isequal(floor(y),y) && length(ctype) == ...

length(strrep(ctype, ’C’, ’’)))

122 cplex.Model.ctype(numvar + i) = ’I’;

123 end;

124

125 f = zeros(numvar+numslack, 1); f(numvar+i) = -1;

126 [x0,x] = cplexlp(f, [], [], cplex.Model.A, ...

cplex.Model.rhs, cplex.Model.lb, cplex.Model.ub,x0);

127 if ˜isempty(x)

128 cplex.Model.ub(numvar+i) = -x;

129 clear x;

130 newub = find(cplex.Model.ctype(1:(numvar + i - 1)) ...

== cplex.Model.ctype(numvar + i) & ...

abs(cplex.Model.ub(1:(numvar + i - 1))’ - ...

cplex.Model.ub(numvar+i)) <= 10ˆ-6, 1);

131 if ˜isempty(newub)

132 cplex.Model.ub(numvar+i) = cplex.Model.ub(newub);

133 elseif cplex.Model.ctype(numvar + i) == ’I’

134 if floor(cplex.Model.ub(numvar + i)) + 1 - ...

cplex.Model.ub(numvar + i) <= 10ˆ-6

135 cplex.Model.ub(numvar + i) = ...

floor(cplex.Model.ub(numvar + i)) + 1;

136 else

137 cplex.Model.ub(numvar + i) = ...

floor(cplex.Model.ub(numvar + i));

138 end;

139 else

140 cplex.Model.ub(numvar + i) = ...

roundn(cplex.Model.ub(numvar + i), -numDigit);

134

141 end;

142 end;

143

144 end;

145

146 findbinary = find(cplex.Model.lb’ == 0 & cplex.Model.ub’ == ...

1 & cplex.Model.ctype == ’I’);

147 if ˜isempty(findbinary)

148 cplex.Model.ctype(findbinary) = ’B’;

149 end;

150 end;

151 end;

152

153 if isempty(ProbName)

154 cplex.writeModel(strcat(filePath, ’bidon.lp’));

155 else

156 cplex.writeModel(strcat(filePath, ProbName,’.lp’));

157 end;

158

159 end

Appendix2/ProjMatrix.m

1 function [P, numDigit] = ProjMatrix(A, c, useAdj)

2 %

3

4 [m,n] = size(A);

5

6 %--------------Determine Projection or Adjacency ...

Matrix--------------------

7

8 if useAdj == 0

9 % Append the constraint matrix to the equality constraints

135

10 A = [c’;A];

11 % Find the projection matrix

12 [U,D,V] = svd(full(A));

13 numDigit = abs(floor(log10(max(max(abs(U*D*V’ - A))))));

14 d = sum(sum(abs(D) >= 10ˆ-9));

15 M = zeros(n);

16 M(1:1:d,1:1:d) = eye(d);

17 P = V*M*V’;

18 else

19 numDigit = abs(floor(log10(eps*10)));

20 % Create graph adjacency matrix (Margot method)

21 P = [zeros(n) A’; A zeros(m)];

22 end;

23

24 %--

25

26

27 end

Appendix2/runHnosigneff.m

1 function [dfix,g6fileName ,numP] = runHnosigneff(P, numDigit, ...

filePath , ProbName)

2 % This is the MATLAB wrapper for Hnosigneff that returns dfix

3

4 Hnosigneff = ’/scratch/Obj1/Hnosigneff’;

5 PfileName = strcat(filePath, ProbName, ’.P.txt’);

6 g6fileName = strcat(filePath , ProbName , ’.g6’);

7

8 dfix = -1;

9

10 epsilon = 10ˆ(-1*numDigit); % Numerical precision

11

136

12 numVert = size(P,1);

13

14 %----Save lower half of P as a vector in a text file-----

15 p = zeros(1,sum(1:numVert));

16 for i = 1:1:numVert

17 p(1,(sum(1:(i - 1)) + 1):(sum(1:(i - 1)) + i)) = P(i, 1:i);

18 end;

19 P = p;

20 clear p;

21 x = find(abs(P) <= epsilon);

22 if ˜isempty(x)

23 P(x) = 0;

24 end;

25

26 fp = fopen(PfileName ,’w’);

27 for i = 1:1:numel(P)

28 if isequal(P(i),floor(P(i)))

29 fprintf(fp,’%i ’,P(i));

30 else

31 fprintf(fp,strcat(’%.’, num2str(numDigit), ’f’, 32), ...

roundn(P(i), -1 - numDigit));

32 end;

33 end;

34 fclose(fp);

35

36 % Find unique entries that are more than 20 * epsilon apart

37 P = unique(dlmread(PfileName));

38 d = P(1);

39 for i = 2:1:numel(P);

40 if abs(d(numel(d))-P(i)) > 20 * epsilon

41 d = [d, P(i)]; %#ok<AGROW>

42 end;

137

43 end;

44 numP = max(size(d));

45

46 clear P d i;

47

48 %----Call Hnosigneff ----

49 lin_com = strcat(Hnosigneff , 32, PfileName , 32, g6fileName , 32, ...

num2str(numVert,’%i’), 32, num2str(20*epsilon, strcat(’%.’, ...

num2str(numDigit + 1), ’f’)));

50

51 [status, result] = system(lin_com);

52

53 if status ˜= 0

54 AAout = strcat(’Error from Hnosigneff:’, 10, result, 10);

55 disp(AAout);

56 return;

57 end;

58

59 %---Load value for dfix----

60 j = 1;

61 while j < (length(result) - 1) && ˜strcmp(result(j:(j + 1)), ’d=’)

62 j = j + 1;

63 end;

64 j = j + 2;

65 q = j;

66 while q < length(result) && ˜strcmp(result(q), ’ ’)

67 q = q + 1;

68 end;

69 dfix = str2double(strrep(result(j:q), ’ ’, ’’));

70

71 if isnan(dfix)

72 dfix = -1;

138

73 end;

74

75 end

Appendix2/ColorGraph.m

1 function [fcolor] = ColorGraph(c, lhs, rhs, lb, ub, ctype, dfix, ...

useAdj)

2 % This function makes the graph coloring text for nauty

3

4 n = numel(c);

5 x = 1:1:n;

6

7 % --- Graph coloring for variables ---

8 if useAdj == 0

9 % If GLP, we do not care about the objective function coefficient

10 colorlist = [lb, ub, abs(ctype)’];

11 else

12 colorlist = [lb, ub, abs(ctype)’, c];

13 end;

14

15 fcolor = ’\nf=[’;

16

17 while ˜isempty(x)

18 y = find(ismember(colorlist , colorlist(x(1), :), ’rows’)==1)’;

19 for k = 1:1:numel(y)

20 fcolor = strcat(fcolor, num2str((dfix * (y(k) - 1)):1:(dfix * ...

y(k) - 1), ’%i, ’));

21 end;

22 fcolor = strcat(fcolor, ’|’);

23 x = setdiff(x, y);

24 end;

25

139

26 % --- Graph coloring for vertices ---

27 if useAdj == 1

28 m = numel(rhs);

29 x = 1:1:m;

30 colorlist = [lhs, rhs];

31 while ˜isempty(x)

32 y = find(ismember(colorlist , colorlist(x(1), :), ’rows’)==1)’;

33 for k = 1:1:numel(y)

34 fcolor = strcat(fcolor, num2str(((dfix * (y(k) - 1)):1:(dfix * ...

y(k) - 1)) + (dfix * n), ’%i, ’));

35 end;

36 fcolor = strcat(fcolor, ’|’);

37 x = setdiff(x, y);

38 end;

39

40 end;

41

42 fcolor = strrep(strrep(strrep(strcat(fcolor, ’]’), ’, |]’, ’]’), ’, ...

|’, ’ | ’) , ’, ’, ’, ’);

43

44 return

45

46 % ...

--

47

48 if useAdj == 0

49

50 colorlist = [lb(1), ub(1), abs(ctype(1))];

51 varcolors = zeros(n, 1);

52 varcolors(1) = 1;

53 for i = 2:1:n

54 j = 1;

140

55 while j <= size(colorlist , 1) && ˜isequal(colorlist(j, :), ...

[lb(i), ub(i), abs(ctype(i))])

56 j = j + 1;

57 end;

58 if j > size(colorlist , 1)

59 colorlist = [colorlist; lb(i), ub(i), abs(ctype(i))]; %#ok<AGROW>

60 end;

61 varcolors(i) = j;

62 end;

63 elseif useAdj == 1

64 colorlist = [c(1), lb(1), ub(1), abs(ctype(1))];

65 varcolors = zeros(n, 1);

66 varcolors(1) = 1;

67 for i = 2:1:n

68 j = 1;

69 while j <= size(colorlist , 1) && ˜isequal(colorlist(j, :), ...

[c(i), lb(i), ub(i), abs(ctype(i))])

70 j = j + 1;

71 end;

72 if j > size(colorlist , 1)

73 colorlist = [colorlist; c(i), lb(i), ub(i), abs(ctype(i))]; ...

%#ok<AGROW>

74 end;

75 varcolors(i) = j;

76 end;

77 end;

78

79 clear colorlist;

80

81 fcolor = ’’;

82

83 maxcol = max(varcolors);

141

84 if maxcol > 1

85 fcolor = ’\nf=[’;

86 for i = 1:1:maxcol

87 j = find(varcolors==i);

88 q = max(size(j));

89 for k = 1:1:q

90 fcolor = strcat(fcolor, num2str((dfix * (j(k) - 1)):1:(dfix * ...

j(k) - 1), ’%i, ’));

91 end;

92 fcolor = strcat(fcolor, ’|’);

93 end;

94 fcolor = strrep(strrep(strrep(strcat(fcolor, ’]’), ’, |]’, ’]’), ...

’, |’, ’ | ’) , ’, ’, ’, ’);

95 end;

96

97 clear varcolors;

98

99 if useAdj == 1

100

101 % --- Graph coloring for vertices ---

102

103 b = [beq;bineq];

104 contype = 0;

105 if m == 0

106 contype = 1;

107 end;

108 colorlist = [b(1), contype];

109 concolors = zeros(m + p, 1);

110 concolors(1) = 1;

111 for i=2:1:(m + p)

112 if m < i

113 contype = 1;

142

114 end;

115 j = 1;

116 while j <= size(colorlist , 1) && ˜isequal(colorlist(j, :), ...

[b(i), contype])

117 j = j + 1;

118 end;

119 if j > size(colorlist , 1)

120 colorlist = [colorlist; b(i), contype]; %#ok<AGROW>

121 end;

122 concolors(i) = j;

123 end;

124

125 clear colorlist b;

126

127 maxconcol = max(concolors);

128 if maxconcol > 1

129 if maxcol > 1

130 fcolor = strrep(fcolor, ’]’, ’, |’);

131 else

132 fcolor = ’\nf=[’;

133 end;

134 for i = 1:1:maxconcol

135 j = find(concolors==i);

136 q = max(size(j));

137 for k = 1:1:q

138 fcolor = strcat(fcolor, num2str(((dfix * (j(k) - 1)):1:(dfix ...

* j(k) - 1)) + (dfix * n), ’%i, ’));

139 end;

140 fcolor = strcat(fcolor, ’|’);

141 end;

142 fcolor = strrep(strrep(strrep(strcat(fcolor, ’]’), ’, |]’, ’]’), ...

’, |’, ’ | ’) , ’, ’, ’, ’);

143

143 end;

144

145 clear maxcol maxconcol concolors;

146

147 end;

148

149 end

Appendix2/NautyGroup.m

1 function [grpsize, dreadOutPerm] = NautyGroup(...

g6fileName ,fcolor,Cycle)

2 % Uses Nauty to determine group size for a given g6 format graph ...

colored in accordance with fcolor.

3

4 grpsize = ’’;

5

6 if Cycle <= 0

7 perm = ’\np’;

8 else

9 perm = ’’;

10 end;

11

12 [filePath,ProbName ,˜] = fileparts(g6fileName);

13

14 if strcmp(filePath,pwd)

15 filePath = ’’;

16 end;

17

18 if ˜isempty(filePath)

19 filePath = strcat(pwd, ’/’, strrep(filePath, strcat(pwd,’/’), ...

’’), ’/’);

20 end;

144

21

22 junk = strcat(filePath , ProbName ,’.junk’);

23 dreadInPerm = strcat(filePath , ProbName,’.naut.inp’);

24 dreadOutPerm = strcat(filePath, ProbName ,’.aa.out’);

25

26 %----Nauty Linux command line scripts----

27 [˜,hostname] = system(’hostname’);

28 if strcmp(cellstr(hostname),’Deep-Thought’)

29 nautyFile = ’/etc/nauty25r5/’; % Folder ...

containing nauty

30 else

31 nautyFile = ’/usr/local/nauty25/’; % Folder ...

containing nauty

32 end;

33 listg = strcat(nautyFile , ’listg -d’); % listg executable

34 dreadnaut = strcat(nautyFile , ’dreadnaut <’); % dreadnaut ...

executable

35

36 %----Call listg----

37 lin_com = strcat(listg, 32, g6fileName , 32, ’>’, 32, junk);

38

39 [status, ˜] = system(lin_com);

40 if status ˜= 0

41 AAout = strcat(’Error from listg:’, 10, result, 10);

42 disp(AAout);

43 return;

44 end;

45

46 %---Make input file for dreadnaut (permutations)----

47 fperm = fopen(dreadInPerm , ’w’);

48 fprintf(fperm,strcat(’<’, 32, junk, fcolor, perm,’\n?\nx\n’));

49 fclose(fperm);

145

50

51 clear fcolor;

52

53 %---Call dreadnaut (cycles)----

54 lin_com = strcat(dreadnaut , 32, dreadInPerm);

55

56 [status, AAout] = system(lin_com);

57

58 %---Get rid of ’Mode=dense’ in nauty output so it can be read by ...

Margot---

59 AAout = strrep(AAout,’Mode=dense ’, ’’);

60

61 if status ˜= 0

62 AAout = strcat(’Error from dreadnaut:’, 10, AAout, 10);

63 disp(AAout);

64 return;

65 end;

66

67 %---Make output file for dreadnaut (cycles)----

68 fout = fopen(dreadOutPerm , ’w’);

69 fprintf(fout,AAout);

70 fclose(fout);

71

72 %---Load value for groupsize ----

73 j = 1;

74 while j < (length(AAout)-1) && ...

75 ˜strcmp(AAout(j:(j + 7)),’grpsize=’)

76 j = j + 1;

77 end;

78 j = j + 8;

79 q = j;

80 while q < length(AAout) && ˜strcmp(AAout(q + 1), ’;’)

146

81 q = q + 1;

82 end;

83 grpsize = AAout(j:q);

84

85 if isnan(str2double(grpsize))

86 grpsize = ’’;

87 end;

88

89 end

Appendix2/OrbitProj.m

1 function E = OrbitProj(filePath,ProbName,numvar,G, GrpName)

2

3 [˜,hostname] = system(’hostname’);

4

5 %----Call Gap command----

6 if strcmp(cellstr(hostname),’Deep-Thought’)

7 gap = ’/etc/gap4r6/bin/gap-default64.sh -m 20000m -q’;

8 elseif strcmp(cellstr(hostname),’ensphd01’)

9 gap = ’/usr/local/gap4r5/gap.shi -m 20000m -q’;

10 else

11 gap = ’gap.sh -m 20000m -q’;

12 end;

13

14 ProbName = strrep(ProbName,’.aa’,’’);

15 gapIn = strcat(filePath,ProbName,’.gap.inp’);

16 gapOut = strcat(filePath,ProbName,’.gap.orb’);

17

18 %--

19

20 %-----------Gap command file-----------------

21 fout = fopen(gapIn,’w’);

147

22 fprintf(fout,G);

23 fprintf(fout,strcat(’Orbits(’, GrpName, ’,[1..’, num2str(numvar), ...

’]);\nquit;’));

24 fclose(fout);

25 E = [];

26

27 if length(strrep(G,’Group(())’,’’)) == length(G)

28

29 lin_com = strcat(gap,32,’<’,32,gapIn);

30 [˜, result] = system(lin_com);

31 result = strrep(result,char(32),’’);

32 result = strrep(result,’[’,’’);

33 result = strrep(result,’]]’,’’);

34 result = strrep(result,char(10),’’);

35 result = strrep(result,’],’,char(10));

36 fout = fopen(gapOut,’w’);

37 fprintf(fout,result); fprintf(fout,’\n’);

38 fclose(fout);

39 fin = fopen(gapOut,’r’);

40 tline = fgets(fin);

41 while ischar(tline)

42 x = str2num(tline); %#ok<ST2NM>

43 if ˜isempty(x)

44 Y = zeros(numvar ,1);

45 Y(x) = 1;

46 E = [E, Y]; %#ok<AGROW>

47 end;

48 tline = fgets(fin);

49 end;

50 [˜,D,V] = svd(E’);

51 d = sum(sum(abs(D) >= 10ˆ-9));

52 M = zeros(numvar);

148

53 M(1:1:d,1:1:d) = eye(d);

54 E = eye(numvar)-V*M*V’;

55 end;

56

57 end

Appendix2/Nauty2Gap.m

1 function GroupString = Nauty2Gap(dfix, numvar, infile, GroupName)

2 % This function removes layers for the GLP group

3

4 fin = fopen(infile);

5

6 tline = fgets(fin);

7 cyclestring = ’’;

8 redstring = ’’;

9 GroupString = strcat(GroupName ,’:=Group(’);

10

11 while ischar(tline)

12

13 if tline(1) == ’(’

14 if ˜isempty(cyclestring)

15 X = [find(cyclestring ==’(’)’ + 1, ...

find(cyclestring==’)’)’ - 1];

16 numcycles = size(X,1);

17 for i = 1:1:numcycles

18 x = str2num(cyclestring(X(i,1):X(i,2))); %#ok<ST2NM>

19 x = floor(x./dfix) + 1;

20 j = 2;

21 while j <= size(x,2)

22 if ismember(x(j),x(1:j-1))

23 x(j) = [];

24 else

149

25 j = j + 1;

26 end;

27 end;

28 if ˜isempty(x) && max(x) <= numvar

29 xstring = strrep(strcat(’(’,num2str(x, ...

’%d,’),’)’),’,)’,’)’);

30 if length(strrep(redstring ,xstring,’’)) == ...

length(redstring)

31 redstring = strcat(redstring , xstring);

32 end;

33 end;

34 end;

35 GroupString = strcat(GroupString , redstring ,’,’);

36 redstring = ’’;

37 end;

38 cyclestring = strtrim(tline);

39 elseif strcmp(tline(1:3),’ ’)

40 cyclestring = strcat(strtrim(cyclestring), ’,’, strtrim(tline));

41 elseif ˜isempty(cyclestring)

42 X = [find(cyclestring ==’(’)’ + 1, find(cyclestring==’)’)’ - 1];

43 numcycles = size(X,1);

44 for i = 1:1:numcycles

45 x = str2num(cyclestring(X(i,1):X(i,2))); %#ok<ST2NM>

46 x = floor(x./dfix) + 1;

47 j = 2;

48 while j <= numel(x)

49 if ismember(x(j),x(1:j-1))

50 x(j) = [];

51 else

52 j = j + 1;

53 end;

54 end;

150

55 if ˜isempty(x) && max(x) <= numvar

56 xstring = strrep(strcat(’(’, num2str(x,’%d,’), ’)’), ...

’,)’, ’)’);

57 if length(strrep(redstring , xstring, ’’)) == ...

length(redstring)

58 redstring = strcat(redstring , xstring);

59 end;

60 end;

61 end;

62 if ˜isempty(redstring)

63 GroupString = strcat(GroupString , redstring ,’,’);

64 end;

65 cyclestring = ’’;

66 redstring = ’’;

67 end;

68 tline = fgets(fin);

69

70 end;

71

72 fclose(fin);

73 GroupString = GroupString(1:max(9, length(GroupString) - 1));

74 GroupString = strrep(strcat(GroupString , ’);;\n’), ’Group();;’, ...

’Group(());;’);

75

76 end

Appendix2/DoubleCoset.m

1 function [gapOut] = DoubleCoset(filePath,ProbName,G, Gname, M, Mname)

2

3 [˜,hostname] = system(’hostname’);

4

5 %----Call Gap command----

151

6 if strcmp(cellstr(hostname),’Deep-Thought’)

7 gap = ’/etc/gap4r6/bin/gap-default64.sh -m 20000m -q’;

8 elseif strcmp(cellstr(hostname),’ensphd01’)

9 gap = ’/usr/local/gap4r5/gap.shi -m 20000m -q’;

10 else

11 gap = ’gap.sh -m 20000m -q’;

12 end;

13

14 ProbName = strrep(ProbName,’.aa’,’’);

15 gapIn = strcat(filePath,ProbName,’.gap.inp’);

16 gapOut = strcat(filePath,ProbName,’.gap.rep’);

17

18 %---------Gap command file-------------

19 fout = fopen(gapIn,’w’);

20 fprintf(fout,M);

21 fprintf(fout,G);

22 fprintf(fout,strcat(’dc:=DoubleCosets(’, Gname,’,’, Mname,’,’, ...

Mname, ’);;\nList(dc,Representative);\nquit;’));

23 fclose(fout);

24

25 if length(strrep(M,’Group(())’,’’)) == length(M) && ...

length(strrep(G,’Group(())’,’’)) == length(G)

26

27 lin_com = strcat(gap,32,’<’,32,gapIn);

28 [˜, result] = system(lin_com);

29 result = strrep(strrep(strrep(strrep(strrep(strrep(result, ...

’(),’, ’’) ,’]’, ’’), ’[’, ’’), char(10),’’), char(32), ’’), ...

’),’ ,’)\n’);

30 fout = fopen(gapOut,’w’);

31 fprintf(fout,result); fprintf(fout,’\n’);

32 fclose(fout);

33

152

34 end;

35

36 end

Appendix2/SendMeResults.m

1 function SendMeResults(attachment)

2 % This emails me the file

3

4 mySMTP = ’ms-afit -03.afit.edu’;

5 myEmail = ’andrew.geyer@afit.edu’;

6 setpref(’Internet’, ’SMTP_Server’, mySMTP);

7 setpref(’Internet’, ’E_mail’, myEmail);

8

9 %---------------------------------

10

11 sendmail(myEmail, ’code results’, strcat(’Hey,’, 10, 10, ’Here are ...

the results.’, 10, 10, ’You’), attachment);

12

13 end

153

Bibliography

[1] Appa, G., D. Magos, and I. Mourtos. “On Multi-Index Assignment Polytopes”.
Linear Algebra and its Applications, 416(23):224 – 241, 2006. ISSN 0024-3795.
URL http://www.sciencedirect.com/science/article/pii/S002437950500563X.

[2] Appa, G., I. Mourtos, and D. Magos. “A Branch & Cut Algorithm for a Four-Index
Assignment Problem”. Journal of the Operational Research Society, 55(3):298–307,
2004. URL http://dx.doi.org/10.1057/palgrave.jors.2601655.

[3] Appa, G., I. Mourtos, and D. Magos. “Integrating Constraint and Integer
Programming for the Orthogonal Latin Squares Problem”. P. Hentenryck (editor),
Principles and Practice of Constraint Programming - CP 2002, volume 2470 of
Lecture Notes in Computer Science, 17–32. Springer Berlin Heidelberg, 2006. ISBN
978-3-540-44120-5. URL http://dx.doi.org/10.1007/3-540-46135-3 2.

[4] Bödi, R., K. Herr, and M. Joswig. “Algorithms for Highly Symmetric Linear and
Integer Programs”. Mathematical Programming, 137(1-2):65–90, 2013. ISSN 0025-
5610. URL http://dx.doi.org/10.1007/s10107-011-0487-6.

[5] Bremner, D., M.D. Sikiric, D.V. Pasechnik, and A. Schuermann. “Computing
Symmetry Groups of Polyhedra”. arXiv preprint arXiv:1210.0206, 2013.

[6] Bulutoglu, D.A. Personal Communication, October 2013.

[7] Bulutoglu, D.A. and F. Margot. “Classification of Orthogonal Arrays by Integer
Programming”. Journal of Statistical Planning and Inference, 138(3):654–666, 2008.

[8] Bulutoglu, D.A. and K.J. Ryan. “Integer Programming for Finding Generalized
Minimum Aberration Designs”. Submitted to Operations Research, 2013.

[9] Espinoza, D.G. “On Linear Programming, Integer Programming and Cutting Planes”.
2006.

[10] Fecko, M.A. and M. Steinder. “Combinatorial Designs in Multiple Faults Localization
for Battlefield Networks”. Military Communications Conference, 2001. MILCOM
2001. Communications for Network-Centric Operations: Creating the Information
Force. IEEE, volume 2, 938–942. IEEE, 2001.

[11] Fripertinger, H. “Enumeration of the Semilinear Isometry Classes of Linear Codes”.
Bayreuther Mathematische Schriften, (74):100–122, 2005. ISSN 0172-1062.

[12] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.6.4, 2013.
URL http://www.gap-system.org.

154

http://www.sciencedirect.com/science/article/pii/S002437950500563X
http://dx.doi.org/10.1057/palgrave.jors.2601655
http://dx.doi.org/10.1007/3-540-46135-3_2
http://dx.doi.org/10.1007/s10107-011-0487-6
http://www.gap-system.org

[13] Hedayat, A, N.J.A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and
Applications. Springer Verlag, 1999.

[14] Hill, R. and S. Chambal. “A Framework for Improving Experimental Design and
Statistical Methods for Test and Evaluation”. AIAA T&E Days, 2009.

[15] Holzmann, W.H., H. Kharaghani, and B. Tayfeh-Rezaie. “Williamson Matrices Up
to Order 59”. Designs, Codes and Cryptography, 46(3):343–352, 2008. ISSN 0925-
1022. URL http://dx.doi.org/10.1007/s10623-007-9163-5.

[16] Hutto, G.T. and J.M. Higdon. “Survey of Design of Experiments (DOE) Projects in
Developmental Test CY07-08”. American Institute of Aeronautics and Astronautics
2009, 1706, 2009.

[17] Leon, S.J. Linear Algebra With Applications. Maxwell Macmillan international
editions. MacMillan, 1990. ISBN 9780023698217.

[18] Liberti, L. “Reformulations in Mathematical Programming: Automatic Symmetry
Detection and Exploitation”. Mathematical Programming, 131(1-2):273–304, 2012.

[19] Margot, F. “Pruning by Isomorphism in Branch-and-Cut”. Mathematical Program-
ming, 94(1):71–90, 2002.

[20] Margot, F. “Exploiting Orbits in Symmetric ILP”. Mathematical Programming, 98(1-
3):3–21, 2003.

[21] Margot, F. “Small Covering Designs by Branch-and-Cut”. Mathematical
Programming, 94(2-3):207–220, 2003.

[22] Margot, F. “Symmetric ILP: Coloring and Small Integers”. Discrete Optimization,
4(1):40–62, 2007.

[23] Margot, F. “Symmetry in Integer Linear Programming”. 50 Years of Integer
Programming 1958-2008, 647–686. Springer, 2010.

[24] McKay, B.D. “Hadamard Equivalence Via Graph Isomorphism”. Discrete Mathe-
matics, 27(2):213–214, 1979. ISSN 0012-365X. URL http://www.sciencedirect.com/

science/article/pii/0012365X79901134.

[25] McKay, B.D. “Nauty Users Guide (version 2.5)”. Computer Science Dept., Australian
National University, 2013.

[26] Montgomery, D.C. Design and Analysis of Experiments. Design and Analysis of
Experiments. Wiley, 2012. ISBN 9781118146927.

[27] Ostrowski, J., J. Linderoth, F. Rossi, and S. Smriglio. “Constraint Orbital Branching”.
Integer Programming and Combinatorial Optimization, 225–239. Springer, 2008.

155

http://dx.doi.org/10.1007/s10623-007-9163-5
http://www.sciencedirect.com/science/article/pii/0012365X79901134
http://www.sciencedirect.com/science/article/pii/0012365X79901134

[28] Panetta, L.E. and B.H. Obama. Sustaining US Global Leadership: Priorities for 21st
Century Defense. Department of Defense, 2012.

[29] Rosenberg, S.J. “A Large Index Theorem for Orthogonal Arrays, With Bounds”.
Discrete Mathematics, 137(1):315–318, 1995.

[30] Salvagnin, D. “A Dominance Procedure for Integer Programming”. Master’s Thesis,
University of Padua, 2005.

[31] Seberry, J. and M. Yamada. “Hadamard Matrices, Sequences, and Block Designs”.
1992.

[32] Stufken, J. and B. Tang. “Complete Enumeration of Two-Level Orthogonal Arrays of
Strength d With d+2 Constraints”. The Annals of Statistics, 35(2):793–814, 04 2007.
URL http://dx.doi.org/10.1214/009053606000001325.

[33] Tucker, A.A., G.T. Hutto, and C.H. Dagli. “Application of Design of Experiments to
Flight Test: A Case Study”. United States Air Force, 2008.

[34] Williamson, J. “Hadamards Determinant Theorem and the Sum of Four Squares”.
Duke Mathematical Journal, 11(1):65–81, 1944.

[35] Xu, H and C.F.J. Wu. “Generalized Minimum Aberration for Asymmetrical
Fractional Factorial Designs”. The Annals of Statistics, 29(2):549–560, 2001.

156

http://dx.doi.org/10.1214/009053606000001325

Vita

Major Andrew J. Geyer graduated from Minot High School in Minot, North Dakota

in May 1996. He entered undergraduate studies at North Dakota State University in Fargo,

North Dakota where he graduated with a Bachelor of Science degree in Physics in May

2000. He was commissioned through Detachment 610, AFROTC at North Dakota State

University.

His first assignment was to the Air Force Institute of Technologys Basic Meteorology

Program at Texas A&M University in College Station, Texas. In September 2001, Maj

Geyer was assigned to the 18th Weather Squadron at Fort Bragg, NC, where he served

combat tours in Operations Enduring Freedom and Iraqi Freedom as a Combat Weather

Team leader attached to the U.S. Army’s 82nd Airborne Division. In May 2004, Maj

Geyer reported to Kunsan Air Base, Republic of Korea, where he served as the weather

flight commander for the 8th Fighter Wing. In July 2005, he reported to Fort Benning,

Georgia where he served as Commander, Detachment 4, 10th Combat Weather Squadron

and as the Staff Weather Officer for the U.S. Army’s 75th Ranger Regiment. During that

assignment, Maj Geyer deployed as the Joint METOC Officer assigned to Combined Joint

Special Operations Task Force-Arabian Peninsula in Iraq. In August 2007, he entered

the Graduate School of Engineering and Management, Air Force Institute of Technology

where he received a Master of Science in Operations Research. In 2009, he was assigned

to Headquarters, Air Force Weather Agency at Offutt Air Force Base, Nebraska. In 2010,

he served as the Senior Meteorology Officer for the International Security Assistance

Force in Kabul, Afghanistan. In 2011, Maj Geyer returned to the Graduate School of

Engineering and Management, Air Force Institute of Technology where he pursued a

Doctor of Philosophy in Applied Mathematics - Statistics.

157

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

19–06–2014 Doctoral Dissertation Oct 2011–Jun 2014

Different Formulations of the Orthogonal
Array Problem and Their Symmetries F1ATA03039J001

14C239T

Geyer, Andrew J., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENC-DS-14-J-16

Air Force Office of Scientific Research
Dr. Fariba Fahroo AFOSR/RTA
DSN 426-8429
Opt.DMath@afosr.af.mil

AFOSR

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A: Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Modern statistical experiments routinely feature a large number of input variables that can each be set to a variety
of different levels. In these experiments, output response changes as a result of changes in the individual factor level
settings. Often, an individual experimental run can be costly in time, money or both. Therefore, experimenters
generally want to gain the desired information on factor effects from the smallest possible number of experimental runs.
Orthogonal arrays provide the most desirable designs. However, finding orthogonal arrays is a very challenging problem.
There are numerous integer linear programming formulations (ILP) in the literature whose solutions are orthogonal
arrays. Because of the nature of orthogonal arrays, these ILP formulations contain symmetries where some portion of the
variables in the formulation can be swapped without changing the ILP. These symmetries make it possible to eliminate
large numbers of infeasible or equivalent solutions quickly, thereby greatly reducing the time required to find all non-
equivalent solutions to the ILPs.
In this dissertation, a new method for identifying symmetries is developed and tested using several existing and new ILP
formulations for enumerating orthogonal arrays.

15. SUBJECT TERMS

Factorial Designs, Integer Programming, Orthogonal Arrays, Symmetry Group

U U U UU 169

Dr. Dursun A. Bulutoglu (ENC)

(937) 255-6565 x4704 dursun.bulutoglu@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-19-2014

	Different Formulations of the Orthogonal Array Problem and Their Symmetries
	Andrew J. Geyer
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Contribution
	Organization of Dissertation

	Literature Review
	Chapter Introduction
	ILPs That Generate OAs
	Symmetry Groups in ILPs
	Symmetry in ILPs and Isomorphism of OAs
	Identifying Symmetries in ILPs
	Margot ILP Solver

	Theoretical Research
	Chapter Introduction
	The Linear Relaxation OA Polytope
	Permutation Symmetries of the OA Polytope

	Computational Research
	Chapter Introduction
	Research Objective 1
	Research Objective 2
	Research Objective 3
	Research Objective 4

	Conclusions and Future Research
	Conclusions
	Open Problems
	Conjectures
	Computational Research Improvements

	Appendix A: Computer Code for Theoretical Research
	MATLAB Code for ILP Constraints
	Column Permutations of ILP Constraint Matrix
	MATLAB Code to Generate Rosenberg Constraints
	MATLAB Code to Test Theorem
	MATLAB Code to Implement Espinoza
	MATLAB Code to Remove Layers in Nauty Output
	MATLAB Code to Test Theorem

	Appendix B: Computational Research Computer Code
	Code for Table Column 3
	Code for Table Column 4
	Code for Table
	Code to Compute HLP(s,k)
	Code to Compute H(all)
	Code for Double Coset Table

	Bibliography
	Vita

