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Abstract

The unstable odd-Z, odd-N isotope 186Re exists in a mid-shell deformed region

of the chart of the nuclides where long-lived nuclear isomers are common. 186Re

(ground-state half-life T1/2 = 3.7186 d) has an isomer with a half-life of ⇠2.0⇥ 105 y.

The 186mRe isomer is a candidate energy-storage medium for a radioisotope power

source of military importance that would operate on the principle of isomer

depletion. Data about levels and transitions above the 186mRe isomer, absent from

the adopted level scheme for 186Re, are needed to identify a means of depleting the

isomer. Four experiments were performed to investigate the 186Re level structure,

which involved three di↵erent reactions: 187Re(n, 2n�)186Re, 185Re(n, �)186Re, and

186W(d, 2n�)186Re. In each of these experiments, �-ray spectra from the decay of

excited states in 186Re were measured and analyzed to reveal information about the

discrete-level structure of 186Re. This work resulted in new information about �-ray

transitions that feed the 186mRe isomer, an improved value for the excitation energy

of the isomer, independent measurements of the 186Re neutron-separation energy

and the cross section for thermal-neutron capture on 185Re, and numerous �-ray

transitions and levels in 186Re which are not included in the adopted level scheme.
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NUCLEAR STRUCTURE OF 186RE

I. Introduction

1.1 Background

Rhenium (Z = 75) is a transition element that exists naturally in two isotopes:

185Re (abundance 37.398%) and 187Re (abundance 62.602%) [1]. Rhenium has the

notable physical property that its melting point among metallic elements is second

only to tungsten, which makes it suitable for use in high-temperature applications.

Due to its rarity, rhenium metal is very expensive [2].

The unstable odd-Z, odd-N isotope 186Re has a half-life in its ground state of

3.7186 days, from which it decays via electron capture (7.47%) to form 186W or by

�� emission (92.53%) to 186Os. 186Re has an unusually long-lived metastable state

(isomer) with a half-life of ⇠2.0⇥ 105 years. The 186mRe isomer (identified with a

superscript m for metastable) decays only by �-ray cascade to the ground state, in

the process known as isomeric transition (IT) [3, 4].

1.2 Motivation

Research on 186Re is motivated by the need for nuclear-structure and reaction

data, astrophysical questions concerning the rhenium/osmium cosmochronometer,

and the possible use of long-lived isomers in the development of a radioisotope

power source.

1



1.2.1 Nuclear Data Needs.

The U.S. Nuclear Data Program (USNDP) is managed by the National Nuclear

Data Center (NNDC) at Brookhaven National Laboratory. The databases

maintained by the NNDC are organized according to application, and include

nuclear-structure as well as nuclear-reaction data. Among these databases are the

Evaluated Nuclear Structure Data File (ENSDF) and the eXperimental

Unevaluated Nuclear Data List (XUNDL), which contain information about nuclear

level schemes, and the Evaluated Nuclear (reaction) Data File (ENDF), which holds

cross-section information for various nuclear reactions. Data published in

nuclear-science journals are evaluated periodically for inclusion in the evaluated

databases.

The nuclear data maintained in these databases are important to applications

across the spectrum of nuclear science and technology. Advanced reactor design,

nonproliferation, nuclear medicine, national security, and basic science all rely on

accurate structure and reaction data maintained in the evaluated databases [5].

Nonproliferation/Safeguards.

Active and passive interrogation technologies used in nonproliferation

applications such as the detection of special nuclear materials rely on activation

cross sections from the ENDF and �-ray energies from the ENSDF. Nuclear-reaction

and structure data are also used by the International Atomic Energy Agency (IAEA)

for nuclear-materials safeguards, in which elemental- and isotopic-composition

analysis is used to identify potential reprocessing of spent nuclear fuel.
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Nuclear Power.

Advanced nuclear-reactor designs rely on reaction cross-section data for the

purpose of evaluating structural materials used throughout the reactor and in the

nuclear fuel cycle. Data maintained in the ENDF are particularly important in

these applications, and there is a continued e↵ort to make these data more accurate

as design margins in advanced reactor designs improve.

Nuclear Medicine.

The ground state of 186Re has a medical application as a high specific-activity

�� emitter, useful for the treatment of certain bone and breast cancers. Due to its

relatively short half-life, production of this isotope must be maintained continuously

to maintain a consistent supply for patients in need of this type of treatment. As

part of the U.S. Department of Energy’s isotope program, 186Re is produced by

thermal neutron capture on 185Re at reactors, or by proton-induced reactions on

tungsten at accelerator facilities [6, 7]. Accurate reaction cross sections are

important to planning the national e↵ort to maintain a supply of 186Re for medical

treatment.

Validation of Nuclear Models.

186Re lies at the edge of a mid-shell deformed region of the chart of the nuclides,

and experimental nuclear data regarding isotopes in this mass region are important

for validating models of nuclear structure and reactions. The ENSDF feeds a

specific data library relevant to nuclear-reaction models, the Reference Input

Parameter Library (RIPL), which is maintained by the IAEA and used as the

default library in most major nuclear-reaction codes (including the Talys 1.6,

CoH 3.4, and dicebox codes used in this research). When experimental
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cross-section data are not available, modeled cross sections produced by codes such

as Talys provide the input to the ENDF database, so accurate nuclear data in

RIPL are especially important for applications [8, 9].

1.2.2 Re-Os Cosmochronometer.

187Re has a ground-state half-life of 4.33⇥ 1010 years, and it decays by ��

emission to form the stable isotope 187Os [10]. A comparison of the relative

abundances of 187Os and 187Re in astronomical objects such as meteorites allows one

to estimate the duration of time from the synthesis of these nuclides in high

neutron-flux events [11]. Because the half-life of 187Re is on the order of the age of

the universe (15± 2⇥ 109 y), these estimates are useful for dating supernova events

up to the age of the Milky Way galaxy [12].

Nucleosynthesis involves the study of nuclear reactions in stellar environments,

resulting in the production of elements heavier than hydrogen. The formation of the

isotopes 187Re and 187Os involves two processes: a rapid (r) process and a slow (s)

process, so defined by the rate of neutron-capture events in the stellar environment.

Both the s and r processes populate the neutron-heavy radionuclides, which tend to

decay by �� emission to form stable nuclides. The r process, believed to occur

during neutron-star mergers and supernovae, is characterized by incredibly high

neutron fluxes. The resulting neutron-capture rates are so great that unstable nuclei

are much more likely to undergo neutron capture before they have the opportunity

to � decay. The s process, which is thought to occur during a star’s helium-burning

phase, involves neutron fluxes low enough that the time between neutron-capture

events is on the order of the �-decay lifetime of the radionuclides produced in this

process [13].

The production of 187Os occurs almost entirely by the s process, and 187Re is
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primarily produced by the r process. 186Re is a branch point in these two processes,

and it can decay into 186Os or 186W with a half-life of 3.7186 d, or it can undergo

neutron capture to create 187Re [14, 15, 16]. The long-lived 186mRe isomer can be

created in the reactions 185Re(n, �)186mRe and 186gRe(�, �0)186mRe, or destroyed in

the 186mRe(�, �0)186gRe reaction, though cross sections for these reactions are not

well known. As a result, the role of 186mRe in rhenium and osmium nucleosynthesis

is not fully understood, and it could be a source of error in the 187Re/187Os

chronometer [17]. This motivation for the study of the level structure above the

isomer in 186Re is discussed in greater detail in Chapter III.

1.2.3 Isomer Power Source.

The theoretical energy-storage potential of long-lived nuclear isomers is greater

than chemical-energy sources by up to six orders of magnitude, an attractive

property for numerous military applications. As technology on the battlefield

improves, deployed military forces are in need of increasingly powerful energy

sources to run equipment, and portability is very important. This requirement was

highlighted in a 2013 report by the Defense Science Board, which recommended

that $25 million be allocated to research related to developing a radioisotope power

source [18].

The energy densities of nuclear isomers are second only to fissile isotopes, but

the means of depleting isomers, or inducing them to release their excess energy on

demand, in practical quantities has not yet been demonstrated [19]. If isomer

depletion could be reliably achieved, it would likely lead to high-power energy

sources much cleaner than nuclear reactors. When an isomer decays by �-ray

cascade to the ground state the energy released does not involve transmutation, so

the products are less radioactive than the fission products that constitute the
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majority of nuclear-reactor waste.

Many nuclear isomers are known, with excitation energies of several eV to

several MeV and lifetimes typically ranging from microseconds to thousands of

years. However, those with half-lives greater than one year are rare, and at present

only 12 are known [20]. It is these long-lived isomers that have the greatest

potential for energy storage, and they are the focus of research aimed at

demonstrating isomer depletion with a positive energy balance.

All isomers with the exception of 180mTa are unstable, and they naturally release

their excess energy through either � decay or IT. The focus of isomer-depletion

research involves exciting the nucleus in the isomer state into a higher-lying state

from which it can decay promptly to the ground state, releasing the excitation

energy of the isomer in the process. Depletion has been achieved in several

experiments involving neutron bombardment and X-ray irradiation of an isomeric

target, though in each case more energy was put into the target than was emitted.

The second longest-lived nuclear isomer known, 186mRe, has a ⇠2.0⇥ 105-y

half-life and therefore exists as a relatively stable energy storage medium [21]. If

186mRe could be depleted from the isomer to the 186Re ground state, it would then

�� decay with a half-life of 3.7186 d. The resulting energy released would consist of

� rays and/or conversion electrons with energies summing to 148.2 keV from the

isomer depletion and �� electrons from the ground-state decay of 186Re with an

endpoint energy of 1.07 MeV [3, 22]. The highly-energetic �� electrons could

generate a usable current in a high-bandgap semiconductor such as SiC, or by

sandwiching a scintillator with a photocathode [23].

Isomer depletion through on-resonance photon excitation to a higher-lying state

above the isomer has been proposed for experiments designed to investigate the

potential of an isomer power source [19]. The higher-energy state in the depletion
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pathway would need to be connected to the ground state via a cascade of � rays for

spontaneous decay to occur. In the case of 186Re, there are no levels or �-ray

transitions above the isomer in the adopted level scheme, so no such intermediate

states are known [3]. Such levels and transitions in 186Re are needed to design

future direct-depletion experiments involving tunable high-energy photon sources.

The cross sections for photon-induced nuclear excitation and depletion measured in

such experiments would be useful for determining the feasibility of constructing an

isomer power source with 186mRe.

1.3 Problem

The primary intent of this research was to conduct a thorough examination of

the low-energy nuclear level structure of 186Re. At present, the level structure of

186Re is not well known, and the adopted level scheme includes numerous tentative

assignments [3]. While the focus of this research e↵ort was on the discovery of new

levels and transitions involved in feeding the long-lived 186mRe isomer, the

investigations were also useful for validating or revising tentative assignments in the

adopted level scheme. A search for states with decay pathways to both the isomer

and 186Re ground state was of particular interest, since the energies of these states

are important in the design of direct-depletion experiments that could lead to the

development of an isomer power source. Secondary to the e↵ort of expanding the

nuclear-structure data on 186Re was making independent measurements of the total

radiative thermal-neutron capture cross section on 185Re and the 186Re

neutron-separation energy. Measurements of reaction cross sections and

excited-state energies were compared with the output from theoretical models, as

applicable, to validate experimental results.
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1.4 Hypothesis

In-beam �-ray spectroscopic measurements involving the 187Re(n, 2n�)186Re,

185Re(n, �)186Re, and 186W(d, 2n�)186Re reactions could be analyzed to determine

valuable new nuclear-structure and reaction data for 186Re. These data would be

valuable additions to structure and reaction databases that are used in a variety of

nuclear applications.

Specific information about levels and transitions that feed the 186mRe isomer

would have direct applications to the problems of assessing the accuracy of the

Re/Os cosmochronometer and investigating the potential use of 186Re in an isomer

power source.

1.5 Methods

In order to conduct a more complete spectroscopic analysis of 186Re than that

described in the existing literature (which has primarily been deduced from studies

of 185Re(n, �) and single-nucleon transfer reactions), multiple experiments involving

di↵erent reactions had to be performed to measure the �-ray transitions following

production of these excited states. The dynamics of the reactions studied are

described in Chapter II. Summaries of the experiments and the methods that were

used to analyze the data from these experiments are described in the following

paragraphs, and more detailed information about the specific experiments and

facilities is contained in Chapters III, IV, and V.

1.5.1 187Re(n, 2n�)186Re Experiment.

The GErmanium Array for Neutron Induced Excitations (GEANIE) �-ray

spectrometer at the Los Alamos Neutron Science Center (LANSCE) was used to

obtain �-ray spectra and production cross-section data from fast-neutron induced
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reactions on an enriched 187Re metal target. Examination of the data revealed new

�-ray transitions in 186Re and verified transitions and levels previously reported in

the literature. Known �-ray transitions in the neighboring odd-Z, odd-N isotope

184Re, which has a similar structure to that of 186Re, were used to identify and place

transitions above the 186mRe isomer. To motivate level spin-parity assignments and

the placement of �-ray transitions in the level scheme, a goodness-of-fit analysis was

performed between experimental excitation functions and cross sections calculated

with the CoH 3.4 and Talys 1.6 reaction codes.

1.5.2 185Re(n, �)186Re Experiment.

The 10 MW
t

Budapest Research Reactor (BRR) at the Budapest Neutron

Centre (BNC) was used as a thermal-neutron source for the examination of prompt

� rays produced via neutron capture on 185Re. The Prompt Gamma-ray Activation

Analysis (PGAA) apparatus at BNC, which consists of a single

Compton-suppressed high-purity germanium (HPGe) detector, was used to measure

�-ray spectra from (n, �) reactions on an enriched 185Re target. These spectra were

analyzed to identify �-ray transitions reported in the adopted level scheme for

186Re. Gamma-ray production cross sections were derived from peak fits and used in

conjunction with the dicebox Monte-Carlo statistical-decay code to determine the

total thermal-neutron capture cross section �0 for 185Re.

1.5.3 186W(d, 2n�)186Re Experiments.

The CAESAR �-ray spectrometer at the Australian National University (ANU)

was used to measure the � decay of excited states in 186Re populated in

186W(d, 2n)186Re reactions. After measuring �-ray excitation functions for the

production of 186Re at di↵erent deuteron energies, a beam energy of 14.5 MeV was
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determined to maximize production of the 186mRe isomer. A short (⇠1.5 day) run

was accomplished at this beam energy, and �-� coincidences from this experiment

were analyzed to reveal levels and �-ray transitions not in the evaluated literature.

Because of the limited amount of data taken during the ANU experiment, a

second experiment was performed to investigate the same 186W(d, 2n)186Re reaction

at the Research Center for Nuclear Physics (RCNP) at Osaka University, Japan.

The RCNP was host to the joint U.S. – Japanese Clover Array Gamma-ray

spectrometer at RCNP for Advanced research (CAGRA) project, which was used to

measure �-ray coincidences from the irradiation of an enriched 186W foil with

14.5 MeV deuterons. The resulting �-� coincidence matrices and �-�-� cubes were

analyzed to confirm the placements of �-ray transitions in the 186Re level scheme

proposed from the analysis of the ANU data set.
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II. Theory

Elucidating the level structure of the 186Re nucleus is the ultimate focus of this

dissertation research. Because 186Re is an odd-Z, odd-N deformed nucleus, its level

scheme is characterized by a particularly high level density at low energies. Using

the techniques of in-beam �-ray spectroscopy, the complex level scheme of this

nuclide can be investigated. For the study of 186Re, �-ray spectra were measured

from the following reactions: 187Re(n, 2n)186Re, 185Re(n, �)Re, and

186W(d, 2n)186Re. The dissertation research thus spans two distinct, albeit related,

fields: nuclear structure and nuclear reactions. This chapter will provide a brief

overview of common nuclear models and the motivation behind the study of 186Re.

The dynamics of nuclear reactions and the reaction-modeling codes employed in the

research will be discussed, as well as the physics of nuclear isomers. Experimental

data-analysis techniques and systematics that are specific to each of the reactions

studied will be discussed in greater detail in the applicable chapters that follow.

2.1 Nuclear Structure

Nuclear-structure physics involves the study of nuclear levels with excitation

energies of several MeV and below, and associated electromagnetic transitions.

Models describing the motion of protons and neutrons (nucleons) in the nucleus are

generally categorized in terms of collective (macroscopic) and microscopic

models [24].

2.1.1 The Nuclear Landscape.

Early in the 20th century, patterns in the stability or instability of known

nuclides provided clues to understanding nuclear-structure physics. In the Segré
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chart of the nuclides, a plot showing the known nuclei according to their proton

number Z and neutron number N (Figure 1), the stable nuclei emerge in a valley in

the center of the chart. When plotted according to the usual convention of Z versus

N, the unstable proton-rich isotopes are located to the north of the valley, and the

unstable neutron-rich isotopes are south of the valley.

Figure 1. The Segré chart of the nuclides, showing known nuclides plotted with their
proton number Z versus neutron number N . The black squares in the central valley of
the chart represent the stable nuclei. Blue squares identify nuclei that predominantly
decay by �

� emission, and red squares identify those that decay mainly by �

+ emission
or electron capture ("). The double vertical or horizontal lines are the magic numbers
predicted by the shell model. Purple arcs enclose regions in which nuclei are commonly
deformed, and green- and yellow-highlighted areas refer to locations where nuclear
isomers (spin-trap and K-trap, respectively) are generally found. Nuclear deformation
and the physics of isomers will be discussed in later sections. Figure copyright 1994,
IOP Publishing. Reproduced with permission from [25].

The shape of the valley of stability informed the development of the liquid-drop

model (discussed later in this section), the first successful collective, or macroscopic,

nuclear model. Nuclei in which neutron or proton numbers are equal to 2, 8, 20, 28,
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50, 82, or 126 (referred to as the magic numbers) are known empirically to have

greater binding energies than their neighbors, and are therefore especially stable.

E↵orts to explain this behavior, which is not predicted by collective models, led to

the quantum-mechanical shell model of nuclear structure. The magic numbers (with

the exceptions of N,Z = 2 and Z = 126) are identified in Figure 1.

2.1.2 Microscopic Models.

In microscopic models of the nucleus, the nucleons are treated as individual

particles rather than collectively. The underlying goal of these models is to solve the

Schrödinger equation for the nuclear wavefunction, where the Hamiltonian operator

includes the interactions between all Z protons and N neutrons in the nucleus. In

practice, this is an n-body problem that requires simplifying assumptions to solve

for all but the lightest nuclei [24]. The shell model, which is the most successful

model of nuclear structure to date, is one of a number of microscopic models [26].

Shell Model.

The shell model involves a mean-field approximation in which the nuclear

potential is assumed to be the spherically symmetric Woods-Saxon potential:

V (r) =
�V0

1 + exp[(r �R)/a]
, (1)

where V0 ⇡ 50 MeV, R = 1.25A1/3 fm and a = 0.524 fm [27]. Solving the

Schrödinger equation

Ĥ| i = E| i, (2)
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for nucleons moving independently in this potential, where

Ĥ =
Z,NX

i=1

✓�~2
2m

i

r2
i

+ V (r
i

)

◆
(3)

is the Hamiltonian operator, results in the set of energy levels ordered as in the

left-hand side of Figure 2. When the potential is modified to include the e↵ects of

spin-orbit (~L · ~S) coupling, the states with orbital angular momentum ` > 0 split

into two distinct energy levels, or orbitals, resulting in the level-energy diagram on

the right-hand side of of Figure 2. Orbitals are identified with their quantum

numbers n, `, and j = `+ s, where s, p, d, f, . . . refers to ` = 0, 1, 2, 3, . . . The

individual-nucleon orbitals determine the overall nuclear spin J and wavefunction

parity ⇡, and the method for deducing the ground-state J⇡ will be discussed in

Section 2.1.4.

The shell-model energy levels in Figure 2 emerge in several groupings, termed

major shells, and significant gaps appear between shells at Z,N=2, 8, 20, 28, 50, 82,

126, and 184. These shell gaps match the empirical magic numbers exactly up to

Z,N = 82 and N = 126. Furthermore, the shell model predicts that Z = 126 and

Z,N = 184 are magic, although superheavy nuclei with these Z or N have not yet

been found in nature or synthesized in the laboratory to confirm these

predictions [27]. Minor shell gaps are also observed at N,Z = 40 and Z = 64 for

certain N [26]. These shell gaps are not identified in Figure 2, but their e↵ects are

experimentally observable.

The shell model explains why doubly-magic nuclei, those with both Z and N

equal to magic numbers, have large energy gaps between the ground state and the

first intrinsic excited state (the lowest-energy excited state resulting from an orbital

configuration di↵erent than that of the ground state, and not from collective, e.g.,

rotational, motion). Because of the energy gap between shells, a large amount of
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Figure 2. Diagram of energy levels in the shell model, showing the lifting of degeneracy
in the ` > 0 states when the spin-orbit interaction is included in the nuclear potential.
The capacity of each orbital and the total number of nucleons when each orbital is
filled are listed to the right of each level. The magic numbers, which correspond to
completely filled shells, are circled. Reproduced with permission from [27].

energy is required to promote a nucleon to an orbital in the next empty shell to

create such an excited state.

One major limitation of the shell model arises from the assumption that the

potential V (r) in Equation (1) is spherically symmetric. The energy levels predicted

by the shell model are therefore not applicable to cases where the nucleus has a

non-spherical shape. A modification to the shell model that assumes a deformed

potential, known as the Nilsson model, is used to make predictions about deformed
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nuclei. One such deformed nucleus is the subject of this work, 186
75 Re111, which exists

between shells (50 < Z < 82 and 82 < N < 126). In this mid-shell region of the

chart of the nuclides, highlighted in Figure 1, nuclear deformation contributes to the

prevalence of long-lived isomers.

Electromagnetic Transitions and Selection Rules.

Electromagnetic transitions between nuclear states comprise electromagnetic

radiation (� rays) and internal conversion. When a transition proceeds by internal

conversion, the nucleus decays by transferring energy to an atomic electron via a

virtual photon, which causes the electron to be excited into a di↵erent atomic

orbital or ejected from the atom. The ratio of the probability PIC of a transition

proceeding by internal conversion to the probability P
�

that it results in �-ray

emission is defined as the internal conversion coe�cient (ICC): ↵ = PIC/P�

. ICCs

are either measured from conversion-electron spectrometry, or they are calculated

using theoretical models such as that applied in the Band-Raman Internal

Conversion Calculator (BrIcc) code [28, 29].

In general, electromagnetic transitions involve radiation with a characteristic

multipolarity XL, and are categorized as electric or magnetic dipoles (E1 or M1),

quadrupoles (E2 or M2), octupoles (E3 or M3), etc. Calculations of the matrix

elements for transitions between initial states with spin-parity J⇡i
i

to final states

with spin-parity J
⇡f

f

lead to the following selection rules that identify allowable

transition multipolarities:

|J
i

� J
f

|  L  J
i

+ J
f

⇡
i

⇡
f

=

8
>><

>>:

(�1)L for electric transitions

(�1)L+1 for magnetic transitions

(4)
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Here J
i

and J
f

are the angular momentum quantum numbers of the initial and final

states, respectively, and L is the multipole order of the electromagnetic transition.

The parities of the initial- and final-state wavefunctions, ⇡
i,f

, can take on values of

+1 (even parity) or -1 (odd parity). The change in parity ⇡
i

⇡
f

between initial and

final states determines the electric or magnetic character of the allowed transitions

based on their multipole order [26]. When there is no change in parity, even

multipoles correspond to electric transitions and odd-multipole transitions are

magnetic. The opposite is true when there is a change in parity between the initial

and final states.

Weisskopf Estimates.

For given initial and final states, the selection rules defined by Equation (4)

permit more than one allowed transition whenever J
i

+ J
f

> |J
i

� J
f

|. In general, of

the allowed transitions, the one of lowest multipole order is most likely.

Furthermore, transitions with electric character are more likely than those with

magnetic character. The relative probabilities of allowed transitions between states

are quantified by their transition rates, which can be approximated using the

Weisskopf estimates [27].

The Weisskopf estimates are derived by calculating transition-matrix elements

assuming transitions between nuclear states are due to a single particle moving in a

Woods-Saxon potential [Equation (1)]. Because the Woods-Saxon potential is

spherically symmetric, the Weisskopf estimates are only directly applicable to

spherical nuclei, and even in these cases the estimated rates are only roughly

comparable to measured decay lifetimes [24, 27].

The formulation of the Weisskopf estimates listed below yields transition rates �

in units of s�1 given the transition energy E in MeV and the atomic number A. For
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electric transitions with multipole order up to 5 (E1 through E5), they are:

�(E1) = 1.0⇥ 1014A2/3E3

�(E2) = 7.3⇥ 107A4/3E5

�(E3) = 34A2E7 (5)

�(E4) = 1.1⇥ 10�5A8/3E9

�(E5) = 2.38⇥ 10�10A10/3E11.

The Weisskopf estimates for the rates of M1 through M5 transitions are:

�(M1) = 5.6⇥ 1013E3

�(M2) = 3.5⇥ 107A2/3E5

�(M3) = 16A4/3E7 (6)

�(M4) = 4.5⇥ 10�6A2E9

�(M5) = 7.29⇥ 10�13A8/3E11.

Although the transition rates predicted by the Weisskopf estimates are typically

order-of-magnitude approximations to rates obtained from half-life measurements,

the estimates reveal some of the systematic behavior governing the lifetimes of

nuclear states. For a given A, the transition rate increases with the energy E of the

transition as E2L+1, where L is the multipole order of the transition [24, 27]. It

follows from the dependence on E that very low-energy transitions are inhibited, a

fact confirmed by experiment. However, the dominant term in each of the transition

rates listed in Equations (5) and (6) is the leading constant, which decreases by

nearly six orders of magnitude each time the multipole order L is incremented. This

fact is important for explaining isomer lifetimes, and will be revisited in Section 2.3.
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Deformed Shell Model.

The shell model is widely regarded as the most successful model in

nuclear-structure physics, with applications ranging from predicting excited-state

energy levels to explaining systematic behavior in proton- and neutron-separation

energies and neutron-capture cross sections. The predictions of the shell model

agree well with experiment when N or Z are in close proximity to the magic

numbers, because these nuclei are nearly spherical [26]. The assumption that the

nuclear potential is spherically symmetric, however, limits the predictive power of

the shell model when the nucleus is known to be spherically asymmetric. Spherical

asymmetry is common for nuclei between shell closures, such as those in the

mid-shell 150  A  190 mass range of interest in this work.

In general, for a deformed nucleus, the nuclear radius R is given in terms of the

spherical harmonics Y2µ(✓,�) by the function

R = R0A
1/3

"
1 +

X

µ

↵⇤
2µY2µ(✓,�)

#
, (7)

where A is the mass number, R0 = 1.25 fm, and the ↵⇤
2µ are the complex conjugates

of the expansion coe�cients for the spherical harmonics [24, 26]. For spherical

nuclei, ↵2µ = 0 for all µ, and the formula reduces to R = R0A
1/3.

The most commonly-encountered type of nuclear deformation is quadrupole

deformation, in which the nucleus can take on either an oblate (frisbee) or prolate

(rugby ball) shape. Deformation can also occur when the nucleus is stretched or

compressed along a direction perpendicular to the axis of nuclear symmetry,

resulting in axial asymmetry. For a quadrupole-deformed nucleus, the nonzero

coe�cients in Equation (7) are ↵20 and ↵2±2. These coe�cients can be written in

terms of a parameter � and an angle � that are more intuitively related to the type
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and extent of the deformation:

↵20 = � cos �

↵2±2 =
1p
2
� sin �. (8)

In Equation (8), � specifies the type and degree of static quadrupole deformation

(� > 0 for prolate nuclei, and � < 0 for oblate nuclei), and 0�  �  30� corresponds

to the degree of axial deformation (� = 0� for an axially-symmetric nucleus, and

� = 30� for the maximum degree of axial asymmetry) [24, 26]. The equipotential

surfaces defining the shapes of quadrupole-deformed nuclei are shown in Figure 3, in

which the e↵ects of varying � and � are illustrated. Further discussion of nuclear

deformation will be focused on axially-symmetric states as they apply to 186Re.

Figure 3. Characteristic shapes of equipotential surfaces in deformed nuclei, with the
axis of nuclear symmetry identified as the z axis. The spherical shape has � = 0, while
the oblate and prolate shapes have � < 0 and � > 0, respectively. The axial symmetry
is a function of 0�  �  30�, and the end views (with the z axis coming out of the
page) show di↵erent degrees of axial asymmetry for the prolate shape.

The shell model, modified with an axially-symmetric deformed potential, is

known as the Nilsson model. In the Nilsson model, the energy levels depend on the

degree of deformation ✏, which is related to the parameter � according to the

expression

� =
p
⇡/5

✓
4

3
✏+

4

9
✏2 +

4

27
✏3 +

4

81
✏4 + . . .

◆
. (9)
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The deformation parameter for 186Re is � = 0.221, which when substituted into

Equation (9) yields ✏ = 0.20 [30]. The energy levels that result from solving the

Schrödinger equation with an axially-symmetric deformed potential are displayed in

neutron- and proton-specific plots such as those of Figure 4. These plots are referred

to as Nilsson diagrams [26].
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Figure 7.  Nilsson diagram for neutrons, 82 ≤ N ≤ 126 (ε4 = ε2
2/6).
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(a) Neutron energy levels
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Figure 11.  Nilsson diagram for protons, 50 ≤ Z ≤ 82 (ε4 = ε2
2/6).
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(b) Proton energy levels

Figure 4. Nilsson-model energy-level diagrams for (a) neutrons and (b) protons in
nuclei with 82  N  126 and 50  Z  82. The degree of deformation ✏ (✏

2

in the
figure) is negative for oblate nuclei and positive for prolate nuclei. The value ✏ = 0.20
for 186Re is identified in (a) and (b) with a vertical red line. Shell-model energy levels
in spherical nuclei are shown along the vertical black line at ✏ = 0, with magic numbers
circled. Figure copyright 2009 Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced
with permission from [10].

In the Nilsson model, because of collective rotation the magnitude J of the total

angular momentum is not a constant of the motion, so J is not a good quantum

number. The angular-momentum quantum number used in the Nilsson model is the

projection K of the angular-momentum vector on the axis of nuclear symmetry.
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The total angular momentum J results from summing the angular momenta of

individual valence nucleons, where the single-particle angular momentum is

identified with a lowercase j. The projection of the single-particle angular

momentum j on the axis of symmetry is defined as ⌦, as shown in Figure 5. For a

nucleus with two valence nucleons with angular momenta j1 and j2, the total

angular momentum is J = j1 + j2, and its projection is K = ⌦1 + ⌦2.

z 
θ	
Ω	

j 

Figure 5. Definition of quantum number ⌦ for a prolate-deformed nucleus with spin j

due to the orbit of a single nucleon. The angle of inclination ✓ is measured relative to
the axis of nuclear symmetry (defined as the z axis).

Discrete single-particle levels in the Nilsson model are labeled according to the

convention ⌦⇡ [Nn
z

⇤], in which ⌦⇡ defines the ⌦ value of the state and the parity ⇡

of the wavefunction, N is the principle quantum number of the major shell, n
z

is the

number of nodes of the wavefunction in the z direction, and ⇤ is the projection of

the orbital angular momentum on the axis of symmetry [26]. A nucleon with

intrinsic spin 1/2 can have a spin projection ⌃ = ±1/2 on the symmetry axis, so

that ⌦ = ⇤+ ⌃.

The orbital angular-momentum vector of a single particle orbiting a deformed

nucleus can take on distinct inclinations relative to the axis of symmetry. The

energy of the single-particle orbit depends on the angle of inclination ✓, a quantized

value that is related to the average distance between the orbiting nucleon and the
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rest of the nucleus. For orbits with small ✓, the orbiting nucleon remains close to

the central nuclear mass throughout its path, so the attractive nature of the strong

force causes it to be more tightly bound. Its energy is thus lowered relative to that

of a spherical state with the same j value. Conversely, a nucleon in an orbit with

large ✓ (up to 90�) spends the majority of its orbit at a greater distance from the

central mass, and its energy is raised relative to the spherical-state energy. Two

orbits with the same single-particle angular momentum j but di↵erent ✓ are

illustrated in Figure 6.

z 

Ω2 

Ω1 

Figure 6. Two single-nucleon orbits about a prolate-deformed nucleus at di↵erent
angles of inclination relative to the axis of nuclear symmetry, identified as the z axis.
The orbit labeled ⌦

1

has a lower energy than the one labeled ⌦
2

.

In a spherical nucleus, there is no preferred axis of symmetry, and as a result the

energy levels are degenerate in the ⌦ quantum number. As deformation increases,

this degeneracy lifts and the single-particle energy levels split into distinct levels

with ⌦ = 1/2, 3/2, ..., j, with energies raised or lowered based on the angle of

inclination of the single-nucleon orbital as described above. This e↵ect is evident in

Figure 4.
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K-Hindrance.

Because of the assumption of a spherical potential in the derivation of the

Weisskopf estimates [Equations (5) and (6)], they are not directly applicable to

deformed nuclei. Quantum-mechanical selection rules derived from the Nilsson

model require that the multipole order L of a transition be equal to or greater than

the di↵erence in K between the initial and final state. This selection rule is not

strictly observed, and symmetry breaking can lead to transitions in which L < �K,

though such transitions are hindered.

The degree of K-hindrance of an electromagnetic transition with L < �K is

governed by the value ⌫ = �K � L. A quantity known as the reduced hindrance f
⌫

is defined by the equation

f
⌫

=

✓
�W

�

◆1/⌫

, (10)

where � is the decay constant, and �W is the decay constant from the Weisskopf

estimates. The value of f
⌫

has been shown by Löbner to be approximately 100 for a

wide range of possible values for ⌫ and L [31]. Ceteris paribus, increasing �K by

one results in a 100-fold decrease in � [32].

2.1.3 Collective Models.

In collective models of the nucleus, nuclear properties are modeled without

attempting to describe the interactions between individual protons and neutrons.

Instead, empirical observations are explained as arising from the average motion of

nucleons in the nucleus. Collective models generally attempt to explain the

systematics of particular nuclear properties, such as binding energies, masses, and

level densities.
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Liquid-Drop Model.

Early in the investigation of nuclear structure, attempts to explain nuclear

binding energies led to the development of the liquid-drop model by H. Bethe and

C. Weizsäcker. Nuclear binding energies (measured in MeV/nucleon), as a function

of mass number A, are known to follow a curve that increases rapidly from 1H to

12C, peaks at 56Fe, and then slowly decreases thereafter as A increases. The curve

can be fitted by the function

B = a
v

A� a
s

A2/3 � a
c

Z(Z � 1)A�1/3 � a
sym

(A� 2Z)2

A
+ �, (11)

where B is the binding energy per nucleon in MeV/u, a
v

= 15.5 MeV,

a
s

= 16.8 MeV, a
c

= 0.72 MeV, a
sym

= 23 MeV, and

� =

8
>>>>>><

>>>>>>:

�a
p

A�3/4 for N and Z odd

0 for A odd

+a
p

A�3/4 for N and Z even,

(12)

where a
p

= 34 MeV [27].

Early scattering experiments supported the idea that the nucleus has a constant

density, and a volume V proportional to A1/3 [27]. Given that V / A1/3, the first

three terms in Equation (11) are seen to represent the mass-energy contained in the

volume of the nucleus, adjusted for the surface tension and the Coulomb repulsion of

the protons. This naturally led to the idea that the nucleus could be modeled as a

charged droplet of liquid. Adjustments are generally made to improve the accuracy

of the liquid-drop model by accounting for a tendency towards equal numbers of

neutrons and protons in the nucleus, and for neutrons and protons to pair together

[the terms containing the a
sym

component and � in Equation (11)]. When these
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adjustments are incorporated, the model’s predictions of nuclear masses and

neutron- and proton-separation energies show good agreement with experiment [24].

Bohr-Mottelson Model.

Analogous to the e↵ects observed in visible or infrared spectra described by

molecular vibration and rotation, �-ray spectra also have features explainable by

the bulk motion of nucleons in the nucleus. Nuclear excitations resulting from

collective nuclear vibration and rotation form the foundation upon which A. Bohr

and B. Mottelson developed their model of the nucleus in the 1950s [33].

Prompt �-ray spectra from reactions involving large transfers of angular

momentum to a target nucleus reveal clear patterns in discrete-level energies that

follow the E / J(J + 1) energy dependence of the quantum rigid rotor. This

behavior supports the idea that a deformed nucleus can rotate collectively about an

axis perpendicular to the axis of symmetry. Collective rotational motion in

deformed nuclei can lead to mixing between di↵erent-K states, an e↵ect that is

attributed to the Coriolis e↵ect, which tends to align the angular momentum vector

with the axis of rotation [26].

In addition to rotational excitations, the nucleus can also be excited into

vibrational modes. Vibrational modes of excitation involve collective motion in the

� or � degrees of freedom introduced in Section 2.1.2. A � vibration occurs when

the nucleus extends and contracts along the axis of symmetry, such that the

deformation parameter � oscillates about some mean value. In a � vibration, the

nucleus extends and contracts along an axis perpendicular to the axis of symmetry,

and the degree of axial asymmetry given by the angle � oscillates [24, 26]. The �

and � vibrational modes are illustrated in Figure 7.
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Figure 7. Collective vibrations of a nucleus in the � and � degrees of freedom. A �

vibration extends and contracts the nucleus along its symmetry axis, and a � vibration
is described by a periodic variation in axial asymmetry.

Other Models.

Two other collective models of the nucleus deserve mention here, although they

will be explained in greater detail in Chapter IV. The Fermi gas model can be used

to calculate the average kinetic energy of nucleons. Additionally, it has been used to

derive the symmetry term in Equation (11) from first principles [24]. In the Fermi

gas model, the nucleus is approximated as a gas of noninteracting fermions, and

from this assumption the total kinetic energy is calculated. The particular

application of the model used in this work (Chapter IV) further assumes the gas has

two components (protons and neutrons), and it incorporates an energy backshift

and spin-dependent term to better fit experimental level-density data. An

alternative to the backshifted Fermi gas model is the constant-temperature model,

also described in Chapter IV, in which a constant nuclear temperature is assumed

to derive level densities as a function of excitation energy.

2.1.4 Combined Models.

The predictive power of the models introduced above to describe nuclear

properties and behavior is enhanced when collective and microscopic models are

combined. In general, most combined models incorporate a

27



core-plus-valence-nucleons description of the nucleus to make predictions about

nuclei away from the magic numbers [24].

Independent Particle Approximation.

In the independent particle approximation, it is assumed that the motion of

unpaired valence nucleons (often called quasiparticles) are responsible for observed

nuclear properties. Without such an approximation, it would be very di�cult to

apply the results of microscopic models to all but the nuclei with N or Z

immediately adjacent to the magic numbers [26].

To apply the independent particle approximation, shell-model orbitals are filled

according to the Pauli exclusion principle, where the capacity of each orbital is a

function of the ` quantum number. Protons and neutrons tend to pair to create

zero-total angular momentum (J = L+ S) states, a consequence of which is the fact

that all even-Z, even-N nuclei have J = 0 in the ground state. One can apply this

pairing property to predict the spin and parity J⇡ of ground-state nuclear

wavefunctions in odd-Z and/or odd-N nuclei. By filling orbitals sequentially as they

appear in the shell-model diagram of Figure 2, the remaining unpaired proton

and/or neutron will have the spin j and parity ⇡ = (�1)` from its orbital

assignment (although residual interactions a↵ect the accuracy of this methodology

in practice). The spin J of the nuclear ground state becomes a vector sum of the

angular momenta j
p

, j
n

of the unpaired proton and/or neutron, and the parity ⇡ is

the product of the parities ⇡
p

, ⇡
n

of the unpaired nucleons [27]. Intrinsic excited

states are created by promoting an unpaired nucleon to a higher-lying orbital, or by

breaking a pair and promoting one or both nucleons to higher-lying orbitals. A

similar technique is applied to deduce intrinsic-state spins and parities in deformed

nuclei from the single-particle Nilsson orbitals.
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A direct consequence of the requirement to break a pair of nucleons to create an

intrinsic excited state in an even-Z, even-N nucleus is the fact that these nuclei

typically have high-energy first excited states (excluding collective rotational

excitations) and low level densities. By comparison, in nuclei with odd Z or N , no

energy is required to break a pair before promoting the valence nucleon(s) to

higher-lying orbital(s), so intrinsic excited states occur at comparatively much lower

energies. Because of this fact, nuclei with odd Z or N have relatively high level

densities at low excitation energies [27].

The independent particle approximation, although quite useful for explaining

general nuclear properties, is ultimately an oversimplification. Some properties, such

as configuration mixing, can be explained only when nucleon-nucleon interactions

are included in nuclear models. Nucleon-nucleon interactions are accounted for in

mean-field solutions to the Schrödinger equation by including a residual-interaction

perturbation term in the Hamiltonian [26]. Residual interactions, of which

nucleon-nucleon pairing is dominant, shift the energies of multi-quasiparticle

configurations. A number of models are used to explain the pairing interaction,

including an application of the Bardeen-Cooper-Schrie↵er (BCS) theory commonly

used to explain superconductivity [24]. The e↵ects of residual interactions on the

Nilsson-model energy levels for two-quasiparticle states in 186Re will be discussed in

Chapter V.

Types of Nuclear Excitations.

The rotational and vibrational excitations characteristic of the Bohr-Mottelson

model are distinct from the intrinsic excitations predicted by the shell or Nilsson

models. Intrinsic excitations are the result of the promotion of one or more nucleons

to higher-energy orbitals, and collective excitations can occur in conjunction with
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any intrinsic state to further increase the excitation energy of the nucleus. The

experimental level schemes of most nuclei reveal bands of rotationally-excited states

built on distinct intrinsic excited states. Transitions within rotational bands are

generally unhindered, while those connecting di↵erent rotational bands can often be

inhibited by di↵erences in the J and K quantum numbers, or by di↵erences in the

configurations of the states upon which the bands are built. In mid-shell deformed

nuclei with odd Z and odd N , such as the 186Re nucleus studied in this work, the

accuracy of theoretical predictions is generally limited by the complexity and

number of possible interactions involved. Experimental data are the most important

source of information about the discrete levels and transitions in these nuclei.

Gyromagnetic Factors.

In the rotational model, the presence of the positively-charged protons implies

that the nucleus is a rotating charged body, and it must therefore have a magnetic

moment. The total nuclear magnetic moment µ is due to the collective rotation of

the core and the motion of the unpaired valence nucleons , and it can be written as

µ =


g
R

J + (g
K

� g
R

)
K2

J + 1

�
µ
N

. (13)

Here, J and K are defined as in Section 2.1.2, and µ
N

= e~
2mpc

(where m
p

is the rest

mass of the proton) is the nuclear magneton. The gyromagnetic factors g
R

and g
K

are related to the contributions of the nuclear core and valence nucleons,

respectively, to the overall magnetic moment [34, 35].

The rotational g-factor g
R

is related to the charge-carrying capacity of a

uniformly-rotating body, and in a simple model in which the protons are assumed to

be uniformly distributed throughout the nucleus, it is given by g
R

= Z/A [33, 34].

Experimental measurements of magnetic moments for A ⇡ 180 nuclei have shown
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that this approximation overestimates the true value of g
R

, so a quenched value

g
R

= 0.7⇥ Z/A is typically used instead [36]. The intrinsic g-factor g
K

depends on

the coupling of single-quasiparticle orbital and spin angular momenta, and values

for the g
K

are generally deduced from empirical measurements of magnetic

moments [34].

In �-ray spectroscopy, the absolute value of the di↵erence |g
K

� g
R

| can be

determined from experimentally-measured transition energies and �-ray branching

ratios, and this di↵erence should be constant for a particular rotational band.

Because of the dependence of the g
K

on the orbital configuration, measured

|g
K

� g
R

| values can be compared with calculated quantities to motivate

multi-quasiparticle Nilsson-model configurations for intrinsic excited

states [37, 38, 39, 40]. This type of analysis is discussed in greater detail in

Chapter V.

2.2 Nuclear Reactions

Nuclear reactions are the primary experimental means by which nuclear

structure is studied. A nuclear reaction, commonly written

a+X ! Y+ b, (14)

where a is the projectile, X is the target nucleus, Y is the residual nucleus and b is

the outgoing particle, is routinely abbreviated X(a, b)Y. The specific conditions of

the reaction products Y and b, including excited states, define the reaction channel.

Certain reaction channels may be closed if the incident particle does not have

enough energy or angular momentum to generate a particular final

configuration [27].
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Nuclear-reaction models are typically categorized as direct and compound

models, the latter of which involves the creation of a compound nucleus C⇤, written

a+X ! C⇤ ! Y+ b. (15)

The primary di↵erence between direct and compound reactions is the time scale of

the reaction: for direct reactions, the time scale is on the order of the time it takes

for the incident particle to transit the target nucleus, O(10�22 s). Reactions

involving a compound nucleus, by contrast, occur on time scales O(10�16 s) [27, 41].

It is important to note that nuclear reactions are not in reality separated neatly

into direct and compound reactions. In low-energy regimes where incident-particle

energies are less than approximately 10 MeV/nucleon, the accessible reaction

channels are typically dominated by compound reactions, while at higher energies

direct reactions become the primary mechanism. However, at all energies greater

than the threshold energy of the reaction, most reactions will progress by some

combination of direct and compound mechanisms [27]. As a result, the reaction

codes Talys 1.6 and CoH 3.4 discussed in Section 2.2.4 implement both models to

compute theoretical cross sections.

The three reactions studied in this work, described in Chapter I, are

predominantly compound-nucleus reactions. The choice to study three reactions

that resulted in the same product nucleus was motivated by the fact that each

reaction preferentially produces excited states in 186Re with di↵erent J⇡

assignments. A schematic of the regions in the level scheme populated in the

187Re(n, 2n), 185Re(n, �), and 186W(d, 2n) reactions studied in this work is shown in

Figure 8. In the figure, the states populated in each reaction are highlighted relative

to the yrast line, defined as the locus of nuclear excited states with the lowest

energy for a given spin assignment [26]. Following production, excited states can
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Figure 8. Schematic plot of 186Re excited states populated in 185Re(n, �), 187Re(n, 2n),
and 186W(d, 2n) reactions, and � rays emitted during their decay. In the figure, ex-
citation energy E

x

is plotted against the spin J for the populated states. All excited
states in 186Re lie above the yrast line, defined in the text.

decay via a number of possible �-ray cascades, but the population of certain excited

states is ultimately governed by the amount of angular momentum imparted to the

compound nucleus by the projectile in each reaction. The thermal neutrons incident

on the target nuclei in the (n, �) reaction have negligible kinetic energy and zero

orbital angular momentum, so neutron capture results in low-spin states at high

excitation energy. Because the incident neutrons and deuterons in the (n, 2n) and

(d, 2n) reactions have more kinetic energy, they generate excited 186Re nuclei at

comparatively higher spins but lower excitation energies. In (n, �) reactions, the

�-ray cascade following decay of compound nucleus can lead to higher-spin states,

but this is less likely than in the case of the other two reactions in which the

compound nucleus has a higher initial spin. Therefore, the (n, 2n) and (d, 2n)
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reactions were expected to yield more information about excited states and �-ray

transitions feeding the J⇡ = (8+) isomer in 186Re than the (n, �) reaction.

2.2.1 Reaction Energetics.

Conservation of mass energy in a nuclear reaction X(a, b)Y leads to the reaction

Q value, defined as the di↵erence in mass energy mc2 between the exit- and

entrance-channel particles:

Q = (mX +m
a

�mY �m
b

)c2. (16)

Radiative-capture (n, �) reactions have positive Q values, and are therefore

energetically possible on any nucleus (except 4He) at any incident neutron

energy [42].

The (n, 2n) and (d, 2n) reactions studied in this work are both endothermic

reactions, with Q < 0. There is a minimum, or threshold kinetic energy Tth, the

projectile a must have in order to make the reaction energetically possible. This

threshold energy is calculated from conservation of linear momentum to be

Tth = �Q
mY +m

b

mY +m
b

�m
a

. (17)

The threshold kinetic energy is slightly greater than the reaction Q value. In order

to populate an excited state in the product nucleus with an excitation energy E
x

,

the value Q in Equation (17) must be replaced by (Q� E
x

) [27].

(n, �) Reaction Energetics.

The energy required to separate a neutron from the nucleus is defined as the

neutron-separation energy S
n

, which is equal to the binding energy of the last
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neutron. It is given for the nucleus A

Z

X
N

as

S
n

=
⇥
m

�
A�1
Z

X
N�1

��m
�
A

Z

X
N

�
+m

�
1
0n
�⇤

c2. (18)

Comparison of Equation (18) with Equation (16) shows that for slow-neutron

capture on a nucleus A

Z

X
N

(when the kinetic energy T of the neutron is negligible),

the Q value is equal to the neutron-separation energy S
n

for the isotope A+1
Z

X
N+1.

Upon capture, this energy is made available to the compound nucleus as excitation

energy, and is released via �-ray cascade. For the 185Re(n, �)186Re reaction, the Q

value is equal to S
n

= 6179.59(5) keV [43]. Following capture, the compound

nucleus proceeds towards thermal equilibrium, and the probability of a single

nucleon attaining enough energy to escape from the nucleus, or evaporate, is

negligible. The only likely decay channel available is therefore �-ray emission [8].

The excitation energy of the capture state, and therefore the neutron-separation

energy can be determined from the measured prompt �-ray energies emitted

following capture. The energies E
t

of transitions between levels can be determined

by correcting the measured �-ray energies E
�

for the nuclear recoil energy E
R

:

E
t

= E
�

+ E
R

= E
�

+
E2

�

2mnucc2
, (19)

where mnuc is the rest mass of the product nucleus [42]. Primary �-ray transitions,

which directly feed low-energy levels from the capture state, are identified by the

binding-energy test. If a recoil-corrected transition with energy E
t

= E
�

+ E
R

is

expected to feed a known level with excitation energy E lit
x

, and Slit
n

is the literature

value of the neutron-separation energy, then the binding energy test involves the

comparison

E
t

?
= Slit

n

� E lit
x

, (20)
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up to experimental uncertainty. After primary transitions are identified using the

binding-energy test, averaging over the sum of primary-transition energies with

known excitation energies of the discrete levels they feed can be used to obtain a

measurement of the neutron-separation energy S
n

for the product nucleus.

(n, xn) Reaction Energetics.

Neutron-induced (n, xn) reactions have energy thresholds governed by the

binding energy of the compound nucleus. It is apparent from Equation (16) that the

Q value of the 187Re(n, n0)187Re reaction is equal to zero, so the excitation energy of

the product nucleus can only result from a di↵erence in the kinetic energies of the

incident and emitted neutrons. Using the adopted mass values from Reference [44],

Equation (17) gives a reaction threshold energy for the 187Re(n, 2n)186Re reaction of

Tth = 7.399 MeV. Likewise, the 187Re(n, 3n)185Re reaction has a threshold energy of

Tth = 13.612 MeV.

The probabilities of decay of the compound nucleus via di↵erent reaction

channels a↵ect the reaction cross sections. The cross sections for the

187Re(n, xn)188�xRe reactions (1  x  3) are plotted in Figure 9 using data

obtained from the ENDF. Because of a lack of experimental data for

neutron-induced reactions on 187Re, the cross-section data adopted for the most

recent ENDF database, ENDF-VII.1, consist of values calculated with the

Talys 1.2 nuclear reaction code [9]. Above the threshold energy of 7.399 MeV for

the (n, 2n) reaction, the cross section for the 187Re(n, n0)187Re reaction decreases as

the 187Re(n, 2n)186Re reaction becomes energetically possible. Similarly, the cross

section for the 187Re(n, 2n)186Re reaction decreases and that of the

187Re(n, 3n)185Re reaction increases above the (n, 3n) threshold energy of

13.612 MeV. It is therefore possible to apply selection thresholds, or cuts, at
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Figure 9. Modeled cross sections for (n, n0), (n, 2n), and (n, 3n) reactions on 187Re,
plotted against neutron energy E

n

. For E

n

> 1 MeV the cross section for radiative
capture (n, �) is negligible compared to the reactions shown. Data for this plot were
obtained from the ENDF [9, 45].

neutron energies of ⇠10 MeV and ⇠18 MeV to separate the reaction products by

channel during experimental data analysis.

(d, 2n) Reaction Energetics.

A plot of the experimental and Talys-modeled excitation functions for the

natW(d, xn)186gRe reaction reveal an apparent threshold energy of 7 MeV

(Figure 10). Tungsten has no stable isotopes with A > 186, so the 186Re yield from

deuteron irradiation of natural tungsten is due entirely to the reaction

186W(d, 2n)186Re. Application of Equation (17) with masses from Reference [44]

gives a threshold energy of Tth = 3.626 MeV for the 186W(d, 2n)186Re reaction. The

di↵erence in values between the calculated threshold energy and that apparent from

Figure 10 is due to the fact that the (d, 2n) reaction is induced by the deuteron, a

charged particle, and the projectile must have additional kinetic energy to overcome
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the Coulomb barrier of the target 186W nucleus.

Figure 10. Experimental and modeled cross sections for (d, xn) reactions on natW
resulting in the production of ground-state 186Re, plotted against deuteron energy
up to 40 MeV. The ground state 186gRe yield (excluding the isomer 186mRe) is due
entirely to the 186W(d, 2n)186gRe reaction channel. Reprinted from Reference [7] with
permission from Elsevier.

The (d, 2n) reactions described in Chapter V were initiated with monoenergetic

12.5-MeV and 14.5-MeV deuterons on an enriched 186W target. These energies were

selected on the basis that they provide an optimum balance between maximizing the

yield of 186Re while minimizing the contributions from other reaction channels.

2.2.2 Direct Reactions.

Direct reactions are characterized by the fact that they involve few nucleons, and

only a small number of degrees of freedom in the nucleus are excited. Some examples

of direct reactions include elastic (Rutherford) scattering and single-nucleon pickup

or stripping reactions such as (p, d) or (d, p). Reaction channels for direct reactions

typically open at energies higher than those of compound-nucleus reactions.
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The reactions and energy regimes considered in this work suggest that direct

reactions play a less significant role than do compound-nucleus reactions, and as a

result, this chapter will be primarily focused on reactions involving a compound

nucleus. However, the optical model is incorporated into the reaction codes used in

this research, so it will be briefly discussed.

Optical Model.

In the optical model, the projectile is represented by a wave, which scatters o↵ a

complex potential U(r) = V (r) + iW (r), where V (r) and W (r) are real-valued

functions. The real and imaginary parts V (r) and W (r) of the potential account for

elastic scattering and absorption, respectively. In the simplest application of the

optical model, the potential can be represented as a square well or in terms of the

Woods-Saxon potential defined in Equation (1). Applications of the optical model

in modern reaction codes such as Talys 1.6 and CoH 3.4 involve much more

complex potentials that produce better fits to experimental cross-section data.

Given a potential, the wave function for the incoming particle is taken to be a

plane wave  (r) = eikr, while that of the outgoing particle is a spherical wave

 (r) = eikr/r. Solving the Schrödinger equation and equating boundary conditions

at the nuclear radius permits one to determine the scattered-wave amplitude for the

purpose of evaluating transmission and reflection coe�cients. These coe�cients are

related to the average cross sections for absorption and reflection [27].

2.2.3 Compound-Nucleus Reactions.

In a compound-nucleus reaction, the projectile is captured by the target nucleus,

forming a compound nucleus that decays via particle and/or �-ray emission. These

reactions, which include (n, �), (n, 2n), and (d, 2n), involve many degrees of freedom
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in the nucleus and may include the excitation of all nucleons. After the projectile

interacts with the nucleus, the compound nucleus proceeds towards a state of

thermal equilibrium. The time scale of the reaction is therefore on the order of the

equilibration time of the nucleus, which is 10�18 � 10�16 s [41]. On the time scale of

equilibration, statistical fluctuations in the nucleon energies can result in one or

more nucleons achieving enough energy to escape the nucleus. This so-called

evaporative e↵ect is highly dependent on incident-particle energy. The more energy

the projectile imparts to the compound nucleus, the greater the chances of

additional nucleon evaporation (evident in the plot shown in Figure 9).

Extreme Statistical Model.

N. Bohr postulated in 1936 that the mode of formation of a compound nucleus

and its mode of decay are independent processes [46]. The mode of decay depends

only on the energy, angular momentum, and parity of the compound nucleus C⇤,

and not on the specific way it was produced [47]. Because of the long time scales of

compound-nucleus reactions compared to direct reactions, the compound nucleus, as

it approaches thermal equilibrium, essentially forgets the means by which it was

formed. This assumption forms the basis of the extreme statistical model, which is

applied in the dicebox code and the Hauser-Feshbach formalism used in the

Talys 1.6 and CoH 3.4 reaction codes described in Section 2.2.4.

Resonances.

Compound-nucleus reactions can proceed through quasi-bound states, which are

discrete states similar to those involved in a direct reaction. These states have high

probabilities of formation, and their energies correspond to the energies of

resonances in reaction cross sections. According to the energy-time version of
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Heisenberg’s uncertainty principle (�E = � = ~/⌧) the lifetimes ⌧ ⇠ 10�16 � 10�18 s

of compound nuclei result in energy widths � ⇠ 1 eV� 1 keV of resonance peaks in

the excitation functions [41]. These resonance widths become important when

populating states where the Q value of the reaction plus the projectile energy equals

the excitation energy of the excited state to within ±�/2. For a resonant reaction

progressing from an entrance channel with partial width of formation �
↵

to an exit

channel with partial width of decay �
�

, the cross section is given by the

Breit-Wigner formula

�(E) =
⇡

k2
g

�
↵

�
�

(E � E
R

)2 + �2/4
, (21)

where E is the energy of the incident particle, k = p/~ is the wave number of the

center-of-mass system, E
R

is the resonant energy, and � =
P

i

�
i

is the sum over the

partial widths of all the ways the compound nucleus can decay after formation.

Note that Equation (21) defines a Lorentzian shape for the resonant cross section.

The coe�cient g is a statistical weighting factor to account for the angular

momentum and spin of the system,

g =
2J + 1

(2i+ 1)(2I + 1)
, (22)

where i and I are the spins of the projectile and target, and J is the total angular

momentum (orbital and intrinsic spin) of the resonance [27, 41].

Hauser-Feshbach Model.

In the extreme statistical model of compound-nucleus reactions, the assumption

that formation and decay are independent processes implies that the cross section

for a reaction to proceed via a specific formation (subscript ↵) and decay (subscript
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�) channel can be factored as

�
↵�

= �CN
↵

P
�

, (23)

where �CN
↵

is the cross section for formation of the compound nucleus and P
�

is the

probability that the reaction will proceed via decay mode �, given by

P
�

=
�
�P

all � ��

. (24)

In reaction codes that incorporate the Hauser-Feshbach model, the cross sections for

formation �CN
↵

are related to an optical transmission coe�cient T
↵

determined using

the optical model:

�CN
↵

=
⇡

k2
gT

↵

, (25)

where k and g are defined as in Equations (21) and (22) [41]. Assuming for now

that the particles and resonances all have spin zero, then g = 1, and the cross

section �
↵�

becomes

�
↵�

=
⇡

k2
↵

T
↵

P
�

. (26)

The principle of detailed balance (reversible processes) states that the cross sections

for the reaction and its inverse must be related by

�
↵�

k2
↵

= �
�↵

k2
�

, (27)

so that
P
↵

T
↵

=
P
�

T
�

⌘ � = const. (28)

Since the sum of the probabilities of all possible decay or formation modes must be

equal to one,
X

�

P
�

= �
X

�

T
�

= 1 =
X

↵

P
↵

, (29)
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� becomes

� =
1P
�

T
�

, (30)

where � is a dummy variable signifying any mode of either formation or decay. The

probability of the reaction proceeding via a specific decay mode � is then

P
�

= �T
�

=
T
�P

�

T
�

. (31)

The Hauser-Feshbach cross section �HF
↵�

for the reaction is defined for spin-zero

particles and resonances as the average

�HF
↵�

= h�CN
↵�

i = ⇡

k2
↵

· T
↵

T
�P

�

T
�

. (32)

Incorporating spin requires a summation over all possible spin-parities J⇡ of the

compound nucleus,

�HF
↵�

= h�CN
↵�

i = ⇡

k2
↵

·
X

J,⇡

2J + 1

(2i+ 1)(2I + 1)
· T

↵

T
�P

�

T
�

, (33)

where i and I are the spins of the projectile and target, respectively [41]. The

Hauser-Feshbach reaction model tends to overestimate the cross sections when

compared to experimental data because of an underlying assumption made in

applying the optical model to evaluate the transmission coe�cients. This

assumption is that resonance cross sections are equal to their peak values given by

the Breit-Wigner formula [Equation (21)]. As a result, Equation (33) is sometimes

modified to include a scaling coe�cient ⌘ < 1 to correct for the overestimation [13].

The reaction code Talys 1.6 and CoH 3.4 both compute Hauser-Feshbach cross

sections for compound-nucleus reactions. To average over the �CN, these codes

utilize discrete-level information from RIPL below a user-defined energy cuto↵ E
c
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and semi-empirical models of nuclear level densities above E
c

[48, 49]. Both codes

derive the transmission coe�cients T
�

from an application of the optical model.

2.2.4 Reaction Codes.

The reaction codes used in this work are Talys 1.6, CoH 3.4, and dicebox,

each of which is capable of computing theoretical cross sections for di↵erent reaction

types given discrete-level information about the nuclei involved. Both Talys 1.6

and CoH 3.4 incorporate an optical model and Hauser-Feshbach statistical

calculations, as well as a pre-equilibrium exciton model to cover reactions that

progress through a compound state that has not reached thermal equilibrium.

Dicebox is a statistical-decay code that performs a Monte-Carlo simulation of

�-ray cascades following neutron capture for the purpose of computing (n, �)

reaction cross sections.

TALYS 1.6.

The talys program is a fortran-based code that models nuclear reactions in

mid- to high-Z elements in the 1 keV – 200 MeV energy range. Cross sections are

calculated in talys using a Monte-Carlo algorithm that employs the

Hauser-Feshbach statistical model. Talys was developed by a European

collaboration, and it has a large international user group due to the fact that it can

generate cross sections and Q values for reactions on unstable nuclei for which there

is little experimental data available. Talys is also commonly used to validate

experimental cross-section measurements. The program is remarkably flexible, and

it permits the user to modify an input deck to adjust the specific reaction models

and parameters used in the statistical calculations [49].
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CoH 3.4.

CoH is a C++ code developed at LANSCE as an update to an earlier

(pre-2008) fortran-based code known as gnash. Both CoH and gnash calculate

cross sections for reactions on mid- to high-Z elements using a combination of

optical and Hauser-Feshbach models. For neutron-induced reactions, CoH can

output di↵erential partial �-ray cross sections for neutrons above 1 keV, which was

useful for validating the results of the 187Re(n, 2n�) measurements made in this

work. CoH di↵ers from talys mainly in the specific choices of optical-model

potentials used in the calculations [48, 50].

DICEBOX.

Dicebox is a fortran-based Monte-Carlo code for simulating the statistical

cascade of � rays following cold- or thermal-neutron capture. Dicebox comes with

a library of python scripts that automate building the input deck required by the

fortran routines. Other python scripts can be used to display the dicebox

output textually and graphically [8, 51].

The program calculates discrete-level populations from the quasicontinuum,

defined as the set of all excited states with energies greater than some critical

energy Ecrit [52]. The dicebox algorithm relies on theoretical models of the level

density and photon strength function to simulate the level scheme above Ecrit and

calculate the �-ray transition probabilities in the (n, �) cascade. The output

includes a calculated total radiative neutron-capture cross section �0, which results

from summing the ground-state population from simulated levels above Ecrit with

the experimentally-measured partial cross sections for transitions feeding the ground

state from levels below Ecrit (illustrated in Figure 11).

By comparing the calculated level populations with experimentally-measured
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Figure 11. Schematic diagram showing �-ray transitions following thermal-neutron
capture, resulting in a product nucleus with a neutron-separation energy S

n

. Con-
tributions to the total thermal-neutron capture cross section �

0

include the partial
cross sections for transitions feeding the ground state from discrete levels below E

crit

(with spin-parity assignments identified by J

⇡

i

) and the quasicontinuum (levels above
E

crit

). The ground-state feeding from the capture state and levels below E

crit

is given
by the sum

P
�

e

i

, and DICEBOX performs a Monte-Carlo simulation to compute the
contribution

P
�

s

j

from the quasicontinuum. Reproduced with permission from [5].

cross sections for depopulating a given level below Ecrit, one can evaluate the

accuracy and completeness of nuclear-level scheme information. In this way,

dicebox can be used as a tool for studying both nuclear reactions and structure.
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2.3 Metastable Excited States (Nuclear Isomers)

The motivation for this research is the study of long-lived nuclear isomers, as

stated in Chapter I. Long isomer lifetimes result from di↵erences in angular

momentum (magnitude and orientation) between the isomer state and lower-lying

levels to which the isomer can decay. From an applications perspective, the interest

in long-lived isomers is due to their large stored-energy densities. In order to make

the energy stored in nuclear isomers useful, it must be possible to induce them to

release their energy on demand in a process referred to as isomer depletion.

2.3.1 Spin-trap and K-trap Isomers.

The two types of isomers of interest here are spin-trap and K-trap isomers. In

spin-trap isomers the magnitude of the isomer’s angular-momentum vector is the

dominant factor in its long lifetime, and in K-trap isomers a change in

angular-momentum orientation contributes to the isomer lifetime. In plots of

excitation energy versus spin J and spin projection K, spin-trap and K-trap

isomers appear as local minima, as illustrated in Figure 12. Gamma decays between

the isomer and ground states of the nuclei represented in the schematic diagrams of

the figure are inhibited.

In spin-trap isomers, significant di↵erences in spin between the isomer and levels

to which it can decay result in long isomer lifetimes [19, 25, 53]. In Figure 12(a),

this is illustrated by an isomer with a relatively large spin (due to the motion of

several valence nucleons) and a J = 0 ground state. The lifetimes of spin-trap

isomers can be explained by examining the electromagnetic-transition selection rules

[Equation (4)] and the Weisskopf estimates [Equations (5) and (6)]. For a transition

between states that involves a large change in the magnitude of the

angular-momentum vector (�J = |J
i

� J
f

|), the transition must have multipole
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(a) Spin-trap isomer (b) K-trap isomer

Figure 12. Excitation energy plotted as a function of J and K for nuclei with
(a) spin-trap and (b) K-trap isomers. In nuclei with both types of isomers, there
is a local minimum in the excitation energy that represents the isomer. A wobbling
motion (due to Coriolis mixing) of the deformed nucleus is responsible for the variation
in the curve shown in (b). Figure copyright 1994, IOP Publishing. Reproduced with
permission from [25].

order L � �J , and large multipole-order transitions have characteristically small

decay rates. Thus, for a high-J isomer whose only possible decay paths are to low-J

states, the isomer will have a relatively long lifetime. This is precisely the case with

the 148.2-keV isomer in 186Re, which only decays by means of an E5 transition and

has a lifetime of ⇠2.0⇥ 105 y [3].

In deformed nuclei, transitions between states are a↵ected by the K quantum

number. When there is a large �K between the isomer and lower-lying states to

which it can decay, the more-likely dipole and quadrupole transitions are hindered

according to Equation (10). This e↵ect increases the lifetime of these so-called

K-trap isomers, commonly found in the A ⇡ 180 mass region, in which a change in

the orientation of the total angular momentum vector contributes to the isomer

lifetime [25, 53]. In Figure 12(b), the angular momentum vector changes orientation

by 90� between the isomer and ground state. This represents the maximum possible
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value of �K, so any possible direct transitions between the states are K-hindered.

2.3.2 Activation and Depletion of Isomers.

Although large changes in J or K result in a barrier between the ground state

and isomer that inhibits direct transitions between the two states, a sequence of

uninhibited (small �J or �K) transitions involving a higher-energy intermediate

state (IS) can create a pathway. Through such a pathway, a nucleus in the isomer

state can be induced to decay to the ground state (isomer depletion), or a nucleus in

the ground state can be excited into the isomer (activation).

In isomer depletion, the IS would be a state that is closely matched to the

isomer in J and K that is known to decay via �-ray cascade to the ground

state [19]. By resonant excitation from an external source, such as a photon with an

energy matching that of a known transition between the IS and the isomer, the

nucleus could be raised into the IS. From the IS, the excited nucleus can decay back

to the isomer or to the ground state [54, 55]. The opposite scenario represents

activation, in which the nucleus is resonantly excited from the ground state into an

IS closely matched in J and K to the ground state, from which it can decay by

�-ray cascade to populate the isomer. The processes of isomer depletion and

activation via photon excitation are illustrated schematically in Figure 13.

The cross sections for achieving isomer depletion or activation via resonant

nuclear excitation are governed by the energy width �IS = ~/⌧ of the IS (where ⌧ is

the lifetime of the IS), and by the decay widths ��

i!IS and �IS!f

of the transitions

involved. If the initial state is identified with a subscript i and the final state with a

subscript f , then for activation i = g (ground state) and f = m (isomer), and i = m

and f = g for depletion. If a transition between an IS and the initial state has an

energy Et = EIS � E
i

, then the probability of achieving resonant excitation is high
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(a) Depletion (b) Activation

Figure 13. Schematics of isomer depletion and activation schemes involving resonant
photon excitation. Gray arrows represent resonant photoexcitation into the IS from
the isomer (a) or ground state (b). The dashed lines starting at the IS indicate �-ray
cascade to the ground state (b) or isomer (a), while the solid black lines represent
back-decays from the IS to the initial state. The resonance widths for each transition
are indicated by the variable �. Figure reproduced with permission from [56].

when the source of the excitation transfers energy to the nucleus in the range

Et ± �IS/2.

2.3.3 Resonant Photoexcitation.

There are a number of methods for resonantly exciting a nucleus into an IS in

order to achieve isomer depletion or activation, one method of which is photon

(�, �0) excitation. The resonances for exciting specific nuclear states via (�, �0)

reactions are narrow compared to the energy FWHMs achievable by high-energy

photon sources, so cross sections for depletion and activation are typically reported

as integrated cross sections (ICS) [54]. For each IS involved in depletion or

activation, there is an associated ICS, based on the lifetime of the IS and the widths

of the transitions involved, given by the expression

ICSIS =
�2

4
g
��

i!IS�IS!f

�IS
, (34)
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where � is the photon wavelength for a �-ray transition from an initial state with

spin assignment J
i

to an intermediate state with spin JIS [57]. The g term is a

spin-statistical factor given by

g =
2J

i

+ 1

2JIS + 1
. (35)

The probability of achieving isomer activation or depletion via photoexcitation

with a high-energy photon source (e.g., a Bremsstrahlung generator), is given by the

ratio of final-state nuclei N
f

to initial-state nuclei N
i

N
f

N
i

=
X

j

ICS
j

d�

dE
, (36)

where E is the photon energy, and d�
dE

is the time-integrated spectral flux density of

the source. The sum is over all the IS with energies accessible given the source

spectrum, each with an integrated cross section ICS
j

for populating the final state

via the jth IS [58].

Although it is possible to calculate individual ICS using Equation (34), the

transition widths in the formula depend on accurate knowledge of the lifetimes of all

states involved in decay pathways between the IS, ground state, and isomer. In

practice, some of these lifetimes are unknown, and a more reliable source for the

ICS is direct measurement of (�, �0) reactions.

2.4 Literature Review

An extensive review of the literature on 186Re was conducted, which covered

both nuclear-structure and reaction information. The following sections briefly

summarize the structure and reaction data contained in the evaluated and

unevaluated databases, which were the primary sources of information about the

186Re nucleus. Sources of information that addressed experimental facilities and
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analytical techniques are cited in Chapters III, IV, and V.

2.4.1 Nuclear Structure of 186Re.

The Nuclear Science References (NSR) database lists 260 references for the

isotope 186Re [59]. The evaluation for the N = 186 isobar was last completed in

2003 [3]. Of these 260 references in the NSR, 24 are cited in the ENSDF, including

four articles that establish the nuclear level scheme [21, 60, 61, 62]. The remaining

20 articles cited in the ENSDF address other nuclear data such as quadrupole

moments, half-life, and mass.

The first published analysis of the low-energy level structure of 186Re was

performed by Lanier et al. in 1969, which incorporated data from (d, p), (d, t), and

(n, �) reactions [60]. This paper was followed by the discovery, reported in 1972 by

Seegmiller, Lindner, and Meyer, of an isomer with an excitation energy of

149(7) keV [21]. The group used mass spectrometry and decay-� spectroscopy of an

irradiated natRe sample to measure an isomer lifetime of 2.0⇥ 105 y. The measured

lifetime was compared with the Weisskopf estimates to deduce that the isomer

decays via a ⇠50-keV E5 transition to the J⇡ = 3� state at 99.3 keV. From this, the

isomer spin-parity was reported as J⇡ = 8+. The partial 186Re level scheme from

Reference [21] is shown in Figure 14. The proposed feeding of the isomer shown in

Figure 14 from the 186-keV and 259-keV levels has not been confirmed, and the

structure above the isomer in the ENSDF-adopted level scheme is absent entirely [3].

The majority of the rotational-band structure for 186Re included in the ENSDF

is the result of a �-� coincidence analysis by J. Glatz from slow-neutron capture on

185Re in 1973 [61]. Further information about the low-spin level structure was

reported by F. Bečvář et al. in 1983, which was the result of prompt-� spectroscopy

from 185Re(n, �) reactions at resonant (E
n

= 2� 110 eV) neutron energies [62].
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Figure 14. Partial 186Re level scheme showing orbitals for the unpaired proton and
neutron in the Nilsson convention K

⇡ [Nn

z

⇤] below the horizontal axis. The spherical-
state J

⇡ corresponding to each state is identified next to the the respective level in
the diagram, while the K

⇡ values for each distinct two-particle state appear at the
bottom of the diagram. Tentative assignments are identified with parentheses, and the
two transitions feeding the ⇠150-keV isomer are questionable. Figure copyright 1972
Elsevier B.V. Reproduced with permission from [21].

The XUNDL includes one article with a date of 2009, so the data contained in

the article have not yet been evaluated for inclusion in the ENSDF. This work, by

C. Wheldon et al., is an investigation of excited states in 186Re populated in the

transfer reaction 187Re(p, d). Level energies were determined by measuring the

energy di↵erences between the incident protons and the outgoing deuterons, and the

group reported the discovery of 30 new levels in 186Re [63]. Experimental level

energies were compared with the results of Nilsson-model calculations to propose
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configurations for some of the new levels.

2.4.2 Neutron-capture Cross Sections for 185Re.

Total neutron-capture cross-section data for 185Re contained in the ENDF are

based on the 1987 measurements of Macklin and Young and modeled cross sections

from the Talys code [64, 45]. Partial �-ray production cross-section data are

contained in the Evaluated Gamma-ray Activation File (EGAF), a database of

neutron-capture �-ray cross sections used for elemental analysis. [65] The data

contained in the EGAF for the 185Re(n, �)186Re reaction were evaluated in 2003 by

R. Firestone, and they consist of cross sections from thermal-neutron irradiation of

elemental rhenium at the BRR [65].
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III. Fast Neutron Reactions on 187Re

The study of the structure of 186Re using the neutron-induced reaction

187Re(n, 2n)186Re described in this chapter resulted in a manuscript submitted for

publication in the American Physical Society journal Physical Review C on 26 July

2015. Referee criticism was received on 27 August, and the manuscript was

resubmitted on 9 September. This chapter contains the full text of the manuscript,

titled “New transitions and feeding of the J⇡ = (8+) isomer in 186Re,” as it was

published on 9 November 2015. It is reproduced from Reference [22] with

permission. Further information about the experimental facilities and data analysis

techniques is contained in Reference [66].

The manuscript was prepared by the primary author in cooperation with

scientists from the Army Research Laboratory (ARL) and LANSCE. J. J. Carroll

and C. J. Chiara of ARL participated in the experiment and provided key insights

and expertise during the data analysis and interpretation. N. Fotiades of LANSCE,

the principal investigator for the experiment, was responsible for the experimental

setup and execution, and he provided expertise with data sorting and analysis

techniques. R. O. Nelson and M. Devlin of LANSCE were subject-matter experts

for the GEANIE detector array, and were involved in the experiment execution.

J. W. McClory of AFIT, the primary author’s research advisor, provided guidance

throughout the project and reviewed the manuscript. Finally, LANSCE theorist

T. Kawano wrote the CoH 3.4 code used to validate and interpret the experimental

cross-section data, and he informed the primary author on the application of the

code to this particular study.
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3.1 Abstract

The spallation neutron source at the Los Alamos Neutron Science Center

Weapons Neutron Research facility was used to populate excited states in 186Re via

(n, 2n�) reactions on an enriched 187Re target. Gamma rays were detected with the

the GErmanium Array for Neutron Induced Excitations spectrometer, a

Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were

determined by the time-of-flight technique and used to obtain �-ray excitation

functions for the purpose of identifying � rays by reaction channel. Analysis of the

singles �-ray spectrum gated on the neutron energy range 10  E
n

 25 MeV

resulted in five transitions and one level added to the 186Re level scheme. The

additions include the placement of three � rays at 266.7, 381.2, and 647.7 keV which

have been identified as feeding the 2.0⇥ 105 y, J⇡ = (8+) isomer and yield an

improved value of 148.2(5) keV for the isomer energy. These transitions may have

astrophysical implications related to the use of the Re/Os cosmochronometer.

3.2 Introduction

The Re/Os radioactive decay system is a cosmochronometer for estimating the

age of astronomical objects through the measurement of the relative abundances of

187Re (T1/2 = 4.33⇥ 1010 y) and 187Os (stable) [11]. The s-process nucleosynthesis of

187Re and 187Os includes 186Re as a branch point, shown in Figure 15. 186Re in the

ground state can decay with a half-life of 3.7186 d into 186Os or 186W or undergo

neutron capture to create 187Re [14, 67], but it also possesses an especially

long-lived isomer (T1/2 = 2.0⇥ 105 y) with an excitation energy of 149(7) keV that

decays 100.0% by isomeric transition to the ground state [3].

Depending on the stellar temperatures present in the s-process environment, the

population of the 186Rem isomer may be significantly a↵ected by the photon-induced
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Figure 15. s- and r-processes, identified by black and gray arrows, involved in the
production of 187Re and 187Os. Long-lived nuclides are identified with bold boxes,
with the dashed lines indicating weaker secondary processes. The outline around the
isomer 186Rem and the associated (�, �0) pathways highlight the fact that their e↵ects
are not fully understood.

reactions 186Re(�, �0)186Rem and 186Rem(�, �0)186Re (photoexcitation and depletion,

respectively). Estimation of the cross sections for these reactions requires knowledge

of the 186Re level structure above the isomer, and in particular identification of

intermediate states (IS) present in pathways from the ground state to the isomer

and vice versa. For IS excitation energies below 1 MeV, temperatures on the order

of 108 K can result in thermal coupling between the isomer and ground states with

the potential to increase the production of the 186Rem isomer [68]. This would lead

to a temperature-dependent e↵ective half-life for 186Re, which could be determined

using the methodology outlined in References [68, 69, 70, 71] for 180Ta and 176Lu. A

temperature-dependent e↵ective half-life for 186Re would a↵ect creation of 187Re and

represents a potential source of error in the Re/Os chronometer.

Based on an analysis of cross sections for neutron capture and the

photodisintegration reaction 187Re(�, n)186Re, Käppeler et al. concluded that the
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s-process contribution to 187Re due to the branching at 186Re was insignificant.

Other than in the case of the population of the isomer via the 187Re(�, n)186Rem

reaction cited in Reference [72], the isomer’s possible role in the s-process branching

was not discussed.

Hayakawa et al. were the first to propose an alternate s-process pathway that

involved the 186Rem isomer. The group concluded that the isomer’s contribution to

the creation of 187Re was 0.56%± 0.35% and is therefore an insignificant source of

error in the Re/Os chronometer [17]. However, this analysis assumed that

transitions between the ground state and isomer in 186Re via (�, �0) reactions were

negligible, based in part on the absence of known IS by which the resonant

photoexcitation/depletion reactions could proceed. Knowledge of the low-lying IS

involved in photon-induced reactions requires further investigation of the structure

above the isomer in 186Re, and is necessary to establish conclusions about the

transition probabilities between the isomer and ground state in the s-process

environment.

Using the GErmanium Array for Neutron Induced Excitations (GEANIE)

detector array at the Los Alamos Neutron Science Center (LANSCE) Weapons

Neutron Research (WNR) facility, �-ray spectra obtained from neutron-induced

reactions were used to identify new �-ray transitions in 186Re and to verify

transitions and levels already described in the existing literature

[3, 21, 60, 61, 62, 63, 73]. The primary neutron-induced reaction studied was

187Re(n, 2n�)186Re from irradiating an enriched 187Re target. Neutron energies were

measured using the time-of-flight technique, and excitation functions for observed

�-ray transitions were generated and compared to those modeled using the reaction

codes CoH 3.4 [50] and Talys 1.6 [74] for the purpose of placing transitions in the

186Re level scheme.
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3.3 Experiment

The LANSCE accelerator is a proton linac capable of producing beams of

postively- and negatively-charged hydrogen ions with energies up to 800 MeV. For

experiments at the WNR facility, spallation neutrons with energies ranging from

100 keV to 600 MeV are produced by directing pulses of H� ions with an average

current of 0.5 to 4 µA at a natW target [75].

The GEANIE target is located 20.34 m from the spallation source along the 60�

right flight path. The beam has a macropulse repetition rate of 40 or 100 Hz, with

each 625-µs macropulse further divided into numerous sub-nanosecond micropulses

spaced 1.8 µs apart. The pulsed nature of the beam provides the ability to measure

neutron energies using the time-of-flight method, and the detection system is

capable of resolving neutron energies from 0.6 to ⇠200 MeV. Neutron flux at the

target is measured with a fission chamber positioned at the terminus of the neutron

beam tube, 18.48 m from the spallation target. The fission chamber consists of an

ionization chamber that incorporates stainless steel foils coated with 235U and 238U,

so that the known fission cross sections of these isotopes can be used to calculate

the neutron flux from the counts of fission events in the ionization chamber [76]. In

the 10  E
n

 25 MeV neutron energy range of interest for the (n, 2n�) reaction,

the neutron fluence for the run was determined to range from

1.3⇥ 108 � 5.0⇥ 108 neutrons/MeV, decreasing with increasing neutron energy. A

representative profile of the fluence versus neutron energy for the GEANIE flight

path can be found in Reference [77]. The size of the neutron beam arriving at the

target was trimmed to a diameter of 1.27 cm using an iron collimator, prior to the

beam transiting the fission chamber. More detailed information about the LANSCE

facility and the GEANIE spectrometer is available in References [75, 77, 78, 79].

For this experiment, the GEANIE detector array was configured with eight
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planar and ten coaxial high-purity germanium (HPGe) detectors to optimize

resolution and e�ciency up to �-ray energies of 4.0 MeV. Each detector was

Compton suppressed using a bismuth germanate (BGO) shield. Of the 18 installed

detectors, seven of each type provided usable data for o✏ine analysis. Gamma rays

were produced via neutron bombardment of a 987.1-mg target consisting of

vacuum-pressed rhenium metal powder enriched to 99.52% 187Re. The 1.0-mm-thick

187Re target was encapsulated in a disk-shaped polycarbonate target holder. The

end faces of the disk were oriented normal to the incident neutron beam. The

enriched rhenium target was irradiated for 12 days at a pulse repetition rate of 40 Hz

and an additional five days at 100 Hz. Energy and e�ciency calibrations of the

spectrometer were performed using standard 133Ba and 152Eu calibration sources.

3.4 Analysis and Results

The data output by the TDCs and ADCs connected to the HPGe detectors in

the GEANIE array were processed online into E
�

versus neutron time-of-flight

(ToF) matrices using software based on the midas data acquisition package [80].

The matrices, which were generated for each HPGe detector and the fission

chamber, were used to produce singles �-ray spectra gated on specified

neutron-energy ranges. A neutron-energy range of 10  E
n

 25 MeV was used to

select the � rays that originated primarily from (n, 2n) reactions on the 187Re

target, as shown in the spectrum of Figure 16. Singles �-ray spectra were fitted

using the gf3 program from the Radware software distribution [81].

For each peak identified in the singles spectrum, the matrices were gated

successively on 1-MeV-wide neutron-energy bins over the energy range

1.0  E
n

 100 MeV, and peaks were re-fitted to produce �-ray yield as a function

of incident neutron energy. The yield functions were divided by neutron flux to
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Figure 16. Summed �-ray spectrum from the planar HPGe detectors, gated on
10  E

n

 25 MeV. Prominent peaks due to 186Re are labeled by energy in keV,
up to 400 keV. Unlabeled peaks were identified as � rays from reactions other than
187Re(n, 2n�)186Re. The inset shows the projection of the E

�

-vs.-neutron-ToF matrix
on the ToF axis and the channel locations corresponding to the neutron energy cuts of
10 and 25 MeV.

produce excitation functions for each distinct �-ray energy. For � rays originating

from the 187Re(n, 2n�)186Re channel, the excitation functions rise quickly following

the 187Re neutron separation energy of S
n

= 7.3568 MeV [82] to peak at neutron

energies between 10 and 20 MeV [83], then decrease rapidly as the (n, 3n�) reaction

becomes energetically favorable. The distinctive shape of the (n, 2n�) excitation

functions distinguishes the 186Re � rays from those produced in the (n, n0�) and

(n, 3n�) reaction channels, which result in excitation functions that rise and peak at

neutron energies approximately 7.5 MeV lower or higher, respectively, than that of

the (n, 2n�) channel.

Gamma rays originating from the 187Re(n, pn�)186W channel also have

excitation functions with a positive slope in the 10–20 MeV neutron-energy range,

similar to those from the (n, 2n�) channel. The (n, pn�) excitation functions,

however, show a distinctly di↵erent behavior at neutron energies above 20 MeV,
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where they decay much more slowly than do the (n, 2n�) excitation functions. To

support the assignment of � rays to 186Re instead of 186W in this analysis, the areas

of the �-ray peaks in the gated (10  E
n

 25 MeV) projection spectrum were

compared to those from the most intense � rays in 186W, the 122.64-keV 2+ ! 0+

and 273.93-keV 4+ ! 2+ transitions [3]. The spectrum shown in Figure 16 reveals

the presence of a 122-keV peak, which is due partly to the 122.525-keV � ray from

the (4)� ! (3)� transition in 186Re, while no peak at 273.93 keV is evident. No

other � rays from 186W were identifiable in the gated spectrum. This observation is

supported by the fact that the ENDF/B-VII.1 total cross section at E
n

= 15 MeV

for the 187Re(n, pn)186W reaction is over two orders of magnitude smaller than that

of the 187Re(n, 2n)186Re reaction [45]. Unknown � rays with excitation functions

that met the (n, 2n�) criteria discussed above were therefore attributed to 186Re.

A total of 29 �-ray peaks in the singles spectrum were attributed to 186Re,

including the nine � rays cataloged in Table 1 that are not included in the evaluated

level scheme [3]. A 1969 work by Lanier et al. also identified 186.00(8)-, 217.91(10)-,

266.70(20)-, and 354.10(5)-keV �-ray transitions in 186Re, similar in energy to four

of the � rays listed in Table 1, which were not placed in the 186Re level scheme

[3, 60]. These � rays were observed in prompt �-ray spectra from (nthermal, �)

reactions on 185Re, measured using a bent-crystal spectrometer during irradiation of

a sample of 79.2% 185Re and 20.8% 187Re at Risø, Denmark [60].

Table 1. Energies of � rays attributed to 186Re in this work that are not included in the
evaluated level scheme [3]. Gamma rays were attributed to 186Re based on an analysis
of their excitation functions. Asterisks indicate � rays observed but not placed in the
level scheme in this work.

E exp
�

(keV) E exp
�

(keV) E exp
�

(keV)
185.99(6)* 290.51(13)* 647.7(2)
217.62(10)* 354.28(9)* 1007.5(3)
266.69(4) 381.23(7) 1101.3(3)
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The shapes of the excitation functions were further used to estimate the spin of

the initial level of each observed transition. Transitions originating from low-spin

states have excitation functions that rise sharply after the threshold energy of the

(n, 2n) reaction to peak at neutron energies near 13 MeV, while those originating

from high-spin states rise more gradually and peak at neutron energies between 15

and 20 MeV. This e↵ect is evident in Figure 17, in which excitation functions for

known 111.7- and 188.8-keV �-ray transitions in 186Re are compared with that of

the 266.7-keV transition assessed to originate from a high-spin state.
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Figure 17. Experimental excitation functions for the 111.7-, 188.8-, and 266.7-keV �-ray
transitions in the 187Re(n, 2n�)186Re reaction channel, normalized for the purpose
of comparing their shapes. Excitation functions for transitions that originate from
higher-spin states show a slower rise after the reaction threshold energy than do those
originating from low-spin states. The excitation function for the 266.7-keV transition
is included in the plot according to its assignment in this work as deexciting a (9+)
level to feed the (8+) isomer.

The transitions and levels placed in the 186Re level scheme in this work are listed

in Table 2 and illustrated in the partial level scheme shown in Figure 18. Gamma

rays previously reported were placed according to their assignment in the evaluated
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literature [3, 21, 60, 61, 62, 73]. Five of the nine transitions listed in Table 1 were

added to the level scheme based on energy di↵erences of levels reported in

References [3] and [63] and an analysis of their excitation functions. There was

insu�cient information to guide the placement of the remaining four transitions,

identified with asterisks in Table 1, so these were not included in the level scheme.
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Table 2. Excitation energies, spin-parities, and transition energies for all levels and
� rays shown in Figure 18. Excitation energies E

x

and spin-parity values J

⇡ are
the literature values unless identified in bold italics to indicate values proposed in
this work. Experimental �-ray energies E

exp

�

were obtained by fitting the gated

10  E

n

 25 MeV spectrum of Figure 16. Literature values E

lit

x

and E

lit

�

for excita-
tion and �-ray energies are shown in the second and fifth columns for comparison and
are taken from the adopted values listed in Reference [3] unless otherwise indicated.

E
x

(keV) Elit
x

(keV) J⇡ Eexp
�

(keV) E lit
�

(keV)

0.0 0.0 1

�

59.010(3) 59.010(3) (2)

�

99.361(3) 99.361(3) (3)

�

146.274(4) 146.274(4) (3)

�

148 .2(5) 149(7) (8

+
)

⇠ 186 ⇠ 186 (6)

�

210.699 210.699 (2)

�
111.74(5) 111.337(8)
151.38(8) 151.686(5)
210.74(6) 210.685(17)

268.798 268.798 (4)

�
122.45(6) 122.525(5)
169.44(11) 169.431(8)
210.12(10) 209.82(2)

273.627(5) 273.627(5) (4)

�

314.009 314.009 (3)

+
214.60(3) 214.648(8)
255.05(6) 254.995(15)

316.463 316.463 (1)

�
257.45(7) 257.446(15)
316.45(5) 316.473(20)

322.379(6) 322.379(6) (3)

�

⇠ 330 ⇠ 330 (5)

+
144.08(2) 144.152(5)

351.202(16) 351.202(16) (3)

+

414.9(5)a 414.9(5)a (9+) 266.69(4) 266.70(20)b

420.559(7) 420.559(7) (4)

+

462.969 462.969 (5)

�
188.79(7) 189.313(17)

469.779 469.779 (4)

�
147.60(7) 147.417(6)

⇠ 471 ⇠ 471 (4)

+
141.23(6) 141.257(5)

500.722 500.722 (4)

+
149.23(8) 149.520(5)

559.976 559.976 (5)

+
139.62(12) 139.416(7)

588.709 588.709 (4

�
) 117.92(13) 118.196(4)

601.58 601.58 (1)

+
391.09(11) 390.91(5)

623.89 623.89 (1

�
) 413.53(12) 413.21(6)

665.188 665.188 (5)

+
164.7(3) 164.466(8)

796 .1(5) (10+) 381.23(7)
647.7(2)

1007 .5(3) 1007.4(20)a 1007.5(3)
1101 .3(3) 1101.9(5)a (2

�, 3�) 1101.3(3)
a

Proposed in Reference [63]

b

Proposed in Reference [60]
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Figure 18. Partial level scheme for 186Re showing the transitions observed in this work,
with energies labeled in keV and tentative assignments identified with parentheses.
Levels or transitions with properties in bold italics indicate proposed level energies
and spin-parity assignments or transitions placed in this work. All other level energies
and spin-parity assignments are those in the adopted level scheme for 186Re [3].

Gamma-gamma coincidence matrices were also generated during o✏ine data

analysis, but the statistics from the �-ray peaks produced with the neutron-energy

gates of 10  E
n

 25 MeV applied were insu�cient to assist in developing the

186Re level scheme. The lack of useful coincidence data prevented the elimination of

background contributions from other reaction channels in the examination of

transitions of interest in 186Re. Because the majority of observed �-ray transitions

showed contributions from reactions other than (n, 2n�) in their excitation

functions, �-ray intensities for decays in 186Re could not be reliably determined and

thus are not reported.

The 186Re level scheme had previously been investigated primarily with

information obtained from (n, �), (d, p), and (d, t) reactions, so the low-spin ( 6~)

portion of the level scheme is well-developed [3]. A 2009 paper by Wheldon et al.

described over 30 new levels in 186Re populated by (p, d) reactions on 187Re at

proton energies of 21 MeV, including higher-spin states not yet included in the

evaluated data file [3, 63]. Measurement of the deuteron energies using a magnetic

spectrograph, combined with knowledge of the incident proton energy, permitted
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the group to calculate excitation energies and population intensities of levels in the

(p, d) reaction.

Several of the states first reported by Wheldon et al. were observed to be

populated in the (n, 2n) reaction described in this work. The 1007.5- and

1101.3-keV � rays were placed based on the existence of levels at energies

1007.4(20) keV and 1101.9(5) keV reported in Reference [63]. Of greater significance

to this study was the 414.9(5)-keV level populated in the (p, d) reaction, which was

identified in Reference [63] as a higher-spin state with a possible spin-parity

assignment of J⇡ = 7�. In this work, the 414.9(5)-keV level was assessed as directly

feeding the 149(7)-keV isomer via a 266.69(4)-keV transition, providing an improved

estimate of 148.2(5) keV for the isomer energy.

The assignment of the 266.7-, 381.2-, and 647.7-keV transitions above the isomer

in the level scheme of Figure 18 is supported by similarities between 186Re and the

neighboring odd-odd isotope 184Re. Both isotopes have long-lived isomers in the

140- to 190-keV energy range, with equivalent (⇡5/2[402]) + (⌫11/2[615])

configurations [3, 21, 84]. Evaluated nuclear data reveals a well-defined structure

above the J⇡ = 8(+) isomer in 184Re, which includes 446.0-keV, J⇡ = (9+), and

727.9-keV, J⇡ = (10+), levels feeding the 188.0-keV isomer. Expecting the level

structure above the isomer in 186Re to show similarities to that in 184Re, the

analogous levels are those at 414.9 keV and 796.1 keV. The new level in 186Re at

796.1 keV deexcites by emission of 381.2- and 647.7-keV � rays. On the basis of the

similar high-spin components in the excitation functions for the 381.2- and

647.7-keV � rays, the spin-parity assignment for the 796.1-keV level is proposed as

J⇡ = (10+) in this work.

Further motivating the assignment of levels above the isomer in 186Re is the

output from the reaction models CoH 3.4 and Talys 1.6 for a variety of considered
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spin assignments for the 414.9- and 796.1-keV levels. Both CoH 3.4 and Talys 1.6

incorporate an optical model and Hauser-Feshbach statistical calculations to

simulate partial �-ray cross sections given discrete level information for the nuclei

involved in the reactions of interest. Due to the presence in the spectrum of � rays

from reactions other than (n, 2n�), experimental excitation functions included some

fraction of the yield from all reaction channels that produced � rays close to a given

energy. To model this appropriately, the simulated partial cross sections from

CoH 3.4 and Talys 1.6 for � rays in the 187Re(n, 2n�)186Re reaction channel were

added to those from similar-energy � rays produced in (n, n0�) and (n, 3n�)

reactions. The experimental and simulated excitation functions were then

normalized for the purpose of comparing their shapes, revealing in some cases a

double peak when the partial �-ray cross sections from di↵erent reaction channels

had similar magnitudes.

In the case of the 266.7-keV �-ray transition, the models demonstrate a poor fit

to the experimental excitation function when the 414.9-keV level is assumed to have

a spin less than 9~, evident in the plot shown in Figure 19. For the 381.2-keV �-ray

transition, the models demonstrate acceptable fits to the experimental excitation

function only when the 796.1-keV level is assumed to have a spin of 10~ or greater.

Output from CoH 3.4 is similar to that produced by Talys 1.6, and the shapes of

the modeled excitation functions show only a minor parity dependence.

For each of the new transitions placed in the 186Re level scheme, the

experimental excitation functions were compared with those from CoH 3.4 and

Talys 1.6 for the proposed assignments in Table 2 and Figure 18. Examples for the

266.7-, 381.2-, and 647.7-keV transitions are shown in Figure 20. The 796.1-keV

level is not as strongly populated as the 414.9-keV level, so the lower-intensity

381.2- and 647.7-keV � rays produce excitation functions with larger error bars than
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Figure 19. Experimental and TALYS-modeled excitation functions for the 266.7-keV
�-ray transition in the 187Re(n, 2n�)186Re reaction channel, normalized for the purpose
of comparing their shapes. Talys input was modified to include several spin-parity as-
signments for the initial level to rule out low-spin states feeding the isomer. The shapes
of the 6+ ! 8+, 7+ ! 8+, and 8+ ! 8+ excitation functions reveal contamination from
the 267-keV transition in 185Re produced in the (n, 3n�) reaction channel.

those of the 266.7-keV � ray. However, both models reproduce the general shapes of

the experimental excitation functions and suggest that all three � rays originate

from high-spin states as proposed in Table 2 and Figure 18.
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Figure 20. Excitation functions up to 25-MeV incident-neutron energy for the (a) 266.7-
(b) 381.2- and (c) 647.7-keV � rays observed in the GEANIE data. Plots are overlaid
with simulated excitation functions from CoH 3.4 and TALYS 1.6 for the assignments
proposed in Figure 18 and Table 2.

3.5 Conclusions

The significant outcome of this experiment was enriching the 186Re level scheme

with the addition of five newly placed transitions and one new level. In particular,

the structure above the 2.0⇥ 105 y isomer in 186Re has not been previously reported,

and new �-ray transitions observed in the 187Re(n, 2n�)186Re reaction channel may

be evidence of pathways by which the isomer is populated. Comparison of

experimental and simulated excitation functions for the observed �-ray transitions

confirm the high-spin (J � 7~) nature of certain levels populated in the (n, 2n)
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reaction, while similarities between the neighboring odd-odd isotopes 184Re and

186Re motivated the assignment of levels and transitions above the isomer.

The new transitions identified in this work lead to an improved determination of

the excitation energy of the 186Rem isomer with a smaller uncertainty than the

reference value. The energy adopted in Reference [3] for the 2.0⇥ 105 y isomer in

186Re is 149(7) keV, based solely on the work of Seegmiller et al. [21]. The

266.69(4)-keV � ray attributed to 186Re is proposed in this work to be a transition

to the isomer state from the 414.9(5)-keV level identified by Wheldon et al. [63].

This places the isomer energy at 148.2(5) keV, an order-of-magnitude improvement

in uncertainty compared to the adopted value.

The observation of transitions feeding the isomer from higher-lying levels is a

first step toward evaluating 186Re as a branch point for stellar nucleosynthesis. Of

future interest are the energies of low-lying IS in 186Re which have decay branches

leading towards both the isomer and the ground state. Such IS, which may deexcite

via the 266.7-, 381.2-, and 647.7-keV transitions described in this work, are critical

to the population or depopulation of the 186Rem isomer via (�, �0) reactions in

stellar environments. With knowledge of the astrophysically relevant IS involved in

these resonant reactions, probabilities for isomer photoactivation and depletion can

be estimated and the associated e↵ects on the accuracy of the Re/Os chronometer

evaluated.
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IV. Radiative Neutron Capture on 185Re

The study of the structure of 186Re via (n, �) reactions on 185Re described in this

chapter resulted in a manuscript submitted for publication in Physical Review C on

28 March 2016. The manuscript, titled “Investigation of 186Re via radiative

thermal-neutron capture on 185Re” was published on 16 May 2016, and the full text

is reproduced here with permission from Reference [43].

The manuscript was prepared by the primary author, building on the AFIT

master’s thesis work of A. G. Lerch (Reference [85]). The experiment was performed

at the BNC by J. J. Carroll and B. Detwiler, then of Youngstown State University,

and L. Szentmiklósi, Zs. Révay, and T. Belgya of the Hungarian Academy of

Sciences. A. M. Hurst and R. B. Firestone of Lawrence Berkeley National

Laboratory (LBNL) provided expertise with (n, �) data analysis techniques and

statistical modeling. J. W. McClory and S. R. McHale of AFIT provided guidance

throughout the project and reviewed the manuscript. M. Krtička of Charles

University in Prague maintains the dicebox statistical modeling software, and he

provided important feedback on the final manuscript. B. W. Sleaford of Lawrence

Livermore National Laboratory maintains the Python wrappers for the dicebox

code, which were essential during the data analysis.

4.1 Abstract

Partial �-ray production cross sections and the total radiative thermal-neutron

capture cross section for the 185Re(n, �)186Re reaction were measured using the

Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with

an enriched 185Re target. The 186Re cross sections were standardized using

well-known 35Cl(n, �)36Cl cross sections from irradiation of a stoichiometric natReCl3

72



target. The resulting cross sections for transitions feeding the 186Re ground state

from low-lying levels below a cuto↵ energy of E
c

= 746 keV were combined with a

modeled probability of ground-state feeding from levels above E
c

to arrive at a total

cross section of �0 = 111(6) b for radiative thermal-neutron capture on 185Re. A

comparison of modeled discrete-level populations with measured transition

intensities led to proposed revisions for seven tentative spin-parity assignments in

the adopted level scheme for 186Re. Additionally, 102 primary �-rays were

measured, including 50 previously unknown. A neutron-separation energy of

S
n

= 6179.59(5) keV was determined from a global least-squares fit of the measured

�-ray energies to the known 186Re decay scheme. The total capture cross section and

separation energy results are comparable to earlier measurements of these values.

4.2 Introduction

The Evaluated Gamma-ray Activation File (EGAF) is a coordinated research

project of the International Atomic Energy Agency (IAEA) used in Prompt

Gamma-ray neutron Activation Analysis (PGAA) for the determination of the

elemental compositions of materials [86]. The data in the EGAF consist of capture

�-ray production cross sections (�
�

) which were initially measured using natural

elemental targets. E↵orts are currently underway to improve the database using

measurements on isotopically-enriched targets, e.g., Reference [8]. The methodology

employed in this e↵ort involves measurement of partial production cross sections for

prompt neutron-capture � rays using a guided thermal-neutron beam.

The total radiative thermal-neutron capture cross section �0 can be obtained by

combining the experimental partial �-ray production cross sections for direct

population of the ground state (�
�0) from low-lying levels with statistical modeling

of the decay scheme to estimate the contribution of � rays for ground-state feeding
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from the quasicontinuum. This method has been employed successfully with the

stable palladium [87], potassium [88], gadolinium [89], and tungsten [8, 90] isotopes.

Recent e↵orts have been focused on the actinides [91, 92].

The isotope 186Re (half-life T1/2 = 3.7186 d [3]) has medical applications as a

high specific-activity �� emitter for the palliative treatment of bone metastases

resulting from prostate and breast cancers [93]. For this purpose, 186Re is generally

produced by thermal-neutron capture on enriched 185Re at reactors [94]. Medical

isotope production activities involving neutron capture rely on accurate partial

�-ray production cross sections in order to calculate heating in the target and host

vessel due to the local absorption of capture � rays [95]. Independent measurements

of total radiative thermal-neutron capture cross sections also add to the accuracy of

existing evaluated data, used to plan the production of isotopes for patient

treatment.

The object of this work is to further the e↵ort of completing an in-depth

spectroscopic study of 186Re, for which the adopted level scheme data [3] in the

Evaluated Nuclear Structure Data File (ENSDF) [4] includes numerous tentative

spin-parity assignments and approximate level energies. Measured partial �-ray

cross sections from radiative thermal-neutron capture on an enriched 185Re target,

combined with statistical modeling of �-ray cascades following neutron capture,

provided an independent measurement of the total radiative thermal-neutron

capture cross section for the 185Re(n, �) reaction. An independent determination of

the neutron-separation energy S
n

was also obtained from the observed primary

� rays in 186Re. A comparison of the results from the statistical-decay model

calculations to the measured �-ray production cross-section data permitted an

evaluation of the adopted decay-scheme data, e.g., spin-parity (J⇡) assignments,

�-ray branching ratios, and multipole mixing ratios (�
�

) for low-lying levels of 186Re.
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In addition to enriching the data contained in the EGAF, these results represent

additions to the Reference Input Parameter Library (RIPL) [96], which is used to

generate the Evaluated Nuclear Data File (ENDF) [9] that is employed in a variety

of nuclear applications.

4.3 Experiment and Data Analysis

The experiment was performed at the Prompt Gamma Activation Analysis –

Neutron Induced Prompt �-ray Spectroscopy (PGAA-NIPS) facility at the

Budapest Neutron Centre (BNC) in Budapest, Hungary, to examine the prompt

�-ray emissions from 186Re following slow-neutron capture on 185Re. The

PGAA-NIPS facility at the BNC is positioned at the terminus of a neutron beamline

extending from the 10 MW
t

Budapest Research Reactor. The 33.5-m beamline,

constructed of 0.75-m long supermirror guide elements, provides an exceptionally

low �-ray background and a well-collimated beam of slow neutrons. The beam guide

is slightly curved so that epithermal and fast neutrons, which have wavelengths less

than the critical value for reflection, are not transmitted through the guide and do

not reach the target. This e↵ectively limits the flux incident on the target to

thermal and cold neutrons [97]. In this experiment, neutrons were collimated prior

to the target using a set of 6Li-loaded polymer apertures, which defined a beam size

of 2 cm⇥ 2 cm. The total thermal-neutron flux was 1.5⇥ 107 neutrons cm�2 s�1.

The high-purity germanium (HPGe) detector used at the PGAA station is an

n-type closed-end coaxial detector with 27% relative e�ciency, surrounded by an

annular Compton-suppression shield consisting of eight bismuth germanate detector

segments. The suppression shield is set in anti-coincidence mode with the HPGe

detector to eliminate signals due to Compton scattering, so that the Compton

background present in the resulting spectra is significantly reduced. The detector is
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located 23.5 cm from the center of the sample chamber, oriented at 90� to the beam

direction. The detector is encased in neutron-absorbing 6Li-loaded polymer sheets

in order to keep the beam background low [98]. Further information about the

PGAA-NIPS facility can be found in Reference [99].

The target for the experiment consisted of 150.76 mg of rhenium-metal powder

enriched to 96.74% 185Re. The sample was contained in a thin teflon bag, prepared

according to the techniques described in Reference [100]. The sample was then

aligned in an aluminum target holder, suspended by thin teflon threads, for

placement in the neutron beam at an angle of 30�. Energy and e�ciency

calibrations of the spectrometer were performed using standard 133Ba, 152Eu, 207Bi,

226Ra, and 241Am calibration sources for low energies. For energies above 1.5 MeV,

samples of deuterated urea (CD4N2O) and polyvinyl chloride (PVC) were placed in

the neutron beam, and prompt �-rays from the 14N(n, �)15N and 35Cl(n, �)36Cl

reactions, respectively, were used to calibrate the spectrometer [101, 102].

4.3.1 Spectroscopic Analysis.

Prompt �-ray spectra from irradiation of the enriched 185Re target were collected

at two di↵erent gain settings over a 19.14-h period, and the spectra were analyzed

o✏ine using the Hypermet-PC program [103]. A low-gain setting was used to

capture the full-scale spectrum (0  E
�

 6.5 MeV), such that primary �-rays up to

the 186Re neutron-separation energy could be identified. Representative histograms

from the low-gain setting are shown in Figure 21, with a focus on the primary �-ray

peaks in the lower panel of the figure.

The high-gain setting was used to achieve improved resolution in the low-energy

( 1.1 MeV) region of the spectrum. This permitted fitting the large number of

low-energy peaks and multiplets in the 186Re spectrum. A representative portion of
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Figure 21. Representative prompt �-ray spectra from the 185Re(n, �)186Re reaction,
with counts shown in logarithmic scale, measured using the low-gain setting. In (a), the
entire range of �-ray energies from 186Re is shown. The peaks from the highest-intensity
59.0-keV � ray (convolved with rhenium X rays, see Figure 22 and the text) and the
6179.3-keV primary � ray from the capture state to the ground state are identified
for orientation. The area in the center of the spectrum is the quasicontinuum region,
where the level density is so high that transitions to and from levels in this region
are unresolvable. In (b), an expansion of the same spectrum in the 4.7–6.5 MeV
energy region is shown, in which the majority of primary � rays were fitted. The
highest-intensity primary � rays from 186Re are labeled in black, while escape peaks
(E), background (BKG), and contaminant � rays from neutron capture on 188Re are
identified in blue. The 186Re neutron separation energy S

n

= 6179.59(5) determined
in this work is identified with a red vertical line.

the high-gain spectrum is shown in Figure 22 with peak fits from Hypermet-PC.

Fitting the particular region shown in the figure was problematic. The 59.0-keV �

ray is the highest-intensity � ray in the 185Re(n, �) spectrum, and after correcting

for internal conversion it contributes over 80% to the total radiative-capture cross

section �0, so it was essential that the peak intensity was properly fitted. However,

the 59.0-keV � ray peak is convolved with the 59.7- and 61.1-keV rhenium K
↵
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X rays. The fit of this multiplet was adjusted until the ratio of the intensities for

the 59.7- and 61.1-keV K
↵

X rays was 0.584(13), which matched the ratio 0.584(18)

from the X-ray yields in Reference [10]. The close agreement between these ratios

gave a high degree of confidence in the fitted intensity ascribed to the 59.0-keV

�-ray peak.

Figure 22. Representative section of the prompt �-ray spectrum using the high-gain
setting to show the quality of the fits performed using HYPERMET-PC. Black dots
identify the experimental counts in logarithmic scale, while the shaded region is the
result of the least-squares fit, and solid blue lines identify the fits of each peak in the
52- to 65-keV energy range.

4.3.2 Cross-Section Standardization.

Measurement of peak areas in the prompt neutron-capture �-ray spectra from

the enriched 185Re target, corrected for detector e�ciency and �-ray attenuation in

the target, provided �-ray intensities for transitions in 186Re. For these transitions,

the partial cross sections �
�

were determined by standardizing to the known

35Cl(n, �) comparator cross sections �
�,c

from References [104, 105], listed in Table

3. Analysis of a spectrum from the irradiation of a stoichiometric natReCl3 target

permitted determination of partial cross sections �
�,x

for a few strong prompt � rays

from the natRe(n, �) reaction using the relation
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�,x

�
�,c

=
n
x

n
c

A
�,x

/✏(E
�,x

)

A
�,c

/✏(E
�,c

)
. (37)

In Equation (37), A
�,x

and A
�,c

are the peak areas of the unknown and comparator

� rays, respectively, ✏(E
�,x

) and ✏(E
�,c

) are the detector e�ciencies at the �-ray

energies E
�,x

and E
�,c

, and the known 3 : 1 stoichiometry of the target compound

implies (n
x

/n
c

) = 1/3 [106]. The natRe(n, �) cross sections obtained using Equation

(37) were then corrected for isotopic abundance (natRe comprises 37.398% 185Re and

62.602% 187Re [1]) to arrive at isotopic 185Re(n, �) cross sections. These 185Re(n, �)

cross sections were then used as standards for normalizing the intensities of all

prompt � rays obtained from the enriched 185Re spectrum (Figure 21).

4.3.3 Determination of E↵ective Target Thickness.

Rhenium metal has a density of 21.02 g/cm3, and therefore has a large photon

attenuation cross section for � rays with energies below 300 keV. As a result, partial

cross sections for low-energy � rays must be corrected for self-absorption within the

target mass during standardization. Because the target sample is of nonuniform

thickness, it is di�cult to accurately describe its geometry using particle-transport

simulations. An alternative method involves comparing partial cross sections for

low-energy � rays, corrected for attenuation using an e↵ective target thickness, with

reference values obtained from irradiation of an optically-thin target sample. By

adjusting the e↵ective thickness to minimize the residual errors between the

thick-target cross sections and the reference cross sections from the thin target, an

e↵ective thickness for the enriched 185Re target can be found that can be used to

calculate the attenuation at any �-ray energy [107].

To determine the e↵ective thickness of the enriched 185Re target, a prompt �-ray

spectrum from irradiation of a lower-density hydrated rhenium chloride sample [106]
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was measured. The density of this sample was such that �-ray self-absorption

within the material was minimal and could be neglected. The comparator cross

sections from 35Cl(n, �) in Table 3 were used to standardize the 185Re(n, �) cross

sections using Equation (37). Standard partial cross sections (�S

�

) for the four

strong, well-resolved �-ray transitions in 186Re listed in Table 3 were extracted and

compared with the cross sections for the same � rays obtained from the thick

enriched 185Re target (�T

�

).

Table 3. Elemental comparator cross sections �

�,c

for 35Cl(n, �) from References [104,
105] used in the analysis of the prompt �-ray spectrum from natReCl

3

(n, �) to determine
standard isotopic 185Re(n, �) cross sections �

S

�

, also listed.

Source (isotope; reaction) E
�

(keV) �
�,c

, �S

�

(b)
36Cl; 35Cl(n, �) 517.1 7.58(5)
36Cl; 35Cl(n, �) 788.4 5.42(5)
36Cl; 35Cl(n, �) 1164.9 8.91(4)
36Cl; 35Cl(n, �) 1951.1 6.33(4)
36Cl; 35Cl(n, �) 5715.2 1.820(16)

186Re; natReCl3(n, �) 103.3 1.34(8)
186Re; natReCl3(n, �) 214.7 6.6(4)
186Re; natReCl3(n, �) 255.0 3.19(19)
186Re; natReCl3(n, �) 391.0 3.27(6)

For a given � ray produced in the target with intensity I0, measured at the

detector with intensity I
�

, the �-ray attenuation factor is given by I
�

/I0. The

attenuation factor depends on the �-ray energy E
�

and the target thickness t, and is

obtained by integrating the exponential-attenuation law I
�

/I0 = exp (�µ
�

x) over

the depth x to arrive at the expression

I
�

(E
�

, t)

I0
=

cos ✓

t⇢
⇣

µ�

⇢

⌘

E�

·

2

641� exp

0

B@
�t⇢

⇣
µ�

⇢

⌘

E�

cos ✓

1

CA

3

75 . (38)
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In Equation (38), (µ
�

/⇢)
E� is the �-ray mass-attenuation coe�cient at the �-ray

energy E
�

, ⇢ is the target sample density, and ✓ is the angle at which the sample

face is oriented relative to the detector face [86, 107]. In the experiment described in

this work, ✓ = 30�, and mass-attenuation coe�cients used in the calculations were

taken from the XMuDat database [108]. After correcting for attenuation and

detector e�ciency, the peak areas A
�,x

from the thick target should be directly

proportional to the thin-target standard cross sections �S

�

, i.e., the following relation

should hold for all E
�

for a constant C :

�S

�

A
�,x

/✏(E
�,x

)
· I�(E�

, t)

I0
= C. (39)

The e↵ective sample thickness t for the enriched 185Re target in Equation (39) was

varied until C converged to a unique value for the 103.3-, 214.7-, 255.0-, and

391.0-keV � rays. The errors about the mean value of C for each thickness were

analyzed using the �2-minimization procedure outlined by Hurst et al. in

Reference [107]. Two parameters, the thickness t and a global correlation coe�cient

(see Reference [107] for details), were adjusted to minimize the �2 to fit the four

data points, leaving two degrees of freedom (ndf = 2). A plot of the �2 values as a

function of thickness t is shown in Figure 23, where it is evident that the minimum

(�2
min) is achieved at an e↵ective thickness of t = 0.086 mm. The 1�-uncertainty

range for a 2-parameter adjustment is defined by �2
min + 2.3 [109], which results in

an uncertainty of ±0.008 mm in the e↵ective thickness.

The ratio of the partial cross sections from the attenuated thick-target sample,

�T

�

, to the unattenuated thin-target values �S

�

, yields an experimental attenuation

factor: ✓
I
�

I0

◆

exp

=
�T

�

�S

�

. (40)
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Figure 23. Plot of the global �2 values as a function of target thickness for the enriched
185Re sample. The lower dashed-red line corresponds to the minimum of the global �2

distribution, which occurs at an e↵ective thickness of 0.086 mm. The upper dashed-
red line is drawn at �

2

min

+ 2.3, which defines the 1� range of [0.078 mm, 0.094 mm] of
acceptable t values for two adjustable parameters [109].

To illustrate the e↵ectiveness of the �2-minimization procedure at producing an

accurate e↵ective thickness, the experimental attenuation factors (I
�

/I0)exp for

comparator and other low-energy 186Re � rays were compared against the

attenuation factors calculated using Equation (38) with an assumed thickness of

t = 0.086 mm, with the same calculations performed at thicknesses of 0.078 mm and

0.094 mm to obtain the ±1� uncertainty band. The good agreement in the resulting

plot, shown in Figure 24, validates the e↵ective thickness found for the enriched

185Re target. The calculated attenuation factors were used to correct the 185Re(n, �)

cross sections obtained using Equation (37) at all �-ray energies. Uncertainties in

the attenuation factors were propagated through the calculations of the �-ray

production cross sections presented in this work.
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Figure 24. Plot of the attenuation factor I

�

/I

0

at an e↵ective thickness of 0.086 mm
(solid black line with dashed lines indicating uncertainty) with the experimen-
tal ratios of thick-target partial cross sections to thin-target partial cross sections,
�

T

�

/�

S

�

= (I
�

/I

0

)
exp

. The data points identified by red circles are for the well-resolved
103.3-, 214.7-, 255.0-, and 391.0-keV � rays, which were used as standards to determine
the e↵ective thickness. Shown for comparison are the 87.2-, 174.3-, 210.7-, 261.2-, and
316.6-keV �-ray transitions in 186Re (blue-square data points), which are not as well-
resolved in the spectra and could not be used for determining the e↵ective thickness.

4.4 Statistical Modeling

A significant portion of the results presented in this work is based on a

combination of experimental results with simulations of � decay following

thermal-neutron capture, based on a statistical model of the nucleus. The

Monte-Carlo statistical-decay code dicebox [52], which assumes a generalization of

the extreme statistical model of compound nucleus formation and decay [46], was

used for these simulations.

To model the thermal-neutron capture cascade, dicebox simulates numerous

(n, �) decay-scheme simulations, known as nuclear realizations. Each realization is

based on a statistical model of the level density ⇢(E, J, ⇡) and �-ray transition
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widths �
if

for the formation and decay of the compound nucleus. To describe the

decay scheme, all level energies, spin-parity assignments, and depopulating � rays

below a user-defined cuto↵ excitation energy (referred to as the critical energy E
c

)

are taken from the experimental-decay scheme. For levels in the quasicontinuum,

defined in this case as the levels above E
c

, the code generates a random set of levels

according to an a priori assumed model of the level density (LD). Transitions to

and from these levels to low-lying levels below E
c

are randomly generated according

to an a priori assumed model of the photon strength function (PSF), where

angular-momentum selection rules are applied to determine allowed transitions. The

PSFs, f (XL)(E
�

), for transitions with multipolarity X = E (electric) or

M (magnetic) and multipole order L, are used to describe statistical � decay. For

allowed transitions, the partial radiation widths �XL

if

of the transition probabilities

from initial state i to final state f are assumed to follow a Porter-Thomas

distribution [110]

P (x) =
1p
2⇡x

e�x/2, (41)

where x = �XL

if

/h�XL

if

i, and the mean value h�XL

if

i is given by

h�XL

if

i = f (XL)(E
�

) · E2L+1
�

⇢(E
i

, J
i

, ⇡
i

)
. (42)

Here ⇢(E
i

, J
i

, ⇡
i

) is the level density at an initial state E
i

characterized with a

spin-parity J⇡i
i

[111]. Gamma-ray transition probabilities are corrected for internal

conversion using coe�cients calculated with the Band-Raman Internal Conversion

Calculator (BrIcc) version 2.3S code [28, 29]. Primary � rays (i.e., those that

originate at the capture state) feeding discrete levels below E
c

are also taken from

experiment. In order to obtain accurate probabilities of populating discrete levels

below E
c

with uncertainties (due to statistical Porter-Thomas fluctuations) small
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enough for comparison with experimental cross sections, 50 nuclear realizations were

simulated for each PSF/LD model combination, with 100,000 �-ray cascades

simulated per realization [90].

4.4.1 Level Densities.

The nuclear-level density models used in this work were assumed to be functions

of excitation energy E, spin J , and parity ⇡, with the general form

⇢(E, J, ⇡) = ⇢(E)f(J)⇡(E), (43)

where ⇢(E) is the total level density at excitation energy E, f(J) is a

spin-distribution factor, and ⇡(E) is the parity distribution identifying the fraction

of positive- or negative-parity states as a function of excitation energy. Two

di↵erent ⇢(E, J) = ⇢(E)f(J) models were considered in the statistical-model

calculations, the constant temperature formula (CTF) [112] and the backshifted

Fermi gas (BSFG) models [112, 113].

The CTF LD model assumes a constant nuclear temperature T , and is given by

⇢(E, J) =
f(J)

T
exp

✓
E � E0

T

◆
, (44)

where E0 is an energy backshift related to the nucleon pairing energy. The

spin-distribution factor f(J) is

f(J) =
2J + 1

2�2
c

exp


�(J + 1/2)2

2�2
c

�
, (45)

where �
c

is a spin cuto↵ factor. For a nucleus with mass number A, the formula

�
c

= 0.98A0.29 was adopted for the spin cuto↵ factor in the CTF LD model [114].

The BSFG LD model assumes the nucleus to be a two-component fermionic
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fluid, which leads to the expression

⇢(E, J) = f(J)
exp

h
2
p
a(E � E1)

i

12
p
2�

c

a1/4(E � E1)5/4
, (46)

where E1 is an energy backshift. The spin-cuto↵ factor �c for the BSFG model was

taken as

�2
c

= 0.0146A5/31 +
p

1 + 4a(E � E1)

2a
, (47)

and a is a shell-model level-density parameter [114].

The parameters T , E0, a, and E1 in Equations (44), (46), and (47) were

assumed to follow the parameterizations of von Egidy and Bucurescu in References

[114] or [115], and are listed in Table 4.

Table 4. Level density parameters for the CTF (T and E

0

) and BSFG (a and E

1

)
models used in statistical-model calculations to model �-ray cascades in 186Re. The
parameters were taken to be the mean values quoted from the respective references.

Reference T (MeV) E0 (MeV) a (MeV�1) E1 (MeV)
[114] 0.56(1) �1.76(18) 19.87(28) �0.90(10)
[115] 0.54(1) �1.59(15) 18.19(25) �0.82(8)

We tested both a parity-independent (⇡(E) = 1/2) LD model as well as a LD

model slightly dependent on parity at low excitation energies, described by

Al-Quraishi et al. in Reference [116]. In the parity-dependent LD model, the

function ⇡(E) is a Fermi-Dirac distribution describing the fraction of positive- or

negative-parity states (depending on the sign used in the distribution function) as a

function of E. The functional form for ⇡(E) is

⇡(E) =
1

2

✓
1± 1

1 + exp [c(E � �
p

)]

◆
, (48)
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where the sign of the ± is determined from the parity of the ground state, c is a

spin-cuto↵ factor, and �
p

is an energy shift. For 186Re, when ⇡(E) represents the

distribution of positive-parity states, a negative sign is used in Equation (48) to

signify that low-energy levels have predominantly negative parity. For the

statistical-model calculations, we assumed the parameterization �
p

= �0.1814 MeV

and c = 3.0 MeV�1 from Reference [116].

4.4.2 Photon Strength Functions.

For the transitions relevant to the statistical modeling of thermal-neutron

capture �-ray cascades, the E1 PSF (which dominates � decay for E
�

� 4 MeV) is

believed to be described by the low-energy tail of the giant dipole electric resonance

(GDER). Above E
�

⇡ 8 MeV, the shape of the E1 PSF can be probed using (�, n)

measurements. At these higher energies, the shape of the E1 PSF for deformed

nuclei is usually well-described by a sum of two standard Lorentzians, sometimes

known as the Brink-Axel (BA) model [117, 118]. At �-ray energies below ⇠8 MeV,

the shape of the E1 PSF is not well known, and several extrapolations of the BA

model are typically used. In addition to the BA model, we tested the Kadmenski,

Markushev, and Furman (KMF) [119], generalized Lorentzian (GLO) [120], and

modified generalized Lorentzian (MGLO) [121] models for the E1 PSF in this work.

The Brink-Axel function f
(E1)
BA (E

�

) for the E1 PSF in deformed nuclei is a sum

of two standard Lorentzians, corresponding to vibration modes along and

perpendicular to the nuclear-symmetry axis:

f
(E1)
BA (E

�

) =
1

3(⇡~c)2
2X

i=1

�
GiE�

�2
Gi

(E2
�

� E2
Gi
)2 + E2

�

�2
Gi

. (49)

The parameters E
Gi and �

Gi represent the resonant energies and widths of the

GDER vibration modes, and the �
Gi are the resonance cross sections. These values
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Table 5. Resonance parameters for the GDER and GQER used in statistical-model
calculations to model �-ray cascades in 186Re. The GDER parameters are from Refer-
ence [123], and the GQER parameters are from a theoretical global parameterization
for isovector-isoscalar vibrations described in the text.

Resonance E
G1 (MeV) �

G1 (MeV) �
G1 (mb) E

G2 (MeV) �

G2 (MeV) �
G2 (mb)

GDER 12.63 2.77 279 15.24 4.69 375

GQER 11.04 3.88 4.64 - - -

are tabulated in the RIPL [96] for a variety of stable isotopes, and the systematics

are such that the parameter values are relatively constant for nuclei with similar

deformation in a given mass region. In our case we adopted values obtained from a

least-squares fit of natRe photoabsorption data [122] over the interval

10.8� 18.8 MeV [123]. The resulting GDER parameters, listed in Table 5, are

adopted in the RIPL [96] and were used in the statistical-model calculations

described in this work.

The BA model is dependent on E
�

alone, while other E1 PSF models considered

in this work (KMF, GLO, MGLO) also include an additional temperature

dependence, due to the inclusion of a temperature-dependent resonance width given

by

�
Gi(E�

,⇥) =
�
Gi

E2
Gi

�
E2

�

+ 4⇡2⇥2
�
. (50)

In Equation (50) the nuclear temperature ⇥ is a function of the excitation energy

E
f

of the final state, level density parameter a from Reference [114], and a pairing

energy �:

⇥ =
q
(E

f

��)/a. (51)

The pairing energy is determined for odd-odd nuclei via the formula � = �0.5|P
d

|,
where P

d

is the deuteron-pairing energy found in Reference [114]. For 186Re,
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P
d

= �1.492 MeV and � = �0.796 MeV.

For deformed nuclei, the KMF model of the E1 PSF is given by the equation

f
(E1)
KMF(E�

,⇥) =
1

3(⇡~c)2
2X

i=1

F
K

�
Gi�GiE�

�
Gi(E�

,⇥)

(E2
�

� E2
Gi
)2

, (52)

where the dimensionless Fermi liquid parameter F
K

is taken to have a value of

0.7 [124] in this work.

An empirical model, connecting the KMF at low E
�

with the BA model near the

GDER maximum was proposed by Kopecky and Uhl in Reference [120]. This

model, called the GLO, has the functional form

f
(E1)
GLO(E�

,⇥) =
2X

i=1

�
Gi�Gi

3(⇡~c)2


F
K

4⇡2⇥2�
Gi

E5
Gi

+
E

�

�
Gi(E�

,⇥)

(E2
�

� E2
Gi
)2 + E2

�

�2
Gi
(E

�

,⇥)

�
, (53)

with terms as defined in the BA and KMF models above.

A generalization of the GLO model to describe deformed nuclei was later

proposed by Kopecky et al. in Reference [125]. This model, referred to as the

enhanced generalized Lorentzian (EGLO), includes an enhanced resonance width

�0
Gi
(E

�

,⇥) =


k0 + (1� k0)

E
�

� E0

E
Gi � E0

�
�
Gi(E�

,⇥), (54)

where the energy shift E0 = 4.5 MeV [125], and the parameter k0 can be adjusted to

achieve optimum agreement with the experimental photoabsorption cross-section

data. The MGLO model [121] considered in this work modifies the behavior of the

EGLO [125] at low �-ray energies, and is obtained from Equation (53) by replacing

the temperature-dependent resonance width �
Gi(E�

,⇥) in Equation (50) with the

enhanced resonance width from Equation (54).

The four E1 PSF models considered in this work are shown in Figure 25 with

the (�, n) data from Reference [122]. As evident, the KMF and GLO models (which
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were originally proposed for spherical nuclei) do not reproduce the (�, n) data in the

range 8  E
�

 10 MeV. On the other hand, an enhancement of k0 = 2.9 in the

 (MeV)γE

0 2 4 6 8 10 12 14 16 18 20 22

) 
-3

 (
M

e
V

(E
1

)
f

8−10

7−10

6−10

GLO

=2.9)
0

MGLO (k

BA

KMF

Figure 25. Experimental (�, n) data from Reference [122] overlaid with the BA, GLO,
MGLO, and KMF models for the E1 PSF for transitions from the capture state. The
resonance parameters used in each model are from Reference [123]. The value of 2.9 for
the enhancement factor k

0

in the MGLO model was chosen based on the observed agree-
ment between the MGLO and the experimental cross-section data in the low-energy
tail of the GDER.

MGLO model results in a good fit to the experimental photoabsorption data in the

low-energy tail of the GDER. For this reason, we assumed an enhancement factor of

2.9 for all calculations in which the MGLO model was used for the E1 PSF.

The single-particle (SP) model for the M1 PSF was adopted in this work.

Statistical-decay modeling of the tungsten isotopes 183,185,187W, similar in mass to

186Re, found that a value of f (M1)
SP

= 1⇥ 10�9 MeV�3 produced the best agreement

between the predictions of the statistical model and the experimental cross sections

and total radiative capture width [8]. The same e↵ect was observed for 186Re, so a

SP strength of 1⇥ 10�9 MeV�3 was adopted for the calculations in this work. The

scissors model [126] for the M1 PSF was also considered in this work. Due to the
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relative insignificance of M1 transitions in the statistical-model calculations, the

scissors model produced results that were consistent with those of the SP model.

The contribution of E2 transitions is much smaller than that of dipole

transitions. The GQER model, which uses a standard Lorentzian (SLO) with a

single resonance to describe an isovector-isoscalar quadrupole vibration, was used

for the E2 PSF:

f
(E2)
SLO (E

�

) =
1

5(⇡~c)2
�
G1E�

�2
G1

(E2
�

� E2
G1
)2 + E2

�

�2
G1

. (55)

The resonance parameters E
G1 , �G1 , and �G1 for the GQER that were used in the

statistical-model calculations in this work are listed in Table 5. These values were

calculated using the following global parameterization: E
G1 = 63A�1/3 [127],

�
G1 = 6.11� 0.012A [128], and �

G1 = 1.5⇥ 10�4Z
2
E

2
G1

A

�1/3

�G1
[128].

The strengths of M2 and higher-multipole transitions are expected to be

negligible in the statistical-decay modeling, and were not considered in modeling the

neutron-capture � cascade in this work.

4.4.3 Calculation of the Total Radiative Thermal-neutron Capture

Cross Section.

Dicebox models the contribution to the total (n, �) cross section from the

quasicontinuum, and calculates the probability per neutron capture of direct feeding

of the ground state from the quasicontinuum (P0). The total radiative-capture cross

section �0 is obtained by combining this contribution with the

experimentally-measured partial �-ray production cross sections from discrete levels

below E
c

feeding the ground state directly (�
�0), using the expression

�0 =
P
�exp
�0 +

P
�sim
�0 =

P
�exp
�0

1� P0
. (56)
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In Equation (56), the superscripts ‘exp’ and ‘sim’ refer to the experimental and

simulated cross sections, corrected for internal conversion, directly feeding the

ground state from the discrete levels below Ec and from the quasicontinuum,

respectively [8].

4.5 Results and Discussion

Partial �-ray production cross sections for 106 � rays deexciting and feeding 48

discrete levels from the adopted level scheme (Reference [3]) up to an excitation

energy of 864.7 keV are listed in Table 6, along with 102 primary � rays feeding

levels from References [3, 63]. Gamma rays were placed in the 186Re level scheme by

matching the fitted peak energies from the prompt �-ray spectrum with the energies

of known transitions in the ENSDF [3]. Due to the high level density of 186Re, peaks

in the singles �-ray spectra were often convolved in multiplets, which made direct

measurement of the �-ray intensities di�cult. In these cases, identified by footnotes

in Table 6, statistical-model calculations (for � rays deexciting levels below

E
c

= 746 keV) or branching ratios from the ENSDF [3] were used to normalize the

cross sections.

Production cross sections for multiply-placed � rays for which the ENSDF

provides only the undivided intensity [3], identified by footnotes in Table 6, were

determined by dividing the total �-ray intensity as necessary to optimize agreement

between the level population from the statistical model and the experimental

depopulation (
P

i

�
�i(1 + ↵

i

)/�0; where the summation is over all � rays

depopulating a given level). For the 218.1-, 228.6-, 193.8-, and 469.4-keV � rays

deexciting the 317.8-, 646.3-, 691.4, and 785.5-keV levels, respectively [3], the

intensity resulting from this procedure was su�ciently small that there was no

strong evidence for the existence of these � rays on the basis of statistical-model
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results. These four � rays are omitted from Table 6. The highly-internally-converted

(↵ ⇡ 4.1⇥ 106) 50-keV � ray [3] deexciting the 148.2-keV, J⇡ = (8)+ isomer [22],

and the 142.8-keV � ray reported in the ENSDF as deexciting the 997.8-keV level [3]

were not observed in the prompt �-ray spectrum and are also omitted from Table 6.

Level spin-parity (J⇡) assignments, transition multipolarities (XL) and

multipole mixing ratios (�
�

) in Table 6 were taken from the ENSDF [3] when

available, while internal-conversion coe�cients (↵) were calculated with BrIcc [28].

Unknown transition multipolarities between levels with definite J⇡ assignments were

assumed to be the lowest multipole order permitted by angular-momentum selection

rules. It is important to note that many of these transitions may have

mixed-multipole character, but the e↵ect of multipole mixing on

internal-conversion-corrected �-ray production cross sections used in the statistical

model is negligible for higher-energy (E
�

> 250 keV) transitions. For lower-energy

(E
�

 250 keV) �-ray transitions, level populations calculated using the statistical

model can be used to estimate multipole mixing ratios, discussed later in the text.

Gamma-ray transitions with E
�

& 3.5 MeV were assumed to be primary �-ray

transitions, and were identified as such in Table 6 provided they satisfied the

following criterion for a known level with excitation energy E
f

:

S
n

= E
�

+ E
f

+ E
r

. (57)

Here S
n

is the neutron-separation energy, E
�

is the measured �-ray energy, and

E
r

= E2
�

/2A is the recoil energy of the nucleus (A is the atomic mass of the product

nucleus). Of the primary transitions identified in this way, 50 were not previously

reported in the evaluated literature (References [21, 60, 61, 62]). Of these 50 new

primary transitions, 35 feed levels in the adopted level scheme for 186Re [3]. The

remaining 15 primary � rays feed levels reported by Wheldon et al. in
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Reference [63], in which levels in 186Re were populated by (p, d) reactions on 187Re

at proton energies of 21 MeV. New primary � rays are identified by footnotes in

Table 6, with multipolarity assignments estimated on the basis of observed �-ray

intensities relative to the intensities of primary transitions with known

multipolarity. The highest-intensity primary transition with M1 multipolarity

(assumed from angular momentum selection rules), has an intensity of

�
�

= 0.024(4) b, so primary transitions with �
�

� 0.03 b that feed levels without a

definite J⇡ assignment are given tentative multipolarities of E1, or tentative E1 or

M1 multipolarity if �
�

< 0.03 b.
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Table 6. Experimental thermal-neutron capture partial �-ray production cross sections �

�

from the
185Re(n, �) reaction. Spin-parity assignments J

⇡i,f

i,f

were taken from the ENSDF adopted levels for
186Re [3], except those values in bold, which are proposed in this work on the basis of statistical-
decay modeling results. Transition multipolarities XL are from the ENSDF [3], with those identified
with square brackets assumed from angular-momentum selection rules and the values proposed in
this work in bold text. Tentative values are identified with parentheses. Level excitation energies
E

i,f

were obtained from a least-squares fit to the �-ray energies E

�

measured in this work, unless
otherwise noted. Internal conversion coe�cients ↵ were calculated using BrIcc [28] using the mean
or limiting values of the mixing ratios �

�

taken from the ENSDF [3], unless otherwise noted.

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

0.0 1

�

59.007(6) 2

�
0.0 1

�
58.987(6) 17.5(11) 4.14 M1

99.381(7) 3

�
59.007(6) 2

�
40.364(7)a 2.2(5) 15.59 M1 + E2 0.11(2)

0.0 1

�
99.449(11) 0.47(9) 4.21 E2

146.227(9) 3

�
59.007(6) 2

�
87.199(8)b 2.38(14) 7.66 M1

0.0 1

�
146.57(16)a 0.20(4) 0.95 [E2]

174.059(11) 4

�
99.381(7) 3

�
74.685(11)c 0.95(7) 11.96 M1 + E2 0.19(6)

⇠186 6

�
174.059(11) 4

�
(⇠12)

d,i  7⇥ 10

�5
7.1⇥ 10

4
[E2]

148.2(5)f 8

+
(⇠38)

d,i  5⇥ 10

�3
1.0⇥ 10

3
[M2]

210.722(10) 2

�
146.227(9) 3

�
64.42(4)d,e 0.051(9) 3.20 [M1]

99.381(7) 3

�
111.16(8)a 1.28(18) 3.82 M1

59.007(6) 2

�
151.722(14) 2.45(14) 0.84 E2(+M1)

0.0 1

�
210.705(23) 3.05(18) 0.58 M1(+E2)  0.39

268.729(12) 4

�
146.227(9) 3

�
122.519(12) 1.82(13) 2.89 [M1]

99.381(7) 3

�
169.46(3)a 0.36(9) 0.78 E2(+M1) � 1.3

59.007(6) 2

�
209.78(4) 0.41(4) 0.27 [E2]

273.566(12) 4

�
174.059(11) 4

�
99.449(11)a 0.30(7) 5.25 [M1]

146.227(9) 3

�
127.354(16)a 0.76(17) 1.84 M1 + E2 1.8(+86

�7 )

99.381(7) 3

�
174.31(3) 1.11(7) 0.74 M1 + E2 1.2(+7

�4)

313.989(12) 3

+
210.722(10) 2

�
103.290(12) 1.34(8) 0.35 [E1]

146.227(9) 3

�
167.657(17) 0.57(3) 0.10 (E1)

99.381(7) 3

�
214.677(23) 6.6(4) 0.05 E1

59.007(6) 2

�
255.04(3) 3.19(19) 0.04 E1

316.531(19) 1

�
59.007(6) 2

�
257.50(3) 3.11(18) 0.30 M1 + E2 0.60(22)

0.0 1

�
316.58(4) 5.63(16) 0.21 M1

317.792(19) 5

�
174.059(11) 4

�
143.88(3) 1.6(2) 1.25 M1 + E2 1.6(+12

�5 )

322.488(15) 3

�
210.722(10) 2

�
111.65(3)a 1.4(3) 3.77 [M1]

174.059(11) 4

�
148.92(7)a 0.082(20) 1.66 [M1]

146.227(9) 3

�
176.32(3)a 0.38(8) 1.03 (M1, E2)

99.381(7) 3

�
223.05(3) 0.50(3) 0.38 M1 + E2 1.02(+29

�22)

59.007(6) 2

�
263.14(7)a 0.23(5) 0.34 [M1]

⇠330 5

+ ⇠186 6

�
144.230(22) 2.6(3) 0.15 E1



Table 6. (Continued.)

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

351.25(3) 4+ 146.227(9) 3

�
205.14(9)a 0.056(15) 0.06 [E1]

99.381(7) 3

�
251.87(3) 4.3(3) 0.04 E1

378.535(18) 2

�
316.531(19) 1

�
62.22(4)a 1.11(17) 3.55 M1(+E2)  1.0l

146.227(9) 3

�
232.16(3)h 0.55(6) 0.48 [M1]

59.007(6) 2

�
319.48(4) 0.368(23) 0.20 [M1]

0.0 1

�
378.49(5) 1.52(9) 0.13 M1

417.784(21) 5� 273.566(12) 4

�
144.230(22)c 0.075(4) 1.82 [M1]

268.729(12) 4

�
148.92(7) 0.57(10) 1.21 M1 + E2 1.2(+8

�4)

146.227(9) 3

�
271.56(4)a 0.23(7) 0.12 [E2]

420.51(3) 4

+
313.989(12) 3

+
106.58(3)c 0.91(11) 3.48 M1 + E2 1.7(+37

�7 )

425.70(3) 4+ 313.989(12) 3

+
111.65(3) 1.1(4) 3.77 [M1]

462.914(18) 5

�
317.792(19) 5

�
145.131(8)d,e 0.068(21) 1.79 [M1]

273.566(12) 4

�
189.270(20)a 0.48(12) 0.62 M1 + E2 1.0(+4

�3)

268.729(12) 4

�
193.83(16)h 0.142(8) 0.79 [M1]

174.059(11) 4

�
289.32(8)a 0.044(13) 0.26 [M1]

99.381(7) 3

�
363.56(5) 0.239(17) 0.05 [E2]

469.945(19) 4

�
322.488(15) 3

�
147.460(19)h 1.03(3) 1.71 (M1 + E2)

268.729(12) 4

�
201.16(3)a 0.19(4) 0.59 [M1]

174.059(11) 4

�
296.03(5) 0.141(11) 0.25 M1

470.755(21) 3

�
378.535(18) 2

�
92.104(21)a 0.59(13) 6.03 M1(+E2)  1.4

322.488(15) 3

�
148.09(6)d,e 0.040(12) 1.69 [M1]

268.729(12) 4

�
202.64(4)a 0.040(12) 0.70 [M1]

59.007(6) 2

�
411.52(7) 0.321(24) 0.10 [M1]

⇠471 6+ ⇠330 5

+
141.31(4) 0.285(23) 1.55 M1 + E2 0.9(+9

�5)

497.20(4) 6

�
317.792(19) 5

�
179.41(3) 0.23(4) 0.98 [M1]

500.74(6) 5+ 351.25(3) 4+ 149.57(8)a 0.8(4) 1.06 M1 + E2 1.8(+13
�5 )

99.381(7) 3

�
401.29(7) 0.101(10) 0.37 [M2]

534.32(5) 4

�
273.566(12) 4

�
259.84(9)g 0.76(16) 0.35 [M1]

174.059(11) 4

�
360.53(5) 0.95(6) 0.15 M1

549.16(5) 5+ 425.70(3) 4+ 123.46(3)c 0.38(5) 2.27 M1(+E2)  1.1
559.96(4) 5

+
425.70(3) 4+ 134.16(4) 0.067(8) 2.23 [M1]
420.51(3) 4

+
139.61(5) 0.37(6) 1.34 M1 + E2 1.8(+46

�7 )

⇠562 6

+ ⇠330 5

+
232.16(3)h 0.18(4) 0.48 [M1]

577.87(3) 2

�
378.535(18) 2

�
199.81(13)c 0.62(21) 0.72 [M1]

316.531(19) 1

�
261.23(3) 1.16(19) 0.35 (M1)

588.92(3) 4

�
470.755(21) 3

�
118.173(13) 0.49(3) 3.21 [M1]

601.82(4) 1

+
316.531(19) 1

�
285.29(4) 0.59(4) 0.03 (E1)

210.722(10) 2

�
391.01(5) 3.27(6) 0.01 E1

623.97(5) 1

�
322.488(15) 3

�
300.51(13)a 0.14(5) 0.09 [E2]

210.722(10) 2

�
413.39(5) 0.42(3) 0.10 [M1]



Table 6. (Continued.)

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

646.26(4) 5

�
469.945(19) 4

�
176.32(3) 0.37(9) 1.03 (M1, E2)

317.792(19) 5

�
328.42(20)d,e 0.078(23) 0.19 [M1]

658.27(4) 2

+
601.82(4) 1

+
56.445(18)a 0.10(3) 29.59 M1(+E2)  1.1

322.488(15) 3

�
335.67(15)a 0.046(16) 0.02 [E1]

316.531(19) 1

�
340.969(11) 0.111(12) 0.02 [E1]

665.23(6) 6+ 500.74(6) 5+ 164.490(24)c 0.13(3) 0.89 M1 + E2 1.19(+29
�22)

680.21(4) 2� 322.488(15) 3

�
357.77(5) 0.305(20) 0.15 [M1]

210.722(10) 2

�
469.38(7)h 0.174(16) 0.07 [M1]

0.0 1

�
680.34(15) 0.58(13) 0.03 [M1]

686.20(3) 3

�
577.87(3) 2

�
108.315(18)a 0.18(4) 4.11 [M1]

470.755(21) 3

�
215.28(15)d,e 0.098(24) 0.59 [M1]

378.535(18) 2

�
307.69(4) 0.70(5) 0.22 M1

691.44(5) 6

�
462.914(18) 5

�
228.57(6)h 0.087(9) 0.50 [M1]

317.792(19) 5

�
373.60(6) 0.127(11) 0.13 [M1]

736.39(4) 5

�
588.92(3) 4

�
147.460(19)h 0.200(22) 1.71 [M1]

745.47(4) 3

+
658.27(4) 2

+
87.199(8)d,i 0.192(14) 7.66 M1

761.49(6)j (1

�, 2�, 3�) 322.488(15) 3

�
438.89(7) 0.158(16) 0.09 [M1 or E2]

210.722(10) 2

�
551.12(9)a 0.15(5) 0.05 [M1]

0.0 1

�
760.99(18)k 0.207(22) 0.02 [M1 or E2]

785.52(5)j 378.535(18) 2

�
406.98(6) 0.197(19)

796.24(4)j ( 3) 577.87(3) 2

�
218.14(6)h 0.114(12)

378.535(18) 2

�
418.22(6)a 0.23(11)

316.531(19) 1

�
479.68(6) 0.63(4)

210.722(10) 2

�
584.36(12)a 0.16(8)

0.0 1

�
796.46(18)a 0.18(15)

819.21(5)j (2

�, 3�) 322.488(15) 3

�
496.78(7) 0.37(2) 0.06 [M1]

210.722(10) 2

�
607.50(12)a 0.24(9) 0.04 [M1]

174.059(11) 4

�
645.39(9)a 0.11(4) 0.03 [M1 or E2]

59.007(6) 2

�
760.99(18)k 0.207(22) 0.02 [M1]

821.47(5)j ( 3) 658.27(4) 2

+
163.47(7)a 0.13(5)

601.82(4) 1

+
219.70(4) 0.237(18)

826.48(5)j (4

�
) 686.20(3) 3

�
140.20(5) 0.52(6) 1.12 E2,M1

588.92(3) 4

�
237.54(17)a 0.073(21) 0.45 [M1]

470.755(21) 3

�
355.84(6)a 0.22(5) 0.15 [M1]

855.39(6)j (4

+
) 745.47(4) 3

+
109.93(5) 0.157(18) 3.94 [M1]

658.27(4) 2

+
197.06(12)a 0.022(4) 0.34 [E2]

864.70(9)j (2

�, 3�) 577.87(3) 2

�
286.83(8) 0.118(11) 0.27 [M1]



Table 6. (Continued.)

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

6179.59(5) 2

+
, 3

+
2359.0(5)j,p 3820.5(5)m 0.018(7) (E1 or M1)n

2319.81(23)j,p 3859.73(22)m 0.068(7) (E1)o

2244.86(15)j 3934.68(14) 0.143(11) (E1)o

2219.24(22)j 3960.30(21) 0.049(6) (E1)o

2203.4(3)j 3976.1(3) 0.049(7) (E1)o

1964.83(14)j 4214.71(13) 0.05(3) (E1)o

1905.8(4)j 4273.7(4) 0.056(8) (E1)o

1881.39(22)j 4298.14(21) 0.172(14) (E1)o

1846.46(22)j (2

�
,3

�
) 4333.07(21)m 0.068(9) [E1]

1838.7(3)j (1

�
,2

�
,3

�
) 4340.8(3)m 0.046(6) [E1]

1827.59(17)j (2

�
,3

�
,4

�
) 4351.94(16)m 0.188(14) [E1]

1758.0(4)j (2

�
,3

�
) 4421.5(4)m 0.090(15) [E1]

1743.21(22)j,p 4436.32(21)m 0.104(9) (E1)o

1718.96(24)j (2

�
,3

�
,4

�
) 4460.57(23)m 0.218(17) [E1]

1694.7(4)j,p (2

�
,3

�
) 4484.8(4)m 0.031(6) [E1]

1672.3(3)j (1

�
,2

�
,3

�
) 4507.2(3) 0.205(15) [E1]

1659.18(15)j,p (

�
) 4520.35(14)m 0.043(16) (E1)o

1646.93(23)j (2

�
,3

�
,4

�
) 4532.60(22) 0.149(16) [E1]

1628.24(22)j (2

�
,3

�
,4

�
) 4551.29(21) 0.080(8) [E1]

1607.16(22)j 4572.37(21) 0.138(11) (E1)o

1601.7(3)j,p 4577.8(3)m 0.040(6) (E1)o

1587.11(16)j,p 4592.42(15) 0.189(13) (E1)o

1572.04(20)j (1

�
,2

�
,3

�
) 4607.49(19)m 0.086(8) [E1]

1566.41(18)j (2

�
,3

�
,4

�
) 4613.12(17) 0.137(11) [E1]

1550.71(20)j (1

�
,2

�
,3

�
) 4628.82(19)m 0.090(7) [E1]

1545.01(17)j (

�
) 4634.52(16) 0.312(19) (E1)o

6179.59(5) 2

+
, 3

+
1525.30(20)j (4

�
) 4654.23(19)m 0.063(6) [E1]

1486.71(17)j,p 4692.81(16) 0.182(13) (E1)o

1475.9(3)j (

�
) 4703.6(3) 0.110(12) (E1)o

1462.4(5)j (2

�
,3

�
) 4717.1(5)m 0.021(5) [E1]

1457.50(21)j (2

�
,3

�
) 4722.02(20)m 0.060(7) [E1]

1449.8(4)j (1

�
,2

�
,3

�
) 4729.7(4)m 0.025(5) [E1]

1437.76(24)j 4741.76(23) 0.098(11) (E1)o

1419.0(3)j (2

�
,3

�
) 4760.5(3)m 0.053(7) [E1]

1405.48(16)j (2

�
,3

�
,4

�
) 4774.04(15) 0.74(4) [E1]

1393.0(3)j (2

�
,3

�
) 4786.5(3)m 0.032(8) [E1]

1375.7(7)j (1

�
,2

�
,3

�
) 4803.8(7)m 0.022(10) [E1]

1360.3(4)j (2

�
,3

�
,4

�
) 4819.2(4)m 0.018(5) [E1]

1355.4(3)j (2

�
,3

�
) 4824.1(3)m 0.033(5) [E1]

1351.21(19)j (4

�
) 4828.31(18) 0.094(9) [E1]



Table 6. (Continued.)

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

6179.59(5) 2

+
, 3

+
1342.3(4)j,p 4837.2(4)m 0.017(4) (E1 or M1)n

1321.69(20)j (2

�
,3

�
) 4857.83(19)m 0.251(17) [E1]

1317.37(17)j (2

�
,3

�
,4

�
) 4862.15(16) 0.71(4) [E1]

1285.9(9)j (2

�
,3

�
) 4893.7(9) 0.056(9) [E1]

1242.70(21)j (2

�
,3

�
) 4936.82(20)m 0.35(3) [E1]

1240.3(3)j,p 4939.2(3)m 0.079(16) (E1)o

1231.3(3)j (2

�
,3

�
) 4948.2(3)m 0.058(6) [E1]

1227.94(21)j,p 4951.58(20)m 0.138(10) (E1)o

1212.0(4)j,p 4967.5(4)m 0.023(5) (E1 or M1)n

1197.95(18)j (2

�
,3

�
) 4981.57(17) 0.315(20) [E1]

1185.05(19)j (2

�
,3

�
) 4994.47(18) 0.115(9) [E1]

1172.25(18)j (

�
) 5007.27(17) 0.91(5) (E1)o

1157.85(20)j (2

�
,3

�
,4

�
) 5021.66(19)m 0.099(8) [E1]

1151.19(18)j (4

�
) 5028.32(17) 0.86(5) [E1]

1140.9(3)j (2

�
,3

�
) 5038.6(3)m 0.028(4) [E1]

1132.12(20)j 5047.39(19) 0.104(8) (E1)o

1122.55(23)j (2

�
,3

�
) 5056.96(22)m 0.083(8) [E1]

1102.74(18)j (2

�
,3

�
) 5076.77(17)m 0.262(17) [E1]

1097.06(18)j (4

�
) 5082.45(17) 0.173(11) [E1]

1071.5(6)j,p (2

�
,3

�
) 5108.0(6)m 0.025(8) [E1]

1068.61(22)j (2

�
,3

�
) 5110.90(21) 0.148(12) [E1]

1057.5(5)j (2

�
,3

�
) 5122.0(5)m 0.013(4) [E1]

1053.8(6)j (1

�
,2

�
,3

�
) 5125.7(6)m 0.012(4) [E1]

1040.30(19)j (2

�
,3

�
,4

�
) 5139.21(18) 0.78(5) [E1]

1017.65(17)j,p (2

�
,3

�
,4

�
) 5161.86(16)m 0.010(3) [E1]

1013.7(3)j (2

�
,3

�
,4

�
) 5165.74(24)m 0.043(4) [E1]

1003.08(19)j,p (2

�
,3

�
,4

�
) 5176.43(18) 0.50(3) [E1]

988.97(22)j (2

�
,3

�
) 5190.54(21)m 0.051(6) [E1]

982.32(18)j,p 5197.19(17)m 0.050(5) (E1)o

973.31(20)j (

�
) 5206.20(19) 0.275(18) (E1)o

954.78(23)j 5224.73(22) 0.048(5) (E1)o

935.37(20)j (2

�
,3

�
) 5244.14(19) 0.128(9) [E1]

923.57(20)j (2

�
,3

�
) 5255.94(19) 0.307(19) [E1]

902.43(19)j (2

�
,3

�
) 5277.08(18) 0.46(3) [E1]

895.15(19)j (2

�
,3

�
,4

�
) 5284.36(18)m 0.230(15) [E1]

888.70(24)j (4

�
) 5290.81(23) 0.040(5) [E1]

856.3(5)j (2

�
,3

�
) 5323.2(5)m 0.013(3) [E1]

826.48(5)j (4

�
) 5353.09(20) 0.46(3) [E1]



Table 6. (Continued.)

E
i

(keV) J⇡i
i

E
f

(keV) J
⇡f

f

E
�

(keV) �
�

(b) ↵ XL �
�

6179.59(5) 2

+
, 3

+
819.21(5)j (2

�
,3

�
) 5360.18(20) 0.214(13) [E1]

796.24(4)j (3) 5383.06(19) 0.086(6) (E1)o

791.3(3)j (1

�
) 5388.19(24)m 0.035(4) [E1]

761.49(6)j (1

�
,2

�
,3

�
) 5418.6(3)m 0.0142(23) [E1]

753.50(22)j (2

�
,3

�
) 5426.00(21)m 0.035(3) [E1]

686.20(3) 3

�
5493.50(18) 0.297(18) [E1]

680.21(4) 2� 5499.4(3)m 0.031(3) [E1]
623.97(5) 1

�
5555.4(8)m 0.0065(23) [E1]

577.87(3) 2

�
5601.65(18) 0.367(22) [E1]

534.32(5) 4

�
5645.07(20) 0.257(16) [E1]

469.945(19) 4

�
5709.67(20) 0.386(24) [E1]

425.70(3) 4+ 5753.2(3)m 0.024(4) [M1]
420.51(3) 4

+
5759.1(8) 0.006(3) [M1]

378.535(18) 2

�
5800.93(21) 0.051(4) [E1]

322.488(15) 3

�
5856.95(19) 0.46(3) [E1]

316.531(19) 1

�
5863.4(3)m 0.040(3) [E1]

273.566(12) 4

�
5905.7(2)m 0.095(9) [E1]

268.729(12) 4

�
5910.62(19) 2.00(5) [E1]

210.722(10) 2

�
5968.92(24) 0.052(4) [E1]

174.059(11) 4

�
6005.59(21) 0.184(12) [E1]

146.227(9) 3

�
6033.26(21) 0.250(15) [E1]

99.381(7) 3

�
6080.29(20) 0.406(24) [E1]

59.007(6) 2

�
6120.38(20) 0.397(23) [E1]

0.0 1

�
6179.30(21) 0.059(4) [E1]

a

Multiplet resolved using ENSDF branching ratios [3].

b

Multiplet resolved using X-ray yields from Reference [10].

c

Multiplet resolved using statistical-model calculations.

d

Transition not observed; �-ray energy taken as ENSDF value [3] or deduced from level-energy di↵erence.

e

Transition not observed; intensity deduced from ENSDF branching ratios [3].

f

Level energy from Reference [22].

g

Multiplet resolved using �-ray branching ratio adjusted to optimize agreement with model calculations.

h

Gamma ray multiply-placed in level scheme; intensity divided using statistical-model calculations.

i

Transition not observed; intensity deduced from statistical-model calculations.

j

Level above E
c

not included in statistical-model calculations.

k

Gamma ray multiply-placed in level scheme; undivided intensity given.

l

Mixing ratio other than the mean or limiting value from the ENSDF [3] used to calculate ↵.
m

Newly-identified primary �-ray transition not found in literature.

n

Primary � ray with �
�

< 0.03 b assigned tentative E1 or M1 multipolarity.

o

Primary � ray with �
�

� 0.03 b assigned tentative E1 multipolarity.

p

Level proposed in Reference [63].



4.5.1 Nuclear Structure.

The predicted population of individual low-lying levels from statistical-model

calculations can be plotted against the experimental depopulation, hereafter

referred to as a population-depopulation (P-D) plot. Good agreement between the

values, indicated by a line of slope 1 in the P-D plot and residual di↵erences of less

than 3 standard deviations (�), provides support for the choice of LD and PSF

models used, the placement of transitions and spin-parity assignments for levels

below E
c

in the level scheme, �-ray branching ratios, and multipole mixing ratios �
�

.

This comparison can be used as an e↵ective tool for evaluating the completeness

and accuracy of the decay scheme. Preempting the results presented later in this

section, optimal agreement in the P-D plot is achieved with the MGLO (k0 = 2.9)

model for the PSF (assuming the parametrization of Reference [123]) and the CTF

LD model (assuming the parametrization of Reference [114]). The resulting P-D

plot, which was generated for a critical energy of E
c

= 746 keV and with the level

spin-parity assignments, branching ratios, and multipole mixing ratios discussed

later in the text, is shown in Figure 26.

Capture-state Spin Composition.

The ground-state spin-parity of the target nucleus 185Re is J⇡

g.s. = 5/2+ [129], so

s-wave neutron capture results in a 186Re compound nucleus with an admixture of

2+ and 3+ spins. The total experimental capture cross section �0 is equal to the

sum of the cross sections �(+,�) for populating the low-spin (2+) and high-spin

(3+) resonances, and the cross section �(B) for populating any bound resonances

(with spin Jg.s. ± 1/2), according to the expression

�0 = �
�

(�) + �
�

(+) + �
�

(B). (58)
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Figure 26. Plot of modeled population versus experimental depopulation (P-D plot)
resulting from statistical-model calculations with a critical energy of E

c

= 746 keV,
using the MGLO model with k

0

= 2.9 for the PSF and the CTF model for the LD with
the parameterization described in Reference [114]. The calculations used to generate
this plot assume the level J

⇡ assignments summarized in Table 7 and the branching
ratio and multipole-mixing ratio adjustments described in the text.

There is one bound resonance with an energy of �4.466 eV relative to the

neutron-separation energy of 186Re, which has a tentative spin assignment of

J = (3) listed in Reference [111]. The expression in Equation (58) implies a

capture-state spin composition with a fraction F� in the low-spin 2+ state given by

F� =
�(�)

�0
. (59)
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Using values of �
�

(+) = 58.9 b for populating the J⇡ = 3+ state, �
�

(�) = 1.3 b for

populating the J⇡ = 2+ state, and �
�

(B) = 51.8 b from Reference [111], the

resulting fraction is F� = 0.012. Given the tentative nature of the J = (3) spin

assignment for the bound resonance, an alternative possibility is that the bound

resonance has spin J = 2, which would result in a fraction

F� =
�(�) + �(B)

�0
(60)

in the 2+ state, equal to F� = 0.474 using the cross sections from Reference [111].

Statistical-model calculations were performed using both capture-state spin

compositions, and the best agreement between modeled population and

experimental depopulation is consistently achieved with F� = 0.012. This

composition is adopted for all calculations described in this work, and our results

support the tentative claim of a J = (3) assignment for the bound resonance [111].

Discrete-level Spin-parity Assignments.

The spin and parity is known unambiguously only for the ground state of

186Re [3]. All excited states have only tentative assignments in the adopted level

scheme [3]. The simulated population of low-lying levels depends on their J⇡

assignments, and the population of specific levels is largely independent of the

choices of LD and PSF models. Therefore, a population-depopulation comparison

provides a means of checking tentative J⇡ assignments for individual levels. Using

the statistical model, we were able to confirm tentative assignments or suggest new

values based on optimal agreement with experimental data (revealed through P-D

plots) for all states below E
c

= 746 keV in 186Re. In this work, we have confirmed

32 previously tentative J⇡ assignments and recommend new assignments for seven

other levels in 186Re, which are summarized in Table 7. This technique of using
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statistical-decay model agreement with experimental data to propose J⇡

assignments has been employed previously in Reference [8].

Table 7. Level J

⇡ assignments from the ENSDF adopted level scheme [3] and the
proposed assignments from this work, based on observed agreement between experi-
mental depopulation and modeled population. Levels are arranged according to their
excitation energy E

x

.

E
x

(keV) J⇡

ENSDF J⇡

this work

351.25(3) (3)+ 4+

425.70(3) (2+, 3+, 4+) 4+

⇠471 (4)+ 6+

500.74(6) (4)+ 5+

549.16(5) (+) 5+

665.23(6) (5)+ 6+

680.21(4) (2�, 3�) 2�

The improvement in the P-D plots after adjusting the J⇡ assignments for the

351.3-, ⇠471-, 500.7-, and 665.2-keV levels is evident from the significant reduction

observed in the absolute residual di↵erences |R| between the modeled population

and the experimental depopulation for these levels, shown in Figure 27. Adjusting

the J⇡ assignment of a particular level can a↵ect the feeding to other levels below it

in the level scheme, so the proposals listed in Table 7 also improved agreement in

the P-D plots for several other levels, which can be seen in Figure 27.

The new assignments proposed in this work are discussed, in turn, below.

351.3-, 500.7-, and 665.2-keV levels. The 351.3-keV level has a spin-parity

assignment of (3)+ in the adopted level scheme [3], based on the existence of an E1

transition to the J⇡ = (3)�, 99.4-keV level. The multipolarity of this transition was

determined from conversion-electron spectrometry by Lanier et al. [60]. Glatz [61]

determined the 351.3-keV level to be the K⇡ = (3)+ band head, and placed the

J⇡ = (4)+, 500.7-keV and J⇡ = (5)+, 665.2-keV levels in the rotational band
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Figure 27. Plots of the absolute value of the residual di↵erence |R|, in units of standard
deviations �, between the modeled population and experimental depopulation as a
function of level excitation energy E

x

, for (a) levels before spin-parity adjustments,
and (b) after the spin-parity assignments for the 351.3-, ⇠471-, 500.7-, and 665.2-keV
levels are adjusted as described in the text. The ⇠330-keV level is highlighted because
its population is influenced by the J

⇡ assignment of the ⇠477-keV level that directly
feeds it. In both panels, the assignments for the 425.7-, 549.2-, and 680.2-keV levels
are taken to be the proposed values from Table 7. The horizontal dashed line identifies
a residual di↵erence of 3�. Both plots result from statistical-model calculations using
the MGLO model with k

0

= 2.9 for the PSF and the CTF model for the LD with the
parameterization described in Reference [114].

according to � � � coincidences from (n, �) reactions on 185Re. In this work,

agreement in the P-D plot for the 351.3-keV level is significantly improved when the

spin is increased to J = 4, as illustrated in Figure 27. A J⇡ = 4+ assignment for the

351.3-keV level remains consistent with the measured E1 multipolarity for the

251.9-keV transition to the 99.4-keV level. For the first member of the rotational

band built on the 351.3-keV band head, the agreement between the modeled

population and experimental depopulation is improved when the assignment for the

500.7-keV level is changed to J⇡ = 5+. The rotational band structure implies an

assignment of J⇡ = 6+ for the 665.2-keV level. Unfortunately the 164.5-keV

transition deexciting this level is part of a multiplet, and its intensity was adjusted

using the dicebox results, so the P-D plots before and after the spin adjustment

could not be compared.

425.7-keV level. This level has an indefinite spin-parity assignment of
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J⇡ = (2+, 3+, 4+) in the adopted level scheme [3], deduced from the existence of a

111.7-keV transition that feeds the J⇡ = (3)+ level at 314.0 keV. Of the three

suggested values for the 425.7-keV level, the J⇡ = 4+ assignment provides optimal

agreement between the modeled population and the experimental depopulation for

both the 425.7- and 314.0-keV levels.

⇠471-keV level. The J⇡ = (4)+ assignment in the ENSDF [3] for this level is

based on a tentative (⇡9/2�[514])� (⌫1/2�[510]) configuration from Reference [61]

and the existence of a mixed M1 + E2 transition feeding the J⇡ = (5)+ level at

⇠330-keV. Calculations assuming the adopted spin-parity assignment for the

⇠471-keV level produce a significantly greater population than the

experimentally-observed depopulation for both the ⇠330-keV level and the

⇠471-keV level, which is clear from Figure 27(a). Optimal agreement in the P-D

plot for both of these levels is achieved with a J⇡ = 6+ assignment for the ⇠471-keV

level (Figure 27(b)), and this assignment is consistent with a transition to the

J⇡ = (5)+, ⇠330-keV level with mixed M1 + E2 multipolarity. The J⇡ = 6+

assignment proposed in this work may suggest that the ⇠471-keV level is the first

member of a rotational band built on the K⇡ = (5)+, ⇠330-keV level.

549.2-keV level. No spin assignment for this level is provided in the adopted

level scheme [3], and it has only a tentative ⇡ = (+) parity assignment based on the

existence of a 123.5-keV M1(+E2) transition feeding the 425.7-keV level from (n, �)

and (d, p) measurements by Lanier et al. [60]. Assuming a J⇡ = 4+ assignment for

the 425.7-keV level as discussed above, the possible assignments for the 549.2-keV

level that are consistent with the measured M1(+E2) multipolarity for the

transition to the 425.7-keV level are J⇡ = 3+, 4+, and 5+. Of these, the J⇡ = 5+

assignment produces the best agreement in the resulting P-D plot.

680.2-keV level. In the adopted level scheme, this level has an indefinite
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spin-parity assignment of J⇡ = (2�, 3�) [3] due to the existence of � rays feeding the

J⇡ = 1� ground state, the J⇡ = (2)� level at 210.7 keV, and the J⇡ = (3)� state at

322.5 keV. A J⇡ = 2� assignment results in the best agreement between the

modeled level population and the experimental depopulation, and implies the three

�-ray transitions deexciting this level have some degree of M1 character.

Isomer Feeding, Multipole Mixing, and Branching Ratios.

Four other levels below E
c

also warrant discussion here:

148.2-keV level. The J⇡ = (8+) isomer, recently reported in Reference [22] to

have an excitation energy of 148.2(5) keV (cf. the adopted value of 149(7) keV [3]),

is very weakly populated due to its large spin di↵erence from the capture state.

There was no observation of the highly-converted 50-keV transition deexciting the

level [3] in the prompt �-ray spectrum. As a result, no P-D comparison could be

made. Calculations that include this level result in a cross section for populating

the isomer equal to 0.071(24) b. Two measurements have been made of the ratio of

thermal-neutron capture cross sections for the 185Re(n, �)186Rem and

185Re(n, �)186Reg reactions using activation techniques: 0.3% [21] and

0.54(11)% [17]. When combined with the adopted value of �0 = 112(2) b for

populating the 186Re ground state [111], these ratios yield isomer cross sections of

0.34(10) b and 0.60(12) b, respectively. The discrepancy between the measured and

calculated cross sections for isomer population may imply there are levels or

transitions missing from the adopted level scheme below E
c

that feed the isomer. A

recent investigation of 187Re(n, 2n) reactions by Matters et al. reported two feeding

levels at 414.9 keV and 796.1 keV [22], but because these levels have proposed

spin-parity assignments of J⇡ = (9+) and (10+) they are also weakly populated in

the (n, �) reaction, and their inclusion in the calculations does not correct the

107



discrepancy. Given the J⇡ = 6+ assignment proposed above for the ⇠471-keV level,

it is possible that this level feeds the isomer via an unplaced E2 transition with an

energy of ⇠323-keV. In the prompt �-ray spectrum, there are three such unplaced �

rays at 321.57(7) keV, 322.61(9) keV, and 323.99(7) keV, with partial cross sections

of 0.234(24) b, 0.204(21) b, and 0.143(14) b, respectively, which could partly

account for the discrepancy. Isomer feeding from the J⇡ = (6)�, ⇠186-keV level,

discussed below, is another possibility. These hypotheses could not be verified in

this study, because no � � � coincidence data was collected.

⇠186-keV level. The J⇡ = (6)�, ⇠186-keV level is directly fed by the J⇡ = (5)+,

⇠330-keV level via an E1 transition, and has a modeled population of 4.5(4) b. In

the adopted level scheme for 186Re, there are no transitions out of this level to

lower-lying levels [3], although a ⇠12-keV E2 transition to the J⇡ = 4�, 174.1-keV

level and a ⇠38-keV M2 transition to the 148.2-keV isomer have been proposed in

the literature (References [21], [60], and [61]). Both transitions would be highly

converted (↵ = 7.1⇥ 104 for the ⇠12-keV transition and ↵ = 1.0⇥ 103 for the

⇠38-keV transition), and their energies would be su�ciently low that they would

not be observable in the prompt 185Re(n, �) spectrum of this work. The modeled

population of the ⇠186-keV level gives an upper bound for the �-ray cross section of

each of these two possible transitions, which are listed in Table 6. It should be noted

that the modeled population and experimental depopulation of the 174.1-keV level

is balanced prior to including the ⇠12-keV transition in the calculations, but the

mixed M1 + E2, 74.7-keV � ray deexciting this level is part of a multiplet and its

cross section was normalized using the statistical model. In this work, the ENSDF

value of �
�

= 0.19(6) [3] for the multipole-mixing ratio (adopted on the basis of

subshell ratios from Reference [60]) was used to arrive at a conversion coe�cient of

↵ = 11.96 for this transition. Another value for the mixing ratio, �
�

= 0.9(2), has
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been proposed [3] based on the value of ↵
L1 = 0.93(13) from Reference [60], which

would result in a conversion coe�cient of ↵ = 12.82 and further increase the

depopulation of the 174.1-keV level. Finally, the possibility of an unobserved

27.8-keV M1 transition from the 174.1-keV level to the J⇡ = 3�, 146.2-keV level

suggests that the agreement in the P-D plot for the 174.1-keV level could be

maintained with the inclusion of significant feeding from the ⇠186-keV level.

378.5-keV level . For most levels, optimum agreement in the P-D plot is obtained

when the mean or limiting values of the experimentally-measured multipole-mixing

ratios [3] are used to compute internal conversion coe�cients. In cases where

adjusting the mixing ratio (within the limits of the uncertainty in the adopted

value) significantly improves the agreement between the modeled population and

the experimental depopulation, statistical-model calculations may be used to infer

better values for the mixing ratios. For the 62.2-keV transition from the 378.5-keV

level to the 316.5-keV level, the multipolarity from the ENSDF is given as

M1(+E2), with an upper bound on the mixing ratio of �
�

 1.0 [3].

Statistical-model results suggest that transition has pure M1 multipolarity, because

a mixing ratio of �
�

= 0 optimizes agreement in the P-D plot for the 378.5-keV level

while simultaneously improving agreement for the 316.5-keV level. This

improvement is evident from the residuals plots shown in Figure 28.

534.3-keV level. The ENSDF branching ratio for the 259.8-keV � ray deexciting

the 534.3-keV level is quoted as I
�

= 31 (with no stated uncertainty) relative to the

intensity of I
�

= 100(15) for the 360.5-keV � ray deexciting the same level [3]. The

branching ratios in the ENSDF for the 534.3-keV level were determined from the

work of Lanier et al., in which prompt �-ray spectra from (n, �) reactions on 185Re

were measured using a bent-crystal spectrometer [60], and are not reported

elsewhere in the literature. The 259.8-keV � ray is part of a multiplet, and
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Figure 28. Plots of the absolute value of the residual di↵erence |R|, in units of stan-
dard deviations �, between the modeled population and experimental depopulation as
a function of level excitation energy E

x

, assuming (a) mixed M1 + E2 character for the
62.2-keV transition deexciting the 378.5-keV level with a mixing ratio of �

�

= 1.0 [3],
and (b) pure M1 character (�

�

= 0) for this transition. The horizontal dashed line iden-
tifies a residual di↵erence of 3�. Both plots result from statistical-model calculations
with the J

⇡ assignments from Table 7 assumed, using the MGLO model with k

0

= 2.9
for the PSF and the CTF model for the LD with the parameterization described in
Reference [114].

normalizing its partial cross section to that of the 360.5-keV � ray using the ENSDF

branching ratios results in a modeled population that exceeds the experimental

depopulation by a residual di↵erence of 3.5�. The 534.3-keV level is fed by a

relatively strong E1 primary transition with E
�

= 5645.07(20) keV, so increasing

the spin from its adopted assignment of J⇡ = (4)� to improve agreement in the P-D

plot is not possible. Agreement between the modeled population and experimental

depopulation for the 534.3-keV level, as well as the 378.5-keV level fed by the

259.8-keV � ray, is optimized when the branching ratio is adjusted to I
�

= 80(10)

relative to the intensity of the 360.5-keV � ray stated above. On the basis of the

observed improvement in the P-D plot, we assess that the branching ratios in the

ENSDF for this level may be incorrect, and we have adopted the revised value of

the relative intensity, I
�

= 80(10), for statistical-model calculations in this work. A

possible alternative explanation for the lack of agreement observed in the P-D plot
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could be an unplaced � ray that deexcites the 534.3-keV level.

4.5.2 Total Radiative Thermal-neutron Capture Cross Section for

185Re(n, �).

After arriving at a list of partial �-ray production cross sections �
�

and making

the adjustments to the level scheme described above, dicebox was used to compute

the fraction P0 of the total capture cross section �0 resulting from ground-state

feeding from the quasicontinuum. The sum of the internal-conversion-corrected

experimental cross sections
P

i

�exp
�i0 (1 + ↵

i

) for feeding the ground state from levels

below E
c

= 746 keV was used with the calculated value of P0 in Equation (56) to

calculate a total 185Re(n, �) thermal-neutron capture cross section �0 for a variety of

PSF and LD model combinations. The agreement between the calculated mean

s-wave resonance radiative width �0 and the adopted value of

h�0i = 56(3) meV [111] was also used to assess the choices of LD and PSF models

and parameters used in the calculations. The results of these calculations are shown

in Table 8.

It is evident from Table 8 that the particular choices of PSF and LD models and

LD parameterization used do not produce statistically-significant changes in the

value of �0, which permits the determination of a model-independent value for �0.

However, the s-wave resonance radiative width �0 is relatively sensitive to the

choices of PSF and LD models. This observed sensitivity in the calculated value of

�0 to the choice of models has been observed previously in studies involving the

tungsten [8, 90] and palladium [87] isotopes. The best agreement in the P-D plots

was consistently achieved with the MGLO/CTF combination of PSF/LD models,

using the LD parameterization from Reference [114], while the KMF/BSFG model

combination with the LD parameters from Reference [114] most accurately
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Table 8. Total radiative thermal-neutron capture cross sections (�
0

), simulated frac-
tions of transitions from the quasicontinuum to the ground state (P

0

), and mean s�wave
resonance radiative widths (�

0

), corresponding to various combinations of E1 PSF
and LD models and LD parameterizations. Fluctuations in �

0

and P

0

, which lead
to the uncertainties in the tabulated values, result from di↵erent nuclear realizations.
For each combination, the sum of the internal-conversion-corrected experimentally-
measured cross sections from levels below E

c

= 746 keV directly to the ground state
is

P
i

�

exp

�i0
(1 + ↵

i

) = 106.8(57) b.

PSF/LD P0 �0 (b) �0 (meV)
MGLO/CTFa 0.0400(59) 111.2(60) 43.8(9)
MGLO/CTFb 0.0380(57) 111.0(59) 39.6(7)
MGLO/BSFGa 0.0366(51) 110.9(59) 78.6(9)
MGLO/BSFGb 0.0337(50) 110.5(59) 101.8(25)
GLO/CTFa 0.0395(55) 111.2(60) 27.6(4)
GLO/CTFb 0.0376(56) 111.0(59) 25.4(3)
GLO/BSFGa 0.0360(52) 110.8(59) 48.8(4)
GLO/BSFGb 0.0334(42) 110.5(59) 62.6(11)
KMF/CTFa 0.0409(61) 111.3(60) 32.7(6)
KMF/CTFb 0.0392(53) 111.1(60) 29.4(5)
KMF/BSFGa 0.0376(51) 111.0(59) 58.7(6)
KMF/BSFGb 0.0342(44) 110.6(59) 74.9(17)
BA/CTFa 0.0403(75) 111.3(60) 89.4(23)
BA/CTFb 0.0376(66) 111.0(60) 75.1(16)
BA/BSFGa 0.0367(60) 110.9(59) 164.5(21)
BA/BSFGb 0.0332(65) 110.5(59) 204.4(60)

aAssuming the LD parameterization from Reference [114].
bAssuming the LD parameterization from Reference [115].

reproduced the literature value of �0. We tested parity-dependent as well as

parity-independent LD models in this work, and the results for these two options

are fully consistent. The values for P0 from Table 8 were used to obtain a

model-independent total radiative thermal-neutron capture cross section of

�0 = 111(6) b, which is in perfect agreement with the adopted value of

�0 = 112(2) b from Reference [111]. This value is also statistically consistent with

each of the previous cross section measurements listed in Table 9.

The stability in the value of �0 as a function of E
c

, which is similar to the
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behavior observed in the tungsten isotopes investigated in References [8, 90], is

shown in Figure 29. It is evident from Figure 29 that the experimental contribution
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Figure 29. Plot of the variation in the total radiative-capture cross section �

0

and
the sum of the experimental cross sections

P
i

�

exp

�i0

for feeding the ground state as a
function of the critical energy E

c

, assuming the MGLO/CTF combination of PSF/LD
models with an enhancement factor of k

0

= 2.9 and the LD parameterization from
Reference [114].

P
i

�exp
�i0 (1 + ↵

i

) and �0 have converged to a statistically-consistent value by

E
c

= 317 keV, though the study described in this work was extended up to

E
c

= 746 keV to make a more complete assessment of the 186Re level scheme.

4.5.3 Neutron-separation Energy for 186Re.

The primary � rays listed in Table 6, a subset of which is shown in Figure 21,

were used to determine the neutron separation energy S
n

for 186Re by applying a

global least-squares fit to the level energies from References [3, 63], including a

correction for nuclear recoil. The resulting value for the neutron separation energy

is S
n

= 6179.59(5) keV. This value is reasonably consistent with the adopted value

S
n

= 6179.35(18) keV from the 2012 Atomic Mass Evaluation (AME) [44], but the

uncertainty on the value measured in this work is significantly smaller than the
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adopted value. The least-squares fit also produced smaller uncertainties in the

excitation energies of known levels, listed in Table 6, than those reported in the

adopted level scheme [3].

4.6 Conclusions

Past measurements of the total radiative thermal-neutron capture cross section

for 185Re have primarily been performed using neutron activation techniques. The

neutron activation method requires precise knowledge of the neutron flux incident

on the target, and determination of the cross section typically involves corrections

for fast and epithermal contributions to the flux. In this work, we used the PGAA

technique to measure �-ray production cross sections for the 185Re(n, �) reaction,

standardized using known 35Cl(n, �) cross sections from measurements with a

stoichiometric natReCl3 target. The measured partial cross sections were combined

with statistical-decay modeling to calculate a total radiative thermal-neutron

capture cross section of �0 = 111(6) b for 185Re(n, �), which independently confirms

the results of earlier measurements made using activation and pile oscillator

techniques. The existing literature values for �0 are compared with the

measurement from this work in Table 9.

Spectroscopic analysis of the experimental prompt �-ray data resulted in the

discovery of 50 newly-observed primary � rays, which were combined with literature

values for discrete-level energies in 186Re to arrive at a new measurement of

6179.59(5) keV for the neutron separation energy in 186Re. The independent

measurement from this work, which has a smaller uncertainty than the adopted

value from the 2012 AME [44], provides a useful input to future atomic mass

evaluations.

Comparison of the modeled population, calculated using the dicebox code,
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Table 9. Summary of total thermal-neutron capture cross section (�
0

) measurements
on 185Re.

Reference Method �0 (b)
This work PGAA 111(6)
Mughabghab [111] Evaluation 112(2)
Seren et al. [130] Activation 101(20)
Pomerance [131] Pile oscillator 100(8)
Lyon [132] Activation 127.0(127)
Karam et al. [133] Activation 96.5(100)
Friesenhahn et al. [134] Activation 105(10)
Heft [135] Activation 116(5)
De Corte et al. [136] Activation 112(18)a

Hayakawa et al. [17] Activation 132(26)
Farina-Arbocco et al. [137] Activation 111.6(11)
aCalculated using I0 from Reference [111].

with the experimentally-measured depopulation for individual levels is a powerful

tool for evaluating the accuracy and completeness of nuclear-structure information.

The results presented in this work include proposed adjustments to seven level J⇡

assignments and confirmation of all other tentative J⇡ assignments in the 186Re

level scheme [3] below an excitation energy of 746 keV. These results, combined

with reduced uncertainties in level energies resulting from the global least-squares

fit to the �-ray and level energies, represent significant improvements to the 186Re

level scheme.
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V. (d, 2n) Reactions on 186W

The lack of useful �-� coincidence data from the GEANIE experiment described

in Chapter III severely limited the ability to place new transitions in the 186Re level

scheme. The desire to uncover more of the structure above the isomer in 186Re, and

in particular to search for IS that could enable isomer depletion, led to experiments

designed to measure �-ray coincidences from (d, 2n) reactions on 186W using detector

arrays with higher e�ciencies than GEANIE. The analysis of the data obtained

from these experiments resulted in a draft manuscript, which is in preparation for

submission to Physical Review C. This chapter contains the full text of the draft

manuscript, titled “In-beam spectroscopy of medium-spin states in 186Re.”

The draft manuscript was prepared by the primary author, who was responsible

for the analysis of the data from the two experiments described in this work. F. G.

Kondev of Argonne National Laboratory (ANL) was the principal investigator both

experiments, and his direction and oversight were essential to the data analysis and

manuscript preparation. M. P. Carpenter of ANL oversaw the CAGRA

experimental campaign at RCNP and built the data acquisition system, and he

provided essential direction to the primary author for sorting and analyzing the

data from this experiment. J. J. Carroll of ARL participated in the CAGRA

experiment, and together with C. J. Chiara provided key insights and direction to

the primary author during the data analysis and manuscript preparation. J. W.

McClory of AFIT provided guidance during the data analysis and reviewed the

draft manuscript. G. D. Dracoulis, G. J. Lane, A. P. Byrne, P. M. Davidson, T.

Kibédi, P. Nieminen, A. N. Wilson, and R. O Hughes, all of ANU, participated in

the experiment there involving the CAESAR detector array. E. Ideguchi, Y. Fang,

Y. Yamamoto, H. J. Ong, D. T. Tran, N. Aoi, S. Kanaya, and A. Odahara of Osaka

University, Japan, ran the CAGRA experimental campaign. S. Noji and Y. Ayyad
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of the National Superconducting Cyclotron Laboratory at Michigan State

University also participated in the CAGRA campaign. H. Watanabe, currently of

RIKEN, Japan, participated in both the ANU and RCNP experiments. S. Zhu,

R. V. F. Janssens, T. Lauritsen, C. R. Ho↵man and B. P. Kay of ANL were

responsible for key aspects of the CAGRA experimental campaign.

5.1 Abstract

Excited states in 186Re with spins up to J = 12~ were investigated in two

separate experiments that involved measuring �-ray coincidences from 186W(d, 2n)

reactions at deuteron energies of 12.5 MeV and 14.5 MeV. Two- and three-fold

coincidence data were collected using the CAESAR and CAGRA spectrometers,

respectively, both high-e�ciency Compton-suppressed HPGe detector arrays.

Analysis of the data revealed six rotational bands built on medium-spin intrinsic

states, including the astrophysically-important K⇡ = (8+) isomer. Additions to the

186Re level scheme include 26 � rays and 12 levels not previously reported. Band

assignments were supported by an analysis of g
K

� g
R

values, and experimental

intrinsic-state energies were compared with the results of multi-quasiparticle blocked

BCS calculations based on the Lipkin-Nogami method.

5.2 Introduction

The low-spin structure of 186Re has been previously investigated using (n, �),

(n, p), (n, t), (d, p), and (p, d) reactions [21, 43, 60, 61, 62, 63], while limited

experimental work has informed the study of higher-spin states in this nucleus. As a

result, the evaluated level scheme [3] is relatively well-developed in the low-spin

(J  6~) region, but little information exists on states at higher spins. A recent

experiment involving 187Re(n, 2n) reactions revealed several new levels and

117



transitions assessed as feeding the long-lived , K⇡ = (8+) isomer [22], but a lack of

useable coincidence data from this experiment limited the placement of new � rays

in the level scheme. Interest in elucidating the structure above the 186Rem isomer

motivated experiments involving 186W(d, 2n) reactions using high-e�ciency

Compton-suppressed HPGe arrays.

Accurate cross sections for producing the 186Rem isomer via slow-neutron

capture on 185Re are important to reducing nuclear-physics uncertainties in the

187Re/187Os cosmochronometer [17]. Previous measurements of this cross

section [17, 21] suggest that the 186Rem isomer contributes negligibly to the

chronometer error. However, these measurements have been performed using

neutron-activation techniques, which are sensitive to the imprecisely-known [21]

isomer half-life. Provided pathways for isomer feeding are known, the

185Re(n, �)186Rem cross section can be calculated using a statistical model of the

capture-� cascade (e.g., Reference [43]) that is independent of the isomer half-life.

Of further astrophysical interest is the identification of intermediate states (IS)

between the isomer and ground state. At stellar temperatures, the population of the

186Rem isomer might be a↵ected by 186Re(�, �0)186Rem (photoactivation) and

186Rem(�, �0)186Re (photodepletion) reactions. Such thermal coupling between the

isomer and ground states has the potential to increase the production of the 186Rem

isomer in the nucleosynthesis of 187Re and 187Os. Using methods analogous to those

described in Reference [69] for 180Ta and 176Lu, a temperature-dependent e↵ective

half-life for 186Re can be estimated given the IS energies. Knowledge of cross

sections for production and destruction of the 186Rem isomer would be useful for

bounding errors in the 187Re/187Os chronometer.
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5.3 Experiments

The analysis described in this work involved data from two separate experiments,

performed at the Australian National University (ANU) and the Research Center

for Nuclear Physics (RCNP) at Osaka University, Japan. Both were investigations

of (d, 2n) reactions on enriched 186W targets, but beam availability and di↵erences

in the individual detector arrays made it advantageous to perform two experiments.

In the first experiment, the 14UD Pelletron accelerator at ANU was used to

produce a direct-current deuteron beam at energies ranging from 12 – 18 MeV,

which was directed at an 80%-enriched 186W foil target with an areal density of

6 mg/cm2. The excitation function for the 186W(d, 2n) reaction was mapped in this

energy range by collecting and analyzing singles �-ray spectra. Runs were

subsequently performed at a beam current of 0.5 pnA and beam energies of

12.5 MeV and 14.5 MeV, which were chosen to maximize production of the 186Rem

isomer while suppressing other reaction channels (particularly the (d, 3n) channel).

The CAESAR detector array was used to collect two-fold (�-�) coincidence data

over periods of 17.5 h and 33.0 h at deuteron energies of 12.5 MeV and 14.5 MeV,

respectively. For this experiment, the CAESAR array consisted of nine

Compton-suppressed HPGe detectors and two unsuppressed planar low-energy

photon spectrometers (LEPS) [138]. Calibration spectra were recorded using

standard 133Ba and 152Eu calibration sources.

The second experiment was performed using the Clover Array Gamma-ray

spectrometer at RCNP/RIBF for Advanced research (CAGRA). The CAGRA array

was developed jointly between the U.S. and Japan and consisted of 16 Clover-type

HPGe detectors, Compton-suppressed using bismuth germanate shields. The

detectors were arrayed such that four each were angled at 45� and 135� to the

incident beam path, and eight were oriented at 90� to the beam. The target used in
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the RCNP experiment was identical to that used in the ANU experiment, and it

was centrally positioned inside the CAGRA array at a distance of approximately

14 cm from each detector face. The ring cyclotron at RCNP [139] was used to

accelerate deuterons to 14.5 MeV, and the target was irradiated for seven days at an

average beam current of between 1.0� 2.5 pnA. Two-fold and higher data were

collected with the CAGRA spectrometer, which was also calibrated using standard

133Ba and 152Eu calibration sources.

5.4 Analysis and Results

The �-ray coincidence data from the CAESAR array were sorted into

symmetrized two-dimensional E
�

-E
�

histograms (matrices), while the prompt �-ray

events from CAGRA were sorted into a three-dimensional E
�

-E
�

-E
�

histogram

(cube). Analysis of matrices from CAESAR was performed using the Escl8r

program from the Radware analysis package [81, 140, 141], and the cube from

CAGRA was analyzed with the levit8r program. The partial level scheme for

186Re determined in this work, which includes the rotational bands built on intrinsic

states with K � 4, is displayed in Figure 30. The level scheme was constructed on

the basis of observed �-ray coincidence relationships in the two-fold data from

CAESAR, and �-ray placements were supported by a parallel analysis of the

three-fold data from CAGRA. For � rays with E
�

> 100 keV the statistical

uncertainty in the transition energies is ±0.5 keV, while those � rays with

E
�

< 100 keV were measured with the LEPS detectors and are stated with an

uncertainty of ±0.2 keV.

Gates on the known 141.1-keV and 144.0-keV transitions [Figure 31(a)] from the

adopted level scheme [3] revealed states in a band built on the 324.4-keV level. The

energy of this state, which was previously known only approximately, was
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Figure 30. Partial 186Re level scheme from the present work, with measured �-ray
transition energies in plain text and level energies in italics. Tentative transitions and
assignments are identified with parentheses. The J

⇡ = 3� level at 99.4 keV is shown to
illustrate the decay path to the 1� ground state from the 5+, 324.4-keV level through
the 4�, 174.1-keV level. The proposed configurations discussed in the text for the
K

⇡ = 4�, 5+, and (8+) bands are listed at the bottom of the figure.

established on the basis of an observed 150.3-keV � ray that is part of a �-ray

cascade to the ground state. Placement of the 150.3-keV �-ray also helped establish

the energies of the 180.4 keV, 465.5 keV, and 556.2 keV states, which are listed as

approximate in the ENSDF [3, 4].

The J⇡ = 5+ and J⇡ = (6)� assignments for the 324.4-keV and 180.4-keV levels

are supported by E1 multipolarities of the 150.3-keV and 144.0-keV transitions,

which were deduced from balancing the relative intensities of the low-energy

transitions into and out of the 324.4-keV level. Internal conversion was assumed to

be responsible for the di↵erence between the measured incoming and outgoing �-ray

intensities, which permitted extraction of the internal-conversion coe�cients for

comparison with coe�cients calculated using BrIcc [28, 29]. Relative transition

intensities, corrected for detector e�ciency, were measured by fitting spectra

obtained from gating on the 186.1-keV � ray in the CAESAR coincidence data.

From this analysis, which is summarized in Table 10, we concluded that both the
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Figure 31. Representative gated �-ray spectra from the coincidence data obtained
with the CAESAR spectrometer, showing (a) the sum of gates on the 141.1-keV and
144.0-keV � rays, and (b) the sum of gates on the 266.7-keV and 381.2-keV � rays.
Contaminant �-ray peaks are identified with asterisks (*), while other � rays in 186Re
not connected to the K � 4 bands of Figure 30 are labeled with triangles (�).

144.0-keV and 150.3-keV transitions have pure E1 character.

Isomer feeding via a 266.7-keV � ray from a J⇡ = (9+) level at 414.9 keV and

381.2- and 647.6-keV � rays from a J⇡ = (10+) level at 796.1 keV was proposed in

Reference [22] on the basis of an analysis of 187Re(n, 2n�) excitation functions.

Gates on the 266.7-keV and 381.2-keV � rays in the CAESAR �-� coincidence data

revealed other � rays likely involved in feeding the isomer, both intra-band and

inter-band, shown in Figure 31(b). A double gate on the strong 266.7-keV and

381.2-keV � rays in the CAGRA �-�-� coincidence data revealed transitions at

323.4 keV and 494.7 keV, which established the existence of levels at 1119.5 keV
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Table 10. Relative �-ray intensities (I
�

) for the 141.1-, 144.0-, and 150.3-keV � rays,
measured by gating on the 186.1-keV � ray in the CAESAR coincidence data. The
internal-conversion-corrected intensities I

�

(1 + ↵) for transitions feeding and deexcit-
ing the 324.4-keV level are shown for a variety of assumed transition multipolarities
M� for the 144.0-keV and 150.3-keV transitions. Internal-conversion coe�cients (↵)
were calculated using BrIcc [28]. The summed intensity of the outgoing 144.0-keV and
150.3-keV transitions most closely matches the incoming intensity due to the 141.1-keV
transition when the outgoing transitions both have pure E1 character (identified with
bold text).

E
�

[keV] I
�

[arb.] M� ↵ I
�

(1 + ↵)
141.1(5) 1.10(6) M1 + E2 1.56(2)a 2.82(16)

144.0(5) 2.43(12) E1 0.150(2) 2.79(14)
M1 1.83(2) 6.88(3)
E2 1.02(1) 4.91(24)

150.3(5) 0.32(2) E1 0.134(2) 0.36(2)
M1 1.62(2) 0.83(5)
E2 0.87(1) 0.60(4)

aMultipole-mixing ratio � = 0.9 [3] used to calculate ↵

and 1290.8 keV.

5.5 Discussion

A discussion of the evidence supporting the level assignments proposed in this

work (shown in Figure 30) follows in this section. Level configurations and band

assignments were motivated by a comparison of experimental level energies with the

results of multi-quasiparticle Nilsson-type calculations, as well as an analysis of

measured and calculated g-factors for each rotational band.

5.5.1 Multi-quasiparticle Blocking Calculations.

Multi-quasiparticle blocked BCS calculations were performed to arrive at

energies of intrinsic states in 186Re for comparison with experimental level energies.

The results of the calculations are listed in Table 11 together with the experimental
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data. The technique for calculating the intrinsic-state energies involved first

producing a set of basis states by calculating the Nilsson levels at the equilibrium

deformation parameters "2 = 0.200 and "4 = 0.093 from Reference [142]. This was

followed by adjusting the level energies near the Fermi surface to reproduce the

average experimental one-quasiparticle energies in 185,187Re (for neutrons) and 187W,

187Os (for protons). Pairing correlations were handled using the Lipkin-Nogami

prescription, as described in Reference [143], with fixed monopole pairing strengths

G
⌫

= 18.0/A and G
⇡

= 20.8/A. Finally, the predicted energies of the

multi-quasiparticle states were corrected for residual interactions using the methods

described in Reference [144]. In most cases, agreement within 100 keV between the

experimental and calculated level energies was achieved for levels below 1 MeV.

5.5.2 Branching Ratios and g
K

� g
R

Analysis.

Rotational-band configurations have been supported in previous studies by an

analysis of g
K

� g
R

values [37, 38, 39, 40]. In the rotational model of the nucleus,

the di↵erence g
K

� g
R

between the intrinsic and rotational g-factors should be a

constant for all the rotational states in a given band [37]. The magnitude of the

quantity
���gK�gR

Q0

���, where Q0 is the intrinsic quadrupole moment, can be determined

from experimental measurements of �-ray branching ratios for intra-band �J = 1

and �J = 2 transitions deexciting a particular state. This value is given by the

expression ����
g
K

� g
R

Q0

���� = 0.933
E1

�
p
J2 � 1

, (61)

in which E1 is the energy of the �J = 1 transition in MeV, J is the initial-level

spin, and the M1 + E2 multipole-mixing ratio � can be determined (up to its sign)
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Table 11. Selected two-quasiparticle states in 186Re. Calculated intrinsic-state energies
(E

calc

) include the modeled two-quasiparticle energies E

qp

combined with the strength
of the residual interaction E

res

as described in the text. The calculated values are
compared with experimental results from this work for states with K � 4. Lower-K
states are listed with energies and configurations taken from literature [3, 43, 61] to
show agreement with the calculations.

K⇡

Configuration Eqp Eres Ecalc
a Eexp

⇡ ⌫ [keV]

1

� 5/2+[402] 3/2�[512] 0 -78 0 0.0
4

� 5/2+[402] 3/2�[512] 0 78 156 174.1
3

� 5/2+[402] 1/2�[510] 26 -55 49 99.4
2

� 5/2+[402] 1/2�[510] 26 55 159 210.699b,c

8

+ 5/2+[402] 11/2+[615] 201 -125 154 148.2d

3

+ 5/2+[402] 11/2+[615] 201 125 403 314.009b,c

6

� 5/2+[402] 7/2�[503] 245 -97 227 180.4d

1

� 5/2+[402] 7/2�[503] 245 97 420 316.463b,c

2

� 5/2+[402] 9/2�[505] 784 -75 788 577.723b,c

7

� 5/2+[402] 9/2�[505] 784 75 937

6

+ 9/2�[514] 3/2�[512] 286 -77 288 556.2d

3

+ 9/2�[514] 3/2�[512] 286 77 441 351.202b,c

5

+ 9/2�[514] 1/2�[510] 312 -72 319 324.4
4

+ 9/2�[514] 1/2�[510] 312 72 462 425.823b,e

10

� 9/2�[514] 11/2+[615] 487 -143 422

1

� 9/2�[514] 11/2+[615] 487 143 707 761.42b,f

8

+ 9/2�[514] 7/2�[503] 531 -107 502

1

+ 9/2�[514] 7/2�[503] 531 107 716 601.58b,c

0

+ 9/2�[514] 9/2�[505] 1070 -107 1041

9

+ 9/2�[514] 9/2�[505] 1070 107 1255

a

Calculated energies relative to the K⇡

= 1

�
state,

Eqp(1
�
) + Eres(1

�
) = �78 keV

b

Level energy from ENSDF [3]

cK⇡

assignment from Reference [61]

dK⇡

assignment proposed as tentative in this work

eK⇡

assignment from Reference [43]

fJ⇡

assignment listed in ENSDF as (1

�
,2

�
,3

�
) [3]

from the equation

�2

1 + �2
=

2K2(2J � 1)

(J �K � 1)(J +K � 1)(J + 1)

✓
E1

E2

◆5
T2

T1
. (62)
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In Equation (62), K is the spin of the band head, E2 is the energy of the �J = 2

transition, and T2/T1 is the ratio of the �-ray intensities of the �J = 2 and �J = 1

transitions [40]. The intrinsic quadrupole moment Q0 = 6.18(6) eb was determined

from the ENSDF value for the quadrupole moment Q = +0.618(6) eb of the

J⇡ = 1� ground state [3] using the rotational-model expression from Reference [33],

Q0 =
(J + 1)(2J + 3)

3K2 � J(J + 1)
Q. (63)

Experimental |g
K

� g
R

| values obtained using Equations (61) and (62) were

compared with calculated values for the proposed Nilsson configurations of each

rotational band. The intrinsic g-factors for two-quasiparticle states in 186Re were

obtained from those of the proton (⇡) and neutron (⌫) orbitals via the expression

g
K

=
⌦

⇡

(g
K

)
⇡

+ ⌦
⌫

(g
K

)
⌫

K
, (64)

where the ⌦
i

are the proton and neutron spin projections on the axis of nuclear

symmetry, so that K = ⌦
⇡

+ ⌦
⌫

. The g
K

values for the single-nucleon orbitals were

calculated using the following prescription:

g
K

= g⇤ + (g⌃ � g⇤)
hs3i
⌦

, (65)

where the orbital g-factor is

g⇤ =

8
>><

>>:

0 for neutrons

1 for protons,

(66)

and the intrinsic g-factors for neutrons and protons are equal to 0.7 times their free

126



Table 12. Gamma-ray energies E

2

and E

1

, and branching ratios T

2

/T

1

for intra-band
�J = 2 and �J = 1 transitions used to determine experimental |g

K

� g

R

| values for
the K

⇡ = 4�, 5+, and (8+) rotational bands in 186Re. Calculated g

K

� g

R

values are
included for comparison with the weighted means of the experimental values for each
band.

Band K⇡ E
i

J⇡

i

E1 E2 T2/T1 |g
K

� g
R

|expa (g
K

� g
R

)calc
b

[~] [keV] [~] [keV] [keV]
4

�
497.3 6

�
179.2(5) 323.5(5) 0.26(2) 0.82(3) 0.93

Weighted mean: 0.82(3)

5

+
651.6 7

+
186.1(5) 327.5(5) 0.053(5) 1.008(56) 0.73

869.1 8

+
217.5(5) 403.8(5) 0.140(14) 1.054(62)

1115.1 9

+
246.0(5) 463.7(5) 0.50(5) 0.721(46)

1386.3 10

+
271.2(5) 517.1(5) 1.18(11) 0.563(32)

Weighted mean: 0.73(5)

(8

+
) 705.3 10

+
290.4(5) 557.1(5) 1.60(13) 0.084(17) 0.05

1018.0 11

+
312.7(5) 603.3(5) 0.30(5) 0.09(4)

Weighted mean: 0.08(3)
a

Determined using Q0 = 6.18(6) eb [3, 33]

b

Calculated using g
R

= 0.28 [36]

values of -3.83 and +5.59, respectively [40]:

g⌃ =

8
>><

>>:

�2.681 for neutrons

3.913 for protons.

(67)

The quantity hs3i is the expectation value of the intrinsic-spin projection on the

deformation axis [40]. The prescription above was applied in Woods-Saxon

calculations with deformation parameters �2 = 0.221, �4 = �0.094, and �6 = 0.010

[30] to yield theoretical g
K

values. These g
K

values were applied with g
R

= 0.28

determined using the standard approximation g
R

= 0.7Z/A [36] to arrive at the

values of g
K

� g
R

listed in Table 12.

Intra-band branching-ratio data were limited due to the fact that gates were
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routinely contaminated with 185Re � rays from the 186W(d, 3n) reaction channel.

The results of Table 12 show agreement between the measured and calculated

|g
K

� g
R

| values for the K⇡ = 5+ and (8+) bands, supporting the Nilsson

configurations in Figure 30 and Table 11 for these bands. In the case of the

K⇡ = 4� band, where the calculated and experimental g
K

� g
R

values disagree, the

discrepancy is not large enough to suggest an alternative configuration to that

proposed here without additional branching-ratio data.

5.5.3 Configuration Assignments.

Much of the band structure and intrinsic-state configurations in the adopted

level scheme [3] are from the work of J. Glatz [61], which involved an analysis of

prompt and delayed �-� coincidences following slow-neutron capture on 185Re. The

known low-spin structure of 186Re can be described generally by the coupling of a

proton in the 5/2+[402] orbital to neutrons in the 1/2�[510], 3/2�[512], 7/2�[503],

and 9/2�[505] orbitals. Due to Coriolis mixing, transitions between levels in

di↵erent rotational bands that are built on these states are numerous [61].

Transitions between the lower-K bands and those built on higher-spin intrinsic

states with neutrons in the 11/2+[615] orbital or protons in the 9/2�[514] orbital

generally have |�K| > 1, so Coriolis mixing is forbidden. These bands are not as

well-studied as those built on the low-K states, since higher-spin states are not

strongly populated in (n, �) reactions. A discussion of the bands that appear in

Figure 30, which are the subject of this work, follows.

K⇡ = 5+ band and K⇡ = (6+), (6)� levels.

The adopted level scheme for 186Re includes unconfirmed levels at ⇠330, ⇠471,

and ⇠562 keV that are expected to deexcite through a J⇡ = (6)� level at
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⇠186 keV [3]. The adopted spin-parity assignments for the ⇠330, ⇠471, and

⇠562 keV levels are (5)+ , (4)+ and (6+), respectively [3], though Matters et al.

proposed a revised assignment of J⇡ = 6+ for the ⇠471-keV level on the basis of

statistical modeling of the 185Re(n, �)186Re cascade [43].

Observation of a 150.3-keV �-ray in coincidence with the 141.1-keV � ray and

the other transitions in the K⇡ = 5+ band connects the previously-unconfirmed

level at ⇠330 keV to the J⇡ = 4�, 174.1-keV level from the adopted level scheme [3].

As described earlier, this establishes the energy of the J⇡ = 5+ state at 324.4 keV as

well as the energies of the K⇡ = (6)� and (6+) levels. Observed �-ray coincidences

support the placement of the ⇠471-keV level in the rotational band built on the

324.4 keV state, which confirms the J⇡ = 6+ assignment proposed in Reference [43]

for this level and leads to an improved excitation energy of 465.5 keV.

The proposed Nilsson configurations for the K⇡ = 5+ and (6)� states listed in

Table 11 result in excellent agreement between the empirical excitation energies

from this work and the calculated values. However, in the case of the 556.2-keV

level, a J⇡ = (6+) assignment as in Reference [3] leads to a di↵erence of 268.2 keV

between the experimental and calculated level energies.

K⇡ = (8+) band and K⇡ = (10+), (11+) levels.

The known level structure of the neighboring odd-odd isotope 184Re was useful

as a guide for �-ray placement and level J⇡ assignments above the isomer in 186Re.

184Re has a long-lived J⇡ = 8(+) isomer (T1/2 = 169(8) d) with an excitation energy

of 188.0463(17) keV [84]. The tentative Nilsson configuration for the 184Rem isomer

is (⇡5/2+[402]) + (⌫11/2+[615]) [40, 84], identical to that of the 186Rem isomer

[21, 3], suggesting that the structures above the isomers in 184Re and 186Re share

similarities. This configuration in the blocked BCS calculations (Table 11)

129



reproduces the experimental isomer energy of 148.2 keV to within 6 keV.

The placement of � rays in the isomer band that were observed in the CAESAR

and CAGRA data sets in coincidence with the 266.7 keV � ray di↵ers from the level

scheme presented in Reference [22]. The placement presented in this work, in which

the 381.2-keV and 647.6-keV � rays feed the isomer from a K⇡ = (10+) band, agrees

more closely with the known level structure in the isomer band of 184Re [40, 84], and

it is supported by the g
K

� g
R

analysis described above. Observation of a 433.0-keV

� ray in coincidence with the 290.4-keV and 557.1-keV � rays, together with a

723.3-keV � ray in coincidence with the 266.7-keV � ray suggest a level at

1138.3 keV.

Due to di↵erences in spin J and spin projection K, transitions between levels

above the isomer and other bands in the 186Re level scheme are likely inhibited by

angular-momentum selection rules or additional K-hindrance [31]. For this reason,

despite an exhaustive search, no IS with decay branches to both the isomer and

ground states were discovered in this work.

5.6 Conclusions

The experiment described in this work is the first investigation of the structure

of 186Re using (d, 2n) reactions, leading to the discovery of new medium-spin levels

and associated � ray transitions. The low-spin structure of 186Re has previously

been well-studied, but little information about levels feeding the K⇡ = (8+) isomer

has been reported. Information about doorway states through which the isomer can

be populated in the � cascade following slow-neutron capture on 185Re are

important for calculating 186Rem isomer production in the s-process nucleosynthesis

of 187Re. The spin di↵erence between the 185Re(n, �) capture state (an admixture of

J⇡ = 2+ and 3+ states [43, 111]) and these doorway states contributes to their
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significance in isomer population. In this work, a total of 15 �-rays and eight levels

have been placed above the isomer. These new levels and transitions could inform

future studies involving statistical calculations of astrophysically-important reaction

cross sections that involve 186Re and its long-lived isomer.

Additionally, new additions to the K⇡ = 5+ rotational band are proposed in this

work, built on the previously-unconfirmed levels at ⇠330 keV, ⇠471 keV, and

⇠562 keV [3]. Energies of these levels and the level at ⇠186 keV have been firmly

established, and a decay pathway from these levels to the ground state proposed.

Further investigation of high-spin states in 186Re using multi-nucleon transfer

reactions would be helpful for extending the level scheme further.

This analysis revealed no evidence of coupling between the isomer and ground

state in 186Re. This suggests that if IS exist at energies below several MeV,

branching to the isomer is probably weak relative to branching to lower-spin states.

This observation supports the conclusion of Käppeler et al. in Reference [67], that

the branching at 186Re contributes insignificantly to the production of 187Re in the

s process. Future experiments involving direct measurement of (�, �0) depletion of

the 186Rem isomer, analogous to those described in [68] for 180Tam, are suggested for

verification.
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VI. Conclusion

6.1 Summary of Findings

The significant outcome of this research was in enriching the 186Re level scheme.

In particular, the structure above the ⇠2.0⇥ 105 y isomer in 186Re has not been

proposed before, and new �-ray transitions observed in the 187Re(n, 2n�)186Re and

186W(d, 2n�)186Re reactions are evidence of pathways by which the isomer is

populated. These proposed transitions lead to an improved estimate of the

excitation energy of the 186mRe isomer with an order-of-magnitude smaller

uncertainty than the value adopted in the literature. Additionally, independent

measurements were made of the 186Re neutron-separation energy and total cross

section for thermal-neutron capture on 185Re.

6.1.1 Contributions to the Level Scheme of 186Re.

The new levels and transitions proposed here as a result of analysis of the data

from the GEANIE (Chapter III), BNC (Chapter IV), ANU, and CAGRA

(Chapter V) experiments are significant additions to the 186Re level scheme.

Analysis of the data from the GEANIE experiment involving 187Re(n, 2n) reactions

revealed five new transitions and one new level. The analysis of 185Re(n, �)

reactions at BNC led to proposals for revised spin-parity (J⇡) assignments for seven

levels in the adopted level scheme of 186Re while confirming assignments for 37 other

levels. Additionally, 50 new primary transitions that populate discrete low-lying

levels directly from the (n, �) capture state were proposed based on analysis of the

BNC data. Measurement of �-ray coincidence data from (d, 2n) reactions on 186W

at ANU and CAGRA led to the placement of 26 new �-ray transitions and 12 new

levels in the 186Re level scheme, including substantial new structure above the
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J⇡ = (8+) isomer.

In the analysis of the data from the GEANIE, ANU, and CAGRA experiments,

no � rays were observed that depopulated any of the states above the isomer to

levels that feed the ground state. Such a �-ray cascade would indicate an IS through

which isomer depletion might be achieved, according to the scheme described in

Section 2.3.2. The non-observation of IS suggests that coupling between the isomer

and the ground state is weak, at least up to the excitation energies that could be

accessed in this spectroscopic study.

6.1.2 Improved Estimate of 186mRe Energy.

The adopted value of the 186mRe excitation energy from the ENSDF database is

149± 7 keV, the original energy proposed by Seegmiller et al. in 1972 [3, 21]. A

�-ray peak at 266.69(4) keV observed in the 187Re(n, 2n�)186Re reaction channel

was proposed in Chapter III to be a transition feeding the isomer from a level at

414.9(5) keV. This places the isomer energy at 414.9(5)� 266.69(4) = 148.2(5) keV,

which represents significant improvement over the 149(7) keV value in the evaluated

database. Observation of this transition was confirmed in the ANU and CAGRA

data sets, with a measured energy of 266.7(5) keV.

6.1.3 Measurements of Neutron-capture Cross Section and

Separation Energy.

Analysis of the prompt �-ray spectra from the 185Re(n, �) experiment at BNC,

combined with statistical modeling of the capture-� cascade, resulted in an

independent measurement of �0 = 111(6) b for the total radiative thermal-neutron

capture cross section for 185Re. This value is consistent with previous measurements

of �0, which were primarily made using neutron-activation techniques. The
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measurement reported in Chapter IV is significant because it demonstrates the

accuracy of the PGAA technique for independently measuring �0, which is not

sensitive to precise knowledge of the neutron flux as are traditional

neutron-activation methods.

Measurement of primary �-ray energies in the prompt-� spectra from this

experiment also permitted an independent measurement of the neutron-separation

energy in 186Re. The value obtained in this work, S
n

= 6179.59(5) keV, is consistent

with the adopted value of S
n

= 6179.35(18) keV, but has an uncertainty that is over

three times smaller.

6.2 Recommendations for Future Research

Production of an isomeric sample of 186mRe could be accomplished by irradiation

of an enriched sample of 185Re in a research reactor. Following su�cient time for the

unstable 186Re in the ground state to decay, the remaining 186Re would exist

predominantly in the isomer. Future experiments with an isomeric sample would be

beneficial for several reasons, outlined below.

6.2.1 Measurement of the 186mRe Isomer Lifetime.

The half-life of 186mRe is not precisely known. Seegmiller et al. reported that

they measured the isomer half-life twice, once at 2.0⇥ 105 y and a confirmatory

measurement of 1.7⇥ 105 y [21]. The value in the adopted literature is 2.0⇥ 105 y,

with no stated uncertainty [3]. An average of the measurements of Seegmiller et al.

suggests this value should be 1.85(15)⇥ 105 y, a relative uncertainty of 8.1%. The

uncertainty on this value could likely be improved with a careful equilibrium

measurement of the � decay following IT using a high-e�ciency HPGe detector,

combined with mass-spectroscopic measurements to determine the amount of 186Re
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present in the sample.

6.2.2 Search for IS in 186Re via (�, �0) Reactions.

Although no IS were discovered in this work, the J⇡ = (6)�, 180.5-keV level

(which has an approximate energy of ⇠186 keV in the adopted level scheme [3]) was

proposed in References [21, 61] to feed the isomer, making it a possible IS for isomer

depletion. The transitions postulated in these works include a 6.6-keV, E2

transition to the J⇡ = (4)�, 173.929-keV level, and a 32.3-keV transition to feed the

isomer. If the 180.5-keV level is an IS, irradiation of an isomeric sample with a

Bremsstrahlung generator or other high-energy photon source tuned to maximize

the photon flux at ⇠32 keV would reveal � rays in the decay of the 173.929-keV

level to the 186Re ground state (with �-ray energies of 74.568 keV, 99.362 keV,

40.350 keV, and 59.009 keV), as well as an increase in the �-decay of the ground

state (evident from the 137.157-keV �-ray activity from the daughter 186Os

nucleus [3]). Irradiation at higher energies with a tunable Bremsstrahlung generator

might reveal additional isomer-depletion IS.

6.2.3 Measurement of the Lifetime of the 180.5-keV Level.

The 180.5-keV level, which was assessed to have a tenative J⇡ = (6)� spin-parity

assignment in Reference [60], likely decays via an M3 transition to the J⇡ = (3)�,

99.361-keV level. The postulated 81.1-keV transition is likely too weak to be

observed, due to internal conversion (↵ = 646.6, calculated using BrIcc [28]). The

180.5-keV level was calculated in Reference [43] to be strongly populated in (n, �)

reactions, but no transitions out of this level have been placed in the level scheme.

It is possible that this level is a second long-lived isomer in 186Re, with an estimated

lifetime from the Weisskopf estimates (Equation 6) of 29.5 min. If the 180.5-keV

135



level is an IS, then measurement of � decay following Bremsstrahlung irradiation of

an isomeric sample could reveal the half-life of this state and establish whether or

not it is a second long-lived isomer in 186Re.
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