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Abstract 

Developments in the biomedical signal processing have led the 

electroencephalography (EEG) to be a critical tool for the Brain Computer Interface 

(BCI) systems and Human Machine Teams (HMTs). Both of them strongly rely on the 

EEG signals in order to evaluate the neural activity and the cognitive state. They need to 

use the pure EEG signal that only represents the neural activity of the brain, but the 

physiological and non-physiological artifacts distort the EEG signal and make the 

interpretation of cognitive state harder or they may cause misinterpretations. 

While developing teams of humans and computer agents, certain human activities 

are essential.  While interacting with computers, humans perform small motor muscle 

movements such as operating a keyboard and mouse, manipulating a stick and throttle, or 

performing touch-screen activities.  On the other side, the computer agent needs to know 

the cognitive state of the human teammate in order to make decisions and the EEG 

signals are the only information source of cognitive state.  

In this thesis, the artefactual effects of the small muscle movements such as hand 

and finger movements that are necessary for the keyboard and mouse usage are 

investigated. Five males (all right handed) participate in this study and there are two 

sessions in different days for each participant. Six different conditions are recorded in this 

experiment. These conditions are the resting state, left finger keyboard press, right finger 

keyboard press, imaginary right finger press, mouse movement and the activity condition 

that includes both the finger presses and the mouse movements.  
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The EEG data is recorded from 9 channels with a sampling rate of 2000 Hz. Two 

channels EMG data from the right arm, two channel EOG data and the digitals channels 

that indicate the keyboard and mouse presses are collected in addition to the EEG signal.   

Upper frequency bands (>30 Hz) of the EEG signal are extracted in order to 

investigate the artefactual effects of the small muscle movements. First, the activity and 

resting conditions are compared in order to investigate the effects of the small muscle 

movements when the contamination level is high. Time and frequency domain features 

are extracted from the upper frequency bands and some time domain features such as 

variance obtain a visual difference between two states. Three-layer neural network model 

is created for the classification of the activity and resting states and the model yields 

92.2% accuracy.  

Secondly, the right and left finger press conditions are investigated for the finger 

artifacts. Analyzing of the time and frequency domain features shows that the effects of 

the finger artifacts are not visually observable. But the neural network model obtains 64% 

classification accuracy for the finger artifact detection. The classification accuracy of the 

finger artifacts increases to 72% after removing the eye blink artifacts.   

The results of the classification support our hypothesis about the artefactual 

effects of the small muscle movements.  
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ANALYSIS OF SMALL MUSCLE MOVEMENT EFFECTS ON EEG SIGNALS 

 

I.  Introduction 

The Brain is the most complex part of the human body and it hasn’t been fully 

discovered and understood yet. Advances in cognitive neuroscience and brain imaging 

technologies have started to provide us with the ability to uncover the secrets of the 

human brain and interface directly with it. Electroencephalography (EEG) that is an 

electrophysiological monitoring method to record electrical activity of the brain was 

discovered in early 1900s (Teplan, 2002) and it was an important step to discover the 

secrets of brain activities. Researchers started to understand and formulate how the brain 

works and reacts to specific events. This significant advancement has encouraged the 

researchers to achieve one of the biggest dreams of human being which is the 

communication with machines through thought alone.   

Analyzing and formulating of the brain activities provide researchers with the 

ability to interface directly with the human brain. The needs of people with physical 

disabilities were one of the biggest motivations to develop Brain Computer Interface 

(BCI) systems by using this technology. In addition to this, human machine teams have 

been developed in order to exploit the powerful features of both sides such as the 

flexibility of the human and the computational power of computers. It is widely accepted 

in the brain computer interface research community that neurological phenomena are the 

only source of control in any BCI system (Fatourechi et al., 2007). Because of this 

reason, brain signals are the key source to develop BCIs and human machine teams and 

the EEG is a widely used technique to record brain activities.  
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Developing effective human machine teams requires accurate, fast and reliable 

communication between human and machine teammates. The Machine side of the team 

should understand the cognitive state of the human side and act accordingly. Processing 

of EEG signals makes it possible to recognize the cognitive state. One of the key issues 

here is to record pure EEG data which contains only the cerebral activity. Since the 

electrical activity of the brain has a very low amplitude (2-100 µV), the EEG signal is 

vulnerable to be contaminated by undesired artifacts. In order to make an accurate 

interpretation of the cognitive state and feed the machine teammate with proper 

information, it is necessary to deal with these undesired signals.  

1.1.  Problem Statement 

In order to develop effective and autonomous human machine teams, it is vital for 

the computer agent to understand the cognitive state of the human teammate. Brain 

activity which is commonly assessed by processing EEG signals is the measure of the 

cognitive state. When developing teams of humans and computer agents, certain human 

activities are essential.  While interacting with computers, humans perform small motor 

muscle movements such as operating a keyboard and mouse, manipulating a stick and 

throttle, or performing touch-screen activities.  On the other side, the computer agent 

needs to know the cognitive state of the human teammate in order to make decisions. 

EEG signals which are the information source of cognitive state may be affected by small 

motor movements in fingers, hands and arms.  Non-cognitive components in EEG signals 

are often referred to as artifacts.  EEG artifacts may change the characteristics of 

neurological phenomena and often considered detrimental when trying to determine 
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operator cognitive state from EEG. Ocular (eye blinks and movements) and muscle 

artifacts are considered among the most important sources of physiological artifacts 

(Fatourechi et al., 2007). Large muscle movements, as well as neck, jaw, tongue and 

shoulder movements are known to generate disruptive artifacts in EEG signals, which 

reduce the certainty of operator cognitive state.  While significant research has explored 

these large motor effects on EEG and how to remove them (Fatourechi et al., 2007; 

Vanhatalo et al., 2003; Liu et al., 2016), little is known about small motor effects (hand 

and finger movements) on EEG. Since the vast majority of human-computer interaction 

today occurs through keyboard and mouse, knowing/understanding/removing the artifacts 

generated by hand and finger movement is vital.  

 The EEG signal is one of the fundamental sources which could be used to 

determine operator functional state, and knowing operator functional state is a 

requirement for autonomous decision-making in human machine teams, it is necessary to 

understand and model the effects of small motor movements on EEG signals.  After 

understanding these affects, we can hope to detect and remove them without eliminating 

large portions of the EEG signal.  Thus, understanding the artefactual effects of small 

motor movements on EEG signals is important.  

This research proposes an experiment to explore small muscle movement effects 

(artifacts) on the EEG signal. The signal that we are interested in the detrimental effects 

of the hand/finger movements not the cognitive effects of these movements. Because 

when we plan or perform muscle movements, it causes changes in the brain activity and 

these changes in neurological phenomena are not in our area of interest. The primary 
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expected outcome is evidence about whether, to what extent, and in what ways the EEG 

signal is affected by small motor muscle movements required for computer operations.   

1.2.  Research Questions 

 This research focuses on the observation of the small motor movement effects on 

EEG signals and their detection. In order to understand these effects scientifically, some 

questions should be answered. Characterization of hand and finger artifacts, determining 

their effects on EEG signal and detection of these artifacts form the skeleton of this thesis 

work. The following questions are asked in order to explore the small muscle movement 

artifacts and their effects on EEG signals: 

 

Q1.  Do small muscle movements (finger and hand movements caused by keyboard and 

mouse usage) have effects on EEG signals? 

In this study, EMG signal (from the right arm) and  reference channels which 

show the exact timing for the keyboard and mouse presses are recorded in addition to the 

EEG signal.  EMG data and reference channels are used to determine the exact times of 

small muscle movements. The EEG signal can be separated into portions as the data with 

small muscle artifacts and the data with no artifact by using this additional information. 

After that separation, it can be possible to analyze these portions and explore the effects 

of small muscle movements on EEG signal.  

 

Q2.  Is it possible to detect small muscle movements (hand and finger movements) from 

EEG signals, without any reference channel indicating these movements? 
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In this problem and the thesis work, one of the key points is that we are not 

simply aiming to detect hand/finger movements. Our aim is to detect these movements by 

using their artefactual effects, not their cognitive effects.  

This question can be considered as a classification problem, since we need to 

distinguish the data that is affected by small muscle movements and the data that doesn’t 

contain any of these effects. Since we have the reference channels and EMG data, this 

detection problem can be solved by a supervised machine learning method. The level of 

small muscle movement effects on EEG signals will determine the success of this 

machine learning method. 

1.3.  Assumptions/Limitations 

While literature about the EEG artifacts and their characteristics and removal is 

rich, there is not a comprehensive study about the effects of small muscle artifacts on 

EEG signal. Due to lack of the former studies about this specific problem, we don’t know 

much about the characteristics of small muscle artifacts and the extent of their effects on 

EEG signal. This is one of the limitations of this research but the artefactual effects of 

small muscle movements will be discovered while exploring the first research question.  

 Some features of EEG signal also cause limitations. EEG signals can easily be 

contaminated by non-cerebral activities called artifacts. As Klass (1995) states in his 

study, there are different types of artifacts and they are present in every EEG tracing. It 

means that it is not possible to record a completely artifact free EEG signal. In our study, 

the aim is to characterize and detect small muscle artifacts. In order to characterize these 

effects, we need to compare them with an artifact free EEG recording of the same person. 
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But it is not possible to record an EEG signal that includes no artifacts in it. Some artifact 

avoidance methods such us staying in a constant position (in order to avoid muscle 

artifacts) and not making eye movements have been performed by the participants while 

recording EEG signal. These artifact avoidance methods reduce the contamination of 

EEG signal but it is not possible to avoid some of the artifacts such as heart beat, eye 

blink and other muscle movements. In this study eye movements and eye blinks have 

been captured by EOG electrodes in order to reject that part of the EEG signal. But for 

the rest of the EEG recording, it is not possible to get rid of all the artifacts. Because of 

this reason, we need to assume that the baseline EEG data has no artifact and EEG data 

with hand/finger movements has only the small muscle artifacts in it.  

In general, more positions (EEG channels) mean more information about the 

cognitive state.  In this study EEG signals have been recorded from nine positions on the 

scalp. Due to equipment capacity, EEG data has only been recorded from these 9 

channels and it has been assumed that this is enough to get required information about the 

cognitive state and small muscle artifacts.  

1.4.  Contributions 

 While much research has investigated the relationship between 

movements of eyes, neck and shoulders and EEG, little is known about hand and finger 

effects on EEG signal. Large muscle movement artifacts and ocular artifacts have been 

widely studied and characterized. This study investigates the artefactual effects of small 

muscle movements and presents a study about a topic that has not been completely 
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investigated. While ultimately the goal is to detect and eliminate hand/finger artifacts, 

this work makes contribution only in detection of hand/finger artifacts.  

 

Studies that analyze the effects of finger movements on EEG signal mostly focus 

on the alpha and beta brain waves to distinguish these effects. We present detailed 

information about brain waves in the literature review section, showing that alpha and 

beta waves are strongly related to planning and performing of motor movements. This 

literature shows that the brain reacts when we plan and perform a motor movement such 

as hand and finger movements. In these studies, researchers mostly exploit alpha and beta 

waves in order to detect hand and finger movements and they don’t consider their 

artefactual effects.  

On the other hand, this thesis work investigates the artefactual effects of the hand 

and finger movements on EEG signals (instead of their cognitive effects). According to 

the results, if the data is heavily contaminated by the hand/finger artifacts (rapid and 

continuous hand and finger movements with both hands), these artifacts can be detected 

by analyzing time domain of the EEG signal. If the data contains a small amount of the 

small muscle artifacts (such as a keyboard press / a simple finger movement), the 

artefactual effects are not observable.  After the time and frequency domain feature 

extraction and classification, the artifact detection yields good results with high accuracy 

for highly contaminated data (data heavily includes hand/finger artifacts). On the other 

hand, the artifact detection accuracy decreased to 64%, for the data that includes only the 

finger artifacts (index finger keyboard presses). But, after eliminating the blink artifacts 

the accuracy increased to 72% and this showed that the detection accuracy of the simple 
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finger artifacts improves, when we eliminated segments of data containing the eye blink 

artifacts.  

While developing human machine teams, computer agent needs to know the 

cognitive state of the human teammate. It means that computer agent needs the EEG data 

only represents the neural activity (artifact free EEG data).  Because of this, it is 

important to consider the hand and finger artifacts, if the operator performs intense hand 

and finger movements. 

1.5.  Overview 

 This document is composed of five chapters.  Chapter II presents a review of 

current research focused on EEG artifacts, their detection and removal and analysis of 

hand and finger movement effects on EEG signal.  Chapter III describes the data 

collection process; processing of EEG data such as feature extraction and time domain to 

frequency domain conversion and detection of small muscle artifacts.  Chapter IV 

presents the data analysis results, small muscle movement characteristics and 

performance of their detection.  Lastly, Chapter V provides discussion, conclusion and 

the potential for future work related to this research. 
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II.  Literature Review 

 This chapter provides a literature review of EEG signals, EEG artifacts and 

artifact handling techniques. Biological background about brain structure, brain waves 

and EEG will be given to provide basic knowledge to obtain a better understanding on 

EEG signals. After the background section, EEG artifacts will be presented in detail. 

Previous studies about hand and finger movements and their effects on EEG will also be 

presented in this section.  

2.1.  Biological Background 

 The brain is the most complex part of the human body. It is the control center of 

intelligence, interpreter of the senses, initiator of body movements, and controller of 

behavior (NINDS, 2012). Scientists and philosophers have tried to discover the secrets 

and limitations of the brain for centuries, but it is yet to be fully understood. Scientists 

have learned more about the brain in the past few decades because of the accelerating 

pace of research in neurological and behavioral science; as well as the development of 

new research and measurement techniques. 

Electroencephalography (EEG) is one of the most important developments in this 

area. EEG is a kind of imaging technique that measures electrical activity of the brain 

generated by brain structures. As mentioned by Teplan (2002), the history of the EEG 

starts in the 1870’s.  In 1875, Richard Caton presented his findings on electrical 

phenomena of the exposed cerebral hemispheres of rabbits and monkeys. In 1924, Hans 

Berger was able to obtain the first human EEG recordings. These improvements have 

pioneered more and more studies in this field.  
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The brain is made up of billions of brain cells called neurons, which use 

electricity to communicate with each other. The combination of millions of neurons 

sending signals at once produces an enormous amount of electrical activity in the brain. 

EEG as a monitoring method that records the electrical activity of the brain makes it 

easier to measure this activity accurately. Quinonez (1998) presents a study about the 

common applications of the EEG. According to his research, the main diagnostic 

application of EEG is in the case of epilepsy, as epileptic activity will create clear 

abnormalities on a standard EEG signal. A secondary clinical use of EEG is in the 

diagnosis of coma, brain death, tumors and other focal brain disorders. 

EEG is also a fundamental and important tool for developing Brain Computer 

Interface (BCI) systems and evaluation of cognitive status. BCI systems are 

communication systems that do not depend on the brain’s normal output pathways of 

peripheral nerves and muscles. In these systems, users explicitly manipulate their brain 

activity instead of using motor movements to produce signals that can be used to control 

computers, communication devices or physical devices in the real world (Tan & Nijholt, 

2010). It is obvious that recording the electrical activity of the brain has opened many 

new and interesting areas for researchers. As mentioned above, the diagnosis of illnesses, 

brain computer interface systems and many other areas will continue to attract an 

increasing number of researchers. 

The EEG is one of the most widely used brain sensing methods, since it has 

several benefits compared to other techniques. The most important benefit of EEG is its 

excellent time resolution. It means that, it can take hundreds to thousands of snapshots of 

electrical activity across multiple sensors within a single second. This makes EEG an 
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ideal technology to study the precise time-course of cognitive and emotional processing 

underlying behavior. This is why EEG signals become the fundamental tool for BCI 

systems and Human Machine Teams.  

In order to understand EEG signals, we need to know the characteristics of the 

brain signals. Electrical activity of the brain has different patterns that are sinusoidal and 

these different patterns are called brainwaves. It means that the signal recorded by EEG 

always includes several brainwaves that are in different frequencies. Secrets of cognitive, 

affective or attentional states such sleep, attention and wakefulness can be found in these 

brain waves.  EEG signals can represent a wide frequency band (0.5-100 Hz) but the 

clinical and physiological interest focuses on the frequencies between 0.5 and 30 Hz. The 

EEG signal is often decomposed into five clinical frequency bands, commonly referred to 

as waves.  

 Delta waves (0.5-4 Hz) generally occur while the brain is in very low activity 

state such as deep sleep (non-REM) and general anesthesia. Theta waves (4-8 Hz) occur 

in sleep, anesthesia and stress.  Alpha waves (8-13 Hz) present while the person is awake, 

physically and mentally relaxed or in eyes closed position.  Beta waves (13-30 Hz) occur 

while the person is in active thinking, busy or concentration states. Beta waves present 

strongly while planning or executing motor movements. Gamma waves consist of the 

frequencies above 30 Hz and the features of these waves are not clear. Because of that, 

some of the research still doesn’t include gamma waves. It is widely considered that 

gamma waves do not include cognitive processing. This is one of the reasons why the 

clinical research is mostly focusing on the frequencies up to 30 Hz. Ochoa (2002) also 
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presents these brain waves in his study as frequency bands of interest. The frequency 

bands, their range and common association are shown in the Table 2.1. 

Table 2.1. EEG Frequency Bands  (Ochoa, 2002) 

Band Range Common Associations 

Delta 0.5-4 Hz  Deep sleep; Eye and muscle related artifacts 

Theta 4-7 Hz  Emotional Stress; Creative Inspiration; Meditation 

Alpha 8-13 Hz  Empty mind; Closed eyes  

Beta 13-30 Hz  Active thinking; Attention; Problem solving 

Gamma 30 Hz and higher  Blending of multiple brain functions; Muscle related artifacts 

 

2.2.  EEG Artifacts 

 EEG recordings are intended to record the brain activity but these recordings also 

capture the electrical activities arising from other parts of the body and environment. The 

non-cerebral components of the EEG signal are termed artifacts. 

Fatourechi et al. (2007) define artifacts as undesirable signals that can interfere 

with neurological phenomena. Since EEG signals are of the order of microvolts (µV), 

they can easily be contaminated by non-cerebral signals. These interference artifacts can 

significantly corrupt EEG signal and make its interpretation difficult (O’Regan, 2013). 

As Klass (1995) presented in his study,  artifacts are important for a number of reasons. 

First, they are present in every EEG recording, and it is not possible to obtain completely 

artifact-free EEG recording. The artifacts may conceal the actual EEG activity and affect 

the interpretability of the EEG signal. Moreover, artifacts can lead to false conclusions 

unless great care is taken to recognize and exclude them from the EEG signal. 

An artifact which contaminates EEG signal affects interpretability and may cause 

false conclusions. Since physiological signals contain valuable information about the 
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body’s physiological and person’s cognitive state, artifacts must be handled somehow in 

order to get maximum benefit from these signals. 

Before explaining the artifact handling techniques, it may be beneficial to 

summarize the sources of artifacts. Klass (1995) classifies the artifacts into three main 

categories: biological (arising from the subject or patient), technological (arising from the 

electrode-subject interface, electrode connections or recording equipment) and extrinsic 

(other equipment connected to the patient; airborne sources, including electromagnetic 

signals, radio frequency and other environmental phenomena). This categorization is 

mostly the same in the literature. For example, Files (2011) categorizes the artifact as 

internal (biological) and external (technological and extrinsic). Similarly, Fatourechi et 

al. (2007) make the categorization as physiological and non-physiological artifacts. 

Although they group the artifacts with different names, their main approach in 

categorization is the same. 

The scope of this study is the analysis of small muscle artifacts (hand and finger 

movements); their characterization, detection and removal. Before focusing on this 

specific artifact type, it can be helpful to make a brief explanation of artifact types in 

order to have a wider view. As defined above, artifacts can be divided into two categories 

as physiological and non-physiological artifacts. Physiological artifacts are mainly ocular 

(eye movement and blink), muscle (head and shoulder movements, clenching, chewing), 

cardiac, electro-dermal (sweat artifacts) and glossokinetic (tongue moves) artifacts 

(O’Regan, 2013). Electrooculography (EOG) (ocular) and electromyography (EMG) 

(muscle) artifacts are considered among the most important sources of physiological 

artifacts (Fatourechi et al., 2007a). Non-physiological artifacts are caused by external 
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effects such as electrode pop or electrode movements and 50/60Hz line artifact. As 

mentioned above, large muscle movements such as head and shoulder movements are 

considered in muscle artifacts. Since these movements are close to head and create strong 

effects, they are even visually visible in EEG signal. On the other hand, small muscle 

movements don’t create strong electrical changes and relatively far away from the head. 

So, their effects will be less visible in EEG signal. This is the biggest reason that the 

artefactual effects of small muscle movements have not been examined in the literature. 

2.3.  Artifact Handling Methods 

 EEG artifacts are the major problem for interpretation and effective analysis of 

the EEG signal. In order to develop reliable and effective human machine teams, it is 

vital to have an artifact-free EEG signal that only represents the cognitive state of human 

teammate.  Because of these issues, dealing with artifacts is critical. There are some 

artifact handling techniques for EEG signals and these techniques are highly related to 

each other. Artifact handling techniques can be divided into three parts; artifact 

avoidance and minimization, artifact rejection and artifact removal. 

While obtaining EEG signal from participants, staying in a constant position and 

avoiding unnecessary movements are appropriate ways of artifact reduction in EEG 

(O’Regan, 2013). From a data loss and computational perspective, artifact avoidance can 

be considered as the most ideal technique, since it is assumed that EEG recording 

contains no artifact if we apply artifact avoidance (Fatourechi et al., 2007a). 

Unfortunately, it is not possible to avoid all the artifacts.  As Klass (1995) states, artifacts 

present in every EEG signal and some of these artifacts (cardiac artifact etc.) are 
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unavoidable. Because of that, artifact avoidance and minimization is a good way to 

reduce the artifact amount, but it is not sufficient to get artifact free EEG signal.  

Another artifact handling method is artifact rejection, which is the process of 

rejecting the trials affected by the artifacts. It means that the EEG signals are evaluated 

after cutting the time segments of the signal contaminated by the artifacts. This approach 

is probably the simplest way of dealing with the artifact signals. It has some important 

advantages over the artifact avoidance approach. First, the experiment for getting EEG 

signals can take a long time, and the subject does not have to stay completely still. In 

addition, the secondary cognitive task, resulting from a subject trying to avoid generating 

a particular artifact, will not present in the EEG signal (O’Regan, 2013). 

Researchers have used artifact avoidance and rejection methods to deal with 

artifacts in earlier studies, but these methods have some drawbacks. These approaches 

might not acquire sufficient valid data from real experiments, in which eye blinking, 

swallowing, or other non-neural physiological activities are inevitable (Zhang et al., 

2015). 

Since these techniques were not able to record the accurate EEG data as best as 

possible, researchers have focused on another approach to deal with the drawbacks of the 

earlier methods. Artifact removal that involves the removal of artifact signals has been 

presented as a solution. A wide variety of techniques have been suggested in the 

literature; primarily in the areas of epilepsy, evoked and event-related potentials, brain-

computer interface and sleep research (O’Regan, 2013). Artifact removal is a much better 

method than artifact rejection, since this method basically aims to decontaminate the data 

from the artifacts without rejecting the valuable EEG data, according to O’Regan (2013). 



16 

But not all researchers agree with O’Regan’s suggestion that artifact removal is better 

than artifact handling - especially those who are dealing with clinical studies. Because the 

artifact removal algorithms helps to remove the artifacts but it also changes the data in a 

way we do not completely understand.  Because of that, it is important to determine the 

area of the study to decide which artifact handling method to use in the study.  

The literature on EEG artifact removal is very broad, but researchers still have not 

agreed on an ideal solution for artifact removal. Types of EEG signals with different 

characteristics (signal to noise ratio, EEG signal of epilepsy patients etc.), different types 

of artifacts (muscle, ocular etc.), and lack of not having a common performance measure 

are three main reasons for this lack of consensus (Urigüen & Garcia-Zapirain, 2015). 

Artifact removal can be divided into two types of algorithms: those that perform 

artifact removal without any additional information and those that perform artifact 

removal using additional information such as labeled annotations or priori information 

about the artifact. In addition to these, we should consider the algorithms that combine 

different methods for artifact removal (hybrid algorithms). 

2.3.1.  Artifact Removal Methods  

 Linear regression methods were most widely used approaches for artifact 

removal, especially up to the mid-1990s. As Urigüen and Garcia-Zapirain (2015) define, 

in linear regression methods, artifacts may be corrected by subtracting a regressed portion 

of each reference channel from the contaminated EEG. For this to be achieved, we need 

to know one or more reference channels with the premise that they properly represent all 

artifact waveforms. It is assumed that each EEG channel is the sum of the artifact-free 

source signal and a fraction of the artifact that is available through a reference channel. 
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The simplicity and computationally reduced requirements made this approach popular, 

especially for EOG artifacts. Since this method requires a reference channel for artifact 

removal, it can be considered in informed methods. 

Filtering is another approach for artifact removal. Simple low-pass, bandpass or 

high-pass filtering were early classical attempts for artifact removal. However, these 

methods are not effective when the frequency bands of the EEG and artifact signals 

overlap (Sweeney et al., 2012). Due to this spectral overlap issue, alternative filtering 

techniques have been adopted. One of these adopted techniques is adaptive filtering.   

Sweeney et al. (2012) present a detailed study on this approach. Adaptive filtering 

assumes that the artifact-free EEG signal and artifact signal are uncorrelated. The filter 

generates a signal correlated with artifact using a reference channel (that may be obtained 

by recording EOG, EMG etc.) and the estimate is subtracted from the recorded EEG 

signal. Adaptive filtering is the most commonly used approach among the filtering 

method in the artifact removal literature. Since adaptive filtering requires a reference 

channel to generate signal correlated with artifact, it can be considered as informed 

algorithm.  As stated by Urigüen and Garcia-Zapirain (2015), although these filtering 

methods need a reference channel (additional information about the artifact), they have 

the advantage that they can be automated.  

Blind source separation (BSS) methods constitute the important portion of the 

artifact removal algorithms in the literature. BSS is the separation of a set of source 

signals from a set of mixed signals, without a prior knowledge (or with very little 

knowledge) about the source signals or the mixing process is a widely used and effective 

way of artifact removal (Safieddine et al., 2012). 
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Urigüen and Garcia-Zapirain (2015) define the linear mixture of sources model 

that can be considered the fundamental starting point of BSS approaches. Linear mixture 

of sources is an approach for artifact removal which adopts the standard assumption that 

the measured cerebral activity x(n) is the sum of the cerebral activity s(n) and noise v(n). 

 

 

Figure 2.1.Linear Mixture Concept: Combination and Blind Separation of the EEG 

Sources (Urigüen & Garcia-Zapirain, 2015). 

Principle Component Analysis (PCA), Independent Component Analysis (ICA) 

and Canonical Correlation Analysis (CCA) methods are commonly used BSS methods 

for artifact removal. ICA is the most widely used BSS artifact removal method.  

ICA is a computational method for separating a multivariate signal into additive 

subcomponents. The starting point for ICA is a very simple assumption that the source 

components are statistically independent from each other and these components have 

non-Gaussian distribution (Oja & Hyvärinen, 2000). As emphasized by Oja & Hyvärinen 

(2000), non-Gaussianity is a key factor for estimating the ICA model. After the ICA 
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algorithm was introduced, it has largely replaced other methods that are used for artifact 

removal. The success of the ICA comes from the fact that the brain and artifact signals 

are sufficiently independent (Urigüen & Garcia-Zapirain, 2015). 

BSS methods can be considered as uninformed removal methods, since they don’t 

need a reference channel (additional information about the artifact). Another important 

common feature about these methods is that they jointly exploit the information provided 

by all electrodes simultaneously (Safieddine et al., 2012). 

Source decomposition methods form another artifact removal approach. As 

Urigüen and Garcia-Zapirain (2015) defines, in this approach, the problem of finding an 

artifact-free matrix from the observation matrix is tackled directly by decomposing each 

individual channel in basic waveforms that can represent either signal or artifact. After 

decomposition, artifact waveforms are eliminated from each channel individually. 

Wavelet Transform (WT) and Empirical Mode Decomposition (EMD) are considered 

under this approach. While BSS methods jointly exploit the information provided by all 

electrodes simultaneously, EMD and WT process each channel separately (Urigüen & 

Garcia-Zapirain, 2015). 

The techniques mentioned above are the most common artifact removal methods 

in the literature. BSS techniques are commonly used for artifact removal and ICA is the 

most widely used method among them. Using the combinations of different artifact 

removal approaches is another important improvement in this area. Recent studies show 

that these combinations yield better results than single methods.  

When the performances of different artifact removal approaches in the literature 

are considered, it is concluded that there is no optimal solution (artifact removal 
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algorithm) for every possible scenario. It is important to evaluate some issues such as the 

artifact types that are in the data, contamination level, and the type of the EEG signal. 

The additional information about the artifacts is another criterion for determining the best 

artifact removal algorithm.  

For muscle artifact removal, researchers tend to consider large muscle 

movements, such as head movements, chewing and clenching. On the other hand, the 

effect of the small muscle movements, such as hand and finger movements on the EEG 

signals still remains unexplored.   

2.4.  Analysis of Hand and Finger Movements 

This research focuses on a better understanding of the relationship of hand and 

finger movement on EEG signals for the purposes of intelligently separating these 

components from cognitive components in EEG.  It is important to understand these 

effects, since both finger and hand movements are required for human machine 

interaction.   

Lisogurski & Birch  (1998) explore classification and differentiation of different 

sets of muscle movement and show how finger flexions can be identified in continuous 

EEG signal. Bozorgzadeh et al. (2000) show effects of real and imagined finger 

movement on EEG and Li et al. (2004) show how EEG signals recorded during finger 

movement can be distinguished from those during periods of no finger movement.   The 

common point of these studies is that they use alpha and beta frequency bands (8-30 Hz).  

As Vigneshwari et al. (2013) states in their study, alpha and beta bands includes more 

information about the cognitive aspects of motor movements. Studies that explore small 
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muscle motor movement effects use 8-30 Hz (alpha and beta) frequency band. It means 

that they mostly ignore the artefactual effects of these movements but exploit cognitive 

effects.   

  Vigneshwari et al. (2013) analyze finger movements using EEG signal and 

extract alpha and beta frequency bands by using wavelet transform. In order to 

discriminate left and right finger movements, they extract different features from alpha 

and beta bands such as variance and root mean square. 

According to literature, it can be concluded that researchers exploit cognitive 

effects in order to detect finger and hand movements in EEG signal. On the other hand 

they don’t consider the artefactual effects of the hand and finger movements. In this 

study, we will mostly focus on upper frequency bands to investigate the artefactual 

effects of these movements and will try to detect these artifacts.  

2.5.  Summary 

 This chapter has reviewed EEG, brain waves, EEG artifacts and artifact handling 

techniques and studies that analyze hand and finger movements using EEG signal.   

Recent studies show the importance of the EEG for brain computer interfaces and human 

machine teams. Since it is an inevitable and a fundamental problem for the EEG 

interpretation, EEG artifacts and their removal methods have been widely investigated.  

 While developing human machine teams, the EEG signal is a fundamental source 

of communication for computer agent. In order to accurately interpret the EEG, a 

computer agent needs to get a pure EEG signal (an EEG signal which only includes the 

brain activity). On the other hand, human teammates perform simple hand and finger 
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movements for some operations. These movements can cause the contamination of EEG 

signal and misinterpretation of human teammate’s cognitive state. In this study, we are 

looking for the artefactual effects of these movements and investigate methods for the 

detection of them. 
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III.  Methodology 

 The main objective of this research is to analyze the effects of small muscle 

movements on EEG signal.  Characterization of the hand/finger artifacts and 

investigating their detectability from the EEG signal form the theme of the analysis 

process. In this section the following research questions are explored:  Q1.) Do small 

muscle movements (finger and hand movements caused by keyboard and mouse usage) 

have effects on the EEG signal?  Q2.) Is it possible to detect these small muscle 

movements (hand and finger movements) from EEG signal, without any reference 

channel indicating hand/finger movement?   

These questions aim to determine whether hand and finger movements such as 

keyboard and mouse activity create artifacts in the EEG signal and develop effective 

ways of detecting those types of artifacts. 

3.1.  Domain of Study 

 In this study, physiological signals have been collected from human subjects. 

Electroencephalography (EEG), Electromyography (EMG) and Electrooculography 

(EOG) data have been collected as physiological signals. In addition to the physiological 

data, digital signals which indicate keyboard and mouse presses have been collected as 

additional data.  

This study has been made as a part of a research (“Small Motor Movement 

Cognitive Effects”) which was approved by Air Force Research Laboratory (AFRL) with 

human machine subject research protocol:  FWR20160127H.    
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3.1.1.  Participants 

 Five male individuals volunteered to participate in the study.  Participants were 

between 24 and 50 years old (mean age 31.8) and all right handed.  The physiological 

signals have been collected from each subject two times within two different days.  

3.1.2.  Data Collection 

EEG recording system developed by BIOPAC Systems Inc. has been used for the 

physiological data recording. This system includes the EEG amplifier, EEG electrode 

cap, EMG and EOG electrodes and Electrode Impedance Checker.   

A ribbon cable (100 cm) with connector fans out in the cap to connect to each 

electrode. The electrode cap’s connector arrangement permits the electrode cap to be 

easily disconnected from the recording amplifiers, allowing the cap to be fitted in one 

location and used in another. The physiological data recording equipment described 

above is shown in Figure 3.1.  
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Figure 3.1. Physiological data recording equipment. A. EEG recording cap. B. EEG 

Amplifier. C. Electrodes that are used for EOG and EMG recordings. D. Electrode 

Impedance Checker 

  EEG electrode Cap has the electrodes that are pre-positioned according to 

the international 10/20 montage that is shown in Figure 3.2. 

 

Figure 3.2.The 10-20 International Electrode System (Klem, Lüders, Jasper, & Elger, 

1999) 

Nine channels have been used for the EEG recording. EEG data has been 

recorded at a sampling rate of 2000 Hz from the positions of F3, FZ, F4, T3, CZ, T4, T5, 

PZ and T6 by the EEG electrode cap. Thick circled electrodes in figure 3.2 are the 

electrodes that we used in this experiment.  Two other channels (each channel has two 

positions: positive and negative) have been used for EOG recordings. One channel has 

been used to detect vertical eye movements (eye blinks) and the other one was for the 



26 

horizontal eye movements. The locations of the EOG electrodes have been shown in 

figure 3.3. 

 

Figure 3.3. EOG electrode locations. 

And finally, two channels have been dedicated to EMG recording from the right 

arm. (It has been used to detect the keyboard presses and mouse movements). The 

locations of the EMG electrodes (EMG1, EMG2 and the reference electrodes) have been 

shown in figure 3.4.  

 

Figure 3.4. EMG electrode locations. 

While determining the EMG location, we measured the length from wrist to 

elbow (R) and this length has been used to determine the EMG electrode locations (1/3 of 

this length from wrist (R/3) is the location of EMG1 and 2/3 of this length is the location 

of EMG2).  
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 In the experiment, six different types of conditions have been recorded. Figure 3.4 

demonstrates the timeline of the experiment and the duration of each condition. 

 

Figure 3.5. The Timeline of the Experiment. 

 

The first condition (Resting) was the baseline EEG recording. In this condition, 

the subject was in resting state without causing any artifact and without any cognitive 

task. The subject has been told to stay in a constant and relaxed position by staring at a 

constant point on the screen (focusing on the plus sign on the screen) and to clear their 

minds. Physiological data has been recorded in this state for 60 seconds as the baseline 

dataset. In the second and the third conditions, the physiological data has been recorded 

while the subject makes keyboard presses with a single finger. In the second condition, 

the participant pressed to the left control button with the left index finger. This design 

was intentionally used to avoid stimulus that would require cognitive processing for the 

stimulus as well as the keyboard presses. Instead of requesting the participant hit the key 

after seeing a stimulus, the subject made repeated taps at a participant-determined 

comfortable, but consistent rate between approximately 1 and 4 taps every 2 seconds 

(0.5-2Hz) without any stimulus. The aim of this is to reduce the cognitive effects of a 

visual, auditory, or sensory stimulus on the EEG recording since we are interested in the 

effects of the small muscle movements on EEG signal. The recording for the second state 
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was made for 45 seconds. The third condition was similar to the second one. This time 

the subject made repeated keyboard presses with right index finger for 45 seconds. The 

fourth condition was the imaginary right finger presses. In this state, subject basically did 

the same thing with the previous condition, but this time he/she made imaginary right 

finger keyboard presses instead of actually moving their fingers. In the fifth condition, 

the subject made repeated mouse movement for 60 seconds. These mouse movements 

were click and drag movements. The participant clicks and drags the mouse from the left 

to the right and returns the mouse to its original position again. He/she performs this 

movement several times (in a participant-determined comfortable, but consistent rate 

between approximately 1 and 4 mouse movements every 2 seconds) for 60 seconds. In 

the final state, the subject used keyboard and mouse at the same time with a stimulus that 

shows how he/she is performing. The subject used two fingers on the left hand to 

alternately press the A and D keys and at the same time he/she made mouse movements 

with the right hand. This data was considered as fully contaminated by the small muscle 

movement effects and compared with the baseline data. 

3.2.  Preprocessing of the EEG Data 

In order to perform feature extraction and artifact detection from EEG signal, it is 

essential to preprocess the raw EEG data to improve the performance of the analysis.  In 

this thesis work, an open source toolbox called EEGLAB provided by SCCN lab, running 

under the cross-platform MATLAB environment (The Mathworks, Inc.) has been used 

for both preprocessing and some parts of the EEG analysis.  
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The first step of preprocessing was the conversion of the data. The EEG signal 

was recorded using the integration of “AcqKnowledge Data Acquisition and Analysis 

Software” and “PsychoPy” software. The recorded data (9 channels EEG, 2 Channels 

EOG, 2 channels EMG and digital reference channels) has been converted to the 

appropriate format (.mat) for MATLAB and it has been formatted in order to make the 

analysis easier. This raw EEG data (.mat file) was including all the recording. Because of 

that, we divided this data into meaningful pieces by using MATLAB programming and 

saved each experiment condition data separately (For example: Participant_1 Day_1 

Resting State). 

The data analysis functions available in EEGLAB which includes data filtering, 

data epoch extraction and data resampling were used in this thesis work for the 

preprocessing of the collected EEG data. Since the EEG data has been acquired with a 

high sampling rate (2000 Hz), in some parts of the analysis the data has been down 

sampled. Down sampling reduces the file size and speeds up the subsequent processing 

steps and this was necessary for some computationally intense analyses such as time-

frequency power maps.  In order to facilitate investigating task-related changes in the 

EEG, we cut the continuous data into segments surrounding particular events (Finger and 

hand movements).  These epochs includes the signal with hand/finger movements and the 

signals with no small muscle movements. The usage of the epochs is described in Section 

3.3 in detail.  

For Preprocessing, we first imported the data into EEGlab and made channel 

localization. Channel Localization is important for ICA and investigating each channel 

separately.  Figure 3.6 show how we made the channel localization in EEGlab.   
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The EEG data we recorded includes 60 Hz line noise and we needed to get rid of 

this first. Figure 3.7 demonstrates the 60 Hz line-noise-effect in frequency-power 

spectrum.  

 

Figure 3.6. Frequency-Power Spectrum. (Resting State Recording of Participant One). 

In order to remove this artifact, we examined three different approaches.  These 

approaches were notch filtering, filtering with Cleanline toolbox (It is a sinusoidal artifact 

removing toolbox in EEGlab) and ICA (Removing components that includes 60 Hz 

artifact). The results of these approaches will be presented in the analysis section (Section 

4.1).  

These preprocessing steps are important to get better and more accurate results. 

After obtaining the proper signal for analysis, the next step was the feature extraction.  

3.3.   Physiological Feature Extraction 

 Acquisition of large amount of data is obtained by measuring electrical activity of 

the brain through EEG electrodes. In this study, 9 electrodes have been used for recording 

EEG signals with a sampling frequency of 2000 Hz. In order to detect the artefactual 

effects of hand/finger movements in EEG signal, it is essential to find features that can be 
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helpful to distinguish these effects. “Features” are the values which define some relevant 

properties of the acquired signals and combined as “feature vector”. Hence, feature 

extraction is an operation which converts one or several signals into a feature vector. 

Determining and obtaining required features from EEG signals is an important 

step. Since we are trying to characterize the finger and hand movement effects on the 

EEG signals, we need to extract the features that represents these effects. Many 

extraction techniques have been proposed and studied in the literature to represent EEG 

signals, such as wavelet transform, power spectra and adaptive autoregressive 

(Vigneshwari et al. 2013). In this study, we extracted the features that may obtain 

valuable information about the effects of the finger and hand movements.  

3.3.1.  Wavelet Transform  

Wavelet transform was one of the feature extraction methods we used in this 

thesis work. Wavelet transform is a time-resolved frequency decomposition of EEG data. 

It is a useful decomposition technique for our case, since the frequency-domain 

representations of EEG data such as Fourier transform have some limitations. They are 

unable to visualize the changes in frequency structure over time. On the other hand, a 

wavelet transform can provide us with the frequency of the signals and the time 

associated to those frequencies and it is a good way to visualize and decompose EEG 

signals into measurable component events.  

We decomposed the EEG data into the sub frequency bands by using the discrete 

wavelet transform. 
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Figure 3.7. Wavelet decomposition tree 

Figure 3.7 illustrates the discrete wavelet transform tree. The DWT is computed 

by applying successive low-pass and high-pass filters to the discrete time-domain EEG 

signal and this figure is called the Mallat tree decomposition  (Polikar, 1994). In Figure 

3.7, the EEG signal is denoted by the sequence X[n], where n is an integer (the voltage 

value from one channel at a specific time). The low pass filter is denoted by G(n) and the 

high pass filter is denoted by H(n). At each level, the high pass filter produces detail 

information, D[n], while the low pass filter associated with scaling function produces 

coarse approximations, A[n].  

Wavelet transform was used to create time-frequency power plots in order to 

demonstrate the changes in different frequencies by the effects of hand/finger 

movements. It was also used to convert time domain EEG signal into the frequency 

domain. The output of the wavelet transform was used to extract features from frequency 

domain data.  

3.3.2.  Extracting Different Frequency Bands by Using FIR Filter 

In the literature, studies which focus on designing BCI systems based on EEG use 

alpha (8-13 Hz) and beta (13-25 Hz) waves (frequency bands) as information sources of 

the systems. As Gunaydin and Ozkan (2010) state, alpha and beta waves contain more 

information about small muscle motor movements (such as hand and finger movements). 



33 

This information represents the cognitive aspects of the small muscle motor movements. 

It means that, these studies exploit the cognitive changes in the brain in order to 

distinguish muscle movements (such as hand and finger movements). In this study our 

aim is not to analysis the cognitive effects of the small muscle movements, but the 

artefactual effects of the muscle movements themselves on the EEG signal. Because of 

that, instead of using these waves (frequency bands), we need to use other frequency 

bands that don’t contain cognitive features (or contain very little cognitive information).    

In this study, we used FIR filters in order to extract different frequency bands. 

EEGlab toolbox has been used for this purpose. EEGlab has some filtering tools and 

Basic FIR filter tool (pop_eegfiltnew function) has been used for band pass filtering. We 

extracted 3 different frequency bands; 10-25 Hz, 30-50 Hz and 50-100 Hz. We extracted 

10-25 Hz frequency band since it includes alpha (8-13 Hz) and beta (13-25 Hz) waves. 

30-50 Hz and 50-100 frequency bands were extracted to investigate the artefactual effects 

of small muscle movements.   

3.3.3.  Feature Extraction from Time Domain Data 

We acquired 9 channel EEG signal at 2000 Hz sampling rate (with additional 

channels) and this means a large amount of data. Feature extraction is a kind of 

dimensionality reduction and it is important while dealing with large amount of data in 

pattern recognition. Features are values that represent some properties of the acquired 

signal.  

In this study, time and frequency domain features have been extracted from each 

channel in order to investigate artefactual characteristics of the finger and hand 

movements. Recorded EEG signal was preprocessed and different frequency bands were 
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extracted as we mentioned earlier. After that process, we divided signal into 0.5-second-

chunks (1000 samples per chunk) and important time domain features have been 

extracted from each of these chunks. Figure 3.9 shows the flow chart of the feature 

extraction from time domain data. 

 

Figure 3.8. Flow Chart of Preprocessing, Frequency Decomposition and Feature 

Extraction of 9 Channel EEG Data. 

There are different features that can be used for feature extraction. The features 

that were investigated in this thesis work have been listed and explained below. 

o Integrated EEG 

o Root Mean Square 

o Mean Absolute Value 

o Variance 
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o Waveform Length 

o Zero Crossing 

o Mean 

o Skewness  

o Kurtosis 

 

 Integrated EEG 3.3.3.1. 

Integrated EEG (IEEG) is calculated as the summation of the absolute values of 

the EEG signal amplitude. It can be expressed as shown in Equation 1.               

Equation 1 

1

| |
N

n

n

IEEG X


                               (1) 

In this equation, N represents the number of the samples of the specific channel; Xn 

represents the voltage value of EEG data at a specific time.  

 Root Mean Square 3.3.3.2. 

RMS is known as the quadratic mean. In statistics, the root mean square (RMS), 

also known as the quadratic mean, is defined as the square root of the arithmetic mean of 

the squares of a set of numbers. RMS is a useful feature when there are positive and 

negative variations, such as EEG signal. The formulation is expressed as shown in 

Equation 2.  
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Equation 2 
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        (2) 

In this equation, N represents the number of the samples of the specific channel; Xn 

represents the voltage value of EEG data at a specific time.  

 Mean Absolute Value: 3.3.3.3. 

Mean Absolute Value can be calculated by taking the average of the absolute 

value of EEG signal. As Vigneshwari et al. (2013) supports, it is an easy way for 

detection of muscle contraction levels. It is defined as shown in Equation 3. 

Equation 3 

1

1
| |

N

n

n

MAV X
N 

        (3) 

 Variance 3.3.3.4. 

Variance of EEG (VAR) uses the power of the EEG signal as a feature. Generally, 

the variance is the mean value of the square of the deviation of that variable. It can be 

expressed as shown in Equation 4. 

Equation 4 
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          (4) 
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 Waveform Length 3.3.3.5. 

Waveform length (WL) is the cumulative length of the waveform over the time 

segment. WL is related to the waveform amplitude, frequency and time. It is defined as 

shown in Equation 5. 

Equation 5 
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         (5) 

 Zero Crossing 3.3.3.6. 

Zero crossing (ZC) is a point where the sign of a mathematical function changes 

(e.g. from positive to negative), represented by a crossing of the axis (zero value) in the 

graph of the function. That means that it represents the number of times that the 

amplitude value of EEG signal crosses the zero y-axis. This feature provides an 

approximate estimation of frequency domain properties. It is formulated as shown in 

Equation 6. 

Equation 6 
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        (6) 

Where sgn(Xn) =1 when Xn>0 and sgn(Xn)=0 in other conditions.  

 Mean  3.3.3.7. 

Mean is calculated as the usual average of the EEG signal amplitudes. It can be 

expressed as shown in Equation 7. 

           Equation 7 



38 

1

N

n

n

X

Mean
N




                              (7) 

 Skewness 3.3.3.8. 

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the 

center.  

 Kurtosis 3.3.3.9. 

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative 

to a normal distribution. That is, data sets with high kurtosis tend to have heavy tails, or 

outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. 

3.3.4.  Feature Extraction from Frequency Domain 

Feature extraction from the frequency domain EEG data is important to observe 

and investigate another dimension of the data. In this study, time domain EEG data was 

converted into the frequency domain data by using wavelet convolution and Hilbert 

transform. Frequencies form 70 Hz to 100 Hz were convolved with proper wavelets and 

their power values was obtained for each channel. 

As a result, we had the frequency power values of 31 different frequencies (70-

100 Hz) for each time points and each channels. After that, this frequency domain data 

was divided into 0.5 second chunks and important features were extracted from each 

chunk. One of these features was the average power. Average power is calculated by 

taking the mean of all frequency power values in that chunk. The other feature was the 

maximum power. Maximum power was calculated by taking the maximum power value 

of averaged frequency powers. The frequency that has the maximum frequency power 
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was another feature. Minimum frequency power and Root mean square were the other 

features that we extracted from the frequency domain. Figure 3.9 demonstrates the 

feature extraction process from the frequency domain (Extraction of the Maximum 

Frequency Power). 

    

 

Figure 3.9. Flow Chart of Feature Extraction from the Frequency Domain. 

3.4.  Analysis of EEG signals 

In order to investigate the first research question, we used some analysis methods 

to observe how EEG signals changes during the hand and finger movements. In order to 

visualize these changes, we compared the event related signals (signals that include hand 

and finger movements) to the baseline signal. (The baseline signal refers to EEG signal 
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that doesn’t include any hand or finger movements). As we mentioned, we collected EEG 

data from subject for six different conditions; resting, left finger keyboard press, right 

finger keyboard press, right finger imaginary press, mouse movement and lastly keyboard 

press + mouse movement with stimulus (we named the last state as the activity state).  

First we compared the first and the last conditions. We assumed that one of them 

(resting state) includes no finger and hand movement effects and the other one (activity 

state) completely includes these effects.  Since the activity state heavily contaminated by 

hand and finger artifacts, it was easier to observe the effects of these movements. After 

that, we analyzed other conditions such as left and right finger press and right finger 

imaginary press conditions. We plotted the frequency power density plots, in order to 

investigate the effects in the frequency domain. After that by extracting features from the 

time and frequency domain data, we aimed to find useful features to differentiate hand 

and finger movement artifacts. 

In order to compare the first and the last conditions, we converted the 60 second 

time series EEG data of the first condition (resting) and 60 second data of sixth condition 

(keyboard press and mouse movement activity) into the frequency domain by power 

spectral density plots. This is a kind of visual analysis in order to investigate which 

frequency bands differentiate between two conditions. Figure 3.10 demonstrates the 

process. In resting state there are no hand/finger artifacts, but the participant creates 

hand/finger artifacts by both hands in the activity state.  
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Figure 3.10. The Resting and the Activity States 

We needed to use another approach for the other conditions. We had two separate 

data for the resting and activity conditions, but it is not the same for other conditions. 

Because of that, we needed to separate data into segments. One group of these pieces 

doesn’t include finger and hand artifacts and the other group includes these artifacts. 

Figure 3.11 shows how this process works.  

 

Figure 3.11. Separating Artefactual and Non-Artefactual Portions of EEG Signal. 

We first divided the data into the segments (0.5-second chunks), after that we 

used digital channels, in order to determine the chunks have the finger artifacts or not.  

Any chunk which contains a digital indication of a finger movement is considered to be a 



42 

finger movement chunk. As a result we grouped these artifacts as chunks with finger 

artifact and chunks with no finger artifact.   

Finding the eye blink artifact was another important step in this study. In order to 

find eye blink artifacts, we used VEOG channel that shows the vertical eye movements 

(blinks). The VEOG data was low pass filtered (20 Hz) to remove jagged edges and the 

rest of the channel has been investigated to find amplitudes bigger than blink voltage (it 

is a values that we determined visually. The value of it is 50 µV). As a result we were 

able to find when the participant blinked.  

3.4.2.  Detection of the Hand and Finger Movements Effects 

After characterizing the effects of the hand and finger movements, the second 

important issue is to detect these effects without any reference channel. While detecting 

hand and finger artifacts, we didn’t use neural changes, but the artefactual effects of these 

movements. We can consider this detection process as a classification problem, since we 

are trying to classify the data that is affected by the small muscle movements and the data 

that doesn’t include any of these effects.  

 

Figure 3.12. Block Diagram Of the Classification 

Figure 3.12 illustrates the process of classification. As a result of this process, we 

can detect the data that is affected by the hand and finger movements.  In the literature, 

various classification algorithms were used for the classification of the EEG signal. These 
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are linear classifiers (Linear Discriminant Analysis- LDA, Support Vector Machine- 

SVM), non-linear Bayesian classifiers, Linear Discriminant Analysis and Neural 

Networks. As Varghese (2009) states, the main drawback of LDA is its linearity that can 

provide poor results on complex non-linear EEG data. Because of that we used 3-layer 

(input, hidden and output layers) feed-forward neural network models for classification. 

Figure 3.13 demonstrates a sample for a 3-layer feedforward neural network.  

 

Figure 3.13. Basic 3-Layer Feed Forward Neural Network 

Since the feature numbers and feature matrix sizes were different for different 

classification conditions (resting-activity classification, right/left index finger press 

classification), different numbers of input, hidden and output nodes have been used. But 

the basic structure of the networks was the same. The detailed structure of different 

classifications will be presented in the Analysis part. The Neural Network Pattern 

Recognition tool of MATLAB (nnstart) was used to create these structures and 

train/test the neural networks. These neural networks were fully connected feed-forward 

networks with sigmoid hidden and softmax output activation functions. The data was 

divided into two sets as training (70%) and test (30%) data. The 70% of training data was 
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used to feed the network and 30% of it was used for validation. After the training session, 

test data was tested by using the trained model. We will explain how we divide the data 

into the training and test sets in the Analysis section.    

3.5.  Evaluation  

In order to evaluate the success of the detection and the classification of small 

muscle movement artifacts, we need some performance measures. The results of the 

classification are evaluated and presented by the confusion matrixes. These confusion 

matrixes (error matrixes) allow visualization of the performance of the classification 

model.  Each column of the matrix represents the instances in a predicted class while 

each row represents the instances in an actual class (or vice versa). The figure 3.14 

represents a basic structure of a confusion matrix.  

 

Figure 3.14. Basic Structure of a Confusion Matrix 

Accuracy is another representation of performance in the classification problems. 

It shows how often the classifier is correct. The accuracy can be calculated by using the 

confusion matrix. The calculation of the accuracy is shown in the Equation 8.          

Total Population
Predicted Condition 
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Predicted Condition 

Negative

Condition Positive True Positive
False Negative   

(Type II Error)

Condition Negative
False Positive              

(Type I Error)
True Negative

Predicted Condition

True 

Condition
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Equation 8 

_

TruePositive TrueNegative
Accuracy

Total Population


                                      (8) 

The Receiver Operating Characteristic  (ROC)  Curve is another evaluation tool 

for our classification. ROC  is a plot of values of the False Positive Rate (FPR) versus the 

True Positive Rate (TPR) for all possible cutoff values from 0 to 1. Area under ROC 

curve indicates the performance of the classification.  

3.6.  Summary 

 This chapter described the analyzing of the hand/finger artifacts and 

characterization of them, detection of the hand/finger artifacts by using time and 

frequency domain EEG data. Characterization of these artifacts was made by the 

frequency power density plots and feature extractions. After the characterization of these 

artifacts, we used proper frequency bands and features for the detection. The detection of 

these artifacts was made by using neural networks. Analysis results and the detection 

performances will be reported in the following chapter. 
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IV.  Analysis and Results 

In this chapter, the effects of small muscle motor movements are investigated by 

analyzing recorded EEG data in time and frequency domain. Features which are extracted 

from time and frequency domain are used to find evidence of small muscle movement 

effects. The features that include valuable information about the hand and finger artifacts 

are used to train the neural network models and detection of these artifacts has been made 

by using the trained models.  Unlike Li et al. (2004) and Vigneshwari et al. (2013)’s 

studies, this thesis work investigates the artefactual effects of the hand and finger 

movement. Because of that, features are extracted from upper frequency bands instead of 

exploiting alpha and beta bands.   

These analyses and classification models are made to find answers to our research 

questions: Q1.) Do small muscle movements (finger and hand movements caused by 

keyboard and mouse usage) have effects on EEG signals? Q2.) Is it possible to detect 

small muscle movements (hand and finger movements) from EEG signals, without any 

reference channel indicating hand/finger movement?  

4.1.  Removing 60 Hz Line Noise 

EEG signal that we recorded includes 60 Hz line noise. This noise can be seen 

even in the raw EEG signal. Figure 4.1 shows the raw EEG signal with 60 Hz line noise 

and the frequency power spectrum on one channel of that EEG signal.  
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Figure 4.1. Raw EEG Signal with 60 Hz Line Noise and Frequency Power Plot of 

Channel CZ.  

In order to remove this noise, 3 different approaches were investigated. The first 

one was applying notch filter between 58-62 Hz. The second option was filtering the 

signal with Cleanline toolbox (It is a sinusoidal artifact removing toolbox in EEGlab). 

And the last option was applying ICA and removing components that include 60 Hz line 

noise. Notch filtering creates band holes and distorts frequencies around the notch 

frequency, but according to the results, it is the best option among these three approaches. 

Figure 4.2 shows the results of 3 different approaches by frequency power plots.  

 

Figure 4.2. Frequency Power Spectra of  EEG Signal after Notch Filtering (58-62 Hz), 

CleanLine Filtering and ICA Removal  
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 CleanLine reduces the effect of 60 Hz Noise, but the power of 60 Hz noise still 

remains in the signal.  ICA is used to decompose the signal into independent components. 

For 60 Hz line noise removal, we removed the components that include 60 Hz signal and 

rest of the components was composed again. From figure 4.2, it can be seen that the 60 

Hz line noise is removed by ICA, but ICA also affected the other frequencies because of 

the removed components. In addition to this, ICA is designed to remove artifacts, and if 

we are not careful, we might end up removing the artifacts we hope to investigate.  As a 

result, we decided to use the notch filtering to remove the 60 Hz. Line artifacts.    

4.2.  Frequency Power Spectra 

4.2.1.  Comparing Resting and Activity Conditions 

In first part of this thesis work, we compared the resting and the activity 

conditions. The resting state contains no hand and finger movements and the activity state 

contains both finger and hand movements (The left hand for keyboard presses and the 

right hand for the mouse movements).  We started comparison by plotting the frequency 

power spectra. Figure 4.3 shows the frequency power spectra of the resting and the 

activity conditions of participant one. Each plot includes the power spectrum of both 

activity and resting conditions. 
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Figure 4.3. Frequency Power Spectra of Resting and Activity Conditions (Data has been 

Taken from the Participant-One Day-One Recording).  

According to frequency power spectra of each channel, it can be observed that the 

power of upper frequencies is relatively bigger in the activity state. This can’t be the 

evidence for the effects of hand and finger movement, but it demonstrates that 

performing activity instead of staying in constant position affects the power spectrum of 

EEG signal. We know that lower frequency bands (<25 Hz) include more cognitive 

components. On the other hand, upper  frequencies (>25 Hz, gamma wave) contain less 
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cognitive components. As  Whitham et al., (2007) suggest, EEG recording above 20 Hz 

could be in many cases an artifact of electromyography activity. Power spectra in figure 

4.3 show that the frequency power of the activity state is bigger than the resting state, 

especially above 25 Hz. This can be an indicator of the artefactual effect of hand and 

finger movements. This situation is the same for all 5 participants (Activity state has 

relatively bigger power for upper frequencies).  

4.2.2.  Right Finger Press and Right Finger Imaginary Press Conditions 

We recorded two different conditions for right finger keyboard press in order to 

explore the effects of right index finger movement on the EEG signal. One condition 

contains right finger movements and the other contains imaginary right finger 

movements. We plotted frequency power spectra of both conditions in order to 

investigate finger movement effects. Although the frequency power spectra of resting and 

activity states generated visual difference between two conditions, the power spectra 

didn’t generate any visual difference between the right finger movement and the right 

finger imaginary movement states. Figure 4.4 demonstrates the power spectra of these 

two conditions (45 seconds recording of each conditions) for 3 channels.  
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Figure 4.4. Frequency Power Spectra of Right Finger Press and Right Finger Imaginary 

Press Conditions (Data has been Taken from the Participant-One Day-One Recording). 

The power spectra show that the finger movements don’t create any observable 

effects in frequency spectrum as in the previous comparison. We need to try other options 

in order to find an evidence for the artefactual effects of finger movements on the EEG 

signal. 

4.3.  Feature Extraction and Creating Feature Matrixes  

4.3.1.  Resting and Activity Conditions 

We observed that the EEG data which is recorded while performing hand and finger 

movements has more power in upper frequencies than the EEG data which is recorded 
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without making any muscle movements. In this part of the thesis work, we extracted 

features from time and frequency domain EEG data.  

 The data from resting and activity conditions has been band-pass filtered into 

different frequency bands (10-25 Hz, 30-50 Hz and 50-100 Hz) by using FIR filtering. 

After filtering EEG data, each data portion (activity and resting conditions) has been 

divided into 0.5-second chunks and time-domain features have been extracted from each 

chunk as we described in the methodology part (Figure 3.8). As a result, we obtain two 

groups of features. One of the groups was the features extracted from resting condition 

and the other one was the features of the activity state. The same features from two 

groups were visually compared by boxplots. Figure 4.5 shows boxplots of 8 different 

features that belong to two different groups.   
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Figure 4.5. The Features Extracted from Time Series EEG Data of Resting and Activity 

States (Each Group of Boxes has 120 Values) (Data has been Taken from the Participant-

One Day-One Channel CZ). 

These boxplots show that some features may be useful to differentiate these two 

conditions. We investigated these features for all the participants in order to evaluate their 

successes and find the best features. After visual inspection of all features for all the 
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participants and the channels, the variance, root mean square and integrated EEG features 

were determined as useful features for differentiating resting and activity conditions 

(since they have similar results for all the participants). Figure 4.6 shows the boxplots for 

variance feature for all five participants. This feature was extracted from the channel CZ 

and each group of boxes includes 120 values. 

  

 

Figure 4.6.The Boxplots of Feature Variance from all Five Participants. 

Figure 4.6 shows that the variance features of activity condition mostly have 

bigger values than the variance features of resting condition. This means that hand and 

finger movements cause some changes in variance of time series EEG signal. But we still 

can’t declare that the changes in the variance features are caused by hand and finger 

artifacts, because the EEG data that we used so far was unfiltered EEG signal and the 

changes in the variance feature may be caused by the cognitive effects.  
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In order to illuminate this problem, the same features are extracted from filtered 

signals (10-25 Hz, 30-50 Hz and 50-100 Hz).  In figure 4.7, boxplots of variance feature 

that is extracted from three filtered signals are shown.  

 

Figure 4.7.The Boxplots of Feature Variance from Three Filtered Signal 

It can be observed from figure 4.7 that the difference between variances of two 

conditions becomes more visible in upper frequency bands. Since the upper frequency 

bands don’t include much cognitive components, this result demonstrates the artefactual 

effects of hand and finger movements. 

 Since 50 to 100 Hz frequencies don’t include much neural activity and 50-100 Hz 

filtered data yielded better results to differentiate two conditions, 50-100 Hz filtered data 

was used for the hand and finger artifact detection.  

For this purpose, signals from all participants were filtered (50-100 Hz) and 8 

different features have been extracted from the data of all participants for the resting and 
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the activity conditions. After that, each feature was grouped and compared. We 

investigated all the features for all the channels. As a result, we chose 3 features 

(variance, integrated EEG and RMS) from different channels in order to form the feature 

matrixes. And channels F3, T5, PZ and T6 have been selected by visual and statistical 

inspections. Figure 4.8, figure 4.9, and figure 4.10 show the boxplots of the selected 

features (variance, integrated EEG and Root Mean Square) respectively.  

 

Figure 4.8. The Boxplots of Feature Variance (Channels F3, T5, PZ and T6). 

 

Figure 4.9. The Boxplots of Feature Integrated EEG (Channels F3, T5, PZ and T6). 
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Figure 4.10. The Boxplots of Feature RMS (Channels F3, T5, PZ and T6). 

 In these figures we gathered the feature values of all 5 participants. One of the 

boxplots represents the feature values from the resting condition and the other one 

represents the values of the same feature that were extracted from the activity condition. 

By visual inspection, it can be deduced that the values of these features are mostly bigger 

for the activity condition.  

After obtaining feature matrixes from the time series EEG data (50-100 Hz band 

pass filtered), the next step is to form neural network models for classification. It will be 

presented in section 4.4.  

4.3.2.  Right and Left Finger Keyboard Press Conditions 

Resting and Activity conditions are easier to differentiate; since one of them is 

heavily contaminated by the small muscle movement effects (hand and finger artifacts). 

We were able to observe their effects using time series EEG signal. On the other hand, 

detecting the EEG portions that are affected by a single finger movement is a much more 

challenging problem. In order to present a useful study for Human Machine Team 

researchers, it is important to understand even the single finger movement effects.  
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In order to investigate the artefactual effects of single finger movements, we 

applied the same feature extraction process to the right and the left index finger keyboard 

press conditions. For this aim, as described in methodology part, we divided the data into 

0.5-second chunks and separated them into two groups by using digital and EMG 

channels. One of the groups of chunks has no finger artifacts, while the other group 

includes finger artifacts. After dividing the EEG data (right finger press condition) into 

chunks, we had 900 chunks in total (639 chunks with no finger artifact and 261 chunks 

with finger artifact). 

We extracted the time domain features (variance, RMS, mean, skewness, kurtosis 

and integrated EEG) from filtered (70-100 Hz) EEG data and compared two groups. But, 

these features didn’t provide any consistent and decisive results as we got while 

comparing the rest and the activity states. This means that the artefactual effects of the 

finger movements can’t be visually characterized just by using the time domain features. 

Because of that, another dimension of the signal was investigated. Time series EEG data 

has been converted into the frequency domain as described in methodology section.  

After this conversion, we extracted five frequency domain features (Average frequency 

power, maximum frequency power, frequency that has the max power, min frequency 

power and root mean square of the frequency powers). But, these frequency features 

didn’t prove to be consistent and decisive either.  

While the effects of the hand/finger artifacts can be observed by visual inspection 

in high contamination levels (rapid and continuous movements by both hands and 

fingers), we can’t observe the effects by evaluating the features separately in low 
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contamination levels (single finger movement). We also applied the same process to the 

left finger keyboard press data and mouse movement data but the results were similar. 

4.4.  Detection of Hand and Finger Artifacts 

Features extracted from time and frequency domain EEG data indicated that the 

finger and hand artifacts create observable effects on EEG signal. In this section, our 

study creates neural network models and trains these models by using feature matrixes 

that we formed in the previous section. After training these models, we test how these 

models perform in detection of the hand and finger artifacts.  

4.4.1.  Classification of Resting and Activity Conditions  

Features extracted from filtered (50-100 Hz) time domain EEG data has been 

investigated for all the participants and channels and three features (variance, integrated 

EEG and RMS) and three channels (F3, PZ, T6) has been selected to form the feature 

matrixes. We keep the input numbers low, since these three features were good at 

separating two groups. We kept the classification model as simple as possible.  

While forming the training and the test data, the first 35 seconds of the Resting 

and Activity data was used as training data, the last 15 seconds was used as test data and 

the 10 seconds of data between training and test data wasn’t included to any group. We 

aimed to reduce the correlation between training and test data by using 10-second 

separation. Figure 4.11 shows this process visually.  



60 

 

 

Figure 4.11.Training and Test Data from the Rest and Activity Conditions. 

After dividing rest and activity data of all participants into the training and test 

sets, chunks from resting condition was classed as “Zero” (0) and the chunks from 

activity condition was classed as “One” (1). Training and test sets were randomized after 

adding the class tags. 

After creating training and test sets, we formed the neural network model. As 

mentioned in methodology chapter, neural network pattern recognition tool of MATLAB 

was used to form neural networks. Our model has 9 inputs and gives two outputs. We 

used the validation accuracy while determining the number of the hidden nodes. We first 

determined 5 for the number of the hidden layer nodes and the accuracy was 87.3% and 

the accuracy improved when we increased the hidden layer nodes. The accuracy 

improved to 92.2% when the hidden node number was 20. We continued to increase the 

number of the hidden nodes (we tried 30, 50 and 100), but there was definitive 

improvement on the accuracy. As a result, we decided to use 20 nodes for the hidden 

layer. Figure 4.12 demonstrates this neural network model.  
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Figure 4.12. Neural Network Model for Classification of Activity and Resting Data 

This model was trained by the training set and after the training, test data was 

evaluated on the trained model. The training set had 594 samples (feature matrix of 

9x594) and the test set had 306 samples. Figure 4.13 presents the classification results of 

the test data by the confusion matrix.  

 

  
Predicted Condition 

  

 

Total 
Population      

306 
Activity Rest 

True 
Condition 

Activity 134 5 
96.4%   
3.6% 

Rest 19 148 
88.6%  
11.4% 

  
87.6% 96.7% 92.20% 

  
12.4% 3.3% 7.80% 

 

Figure 4.13.  Classification Results of the Rest and Activity Chunks (Test Data). 
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Figure 4.14 shows the ROC curve of this classification.  

  

Figure 4.14. ROC Curve of the Test Data Classification 

 

According to figure 4.13, the results showed that the chunks which belong to the 

activity data can be classified with the accuracy of 92.2%.  The sensitivity (true positive 

rate, classifying the activity signal correctly) was 96.4% and the specificity (classifying 

the rest data correctly) was 88.6%. 

It means that, 92.2% of the time, this model can classify the data correctly as 

resting data or activity data.  

4.4.2.  Classification of Finger Artifacts 

Classification of the finger artifacts basically includes detecting the EEG 

segments that includes finger movements in it by using the artefactual effects of the 

finger movements. In this classification problem, the neural network model takes time 

and frequency domain features as the input and gives one of the two outputs (no finger 
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artifact or finger artifact). The time domain features were extracted from 70-100 Hz band 

passed filtered EEG data. In addition to this, we also band passed filtered the data 

between 30-50 Hz and extracted the same time domain features from this filtered data. 

This obtained us additional 6 features per channel. In addition to time domain features, 5 

features were extracted from the frequency domain EEG data (70-100 Hz).  As a result, 

we collected 17 features per channel. Figure 4.15 demonstrates these features.  

 

 

Figure 4.15. Extracted Features from one Channel 

After extracting 17 features per channel, we obtained 153 (9x17) features. It 

means that, we extracted 153 features per chunk (0.5-second EEG data). We formed the 

feature matrixes by gathering these features from all chunks. And this feature matrix was 

used to train our model.  
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The neural network model had 153 nodes for the input layer. We decided the 

hidden layer node number as 200 and the output layer had two nodes (finger artifact or no 

artifact). Figure 4.16 demonstrates this neural network model.  

 

 

Figure 4.16.Neural Network Model for  Classification of Right Finger Artifacts 

  

As we mentioned earlier, for the right finger press conditions we had 900 chunks 

(634 of these chunks includes no finger artifact and 266 of them includes finger artifacts). 

We formed the feature matrix by using these 900 chunks (153x900-feature matrix). In 

order to create the training and the test sets, the feature matrix randomized and divided 

into two groups (70% training set and 30% test set).  

We trained our model (shown in Figure 4.17) with the training set and test it with 

the test set. But the results were not good. The accuracy was 71.6%, but this value may 
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be misleading, because number of the groups was unbalanced (634 of these chunks 

includes no finger artifact and 266 of them includes finger artifacts). Because of that, we 

balanced the number of the groups as 266 chunks from each group. Training and tests 

sets were balanced and the model trained and tested again. The training data had 372 

chunks and the test had 160 chunks. The test set had 80 chunks include finger artifact and 

80 chunks that includes no artifact.  

According to test results the accuracy was 65%. The results are shown by a 

confusion matrix in figure 4.17.   

  
Predicted Condition 

  

 

Total 
Population      

160 

Finger 
Artifact 

No Finger 
Artifact 

True 
Condition 

Finger 
Artifact 

43 19 
69.4%   
30.6%  

No Finger 
Artifact 

37 62 62.6% 
37.4%   

  
53.7% 
46.3% 

76.3% 
23.7% 

65.2% 
34.8% 

      

Figure 4.17.  Classification Results of the Right Finger Artifacts. 

According to figure 4.17, the results showed that the chunks which include right 

finger artifact and no artifact can be classified with the accuracy of 65%.  The sensitivity 

(true positive rate, classifying the right finger artifact correctly) was 69.4% and the 

specificity (classifying the data that doesn’t contain a finger artifact) was 62.6%.  

 This training and testing process has been made 10 times, in order to find an 

average accuracy performance. Table 4.1 shows 10 different test results for the 

classification model.  
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Table 4.1.Classification Results of Right Finger Artifact 

Trainings Specificity Sensitivity Accuracy 

1 53.7 76.3 65.2 

2 50 71.8 60.9 

3 52.4 74.4 63.4 

4 57.3 70.5 63.9 

5 52 78.2 65.1 

6 52.4 67.9 60.15 

7 51.2 75.6 63.4 

8 56.2 71.3 63.75 

9 60.7 69.4 65.05 

10 59.6 75.6 67.6 

 

According to Table 4.1, the chunks which include the right finger artifact and no 

artifact can be classified with an average accuracy of 64%. This is not a good result for a 

classification and it doesn’t provide enough evidence about the artefactual effects of the 

finger movements. Because of that, we tried to find ways to improve this classification 

accuracy.  

 Ocular artifact affects the EEG signal as we stated in the Literature Review 

Section. But in our model, we didn’t consider these artifacts. Because of that, we decided 

to find and remove chunks that include eye blink artifacts and wrote a code that finds 

these chunks. This code uses the vertical EOG channel to determine when the participant 

blinks.  

It was found that, 72 of the chunks (900 chunks in total) had eye blink artifacts 

and 8 of the chunks had both eye blink and finger artifacts. We removed these chunks 

from the feature matrix. After this process, we had 258 chunks that include finger 

artifacts and 562 chunks that include no artifact. We formed a balanced feature matrix by 
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taking 258 chunks from each group (516 Chunks in total) and 160 of these chunks (80 

chunks from each group) were used as test data.  

As a result, we created the same conditions with the previous classification (the 

classification that yielded 64% average accuracy). We only removed the chunks that 

include eye blink artifacts). We trained our model again with the new training set. We 

finally tested the trained model by using the test set. The results are shown by a confusion 

matrix in figure 4.18.  

  
Predicted Condition 

  

 

Total 
Population      

160 

Finger 
Artifact 

No Finger 
Artifact 

True 
Condition 

Finger 
Artifact 

57 24 
70.4% 
29.6%     

No Finger 
Artifact 

19 60 75.9% 
24.1%   

  
75% 
25% 

71.4% 
28.6% 

73.1% 
26.9% 

     

Figure 4.18. Classification Results of the Right Finger Artifacts (Blink Artifacts 

Removed).  

According to figure 4.18, the classification accuracy improved to 73.1%. This 

training and testing process has been made 10 times, in order to find an average accuracy 

performance. Table 4.2 shows 10 different test results for the classification model. 

Table 4.2.Classification Results of Right Finger Artifacts (Blink Artifacts Removed) 

Trainings Specificity Sensitivity Accuracy 

1 70.4 75.9 73.1 

2 69.7 71.4 70.55 

3 71.1 75 73.05 

4 71.1 69 70.05 

5 67.8 77.4 72.6 
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6 69.7 69 69.35 

7 65.8 77.4 71.6 

8 66.8 76.2 71.5 

9 64.5 81 72.75 

10 69.7 79.8 74.75 

 

According the table 4.2, the chunks which include right finger artifact and no 

artifact can be classified with an average accuracy of 72%. It can be observed that the 

accuracy of the classification increased to 72% from 64% after we removed the chunks 

that include blink artifacts. In addition to this, the average sensitivity (true positive rate, 

classifying the right finger artifact correctly) increased to 69.1% from to 55.3%.  

It means that 72% of the time our model can detect whether the data (0.5-second 

segment) contains finger artifact or not. The detection performance still poor, but we 

observed that we could improve the accuracy (the performance the finger artifact 

detection) by eliminating the other artifacts.  

4.5.  Summary 

In this chapter, experimental results and analysis from the methods described in 

Chapter III were presented.  The investigative questions along with the answers 

supported in this chapter are summarized below: 

 Q1.  Do small muscle movements (finger and hand movements caused by 

keyboard and mouse usage) have observable effects on EEG signals? Frequency power 

density plots and feature comparisons showed that the effects of the small muscle 

movements are observable when the data is heavily contaminated by these small muscle 

movements (activity and resting conditions). If we are dealing with really small muscle 
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movements such as a single finger keyboard press, their effects on EEG signal are not 

observable.  

Q2.  Is it possible to detect small muscle movements (hand and finger movements) from 

EEG signals, without any reference channel indicating hand/finger movement? 

Classification results showed that it is possible to detect small muscle movements 

with a simple neural network models if the contamination level is high (activity vs, 

resting states). Our classification model (activity and resting data classification) yielded 

92.2% accuracy. On the other hand, if the contamination level is really low (data contains 

a single finger movement), it is not possible to detect these artifacts with simple models. 

In order to finger artifact classification, we extracted 153 features (3 features in the 

previous model) and eliminated eye artifacts and after those improvements, our 

classification model yielded 72% accuracy. This is not a high accuracy but, it gives the 

idea about the effects of finger artifacts on the EEG signal.  

As a result, we analyzed the best case and the worst-case scenarios in order to 

investigate the small muscle movement artifacts. And the results showed that these small 

muscle artifacts have effects on the EEG signals.    
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V.  Conclusion and Future Work 

Human Machine Teams (HMTs) and Brain Computer Interface (BCI) Systems are 

strongly rely on the EEG signals. Both of them need to use pure EEG signal that 

represents the neural activity of the brain. But the physiological and non-physiological 

artifacts distort the EEG signals and make the interpretation of cognitive state harder or 

may cause misinterpretations.   

This thesis study focuses on a kind of muscle artifact that is caused by the small 

muscle movements, since the artefactual effects of these movements haven’t been 

investigated in the literature. The effects of these movements have been investigating by 

using the best and the worst-case scenarios. In the best-case scenario, the EEG data has 

been heavily contaminated by the small muscle movements (activity state). The 

participants continuously move their both hands and fingers in this case. In the worst-case 

scenario, the data only contains single finger artifacts (right/left finger keyboard presses). 

And we analyzed these cases in order to investigate the effects of the small muscle 

movements on the EEG signal. 

5.1.  Research Findings 

This thesis study investigates artefactual effects of the small muscle movements. 

For this aim, we investigate the best and the worst-case scenarios. For the best case 

(activity versus resting state) scenario, the results showed that the effects of the small 

muscle artifacts can be visually observed by extracting and comparing time domain 

features (such as variance and RMS) from the EEG signal. In this condition, the detection 

of these artifacts can be made by a simple neural network model with high accuracy. In 
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our study, the model we created can detect the data segments that contain small muscle 

artifacts with the accuracy of 92.2%. We used just the time domain of the EEG signal for 

this detection model. The accuracy of the model may be increased by adding some 

features from the frequency domain of the signal. But we didn’t make further inspection 

in this scenario, because this accuracy level was enough to state that if the EEG data is 

heavily contaminated by small muscle artifacts, the effects can be detected.  

For the worst-case scenarios (right/left finger presses), the results were different.  

We extracted the time and frequency domain features from the EEG signals in order to 

find some features that may visually show the effects of the finger artifacts. But none of 

the features provided visual evidence about finger artifacts. Because of this, we created 

neural network models and made classification to detect the finger artifacts. The results 

showed that the detection accuracy was 64%. This accuracy level was not enough to state 

that the finger artifacts are detectable. We applied the same process after eliminating the 

eye blink artifacts and the accuracy of the classification model increased to 72%.   

5.2.  Future Research 

In this study, our model made the finger artifact detection with 64% accuracy. We 

improved the accuracy of the finger detection to 72% by eliminating the eye blink 

artifacts. This accuracy level shows that the finger movements have some effects on the 

EEG signal and we can improve their detection performance by cleaning other artifacts. It 

is obvious that the finger movements have really small effects on EEG signal when 

compared to large muscle movements (such as head movements) or the ocular artifacts. 

When we removed the eye blink artifact we got a significant improvement on the 
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detection. For the future work, other artifacts such as horizontal eye movements, other 

muscle movements may also be removed before investigating the finger artifacts. This 

may improve the accuracy of the detection.  Since we have just 5 participants, our data 

was not enough to remove additional artifacts.  In addition to this, we only recorded the 

EMG activity from the right arm and didn’t capture other muscle activities.  

In order to form the training and test datasets, we used the first parts of the 

recordings for training and the last parts of the data for testing sets. Since we had 5 

participants, we didn’t separate participants into two groups as training and test groups. 

For a future study, this experiment can be made by more participants and these 

participants can be divided into training and test groups. And by doing that, the test 

results may represent the success of the detection for common usage. In addition to this, 

the detection results may be tested with the resting and imaginary keyboard press 

conditions for a future study. When we test it with resting condition, we expect the model 

to classify the data portions as non-artefactual chunks, since these conditions include no 

finger artifacts. These results also demonstrate the success of the classifiers.  

As a result, small muscle artifacts have detectable effects on the EEG signal. If 

the small muscle movements are intense, these effects can be observed visually. If the 

data has just finger movements, the effects cannot be observed visually but can be 

detected by machine learning methods such as neural networks.  
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