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Abstract 

 

This thesis promotes the use of the Network Tasking Order (NTO), in collaboration 

with the Air Tasking Order (ATO), to optimize routing in Mobile Ad hoc Networks 

(MANET).  The network topology created by airborne platforms is determined ahead of 

time and network transitions are calculated offline prior to mission execution.  This 

information is used to run maximum multi-commodity flow algorithms offline to 

optimize network flow and schedule route changes for each network node.  These 

calculations and timely route modifications increases network efficiency.  This increased 

performance is critical to command and control decision making in the battlefield.  One 

test scenario demonstrates near a 100% success rate when route scheduling and splitting 

network traffic over an emulated MANET compared to Open Shortest Path First (OSPF) 

which only achieved around a 71% success rate, and Mesh Made Easy (MME) which 

achieved about 50% success.  Another test scenario demonstrates that the NTO can 

experience degradation due to schedule delay.  Overall, if executed and planned properly, 

the NTO can significantly improve network Quality of Service (QoS).   
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NETWORK ROUTING USING THE NETWORK TASKING ORDER,  

A CHRON APPROACH 

 
1  Introduction 

 

 The importance of computer and information networks continues to increase.  

Society, businesses, and the military rely heavily on networks for information exchange 

between personnel and control systems.  More specifically, the military has become 

dependent on computer networks for more than just day to day business, but also for real-

time war fighting situational awareness.  The integration of computer networks has 

expanded deeply into combat assets from unmanned aerial vehicles (UAVs) to most 

recently, surveillance, attack, and fighter aircraft.  At this time all aircraft platforms have 

the capability to support a computer network and share data with other aircraft or ground 

stations.  The Department of Defense (DoD) defines the complete network comprised of 

all military bases, sites, aircraft, and other end points as the Global Information Grid 

(GIG).  It is assumed that the standard protocols that are used for stationary GIG nodes 

do operate efficiently enough to route network traffic over mobile nodes.  This document 

presents other routing methods that are presumed to operate much more efficiently than 

these standard protocols in mobile airborne environments.  Furthermore, multiple routing 

methods are implemented in test scenarios to analyze the performance characteristics of 

these routing methods. 
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1.1 Problem 

 Traditional networks have been in use for years.  Network traffic decision 

algorithms have been in place since the creation of the Internet.  These algorithms are 

successful in redirecting network traffic as the network changes.  The problem is that 

these algorithms do not handle mobile networks where connections have lower 

bandwidth and are constantly changing.  In mobile networks the amount of changes that 

must occur is substantially greater than the typical Internet connections between cities or 

corporations.  These protocols also depend on the network, or at least a portion of the 

network, to pass information among nodes to update routing tables.  This overhead traffic 

is not always an option in airborne networks.  In airborne networks, the ability to send 

updates is limited due to how often the network changes and, more importantly, the need 

to use the bandwidth for operational data instead of network control data. 

1.2 Background 

During a military operation, the network connections among aircraft are viewed 

as a complex network.  Two different aircraft may maintain a connection for a given 

period of time, but they must be within a certain distance to maintain a connection.  The 

closer the two aircraft are together, the faster the link operates.  As the aircraft separate, 

the link speed between them decreases.  The network that is established during the course 

of a day in a heavily occupied airspace becomes dynamic and changes often.  Each 

aircraft acts like a network node or router.  Therefore each aircraft has the potential to 

connect to any other aircraft in that airspace.  As the links between the aircraft are 

established or removed from the network a decision is made to change the way data flow 
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from one end of the network to the other.  This decision making is critical to network 

optimization or, more importantly, basic network operation.  Figure 1.1 from NSA 

depicts a global environment where various platforms are able to communicate over 

network links.  These links are established between ground nodes, naval ships, satellites, 

aircraft, and tactical mobile ground units. 

 

 

Figure 1.1:  Global Information Grid [1] image showing connections between various 
network platforms. 
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1.3 Contributions 

The ability to use this network by using one aircraft to make a connection for 

another through the battle space is previously researched.  The state of the network must 

be known ahead of time to be any use to the operation.  The air tasking order (ATO) 

directs the aircraft to a given location at a given time.  Using this location and time, the 

state of the network is determined.  The ability to task airborne assets and use the 

interconnections between these aircraft as a network to pass traffic is known as the 

network tasking order (NTO) [2].  Although the overall intent of the NTO is to have a 

method of tasking assets to provide a network to support daily missions, it is further used 

to predict the network state and make routing decisions to pass traffic through the 

network.  Using the known aircraft location to route network traffic is researched and 

summarized in a thesis titled, “context aware routing management architecture for 

airborne networks” (CARMA) [3]. 

 The previous research has had favorable results showing that knowing aircraft 

location can greatly assist in network traffic flow prediction and routing determination.  

However, the previous research is conducted using network simulators.  These simulators 

lack many characteristics of an actual network since they are implemented and executed 

within a single program that simulates many different network nodes and associated 

interconnections.  The network nodes may not operate independently.  Additionally, the 

simulators received control signals from a central control server that had a connection to 

the network nodes over an independent network connection.  In order to determine 

operational effectiveness, these NTO scenarios are implemented on an operational 

network.   
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1.4 Objectives 

The goal of this thesis is to implement the previous findings in an operational 

network.  While a router performs a specific function on the network there are many 

different ways to implement the function of a router.  Any standard operating system can 

act as a router.  There are software firewalls, virtual appliances, and even some of the 

mainstream hardware vendors distribute virtual machines to emulate one of their 

products.  A collection of these devices are established in a virtual environment where the 

links between them are controlled to emulate a network that would follow the 

characteristics of an airborne network.  Doing so provides independence between the 

various network devices and proves feasibility in an actual airborne environment.   

1.5 Thesis Overview 

This chapter provided a summary of airborne networks, the limitations of airborne 

networks, the limitations of previous research, and the various challenges associated with 

this topic.  Additionally, the objectives of this thesis are summarized.  The following is a 

summary of the contents of this document: 

 Chapter 2 provides a literature review of previous relevant research in this 

area of expertise.  This literature is not limited to airborne networks, but also 

network protocols, virtualization, synchronization, and any other pertinent 

information. 

 Chapter 3 covers the methodology used to assess the airborne network 

emulation and how success or failure is measured. 

 Chapter 4 discusses the results of the experiments. 
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 Chapter 5 summarizes the experiments, provides any and all conclusions, and 

provides recommendations for future work.  
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2 Literature Review 

2.1 Chapter Overview 

 This chapter focuses on previous research or background information already 

present that pertains to airborne network routing and traffic management.  The following 

background information is presented in a top to bottom approach detailing how an 

airborne network operates, how the traffic can traverse a constantly changing dynamic 

network, some methods to control this dynamic network, as well as some critical 

underlying protocols that assist with the process.  First, mobile ad hoc networks 

(MANET) and network routing protocols are discussed.  Then, some advanced prediction 

techniques that are utilized for traffic routing and management as well as some 

synchronization techniques are presented.  Finally, this chapter focuses on network 

topology prediction and how priori knowledge is used to enhance network throughput 

and performance. 

2.2 Mobile Ad Hoc Networks 

 Today, modern technology makes it possible for aircraft to have a network 

connection to either a ground station, or another aircraft.  Modern military aircraft utilize 

tactical data links (TADIL) as a basic form of network communication.  TADILs are 

radio interconnections between aircraft that allow the sharing of information such as 

position and other aviation data.  The capability to provide increased network 

connectivity for additional purposes has been developed and implemented.   These 

aircraft use military grade radios to pass mission data to an air operation center (AOC).  

As these aircraft (nodes) move into range of each other or ground stations they create a 
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connection.  If a node is within range of multiple other nodes, either ground or airborne, 

multiple connections are established.  Multiple nodes connected together form a network.  

These wireless connections between independent systems are typically short lived.  They 

may not have a connection to the Internet as connectivity is isolated within the systems 

connected.  This system of systems is known as a MANET.  Figure 2.1 depicts a 

complicated MANET involving many different types of systems all connected together.  

MANETs take advantage of the fact that although a system is not able to connect directly 

to a node that is out of range, also known as the “hidden node problem” in wireless 

networks.   Instead, it can forward the traffic destined for the out of reach system to 

another system in between.  The system in between can then store and forward the data to 

the destined system.  MANET systems typically operate using batteries and, as such, 

power consumption is a concern.  Quality of service (QoS) is another concern with 

MANETs.  QoS is measured  

 

Figure 2.1:  Mobile Ad Hoc Network [4] 
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by the quantity of data that can traverse a network successfully from source to 

destination.   The limitations of MANETs are summarized by the following [5]: 

 The quickly changing network topology that occurs inhibits traffic routing 

performance as connections are made based on proximity to other devices in the 

network and routing decision changes are more frequently necessary. 

 While wireless connections are error prone, MANETs further complicate this 

error rate with additional noise, interference, and fading. 

 Routing decision algorithms must be extremely lightweight and efficient to 

minimize CPU, memory, and RF transmission due to the power limitations in the 

MANET environment. 

 MANET wireless connections are not only low bandwidth, but the bandwidth 

fluctuates as proximity/signal strength increases or decreases. 

To ensure optimal Quality of Service, there are three factors that must be determined and 

re-determined as necessary [6]:  

 A loop-free route from source to destination must be established with enough 

bandwidth to support the required data transfer. 

 Upon topology changes, a route can be quickly established to support any current 

QoS obligations. 

 As resources change, such as link speed between nodes, QoS obligations can be 

maintained by ensuring bandwidth is sufficient for the requirement.   

MANETs are becoming extremely popular.  Originally they were developed for the 

military and disaster recovery but have propagated into society for business or personal 
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use.  This thesis focuses on MANETs for use by the military and more specifically as an 

airborne network in battlefield scenarios. 

2.3 Dynamic Routing 

 Routing network traffic in a MANET is challenging and has been researched for 

many years and some routing protocols have been developed that have had significant 

improvements in providing a better level of QoS.  Some of these protocols are new 

versions of older internet routing protocols and some have been specifically developed 

for use in a MANET.   

2.3.1 Ad Hoc On-Demand Distance Vector Protocol (AODV)   

AODV is a protocol that automates data routing within a MANET.  AODV’s features 

are [7]: 

 Built for mobile networks 
 Creates routes on-demand 
 Loop free with quick convergence 
 Scales well 
 Fits easily in the existing protocol stack  

 
Because AODV has these features, it is easy to implement and therefore the most widely 

used MANET protocol.  Another advantage to AODV is its low memory and processor 

utilization when computing routes.  AODV uses hello messages for nodes to gain 

knowledge of neighbors.  When a request to pass traffic is initiated, AODV initiates a 

path discovery process.  A route request (RREQ) packet is broadcasted by the source 

node to its immediate neighbors.  The neighbors can either fulfil the RREQ by sending a 

route reply (RREP) or send the RREQ on to its own neighbors.  This can result in some 

intermediate node(s) receiving the RREQ twice, in which case the node discards the 
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duplicate RREQ.  Each intermediate node that cannot satisfy the original request still 

retains the original request information to assist in setting up the connection in the case 

that the RREP is transmitted back through.  Figure 2.2 provides a visualization of the 

RREQ/RREP process.  The information retained are the source and destination IP  

 

Figure 2.2: Ad Hoc On-Demand Distance Vector Protocol – Node A requests routing 
information for node G [3]. 

 

addresses, the broadcast ID, the expiration time, and the source node’s sequence number.  

It is the retention of the data, and the lack of computation of complicated algorithms, that 

allows AODV to run with low memory and processor overhead.  However, AODV has 

some disadvantages.  The many broadcast RREQs that are utilized consume additional 

bandwidth to request status across the network.  In addition, several routing update 

requests are sent often due to the highly dynamic airborne network.  [8] 
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2.3.2 Open Shortest Path First (OSPF) 

OSPF is a de facto standard for use with the original Internet Protocol version 4 

(IPv4) networks in enterprise, campus, local area network (LAN), and metropolitan area 

network (MAN) environments.  OSPF is a link state routing protocol, originally 

introduced as an upgrade to Routing Information Protocol (RIP), a distance-vector 

protocol, in the mid-90s.  OSPF uses areas to define administrative boundaries between 

other OSPF networks.  The advanced features of OSPF make it a more desirable interior 

routing protocol for many organizations.  Version 2 of OSPF (OSPFv2) is the most 

common occurrence of OSPF for IPv4.   OSPF version 3 (OSPFv3) was developed to 

support Internet Protocol version 6 (IPv6).  OSPF was originally designed for wired 

networks.  Since OSPFv3 has been implemented, modifications have been suggested to 

provide support for MANETs and airborne platforms [9].  Boeing, with the collaboration 

of the Navy, has developed OSPF using MANET designated routers (MDR), or OSPF-

MDR.  OSPF-MDR is specifically for use in MANET environments.  The MDR version 

of OSPF reduces flooding of link state advertisements (LSAs).  Instead MDRs only flood 

new LSAs out of receiving interfaces.  Retransmission of LSAs to adjacent neighbors is 

accomplished to ensure reliability.  Adjacencies are limited to a subset of neighbors 

providing better scalability in a much more populated MANET environment.  

Furthermore, hello packets are transmitted only when reporting changes in neighbor 

states limiting overuse of scarce network bandwidth.  Figure 2.3 shows how complicated 

a MANET can become and the adjacencies that are formed using OSPF-MDR [10]. 
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Figure 2.3:  A model of a complex MANET forming router adjacencies using  
OSPF-MDR [11] 

 
 
2.3.3 Mesh Made Easy (MME)   

MME is a proprietary routing protocol developed by MicroTik.  MME has been 

developed to directly support IP level routing in wireless mesh networks.  MicroTik has 

created MME based on the Better Approach to Mobile Ad-hoc Network (BATMAN) 

routing protocol.  MME never retains information regarding the topology of the network, 

nor does it determine a routing table.  Instead, MME tracks sequence numbers from its 

own generated messages to determine packet loss.  It then gathers statistics of lost 

packets from neighbors or originators to find the best path to the destination.  The extra 

bandwidth consumed can have an adverse effect on the network but is balanced with a 
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constantly changing network where this protocol can have an advantage over OSPF or 

other link state routing protocols.  MME has a single packet format used in the originator 

message.  This message contains the following [12]: 

 Originator IP 
 Current time to live (TTL) value 
 Sequence number 
 Gateway class 
 Protocol version 
 Host and network announcements   

 
These messages are broadcasted throughout the network and there are a set of rules to 

follow to prohibit rebroadcasting.  Using these messages, MME makes routing decisions 

on no more than the last 64 messages received. 

2.4 MANET Prediction Routing 

2.4.1 Kalman Filter   

The Kalman filter was first conceptualized by Dr. Rudolph E. Kalman in 1960 

[13].  The Kalman filter is used to compute an optimal estimate for linear filtering and 

prediction.  Since then, the filter has been used for many research scenarios from radar to 

computer vision and proven useful for estimating a state of a process.  For the purpose of 

network prediction, the Kalman filter offers a feasible solution as it can predict the future 

network state with little computational power.  Figure 2.4 displays a flow diagram of the 

Kalman filter being used for measurement prediction.  The Kalman filter is a recursive 

algorithm that can make a future prediction based on the most recent past measurement.   
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Figure 2.4:  Kalman filter flow chart, from Stuckey [14] 
 

2.4.2 Network Weatherman  

The Network Weatherman algorithm was developed by Nathan C. Stuckey [14].  

The Network Weatherman can predict the future network state based on the current 

network state by using the Kalman filter across multiple network nodes using stochastic 

estimation.  This algorithm is based on router queue size prediction considering future 

state only seconds before the predicted state is to occur.  The Network Weatherman uses 

two Kalman filter estimates, one for the size of the network queue and another for the 

packet arrival rate.   These two estimates are used as inputs into a network queue 

controller which computes the desired packet transmission rate to maintain the desired 

queue size.  Using those predictions, network control is manipulated to route traffic 

accordingly.  Stuckey used OPNET modeler version 11.5 to simulate the Network 

Weatherman prediction technique.  MATLAB, version 2006a, was utilized to compute 
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the linear model for the Kalman filter to function.  His results demonstrated that the 

Kalman filter and stochastic estimation were successful in network prediction and traffic 

routing.  The Network Weatherman was further investigated by Muflih Alqahtani [15].  

Alqahtani extended the research conducted by Stuckey implementing the Network 

Weatherman method in a virtual environment using VMware Workstation.  This 

demonstrated that the Kalman filter and the Network Weatherman predictions are 

implemented successfully in a live network rather than inside of a controlled network 

simulator environment such as OPNET. 

2.4.3 Dynamic Routing Queue Controller (DRQC)   

The concept of the dynamic routing queue controller was proposed by James Haught 

at the Air Force Institute of Technology.  The DRQC implements a central controller into 

the network that monitors queue predictions by using the Network Weatherman 

prediction method (section 2.4.2) and watches for potential network congestion.  When 

network congestion is detected, the DRQC modifies the flow of the traffic to prevent 

congestion from occurring.  The DRQC also tracks network flow priorities and attempts 

to maintain a higher level of QoS for higher priority traffic.   Additionally, the DRQC is 

capable of splitting flows between two low bandwidth paths to meet the bandwidth 

requirements for a network flow.  The DRQC was found successful in improving QoS in 

network environments [16]. 

2.5 Network Tasking Order (NTO)   

When network prediction is desired for an airborne network, the military has an 

extreme advantage over most random scenarios.  Every military operation involving 
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aircraft has been preplanned and the location of aircraft in a given day is predefined 

rather than calculated on-the-fly.  Assuming each aircraft acts like a router, network state 

and topology are predicted with precision by using the air tasking order (ATO) that was 

developed for that day’s flight plans.  The ATO is a planning document developed at the 

air operation center (AOC) for tasking military aircraft in a warzone.  For example, the 

Combined Air Operations Center (CAOC) at Al Udeid Air Base in Qatar controls all of 

the aircraft in the Middle East region dedicated to United States Central Command.   For 

each day, the CAOC develops an ATO which directs flying squadrons to fly aircraft on 

various missions.  These ATOs provide times and locations that the aircraft must meet.  

The following is a snippet from a sample ATO [17]: 

 1-TSKCNTRY/US// 
2-SRCVTASK/F// 
3-TASKUNIT/555FS/ICAO:ETAD// 
4-AMSNDAT/C2342/CSAR// 

/DE/TGT-ID/LOCATION/TOT 
/01/-/294248N0473106E/241200ZJAN 
/02/-/294300N0473896E/241215ZJAN 
/03/-/294300N0473805E/241233ZJAN 
/04/-/294236N0473106E/241303ZJAN 

5-MSNACFT/1/ACTYP:F16C/SANDY01/2MK-82 
/1654/3322// 

6-AMSNLOC/AGL200/1// 
 

The first line indicates that the United States is responsible.  The second line assigns the 

Air Force to this mission.  The third line specifies the 555th Fighter Squadron is tasked to 

fill the requirement.  The fourth line indicates that this is a combat search and rescue 

(CSAR) mission.  The fifth line is a header for the following four lines where the location 

is defined as well as the time-on-target (TOT) or time the aircraft needs to arrive at that 

location.  For example, the fifth line indicates a location of 29° 42’ 48”N, 47° 31’ 06”E 

and a time-on target of 1200 Zulu on the 24th of January.  A typical ATO is much larger 

and identify numerous aircraft and corresponding locations and times. 
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Compton developed the concept of using this ATO information for anticipating 

network topology at a given time of day and thereby routing based on that topology [2].  

This concept has been called the network tasking order (NTO).  Compton further 

proposed that network requirements as airborne assets could be planned through the 

cyber community such that the NTO could potentially affect the ATO.  Either way, the 

NTO concept determines location at a given time and calculates the distance between 

aircraft.  If the aircraft are within proximity, a link is assumed to be established and the 

bandwidth available on that link is determined.  Network routing is then modified directly 

by scheduling route changes when necessary and not recalculate every time a data packet 

is transmitted.  The only time the network routing tables would change is when a link is 

dropped or added.  This process is simulated by Betances and its effectiveness has 

demonstrated effectiveness in improving QoS [3].  However, it is implemented in a 

simulator where all procedures are discrete-event based and are controlled strictly by a 

centralized program. 

2.6 Commodity Flow 

 As most routing protocols determine the shortest path as the optimal route, they 

typically do not have any way of dealing with dynamic networks such as MANETs.  In 

some cases, a single network link in a MANET may not be sufficient for a desired 

network flow.  For these cases, the network flow may need to be split between two 

separate network connections to satisfy bandwidth requirements.  An algorithm best 

suited for this is the multi-commodity flow.  Figure 2.5 shows a graph with two sources 

and two sinks (a), the solution for S1 to T1 (b), and the solution for S2 to T2 (c) [18]. 
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Figure 2.5:  Multi-commodity Flow solution for (S2, T2)  [18]. 
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In a multi-commodity flow there can be multiple sources and destinations (or sinks).  

These sources and sinks are specified as ordered pairs of vertices such as S1 and T1.  The 

goal of the multi-commodity flow is to maximize the flow from all sources to all sinks. 

 The commodity flow is crucial in providing an appropriate level of QoS in 

MANETs.  The ability to route traffic onto two different paths is the only way to get the 

data from the source to the destination due to other network flows, or simply because the 

bandwidth required exceeds any single link in the network.   

2.7 Synchronization Tools 

 An important element when attempting to use the NTO concept is time 

synchronization.  Aside from the computers maintaining a timing signal for data 

transmission, in this case the actual time of day is important.  Consider the fact that the 

NTO is purely a scheduled based procedure, then certainly all network devices making 

changes based on time must be able to produce the same clock time within fractions of a 

millisecond.  Otherwise, routing changes may have adverse effects on the flow of mission 

data.  Imagine two routers routing data but the NTO algorithm requires the path to 

reverse the flow of data between them to maintain overall routing success.  If the router 

that is now to receive is one second behind the other router on the internal clock, the 

currently receiving router starts sending the traffic to the now receiving router which 

sends it back to the now transmitting router creating a routing loop.  This may result in a 

large amount of packets lost during that time period.  The bigger the difference in time 

between the devices, the larger the amount of data lost.  In order to maintain time 

synchronization there are a couple of methods that can be employed. 
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2.7.1 Network Time Protocol (NTP)   

NTP is an internet protocol that provides “time of day” synchronization between 

networked systems and devices.   NTP operates at the application layer, uses User 

Datagram Protocol (UDP) at the transport layer (port 123), and can use either Internet 

Protocol Version 6 (IPV6) or Internet Protocol Version 4 (IPV4) at the network layer.  

NTP has three different modes of operation; client/server, symmetric, or broadcast.  For 

the purpose of this thesis only client/servers are discussed.  However, the other two 

methods should not be ignored for use in MANETs as they may assist in time accuracy 

and network efficiency.  In client/server, not only does the client request time from the 

server, but more times than not, the server requests time from another server.  The 

number of upstream servers corresponds to what is considered the “stratum” of the client 

or server.  Primary servers are considered stratum one.  Each lower level server increases 

by a factor of one.  For example, a client or server that has three consecutive upstream 

servers is considered stratum four.  Time accuracy is directly related to the stratum 

number.  The higher the stratum number the less accurate the time server is.  Other 

negative effects on NTP are security and propagation delay.  Security concerns around 

NTP are abundant.  The ability for an intruder to spoof a server’s IP address and provide 

a different time, day, or year can have some significant effects on a systems security logs 

or system scheduling.  As such, NTP has some built-in security measures such as 

authentication and encryption, but both may affect time accuracy as processing time for 

either is increased during time transmission.  Propagation delay is handled through the 

client’s NTP synchronization algorithm by calculating a new time based on the current 
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time and the received update difference.  This allows the protocol to slowly implement an 

accurate time and reduce time jitter. [19] 

2.7.2 Global Positioning System (GPS)   

GPS is capable of not only providing a position on the globe, as the acronym 

states, but also capable of providing time of day [20].  GPS uses time embedded in its 

signal to determine location.  That same time signal can be used to synchronize a local 

device clock with extreme accuracy and precision.  This time source can minimize local 

time drift to within one nanosecond per day.  GPS may provide time even when location 

is not available.  The navigation feature of GPS requires four satellites, three for location 

and an additional for time offset.  If only time is desired one satellite is sufficient for an 

accurate signal.  As GPS is already integrated to aircraft and most military vehicles, this 

time source is available where these MANET devices operate during military operations.  

Figure 2.6 depicts GPS receivers receiving signals from the GPS satellite constellation.  

 

Figure 2.6:  GPS satellites providing time around the world [21] 
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2.7.3 GPS and NTP Hybrid 

While GPS is significantly more precise than NTP, there are many situations in the 

network community where NTP is the only method of time synchronization.  In these 

cases, it is a better practice to use a GPS time source as an NTP server on the local 

network.  All devices using NTP within the network should synchronize time with the 

GPS time source.  All devices should be stratum two or better. 

2.8 Summary 

 In this chapter, the concepts of MANETs, MANET routing prediction methods, 

and synchronization tools have been presented.   These MANET concepts are used to 

develop a model network to determine effectiveness and quality of service performance 

of the NTO, derived from the ATO, routing method.  
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3 Methodology 

3.1 Introduction 

 This chapter focuses on the methodology used to determine the applicability of 

the NTO concept as a routing protocol compared to other MANET routing protocols and 

quality of service characteristics.  This chapter defines the research goals and the 

hypotheses of this thesis.  The two simulations that are used to assess the NTO concept 

are explained.  Finally, the comparisons that are accomplished to demonstrate which 

routing protocol or method performed best in these simulations are defined.  Any 

limitations or assumptions are provided. 

3.2 Research Objectives 

 The objective of this research is to demonstrate that the NTO concept operates on 

a decentralized network.  As of now, the NTO concept has been simulated using OPNET 

or NS2 simulations and the results have concluded that the NTO concept is useful in 

network routing in MANETs.  The simulators used have been in a controlled discrete-

event environment where changes are implemented directly through each network 

component with no network overhead.  In a live network, the components are 

decentralized and may act erratically in comparison to other nodes.   In order to 

demonstrate that the NTO process can be used on a decentralized network, a model 

network is constructed.  This model network is built in a virtual environment and the 

algorithm provided by Betances [3] is implemented on the model network.  The field data 

that is analyzed are data packets to and from end systems on the virtual network.  For the 

network to function optimally, the data packets must reach their destinations.  The 
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optimal network routing algorithm is the method that delivers the greatest number of 

packets over the duration of the data transmissions. 

3.3 Research Hypothesis 

 There are three hypotheses that are analyzed: 

 The NTO routing method will drop the fewest number of data packets when 

compared to either the MME or the OSPF dynamic routing protocols. 

 The NTO routing method will have the greater network throughput when 

compared to either the MME or OSPF dynamic routing protocols. 

 The NTO routing method is time critical and will demonstrate success only when 

the scheduled NTO is executed as planned.  Any delay or advance in aircraft 

scheduling will have adverse effects on network performance. 

3.4 Measurements 

 The scenarios are assessed by comparing the number of dropped data packets 

between the various MANET routing protocols and compared to the NTO scheduled 

routing method.  The number of network connections that data packets have to traverse to 

reach their destination are assessed.  The optimal protocol has the highest number of 

successfully delivered data packets.  The highest number of delivered data packets 

resembles a higher overall network availability and overall throughput.  Therefore, this 

indicates a higher level of quality of service.   
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3.5 NTO Implementation 

An advantage of the NTO concept is that all calculations are conducted offline, 

before the aircraft depart the base, and route changes are scheduled to take place at 

whatever time they are necessary.  Before scheduling is accomplished, network 

prediction is calculated for the duration of the NTO. 

3.5.1 Network Prediction 

The algorithm required to predict a MANET based on the NTO has been 

previously derived and described in Betances’ thesis [3].  The distance between two 

nodes is computed utilizing the Euclidean formula.  For any node, find the latitude, 

longitude, and altitude.  The distance between two nodes is the square root of the sum of 

the squared difference of these three dimensions.  The scenarios in this thesis are 

subcomponents of an example NTO and determination is made for all waypoints where 

link state changes based on this formula.  In this model, link state is defined as link 

established, link disconnected, or change in bandwidth.   

To accomplish the task of determining route changes, the calculations are made 

for all aircraft at a given time.  These calculations provide all possible link states between 

all aircraft for that time and a relationship table is created.  The table is created for 

incremental amounts of time throughout the start time and end time of the NTO.  Because 

an NTO is derived from an ATO and the ATO is a plan for a given day, the calculations 

for the link states may have a duration of up to 24 hours.  For each calculation there are 

O(n2) possible connections between aircraft.  Analysis is made to determine the best time 

increment for each calculation.  Using a one second interval for calculations requires 

86400 permutations of this algorithm for a 24 hour scenario.   
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The choice of using a one second interval versus a one minute interval greatly 

depends on how many aircraft are involved and how close they are in proximity during 

the operation.  More granular control can be determined by calculating every millisecond 

or hundredth of a second instead of every second, but this is quite extreme depending on 

the scenario as link states do not change that quickly.  Consider two aircraft approaching 

each other at 600 mph, the closing speed is 1200 mph.  If link states change at 30 mile 

proximity distance intervals as a worst case, then it would take 90 seconds between link 

states changes.  Therefore, if distances are calculated for every discrete second during the 

mission, route changes occur in a timely enough manner to minimize data loss.    

As the NTO may eventually affect the planning of the ATO, a good planning 

practice would require overlap of aircraft in proximity to other aircraft to maintain 

connections so the route changes can take place while the two aircraft are both in 

proximity ensuring a connection always exists.  The longer the overlap, the less 

susceptible to aircraft scheduling delay the network is. 

For each calculation interval, the connection between each aircraft is calculated 

using the Euclidean formula.  Consider a scenario where the number of nodes, either 

aircraft, ground stations, or satellites, equals 50.  This means that there are potentially 

2500/2 (divide by two because each node needs to be considered only once) 

combinations that are analyzed.   A total of 108 million vector combinations are 

calculated for each 24 hour NTO scenario.  Action is taken only when a difference in link 

state is calculated from one interval to the next.  If no change is calculated from one 

interval to another, it is disregarded.  When a link state change is calculated from one 

interval to the next, a route change is scheduled in the affected routers.  Keep in mind that 
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a change in link state may affect more than neighboring nodes.  A new flow is calculated 

through the entire network from all sources to all destinations. 

3.5.2 Example Topology Prediction 

An example for predicting network topology is provided by Betances.  Table 3.1 is 

provided by Betances for an example air tasking order scenario.  During this scenario, 

link state is calculated using the following:  

 If the distance is less than or equal to 15 miles, the connection is 8 Mbps 

 If the distance is greater than 15 miles and less than or equal to 25 miles, the 

connection is 4 Mbps. 

 If the distance is greater than 25 miles, but less than or equal to 45 miles, the 

connection is 2 Mbps 

 If the distance exceeds 45 miles, the connection is out of range, and considered 

disconnected. 

These distance to link state ratios are notional and for example only, derived from a 

fictional ATO scenario.  Using the Euclidean formula, the distances between all nodes 

are calculated.  The distances for this particular time interval are provided in Table 3.2.  

Using these distances, the link states are determined.  For example, the table shows that 

node one and two are 44 miles apart, which implies that they have a 2 Mbps connection 

between them.  Table 3.3 shows the link states between all nodes in the network at this 

snapshot in time.  [3]   
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Table 3.1:  Node position at a given time– Information is notional only, not derived from 
any real or practice scenario.  [3] 

Node ID   Time (Seconds) X Position(Feet) Y Position(Feet) Z Position(Feet)
1 
2 

8,100             174,449             709,160                 6,096
8,100              436,748              769,637                 6,705

3 
4 

8,100             577,265             777,840                 6,096
8,100              788,872              609,752                 6,096

5 
6 

8,100           1,081,194            695,136                 6,096
8,100              333,360              348,673               18,288

7 
8 

8,100             763,127             623,568               18,897
8,100              494,884              467,064                 3,048

9 
10 

8,100             851,892             550,564                 3,657
8,100              872,555           1,031,564                 4,572

11 
12 

8,100             923,453          1,021,378                 5,486
8,100              972,761           1,008,174                 4,572

13 
14 

8,100             872,555             168,532                 4,572
8,100              923,453              178,718                 5,486

15 
16 

8,100             972,761             191,922                 4,572
8,100              296,320              694,500                       0 

17 
18 

8,100             481,520             666,720                      0
8,100            1,037,120             972,300                       0 

 
 

 
 

Table 3.2:  Node distances at a given time– Information is notional only, not derived 
from any real or practice scenario. [3] 

Nodes 1          2          3          4          5          6 7          8          9        10        11        12 13        14        15        16        17        18

1 

2 

3 

4 

5 

6 

0        44        67      102      149        65 

44          0        23        64      107        71 

67        23          0        44        84        81 

102        64        44          0        50        86 

149      107        84        50          0      136 

65        71        81        86      136          0

98        66      115      127      134      140 

59        51        77        84        90        97 

40        53        59        64        70        75 

5        54        14        71        71        72 

54      104        45        65        60        55 

84        33        92      143      147      151

145      151      157        20        51      148 

122      126      130        26        19      104 

111      114      116        48        24        82 

74        74        75        82        51        72 

93        89        85      129        99        46 

94      101      108        57        58      155

7 

8 

9 

10 

11 

12 

98        59        40          5        54        84 

66        51        53        54      104        33 

115        77        59        14        45        92 

127        84        64        71        65      143 

134        90        70        71        60      147 

140        97        75        72        55      151

0        51        19        70        71        72 

51          0        60      112      115      119 

19        60          0        79        78        78 

70      112        79          0          9        17 

71      115        78          9          0          8 

72      119        78        17          8          0

77        78        79        78        47        73 

79        85        91        50        33      122 

63        62        62        94        64        76 

142      141      139      110        88        29 

141      139      137      116        93        20 

139      137      134      123        98        12

13 

14 

15 

16 

17 

18 

145      122      111        74        93        94 

151      126      114        74        89      101 

157      130      116        75        85      108 

20        26        48        82      129        57 

51        19        24        51        99        58 

148      104        82        72        46      155

77        79        63      142      141      139 

78        85        62      141      139      137 

79        91        62      139      137      134 

78        50        94      110      116      123 

47        33        64        88        93        98 

73      122        76        29        20        12

0          9        17      128      104      135 

9          0          8      134      108      132 

17          8          0      139      112      129 

128      134      139          0        31      130 

104      108      112        31          0      104 

135      132      129      130      104          0
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Table 3.3:  Calculated link states at a given time in Mbps.  Absence of speed indicates no 
connection.  Information is notional only, not derived from any real or practice scenario. 

[3] 
Nodes  1  2  3  4  5  6 7 8  9 10 11 12 13 14 15  16  17  18

1     2                                         4       
2  2  4                          2  4    
3     4     2        2                            4    

4        2           8    8                           
5                 2                  
6                       2                               

7        2  8              4                           
8           2                      2    
9           8  2     4                                 

10                                8 4                2
11                    8 8          4
12                             4 8                   8

13                                         8 4          
14                          8 8       
15                                      4 8            

16  4  2                                2    
17     4  4           2                 2    
18                             2 4 8                  

 

3.5.3 Network Prediction Algorithm 

The data from Table 3.3 is the key to calculating a possible end to end connection 

in a network.  Consider the nodes as vertices in a graph and the available connections 

between them as edges.  Using these data, a breadth first search (BFS) is conducted to 

determine connected groups in the network.  Figure 3.1 provides the BFS algorithm to 

identify the connected groups.  Each connected group established, if more than one, 

requires its own outside network connection if such a connection is desired.  If a ground 

station is part of the connected group, then outside connectivity is most likely established 

there.  Figure 3.2 shows the predicted network topology based on the breadth first search.  

From this visualization, it is determined that there are three separate connected groups.   
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Figure 3.1:  BFS Algorithm, WHITE identifies undiscovered state, GRAY identifies 
discovered but not fully explored state and BLACK identifies fully explored state. [3] 

 

The next step in the NTO method is to calculate the maximum concurrent multi-

commodity flow.  As in the previous scenario, if the graph is not complete, a new 

connection is completed by adding an edge to the closest node in each connected group to 

the main connected group.  This simulates a satellite connection tying the two connected 

groups together, which is the only option when two or more connected groups are out of 

range from another and any one of them does not have a ground station to provide outside 

connectivity.  This new edge gives a flow rate of 1 Mbps, equal to what a satellite 

connection can supply.  With a completed graph, the multi-commodity flow algorithm is 
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conducted on the graph from all sources and destinations (sources and sinks).  The max 

concurrent flow  

 

Figure 3.2:  Predicted topology based on aircraft location.  The black line indicates an 8 
Mbps connection, blue indicates a 4 Mbps, and each yellow line is a 2 Mbps connection. 

 
 

algorithm may require significant processing resources.  However, the algorithm is 

conducted offline, before NTO execution, minimizing run time concerns.  If algorithm 

run time becomes an issue, an approximation may be sufficient using a fraction of each 

connection.   

 The multi-commodity flow algorithm follows the following steps.  First, all edge 

lengths in the graph are initialized with .  Although this value is small, it is 

exponentially incremented as edges become congested.  Next, the shortest path route is 
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determined and edges are lengthened based on commodity requirements.  After path 

selection, edge lengths are increased preventing overutilization of any given edge.  

Finally, the algorithm exits once the length of all edges exceeds a value of one.  The 

pseudocode of this algorithm is provided in Figure 3.3. [3] 

 

Figure 3.3:  Pseudo code of the multi commodity flow algorithm.  [3] 
 

3.5.4 Network Emulation Development 

 For this experiment, the network environment is virtualized to reduce the amount 

of equipment required to develop each scenario.  Virtualization allows the 

implementation of multiple operating systems on one physical machine.  The host 

machine for this experiment has the following specifications: 

 AMD FX-8350 eight core processor 
 32 GB of DDR3 1866 (PC3 14900) RAM 
 SSD hard drive with SATA 3 Gbps interface 

 
This large amount of physical memory and multi-core processor allows for many virtual 

machines with less worry about memory thrashing or input and output (I/O) contention.  
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The virtualization platform running on top of the host machine is VMware Workstation 

10.0.4.  Within VMware Workstation, four virtual machines are created.  Two OpenSuse 

machines for use as end clients on the network, a Debian system for use as an NTP 

server, and VMware’s ESXi virtualization platform for the routers.  Although virtualizing 

a virtual environment is not typically a desired scenario, in this case it allows for 

snapshots of the network topology for faster changes in network configurations.  Running 

the end clients in VMware Workstation provides a graphical interface to run the 

necessary scripts to pass traffic through the network.  Within the ESXi platform, four 

MikroTik Router Operating Systems (RouterOS) are installed.  Within ESXi, the network 

connections are established to facilitate the topology for the desired scenarios.  The 

network topology that are established in the virtual environment is shown in Figure 3.1.  

No experimental data traverses the management network.  The management network is 

strictly for NTP and router management interface to access the configurations.  The 

management network is established using the 192.168.46.0/24 network addressing 

scheme while the experimental network uses the 10.0.0.0/8 network.  When dynamic 

protocols are in use, only the 10.0.0.0/8 network is configured.  Route scheduling using 

the NTO method is accomplished using only 10.0.0.0/8 interface addresses for the next 

hop to reach the destination.  NTP is configured for use on the management network as 

NTP traffic would not have to traverse the actual MANET as most airborne routers could 

introduce GPS as their primary timing source to ensure accurate route scheduling.  

Accurate timing is critical to the NTO concept as route changes must occur 

simultaneously throughout the network.  A level of atomicity is observed if downstream 

routers update network routes prior to upstream routers.  Synchronization is critical. 
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Figure 3.4:  Network diagram used for both scenarios 
 

3.6 Scenario One – Commodity Flow 

 This scenario is intended to test the NTO commodity flow algorithm.  Using the 

topology that has been established in section 3.6, a network with two aircraft orbiting 

between two ground stations is established.  These aircraft simulate flying in a circle with 

an 80 mile diameter.  Both planes are on opposite sides of the circle and maintain that 
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distance.  For the implementation of the commodity flow, a 1 Mbps radio connection is 

simulated between both aircraft and not change state for the course of the experiment.  

Both aircraft have a connection to ground station one and ground station two which 

dynamically change based on the following parameters: 

 If the distance is less than or equal to 88 miles, the connection is 1 Mbps 

 If the distance is greater than 88 miles and less than or equal to 126 miles, the 

connection is 768 kbps. 

 If the distance is greater than 126 miles, but less than or equal to 156 miles, the 

connection is 256 kbps. 

 If the distance exceeds 156 miles, the connection is out of range, and considered 

disconnected. 

The aircraft fly at approximately 500 mph (502.4 mph to be precise), such that it takes 

exactly 30 minutes to complete an orbit.  This allows the scenario to be cyclical to run 

concurrent experiments without rescheduling.  Using the above distances to modify link 

state, the links change state every five minutes.  Figure 3.2 shows the first four stages of 

this scenario.  The scenario continues through these stages indefinitely.  Using this 

scenario, the routing methods OSPF, MME, and the NTO routing concept is evaluated.  

Each routing method has four different tests.  Each test uses a different size datagram to 

validate packet size effects on each routing method.  The goal is to achieve as close to the 

maximum flow as possible without exceeding it.  Exceeding the maximum flow results in  
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Figure 3.5:  First four cycles of scenario one, each cycle has a five minute duration. 
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the unintentional loss of datagrams.  The datagrams are delayed to achieve the desired 

traffic load on the network.  To prove the effectiveness of the commodity flow, the traffic 

must consume more than what is available on a single link, but less than what is available 

from point to point.  Datagrams are created using four different sizes such that a traffic 

generator demands around 950 kbps of bandwidth using the following rules: 

 A datagram is sent 125 times per second.   
 A datagram is sent 250 times per second. 
 A datagram is sent 500 times per second. 
 A datagram is sent 1000 times per second.   

 
These packets are sent using a Python script on the source virtual machine “Host 1”.  A 

Python script is also running on the destination virtual machine “Host 2”.  A sequence 

number is injected into the payload of the datagram.  This sequence number is inspected 

by the receiving Python script.  If any datagram is missing, the receiving script detects a 

jump in sequence numbers.  The number of jumps in sequence numbers are added as well 

as the number of successfully received datagrams.  The number of received divided by 

the total is the achieved success rate.    An anomaly that is possible when using the multi-

commodity flow is that datagrams may arrive out of order.  The application layer may be 

able to handle out of order datagrams, so this is not a negative effect depending on the 

application.  This is a unique design consideration when adopting a multi-commodity 

flow scenario.  Datagrams are buffered and placed in proper order when received.  If the 

application is streaming video, then reassembly is irrelevant and undesired after a certain 

amount of time.  A buffer and time delay is established to allow for this anomaly to 

occur.  For this reason, the number of out of order datagrams are also tracked.  The 

datagram is considered successfully delivered if received within 100 datagrams of the 
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current sequence number, meaning it was successfully delivered within one tenth of a 

second when using the 1000 datagram per second test scenario.  If the sequence number 

history exceeds 100, it is considered discarded and unsuccessful. 

3.7 Scenario Two – Fast Switching 

The NTO routing method is effective in achieving a high level of QoS.  The 

advantage is knowing the location of the aircraft ahead of time.  However, aircraft are 

sometimes delayed, show up too early, get rerouted, or remain on the ground due to 

mechanical issues.  This scenario implementation is to determine when the NTO routing 

method may become less effective.  More importantly, how a scheduling delay affects the 

NTO routing method performance.  Using the same topology, this scenario models an 

aircraft flying in a line adjacent to two ground stations.  The two ground stations are out 

of range of each other and require the aircraft to communicate between them.  

Considering a properly planned and executed NTO, before the aircraft is out of range, 

another aircraft approaches and establishes connectivity.  This is used to determine 

routing efficiency when a quick route path change needs to take effect.  Link speeds 

maintain a constant 256k.  Only interface state is modified to emulate the environment.  

Figure 3.6 shows the first stage of this scenario where only Plane 1 is in range.  Figure 

3.7 demonstrates the topology when both Plane 1 and Plane 2 are in range.  Figure 3.8 

shows how the topology changes after Plane 1 is out of range, but Plane 2 remains in 

range.  Each plane is in range for one minute and five seconds.   
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Figure 3.6:  Scenario two while Plane 1 is in range of the ground stations. 

 

Figure 3.7:  Scenario two while Plane 1 and Plane 2 are both in range of the ground 
stations.   
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Figure 3.8:  Scenario two while Plane 1 has just gone out of range and lost connectivity 
but Plane 2 is still in range. 

 

The next plane follows the previous plane by exactly one minute.  This provides a five 

second overlap where the routes can change without dropping data.  As with the first 

scenario, OSPF, MME, and the NTO routing method are assessed.  For each routing 

method, datagrams are transmitted from source to destination to nearly saturate the 256 

kbps max flow.  The datagram size is static at 102 bytes.  Smaller datagrams allow for a 

more precise measurement as the quantity sent per second is higher than larger 

datagrams.  The loss of a single smaller datagram has less effect on the overall success 

rate than a larger datagram.  The NTO routing method is implemented using many 

additional tests simulating an aircraft delay.  The delay increases at five second intervals 

until network performance is less than the dynamic routing protocols OSPF and MME.  

This demonstrates the amount of delay that can be tolerated before a dynamic routing 

protocol may be more beneficial than the NTO routing method. 
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3.8 Limitations and Assumptions 

 Modeling a MANET in a virtual environment overlooks many complications that 

can occur within an actual wireless MANET.  Events like frequency jamming, 

interference, multi-path delay, weather, and radio protocol overhead cannot be integrated 

into this modeled environment.  Although these elements are important to MANETs, for 

the purpose of this experiment they are not considered.  The demonstrated effectiveness 

of the NTO concept is to determine efficient routing of data packets when the airborne 

network environment dynamically changes due to aircraft position.  These elements are 

not part of the NTO concept decision making and therefore not a concern.  Propagation 

delay is another element which could impact the NTO concept.  However, the result is in 

the millisecond region and we are dealing with time intervals spanning minutes, so 

propagation delay is ignored due to its minimal impact. 

 The MikroTik RouterOS was used due to its ability to change link speeds to 

emulate a MANET.  However, MikroTik had limited routing protocols to closely emulate 

a modern MANET protocol such as AODV.  The MikroTik RouterOS did support a 

protocol known as Hybrid Wireless Mesh Protocol (HWMP) which closely resembles 

AODV.  The use of HWMP was attempted, but since HWMP is a layer 2 bridged routing 

protocol, it bypassed the queues used for bandwidth limiting and provided inaccurate 

results.   

 For this research, the test results are based specifically on UDP data transfer.  

TCP may be desired in a MANET, but determining whether or not data is successfully 

transferred when TCP auto corrects provides insignificant results.  To determine 

bidirectional success, UDP transmission in both directions provides better overall results 
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and determine directionality problems.  TCP has too many limitations for the purpose of 

this research. 

 Another limitation of the MikroTik RouterOS is that it does not split UDP 

transmissions from a single source to a single destination when multipath routes exist.  

To test the function of the commodity flow, multiple source IP addresses were used, in a 

round-robin fashion, to force the RouterOS to split the transmissions.  UDP is a 

connectionless protocol where routers do not follow these rules.  If incorporated into a 

functional network, the ability to split the UDP traffic from source to destination should 

be permitted in the implemented hardware. 

3.9   Summary 

 This chapter defined how a MANET is modeled and how the various MANET 

routing protocols are utilized on this environment.  The routing protocol that drops the 

fewest data packets is determined as the optimal routing protocol.  The hypothesis is that 

the NTO routing concept prevails as the optimal routing method because it can predict 

network state based on a priori knowledge. 
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4 Results and Analysis 

4.1 Introduction 

 This chapter defines the experiments that were performed to implement and 

compare the NTO process to other network protocols.  These experiments were 

conducted using a time scheduler to introduce bandwidth delay into network links 

between routers to emulate a real world airborne network environment.  For each 

scenario, the following routing methods were used to determine which was more efficient 

for the two dynamic network scenarios: 

 The first set of iterations utilized the MME protocol.  This protocol was utilized to 

create a baseline comparison for dynamic protocols in an airborne environment. 

 The next set of simulations utilizes OSPF to demonstrate how standard routing 

protocols operate in an airborne environment.  

 The last set of experiments utilized the NTO concept for route scheduling and 

multi-path commodity flow base on network planning for scenario one.  The 

second scenario used time offsets to introduce scheduling conflicts where the 

aircraft may have been late to demonstrate how this would affect the network 

traffic. 

4.2 Network Environment Validation 

 Prior to each series of tests performed during each of these scenarios, the network 

is validated to ensure ICMP, UDP, and TCP all function properly on the network 

topology.  Furthermore, verify that each node on the network synchronizes system clocks 

with the NTP server.   
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4.3 Scenario One – Commodity Flow 

 In this scenario, the network environment is created as described in section 3.8.  

Two airplanes orbit in a circle that is 80 miles in diameter and each aircraft is at opposite 

ends of the circle, equidistant from each other on the border of the circle.  In order for the 

NTO method to function and routes scheduled a couple of procedures are implemented.  

First, the NTO table is constructed to find where link states change over time.  Next, the 

commodity flow is calculated and a routing table developed for each time link state 

changes.  This section is broken down into those two steps and then the results of the data 

transmissions is analyzed. 

4.3.1 NTO Route Scheduling 

 Using the link specifications from section 3.8, the NTO link states are calculated.  

These link states are notional and created strictly for the use of testing this type of 

dynamic network.  The link states for this scenario are as follows: 

 If the distance is less than or equal to 88 miles, the connection is 1 Mbps 

 If the distance is greater than 88 miles and less than or equal to 126 miles, the 

connection is 768 kbps. 

 If the distance is greater than 126 miles, but less than or equal to 156 miles, the 

connection is 256 kbps. 

 If the distance exceeds 156 miles, no connection exists. 

Table 4.1 shows the calculated tables of link states.  With this information and using the 

Table 4.1:  Calculated links speeds based on NTO for period of time 

NTO Determined Links Speeds  NTO Determined Links Speeds 
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Euclidean formulas, the link states are calculated.  The link states change on five minute 

intervals.  There are six intervals that occur during each cycle of this network scenario.  
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The six intervals discovered, in seconds, are: 1 – 300, 301 – 600, 601 – 900, 901 – 1200, 

1201 – 1500, 1501 – 1800.  Since this is cyclical, the 1800th and zero seconds are 

equivalent as the cycle repeats.     For each of these intervals the commodity flow is 

calculated. 

4.3.2 Commodity Flow Calculations 

After investigating the intervals of this scenario, it is determined that there is 

always a single flow from end to end of at least 768 kbps.  However, using a commodity 

flow, it is capable of achieving up to 1 Mbps if traffic is split amongst multiple 

connections.  Figure 4.1 shows how the commodity flow is implemented for the second 

interval of this scenario where time falls between 301 and 600 seconds.  The other five 

intervals have similar results.  Based on each of these flows, the routing table is 

 

 

Figure 4.1:  Calculated flow for second cycle of scenario one. 
 

 

Table 4.2:  Established routing table for commodity flow per time increment. 
t = 1 to 300 
Ground 1 100% to Plane 1 
Plane 1  100% to Plane 2 
Plane 2 100% to Ground 2 
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t = 301 to 600 
Ground 1 75% to Plane 1, 25% to Plane 2 
Plane 1  66% to Plane 2, 33% to Ground 2 
Plane 2 100% to Ground 2 
  
t = 601 to 900 
Ground 1 75% to Plane 2, 25% to Plane 1 
Plane 1  100% to Ground 2 
Plane 2 66% to Plane 1, 33% to Ground 2 
  
t = 901 to 1200 
Ground 1 100% to Plane 2 
Plane 1  100% to Ground 2 
Plane 2 100% to Plane 1 
  
t = 1201 to 1500 
Ground 1 75% to Plane 2, 25% to Plane 1 
Plane 1  100% to Ground 2 
Plane 2 66% to Plane 1, 33% to Ground 2 
  
t = 1501 to 1800 
Ground 1 75% to Plane 1, 25% to Plane 2 
Plane 1  66% to Plane 2, 33% to Ground 2 
Plane 2 100% to Ground 2 

 

established where fractions of data are routed as appropriate to reach the Host 2 from the 

Host 1.  Table 4.2 shows the routing table for each interval of time that are scheduled in 

the routers.  These routes are scheduled at the precise time in each router so that the 

routes change at the proper time.   

 

4.3.3 Scenario One, Traffic Load One 

 Iteration one involves the use of 1000 datagrams transmitted every second to 

achieve approximately 900 kbps of traffic generation to test the various routing methods.  
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By generating 82 bytes of data and adding the UDP header of eight bytes, the IP header 

of 20 bytes, and the 802 header of 14 bytes, a total datagram size of 124 bytes is place on 

the wire.  A wait time is established to send approximately 1000 per second.  Each 124 

byte datagram, when converted, is 992 bits.  This generated 992,000 bits per second and 

when divided by 1024 to achieve kilobits, approximately 968 kilobits per second were 

transmitted from Host 1 to Host 2.  Table 4.3 provides the percentage of datagrams that 

were received by Host 2.   

 

 
Table 4.3:  Success rate using 1000 datagrams per second. 

MME OSPF NTO 

1 51.82% 74.91% 99.89% 

2 50.74% 74.27% 97.71% 

3 50.47% 74.70% 98.61% 

4 50.29% 75.12% 97.72% 

5 52.19% 74.72% 98.62% 

6 51.49% 74.92% 99.00% 

7 50.30% 74.36% 99.88% 

8 53.43% 74.94% 99.00% 

9 51.50% 74.49% 98.99% 

10 51.08% 73.86% 99.94% 

Average 51.33% 74.63% 98.94% 

Standard Deviation 0.009862 0.00383 0.008173 

 

 

There is a large difference in the success rate of these protocols.  MME averaged 

a success rate of 51.33%, far below the success rate of OSPF which averaged 74.63%.  

The NTO routing method was extremely successful due to the implementation of the 
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commodity flow averaging 98.94% success.  There is very little variance to the success 

rates for each iteration of this scenario.  Figure 4.2 displays the average utilization and 

associated 95% confidence intervals when compared to each other. 

 

 

Figure 4.2:  Success rates of each routing method at 1000 datagrams per second. 
 
 

 T-tests were conducted to compare the three routing methods.  MME compared to 
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the ratio of attempted throughput divided by the achieved throughput and multiplied by 

the maximum link speed attainable which is 1024 kbps.  For this trial of 1000 datagrams 

per second, the calculated maximum possible data rate is 525 kbps for MME, 764 kbps 

for OSPF, and 1013 kbps for NTO.  These rates are calculated and not confirmed and 

therefore presented as maximum possibilities. 

4.3.4 Scenario One, Traffic Load Two 

Iteration two involves the use of 500 datagrams transmitted every second to 

achieve approximately 900 kbps of traffic generation to test the various routing methods.  

By generating 205 bytes of data and adding the UDP header of eight bytes, the IP header 

of 20 bytes, and the 802 header of 14 bytes, a total datagram size of 247 bytes is place on 

the wire.  This time, the wait time is established to send approximately 500 per second.  

Each 247 byte datagram, when converted, is 1976 bits.  This generated 988,000 bits per 

second and when divided by 1024 to achieve kilobits, approximately 964 kilobits per 

second were transmitted from Host 1 to Host 2.  Table 4.4 provides the percentage of 

datagrams that were received by Host 2.   

Again, there is a large difference in the success rate of these protocols.  Under this 

traffic load MME averaged a success rate of 52.96%, OSPF averaged 76.07%, and the 

NTO routing method proved is optimal again at 99.25% success.  The values appear to 

maintain their same linear relationship meaning the values are not rising or falling.  The 

500 datagram per second results are shown in Figure 4.3 displays the average utilization 

and associated 95% confidence intervals when compared to the three other datagram 

sizes. 
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Table 4.4:  Success rate using 500 datagrams per second. 
MME OSPF NTO 

1 52.82% 72.56% 98.45% 

2 53.30% 73.54% 99.26% 

3 51.55% 78.39% 99.93% 

4 52.04% 75.16% 98.80% 

5 54.86% 78.81% 99.94% 

6 53.31% 75.76% 99.93% 

7 52.86% 76.13% 99.93% 

8 53.04% 76.00% 97.79% 

9 51.38% 76.17% 99.95% 

10 54.43% 78.17% 98.49% 

Average 52.96% 76.07% 99.25% 

Standard Deviation 0.011257 0.020263 0.008086 

 

The T-tests on this dataset provide similar results to the first.  MME compared to 

OSPF resulted in a p-value of 9.323 x 10-15.   MME compared to NTO again has the 

smallest p-value of 6.810 x 10-25.  OSPF compared to NTO has a p-value of 2.229 x 10-13.  

Similarly, none of these p-values demonstrate that these results are closely related.   

Maximum data rate for this trial of 500 datagrams per second is also calculated.  

The maximum possible data rate is 542 kbps for MME, 778 kbps for OSPF, and 1016 

kbps for NTO.  Similar relative ratio to the 1000 datagram per second averages. 
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Figure 4.3:  Success rates of each routing method at 500 datagrams per second. 
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compared to the other three datagram sizes.  Again, there is very little variance to the 

success rates for each iteration of this scenario. 

 

Table 4.5:  Success rate using 250 datagrams per second. 
 

 MME OSPF NTO 

1 50.44% 73.66% 99.92% 

2 51.25% 73.83% 99.88% 

3 49.91% 74.29% 99.89% 

4 49.32% 73.21% 96.78% 

5 48.43% 74.36% 99.92% 

6 49.77% 72.40% 96.91% 

7 49.66% 72.76% 99.91% 

8 49.90% 73.64% 98.23% 

9 50.08% 74.29% 97.03% 

10 49.22% 72.83% 99.91% 

Average 49.80% 73.52% 98.84% 

Standard Deviation 0.007511 0.007013 0.014303 

 

T-tests results are again insignificant.  MME compared to OSPF resulted in a p-

value of 6.270 x 10-24, the smallest p-value using this traffic load.   MME compared to 

NTO is not the smallest in this case with a p-value of 5.701 x 10-21.  OSPF compared to 

NTO has a p-value of 1.153 x 10-16.  Similarly, none of these p-values demonstrate that 

these results are closely related.   

Maximum data rate for this trial of 250 datagrams per second is also calculated.  

The maximum possible data rate is 510 kbps for MME, 753 kbps for OSPF, and 1012 

kbps for NTO.  These values are closely related to the 1000 and 500 datagram results. 
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Figure 4.4:  Success rates of each routing method at 250 datagrams per second. 
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99.50% success.  Again, this is seen in Figure 4.5 which displays the average utilization 

and associated 95% confidence intervals when compared to the other three datagram 

sizes. 

 

Table 4.6:  Success rate using 125 datagrams per second. 
 MME OSPF NTO 

1 50.97% 71.13% 99.96% 

2 50.17% 71.56% 99.95% 

3 49.35% 71.73% 96.93% 

4 47.91% 71.76% 99.96% 

5 48.25% 73.27% 99.95% 

6 49.08% 72.56% 98.39% 

7 50.80% 72.64% 99.96% 

8 48.59% 72.30% 99.96% 

9 52.09% 73.30% 99.95% 

10 46.86% 72.06% 99.95% 

Average 49.41% 72.23% 99.50% 

Standard Deviation 0.016004 0.007201 0.010276 

 

T-tests conducted show that MME compared to OSPF has a p-value of 5.054 x 

10-15.   MME compared to NTO again has the smallest p-value of 4.209 x 10-22.  OSPF 

compared to NTO has a p-value of 1.247 x 10-21.  None of these p-values demonstrate 

that these results have any relationship.   

Maximum data rate for this trial of 125 datagrams per second is also calculated.  

The maximum possible data rate is 506 kbps for MME, 740 kbps for OSPF, and 1019 

kbps for NTO.  Similar ratio to the 1000, 500, and 250 datagram per second averages. 
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Figure 4.5:  Success rates using each routing method at 125 datagrams per second. 
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Figure 4.6:  Maximum bandwidth possible. 
 

After running all protocols using all four different traffic loads, it is apparent that 

the NTO method is extremely effective in network routing.  The commodity flow is a 

critical component in MANET performance and efficiency.  The MikroTik router 

performed well under these conditions.  A screenshot of the MikroTik router using the 

commodity flow is shown in Figure 4.7.  In the screenshot, the amount of traffic received 

on ether4 is approximately 963 kbps and the outbound is split amongst both ether2 and 

ether3 at 241 kbps and 722 kbps respectively. 

 
Table 4.7:  P-Values when comparing MME using different traffic loads. 

MME P-Value Comparisons 

 1000 500 250 125 

1000   0.001493893 0.000567 0.00277 

500 0.001494   8.61E-07 1.46E-05 

250 0.000567 8.60581E-07   0.249309 

125 0.00277 1.46428E-05 0.249309   
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Table 4.8:  P-Values when comparing OSPF using different traffic loads. 
OSPF P-Value Comparisons 

 1000 500 250 125 

1000    0.026419764 0.000322 1.35E-07 

500 0.02642    0.00157 6.95E-05 

250 0.000322 0.00156964    0.000361 

125 1.35E-07 6.94874E-05 0.000361    

 

 
Table 4.9:  P-Values when comparing NTO using different traffic loads. 

NTO P-Value Comparisons 

 1000 500 250 125 

1000   0.201371174 0.427466 0.097098 

500 0.201371   0.222302 0.277114 

250 0.427466 0.222302414   0.127159 

125 0.097098 0.277113662 0.127159   

 

 

Figure 4.7:  MikroTik Router interface showing commodity flow in action. 
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4.4 Scenario Two – Fast Switching 

 This scenario is designed to test how the NTO compares to other protocols when 

the schedule is not followed.  Aircraft are delayed or disabled with little or no notice.  

This scenario emulates time delays with the aircraft to determine when the NTO is just as 

ineffective as OSPF or MME.  The delays occur at five second intervals until the NTO 

proves worse than both dynamic routing protocols.   

4.4.1 NTO Route Scheduling 

 For this simulation, it is assumed that the NTO planners have planned aircraft 

schedules to meet the desired topology.  From section 3.9, the topology is implemented 

such that a stream of aircraft fly in a line, one after the other at one minute intervals.  

They are in range of the two ground stations providing a network path between them.  

The aircraft are in range for one minute and five seconds.  This provides a five second 

overlap where two aircraft are in range.  The route schedule can take place anywhere 

during that five second interval.  The middle of the overlap is best, but changes have to 

take place on the second since that is the granularity of the router chron scheduler.  

Choosing the 57th second of every minute is sufficient.  Therefore, the routes change 

according to this schedule. All links are 256 kbps and do not change speeds.   

4.4.2 Results 

 This experiment involves the use of 250 datagrams transmitted every second to 

achieve approximately 240 kbps of traffic generation to test the various routing methods.  

The payload is set to 103 bytes of data and upon adding the UDP header of eight bytes, 

the IP header of 20 bytes, and the 14 byte Ethernet header, the total datagram size is 145 

bytes.  The wait time is established to send approximately 250 per second.  Each 145 byte 
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datagram, when converted, is 1160 bits.  This generated 290,000 bits per second and 

when divided by 1024 to achieve kilobits, approximately 283 kilobits per second were 

transmitted from Host 1 to Host 2.  Even though this is higher than what the network 

connections are capable of, it was found that this datagram size averaged out to 240 kbps 

due to additional processing delay at the source Host 1.  This was confirmed by analysis 

of the Python script running on Host 1.  Table 4.9 provides the percentage of datagrams 

that were received by Host 2. 

 The NTO routing method demonstrated as the optimal routing method.  Figure 4.8 

shows how the delay in aircraft affects the performance of the NTO routing method.  The 

graph displays the following correlation: 

 NTO-Prime – Aircraft arrive on time, routes updated during overlap. 

 NTO-0 – Aircraft connection created at same time route changes. 

 NTO-5 – Simulates 5 second delay for all aircraft. 

 NTO-10 – Simulates 10 second delay for all aircraft. 

 NTO-15 – Simulates 15 second delay for all aircraft. 

 NTO-20 – Simulates 20 second delay for all aircraft. 

 NTO-25 – Simulates 25 second delay for all aircraft. 

 NTO-30 – Simulates 30 second delay for all aircraft. 

 NTO-35 – Simulates 35 second delay for all aircraft. 

NTO Prime provided a 100% delivery rate.  NTO-0 takes place at the same time the 

link to the new aircraft is established achieving a success rate of 99.39%.  Changing 

routes at the same time the link is being established or disconnected can cause a race 

condition between the two events and therefore lost less than one percent of data.  NTO-5 
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incurs a five second delay, NTO-10 a ten second delay, and so forth.  Each five second 

delay causes an approximate 9% in data loss.  OSPF achieved a 63.03% average success 

rate providing better results than a 25 second delay in schedule with the NTO.  This 

implies that if the schedule is not guaranteed and aircraft may arrive over 25 seconds late, 

OSPF is the better option.  MME achieved a 44.51% success rate which was worse than a 

30 second delay but better than a 35 second delay.  As in the case with OSPF, if the 

aircraft are 35 seconds late, MME would perform better.  The 95% confidence intervals 

are displayed on the chart. 

 

Figure 4.8:  Percentage of success rate based on routing method.  The number following 
the NTO is the amount of delay incurred by the aircraft for that trial. 

 

 A t-test was also performed on these results.  MME was compared to OSPF, and 

each NTO test run was compared to both MME and OSPF.  MME and OSPF proved to 

have no significant correlation.  The p-value between MME and OSPF is 7.032 x 10-10.  
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had a value of 0.0294.  Although this is under the standard 0.05 probability, this is the 

where the p-value demonstrates the closest relationship.  This means that NTO-20 and 

OSPF are the closest related of all of the NTO test runs.  MME and NTO-30 have a 

smaller correlation with a p-value of 0.00659 and another similar value at NTO-35 of 

0.00526.  Based on the average results, the two routing methods share a similar result 

somewhere between those two time intervals. Figure 4.9 displays the graph of these p-

values and where they peak in relationship to their associated NTO time delay. 

 

Figure 4.9:  P-values comparing MME to NTO and OSPF to NTO. 
 

4.5 Conclusions 

 This chapter presented the network modeling and traffic load tests conducted on 

these models using different levels of traffic.  The results indicate that the NTO is the 

optimal routing method when aircraft arrive according to the schedule.  Any delay in 

aircraft has an impact on the NTO routing performance and therefore should be avoided.  
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If too much schedule delay occurs, a dynamic routing protocol may provide better results.  

Test results further indicated a higher success rate with OSPF over MME. 
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5 Conclusions 

 Military operations rely heavily on MANETs to perform routine, exercise, and 

real-world operations.  A high level of QoS is necessary to ensure mission data 

successfully arrives across that network.  Typical routing algorithms have their place, but 

MANETs require a more unique method to ensure network integrity.  MANETs are 

extremely dynamic and constantly changing.  A method must be implemented to ensure 

no bandwidth is wasted when a demand is present.  Using the NTO to predict aircraft 

positions and leverage it for network routing can improve network QoS as long as the 

schedule has minimal deviation.  If there is any chance of deviation in aircraft schedule, 

the impact may have severe consequences to MANET Quality of Service.  A method 

should be implemented to adjust for aircraft delay or unavailability. 

5.1 Research Impact 

 This research demonstrates that the military has a great advantage when routing 

data on MANETs.  The military schedules all aircraft for arrival at precise locations 

throughout the day.  Using this priori knowledge to advance network routing decisions 

can assist in achieving mission success.   

 The ability for the NTO to affect ATO scheduling may also be of greater 

significance.  To achieve a high level of QoS, scheduling delays must be eliminated.  

More importantly overlap in aircraft schedules to provide connectivity can also be 

deemed important.  This is not typically a concern with ATO planners, but should be 

considered such if the NTO is to be implemented.  The elimination of scheduling delay 
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has additional adverse effects on the mission which must be considered, it reduces 

flexibility, the key to air power.   

5.2 Contributions 

 The goal of this research was to demonstrate concepts previously performed in 

simulation using NS2 or OPNET.  While these simulations are effective, they are 

contained in a single discrete-event network simulator.  This research has advanced these 

concepts into a virtual environment using routers and real operating systems.  This 

provides a more realistic environment to assess the feasibility of these routing methods.  

The NTO must accomplish the following: 

 Predetermine network connectivity and topology based on aircraft location 

provided in the NTO. 

 Calculate an optimal commodity flow to meet bandwidth requirements. 

 Minimize data lost when comparing to either MME or OSPF. 

Several tests were executed to demonstrate the performance of the NTO routing method 

with multiple test runs for each scenario using different patterns of network traffic.  The 

NTO constantly achieved around a 99% success rate while OSPF and MME were much 

lower at 74% and 50% respectively. 

5.3 Future Work 

 The following are suggestions for future work within this topic: 

 Due to the significant impact of aircraft delay, future work should include 

adaptation to these delays.  Embed an algorithm or control system that can 

watch for problems in the network and dynamically adapt on the fly. 
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 Implement the NTO using wireless connections and protocols over hardware 

radios outside of the virtual environment. 

 Evaluate effects of the NTO commodity flow with a dynamic routing protocol 

to provide weights on network connections within that routing protocol.   

 Compare to other MANET protocols like AODV or OSPF-MDR. 

5.4 Summary 

 This research demonstrated the effectiveness of the NTO in a dynamic network 

environment.  However, aircraft availability must be guaranteed.  The unavailability of an 

aircraft for minutes or even seconds can negatively affect QoS.  Otherwise, the NTO has 

the capability to use pre-determined knowledge to make decisions including splitting 

network flows and timely route changes.  Furthermore the algorithms are run offline 

before they are implemented and scheduled as necessary.  Simulations demonstrate that 

this knowledge has a significant impact on network QoS providing less packet loss and 

an overall increase in network throughput.   
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