
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2015

Estimating Single and Multiple Target Locations
Using K-Means Clustering with Radio
Tomographic Imaging in Wireless Sensor
Networks
Jeffrey K. Nishida

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Nishida, Jeffrey K., "Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in
Wireless Sensor Networks" (2015). Theses and Dissertations. 47.
https://scholar.afit.edu/etd/47

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/47?utm_source=scholar.afit.edu%2Fetd%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING

K-MEANS CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN

WIRELESS SENSOR NETWORKS

THESIS

Jeffrey K. Nishida, Captain, USAF

AFIT-ENG-MS-15-M-038

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the United

States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.



AFIT-ENG-MS-15-M-038

ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS

CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR

NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jeffrey K. Nishida, B.S.E.E.

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT-ENG-MS-15-M-038

ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS

CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR

NETWORKS

Jeffrey K. Nishida, B.S.E.E.

Captain, USAF

Committee Membership:

Richard K. Martin, PhD

Chair

Captain Jesse D. Peterson, PhD

Member

Jason R. Pennington, PhD

Member



AFIT-ENG-MS-15-M-038
Abstract

Geolocation involves using data from a sensor network to assess and estimate the

location of a moving or stationary target. Received Signal Strength (RSS), Angle of Arrival

(AoA), and/or Time Difference of Arrival (TDoA) measurements can be used to estimate

target location in sensor networks. Radio Tomographic Imaging (RTI) is an emerging

Device-Free Localization (DFL) concept that utilizes the RSS values of a Wireless Sensor

Network (WSN) to geolocate stationary or moving target(s). The WSN is set up around

the Area of Interest (AoI) and the target of interest, which can be a person or object. The

target inside the AoI creates a shadowing loss between each link being obstructed by the

target. This research focuses on position estimation of single and multiple targets inside

a RTI network. This research applies K-means clustering to localize one or more targets.

K-means clustering is an algorithm that has been used in data mining applications such

as machine learning applications, pattern recognition, hyper-spectral imagery, artificial

intelligence, crowd analysis, and Multiple Target Tracking (MTT).
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ESTIMATING SINGLE AND MULTIPLE TARGET LOCATIONS USING K-MEANS

CLUSTERING WITH RADIO TOMOGRAPHIC IMAGING IN WIRELESS SENSOR

NETWORKS

I. Introduction

T
his chapter provides background on the methods and application of WSNs and Radio

Tomographic Imaging (RTI). The thesis problem statement, assumptions, research

objectives, approach used, and structure for this thesis are contained in this chapter.

1.1 Background

The growth and maturity of wireless communication and Micro Electro-Mechanical

Systems (MEMS) technology has laid the foundation for the use of low power, low cost

Radio Frequency (RF) sensors in various geolocation tasks [4]. A WSN involves multiple

Radio Frequency Integrated Circuits (RFICs) deployed around an area of interest. The

RFICs are often referred to as a radio, node, or mote which can be used interchangeably.

Each node in the network is capable of sending and receiving information over a wireless

communication channel. A variety of applications have been explored to utilize the use of

WSN to support both military and civilian applications. Although geolocation with Ultra-

Wideband (UWB) radar has provided much of the framework in WSN applications [5], [6],

WSN differ such that a larger amount of nodes can be deployed. This is feasible because

such networks are mobile, have flexible uses, and are easily implemented due to their low

cost. WSNs with a large amount of nodes have uses in inventory monitoring, surveillance,

classification, and localization [7].

1



Recent research into the application and effectiveness of WSNs for the use in

surveillance, localization, and classification have led to an interest from military, special

forces, and the emergency response community [1], [8], [9], [10].

1.2 Radio Tomographic Imaging

Geolocation involves using data from a sensor network to asses and estimate the

location of a moving or stationary target. RSS, AoA, and/or TDoA measurements can

be used to estimate target location in sensor networks. RTI uses the RSS information

from each radio to estimate the position of the target(s). RTI is an emerging DFL concept

that utilizes the RSS values of a WSN to geolocate a stationary or moving target. Every

wireless node is a 2-way communication link that can transmit and receive RSS values over

the specified communication channel [5]. The WSN is set up around the AoI and the target

of interest, which can be a person or object. The target inside the AoI creates a shadowing

loss between each link being obstructed by the target. This research focuses on position

estimation of single and multiple targets inside a RTI network. In the literature, the focus

has been on single targets using a Maximum A-posteriori Probability (MAP) estimator [5],

[1], [10]. This research will apply K-means clustering to localize one or more targets.

K-means clustering is a known algorithm used in other data mining applications such as

among machine learning applications, pattern recognition, hyper-spectral imagery, artificial

intelligence, crowd analysis, and MTT [11], [12], [13].

1.3 Problem Statement

Can K-means clustering be utilized with an indoor RTI network to localize one or

more targets?

The motivation behind using K-means clustering is to provide an alternative means

to localize target(s) inside a RTI network. Additionally, localizing multiple targets in RTI

has been a difficult task. MTT has possible law enforcement, special forces, and military

2



application. For example, in applications such as a hostage situation, special forces would

want to be able to localize multiple targets inside the building [10], [11], [12]. MTT would

be useful in gaining insight to where all targets inside the AoI are located.

1.4 Approach

This thesis will include theoretical analysis and background as the foundation of

this research. The use of simulation and physical experiments will be used to support

the objective of this research. RTI experiments done in real-time and with obstructions

provide experimental results that can be analyzed. The data from the WSN will be

collected in the form of RSS measurements and the information from the network will

illustrate the attenuation caused by the affects of targets inside the network. Regularization,

weighting models, image reconstruction, and localization estimation techniques will be

used to provide results to be compared with simulations.

1.5 Thesis Structure

The remainder of this research document is arranged into four chapters. Chapter 2

provides an in depth literature review of the research in the field of WSNs, RTI, and

MTT. Chapter 3 describes the methodology used in the completion of this research. It

also describes how all experiments are set up and how all data will be analyzed. Chapter 4

contains all experimental results in support of this research. Analytic results relative to the

objective of the problem statement are presented in Chapter 4. Chapter 5 summarizes all

the research conducted in this document and provides the conclusion of what work has been

accomplished and the contributions of this research. Lastly, Chapter 5 describes additional

research areas that can follow on to this research.
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II. Related Work

T
his chapter provides an introduction and background to the theory behind RF-based

localization methods. The research efforts and evolution of RF-based localization

methods have provided the foundation for RTI. RTI is a DFL method that uses a WSN to

geolocate the position of one or multiple targets. Geolocation involves using data from

a sensor network to assess and estimate the location of a moving or stationary target.

RSS, AoA, and/or TDoA measurements can be used to estimate target location in sensor

networks [14], [15], [16]. RTI uses the RSS information from each radio to estimate the

position of the target(s) [5].

2.1 Notational Conventions

Throughout the paper, (·)−1 and (·)T denote a matrix inverse and transpose respectively.

A hat (e.g. x̂) indicates an estimate of its argument and a bar (e.g. x̄) represents the

ensemble or sample mean of the argument. All column vectors are indicated with bold

lower case letters, row vectors are denoted with a transpose operator, and matrices are

denoted by capital BOLD letters.

2.2 Radio Tomographic Imaging Background

RTI is an emerging concept that uses DFL and the RSS values of a WSN to geolocate

a stationary or moving target. The WSN is set up around the AoI and the target of interest,

which can be a person or object. The target inside the AoI creates a shadowing loss between

each link being obstructed by the target [1].

2.2.1 Ultrawideband Imaging.

RTI is a derivative of RF-based radar applications from the commercial industry. From

[1], UWB-based imaging devices have been developed by various companies which use

phased array radars to estimate range and bearing. An UWB network consisting of multiple
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radar transmitter and receivers can be set up around a concentrated AoI to geolocate a

target. This process can be referred to as active localization [17]. In order to estimate

range and bearing, the devices emit UWB pulses to measure the echoes from the devices.

Based on the estimates for the the change in range and bearing when a target is present,

an image of the AoI can be estimated to show the estimated location of the target. The

estimated image can be mapped to a pixel scene of the AoI to show the presence or absence

of target(s) [18]. The benefits of UWB is that it is device free, can offer accurate position

estimation of a target, and is passive [17], [18], [19]. The challenges with UWB is that it

requires a large bandwidth, can be expensive, and suffers monostatic scattering losses over

larger areas [5], [6].

2.2.2 Multiple-Input-Multiple-Output Radar.

Multiple Input, Multiple Output (MIMO) radar has been an emerging field that utilizes

multiple radars transmitter and receivers to geolocate objects within an area in which the

radars surround. MIMO is often referred as a type of multistatic radar. From [20], MIMO

is used for target detection. The waveforms from the transmitters are scattered from the

target and the receivers are able to resolve the waveforms to geolocate the target inside the

spatial area. It has also been shown that MIMO can be used to track moving targets by

computing the Doppler shift. RTI eliminates the need to measure reflections, but instead

uses shadowing loss as the basis for the image reconstruction inside the AoI [21].

2.2.3 Device-Free Localization.

The access to and growing usage of Wireless Local Area Networks (WLAN) have

allowed for the increase of DFL systems. Active based systems such as Global Positioning

System (GPS), various RF based systems, Ultrasonic based systems, and Infrared (IR)

based systems require a device attached to the target in some fashion in order to localize

the target. DFL does not require an emitter from the target being tracked, thus is an

unobtrusive way to estimate the position of a target. Observing changes in the RSS of
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a WLAN environment is a technique that can be used localize a target in a passive DFL

environment [22], [23].

The growth of DFL systems and advancements in WLAN communication have

provided the motivation to research DFL localization methods. Approximating a target’s

location has provided useful to applications such as, unobtrusively monitoring patients in a

hospital, estimation location of assets, network access based on user’s location, and indoor

traffic monitoring [22].

2.2.4 Radio Tomographic Imaging with Received Signal Strength.

With the growth of low cost RFICs, RTI has been enabled to grow as an emerging

technology in the realm of DFL. RTI uses RSS measurements from a RF network that is

deployed around an area of interest. All the radios in the network are capable of receiving

and transmitting with one another. The attenuation created by the objects or people inside

the network are utilized to obtain images of the network area. Due to noise in the channels,

noise models are investigated in the RTI system. Due to noise, regularization methods have

been explored to estimate the image of the RTI network. Error bounds on the image can be

used to calculate the accuracy of a particular RTI network [1].

Unique Links. Since all the radios in the RTI network can transmit and receive RSS

among one another, the number of two-way unique links, M, can be calculated as,

M =
N2 − N

2
, (2.1)

where N is the number of radios in the RTI network [1]. Figure 2.1 is an illustration of all

the links of a RTI network with N = 36 nodes and M = 630 links.

Received Signal Strength. RTI uses RSS to measure signal power from one radio

to another in the network. From [5], the Received Signal Strength Indicator (RSSI) from

the network is the only information needed to localize targets. The hardware can remain

simple because no other information is needed in this RSS system. In the literature, RSS
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Figure 2.1: Illustration of the links created in a RTI network [1].

measurements are typically modeled as log-normal with a Gaussian distribution. The

received power, Pl at each link, l over the wireless channel is [5], [24],

Pl ∼ N
(

P̄(dl), σ
2
)

. (2.2)

Path Loss Model. The RTI path loss model describes the RSS loss due to shadowing

loss from objects, fading loss, static losses, and measurement noise for each link, l in the

network. The RSS of any given link l, at time t, can mathematically be computed as [1],

[10]:

rl(t) = PT − Ll(t) − S l(t) − Fl(t) − vl(t), (2.3)

where
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Figure 2.2: Illustration of a single obstructed link in a RTI network [1].

• PT : Transmitted power (decibels (dB)).

• Ll(t): Static losses due to distance, antenna patterns, device inconsistencies, etc (dB).

• S l(t): Shadowing loss due to objects attenuating the signal (dB).

• Fl(t): Fading loss caused by constructive and destructive interference of narrow-band

signals in multipath environments (Non-Shadowing Loss) (dB).

• vl(t): Measurement Noise (dB).

Radio Tomographic Imaging Linear Model. The entire vector of RSS links can be

described in matrix form from the following linear model [1]

y =Wx + n, (2.4)

where y is the change in RSS from the baseline, which has length M. W is a weight

matrix of dimension M × P, where M corresponds to the number of links and P represents
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the number of pixels in the given RTI network. Each RSS measurements is measured in

decibels (dB).

Noise. The noise, n from the model from (2.4) is typically modeled as Additive

White Gaussian Noise (AWGN) [25], [26], [27], [28]. The noise can empirically be

modeled as

N
(

0, σ2
l

)

, (2.5)

where σ2
l

is the measured variance of the link data for the particular RTI network. As

discussed in [1], the statistics of the noise vector must be examined. From [28], the main

contributors to the noise, n is: the free space path loss, loss due to shadowing, receiver

gains (which can be antenna gain and/or cabling losses), and transmitter gains. Hamilton

also assumes a single-path propagation, but notes that it can be extended to multi-path

channels. In [1], a Gaussian mixture model was used to fit the measured data. The two-part

log-normal mixture model, with values in decibels, can be modeled as

fni
(u) =

∑

j∈{1,2}

pk
√

2πσ2
j

exp















u2

2σ2
j















, (2.6)

where fni
(u) is the probability density function of the random noise variable ni, p j is the

probability for part j, and σ2
j

is the variance of part j. This model is based off the results

from [29].

2.3 Weighting Models

If absolute knowledge of the area of interest was available, the weights for every link,

l, at each pixel would be definitely known. In time critical situations where RTI would be

utilized, users will likely not have the luxury of surveying the scene for all obstructions,

interior arrangements, or have access to any other site specific information. This is why

a statistical model for W needs to be robust enough in an array of different environments

and network sizes. In the literature, various models have been explored to represent the

weighting matrix W from (2.4). Although W has taken on various forms in the literature,
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the weighting matrix can be decomposed into two parts as shown in [30], [31]. The general

form for W can be decomposed as

W = S ⊙Ω, (2.7)

where S is a binary selection matrix, ⊙ is an element-wise Hadamard multiplication, and

Ω is a real-valued matrix of weights assigned to each pixel in the network. Using singular

value decomposition (SVD), W can be also be represented as

W = UΣVT (2.8)

where U and V are unitary matrices, and Σ is a diagonal matrix of singular values [32].

The three weighting matrices commonly found in RTI literature are: the NeSh Model [1],

the Line Model [31], [33], and the NeSh-Line Model [25], [26] with the NeSh Model being

the most widely used. There are also other weighting models described in [23], [27], [28],

[34], and [35], but they are not utilized as frequently in literature as the first three mentioned

models.

2.3.1 NeSh Normalized Ellipse Model.

The NeSh Model was first used in [1], but has since been expanded in [36]. The

expanded model has been used in [6], [37], [38], [39], [40]. The NeSh Model was designed

to take into account the shadowing loss described in (2.3), on each link l. The adapted

model uses a normalization factor to take into account that as the distance of links increase,

the variance should not as well. The normalized factor from [36] is

Ω
NeS h =

1
√

dl

. (2.9)

From [1], an ellipsoid with a focus at each radio location is used to determine the weighting

for each link of the network. The NeSh weighting is described mathematically as

wNeS h
l,p =

1
√

dl



























1, if d1(l, p) + d2(l, p) < dl + λ,

0, otherwise,

(2.10)
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where dl is the distance or length of link l, d1(l, p) is the distance from the first node of link

l to the location of pixel p and d2(l, p) is the distance from the second node of link l to to

the location of pixel p. λ is a tunable parameter which represents the width of the ellipse. If

the sum of d1 and d2 is less than the length of the link d plus the tunable parameter λ, a 1 is

assigned in the binary selection matrix, else, a 0 is assigned. Using the general decomposed

form for W from (2.7), the decomposed model for W is

WNeS h = SEllipse ⊙ΩNeS h. (2.11)

This model puts the weight only on pixels that fall within the ellipsoid computed for each

link. However, this model assumes that all pixels that fall within the ellipsoid have equal

weight.

2.3.2 Line Model.

The Line Model originated from [33], [41], but have been utilized in RTI applications

in [26], [31], [42]. ΩLine is only concerned with the portion of link l that passes through

pixel p. The binary selection matrix, SLine = 1 if link l traverses through pixel p, else

SLine = 0. Therefore, the weighting matrix for the Line Model can mathematically can be

computed as

wLine
l,p = Ll,p



























1, if link l pixel p,

0, otherwise,

(2.12)

where Ll,p is the length of the portion of link l that traverses through pixel p. The weight of

each entry in the matrix is assigned based on the length of the link through the pixel rather

than the square root of the distance of the entire link as shown in the NeSh Normalized

Ellipse Model. Similar to (2.7), W can be decomposed as

WLine = SLine ⊙ΩLine, (2.13)

where the Line Selection Matrix is described more in depth in [33], [42], [41]. The Line

Model is simple to implement and in [31], the Line Model is described as being the more
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computationally efficient model over the other commonly used weighting models used in

RTI.

2.3.3 NeSh-Line Model.

The NeSh-Line Model is a hybrid of the NeSh and Line models previously discussed

in this section. This model was first used in [25], [26]. The Line Selection Matrix, SLine is

the same one found in the decomposed Line Model. The weighting factor, Ω is computed

by calculating the link distance of l, similar to the Line Model, and the inverse of the square

root of the distance of the link that traverses through pixel p, which is similar to the NeSh

Model. W for the Nesh-Line Model can be decomposed as

WNeS hLine = ΩNeS hLine ⊙ SLine, (2.14)

where

wNeS hLine
l,p =

Ll,p√
dl



























1, if link l traverses pixel p.

0, otherwise.

(2.15)

2.4 Regularization Methods

Since the output from the RTI network, y from (2.4) is the only output given from the

network, the image scene, x from (2.4) needs to be estimated. Wilson and Patwari discuss

different methods to estimate x in [1], [32]. Since the goal is to estimate x and minimize the

noise in the least-squared error sense, various regularization methods have been explored.

Ill-Posed Inverse Problem. The linear model from (2.4) is common in other physical

problems [1], where the goal would be to minimize the noise in the least-squared sense

which can mathematically be represented as

x̂LS = arg min
x
‖Wx − y‖2. (2.16)

Using to (2.16), the least-squared solution for (2.4) would be

x̂LS = (WT W)−1WT y. (2.17)
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However, W in most cases will not be full rank, thus estimating x is an ill-posed inverse

problem. Due to the transfer matrix, W having much smaller values than the measurement

noise, regularization is useful in estimating x. Without any type of regularization, the

measurement noise would be amplified when solving for x [32]. Below are a few popular

regularization methods researched for RTI.

2.4.1 Tikhonov Regularization.

Tikhonov regularization is the most widely used in RTI. It is a popular regularization

because it forces a solution by adding an energy term [1], [32]. This regularization has

the flexibility to manipulate the desired output by picking the regularization parameter α.

The solution is outputed after the linear transformation of the measurement data [32]. The

resulting objective cost function is

fT IK(x) =
1

2
‖Wx − y‖2 + α

(

‖Dxx‖2 + ‖Dyx‖2
)

, (2.18)

where Dx and Dy are difference operators in the x and y directions of x respectively. To find

the estimated scene x̂, the derivative of (2.18) needs to be set equal to zero which is

x̂T IK = argmin
x

(

1

2
‖Wx − y‖2 + α

(

‖Dxx‖2 + ‖Dyx‖2
)

)

, (2.19)

x̂T IK =
(

WT W + α
(

DT
x Dx + DT

y Dy

))−1
WT y. (2.20)

In [1], the derivative operators are summarized by the Tikhonov matrix Q. Substituting Q

into (2.20) yields

Q , DT
x Dx + DT

y Dy, (2.21)

x̂T IK =
(

WT W + αQ
)−1

WT y. (2.22)

In matrix form, the linear operator on y can be demonstrated by

x̂Tik=ΠTiky, (2.23)

where

ΠTik =
(

WT W + α
(

DT
x Dx + DT

y Dy

))−1
WT . (2.24)
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2.4.2 Truncated Singular Value Decomposition.

Another popular regularization method is Truncated Singular Value Decomposition

(TSVD) [32]. The objective is to remove smaller singular values from the weighting matrix

W. This method is similar to scalar regularization [43], where only g < N singular values

from Σ are used in the reconstruction. The linear transformation matrix is given by

ΠTS VD =

g<N
∑

i=1

1

σi

uiv
T
i = UkΣVk

T , (2.25)

where U, V, and Σ are matrices described in section 2.3. Therefore, the image estimate

using TSVD regularization is

x̂TS VD = ΠTVS Dy. (2.26)

The drawback to this method is that since the singular vectors are dependent on the node

locations, TSVD lacks the ability to incorporates the parameter α to force desired properties

of the image estimate. However, like Tikhonov regularization, the transformation matrix,

ΠTS VD can be pre-calculated prior to recording data for quick and real-time applications.

The results from [32] show that Tikhonov and Total Variation (TV) do a better job in

minimizing noise present in the image estimate. This is due to the high frequency

components that are included in the reconstruction.

2.5 Node Density

The node density of a RTI network can greatly affect the accuracy of the image scene

x. The more dense a network is, the more likely the accuracy would be higher than a

network with a sparse amount of motes further apart. The more links that pass through a

particular area, the more RSS values would be present to estimate the image scene [1].

Cramer-Rao Lower Bound. Wilson and Patwari derive the Cramer-Rao Lower

Bound (CRLB) for the unbiased estimator x̂Tik [1]. The CRLB is the error bound at each

pixel location p of the particular RTI network. The Mean Squared Error (MSE) bound for
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a RTI network is given by

COV(xTik) ≥
(

γWT W + C−1
x

)

(2.27)

where γ is computed by the following integration

γ =

∞
∫

−∞

f
′
n(u)2

fn (u)
du. (2.28)

fn is the two-component Gaussian distribution of n found in (2.6). Cx is the spatial

covariance model used in [44]. The spatial coveriance model is computed by

[Cx]p,q = σ
2
xe
−dp,q

δc , (2.29)

where σx
2 is the variance at each pixel, dp,q is the distance from each pixel p to pixel q, and

δc is the correlation parameter.

Cylindrical Human Model. In [1], Wilson and Patwari use a Cylindrical Human

Model to assess the accuracy of a given RTI network. The purpose is to assess the

"true" attenuation field to the image scene being estimated. The model assumes a uniform

attenuation throughout the radius Rh, of a human positioned at a coordinate location Ch.

The model for the Cylindrical Human Model image scene xh can be described as

xh =



























1, if
∥

∥

∥xp − Ch

∥

∥

∥ < Rh,

0, otherwise,

(2.30)

where xp is the (x, y) center of pixel p.

Spherical Model. In [42], Martin et al. propose a spherical model to represent a

spherical obstruction. The obstruction in x is

xp = A exp

(

−1

2r2
o

‖x(p) − co‖2
)

, (2.31)

where A is attenuation (dB) per voxel of obstruction, ro is the defined radius of the

obstruction, γ is derived from the noise model found in (2.28), and co is the coordinate
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position of the obstruction. The link passing through the center of the obstruction would

have a link attenuation of

yl =
∑

p

xp ≈
∫

xpdx

δ
=

A
√

2πro

δ
. (2.32)

2.6 Radio Tomographic Imaging Methods

Since the creation of RTI, other methods of RTI have been explored to improve

tracking and estimation of targets in RSS-based, DFL networks. The various methods were

created to improve accuracy in an array of different applications. For example, different

methods of RTI can be utilized to track moving targets versus stationary targets. The WSN

may be Line-of-Sight (LOS) or may need to be set up with obstructions between the sensors

and the target(s). The different RTI methods have varying capabilities that can be applied

to the applicable target tracking situation.

2.6.1 Mean-Based Radio Tomographic Imaging.

Mean-based Radio Tomographic Imaging (MRTI) is a commonly used method in the

literature and is one of the simplest to implement in terms of complexity. This method is

also referred to as shadowing-based RTI as it quantifies the loss on each link affected by the

target to localize the target’s location [1]. Mean-based or shadowing-based RTI is typically

referred to as RTI [5], [31], [38], [2], [45].

Measurement Model. The shadowing loss R on each link l can be approximated by

a sum of the attenuation that occurs at each pixel in the network. For N frames, the link

RSS at frame n can be mathematically described as

r̄l,n =
1

N

N−1
∑

i=0

rl (tn − i) , (2.33)

∆r̄l,n = r̄l,n − r̄l,c, (2.34)

where r̄l,c is the calibration RSS on each link. Therefore the sample mean for each link in

vector notation is

ymean =
[

∆r̄1,n,∆r̄1,n, ...,∆r̄K,n

]T
. (2.35)
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As discussed in section 2.4, the inverse problem given y needs to be solved to estimate x.

Using the sample mean from (2.35) is useful in locating both static and moving targets.

Due to the noise caused by walls or similar solid foundations, this method is better suited

for LOS applications rather than non-LOS applications [36], [37], [44]. Additionally, since

mean-based RTI only uses the change in the mean RSS, quick or sporadic movement would

degrade the accuracy of the network [2].

2.6.2 Variance Radio Tomographic Imaging.

Variance-based Radio Tomographic Imaging (VRTI) utilizes the variance between

RSS frames from the RTI network to estimate the target’s location. Due to only the variance

being needed to estimate the image from the attenuation field, the need to calibrate the RTI

network prior to taking data measurements is alleviated [6], [38], [39].

The VRTI system uses a vector y of RSS measurements on M links in the RTI network

to determine the variance between each frame, where the variance is measured in dB. The

RSS variance of on each link can mathematically be defined as

VAR[RdB] =
∑

p

wp,lxp + nl, (2.36)

where n is the measurement noise and modeling error, wp is the variance caused by a

movement in pixel p, and RdB is the received signal strength. Using the linear model from

(2.4), the linear system for VRTI can be expressed as

s =Wx + n, (2.37)

where s is an M×1 measurement vector of the variance of each link l, W is a chosen weight

matrix as discussion in section 2.3, and x is the N × 1 scene image that is estimated using

a chosen method as discussed in section 2.4. In [38], Tikhonov regularization is used for

optimization of the image estimate and is defined as

x̂T IK = ΠT IKs, (2.38)

where ΠTik is from (2.24).
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Results. VRTI improves imaging in through-wall applications as shown in [6], [38],

[39]. In [38], imaging through the wall with mean-based RTI was compared to VRTI

to show that VRTI had a less noisy image through the walls. VRTI is valuable because

locating moving targets outside the walls is extremely valubale for police, military, and

rescue teams to get an image of targets inside a building prior to entering [10]. Kalman

filters can be utilized to further increase the accuracy of target tracking of moving targets

using VRTI. Since VRTI utilizes the changes in variance on the links in the network for

imaging rather than the change in mean of the static RSS losses, VRTI is not as viable for

locating stationary targets as MRTI.

2.6.3 Kernel Radio Tomographic Imaging.

Kernel-based Radio Tomographic Imaging (KRTI) compares the short-term and long-

term histograms of a RTI network to locate the position of any targets inside the network.

This method has the benefit of locating both stationary and moving targets in LOS and

non-LOS environments. With this method, a training period is required to record the

RSS histograms on all the links in the network. Unlike MRTI or VRTI, the objective

is to quantify the change in RSS in the network caused by a person through the use of

histograms rather than the mean or variance of the link RSS [36], [38], [39]. Zhao et al.

find the distance between short-term and long-term histograms in a RTI network using the

Kullback-Leibler divergence [2].

Distance Between Long-Term and Short-Term Histograms. In KRTI, every link l

is characterized by short-term and long-term histograms of past RSS measurements. At

frame n, the weighted average of the histogram h is

hn =
∑

i

wn,iIyi , (2.39)
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where I is an N-length indicator vector and yi is the RSS at time i. The exponentially

weighted moving average is given by

wn,i =



























β(1 − β)n−i, i ≤ n,

0, Otherwise,

(2.40)

where β is the forgetting factor, 0 < β < 1. A higher β increases the importance of the

most recent RSS measurements, while a lower β would be more appropriate for long-term

histograms. The kernel distance is between the long-term and short-term histograms is

found by

DK (p, q) = pT Kp+qT Kq − 2pT Kq, (2.41)

where K is the kernel, p is the short-term histogram and q is the long-term histogram

defined in [2]. A commonly used kernel is the Epanechnikov kernel, which minimizes the

integrated squared error [2] and is defined as

K(yi, y j) =
3

4

















1 −

∣

∣

∣yi − y j

∣

∣

∣

2

σ2
E

















I|yi−y j|≤σ2
E
, (2.42)

where i and j are elements of the RSS links in y, I is the indicator function and σ2
E

is the

Epanechnikov kernel width.

Kernel Distance-Based Radio Tomographic Image Formation. Once the histogram

distances are computed, d = [d1, ..., dM]2 can denote the histogram difference of all links,

M histogram differences, where d1 = D (p1, q1). Using the RTI linear model from (2.4), d

is defined as

d =Wx + n, (2.43)

where n is the noise vector and W is a chosen weight model discussed in Section 2.3 [1],

[32], [38], [42], [46]. The histogram difference vector, d is used to form the image x̂, which

has the modified least-squares solution

x̂ =
(

WT C−1
n WT + C−1

x

)−1
WT Cnd, (2.44)
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where Cx is the covariance matrix of x and Cn is the covariance matrix of each link’s

measurement noise [2]. Using Tikhonov regularization [21], the matrix notation of the

modified least-squares formulation is

x̂K = ΠKd, (2.45)

where

ΠK =
(

WT W + σ2
nC−1

x

)−1
WT , (2.46)

and the variance of the measurement noise is given by σ2
n.

Results. In [2], KRTI is used to track a moving target with the addition of a Kalman

filter. The transition model of the Kalman filter includes the target’s location and velocity.

A variety of experiments were performed which included a bookstore environment which

had bookshelves as obstructions and a large living room in a residential setting. The

experiments used 34 radios with twenty locations being estimated in each experiment. The

overall average error at each estimated location ẑi was calculated by

ē =
1

20

20
∑

i=1

‖ẑi − zi‖ (2.47)

where zi is the true location. In the experiments performed, it was found that KRTI had

a lower average location error than VRTI and Sub-VRTI [6], [37], [38]. Overall, KRTI

offered over a 30% improvement over VRTI and Sub-VRTI [2]. Stationary experiments

were also performed and had an average location error of less than 0.81 meters.

2.6.4 Other Radio Tomographic Imaging Methods.

There have been other methods of RTI that have been explored in literature. The other

methods described in this section utilize a channel that is chosen by the user. In [40],

Kaltiokallio et al. propose a method to select an optimal channel so that the reliability of

the links is maximized. Experimental results show that channel diversity can increase the

accuracy of a network. Histogram-based Radio Tomographic Imaging (HRTI) was first

demonstrated in [47] and is the foundation for KRTI which uses the distances between
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Table 2.1: Radio Tomographic Imaging features [2].

Features RTI VRTI KRTI

Through wall? Yes Yes Yes

Calibration? Yes N/A No

Stationary Targets? Yes No Yes

Real-Time? Yes Yes Yes

link histograms to estimate the image. In [48], the use of directional antennas is used in

the sensors of a network. This method is known as Direction-based Radio Tomographic

Imaging (DRTI) and was proposed to improve the localization accuracy of RTI. Since

the number of pairs grow quite large with a greater number of sensors, a lower number

of sensors in the network would need to be used for this to be feasible. However, the

experimental results showed that DRTI can improve the accuracy over omni-directional

antennas in both LOS and non-LOS environments.

2.6.5 Radio Tomographic Imaging Features.

Since there are multiple RTI methods that have been explored, each one has features

available that could be appropriate for different situations. Table 2.1 shows various features

for shadow-based RTI, VRTI, and KRTI. In settings where imaging will need to be done

through the wall, VRTI or KRTI would be the preferred methods over shadow-based RTI

[2]. Additionally, VRTI and KRTI do no require calibration, but RTI does. This could be a

drawback in an emergent situation where taking the time to calibrate may not be feasible.

MRTI has the benefit of estimating the location of stationary targets over VRTI. When the

target is stationary, there would not be a significant variance in the links of the network to

accurately locate the target [6], [39].
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2.7 Localization Methods

Due to RTI being an ill-posed inverse problem, there is not a stable and unique solution

to the least-squares formulation for x. Once a regularization and estimator is chosen, x̂

needs to be analyzed to locate the target(s) of interest. Depending on how many targets

are in the scene, there are two commonly used estimators in RTI applications to locate the

target(s) [12], [38], [2], [49].

Maximum A Posterior Estimation. For a single target application, a Bayesian

statistic on the estimated scene, x can be applied to estimate the location of the target

[49]. The MAP estimated location would be the pixel with the maximum value. The

mathematical notation for this estimate is

ẑ = arg max
p

x̂p, (2.48)

where ẑ is the estimated location of the target and x̂p is the pixel intensity at each pixel p.

K-Means Clustering. K-means clustering is a popular data mining tool to find

patterns or clusters of interest from a set of data. It is popular among machine learning

applications, pattern recognition, hyper-spectral imagery, artificial intelligence, crowd

analysis, and MTT [11], [12], [13]. The K-means algorithm clusters a given set of data

together into K partitions with the goal of minimizing the variance of each cluster. This

algorithm is similar to the expectation-maximization algorithm where the end goal is to find

the optimal center of the defined number of clusters [13]. K-means is an iterative process

where the objective is to minimize the total inter-cluster variance. This process assumes a

fixed a priori, K for the number of clusters to be found from the given data set. Therefore,

the objective function, J is a squared error function which is

J =

K
∑

i=1

∑

x j∈S i

∥

∥

∥x j −Ci

∥

∥

∥

2
, (2.49)
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where x j is the set of data to be separated into clusters, K is the number of clusters, n is the

number of cases, S i is the set of pixels assigned to cluster i and Ci is the centroid for cluster

i [13]. The algorithm is performed by the following steps [50]:

1. Place K points into the spatial area represented by the points that are being clustered;

the points represent the initial clusters and centroids.

2. Assign each object to the group with the closest centroid using the squared error

function from (2.49).

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat steps 2 and 3 until the centroid positions converge.

Separation of all points in the data set is obtained when all objects are assigned to to a

cluster by minimizing the euclidean distance of all the points in the data set to the cluster

centroid. This process can be extremely fast, since in practice, it is repeated less than n

times [13].

There are drawbacks to this iterative process. In terms of performance, K-means does

not guarantee to return a global optimum. Since the heuristic algorithm described in this

section starts with a random initialization, the final solution is sensitive to the initial set of

clusters. If the number of K values is inappropriately chosen, the algorithm can produce

poor results. Therefore, the algorithm relies heavily on picking a value of K that would

yield desired results [13]. In [50], Chen and Shixiong propose an improved method to pick

the initial centers of the clusters. This method proposes picking initial centroids already

close to large quantities of points.

2.7.1 Multiple Target Tracking.

Although single targets are mainly used in literature [6], [31], [42], [51], MTT in RTI

has started to be explored in [9], [10], [11]. Bocca et al. explore real time tracking with

multiple targets using RTI [8]. Channel diversity from [40] is utilized in conjunction with
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machine vision methods to track multiple targets. The results presented are from an open

environment, a one bedroom apartment, and a crowded office environment to demonstrate

the capability to perform MTT with obstructions.

Pixel Threshold. When multiple targets are present, there are blobs of pixels in the

image scene that go through a clustering process to estimate the location of the targets.

Dynamic thresholding is used to reduce the size of the pixels that go through the clustering

process. In [8], an algorithm is used to threshold pixels prior to being clustered. In an

empty network, the average maximum intensity of the formed RTI images is used as the

baseline, Īe. The threshold is set to 2Īe in order to disregard the pixels with low intensity.

When targets are being tracked, the minimum intensity, Imin for targets T =
(

t1, ..., t|T |
)

is

defined as

Imin = min
t∈T

[x̂G]t, (2.50)

where x̂G is the image scene after being filtered through a low-pass Gaussian kernel G. The

filtered RTI image x̂G is calculated as

x̂G = x̂ ∗G, (2.51)

where G is the Gaussian kernel and ∗ is the convolution operator. The Gaussian kernel is

defined as

G(x, y) =
1

2πσ2
G

exp

[

− x2 + y2

2σ2
G

]

, (2.52)

where σG is the standard deviation of the Gaussian kernel which is set to be 1 meter [8].
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2.8 Chapter Summary

This chapter explained the various of forms of geolocation, which have led to the

work accomplished in DFL. The background of RTI was discussed in this section as well

as the the various RTI methods. In addition, the signal processing models, noise models,

regularization, and weighting models have provided the foundation for the different forms

of RTI found in the literature. Once an image is estimated from the information received

from the network, a method such as a MAP estimator or K-means needs to be applied

to estimate the location of the target(s). The weighting model, measurement model, and

regularization used in this research have been described in this chapter. Since MTT is the

focus of this research, this chapter described the K-means algorithm and how it can be

applied to MTT.
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III. Methodology

T
his chapter describes the methodology used in this research to establish and collect

data from a RTI network comprised of multiple RFIC motes. The following

sections outline the hardware and tools used in all the data collections. The system model

and implementation of the research will be described in this chapter. Truth data using

simulation and experimentation will be used to get a baseline performance of the network.

Lastly, the methods in which the data will be analyzed post-data collection will be outlined

in this section.

For all data collections, feet (ft) will be used as the metric for distance. All RSS

values will be assumed to be in dBm. For the two-dimensional (2-D) RTI network, the

pixel size will be ∆p × ∆p. The x − y plane will be utilized to show the 2-D pixel layout of

all images. Therefore, all position and tracking coordinate estimation will be denoted by

an (x, y) coordinate in feet.

3.1 Equipment and Tools

The equipment used in this research includes the Memsic TelosB mote platform [3]

and a computer with Microsoft Windowsr 7 for data collection and processing. The tools

that were used in this research are described and listed below. Data collection, simulation,

and analysis of all data were completed in MATLABr.

Memsic TelosB Mote Platform. The wireless radios used in this research are made

by Crossbow Technology Incorporated (Inc.) based in San Jose, California. The model

utilized in the research is the TelesB mote TPR2400. University of California (UC)

Berkeley developed the the open-source radios and is compatible with TinyOS distrubution.

TPR2400 was developed for the research community and provides the users with the
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capability to interface with additional devices. The radios offer programming and data

collection through a Universal Serial Bus (USB) interface.

Table 3.1: Select TPR2400 specifications [3].

Module

RAM 10K bytes

Current Draw 1.8 mA

RF Transeiver

Frequency Band 2400 Mhz to 2483.5 Mhz

RF Power -24 dBm to 0 dBm

Outdoor Range 70 m to 100 m

Curend Draw (Receive Mode) 23 mA

Electromechanical

Size 2.55 x 1.24 x .24 inches

Weight 0.8 ounces

User Interface USB

Cygwin. The motes were programmed using Cygwin on a Microsoft Windowsr 7

64-bit machine. Cygwin is a collection of GNU and open-source tools. It is a Unix-like

environment which is used to interface with Microsoft Windowsr 7. Cygwin was originally

developed by Cygnus Solutions, but has been acquired by Red Hat [52].

TinyOS. Tiny Operating System (OS) is an open-source operating system designed

for low-power wireless devices. The TelosB motes were equipped with Tiny OS which

is written in NesC [53]. TinyOS includes the program file titled “BaseStation,” for

programming the mote acting as the network BaseStation. Any mote can act as either a

wireless radio in the network or the base station, but this is specified when programmed.
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Figure 3.1: TelosB Mote.

Spin. The motes surrounding the AoI as well as the base station were programmed

with the “Spin” protocol, created by the Sensing and Processing Across Networks (SPAN)

lab at the Department of Electrical and Computer Engineering at the University of Utah.

Spin is an open-source TinyOS program written in NesC. This program has the function

of collecting RSS information from a WSN using a token passing protocol. Spin has

specifically been tested with TelosB nodes. With this token passing protocol, only one

radio transmits at a time through the channel; the motes transmit in the order specified by

the user. For more information or to download the Spin program, refer to [54].

RTI LINK GUI. Data was collected using the RTI LINK Graphical User Interface

(GUI) with the initial version created by Mr. Alex Folkerts (Southwestern Ohio Council

for Higher Education (SOCHE) Intern), Mr. Tyler Heinl (SOCHE Intern), and Dr. Richard

K. Martin (Associate Professor of Electrical Engineering at the Air Force Institute of

Technology (AFIT)). The RTI LINK GUI is a MATLABr based application designed to

collect and save package data from the RTI network. The GUI receives the raw RSS

data through the base station two’s complement and converts the values to hexadecimal.

The collection of each link’s RSS values at each frame n is considered the vector y =

[y1, y2, · · · , yM]T from section 2.2.4. For MRTI, the GUI is capable of taking the raw y data

28



at each frame and subtracting the calibration data to provide the mean change in RSS. The

line weighting matrix, W from section 2.3 and the Tikhonov Pi matrix, ΠTik from section

2.4 can be calculated prior to recording data to save computational time. User specified

parameters such as the tunable parameter α, pixel size, ∆p are inputted prior to calculating

the weighting matrix and ΠTik matrix. The GUI collects the raw link data at each frame in

real time and uses the ΠTik matrix as a linear operator to output the estimated image x in

near real time. The calibration data and final recorded data can be saved in the form of raw

link RSS data to provide the flexibility to compare different user parameters such as pixel

size and regularization values.

3.2 Network Setup

All experimental data in this research was taken from the same RTI network. The

network covered a 19 ft × 16 ft area surrounded by N = 70 motes described in Section 3.1.

All the motes were placed 1 ft apart around the parameter of the network area. The motes

were mounted on stands made from Polyvinyl Chloride (PVC) all at a height of 3.33 ft.

The height of the sensors was chosen to be near the midsection of most adults. Inside the

network, painters tape was used to mark off coordinates so that the true position of targets

inside the network could easily be known. An illustration of the mote topology is shown in

Figure 3.2. The number of unique links can be determined by (2.1). Therefore, the number

of unique links for N = 70 nodes is

M =
N2 − N

2
=

702 − 70

2
= 2, 415 links. (3.1)

Figure 3.3 illustrates M = 2415 links for the experimental RTI network. The sensors were

equally spaced apart to maximize the accuracy consistency throughout the entire network.

In addition, the more nodes used, the more RSS link information would be available to

estimate the image x. Figures 3.4a and 3.4b are pictures of the network from two different

corners.
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Figure 3.2: Aerial and three-dimensional views of mote topology.
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Figure 3.3: Experimental setup with M = 2415 links.

Radio Orientation. The TelosB TPR2420 are equipped with omni-directional

antennas [55]. However, to be consistent, all motes were oriented in the same manner.

The motes were positioned vertically with the USB interface facing towards the ground.
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(a) View from (19,16) (b) View of (19,0)

Figure 3.4: Pictures of the RTI experimental network.

Human Subjects. Human subjects were used in this research. Required human

subjects training has been completed by the principal investigators per the AFIT RTI

protocol. The signed Informed Consent Document (ICD) of all human subjects are

approved approved by the Air Force Research Laboratory (AFRL) Institutional Review

Board (IRB). The signed ICD is available and all human subjects voluntarily participated

in the data collection. All human targets were localized in the upright position. Although

the height of each target varied, the heights were not taken into consideration as the sensors

were placed at a height that would be obstructed by targets of various heights.

3.3 Assumptions

The following are the assumptions that were made in this research:

1. Pl ∼ N
(

P̄(dl), σ
2
)

2. n ∼ N
(

0, σ2
nIM

)

3. y|x ∼ N
(

Wx, σ2
nIM

)

4. x ∼ N (0,Cx)
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5. Calibration for all data collection was completed for at least 30 sets of y observations

and is available.

6. Measurement noise and static losses are averaged out through the use of the mean of

the calibration data.

7. All radios were oriented in the vertical position with the USB interface facing down.

8. All human targets are tracked in the upright position.

9. The number of targets is known.

10. Tracking filters for tracking or noise reduction are not used in this research.

11. Fade loss as a result of multipath is not significant enough to to be incorporated in

the weighting model or regularization method.

12. Obstructions in the network affect signal propagation between links as a result of

shadowing loss.

13. The pixel intensity of each pixel in the estimated scene x is constant through the area

of the pixel.

3.4 System Models

This research applied MRTI from section 2.6.1, where ymean =
[

∆r̄1,n,∆r̄2,n, ...,∆r̄M,n

]T
.

Therefore, y is computed by y = ymean − yc. The linear system model is defined by (2.4). A

weight model and estimator needs to be chosen to estimate x.

Weight Model. The Line Model was chosen for the weight model, W from Section

2.3.2. Although the NeSh Normalized Ellipse model from Section 2.3.1 is the more popular

weighting model in literature, the Line Model was chosen due to its lower complexity.

Since the localization algorithm that is applied in this research adds additional complexity,

cutting down on complexity can be beneficial for real-time applications. This model assigns

a weight dependent on the path lengths of the links passing through the obstruction.

Regularization. Tikhonov Regularization from Section 2.4.1 was used to estimate x

in the least-squares sense. The first order difference operator Q is discussed in Section 2.4.1
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and the tunable regularization parameter α was chosen after data collection. As discussed

in [1], the optimal α is dependent on the network setup and pixel size. The results of the

regularization is presented in Chapter 4.

3.5 Localization Method

The focus of this research utilizes the K-means algorithm to cluster together higher

intensity pixels to estimate the position of targets. For single target applications, the most

common form of localization is taking the maximum pixel value from the estimated image

scene x̂ as discussed in Section 2.7. However, for MTT, localization is more difficult. When

multiple targets are present, there should be multiple areas where the pixel intensity would

be higher in the areas in which targets are present.

K-means Clustering. Since the primary focus of this research is multiple target

localization, K-means clustering from Section 2.7 will be utilized to estimate the location of

multiple targets. When multiple targets are present in an image scene, the higher intensity

pixels can be clustered together and localized using K-means. The associated squared error

cost function for K-means is

J =

K
∑

i=1

∑

x j∈S i

∥

∥

∥x j −Ci

∥

∥

∥

2
, (3.2)

where Ci is the cluster position of cluster k and x j is the is the jth element of the pixels

above a set threshold to be assigned to a cluster. The number of clusters K and the pixel

locations to be clustered, x j are the inputs to the K-means algorithm. Since it is assumed

the number of targets is known, apriori, K can be appropriately chosen for the number of

targets known to be present inside the network.

Pixel Intensity Threshold. Since the desired pixels are those that have a higher

intensity, some type of threshold is warranted to segregate the pixels that have no targets

present from the pixels that are occupied by targets. From experimental data, it was found

that the statistics on the image x change with the regularization parameter α, pixel size ∆p,
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the number of targets, and where in the network the targets are. Therefore, the threshold

has to be robust enough to accommodate the change in intensity values between frames and

flexible to handle the change of chosen parameters. The threshold Tc is used to determine

which pixels are clustered into the K-means algorithm. The variance is first found from the

estimated image scene which is

σ2
n = VAR[x̂Tik,n], (3.3)

where x̂Tik,n is the Tikhonov estimation at each frame n. The image scene can be modeled

as Gaussian [1]. Pixels that are occupied by targets can be assumed to be much greater than

the pixels unoccupied by targets. The threshold Tc mainly used for this research is

Tc = 3σn, (3.4)

where 3σn is three times the standard variation at each frame n.

In summary:

• System Model: y =Wx + n

• Measurement Model: y = [∆r1,∆r2, · · · ,∆rM]T

• Calibration: yc = [r̄c,1, r̄c,2, · · · , r̄c,M]T

• Weight Model: [W]Line
l,p
= Ll,p



























1 if link l traverses voxel p

0 otherwise

• Estimator: x̂T IK = argmin
x

(

‖Wx − y‖2 + α‖Qx‖2
)

• Tikhonov Matrix: Q , DT
x Dx + DT

y Dy + DT
z Dz

• Pixel Threshold: TC = 3σn, σn = VAR[x̂Tik,n]

• Localization: J =
K
∑

i=1

∑

x j∈S i

∥

∥

∥x j −Ci

∥

∥

∥

2

3.6 Choosing Model and Experiment Parameters

Trade-off analysis has been conducted in [56] and [1] for model parameters. However,

model parameters α and ∆p based off of review from preliminary results. Data from these

34



experiments were analyzed using a range of values for α and ∆p and the resulting Root

Mean Squared Error (RMSE) for each data set was compared.

3.7 Simulated Truth Data

The Cylindrical Human model described in Section 2.5 was used to simulate all the

stationary truth images. Ch is set to be the known (x, y) coordinates of the targets to be

localized. The model can mathematically described as

[x]CHM =



























1, if ‖(x, y)p − Ch‖ < Rh

0, otherwise

, (3.5)

where xCHM is a [Lx, Ly] matrix set by the pixel size ∆p, (x, y)p is the center coordinate

of each pixel p, and Rh is the human radius. Therefore, the true attenuation image model

xCHM contains a 1 in the pixel location that is centered on Ch contained within RH and zeros

elsewhere. The simulated ysim data is calculated by the linear model (2.4) from Section

2.2.4. The vector ysim can mathematically be shown as

ysim=WlinexCHM+nsim, (3.6)

where nsim is a simulated AWGN vector of variance σ2
sim. Using ysim from (3.6), the

simulated image scene using Tikhonov Regularization is

x̂sim =
(

WT
lineWline + αQ

)−1
WT

lineysim, (3.7)

where Q and the line weighting matrix Wline are defined in Section 3.4. Substituting the

Tikhonov matrix from Section 2.4.1 yields

x̂sim = ΠTikysim, (3.8)

where Πsim can be computed in advance for both simulation and real-time applications.
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Table 3.2: Simulated truth data parameters.

Parameter Value Description

σ2
N 10 Noise variance (dB2)

Rh 1.1
Human radius for

cylindrical model ( f t)

∆p 0.25 & 0.5 Pixel width ( f t)

Table 3.2 shows the parameters used in the simulated truth data. As shown in Figures

3.5-3.7 with almost no regularization, where α = 25, the noise in the network is more

apparent in the estimated image scene. As discussed in Section 2.4.1, the purpose of α is to

suppress the noise spikes in the image. In [1], α was varied for the given network until the

MSE was minimized. In this research, α was increased until a visually acceptable image

scene was found. The advantage of α is that it can be changed by the user in both real-time

and when analyzing the data post collection. As seen in Figures 3.5-3.7, the desired α is

changed with pixel size. As the pixel size grows smaller, the energy is spread throughout a

higher number of pixels and thus the properties of the image scene changes. For a pixel size

of ∆p = 0.5 ft, the optimal regularization parameter was found to be α = 250. However,

when ∆p = 0.25 ft, the optimal regularization parameter was found to be α = 150.
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Figure 3.5: Truth Images: Single target at (4, 9) ft.
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(a) α = 25, ∆p = .5 ft.

0 5 10 15
0

2

4

6

8

10

12

14

16

X [ft]

Y
 [

ft
]

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) α = 25, ∆p = .25 ft.
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(c) α = 250, ∆p = .5 ft.
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(d) α = 150, ∆p = .25 ft.
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(e) Two targets at (6, 4) and (12, 10) ft.

Figure 3.6: Truth Images: Two targets at (6, 4) and (12, 10) ft.
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(a) α = 25, ∆p = .5 ft.
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(b) α = 25, ∆p = .25 ft.
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(c) α = 250, ∆p = .5 ft.
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(d) α = 150, ∆p = .25 ft.
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(e) Three targets at (5, 5), (8, 12) and (15, 3) ft.

Figure 3.7: Truth Images: Three targets at (5, 5), (8, 12) and (15, 3) ft.
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(a) α = 250,∆p = .5 ft.
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(b) Histogram of Figure 3.8a, Tc = 0.197 dB/ft.
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(c) α = 250,∆p = .5 ft.
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(d) Histogram of Figure 3.8c, Tc = 0.201 dB/ft.
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(e) α = 150,∆p = .25 ft.
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(f) Histogram of Figure 3.8e, Tc = 0.164 dB/ft.

Figure 3.8: Histograms of frames with varying targets and parameters.
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(a) Histogram, Tc = 4σn.
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(b) Plot of pixel locations above Tc = 4σn.
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(c) Histogram, Tc = σn.
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(d) Plot of pixel locations above Tc = σn.
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(e) Histogram, Tc = 3σn.
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(f) Plot of pixel locations above Tc = 3σn.

Figure 3.9: Histogram of Fig. 3.8c with varying threshold values Tc. Pixel locations of the

pixels above the threshold are plotted to the right of the histograms.
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3.7.1 Cluster Threshold.

Fig. 3.8 shows three different histograms for three frames of truth images. The frames

vary in target location as well model parameters, ∆p and α. The histograms are formed

with 30 bins and are fitted to a Gaussian curve. In Fig. 3.8d, the threshold using (3.4) is

Tc = 0.201 dB/ft. In Fig. 3.8f, the targets are in the same location as in Fig. 3.8d, but the

parameters ∆p and α are different. Subsequently, the statistics shown in the histogram are

different. Therefore, it makes statistical sense that the threshold for Fig. 3.8f has changed

to Tc = 0.164 dB/ft. The threshold value, Tc needs to be computed before each frame since

the statistics of the image scene x̂ can change from frame to frame.

Fig. 3.9 illustrates the outcomes after changing threshold for the same image frame.

In Fig. 3.9c, when Tc = 4σn, the threshold is set too high, where an insufficient amount

of pixel densities are above the threshold in Fig. 3.9d. In Fig. 3.9a, when Tc = 4σn, the

threshold is set too low, where a higher than necessary amount of pixel densities are above

the threshold in Fig. 3.9b. If the threshold is not stringent enough, lower pixel densities can

cause the K-means clustering process to cluster together insignificant pixels. As shown in

Fig. 3.9e, the essential pixel densities make make it past the threshold when Tc = 3σn.

3.7.2 Application of K-means Clustering.

Once the pixels above the threshold are identified, the locations of those pixels are

inputted into the K-means algorithm from (3.2). Fig. 3.10 illustrates a set of images of

frames with various targets in the left column. In the right column are plots of the pixel

locations with densities above Tc = 3σ. Given the prior information, K, the (x, y) locations

are assigned to a cluster and the centroids represent the localization estimate of each target.

First Iteration of K-means Clustering. Figs. 3.11a, 3.12a, and 3.13a represent the

first iteration of the K-means algorithm. Since all pixels above the threshold Tc are assigned

to a cluster, there is a chance of outliers being above the threshold. Erroneous pixel density

spikes can occur in the image estimation. Fig. 3.11a, 3.12a, and 3.13a show the centroid
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positions of all the pixels that are above the threshold, Tc. The figures show that there are

pixels that are segregated from the denser clusters which are around the targets. The pixels

that are not close to a larger group of pixels can subsequently affect the centroid positions.

Using a cluster radius of Rc = 3.25 ft would minimize the effects of segregated higher pixel

values. Any pixels that lay outside the given radius from the initial cluster centroids can be

deleted from the centroid calculation.

Second Iteration of K-means Clustering. Figs. 3.11b, 3.12b, and 3.13b illustrates

the second iteration of K-means after pixels outside of the Rc radius are deleted from the

K-means algorithm. The clusters which contained pixels with a greater number of outliers

had initial centroids that were further away from the denser pixel clusters. After the outliers

were deleted, the centroids moved closer to the groups of pixels closer to the target. In Fig.

3.11, the RMSE was 1.71 ft. After the pixels outside the Rc = 3.25 were ignored and the

second K-means algorithm was run, the RMSE improved to 0.45 ft. Similarly, in Fig. 3.12,

the RMSE improved from 0.90 ft to 0.38 ft. In Fig. 3.13, the RMSE improved from 1.16

ft to 0.45 ft. However, it is important to note that in these cases, the RMSE error improved

because the pixel outliers were pulling the centroid locations away from the true position

of the targets. In these cases, the denser groups of pixels were closer to the true target

positions. Conversely, if the denser groups of pixels are not near the true target locations,

a second iteration of K-means clustering may or may not provide an improved localization

estimate.
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(a) Image Scene.
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(b) Pixels greater than Tc = 3σn.
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(c) Image Scene.
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(d) Pixels greater than Tc = 3σn.
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(e) Image Scene.
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(f) Pixels greater than Tc = 3σn.

Figure 3.10: Image scenes and pixel threshold locations with multiple targets.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 3.11: K-means Localization: target at (9, 8) ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 3.12: K-means Localization: targets at (5, 5) and (9, 8) ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 3.13: K-means Localization: targets at (5, 5), (9, 8), and (14, 4) ft.
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3.8 Experiment Design

This research focuses on a variation of experiments with the designed WSN discussed

in Section 3.2. Single target stationary and tracking localization is used to compare K-

means clustering with MAP localization. Since MTT is more complex and cannot use

MAP localization, classification of K-means clustering will be the only focus of multiple

stationary and moving targets. With all experiments, parameters used to generate the results

are defined and recorded. Network calibration was completed prior to each experiment

recording, which is considered the baseline for the network without any targets present.

This baseline can include obstructions that would essentially be calibrated out as the

obstructions are not considered targets of interest in this research. For all tracking data, a

metronome was used synchronize movement and the rate at which the frames are recorded.

3.9 Data Analysis

All experiment data and processing analysis was accomplished using MATLABr.

Although, preliminary data can be viewed in near real-time through the GUI, data

processing for all experiments were completed post data collection. All analysis for single

and multiple targets were completed using the same process with one exception. Single

target K-means localization is able to be compared to MAP localization while multiple

targets are only tracked using K-means clustering.

3.9.1 Experimental Challenges.

There are some experimental challenges that need to be overcome when utilizing the

RTI motes. During data collection, the motes can give Not a Number (NaN) readings for

various RSS links in the y data. Steps must be accomplished to successfully solve for the

image scene of a frame.

Hardware Challenges. Upon investigation, it was found that the the number of links

to have a NaN in any particular frame were less than 7 percent of the total RSS vector.

However, there are frames that did not have any NaN readings, but when there were NaNs,
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in order to solve for the image scene, x̂Tik, the NaN data must be removed from the y vector.

Let the number of links in y be then number of nominal links minus the number of NaN

links, LNaN . The new number of links in y would be

L′ = L − LNaN , (3.9)

where the vector of RSS links would now be of length [L′ ×1]. In order to accomplish this,

the location of the NaN readings must be deleted from the corresponding location in the

vector y. To successfully solve for x̂Tik, the corresponding rows of the NaN locations would

need to be deleted from the weighting matrix, WLine. The new size of the weighting matrix

would be [L′ × P] rather than [L × P]. By deleting the respective row location in WLine

containing NaNs, the modified weight matrix can be represented as W′. Using Tikhonov

Regularization as the chosen image estimator outlined in Section 3.4, the image estimate

can mathematically be defined as

x̂Tik =
(

(

W′)T
W′ + αQ

)−1
W′y′, (3.10)

where

Π
′
Tik =

(

(

W′)T
W′ + αQ

)−1
W′, (3.11)

x̂Tik = Π
′
Tiky

′. (3.12)

Negative Pixel Density. Since the vector of y can contain negative RSS when

measuring the differences in RSS links, it is possible for x̂ to contain negative pixel density

values. In [42], Martin et al. describe a method to force an x̂ containing only positive

values. The other alternative is to assume negative x̂ values are the same as being close to a

value of 0 dB/ft. It is computationally cheap to set any negative x̂ entries to 0. Thus in this

research, all negative x̂ entries will be set to 0.

3.9.2 Performance Metrics.

Estimated positions can be drawn from the x̂ data from the RTI network using the

discussed localization methods. To evaluate the accuracy of the location estimate for all the
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targets, an accuracy metric can be used. The RMSE of the localized estimate is commonly

used in the literature [2]. The RMSE of one or more targets targets can mathematically be

computed as

ē =















1

T

1

N

T
∑

t=1

N
∑

n=1

(ẑt(n) − zt(n))2















1/2

, (3.13)

where T is the number or targets, N is the number of frames, ẑt(n) is the estimated position

for target t at frame n, and zt(n) is the true position of target t at frame n.

3.10 Chapter Summary

This chapter described the tools and equipment used for all experiments completed in

this research. The methodologies used to establish the network design and localization of

targets are established in this chapter. Simulated truth data, baseline data collection, and

the methods used to analyze data have established.
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IV. Results and Discussion

T
his chapter contains the results of stationary localization for single and multiple tar-

gets as well as motion tracking with both obstructed and unobstructed environments.

The use of K-means clustering is utilized to localize the targets. The classification of the

K-means clustering algorithm to geolocate multiple targets is discussed in this section. The

focus will be to characterize the use of K-means for single and multiple targets localization.

RF absorbing foam boxes are used as targets inside the designed RTI network for the ex-

perimental truth images. Stationary target localization experiments are with one, two, and

three targets. The results of motion tracking with one and two targets are presented with

and without obstructions. The results of this section will be discussed and classified using

the performance metrics discussed in Section 3.9.2.

4.1 Experimental Truth Images

A series of experimental truth images using foam boxes were used to obtain a

visual performance baseline of the designed RTI network described in Section 3.2. The

dimensions of the foam box was such that it would be tall enough to be in the LOS of the

sensor height with an overall dimension [L×W ×H] of approximately [2.15× 2.15× 3.45]

ft. The goal of the truth images is to gather a baseline performance of the RTI network

by clustering the pixels above the threshold Tc using K-means after solving for the image

scene x̂.

The foam boxes were moved to different parts of the network. Calibration was

completed prior to placing the foam box target inside the network. As outlined in Section,

3.3, calibration was completed for at least 30 frames. In Fig. 4.1 and Fig. 4.2, the lower

left corner of the box was placed at (3, 10) and (2, 2) respectively. All pixels with densities

above the threshold Tc = 3σn are plotted in Fig. 4.1c and Fig. 4.2c. Most of the pixel
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locations are contained inside the foam box perimeter resulting in the cluster centroids to

be contained inside the box perimeter after performing one iteration of K-means clustering.

The cluster variance for Fig. 4.1 and Fig. 4.2 was 13.6 and 6.3 f t2 respectively.

In Fig. 4.3, the bottom left corner of the box was placed at (8, 8). The pixels above the

threshold Tc = 3σn were further spread out than Fig. 4.1 and Fig. 4.2 resulting in a higher

variance of 24.8 f t2. However, K-means clustering found the centroid to be near the center

of mass of the foam box. As described in Section 2.5, the CRLB derived in [1] showed

that the CRLB is the lowest towards the middle of the network and higher near the corners.

With the experimental images taken in this research, the opposite conclusion was formed.

Images with targets near the corners of the network appeared to have denser clusters than

when targets were near the center of the network.
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(a) Image scene.
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(b) Histogram of the image.
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(c) K-means clustering.
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(d) Image scene after K-means clustering.

Figure 4.1: Truth image of foam box with the bottom left corner at (3, 10) ft with α = 250,

∆p = 0.5 ft, and Tc = 3σn
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(b) Histogram of the image.
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(c) K-means clustering.
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(d) Image scene after K-means clustering.

Figure 4.2: Truth image of foam box with the bottom left corner at (2, 2) ft with α = 250,

∆p = 0.5 ft, and Tc = 3σn
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(b) Histogram of the image.
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(c) K-means clustering.
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(d) Image scene after K-means clustering.

Figure 4.3: Truth image of foam box with the bottom left corner at (8, 8) ft with α = 250,

∆p = 0.5 ft, and Tc = 3σn
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4.2 Stationary Target Localization

Multiple localization experiments were done with one, two, and three human targets.

K-means localization is used to geolocate the position of the target(s) inside the network.

With one target, K-means clustering can be compared with MAP localization where the

pixel with the highest density is chosen to be estimated target position. In all experimental

localization, one frame based on one observation of y is used to localize the target(s) inside

the network. The purpose of this section is to characterize the results of K-means clustering.

The K-means clustering process used to localize the targets is outlined in this section. All

localization is completed with 2 iterations of K-means clustering.

The objective of this section is to determine in which cases one iteration of K-means

would be sufficient and in which cases 2 iterations would be beneficial. This section

examines how noise or outliers can affect the results of K-means clustering. This section

will examine the results of changing the parameters such as the pixel threshold and pixel

size.

4.2.1 Single Target Stationary Localization.

In Fig. 4.4, there is a human target at (5, 5) ft. After the pixel locations above the

threshold Tc = 3σn are kept, the first K-means iteration is performed. The error for the

frame was ē = 1.43 ft after the first iteration of K-means clustering. After the second

iteration of K-means clustering, ē = 0.38 ft. In this situation, there were isolated pixel

values over 10 ft from the target position that were above the pixel density threshold. This

caused the centroid center to be biased. Therefore, since the second K-means iterations

discarded the pixel locations outside the Rc = 3.25 ft radius, the isolated pixels did not

affect the new cluster centroid location. The final estimate for the target was closer to the

dense group of pixels around the true target location.

In Fig. 4.6, a comparison is made between MAP and K-means localization for a single

target at (9, 8) ft. This location was chosen for this comparison due to the pixel density
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of the image being spread out when a target is closer to the middle of the network. In

this particular scenario, the maximum pixel density is 3.54 ft away from the true position.

After the K-means clustering localization, the localization error for the frame is ē = 0.69

ft. In this case, K-means was more accurate because the highest pixel density value was

more than further away from the target position than the K-means cluster. The cluster of

pixels above the threshold congregated around the target causing the attenuation shown in

the image scene. As a result, the K-means clustering localization computed a centroid near

the target position.

4.2.2 Multiple Target Stationary Localization.

In Fig. 4.7, 2 targets are at (3, 11) and (12, 4) ft. The error for one frame after both

K-means iterations was ē = 0.78 ft. There was no change in cluster centroid positions

because all the clustered pixels were inside the Rc = 3.25 ft radius after the first K-means

clustering iteration. Therefore, there was no change to the RMSE after the second iteration.

In Fig. 4.11, with 3 targets at (2, 2), (5, 11), and (17, 14) ft, the the error was ē = 0.28.

Similar to Fig. 4.7, the RMSE did not change because the pixels above the threshold were

inside the Rc = 3.25 ft radius after this first iteration of K-means clustering. In Fig. 4.11 the

initial K-means iteration picked a centroid containing pixels segregated outside the radius

of the centroid near (17, 4). This caused the pixels near the (5, 11) target to be grouped

with the pixel cluster around the (2, 2) target causing the estimates for both targets to be

errant. Since the initial K-means cluster found centroids more than 3.25 ft away from the

true target positions for both of these targets, a second iteration would not introduce an

improved result. Recall that Section 2.7 describes a drawback to K-means clustering; this

process does not guarantee a global optimum. How the centroid is first calculated can have

a significant impact on the outcome.

In Fig. 4.13, an experiment was performed with the same target locations as Fig.

4.11. For this localization, parameters were changed such that ∆p = .25 ft, α = 150, and
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Tc = 2σn. The lower pixel width results in a increased amount of pixels. Additionally, a

lower threshold value, Tc = 2σn results in an increased amount of pixels above threshold.

As seen in Fig. 4.14, there are more pixel locations to cluster than seen in Fig. 4.12.

A denser cluster of pixels around the target position increases the opportunity to find a

centroid among the denser crowd of pixels which are congregated around the respective

targets. The smaller number of isolated pixels would have a insignificant affect on the

centroid calculation. The localization error after the first K-means iteration was ē = .52 ft.

After the second iteration, the error was ē = .472 ft.
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(b) Image scene.
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(c) Histogram of the image.
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(d) Pixel locations above threshold
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(e) Target localization after first iteration
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(f) Target localization after second iteration

Figure 4.4: Localization of 1 target at (5, 5) ft with α = 250 and ∆p = 0.5 ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 4.5: K-means Localization: target at (5, 5) ft. The RMSE after the first K-means

iteration was ē = 1.43 ft. After the second iteration, the RMSE was ē = 0.38 ft.
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(c) Maximum pixel intensity localization.
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(d) K-means localization.

Figure 4.6: Localization of 1 target at (9, 8) ft with α = 250, ∆p = 0.5 ft, and Tc = 3σn.

The RMSE for the maximum pixel intensity localization was ē = 3.54 ft. The RMSE for

the K-means clustering localization was ē = 0.69 ft.
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(b) Image scene.
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(c) Histogram of the image.
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(d) Pixel locations above threshold
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(e) Target localization after first iteration
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(f) Target localization after second iteration

Figure 4.7: Localization of 2 targets at (3, 11) and (12, 4) ft with α = 250 and ∆p = 0.5 ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 4.8: K-means Localization: 2 targets at (3, 11) and (12, 4) ft. The RMSE after the

first K-means iteration was ē = 0.78 ft. After the second iteration, the RMSE was ē = 0.78

ft. There was no change due to the same pixels being clustered.
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(b) Image scene.

0 0.05 0.1 0.15 0.2

20

40

60

80

100

Pixel Density

 

 
Histogram
Gaussian Curve
3σ

(c) Histogram of the image.
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(d) Pixel locations above threshold.
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(e) Target localization after first iteration.
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(f) Target localization after second iteration

Figure 4.9: Localization of 3 targets at (2, 2), (5, 11), and (17, 14) ft with α = 250 and

∆p = 0.5 ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 4.10: K-means Localization: targets at (2, 2), (5, 11), and (17, 14) ft. The RMSE

after the first K-means iteration was ē = 0.28 ft. After the second iteration, the RMSE was

ē = 0.28 ft.
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(a) Target position.
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(b) Image scene.
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(c) Histogram of the image.
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(d) Pixel locations above threshold.
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(e) Target localization after first iteration.
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(f) Target localization after second iteration

Figure 4.11: Localization of 3 targets at (2, 2), (5, 11), and (17, 14) ft with α = 250 and

∆p = 0.5 ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 4.12: 3 targets at (2, 2), (5, 11), and (17, 14) ft. The RMSE after the first K-means

iteration was ē = 5.17 ft. After the second iteration, the RMSE was ē = 4.75 ft.
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(b) Image scene.
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(c) Histogram of the image.
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(d) Pixel locations above threshold.
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(e) Target localization after first iteration.
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(f) Target localization after second iteration

Figure 4.13: Localization of 3 targets at (2, 2), (5, 11), and (17, 14) ft with α = 150,

Tc = 2σn, and ∆p = 0.25 ft.
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(a) First iteration of K-means clustering.
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(b) Second iteration of K-means clustering.

Figure 4.14: 3 targets at (2, 2), (5, 11), and (17, 14) ft. The RMSE after the first K-means

iteration was ē = .52 ft. After the second iteration, the RMSE was ē = .472 ft.
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4.3 Motion Tracking

A series of motion tracking experiments were performed in this research. Since 3

target localization can be inaccurate, all motion tracking experiments were done with 1

and 2 targets. The problem with 3 targets is that it is more susceptible to mistake outliers

as a target as shown in Section 4.2.2. Although localization with obstructions was not

the objective of this research, obstructions were used to portray real indoor scenarios.

With 1 target, K-means localization is able to be compared to the maximum pixel density

estimator. For all motion tracking, 2 iterations of K-means are performed, where the cluster

centroid(s) are considered the estimated target positions. For 2 targets, the goal was to

analyze if they target can be successfully localized if the targets are standing close together,

such as within the Rc = 3.25 ft radius.

4.3.1 Single Target Motion Tracking.

In Fig. 4.15, a foam wall was setup where each wall had a dimension of [L×W ×H] ≈

[6 × 2 × 6] ft. The walls were setup to simulate a hallway with a width of approximately 4

ft. The target walked through the simulated hallway at which the target’s position was

estimated at each position using the maximum pixel density and K-means clustering.

Although the objective of the calibration is to neutralize any obstructions inside the

network, obstructions made the image noisier. Due to the image being nosier, at some

frames, the maximum pixel density was further away from the true target position, but

the cluster of pixels above the threshold, Tc would be closer to the target position. This

resulted in a RMSE of ē = 2.68 ft for the maximum pixel density localization and K-means

localization had a RMSE of ē = 0.91 ft. Fig. 4.18 illustrates a square motion tracking

path for one target. Similarly, K-means localization had a lower RMSE than the maximum

pixel density localization due to frames that contained maximum pixel density which were

further away than the clusters of higher density pixels around the target position.
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4.3.2 Two Target Motion Tracking.

The results for motion target tracking with two targets using K-means localization are

presented in Fig. 4.20. To simulate an indoor environment with obstructions, two chairs

with an approximate aerial dimension of [2 × 2] ft were placed centered at (4, 11) and

(14, 5) ft. The main objective of this motion path was to analyze the performance of K-

means when the targets end up less than Rc = 3.25 ft away from one another. For this

motion tracking path, K-means localization had a RMSE ē = 0.59. When the targets were

within 2 ft from one another, the RMSE for that frame was less than 1 ft.
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(a) Motion path positions.
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(b) Localization estimate at each position.

Figure 4.15: Motion tracking localization of 1 target going through a simulated hallway

with walls inside the network MAP localization. The pixel with the highest density value

was used to geolocate the target at each frame with α = 250 and ∆p = 0.5 ft.
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(a) Motion path positions.
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(b) Localization estimate at each position.

Figure 4.16: Motion tracking localization of 1 target going through a simulated hallway

with walls inside the network. K-means localization was used to geolocate the target at

each frame with Tc = 3σn, α = 250, and ∆p = 0.5 ft.
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(a) X direction error at each frame.
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(b) Y direction error at each frame.
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(c) RMSE at each frame.

Figure 4.17: The RMS E for the target over the motion tracking path through the walls was

ē = 2.68 ft using the maximum pixel density estimate. The RMS E for the target over the

motion tracking path through the walls was ē = 0.91 ft using K-means localization.
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(a) Max pixel density localization.
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(b) K-means clustering localization.
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(c) True position of target at each frame.

Figure 4.18: A single target moves throughout the network in a square starting at (8, 8)

and ending at (5, 8) ft. Maximum pixel density and K-means clustering are both used to

localize the target position for comparison.
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(a) X direction error at each frame.
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(b) Y direction error at each frame.
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(c) RMSE at each frame.

Figure 4.19: The RMS E for the target over the motion tracking path from Fig. 4.18 using

maximum pixel density localization was ē = 1.54 ft. The RMS E for the target over the

motion tracking path from Fig. 4.18 using K-means clustering localization was ē = 0.77 ft.
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(a) Motion path positions.
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(b) Localization estimates at each position.

Figure 4.20: Motion tracking localization of 2 targets with obstructions. K-means

clustering was used to geolocate the targets at each frame with Tc = 3σn, α = 250, and

∆p = 0.5 ft.
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(a) Euclidean distance error - x direction at each frame.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame [n]

E
rr

or
 -

 Y
 [

ft
]

 

 
Target 1
Target 2

(b) Euclidean distance error - y direction at each frame.
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(c) RMSE at each frame.

Figure 4.21: The RMS E for the two targets over the motion tracking path with obstructions

was ē = .59 ft.
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4.4 Chapter Summary

This chapter reviewed the results of various stationary localization with one, two,

and three targets. With 1 target localization, K-means clustering was able to be

compared to maximum pixel density localization to show in which situation K-means

could be more robust in estimating the target location. Localization for two targets was

more consistent than localization with three targets. Motion tracking experiments were

performed in a variety of different simulated situations to analyze the performance of K-

means localization. The choice of pixel threshold and number of pixels above the threshold

play a key role in determining which pixels of interest will be clustered together to localize

the targets inside the network.
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V. Conclusion and Future Work

T
his chapter summarizes the methodology, results, and conclusions made from this

thesis as well as provides a recommendation for future work. With the growing

research interest of RTI, single target localization has been the primary focus. This research

was motivated to explore multiple target localization for situations where localizing more

than one target would be beneficial. Additionally, this research had the desire to look at a

robust means of clustering together pixels of higher densities as opposed to only using the

pixel with the highest density.

This thesis explored a new means to localize multiple targets using a pixel threshold to

localize pixels above a certain pixel density. The methods in which the image frames were

estimated were presented in Chapter 2. The use of the weighting model, regularization,

and image estimate have been explored and commonly used in RTI research. Practical

applications with movement, obstructions, through the wall, and outdoor environments

have been explored by the research community. The challenge has been estimating the

position of more than one target [2].

K-means clustering is a known algorithm used in other data mining applications

such as among machine learning applications, pattern recognition, hyper-spectral imagery,

artificial intelligence, crowd analysis, and MTT [11], [12], [13]. However, the method in

how it is applied is new to the RTI research community. The objective of the pixel density

threshold is to be robust enough, that as the statistics of each frame change with the number

of targets and where the targets are in the network, the threshold would segregate pixels of

higher densities. These pixels would relate to where the targets are inside the network.

Additionally, with a radius to ignore pixels outside a set distance from the initial centroids,

possible errant pixel densities could be ignored. Since the computational cost of K-means
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is relatively low as discussed in Chapter 2, two iterations of K-means could potentially

produce more accurate localization estimates than one.

In a series of stationary localization experiments, this research was able to analyze the

performance of K-means for one, two, and three targets in an indoor network. For one target

localization, if the maximum pixel density was further away from the target position than

the cluster of pixels above the threshold were, K-means localization was more accurate.

K-means performed equally as accurate as single target localization. However, if there

were no pixels outside the cluster radius, a second iteration of K-means did not produce

any change in results as the centroid locations would understandably stay the same. Three

target localization was found to be inaccurate. Changing the pixel width, ∆p to be lower,

which increased the number of pixels in the network and lowering the pixel threshold, Tc

provided a larger amount of pixels to be clustered, which increased the performance of

K-means. A higher amount of pixels were found to aid K-means clustering in finding a

solution that minimized the inter cluster variance.

For motion tracking images, the image scene estimates were found to be noisier. Thus,

for both single target tracking situations K-means performed more accurately than using the

highest pixel density to localize the target. For two targets, K-means was able to localize

two targets that moved towards one another. When the targets were approximately 2 ft from

each other, the RMSE at that frame was less than 1 ft. Due to three target localization not

being as accurate and having a network limited in size, three target localization for motion

tracking was not performed.

This research showed that K-means can be applied to one or more targets in a RTI

network. Further work is recommended to improve the process and make it more robust

for multiple targets. The future work section has recommendations on future research areas

that can expand on this research and other similar research areas of RTI.
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5.1 Future Work

Automatic Target Recognition. For K-means to be successful, the number of targets

needs to be known. In this research, it is assumed the number of targets are known prior

to estimating the locations of the targets. Implementing a method to estimate the number

of targets can be beneficial in applications where the number of targets may not be known

[11], [12].

K-Medoids Clustering. K-means does not guarantee to return a global optimum. The

final solution is sensitive to the initial set of clusters [13]. Although computationally more

expensive, using K-medoids could potentially be a viable solution for MTT with RTI. K-

medoids could potentially be more robust due to minimizing the sum of general pairwise

dissimilarities, which could minimize the negative effects of noise and outliers [57]. The

trade off between performance and computational complexity could be examined.

Adaptive Filter Tracking. This research did not use any adaptive filters to track

moving targets. The use of adaptive filters such as the Kalman filter or Gaussian particle

filter could minimize the RMSE. The use of adaptive filers would minimize the effects of

observation noise or other variables that could lead to inaccurate position estimates [10],

[11], [12], [58].
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