
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-16-2016

A Multi-Objective Approach to Tactical
Maneuvering Within Real Time Strategy Games
Christopher D. Ball

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Ball, Christopher D., "A Multi-Objective Approach to Tactical Maneuvering Within Real Time Strategy Games" (2016). Theses and
Dissertations. 457.
https://scholar.afit.edu/etd/457

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/457?utm_source=scholar.afit.edu%2Fetd%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A MULTI-OBJECTIVE APPROACH TO
TACTICAL MANUVERING WITHIN

REAL TIME STRATEGY GAMES

THESIS

Christopher D. Ball, Capt, USAF

AFIT-ENG-MS-16-J-004

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-J-004

A MULTI-OBJECTIVE APPROACH TO

TACTICAL MANEUVERING WITHIN

REAL TIME STRATEGY GAMES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Christopher D. Ball, B.S.C.E.

Capt, USAF

June 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-J-004

A MULTI-OBJECTIVE APPROACH TO

TACTICAL MANEUVERING WITHIN

REAL TIME STRATEGY GAMES

THESIS

Christopher D. Ball, B.S.C.E.
Capt, USAF

Committee Membership:

Dr. G. Lamont
Chair

Dr. B. Borghetti
Member

Maj B. Woolley, PhD
Member

AFIT-ENG-MS-16-J-004

Abstract

The real time strategy (RTS) environment is a strong platform for simulating

complex tactical problems. The overall research goal is to develop artificial intelligence

(AI) RTS planning agents for military critical decision making education. These

agents should have the ability to perform at an expert level as well as to assess a

players critical decision-making ability or skill-level. The nature of the time sensitivity

within the RTS environment creates very complex situations. Each situation must

be analyzed and orders must be given to each tactical unit before the scenario on

the battlefield changes and makes the decisions no longer relevant. This particular

research effort of RTS AI development focuses on constructing a unique approach

for tactical unit positioning within an RTS environment. By utilizing multiobjective

evolutionary algorithms (MOEAs) for finding an “optimal” positioning solution, an

AI agent can quickly determine an effective unit positioning solution with a fast, rapid

response.

The development of such an RTS AI agent goes through three distinctive phases.

The first of which is mathematically describing the problem space of the tactical

positioning of units within a combat scenario. Such a definition allows for the de-

velopment of a generic MOEA search algorithm that is applicable to nearly every

scenario. The next major phase requires the development and integration of this

algorithm into the Air Force Institute of Technology RTS AI agent. Finally, the last

phase involves experimenting with the positioning agent in order to determine the

effectiveness and efficiency when placed against various other tactical options. Ex-

perimental results validate that controlling the position of the units within a tactical

situation is an effective alternative for an RTS AI agent to win a battle.

iv

Acknowledgements

I would like to thank Dr. Gary Lamont for guiding me his vast experience in

the field of Artificial Intelligence, being of great assistance in this research effort.

Gratitude also extends towards Jason Blackford and Donald Gruber for their prior

efforts and inspiration for my project.

Christopher D. Ball

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Military Tactical Decision Making . 1
1.2 Real Time Strategy Games . 2
1.3 Research Goal . 2
1.4 Research Objectives . 2
1.5 Research Approach . 3
1.6 Thesis Organization . 4

II. Background . 6

2.1 Decision Making . 6
OODA Loop . 7
Thin Slicing . 8
Current State Analysis . 9

2.2 Real Time Strategy (RTS) Games . 9
Dune II . 10
WarCraft and StarCraft . 11
Total Annihilation . 12
Company of Heroes . 13
Spring RTS Engine . 14
Tactical Airpower Visualizaton . 15

2.3 RTS Development Platforms . 15
Wargus . 16
SparCraft . 16

2.4 Strategic Decision Making . 17
Strategy in RTS Games . 18

2.5 Tactical Decision Making . 19
Tactics in RTS Games . 20
Maneuvering Tactics in Combat Scenarios . 21

2.6 Developing a RTS AI Agent . 22
RTS Agent Subfunction Breakdown . 24

2.7 Previous AFIT Agent Developments . 24
Adaptive Response - Weissgerber’s Agent . 24

vi

Page

Strategy Optimization - Di Trapani’s Agent . 25
Build Order Optimization - Blackford’s Agent . 25
Tactics Optimization - Gruber’s Agent . 25
Unit Management - AFIT RTS AI Agent Continuing

Work . 26
2.8 Current Research in RTS AI Tactics Optimization 27

David Churchill’s Research . 27
Formation Management . 28
Boids . 29
RTS AI Genetic Algorithm Implementations . 30

2.9 Multi-Objective Evolutionaly Algorithms . 30
MOEA Software Packages . 31
Description of MOEA Algorithms . 32

2.10 Using MOEAs in RTS AI Tactics . 35
2.11 Chapter Summary . 35

III. Methodology of the Positional MOEA . 36

3.1 Phase 1 - Defining the Problem Space . 36
Tactical Movement in RTS Games . 36
High Level Design . 37
Low Level Design. 43

3.2 Phase II - Integration into AFIT Agent . 48
AFIT RTS AI Agent . 49
Controlling Units in the Spring Engine . 52

3.3 Phase III - Real-time execution in Spring RTS . 53
Functionality Testing in the Spring Engine . 53
Adjustments for a Real Time Environment . 56

3.4 Chapter Summary . 57

IV. Design of Experiments . 58

4.1 Introduction . 58
4.2 Experiment Test Equipment . 58
4.3 First Experiment: Finding the best MOEA . 59

First Experimental Objective . 59
Test Establishment . 59
Sequence for Testing . 59
Metrics for Analysis . 60
Structure of Results . 61
Experimental Hypothesis . 61

4.4 Second Experiment: Determining Effectiveness of the
Positioning Algorithm in the Spring Engine . 62
Second Experimental Objective . 62

vii

Page

Test Establishment . 62
Tactical Algorithms in the Second Experiment . 63
Structure of Results for the Second Experiment . 64
Experimental Hypothesis . 64

4.5 Summary of Experiments . 65

V. Analysis of Results . 66

5.1 Introduction . 66
5.2 Results of MOEA Analysis Experiment . 66

Quality of Pareto Fronts . 66
Analyzing the Hypervolume Metric . 69
Analyzing the Spacing Metric . 71
Analyzing Non-Dominance Count . 74
Analyzing the Execution Time . 74
Analyzing Survival Rate . 78
Decision and Observations . 78

5.3 Results of Positioning Problem Effectiveness Experiment 79
Observed Weaknesses of Targeting MOEA . 81
Observed Behaviors of Positioning MOEA . 81
Why the Positional MOEA/Hybrid MOEA Works 83

5.4 Summary . 83

VI. Conclusion . 85

6.1 Overall Conclusion of the Tactical Positional Algorithm 85
6.2 Future Work . 86

Scouting . 86
Strategic Diversity . 86
Potential New Platform . 87

6.3 Final Remarks . 87

Appendix A. Results of Experiment 2: MOEA Effectiveness 88

Bibliography . 119

viii

List of Figures

Figure Page

1 Boyd’s OODA Loop [1] . 7

2 A screenshot of Dune II [2] . 11

3 A screenshot of Total Annihilation [3] . 13

4 SparCraft simulation of two squads of Protoss Dragoons
fighting against one another [4] . 16

5 RTS Strategic Planning Tree [5] . 19

6 RTS Tactical Planning Tree for Targeting [6] . 20

7 RTS Agent Pyramid [5] . 23

8 StarCraft Build Order Search System visual example [7] 28

9 A visual representation of the three Boids concepts.
From left to right: Alignment, Cohesion and Separation
[8] . 29

10 Demonstration of a flock of boids navigating around an
obstacle [8] . 29

11 Example Pareto Front with Different Population Sizes
(5, 10, 20, 50) . 30

12 Example of a Leader Unit . 37

13 Demonstration of Objective 1: Distance From Enemy 40

14 Heat Map of a Single Unit in Relation to Enemies.
Each “X” has a size equal to the value of the objective.
The white “trench” seen on the right side shows
possible good areas of movement. 41

15 Demonstration of Objective 2: Distance Between Allies 42

16 Visual demonstration of OBJ1 and OBJ2 placed together 43

17 An example of solving a problem through PyGMO 46

18 An example of islands and archipelagos in PyGMO 47

ix

Figure Page

19 Example of Results from Sandbox Implementation 48

20 An overview of the AFIT agent’s various components as
developed by DiTrapani [9] . 50

21 An overview of the connections between the AFIT
agent’s various components [9] . 51

22 Issuing commands to units . 53

23 The testing map “The Pass” . 54

24 NSGA-II Sample Pareto Front . 67

25 SPEA2 Sample Pareto Front . 68

26 NSPSO Sample Pareto Front . 68

27 Above: Total look at hypervolume results; Below:
Focused perspective of hypervolume results . 70

28 Above: Total look at spacing results; Below: Focused
perspective of spacing results . 72

29 Above: Total look at ONVG results; Below: ONVG
with data points overlayed . 73

30 Above: Total look at execution time results; Below:
Focused perspective of execution time results . 75

31 Comparison of the survival rate of the three MOEAs in
Experiment 1 . 77

32 An example of the flow of a battle. Above left: Units
first meeting at the start of battle. Above right:
Positional MOEA is giving new movements to units
that need to spread out. Below left: Since fewer new
positions are needed here, all units are attacking. Below
Right: Positional MOEA is victorious, as the remaining
enemies are about to be destroyed . 84

x

List of Tables

Table Page

1 Overview of hardware and software used in the
experiment . 59

2 Statistical comparison of the Hypervolume results 69

3 Statistical comparison of the spacing results . 71

4 Statistical comparison of the ONVG results . 74

5 Statistical comparison of the execution time results 74

6 Overview of the MOEA survival rates at the end of battle 77

7 A ranking of MOEAs according to metric results . 78

8 Win/Loss Results of Experiment 2 . 80

9 Win Percentages for overall performance as well as
against the Default, Weak and Proximity strategies.
Bold text is the highest against that particular strategy 80

10 Match up percentages vs Targeting, Positional and
Hybrid MOEAs. Bold text is the best percentage
against that method . 80

11 Win/Loss Results of Experiment 2 . 88

12 Default (top) vs Weak (bot) Raw Results . 89

13 Summary of Default (top) vs Weak (bot) . 89

14 Weak (Top) vs Default (Bot) raw results . 90

15 Weak (Top) vs Default (Bot) results summary . 90

16 Default (Top) vs Proximity (Bot) raw results . 91

17 Default (Top) vs Proximity (Bot) results summary 91

18 Proximity(Top) vs Default (Bot) raw results . 92

19 Default (Bot) vs Proximity (Top) results summary 92

20 Default (Top) vs Targeting MOEA (Bot) raw results 93

xi

Table Page

21 Default (Top) vs Targeting MOEA (Bot) results
summary . 93

22 Target MOEA (Top) vs Default (Bot) raw results 94

23 Targeting MOEA (Top) vs Default (Bot) results
summary . 94

24 Default (Top) vs Positional MOEA (Bot) raw results 95

25 Default (Top) vs Positional MOEA (Bot) results
summary . 95

26 Positional MOEA (Top) vs Default (Bot) raw results 96

27 Positional MOEA (Top) vs Default (Bot) results
summary . 96

28 Default (Top) vs Hybrid MOEA (Bot) raw results 97

29 Positional MOEA (Top) vs Default (Bot) results
summary . 97

30 Hybrid (Top) vs Default (Bot) raw results . 98

31 Positional MOEA (Top) vs Default (Bot) results
summary . 98

32 Weak (Top) vs Proximity (Bot) raw results . 99

33 Weak (Top) vs Proximity (Bot) results summary . 99

34 Proximity (Top) vs Weak (Bot) raw results . 100

35 Proximity (Top) vs Weak (Bot) results summary 100

36 Weak (Top) vs Target MOEA (Bot) raw results . 101

37 Weak (Top) vs Target MOEA (Bot) results summary 101

38 Target MOEA (Top) vs Weak (Bot) raw results . 102

39 Target MOEA (Top) vs Weak (Bot) results summary 102

40 Weak (Top) vs Positional MOEA (Bot) raw results 103

xii

Table Page

41 Weak (Top) vs Positional MOEA (Bot) results summary 103

42 Positional MOEA (Top) vs Weak (Bot) raw results 104

43 Positional MOEA (Top) vs Weak (Bot) results summary 104

44 Weak (Top) vs Hybrid MOEA (Bot) raw results 105

45 Weak (Top) vs Hybrid MOEA (Bot) results summary 105

46 Hybrid MOEA (Top) vs Weak (Bot) raw results 106

47 Hybrid MOEA (Top) vs Weak (Bot) results summary 106

48 Proximity (Top) vs Targeting MOEA (Bot) raw results 107

49 Proximity (Top) vs Targeting MOEA (Bot) results
summary . 107

50 Targeting MOEA (Top) vs Proximity (Bot) raw results 108

51 Targeting MOEA (Top) vs Proximity (Bot) results
summary . 108

52 Proximity (Top) vs Positional MOEA (Bot) raw results 109

53 Proximity (Top) vs Positional MOEA (Bot) results
summary . 109

54 Proximity MOEA (Top) vs Proximity (Bot) raw results 110

55 Positional MOEA (Top) vs Proximity (Bot) results
summary . 110

56 Proximity (Top) vs Hybrid MOEA (Bot) raw results 111

57 Proximity (Top) vs Hybrid MOEA (Bot) results
summary . 111

58 Hybrid MOEA (Top) vs Proximity (Bot) raw results 112

59 Hybrid MOEA (Top) vs Proximity (Bot) results
summary . 112

60 Targeting MOEA (Top) vs Positioning MOEA (Bot)
raw results . 113

xiii

Table Page

61 Targeting MOEA (Top) vs Positional MOEA (Bot)
results summary . 113

62 Positioning MOEA (Top) vs Targeting MOEA (Bot)
raw results . 114

63 Positional MOEA (Top) vs Targeting MOEA (Bot)
results summary . 114

64 Targeting MOEA (Top) vs Hybrid MOEA (Bot) raw
results . 115

65 Targeting MOEA (Top) vs Hybrid MOEA (Bot) results
summary . 115

66 Hybrid MOEA (Top) vs Targeting MOEA (Bot) raw
results . 116

67 Hybrid MOEA (Top) vs Targeting MOEA (Bot) results
summary . 116

68 Positioning MOEA (Top) vs Hybrid MOEA (Bot) raw
results . 117

69 Positional MOEA (Top) vs Hybrid MOEA (Bot) results
summary . 117

70 Hybrid MOEA (Top) vs Positional MOEA (Bot) raw
results . 118

71 Hybrid MOEA (Top) vs Positional MOEA (Bot) results
summary . 118

xiv

A MULTI-OBJECTIVE APPROACH TO

TACTICAL MANEUVERING WITHIN

REAL TIME STRATEGY GAMES

I. Introduction

This thesis documents efforts to improve the AFIT Real Time Strategy (RTS)

Artificial Intelligence (AI) agent with a tactical positioning algorithm. In particular,

this project utilizes Multi-Objective Evolutionary Algorithms (MOEAs) to determine

an effective spacing position without relying on an exhaustive search method of the

solution space [10]. RTS games provide a versatile platform for testing new AI tech-

niques in a tactical environment as there is an infinite number of real-time scenarios

that can be created for simulation [11].

1.1 Military Tactical Decision Making

When in a battle, effective maneuvering for each asset in the fight is critical.

Each person, vehicle, weapon or tool needs to be used in the best possible manner to

achieve the most desirable outcome: victory. On the job training isn’t the best option

for new leaders, even realistic training takes resources that may not be available at

all times because of maintenance issues, lack of availability or risk of damage to the

resource. Because of this, virtual training can be immensely useful with the ability

for repetition of scenarios as often as needed. The AFIT RTS AI agent, that this

research improves, seeks to assist with that training by providing a more realistic

performing opponent to practice against.

1

1.2 Real Time Strategy Games

Real Time strategy games are an excellent domain to explore various AI techniques

for both tactical and strategic decision making. Being a popular video game genre,

it frequently employs many war time scenarios, both real world and fictional [11].

Such a training environment allows for an exploration of effective strategic plans and

tactical maneuvers. The AFIT RTS AI agent, in particular, provides an opponent to

practice these strategic and tactical techniques against that adapts to the trainee’s

skill level.

Tactical execution of units within a battle involves the usage of formations and the

movement of such throughout the course of a battle is an important facet of winning

an engagement. This particular project provides an expansion of the AFIT RTS AI

agent that adapts to the user’s skill and strategy by implementing a new tactical

technique involving formation management.

1.3 Research Goal

The goal of this project is to develop and test an extension to Gruber’s tactical AI

portion of the AFIT RTS AI agent for the Balanced Annihilation mod for the Spring

RTS Engine [6]. This extension, building on previous work by other AFIT students,

performs formation based management of the units in a real-time environment to pre-

serve the units on the field and lead the opposition into a disadvantageous situation.

The goal of this research is to take the invested resources of units and maximize their

value by controlling their positioning.

1.4 Research Objectives

Based on the goal, the research is designed to achieve the following objectives:

2

1. Design a mathematical problem representation and algorithmic solution to ex-

ecute the tactical position process in an RTS environment. This allows various

scenarios to be evaluated and potential algorithmic solutions to be weighed

against one another.

2. Evaluate the offline performance of various MOEA algorithms within the po-

sitioning problem domain. A properly employed algorithm shall provide an

effective answer based on the mathematical representation within the quickest

time possible, allowing for an effective dynamic solution.

3. Evaluate the online performance of the full tactical positioning algorithm against

other scripted agents found within the AFIT AI RTS agent. This demonstrates

the effectiveness of the positioning algorithm by how many units are alive at

the end of battle.

1.5 Research Approach

This research is building upon the previous work of Blackford [5] and Gruber

[6], which showed that MOEA techniques can be adapted to both strategic (build

order) and tactical (targeting) decision making. The implementation of their MOEA

techniques improved the performance of the AFIT RTS AI agent in relation to other

strategies and tactics, and demonstrated that they were viable options. In particular,

Gruber’s tactical agent optimized the targeting choices of the units under the agent’s

control. This research expands on the tactical realm, demonstrating techniques that

can be used for unit control to optimize their positions in relation to the enemy’s

formation. This provides alternate tactical capabilities that can be chosen to best

combat the enemy.

3

This research effort begins by defining the positioning problem, understanding

the search space and building effective evaluation techniques. In this process, an

offline simulation is developed to ensure that the algorithm is functioning properly.

An offline simulation is useful as it can debug the algorithm design for various static

scenarios without the stress of an evolving, complex real-time situation.

Once the positioning problem is defined and an algorithm is designed, it can be in-

tegrated into the AFIT RTS AI agent. An algorithm test is then performed to provide

the desired functionality and adjustment for a real-time environment. This includes

any and all adjustments required for transitioning from a static, offline simulation to

a real-time, online simulation.

After being fully integrated into the AFIT RTS AI agent, the algorithm can then

be tested with various MOEA alternatives. Simulations are ran with a wide variety

of MOEA techniques to find the most effective for a given situation.

Once an MOEA is selected, the agent is then pitted against various other scripted

agents as well as Gruber’s previously developed targeting agent [6]. This testing is

designed to determine the effectiveness of the positioning algorithm when placed into

a real-time combat situation.

1.6 Thesis Organization

The remainder of this thesis is a discussion of the research, from the development

through testing and analysis. Chapter II provides a background into Real Time

Strategy games and developing agents within that environment as well as an overview

of RTS Tactics and Multi Objective optimization. Chapter III covers the development

of a positioning algorithm, the decisions that are made during the design process and

the observed challenges found with integrating into the RTS environment. Chapter

IV contains the design of experiments, giving an explicit description on how the

4

experiments are performed. Chapter V provides an analysis of the results of the

experiments. Chapter VI contains the overall conclusion of the project as well as

observation for future improvements in this realm as well as other areas within the

AFIT RTS AI agent.

5

II. Background

This chapter provides a base level of information about some of the major themes

for this thesis research, such as decision making techniques, RTS games and plat-

forms, and an overview of strategic options like build orders and tactical techniques.

The chapter also provides an overview of previous AFIT research projects that in-

vestigate new improvements with RTS AI agents, as well as a discussion of current

RTS AI research being conducted elsewhere. Finally, this chapter concludes with an

explanation of this research and how it provides a progression of RTS AI tactical

decision making techniques.

2.1 Decision Making

When creating a decision making agent, like the one used as the AFIT agent, it is

important to understand the decision making process. While there are many methods

to use that help make decisions, they all share the same facet of analyzing observed

input data. An input is composed of relevant observed data, where the quantity

of the data is just as important as a quality. Enough data should be gathered to

make an informed decision without gathering so much data that the whole process is

overwhelmed. Additionally, the data being gathered should be relevant to the decision

being made as there is no value in gathering information about muzzle velocities of a

weapon when purchasing a family sedan. This technique of finding the right amount of

information required is called “thin slicing” [12]. Armed with the input information,

it needs to be placed into a decision process. One method of decision making is called

the OODA Loop, which is named after its four distinct phases: Observe, Orient,

Decide, and Act [1].

6

Figure 1. Boyd’s OODA Loop [1]

OODA Loop.

The OODA loop is a simple decision making model that follows the steps of

Observe, Orient, Decide, and Act. This process is intended to be highly universal in

design and able to be applied to a wide range of situations. Figure 1 demonstrates

this process.

• Observe: The observe phase of the OODA loop is the gathering of information

about the current situation. In an RTS agent, this is the collection of the current

state of the agent’s units and the enemy’s units such as positions, numbers and

other related information. There is no processing done at this point.

• Orient: Orienting is analyzing the information gathered in the previous phase.

An agent would begin the analysis of the gathered data. Strategic info would

result in determining of the enemy’s strategy. Tactically, the agent would ana-

lyze items such as attack power, hit points, and positions. The results of this

phase are used in the next phase.

• Decide: The decision phase is making a decision based on the orientation of

the observed data. An AI agent would be making decisions such as a strategic

7

build order to follow or tactical targets to fire at. Each member of a solution

population represents a unique decision.

• Act: Acting is executing the decision made in the previous phase. In MOEAs,

this means executing the proper balance of the various objectives found in the

previous phases.

Incompleteness of OODA Loop Execution.

Sometimes the OODA loop can be forced into a premature restarting of the

process[1]. This is because either the findings in the previous phases change the

analysis of the situation or the situation has changed so rapidly that a reanalysis is

required. For the former, where it is best to just choose an decision and proceed

onward as the loop is likely unending. For the later, decisions need to either be made

faster in order to keep up with the ever-changing scenario or the overall strategy for

the scenario needs to be change to accommodate the situation.

Thin Slicing.

Thin slicing is a concept introduced in Gladwell’s book, Blink [12]. Wherein,

Gladwell describes the concept of people making snap decisions based off of small

amounts of information. The idea is that the decisions made this way can be just

as accurate as going into an in-depth analysis of all the data available. With more

experience, a person tends to make more accurate decisions with thin slicing as that

person can understand the problem space more intuitively than someone new to it.

When applied to an AI agent, a proper learning algorithm can replicate a player’s

experience to make thin-slicing decisions much more effectively while providing an

adequate solution for the problem. If implemented properly, this can cut down greatly

on the agent’s analysis time.

8

Current State Analysis.

A popular method of finding a solution to a problem is to look at every possi-

ble option at every decision point. While this decision process eventually yields an

optimal solution, complex scenarios can take a large amount of time to find such a

solution. This is undesirable because an real time problem space never stays still long

enough to find a solution. When it performs a dynamic shift, the optimal solution

also shifts along with it and would require restarting the calculation of options and

repeating the whole process all over again, possibly getting the search stuck in a loop

where it is required to restart before it ever finds an acceptable solution. In the RTS

environment, this would mean that the opposition would have free reign over doing

anything they want while the agent accomplishes no productive actions.

Instead of performing a thorough search to find an acceptable solution, a version

of thin slicing should be implemented in order to reduce potential search time. This

removes the concept of finding the perfect solution from the search all together, as the

perfect solution is an unnecessary component of the search. In an RTS environment,

one only needs to be better than the opponent. This does not require playing perfectly,

as being better than your opponent is typically good enough to win the game.

When working within the AFIT agent, this means taking a snapshot of the scenario

when the agent is called and making a decision based on the information provided

right at that moment. The time for the calculation must be minimized in order to

avoid the orders being outdated before they are even issued. Ultimately, an agent

should be proactive in making efforts towards a victory condition.

2.2 Real Time Strategy (RTS) Games

Real Time Strategy, or RTS, are a genre of video games that focus on wargame

simulation [11]. This often consists of the joint optimization of various goals, leading

9

the player to gather the resources to build an army and lead that army to victory

against the opposition. This level of balance between the optimizations can provide a

large diversity in strategies, such as a quickly built strike force to surprise the enemy

or a more durable start to overwhelm the enemy with a late-game superiority.

An RTS game typically starts with two or more players on different locations on

a map. From there, they must build their base of operations to acquire new units.

In order to facilitate the building of new units, the players can scout nearby their

position through terrain hidden by the fog-of-war [13] to find resources that can be

gathered and spent to construct more advanced buildings in their base and thus build

more powerful units. At the same time, the players should utilize tactical options such

as scouting the map for the enemy’s location through fog of war. Once the enemy’s

position has been identified, the player can then proceed to win the game, typically

through the destruction of the opponent’s base.

Prior to victory, some strategic elements must be performed. Generally, a player

must take steps to identify the strategy their opponent is attempting to execute.

Adapting their build order to counter an enemy’s strategy is needed to provide key

supplies to defeat the enemy.

Each RTS game has their own unique traits, Some have different resource man-

agement techniques, while others focus on novel unit ideas. A brief history of the RTS

genre is presented to highlight important advancements and how the games evolved

to capture a more effective simulation feel[11].

Dune II.

Dune II: The Building of a Dynasty, released in 1992, stands as a marker of the

first “Traditional RTS” that combined the concepts of its predecessors into a solid

package. Themed after Frank Herbert’s Dune science fiction novel series, it was the

10

Figure 2. A screenshot of Dune II [2]

first game that provided the resource gathering concept for building new units as

well as the base construction philosophy. Dune II also provides the concept of the

technology tree, a series of dependencies the player is required to satisfy to access

more powerful units and buildings, with a trade-off of requiring more investment to

reach those items.

Additionally, Dune II also has one of the first AI agents utilized in a real time

strategy environment. While there existed flaws in AI execution, it can be recognized

as a starting point for future RTS AI agents [2].

WarCraft and StarCraft.

WarCraft and StarCraft, two historic gems of the RTS genre by Blizzard Enter-

tainment, are strong areas of research for those seeking to learn more about RTS.

WarCraft was the first in the series, released in 1994, and provided a high-fantasy

conflict between Humans and Orcs. Sequels included additional forces to play as,

but the core of the game held true to the RTS tenants. The most unique resource

introduced by the game is the supply concept, where a player has to build an infras-

tructure to support their armies. In WarCraft that is represented by farms, and the

11

player can not build units beyond what their farms can support, adding a ceiling to

the army size [14].

StarCraft originally was intended to be “WarCraft in space”, but evolved into a

life of its own with the high amount of popularity it received [15]. StarCraft balances

three factions against one another: the Terrans, which are humanity in space, the

Protoss, which are an ancient, powerful alien race that’s fewer in numbers, and the

Zerg, which are a biological swarm led by a hivemind. While retaining the resource

and supply concepts from WarCraft, StarCraft separated itself with the uniqueness of

the armies and their functions. Terrans follow most traditional human war concepts,

but had many base structures that could be moved after construction. The Protoss

are constrained in having to build their buildings within a certain radius of their Py-

lons, their supply buildings but also had much more durable units. The Zerg being

biological in nature, had units that would sacrifice themselves to construct new build-

ings, as well as each building providing a biological foundation on the ground nearby

to construct additional buildings. All units are also constructed from hatcheries, with

larve allowed to be developed into any unit unlocked in the technology tree. Star-

Craft is still a pillar of RTS even today, with its sequel StarCraft II, frequently seen

at professional level video game tournaments [16].

Total Annihilation.

Total Annihilation provides a large-scale variation of the RTS concept. What

makes it unique is that instead of gathering resources with workers, (Spice in Dune

II [2], Crystals and Gas in StarCraft[15]) a captured resource location provides a

steady stream of that particular resource into the player’s stockpile. Construction of

units require a certain number of resources that are taken at a steady rate from the

resource storage, which counterbalances the steady income of resources. With the

12

Figure 3. A screenshot of Total Annihilation [3]

vast number of units being built, players build large scale armies rather quickly and

pit them against each other in a large, strategic fashion in order to capture resources

and eventually defeat their opponent [3].

Company of Heroes.

Company of Heroes is a game that handles unit and resource management in a

unique way. This World War II themed RTS divides the map into regions that can

be controlled. Controlling a region provides resources and a common win objective

by gaining victory points from controlled regions. Unit management within the game

of Company of Heroes emphasizes squads. Individual infantry units are not built.

Instead, they are handled as squads. What this emphasizes is the control of groups

of units as opposed to the individuals. The reason why Company of Heroes is an

interesting game is that it provides new possibilities for AI agents such as units being

managed as squads as well as contesting key locations on the map as opposed to a

simple seek and destroy concept [17].

13

Spring RTS Engine.

The Spring RTS Engine provides a strong open source RTS environment for re-

search. There are many options that Spring can provide, the most useful of which

are visualization, unit customization and the open-source interface [18].

The visualization component allows for a 3-dimensional representation of the simu-

lation as it is happening. Paired with the customization, many historical or real-world

scenarios can be created from the units involved to the terrain featured. By represent-

ing this visually, animations can be created that demonstrate the battle as it happens,

as opposed to numeric representations. This allows for easier visual feedback of the

scenario as it is happening for both the user and the AI agent developer.

Unit customization is a very powerful component provided by the Spring engine.

This allows for an open customization of the units that are utilized in a particular

game within the Spring engine, providing a wide amount of flexibility and allowing

for representation of real-world units within the environment.

Spring is an open source engine. This allows for application of modifications

and AI agents with relative ease compared to other RTS environments. The open

source concept allows for a direct communication between AI agents and the Spring

environment.

Balanced Annihilation is a modification to the Spring engine that replicates the

game play of Total Annihilation style games [19]. This particular mod is used within

the Spring engine for this research effort as it is a fully designed game with an AI

option. Other games within the Spring Engine community tend to avoid AI imple-

mentation in favor of focusing on Player vs Player combat[?].

14

Tactical Airpower Visualizaton.

Tactical Airpower Visualization (TAV) is one of the recent iterations of the Air

Force’s approach to model an air campaign through an RTS environment [20]. Used in

many officer training courses available at Maxwell Air Force Base, the game provides

a top-level perspective to the coordination of an air campaign. Each training course

provides a different scenario that simulates a conflict somewhere on the globe with a

vast majority of potential situations that may occur in a real-world situation.

TAV is unique because it is a team-based affair. Each player on a team controls

a different group of units with a different goal in mind. For example, one player

could control Air-to-Air Superiority while the another player may be focused on Air-

to-Ground operations and a third could be supplies and transportation. All these

players are lead by a central command, one or two players who do not have direct

control over any units but will provide direction to their forces as a whole. Teams are

scored with a point total based off of their performance in the scenario.

A problem with this system is that the scenarios are heavily scripted. Enemies

take actions at predictable intervals or doesn’t perform any aggressive actions until

the player does so first. This means that once the team identifies the weaknesses

of the scripts, they can be exploited with no resistance from the opposition. This

inspires a desire in this project to create a more “human” agent that performs both

effectively and somewhat unpredictably in order to provide a more effective training

simulation[20].

2.3 RTS Development Platforms

RTS games provide a great player interface into a real time simulation environ-

ment, but AI agent development within the game isn’t always an easy affair, with

many games not intending to have an AI agent being developed for it. In order to

15

Figure 4. SparCraft simulation of two squads of Protoss Dragoons fighting against one
another [4]

make the development process much smoother, simulation softwares for various RTS

games have been developed.

Wargus.

Wargus is an open-source recreation of WarCraft II for a full suite of environ-

ment manipulation, many of which are unavailable in the actual WarCraft II engine.

Wargus behaves as an extention to the WarCraft II environment, and requires many

features from a WarCraft II installation [21].

SparCraft.

SparCraft is an open source environment to simulate the StarCraft game engine,

typically used in performance analysis of AI agents built for StarCraft. SparCraft can

replicate damage, armor, hitpoints and research, but cannot account for collisions

and area effect damage[22].

16

2.4 Strategic Decision Making

The concept of a strategy can be distilled down the high level objectives that

need to be met in order to reach a goal. Traditionally, the decision making process

for a strategy is left with the leadership of the group that requires the decision. The

decisions that are made by the leadership affect large numbers of resources such as

people and materials. In warfare, strategy is used to accomplish the goals of the

military leader or a country. There have been many military leaders throughout

history who have varying viewpoints on effective strategies. For example, Clausewitz

describes how a strategy can either be a quick, decisive attack or a series of long, drawn

out battles of attrition with the ultimate goal of reducing the enemy’s effectiveness

[23]. The United States Army Field Manual of Military Operations provides a series

of 9 essential concepts [24]:

1. Define an objective Direct every operation towards a clearly defined and

attainable goal

2. Seize the initiative Don’t wait for the enemy to act first. Become proactive,

not reactive

3. Mass of Force Concentrate combat power at the appropriate place and time

for a decisive victory

4. Economy of Force Allocate what resources the operation requires to be suc-

cessful. Too few and the mission could fail, while too many risks items unnec-

essarily that could be used elsewhere.

5. Outmaneuver the enemy Placing the enemy in a poor relative position forces

the opponent to only have poor decisions to choose from

17

6. Unity of Command Ensure that everyone is united under one commander in

order to maintain focus on the objective

7. Security Prevent the enemy from attaining an advantage

8. Surprise Hit the enemy where they are least prepared for maximum effective-

ness

9. Simplicity Keep the plan simple and clear to ensure thorough understanding

for all parties involved

A properly designed military strategy contains the objectives of preventing the enemy

from fighting through the destruction of their forces or the removal of their resources

through the capturing of their territory.

Strategy in RTS Games.

Strategic planning in RTS games typically requires the emphasis on the efficiency

of the constructive actions, known as a build-order [5]. The build-order is responsi-

ble for advancing a player through technological improvements that allow the player

access to more effective combat units, buildings or research. The typical RTS game

starts the player off at the lowest technological level, where the player produces in-

fantry and resource gathering units. As the player invests resources into new technolo-

gies, usually through the construction of buildings, the player gains access to better

equipped infantry and light vehicles and eventually powerful items such as tanks and

artillery. When developing a good strategic plan, having a knowledge of other players

meta-level strategies is needed, as being able to adapt to the opponent’s strategy is

key to gaining the upper hand in a battle.

Figure 5 describes the possible methods to develop a strategy for an AI agent

in an RTS game. The first major decision is to distinguish if the agent is to be

18

Figure 5. RTS Strategic Planning Tree [5]

behavioral or optimized. Behavioral focuses identifying the opposition’s strategy and

countering it. A behavioral agent gathers data on the opponent and attempts to

match it with a known strategy and then implement a counter-strategy based on the

identification made. The optimization branch of the tree ignores what the opponent

is doing strategically. Instead, the agent focuses on optimizing a certain aspect of a

build order[5].

2.5 Tactical Decision Making

Tactics are the detailed steps required in executing a strategy. Unlike defining a

strategy, the details of what encompasses the tactics vary greatly between situations.

They can take into account the current status of resources such as personnel health,

ammunition stores, and enemy positions. They also utilize the knowledge of the

environment, such as terrain features like hills and choke points.

19

Figure 6. RTS Tactical Planning Tree for Targeting [6]

Tactics in RTS Games.

Within an RTS game, tactics involves the low-level management of individual

units or groups of units. When playing an RTS game competitively, tactical mi-

cromanagement is an important key to success. It includes the movement decisions

of where to send units, what targets that should be attacked and how to maneuver

within a combat situation. Important decisions such as keeping all the units as a large

force or splitting all units into smaller groups, possibly down to individuals, make all

of the difference in the goals that are being attempted. When a fight breaks out,

what enemies to prioritize to target is also important as taking out a high-damaging

unit or group of units can severely cripple the enemy’s ability to fight.

Figure 6 shows the decision tree for making tactical decisions related to target

selection. On the left, there are various, meta-level scripted methods that encompass

simple approaches. Tactics such as the entire force attacking the closest enemy, or

each individual unit attacking their closest enemy. There is also the ability to attack

the weakest unit or a unit that has been identified before the game by the script

writer as an important target. These approaches are simplified, however, and can be

exploited given knowledge of the script being executed.

20

On the other side of the decision tree, there exists various tactical options to com-

pensate for the simplicity of scripted methods. Learning methods can be implemented

through the usage techniques such as the Monte Carlo Tree Search (MCTS) [25] to

analyze the state of the battle and make an appropriate decision. Alternatively, a

set of expert data could be provided to an agent such that a similar situation could

be identified and an effective tactical approach could be used for that situation. As

the last remaining option on the tree, MOEAs provide the ability to create a tactical

decision based off of the currently available information to attempt to outperform a

human player [6].

Maneuvering Tactics in Combat Scenarios.

This project focuses on movement based tactics. Army Field Manual 3-21.8 (FM

7-8) has a good description of infantry based tactics, where it describes the pro-

cedure for an infantry squad to move through hostile territory [26]. This research

effort in particular focuses on tank platoon tactics, which the Army covers within

FM 3-20.15 [27]. This document in particular covers many important things related

to Tank combat, such as Offensive, Defensive, Patrol, Escort and Reconnaissance.

When discussing formations for maneuver, FM 3-20 specifically states “Formations

are not intended to be rigid, with vehicles remaining a specific distance apart at every

moment.” This is important because too many assets clustered together can be hit by

the same enemy munitions (air strikes, mortars, mines, and other explosive devices)

and block each other when incapacitated. This also allows for the various units within

the group to attack weaker portions of the enemy formation as they adjust rapidly

to the changing situation of combat.

Taking this knowledge to use, countering a strategy employing tanks with area-

of-effect weapons, as seen in Blackford’s work [5], would require a spreading of units

21

on the agent’s side. Additionally, the spread needs to keep as much firepower on the

enemy as possible, meaning the agent’s forces cannot be spread out too much.

2.6 Developing a RTS AI Agent

When creating an AI to tackle an environment, it is easy to overlook all the things

that humans take for granted. The challenge comes from implementing these in a very

clear form that is either mathmatical or algorithmic. The resulting implementation

must be both accurate in its calculation as well as being fast enough to be calcuated

within a reasonable amount of time. When dealing in RTS games, there are 6 defined

challenges that agents must overcome [28]:

• Resource Management: This challenge deals with balancing the acquisition

of resources in an RTS game with the investment of those resources into build-

ings and units to further the agent’s strategy. Players typically refer to this as

a build order

• Decision Making Under Uncertainty: Unknown information makes it rather

challenging to develop a perfect strategy. Fog of War and other methods of

concealment found in RTS games mean that there are only partial pieces of

information that will be available. An effective agent must be able to devise an

effective strategy based on this knowledge.

• Spatial and Temoporal Reasoning: Navigating a single unit amongst a

terrain is quite a formidable task, let alone navigating an entire army. When

enemy units are added to the mix, then the ability to navigate effectively be-

comes incredibly difficult. Additionally, with the environment being real-time,

the situation changes as time progresses. A solution that is optimal at one time

period can be completely irrelevant during the next.

22

Figure 7. RTS Agent Pyramid [5]

• Collaberation Between Agents: Sometimes teamwork is required for an

agent as a whole. Various sub-agents that are group together as a whole require

communication between the various sub components to balance out their func-

tion. Additionally, should two agents be placed in the same alliance in an RTS

scenario, communication to ensure their goals do not conflict is important.

• Opponent Modeling and Learning: When engaged with an enemy, un-

derstanding what that opponent is doing is essential for devising an optimal

strategy. An effective opponent modeling strategy allows for an agent to rec-

ognize what the opponent is trying to accomplish with their strategy. After

an agent is able to identify the strategy, choosing the proper course of action

to best counter it is a vital step to determining the optimal path. Typically

this involves remembering the outcomes of past encounters with the identified

strategy and chooses a sequence that performed well.

23

RTS Agent Subfunction Breakdown.

Figure 7 demonstrates how an agent can be broken down into sub components that

help cover each of the areas described earlier in this section. Building from the bottom

up, each block refers to a skillset that an agent requires in order to successfully build

upon others. The lower skillsets are more fundamental in nature, such as gathering

resources or executing a build order. Each subsequent level is a more narrow and

complex concept that is more difficult to execute effectively within an RTS agent.

2.7 Previous AFIT Agent Developments

The agent being modified for this research topic has been in development for five

years, with Jason Blackford’s work in 2013 and Donald Gruber’s work in 2015 as the

most recent improvements. The objective for each step of the development of the

agent is to build on and improve a customizable RTS AI agent that can be used as a

means to train military members in strategic and tactical decision making.

Adaptive Response - Weissgerber’s Agent.

Weissgerber’s agent, developed in 2010, is capable of reacting to the current sit-

uation in an RTS game by analyzing and acting on a subset of “features” which are

cpaable of encompassing the current state of the game. The result was an agent that

was able to outperform scripted agents by analyzing their previous performance and

developing an active counter strategy. The resulting counter strategy was 100% ef-

fective against the scripted agent it was developed to beat by chosing decision paths

that lead to a winning condition through optimization of the analyzed features [29].

24

Strategy Optimization - Di Trapani’s Agent.

Di Trapani’s agent identifies an incoming wave of enemies and develops a strategy

to counter the situation [9]. This work is a continuation of Weissgerber[29], where Di

Trapani determines the advantages and disadvantages of 8 different strategies tested

against each other strategy. These strategies were identified as Infantry rush, Blitz,

Bomber, Expansion, Tank Rush, Defend Artillery, Anti-Air and Turtle. The testing

of each item was performed with a goal to identify counter strategies for each of the

tested methods. With the results of counter strategies, Di Trapani utilizes various

classifiers to predict the enemy’s strategy and choose a counter strategy to employ

[9].

Build Order Optimization - Blackford’s Agent.

Blackford’s project continues the work from Di Trapani by creating a method to

optimize the strategic decision making done in the early stages of a game. In par-

ticular, the agent focuses on Build Order Optimization (”BOO” for short) through a

Multi Objective Evolutionary Algorithm (MOEA) to optimize the build order for a

given faction in the game. The MOEA selected balanced three objective functions.

First, The agent focuses on minimizing the steps to transition from a current strat-

egy to a new strategy. Secondly, it represents the consumable resources required to

transition between the strategies. Thirdly, the time required to switch strategies, or

makespan, is weighed for each option. The result is that this MOEA is capable of

out-manufacturing each other AI agent that it was tested against.

Tactics Optimization - Gruber’s Agent.

Gruber’s agent, the most recent addition, aims to improve the combat effective-

ness the units that were built by Blackford’s agent improvements. By utilizing an

25

MOEA technique, Gruber optimized the tactical decisions of units when targeting

units controlled by the opposing force. A pitched battle was established setting two

teams of twenty-five “stumpy” tanks against one another. Stumpy tanks are unique

because they fire an area-of-effect ordinance. Gruber’s addition to the agent demon-

strated to be highly effective against other scripted options such as “attack closest”

and “attack weakest” [6].

Unit Management - AFIT RTS AI Agent Continuing Work.

A plethora of work has been completed for the AFIT RTS AI agent, having the

software being passed off between multiple developers. This does leave the question

of “What is there left to accomplish?” It can be said that there is much work left

to be done. As an example, building placement could be improved. The agent now,

while building in an efficient order, can put buildings in some unusual locations. An

additional example, the agent at times constructs a building that gathers resources

on a resource node, but does not take into account with a short time investment a

more valuable resource node could be utilized. Another weakness of the current agent

is the lack of scouting capability. It is heavily reliant on a crutch of perfect vision

in order to operate. Finally, the agent has a simplified tactical approach to moving

combat units around the map. A lead unit is chosen and all other units follow in a

“big chaotic ball”. There is a possibility of improving the movement on more of an

individual level, giving the option for formations or positional control of units mid

battle. Simply put, there are many “fine tuning” approaches to improving this agent

that are available.

26

2.8 Current Research in RTS AI Tactics Optimization

Tactical AI development isn’t exclusive to just AFIT. Others have conducted

similar research into tactical unit management, making it prudent to take note of

the work that has been done before. Each of the following research efforts provide

their own unique contributions to tactical management in the way of target selection,

formation management and battle decisions.

David Churchill’s Research.

David Churchill, a strong figure in the realm of RTS AI research, is frequently

developing new techniques for RTS AI. He keeps a public database of his work in

his University of Alberta webpage [30]. This AI is the result of Chruchill’s PhD

dissertation, where this RTS AI agent has competed within several StarCraft AI

competitions[31]. The following subsections highlight his work in designing the Uni-

versity of Alberta Bot.

Portfolio Greedy Search.

Churchill’s Portfolio Greedy Search performs a variant of a hill-climbing search

by analyzing potential future moves to make a decision associated with targeting

enemy units. In his 2013 paper Portfolio Greedy Search and Simulation for Large-

Scale Combat in StarCraft, Churchill describes an algorithm that out-performs both

Alpha-Beta and UCT searches [32].

Build Order Optimization.

Churchill’s UAlbertaBot, an AI that plays StarCraft, implements a build order

optimization technique is that completely heuristic based. Utilizing an in-house de-

veloped software called Build Order Search System, or BOSS, it determines the most

27

Figure 8. StarCraft Build Order Search System visual example [7]

efficient path of building based on the desired resources being acquired. It determines

the best times when to build what items, solving a very complex scheduling problem

in real time [33].

Formation Management.

One aspect of having individual unit control is allowing them to maintain forma-

tions. Advantages to formations can include safe spacing of units or keeping more

valuable units in safe locations or positions that maximize their output. A 2008 paper

entitled Dynamic Formations in Real-Time Strategy Games analyzes employing such

formations. The paper describes an employment of algorithms that create a dynamic

formation in relation to enemy forces within a game. This dynamic formation man-

ager performed well against a variety of existing agents, demonstrating the potential

for improvement through formation management of units in an RTS game [34].

28

Figure 9. A visual representation of the three Boids concepts. From left to right:
Alignment, Cohesion and Separation [8]

Figure 10. Demonstration of a flock of boids navigating around an obstacle [8]

Boids.

A concept by Craig Reynolds intends to algorithmically represent the flight and

function of a flock of birds as they are flying together [8]. They use the concepts

of Separation to avoid crowding, Alignment to keep heading with the heard and

Cohesion to keep towards the average position of local flockmates to maintain a

formation with one another while traveling. Each individual boid makes a decision

on it’s next movement based on the distance to other boids in the flock as well as the

angle the other boids in the local neighborhood have in relation to itself (Figure 9).

By applying these concepts, Reynolds was able to demonstrate a flock of boids

able to navigate about terrain to a destination. This means that each individual boid

is capable of viewing the path ahead and plotting a route that avoids the obstacle

while maintaining coheesion with the flock. Sometimes, the flock splits in two to

29

Figure 11. Example Pareto Front with Different Population Sizes (5, 10, 20, 50)

navigate around an obstacle (Figure 10), after the obstacle has been overcome, the

flock then merges back together.

This is a similar problem to the research question posed in this paper. The

concepts presented in Boids are benificial to generating an algorithm for the RTS

Positioning Problem.

RTS AI Genetic Algorithm Implementations.

Opening strategic plans are a popular method for optimization, as each action

should be executed as efficiently as possible in order to maintain optimality in a

strategy. Gmeiner, Donnert and Kostler, from the University of Erlangen-Nuremberg,

developed a multiple objective genetic algorithm that accomplishes optimality of a

strategy in the game StarCraft II through the usage of the NSGA-II algorithm [35].

2.9 Multi-Objective Evolutionaly Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are methods of solving prob-

lems by analyzing the potential results with regard to a variety of objective metrics

[36]. Where a single objective focuses on maximizing a single facet of strategic impor-

tance, through either an equation or metric, an MOEA weighs multiple such facets

in order to make a decision, thus providing a wider range of outcomes. Each of these

weighted functions being evaluated together forms what is known as a Pareto front.

The Pareto front consists of a set of optimal solutions that maximize the solution

30

based on the ranking of which functions are more important. Since each solution

cannot be completely maximized in a multi-objective problem, there are tradeoffs be-

tween attempting to maximize each objective function. Every axis in the Pareto front

is an individual function, with each point within the space as an optimal relationship

between those axes. This front provides the user with a visual method of showing

how the functional weighting affects the overall outcome of the algorithm [10]. An

example of a Pareto front can be seen in Figure 11.

MOEA Software Packages.

MOEAs are complex algorithms. Implementing such algorithms from scratch can

be quite a daunting task and ensuring that they are functioning properly can be an

even more difficult proposition. Employing an already existing software solution takes

the difficulty of implementing an MOEA away. There are several MOEA software

libraries existing that can accomplish this, some of the more capable libraries are:

PaGMO/PyGMO.

Parallel Global Multiobjective Optimizer, or PaGMO, is a C++ based algorithm

platform developed by the European Space Agency that emphasizes parallel pro-

cessing of common MOEA softwares through the utilization of an island model.

PyGMO is a variant of PaGMO that implements a Python interface into the PaGMO

system[37].

MOEA Framework.

MOEA Framework is a Java based open source library for a wide variety of

MOEAs. It provides a easy to implement algorithms as well as a suite of various

analytical tools built into the software [38].

31

ParadisEO.

ParadisEO is a C++ based MOEA software package that builds its design around

modules for different focuses in MOEA structures [39]. The EO variant focuses on

Evolving Objects. It allows for various “components” to be utilized based on the

problem requirements [40].

jMetal.

jMetal, or Metaheuristic Algorithms in Java, is an object-oriented, Java-based

framework for MOEAs. It contains many MOEAs along with several useful metrics

for analysis[41].

Description of MOEA Algorithms.

There are a wide variety of MOEA algorithms that exist. Choosing the proper

MOEA for a problem matters because various factors such as calculation speed, pop-

ulation size and rate of convergence are all facets that impact the results. The MOEA

algorithms chosen for evaluation are NSGA-II, SPEA2 and NSPSO, each of which is

described in the following subsections. These algorithms were chosen because they

are very prominent and popular MOEA options that are executed effectively across

various software libraries.

NSGA-II.

The Nondominated Sorting Genetic Algorithm II, or NSGA-II, is an MOEA de-

veloped by Kalyanmoy Deb[42]. This algorithm was developed to be an improvement

to the original NSGA algorithm. NSGA an NSGA II both perform their evolution

by first performing a nondominated sorting. This sorting identifies the first set of

nondominated solutions (the closest ones to the true Pareto front) moving them into

32

a list and repeating the search for the remaining points. The resulting algorithm for

NSGA runs in O(MN3) time. NSGA II, on the other hand, utilizes a faster sorting

method that keeps track of what other population members each solution dominates.

Each solution then obtains a count for the number of solutions dominating it and

when the nondominated solutions are removed, each population member that is pre-

viously dominated has their count reduced for each nondominating solution that was

separated. This can be accomplished in O(MN2) time [42].

Both algorithms then perform a function to preserve diversity of solutions. In

NSGA II, that is the calculation of the density for each member of the population

and using that as part of the ranking factor. Each solution is then sorted by their

nondomination rank and then by their crowding distance, preferring those solutions

that are in less crowded regions.

NSGA II then performs binary tournament selection, followed by mutation and

recombination to create an offspring population. This population is then merged with

the original population, which keeps the top number of solutions equal to the original

size of the population.

SPEA2.

The Strength Pareto Evolutionary Algorithm (SPEA) 2 is an algorithm designed

by Zitzler and Thiele to improve upon the original SPEA [43]. Both SPEA and

SPEA2 utilize a population and an external set of solutions called an archive. For

each iteration, the nondominated members of the population are copied into the

archive. Then, the archive removes all members within that are now dominated or

duplicated. If the archive exceeds its size, the algorithm keeps the best evaluating

diverse members within.

33

Fitness values are assigned to each population and archive member. Each member

in both sets are assigned a strength value that represents the number of solutions that

member dominates. Then each member receives a raw fitness that is the sum of all

the strength values of the solutions that dominate that member. When all of the

values become nondominated, it becomes difficult to differentiate however as their

raw value becomes 0. To compensate, each member is given a density value based

on the distance to the nearby population members. This value is then added to the

previous raw fitness value to achieve a unique fitness.

After performing binary tournament selection, crossover, and mutation, the algo-

rithm repeats itself by sorting and re-evaluating the population and archive.

NSPSO.

Nondominated Sorting Particle Swarm Optimizer, or NSPSO, is a multi-objective

particle swarm algorithm by Ziaodong Li that utilizes the nondominated sorting con-

cept from NSGA II [44].

Partcle swarm optimization (PSO) is a single objective algorithm inspired by

behaviors of insects and animals that swarm together [45]. In PSO, a population

travels in a swarm-like manner towards a promising area of the search space. NSPSO

is a variant of PSO that aims to perform the same effect on multi-objective problems.

The Non-dominated sorting portion of NSPSO adopts the same method utilized

by NSGA II [42]. This involves the sorting of population into various non-domination

levels. The algorithm selects the least dominated members for comparison and uses

them as a reference to give velocities to the population and generating a new popu-

lation set. It then takes the nondominated members of the new population set and

places them into an elite set. This new elite set is merged with the previous non-

dominated members for the next generation. If there is still space remaining in the

34

population, the best dominated members of the previous population are chosen to fill

in the remaining spaces. All of this is performed in O(mN3) [44].

2.10 Using MOEAs in RTS AI Tactics

This research effort is a novel approach of tactical decision making problem. It

utilizes various MOEA styles in order to micromanage unit positions more quickly

and efficiently than a human can. Many current research efforts focus on optimizing

one single factor of an RTS strategy or tactics through various learning techniques

or evolutionary strategies. Instead, this research effort focuses on generating an ac-

ceptable solution through available real-time data. Analysis is performed through the

testing of various MOEAs with different parameter settings to determine which one

provides the best Pareto front. A properly programmed MOEA should find a set of

unit positions that is close to optimal to maximize the utility of the resources invested

into the individual units, providing a dynamic solution as opposed to a static one.

2.11 Chapter Summary

This chapter provides a summary of many concepts and approaches utilized in

this project as well as an overview of the process of decision making in addition to

its applications to the RTS decision making problem. Additionally, a comparison

between strategic and tactical decision makings is described along with a variety of

approaches to the tactical decision making problem. Finally, a variety of RTS plat-

forms are explored and MOEA libraries are summarized in order to provide a frame

of reference for the current utilization possibilities of this research. The following

chapters provide an explanation of the process of generating an MOEA to create

formation positioning in an RTS environment.

35

III. Methodology of the Positional MOEA

This chapter discusses the construction of the problem from a top down per-

spective. It begins with defining the problem and mathematically describing various

aspects of the problem space. Then, an MOEA based algorithm is developed for that

problem definition, using the mathematical metrics to determine the quality of the

algorithm’s solution. After an algorithm is selected, it is placed into a “sandbox” for

testing, leading into an eventual integration with the Spring engine itself.

3.1 Phase 1 - Defining the Problem Space

Before a solution can be placed into the Spring engine and the AFIT agent, it

is best to understand what exactly is being solved. The following sections are an

explanation of the process behind defining the problem and the algorithmic solution

from start to implementation.

Tactical Movement in RTS Games.

In the AFIT RTS AI agent, previous efforts focused on determining strategy ef-

fectiveness in optimizing the build orders [5] or tactical effectiveness through combat

targeting [6]. While these have been effective improvements to the project, there

has been no effort in concerning how units moved. What the AFIT RTS AI agent

currently does to handle movement is to choose a lead unit and command every other

unit to follow that one unit. Figure 12 demonstrates this operation. While simple,

this causes some exploitable situations such as killing the leader unit. It also causes

all the units following the leader to cluster together and their path finding techniques

build into the game can interfere with one another to cause delays.

36

Figure 12. Example of a Leader Unit

This work aims to fix this problem is by spreading out units from one another.

Proper spacing allows for several things to occur easier:

• Keeping units from clustering too close together. This alleviates the issue in

RTS games of units cutting off another’s path, as sometimes units can be dumb

and try to drive through one another.

• Countering enemy Area-of-effect weaponry by minimizing the number of allied

units hit per attack from the enemy

• Maximizing weapons firing at enemy targets while minimizing the amount of

weapons the enemy units can fire on friendly targets.

High Level Design.

The following subsections discuss the high level design of the tactical positioning

problem. The problem is defined mathematically in order to derive an algorithmic

solution which is used to adequately evaluate a given scenario.

37

Problem Domain Description.

The Spring RTS engine primarily operates on an 2-dimensional coordinate plane,

where each unit controlled by the players can be described by an integer coordinate

pair. A third dimension exists within the game, but it is utilized for elevation pur-

poses, which is unused this project. Each unit can move a certain distance within a

particular unit in time, which provides a radius of possible locations for the unit to

potentially end travel within said time unit. When presented with an enemy force,

a player’s units must take a combat a tactical stance based on the relationship of

friendly forces to the enemys. The goal of this problem can be stated as: Select the

optimal configuration of allied unit destinations in relation to the enemy forces and

each other, given a current position for each unit in the conflict.

Problem Complexity Analysis.

Given that each unit has the same number of possible positions N, and there can

be up to M units, then there are NM combinations of positional configurations. In

order to ensure that the perfect solution is found, it would take O(NM) operations

to search the space.

This assumes that the displacements for each of the units are integers. If the (X,Y)

displacements are in the form of real numbers, then there are an uncountably infinite

number of possible combinations. In order to ensure that the calculations within this

experiment can converge to a solution quicker, the displacements are utilizing a range

of integers instead of a range of real numbers.

38

Definitions.

In order to fully define the objective functions, a list of terminologies is required

to represent the problem space. The following definitions are used throughout subse-

quent equations in this document:

A: A list of all allied units where ai(x, y) ∈ A provides the location of the

individual unit on the map.

E: A list of all enemy units where ei(x, y) ∈ E provides the location of the

individual unit on the map.

DE: The desired Euclidean distance between an allied unit and an enemy

unit. This is typically the range of the weapon on the allied unit.

DA: The desired interval Euclidean distance between allied units.

CA: Euclidean distance to the closest ally unit from the current unit

CE: Euclidean distance to the closest enemy unit from the current unit

Objective Functions.

With the general concepts of the problem defined in the previous section, it is pos-

sible to now define the various objective functions for optimization. This is required

in order to develop an MOEA. This section outlines each of the objective function

equations and an explanation of the purpose they serve in the agent.

OBJECTIVE 1: Distance from Enemy

Equation (1) describes a mean-squared error from all allied units to their closest

enemy units. For this, the function uses all known enemy locations. This objective

function reduces dependency on the removal of Fog of War from the battlefield, a

technique typically implemented to greatly assist RTS agents [13]. This objective

is implemented with a mean-squared error to create a natural flow towards more

desirable positions. As the unit gets closer to the desired distance, the functional

value lowers itself into a valley. Within the valley, there are numerous optimal values

39

Figure 13. Demonstration of Objective 1: Distance From Enemy

that can be chosen but not all locations in the valley can be defined as the best as the

floor of the valley is somewhat rugged. This can be visibly seen in Figure 14. This

function operates similarly to the to the Boids concept of separation, as discussed in

Section 2.8.

OBJ1 =

∑|A|(DE − CE)2

|A|
(1)

OBJECTIVE 2: Distance between allies

This second objective function is similar to the first. The major difference being

that instead of enemies it is spacing against, the function only cares about the allied

units. The design of both functions (1) and (2) have dynamic algorithmic capabilities.

This is that the function can be re-evaluated by adjusting the desired distance between

units. This would allow for a more fluid adjustment of the agent in battle to situations

as they occur. This can be visibly seen in Figure 15. This functions similarly to the

Boids concept of cohesion, discussed in section 2.8.

OBJ2 =

∑|A|(DA − CA)2

|A|
(2)

40

Figure 14. Heat Map of a Single Unit in Relation to Enemies. Each “X” has a size
equal to the value of the objective. The white “trench” seen on the right side shows
possible good areas of movement.

41

Figure 15. Demonstration of Objective 2: Distance Between Allies

OBJ3 = OBJ1 ×OBJ2 ×
|A|∑

DistanceTraveled (3)

OBJECTIVE 3 - Minimizing Distance Traveled

The third function’s purpose is to prevent units from traveling farther than they

need to in order to reach their destination. If a unit is traveling, then it cannot fire on

the enemy. Therefore, if less effort is placed into movement then more effort can be

placed into firing weapons. Additionally, this function prevents units from crossing

paths needlessly. If left unchecked, two units that can both reach the same optimal

locations could be chosen to travel to either. This also avoids an issue of the units

having to navigate around one another, which adds to the transit time.

Putting it all together

All the objective functions together create a unique perspective for each unit.

Each of these units are going to make their decisions based on two major factors: the

distance to the closest enemy and the distance to the closest ally. (Figure 16). This,

combined with minimizing the total distance traveled, guides the algorithm towards

an effective solution.

42

Figure 16. Visual demonstration of OBJ1 and OBJ2 placed together

Evaluation Algorithm.

Algorithm 1 demonstrates the algorithmic pseudo code for the objective functions.

The purpose of this evaluation algorithm is to take the inputs of unit displacements

and apply them to the current positions of allied units. Then return the evaluation

functions in relation to not only the enemy units but also the other allied units.

Low Level Design.

With the problem domain defined, the next important step is to test via MOEAs

if a solution can be found. Implementing it directly into the Spring engine does

not provide immediate feedback for testing and debugging, therefore implementing it

in an isolated environment helps to ensure that the algorithm is capable of solving

simple static scenarios before transitioning it into a real-time environment of the

Spring engine.

43

Algorithm 1 Analysis Algorithm for Objective Functions

1: Step A: Receive Inputs:
2: → Starting allied locations A
3: → Starting enemy locations E
4: → Desired distances DA and DE

5: → Movement distance M
6: → Decision variables X (See step 2 for generation)
7: Step B: Define evaluators for each function
8: → Apply decision variables to A to receive
9: new set of locations A′

10: → Perform the actions in the functions below
11: Function 1:
12: for Each unit in A′ do
13: Set CE to the smallest distance to a single enemy
14: Add (DE − CE)2 to result variable F1
15: end for
16: Divide F1 by the number of units in A′

17: Function 2:
18: for Each unit in A′ do
19: Set CA to the smallest distance to another ally
20: Add (DE − CE)2 to result variable F2
21: end for
22: Divide F2 by the number of units in A′

23: Function 3:
24: for Each Unit in A′ do
25: Calculate distance between A′

i and Ai

26: Add distance to result variable F3
27: end for
28: Step C: Return function values F1, F2, F3

44

Defining a Genetic String.

Where the previous section described a problem mathematically, a genetic string

is required to implement an evolutionary algorithm. This can be done fairly simply

by providing a set of displacements from the starting position of evaluation. The

sequence can be represented with a string of numbers double the length of allied

units in the squad. The first half of the string is a sequence of displacements in the X

direction on a grid, the second half of the string is the Y displacements. This genetic

sequence is represented in Equation 4.

[X1, X2, . . . , XN , Y1, Y2, . . . , YN] (4)

Creating a Sandbox.

The testing arena for the algorithm is a flat, 2 dimensional euclidean plane with

no complex features. In a designed scenario, 5 units for each side are being pitched

against each other. The positions are the real numbers on the plane and distances

are the straight line distance between two locations. A scenario can be devised in this

sandbox by providing the parameters of: unit locations, weapons ranges, movement

distances and desired spacing. The result of a solution evaluation is an satisfactory

positioning of all the units in the movement space.

MOEA Software Selection.

There exists a plethora of software that can solve multi-objective problems through

the usage of MOEAs. Picking the correct software means not finding the one that is

implementing these algorithms the best, but the one that streamlines integration and

implementation into the Spring engine.

45

from PyGMO import *

prob = custom_problem() #Declares problem to be evaluated

algo = algorithm.nsga_II(gen=5) #Declares algorithm to use

pop = population(prob, 30) #Declares population size

pop = algo.evolve(pop) #Evolve the population with algorithm

Figure 17. An example of solving a problem through PyGMO

Gruber, who wrote the previous modifications to the AFIT agent, chose PyGMO

[6] for his problem implementation. The reasonings given by Gruber in his thesis were

that PyGMO is writen in Python, the same language of the AFIT agent, as well as

having implementations of NSGA-II, SPEA2 and NSPSO [37].

Before beginning on this project, some time was taken to confirm Gruber’s de-

cision to utilize PyGMO in the AFIT agent. While the software feels incomplete in

many areas, the algorithms that this research effort utilizes are implemented well.

Implementing a new problem did not take much effort to accomplish and processing

was incredibly fast. It is concluded that maintaining the usage of PyGMO is clearly

the best option, as implementing a new piece of MOEA software with a different

programing language into the AFIT RTS AI agent would take too much unnecessary

effort to accomplish for very little benefit.

Using PyGMO is rather straight forward. First one defines a problem to be

evaluated and an algorithm to be the evaluator while giving various parameters such

as problem dimensionality to the problem and the number of generations in the

algorithm. Next, a population is defined with the number of members and the problem

in reference. Then, the algorithm evolves on the population to perform its operations.

Figure 17 demonstrates this process in code. One thing of note is that this whole

process takes only a few lines of code to accomplish, allowing for the flexibility of

defining the problem or algorithm. This includes both items included in the PyGMO

install as well as user defined problems and algorithms.

46

from PyGMO import *

prob = custom_problem() #Declaring the problem

algo = algorithm.spea2(gen=10) #Declaring algorithm for use

pop = population(prob,20) #Declaring a population

isl = island(algo,pop) #Placing the pop onto a single island

isl.evolve(1) #Evolving a singular island

archi = archipelago(algo,prob,8,20) #Group of 8 islands w/ 20 members

archi.evolve(10) #Evolving the group 10 times

Figure 18. An example of islands and archipelagos in PyGMO

A unique implementation of solving problems in PyGMO is the islands and archipela-

gos method [37]. This allows for isolated evolutions of populations for more unique

solutions. In PyGMO, using the islands evaluation method can be seen as in Figure

18.

Considered Algorithms for Testing.

For the purpose of this effort,comparison trials are performed to determine the

best algorithm between NSGA-II, SPEA2 and NSPSO based on their computational

performance and the ability to converge to a satisfactory solution.

These algorithms have been chosen amongst the MOEAs provided by PyGMO

due to their quality and calculative performance, as discussed in Chapter II. Rejected

MOEAs included the S-Metric EMOA, which provides a very rough and inaccurate

solution due to the S-Metric approximation mechanism. Another rejected alternative

was the MOEA-D, which in PyGMO is the Parallel Decomposition (PADE) algorithm.

PADE has an issue as of this project where it would not function when provided a

custom design.

47

Figure 19. Example of Results from Sandbox Implementation

Structure of Results.

The sandbox results provide two valuable pieces of data: A visual representation

of the output and various metrics for measurement. The metrics include execution

time, hypervolume, spacing and non-domination count.

The objective is to utilize this evaluation technique to find an algorithm configu-

ration that converges to a desirable solution in a short amount of time. If the solution

takes too long to find, the resulting answers likely will be unsuitable for the changed

scenario (Section 2.1).

3.2 Phase II - Integration into AFIT Agent

This phase takes the previously defined algorithm and implements it into AFIT

RTS AI agent. It discusses the various modules within the AFIT RTS AI agent, as

well as implementing the algorithm into the proper module. This evaluation also

discusses how to issue commands to units within the Spring engine such as moving

and attacking.

48

AFIT RTS AI Agent.

The AFIT RTS AI agent is a collection of projects provided by previous AFIT

students, discussed in more detail. As it provides a working framework for interfacing

with the Spring engine and uses various other tactics, a simple modification is all that

is required to provide adequate testing.

The following sections discuss the structure of the AFIT RTS AI agent and how

the algorithm designed in this project interfaces with it.

Structure/Design.

The agent used in this research effort is the AFIT RTS AI agent. Originally

developed by DiTrapani [9], this agent is composed of several smaller modules that

communicate to one another as it progresses through the game. DiTrapani’s build

allows for focus on both strategic and tactical levels of the game’s execution. The

various different structures, as seen in Figure 20, each have a unique role within

process of execution of the agent. Activities such as managing units, controlling

build orders, and determining the strategy are all important aspects required for a

“skilled” play within an RTS game.

Gruber’s research focused on development of the tactical aspect of the agent [6].

There is a python file entitled group.py that holds various tactical options. These

tactical options start with simple scripts, such as attack closest, attack weakest, as

well as more complex items like Gruber’s targeting MOEA and this new positional

MOEA.

There are several key pieces that make the tactical component work. Currently

with the Fog of War turned off the agent knows exactly where the enemy units are

at all times, therefore it can make decisions based on perfect information. Knowing

this, there are some simple functions that are helpful provided by the agent’s structure

49

Figure 20. An overview of the AFIT agent’s various components as developed by
DiTrapani [9]

50

Figure 21. An overview of the connections between the AFIT agent’s various compo-
nents [9]

51

such as: Assign move or Assign attack as well as qualifiers if a unit is within Line of

Sight of an enemy.

The AFIT RTS AI agent can also be configured for various other aspects before-

hand. Things such as the number of players (which is always set to 2), the map being

used for the experiment and the tactical strategies being employed can be adjusted

within the configuration file.

PyGMO Integration with AFIT Agent.

With the effort to produce a PyGMO algorithm in the sandbox, the resulting

algorithm can be treated as a black box where the inputs are passed in and the agent

reads the results. This means the agent must translate the information present in the

game into a format that is recognizable by the algorithm. For this problem, an n× 2

array is built where n is the number of units.

The results from the PyGMO algorithm are determined by choosing the “cham-

pion” member of the population and applying those results to the locations that the

units were when the calculation started.

Controlling Units in the Spring Engine.

The Spring engine maintains the several simple unit commands: Move and Attack.

Many games implement more advanced commands, but in all units an RTS game can

be commanded to do those two things.

In order to move a unit, the agent takes the results of the algorithm and adds

them to the unit’s current location to provide a new coordinate pair. Each of these

pairs generated for the agent’s units are then provided to the units through a move

command (Figure 22).

52

Attack Command

cdata.clb.attack(Scenario ID, Unit ID, Target ID)

Movement Command

cdata.clb.move(Scenario ID, Unit ID, X Coordinate, Z Coordinate)

Figure 22. Issuing commands to units

3.3 Phase III - Real-time execution in Spring RTS

This final phase consists of performing functional testing to ensure that the algo-

rithm performs as desired within the Spring engine. This consists of picking the map,

analyzing the unit choice and a discussion on the “quirks” found while performance

testing.

Functionality Testing in the Spring Engine.

With Phase II complete, the algorithm has been integrated into the AFIT Agent

and is capable of performing basic functionality testing. The objective for this phase

of development is to ensure that the agent is performing as desired. If the agent is

not performing as desired, then there cannot be an effective experiment.

For this, the choices of map and unit used as well as a testing scenario must be

established. Then, through running functional testing trials, factors such as move-

ment range, distance from enemy and distance between allies can be determined to

properly configure the agent and prepare it for experimentation.

Map Choice.

The map chosen for testing is the same map used in all previous AFIT Agent

tests: The Pass. This map is a simple design where the north and south sides of

the map are only connected by a narrow passage through impassable terrain. This

passage creates a funnel effect and is prime for testing mechanics that involve tactical

53

Figure 23. The testing map “The Pass”

54

combat, as enemy units are guaranteed to encounter one another at some point, as

they cannot take different routes to avoid one another (Figure 23). While many other

maps exist within the Balanced Annihilation mod of the Spring engine, this map is

among the least complex amongst all the maps [46]

Unit Selection.

The unit of choice for this test is known as the stumpy tank [47]. This unit has

an ordinance that explodes on impact to provide an area-of-effect damage capability.

This capability allows for multiple enemy units to be damaged at the same time.

The current build order of the full AFIT agent necessitates the usage of this unit

for testing. Blackford’s build order agent [5] optimized building a set of stumpy tanks

as quickly as possible. Given that the overall objective of this is for the AFIT Agent

to utilize this algorithm on the tactical deployment of units, it’s a prudent idea to

ensure that the algorithm performs well with this focus.

Establishing a Scenario.

The scenario of choice for testing in the Spring engine is a pitched battle between

equal sized forces. Each side has equal forces to ensure that both sides and tactical

agents are on equal footing. At the beginning of simulation, each agent receives an

equal number of units on opposite sides of the pass. The agents are then turned on,

causing the units travel towards one another and fight against one another.

Each agent has Fog of War removed in order to know where the other agent’s

forces are located. Victory is be awarded to whichever agent has units remaining at

the end of combat.

55

Adjustments for a Real Time Environment.

Through functional testing of the agent, it was noticeable that there were as-

pects of the Spring engine’s real-time environment that could not be simulated in the

sandbox. These aspects are described in the following sections.

Limiting Fast Agent Calls.

The AFIT agent calls this algorithm quite fast. So fast that the units are fre-

quently given new move orders. This is fine if the units are not in position yet, but

should the units be currently in position, then the new move orders actually interrupt

the act of firing upon the enemy, as the unit is constantly attempting to move to a

slightly new location and is distracted from firing.

To correct this, an artificial limiter is imposed on the agent to where it only

calculates new positions once every N agent calls. After some experimental tuning,

it was found that N = 3 is a good selection as a lower number would still be too

quickly and a larger number would have the agent react too slowly to the changing

environment. This allows the units within the game time to perform the orders given

to them as well as reducing the computational lag imposed upon the computing

system.

Integration with Gruber’s Agent.

While this agent is capable of performing effective actions on its own, the Spring

engine’s default targeting algorithm for a unit can be a liability. In instances of testing

it was observed that the selected target of the unit would transfer target seemingly

randomly and for a less optimal choice.

To correct this issue, taking advantage of the targeting algorithm provided by

Gruber in his work is a potentially effective option [6]. This is accomplished by

56

evaluating the current position of the units and, if the units are deemed to be an

acceptable position, utilize Gruber’s targeting instead of calculating new moves. This

alternate agent configuration is tested in the experimentation in addition to just the

simple placement of units.

Impassable Terrain.

For this project, impassible terrain was not considered for the positioning of units

for the sake of simplicity of the code. This could pose issues in operations in other

maps, but this is assumed to be an unlikely scenario. The risks for such a thing are

going to be assumed negligible, with the ability to update the code in the event that

it does appear to be a problem in the future.

3.4 Chapter Summary

This chapter covered the method of building this project from the very bottom

of problem description and mathematical representation up through low level pseudo

code and eventual implementation within a sandbox as well as the Spring engine

itself.

The mathematical representation helps define the problem space. With that infor-

mation, the complexity can be observed and defining the algorithm to find a solution

becomes easier. Translating a pseudo code for that algorithm provides a simple code

that is testable within an isolated sandbox. This sandbox model can be modified and

adjusted until it converges to an adequate solution. This completed algorithm is then

imported into the Spring engine where, after a bit of adjustment for variables, it can

then be utilized for experimentation.

57

IV. Design of Experiments

4.1 Introduction

This chapter discusses the construction of the experiments performed to evaluate

the effectiveness of the positioning problem. It details the steps required and the

metrics used for the decision point of the selected MOEA. Also, these experiments

measure performance of the MOEA based tactical positioning algorithm as modules

added to the AFIT RTS AI agent. All testing within this section was created with

reference to the recommendations of Barr [?].

4.2 Experiment Test Equipment

A good method of maintaining consistency amongst experiments is knowing what

equipment was used to provide these results. Having this knowledge can assist in

any follow-on testing related to this project. Table 1 contains a quick listing of these

items.

The actual environment was constructed within a Virtual Machine (VM) in an

attempt to create a flexibility with moving between systems. This allows for several

computers already running the more common Windows based platforms to run a

Linux based system for experimentation. It also allows multiple machines to run the

same software simply by copying an image between them, giving a flexibility to work

on a project regardless of location. All tests were run on the same hardware set to

prevent any discrepancies between processing power.

58

Table 1. Overview of hardware and software used in the experiment

Hardware Model Software Version
Processor i7-4770K @3.5GHz

(4 Cores, 8 Logical)
VMWare 6.0.3 build-1895310

VM Allocated CPU 2 cores @ 3.5GHz Ubuntu 14.04 LTS
Memory 32GB DDR3 PAGMO/PyGMO 1.1.5

VM Allocated RAM 4GB DDR3 Spring RTS 98.0.1-516-ga626219

4.3 First Experiment: Finding the best MOEA

First Experimental Objective.

This experiment covers the decision process of choosing an MOEA for this soft-

ware. Since there are various MOEAs available from PyGMO [37], is prudent to

identify which one performs the most effectively for this tactical positioning problem.

Test Establishment.

This test compares the effectiveness between: NSGA-II, SPEA2 and NSPSO.

These algorithms are covered in more detail in Section 2.9. These algorithms were

chosen because they are thoroughly implemented in the PyGMO software, where

other, less popular algorithms are not guaranteed to perform as intended.

Sequence for Testing.

1. Establish metrics for evaluation

2. Run 10 instances for NSGA-II with positioning agent on team 0

3. Run 10 instances for NSGA-II with positioning agent on team 1

4. Compile results for NSGA-II for data analysis

5. Repeat steps 2-4 for SPEA2 and NSPSO

59

Each instance for an algorithm on a team is run 10 times, as an individual instance

provides between 25 and 45 individual algorithm executions, providing approximately

800 executions between the different team positions. Additionally, 20 scenario runs

provides a strong perspective on how the algorithm performs in terms of survival.

Frequently, it is suggested that “30 test runs” are required for an adequate test, but

that primarily implies that each test run only provides 1 data point per trial [48].

In this experiment, each trial provides multiple data points, one for each agent call

during a trial.

Metrics for Analysis.

The following metrics are used to measure the success of the various MOEAS:

• Remaining units alive: How many units are alive at the end of combat? A

negative number means the opponent won with that many units alive (i.e.: -3

represents opponent victory with three surviving units)

• Hypervolume: The volume of space between a reference point and the pop-

ulation’s known Pareto front. As the known Pareto front travels closer to true

Pareto front, it moves farther away from the reference point. This means a

larger hypervolume number describes a solution that has traveled closer to the

true Pareto front [49].

• Spacing: A measure of the average distance between population members on

the Pareto Front. This spacing measure is a method to determine is clustering

is occuring amongst the population. A larger spacing ensures a wider diversity

amongst the population [50].

• Non-Dominance Count: A measure of how many members of the population

are not dominated by any other member of the population. The assumption of

60

this is that the more non-dominated members existing in the population, the

closer the population is to the Pareto front [51].

• Execution Time: This measurement is used to distinguish the running times

between each MOEA. Ideally, an algorithm should run as fast as possible. How-

ever, each calculation costs an action and algorithms with lower complexities

sacrifice accuracy of a solution for fewer operations. This means there is a bal-

ance between a quality of solution and speed at which that solution is acquired.

This is heavily influenced by the No Free Lunch theorem [52], where there isn’t

such a thing as a “free action” in search and everything has a cost.

• Pareto Front Structure: A visual product comparing the outputs of the

objective functions to one another. This is done on a 3-dimensional scale,

comparing all the functions to one another, as well as a 2-dimensional scale

that compares each of the three objective functions to one another.

Structure of Results.

The results are reported in several parts. The first part is a new string into a log

file. This string contains various metrics such as start time, execution time, and the

values for each of the metrics discussed.

Additionally, two images are constructed. The first image is of the current posi-

tioning of the units on the map. The second image is the breakdown of the Pareto

front.

Experimental Hypothesis.

During previous experiments in the sandbox, a non-real time environment, NSGA-

II was found to converge the most effectively of the three MOEA algorithms [?]. The

61

biggest concern is that the convergence was in a static environment. Being in a real-

time environment means that calculations must be performed significantly faster and

still provide adequate performance. If the calculation takes too long, the situation

may have changed enough to where the calculated results are no longer relevant.

With a basic knowledge of how each MOEA operates, NSGA-II appears to be the

best equipped to handle this problem. Despite its tendency to run longer than the

other two algorithms, it also had the ability to converge more efficiently. By comparing

each of three algorithms through a more detailed observation besides just an visual

performance test, this experiment has two possible results of either confirming the

prediction of validating NSGA-II being the most effective algorithm for this problem

or displaying that another algorithm is more adequate for the problem.

4.4 Second Experiment: Determining Effectiveness of the Positioning

Algorithm in the Spring Engine

Second Experimental Objective.

This experiment is purposed to evaluate the effectiveness of the tactical positioning

algorithm in the AFIT RTS AI agent. By evaluating the performance via metrics,

this test confirms if the algorithm designed for this research effort is effective enough

for frequent tactical execution against an opponent.

Test Establishment.

This test compares the effectiveness of already implemented strategies within the

AFIT agent against the new Positional MOEA and the Hybrid MOEA that combines

the Positional and Targeting capabilities into one agent. It uses the following process

to generate samples for evaluation:

1. Select a tactical option and pair it against each other tactical option.

62

2. Run the trial 15 times from one positioning (One Team 0, The other Team 1),

then swap the teams and run another 15 tests.

3. For each trial, record the results from the metrics for the match up.

This experiment utilizes the following metrics to determine the effectiveness of a

set of tactics:

• Units Alive: This is the average of the surviving units in a match up. A

negative number would represent a loss with that many enemy units surviving

and a value of zero would represent a tie (all combat units are dead).

• Surviving Hit Points: The total amount of hit points remaining amongst all

the units of the tactics in that particular match up. A value of 0 means that

the tactical option did not win.

Tactical Algorithms in the Second Experiment.

• Default: This is the Spring engine’s default engagement algorithm.

• Proximity: All units are told to attack the nearest unit to the group

• Weakest: All units are told to attack the weakest unit in the enemy’s formation

• Targeting MOEA: Gruber’s targeting selection algorithm that utilizes an

MOEA to choose the best combination of targets

• Positioning MOEA: This project’s positioning focused MOEA that chooses

the desired positions for each unit based on the enemy’s formation.

• Hybrid MOEA: A combination of the targeting and positioning MOEA algo-

rithms. In particular, the algorithm positions the units and once all units are

in approximately the correct position, they are assigned targets via Gruber’s

targeting MOEA.

63

Structure of Results for the Second Experiment.

The AFIT Agent outputs the metric values in a simple JSON format [53] that

can be imported into RStudio for analysis. Each algorithm outputs a snapshot of the

opponent’s unit status (Count, HP totals) while being identified with the timestamp

of the current system time.

The results of the metrics are placed into a table where one tactical option is

evaluated against another, different tactical option. A tactical option is not compared

against itself, as it makes it difficult to differentiate the advantages of the scenario.

Experimental Hypothesis.

Through initial implementation testing of the algorithms, there is a noticeable

improvement when the positional algorithm is placed against other algorithms. The

noticeable downside is that the positional algorithm could be computationally inten-

sive. There are two possibilities for this experiment, each of them represented as a

hypothesis:

• Hypothesis 1: The positional MOEA alone provides a performance improve-

ment for all other solo algorithms.

• Hypothesis 2: The hybrid MOEA provides a marginal improvement over the

pure positional MOEA as well improve the computational lag that the pure

positional algorithm introduces.

While the metrics cover all of Hypothesis 1, it only covers majority of Hypothesis

2. The remaining portion concerning computational lag is be somewhat subjective

and requires additional evidence to distinguish between the two if there is no obvious

difference in metric factors between the positional MOEA and the hybrid variant.

64

4.5 Summary of Experiments

This chapter covered the design of the experiments for this research effort. Both

of these are important to determine not only the most effective MOEA for the po-

sitioning problem but also measuring the overall performance that this new tactical

algorithm has when compared to other existing options.

65

V. Analysis of Results

5.1 Introduction

This chapter discusses the analysis of the results from the experiments performed

in Chapter 4. The analysis begins with comparing and contrasting the effectiveness

of the NSGA-II, SPEA2 and NSPSO algorithms against one another. The results of

this analysis determines the most effective MOEA for the algorithm developed. Once

the MOEA from the first experiment is chosen, it is then used to test its performance

against other tactical options. The results of this second experiment demonstrate

how effective the positional MOEA is for the AFIT RTS AI.

5.2 Results of MOEA Analysis Experiment

This section covers the analysis of various MOEA alternatives found within PyGMO.

It compares the effectiveness of NSGA-II, SPEA2 and NSPSO. Each algorithm is com-

pared by the structure of their Pareto front, hypervolume, spacing, non-dominance

count, execution time and survival rate.

Quality of Pareto Fronts.

One thing to ensure before any further analysis is conducted is that the Pareto

fronts generated by these MOEAs have a consistent quality. If there is little con-

sistency between them, then the algorithm parameters should be reconsidered. The

following segments are a visual evaluation of the Pareto fronts. Each sample was

chosen is an example visual representative of the performance that both demonstrate

good and bad qualities of the results.

The NSGA-II Pareto fronts, as shown in figure 24 for this problem tend to demon-

strate a uniform, well distributed curve for the situation. Visually, the non-dominated

66

Figure 24. NSGA-II Sample Pareto Front

count appears to be high and outliers appear to be minimized. Overall, these fronts

appear to be of a good quality.

The sample SPEA2 Pareto fronts (figure 25) tend to show a more fragmented

curve. A clear decrease in the uniformity of the line can be observed as well as an

inconsistency of the spacing. Visually, this Pareto front demonstrates an inconsis-

tency of convergence, likely because the index used as ”good” solutions as well as

the population size are both not big enough. Increasing those sizes would decrease

computational performance, a very challenging trade off.

The NSPSO Sample, demonstrated in figure 26 shows a very loose Pareto front.

While the algorithm maintains range consistently in relation to the other two objective

functions, the relationship between Spacing and Travel Distance is very inconsistent.

This is not surprising given the nature of NSPSO, as it is a very loose and fast

algorithm. The speed can assist in providing more timely results.

67

Figure 25. SPEA2 Sample Pareto Front

Figure 26. NSPSO Sample Pareto Front

68

Table 2. Statistical comparison of the Hypervolume results

MOEA Mean Median Variance
NSGA-II 3.732359e+18 3.955033e+18 5.228547e+35
SPEA2 3.742747e+18 3.922347e+18 4.125611e+35
NSPSO 3.824883e+18 3.976105e+18 3.235554e+35

Analyzing the Hypervolume Metric.

The Hypervolume results, visualized in figure 27 as a boxplot, when placed next

to one another appear quite similar to one another. The top image in figure 27 shows

the entirety of the dataset in a boxplot form. The trailing portion of outliers below

the whiskers of the three boxes are ignored for the bottom figure in figure 27 to get

a closer perspective on the bulk of the data points.

The outliers in the top portion of Figure 27 demonstrate the variety of possible

hypervolume outcomes. A hypervolume measurement is taken from a reference point

within the search space and measured towards the Pareto front. If the pareto front is

closer to the reference point, the measurement is smaller. However, this also means

the objective functions are also larger since both OBJ1 and OBJ2 are aggregates of

the values of each unit’s position, lowering the hypervolume value.

This analysis shows that the hypervolume metric doesn’t really distinguish well

between the various MOEAs. The primary issue of calculating the Hypervolume

metric in PyGMO is that the reference point is ”fixed” in the code. If any points

in the Pareto front exceed the fixed reference point, the code errors out and does

not provide a proper hypervolume metric. This means that there are values greater

than represented in this dataset that were collected by the MOEA’s operation. If

this experiment were to be repeated, the hypervolume metric should likely be left out

unless one is confident that no values can exceed the reference point. A suitably large

reference point for this could likely be found, but then the resulting numbers would

69

Figure 27. Above: Total look at hypervolume results; Below: Focused perspective of
hypervolume results

70

Table 3. Statistical comparison of the spacing results

MOEA Mean Median Variance
NSGA-II 73.20702 59.61942 4283.717
SPEA2 100.9999 66.63743 38513.53
NSPSO 137.6303 106.6501 14366.28

be unreasonably large and could possibly lose some fidelity when comparing them to

one another.

Analyzing the Spacing Metric.

The spacing metric provides a consistent, uniform diversity amongst the popula-

tion. In this metric, a lower number is more desirable as it demonstrates a population

that is exploring a local area of the population space, allowing it to be guided towards

a more desirable solution much easier.

Figure 28 demonstrates the spacing results of the experiment for each of the three

MOEAs. In the bottom image in Figure 28, all three metrics are capable of presenting

adequate spacing. However, the range in which the bulk of the values varies greatly

amongst the MOEAs. NSPSO is clearly the least desirable as it has the largest range

of spacing results. SPEA2 has a distinct improvement over NSPSO, but is not as

effective as NSGA-II.

After analyzing these results of the spacing metric, it appears that this metric con-

tains some distinguishing factors that can be used to differentiate the three MOEAs.

In particular, the NSGA-II metric demonstrates a significantly more compact distri-

bution of the results. In comparison, NSPSO has a much wider distribution of results

and SPEA2 has the potential for outliers significantly worse than any other value

within the testing dataset.

71

Figure 28. Above: Total look at spacing results; Below: Focused perspective of spacing
results

72

Figure 29. Above: Total look at ONVG results; Below: ONVG with data points
overlayed

73

Table 4. Statistical comparison of the ONVG results

MOEA Mean Median Variance
NSGA-II 31.82373 32 1.614799
SPEA2 31.51152 32 5.165957
NSPSO 29.40783 32 25.55205

Table 5. Statistical comparison of the execution time results

MOEA Mean Median Variance Shortest Longest
NSGA-II 46µs 42.9µs 0.37ns 25.9µs 333µs
SPEA2 42.4µs 39.8µs 0.89ns 24µs 586µs
NSPSO 40.2µs 39.1µs 0.11ns 24.7µs 159ns

Analyzing Non-Dominance Count.

The Overall Non-Dominated Vector Generation (ONVG) is a count of all non-

dominated members in PFKNOWN . This count is useful because it demonstrates how

many solutions in the population aren’t rendered useless because a definitively better

solution exists in the population.

Figure 29 demonstrates the results of the ONVG metric in this experiment. The

top figure is a boxplot of the results and the bottom is the data overlayed ontop of it

to demonstrate the spread of the data points throughout the results.

Both plots in figure 29 demonstrate a clear inadequacy of the NSPSO algorithm

in this metric. This is not a surprising outcome, as the nature of a PSO algorithm

involves a very loose population that is exploring the local search space [45]. Between

SPEA2 and NSGA-II, NSGA-II performs better as it displays a noticeably lower

variance than SPEA2 (Table 4)

Analyzing the Execution Time.

The execution time metric measures how much time an MOEA is spending on

calculations. When the algorithm is calculating new positions, a faster calculation

helps by not slowing the simulation down to the point to where the game itself is

74

Figure 30. Above: Total look at execution time results; Below: Focused perspective of
execution time results

75

unplayable. Additionally, if a calculation takes too long to perform it may become

ineffective when applied as the situation may have changed to where the solution is

no longer relevant.

Figure 30 shows boxplots of the entire data set (top) and a focused perspective

on the dense part of the data set (bottom). The data is gathered using Python’s

time.time() function, which is a floating point number of the seconds since 1 January

1970 [54]. The results can be best represented in microseconds, where the spread

can be seen in Table 5. Additionally, in the below of figure 30, it can be seen that

the diversity of the execution times is fairly close to one another. However, there is

definitely a clear differentiation between the three where NSPSO is the best followed

by SPEA2 then NSGA-II.

Fundamentally, these results are unsurprising as the actual running time of these

MOEAs reflect this as well. NSPSO consistently runs much faster than all the others.

Even in it’s slowest iteration, it performed 6 times slower than it’s fastest. SPEA2 is

the most diverse. On average, it performed middle of the road but had a significant

amount of diversity. This is incredibly inconsistent nature of SPEA2 makes it quite

undesirable. Finally, NSGA-II is consistently slower than the other three. However,

it has a respectably low variance between the various iterations. In order for NSGA-II

to be selected as the best option, other metrics must perform vastly better to justify

the longer calculation time.

What this metric did is to confirm that the implementation of these MOEAs

within PyGMO were done properly. If one algorithm had been chosen but turned

out to have been implemented inefficiently, then this would cause much more delay

than it should.

76

Table 6. Overview of the MOEA survival rates at the end of battle

MOEA Mean Maximum Minimum
NSGA-II 4.7 7 3
SPEA2 3.5 6 -2
NSPSO 3.6 7 -2

Figure 31. Comparison of the survival rate of the three MOEAs in Experiment 1

77

Table 7. A ranking of MOEAs according to metric results

NSGA-II SPEA2 NSPSO
Hypervolume 2 3 1
Spacing 1 2 3
ONVG 1 2 3
Execution Time 3 2 1
Survival Rate 1 3 2

Analyzing Survival Rate.

Survival Rate is recorded in a very simple manner, represented in Table 6. In the

table, the number represents the number of surviving units at the end of the skirmish.

If the number is negative, that means that the opponent won with that many units

surviving.

These results show a clear result of NSGA-II performing well in this scenario

with an expected survival rate of one whole unit greater than either of the other two

MOEAs. Additionally, NSGA-II never lost a simulation in this experiment, as shown

by the worst survival of 3 units. This demonstrates that while the NSGA-II algorithm

does tend to run slower than the other two, as seen in the execution time results, the

solutions it is choosing are consistently better.

Figure 31 shows the comparison of the three MOEAs survival rate as a histogram.

It demonstrates NSGA-II has a higher density of large survival numbers. NSPSO

displays a more diverse spread of results, and SPEA-II demonstrates a strictly worse

output than NSGA-II.

Decision and Observations.

Table 7 ranks each of the three MOEAs against one another for all the metrics.

Clearly, even without weighting of the metrics, NSGA-II demonstrates the most ef-

fective MOEA amongst the group. Differentiating between SPEA2 and NSPSO is

difficult, but unnecessary as neither are the primary choice.

78

One major observation of these solutions is that the computational lag observed

from this positional algorithm is not coming from the actual MOEA computation

itself but the input buffer for commands into the Spring engine. While the MOEA

does have some impact, as there is noticeable lag at higher generational counts for

the algorithm, reducing the frequency of the agent calls (discussed in Section 3.4)

removed the occurrences buffer errors in the Spring engine and cleaned up the lag.

Another major observation is the fine control of units, or the lack thereof. Unit

control in the Spring engine consists of two commands: Attack and Move. When a

unit is told to move, it attempts to move towards that location in only a forward

motion. This means that if the desired destination is behind the unit, it makes a big,

wide turn to achieve their position. If another unit is in the way, the moving unit

rams into it and attempts to push through it. If two moving units collide with one

another, they struggle to pass through one another in a conflict that much resembles a

sumo match. Whenever this happens, it does impact the performance and can cause

multiple units to bunch up together and become counterproductive to the goal of the

positioning algorithm.

5.3 Results of Positioning Problem Effectiveness Experiment

This section analyzes of the results produced from the effectiveness experiment.

The raw results of the experiment can be found in Appendix A.

Table 8 displays the win-loss numbers of each match pairing across the 15 matches

for that configuration, with ties not recorded as a win for either side. In this table,

it’s fairly apparent the effectiveness of the MOEA strategies, as they typically have an

overwhelming win total in relation to their opposition. Tables 9 and 10 displays this as

a win % across all matches. Overall, the Positional MOEA performed overwelmingly

79

Table 8. Win/Loss Results of Experiment 2

Top
Bottom

Default Weak Proximity Target
MOEA

Position
MOEA

Hybrid
MOEA

Default N/A 10-5 7-8 7-8 1-14 0-15
Weak 3-12 N/A 1-14 0-15 0-15 0-15
Proximity 4-11 10-4 N/A 7-6 4-11 1-14
Target MOEA 7-7 10-4 11-5 N/A 2-13 1-14
Positional MOEA 13-2 15-0 13-2 13-2 N/A 10-5
Hybrid MOEA 13-2 15-0 9-5 13-1 5-8 N/A

Table 9. Win Percentages for overall performance as well as against the Default, Weak
and Proximity strategies. Bold text is the highest against that particular strategy

Win %
Method Overall vs Default vs Weak vs Proximity
Default 56% – 73% 40%

Weak 11% 16% – 16 %
Proximity 40% 40% 80% –

Targeting MOEA 42% 50% 83% 56%
Positional MOEA 83% 90% 100% 80%

Hybrid MOEA 78% 93% 100% 76%

Table 10. Match up percentages vs Targeting, Positional and Hybrid MOEAs. Bold
text is the best percentage against that method

Win %
Method vs Targeting MOEA vs Positional MOEA vs Hybrid MOEA
Default 46% 10% 6%

Weak 13% 0% 0 %
Proximity 40% 20% 20%

Targeting MOEA – 13% 6%
Positional MOEA 86% – 60%

Hybrid MOEA 90% 33% –

80

well, with the Hybrid MOEA not far behind. Surprisingly, the Targeting MOEA did

not perform as well as expected.

Observed Weaknesses of Targeting MOEA.

The targeting MOEA had a very surprising underperformance compared to the

results from Gruber’s thesis [6]. There are several notable differences between this

experiment and Gruber’s, in particular the scale is not the same. This experiment

chose a 10 vs 10 matchup, as opposed to Gruber’s 25 vs 25. The rationale for the

smaller unit count was that the positional MOEA struggled to adequately position

units in sizes larger than 10 within a reasonable time. This is because the complexity

of the positional MOEA is, at best, an O(NM) where M is the number of units and

N is an integer number of possible positions for each unit. Compared to Gruber’s

algorithm, which is solving an NP Hard problem [6].

Finally, there is an issue of hanging when the targeting MOEA engages the enemy

commander unit, which while it did not impact the results of this experiment, it

is a curious development. This anomaly appears once the targeting MOEA’s forces

win their engagement and begin their attack on the enemy’s commander unit. Upon

closing within weapons range, one of the agent’s units will fire and the simulation

hangs, completing no more calculations.

Observed Behaviors of Positioning MOEA.

The positioning MOEA had some curious behaviors that appear upon execution.

The algorithm functions correctly, as it determines the positions required for the units

to be located, but the methods the units within the game take to travel to those

locations are not the best. The units themselves are quite dumb when traveling,

81

requiring faith that they will not encounter any problems. Some results from the

built-in movement algorithm include, but are not limited to:

• Never traveling in reverse, instead forward and turning to their destination.

Additionally, since the tanks choose to only travel at their maximum speed,

their turning radii are overly large.

• Having no spacial awareness of where other tanks are located, causing them to

run into one another. This counters the entire point of the algorithm

• Not moving when the distance to the new location is short. This is an accept-

able and somewhat desirable behavior that allows the tank to stay still and

continuing firing because of issues with engaging while moving.

• Moving and firing is a challenge for the default unit movement script in the

Spring engine. When a unit receives an order to move, it centers its turret to

the ”forward” position, where the turret is pointing in the same direction the

tank is traveling. Then as it travels, it reengages the enemy in movement, at

a reduced accuracy. However, once it stops, it centers the turret yet again and

then reengages the enemy. This action creates downtime as it cannot fire while

the turret is reseting its turret to the centered position.

With all of these problems, it would take quite an effort to actually correct them

within the source code for the game, either in Balanced Annihilation or the Spring

engine itself. While this may prove to correct the issues, it could also invalidate

previous work on the AFIT agent, as it is designed with the current concepts of

movement in place.

82

Why the Positional MOEA/Hybrid MOEA Works.

This new positional assignment system works because of two major factors working

in its favor:

1. Reducing the impact of enemy area of effect weapons by minimizing the number

of targets affected by the splash damage

2. Exploitation of own area of effect weapons by luring the enemy forces to become

closer together in a dense fashion

Figure 32 demonstrates the typical sequence of a battle for the Positional MOEA

against the Default tactical option. As the battle flows, it can be observed that the

enemy units tend to get grouped up closely on the left side. This makes those units

an easy target that can be destroyed quickly. In comparison, the enemy force focuses

the targets in the middle. This then divides their fire as there are targets on either

side of the middle.

5.4 Summary

This chapter presented the results of the experiments of this research effort. Once

it was determined that NSGA-II was the best algorithm to perform the Positioning

MOEA, it was placed into the AFIT RTS AI agent’s code and demonstrated that it

performed exceptionally well against all other tactical options currently existing in

the AFIT RTS AI agent.

83

Figure 32. An example of the flow of a battle. Above left: Units first meeting at the
start of battle. Above right: Positional MOEA is giving new movements to units that
need to spread out. Below left: Since fewer new positions are needed here, all units
are attacking. Below Right: Positional MOEA is victorious, as the remaining enemies
are about to be destroyed

84

VI. Conclusion

6.1 Overall Conclusion of the Tactical Positional Algorithm

Overall, the idea and execution of the positioning algorithm was a success. Every

objective presented in Chapter 1 was fulfilled effectively. Chapter 3 presents an

effective mathematical representation of the problem domain, describing the problem

space in a manner that is easily understandable as well as accurate.

Chapter 3 also discusses the implementation of offline testing. It confirmed the

validity of the mathematical model. It also confirms that the designed algorithm for

the problem space operates as intended. This gives confidence that there exists a

solution that can be found as well as the effectiveness of an MOEA when applied to

the problem.

Chapter 5 details the results of testing the tactical positional algorithm against

various other tactical options. Despite the limitations of the Spring engine for fine-

tune control of the units within the game (Chapter 5, Section 3), the Positional

MOEA still vastly outperformed all other algorithms. The Hybrid MOEA took a hit

to effectiveness of performance in battle for a tradeoff of computational performance.

Both of these are very effective options for a tactical deployment.

A major advantage of utilizing these MOEAs is the flexibility of usage. There is no

algorithmic training required nor is there a need to perform a tree search. This means

that regardless of map or terrain, this positional algorithm can and will perform with

the same functionality.

It should be noted that these two developed algorithms (positional and hybrid) are

not an ultimate solution to the tactical problem. There are many different tactical

options for the infinite number of scenarios. The results of this project should be

utilized as a strong set of options for a mutable tactics pool in the future.

85

Concerning the tactical opportunities for the AFIT RTS AI agent, there are very

few areas for improvement. A lack of complex tactical mechanics in the Spring engine,

such as cover, along with the inability to fine-tune control of the units, means that

there are adjustments required in the Spring engine. Implementing controls with

more fidelity would improve the positional algorithm and potentially allow for even

better results.

6.2 Future Work

There are variety of areas that can be improved upon for the AFIT RTS AI Agent.

Several areas focusing in more ”large scale” ideas would move this project to the next

step

Scouting.

The biggest weakness of the AFIT RTS AI Agent is that it still ”cheats” by

knowing where the enemy is at all times by turning off Fog of War. In real world

combat, however, there is no guarantee of such clarity of information. A good scouting

method could gather information based off of the map in order to determine the

enemy’s base location as well as predicting their strategy. Dave Churchill has done

similar work in this area with his UAlbertaBot [30], and would be a good starting

point for research in this particular area.

Strategic Diversity.

Currently there is only one unit being built by the AFIT RTS AI Agent, the

stumpy tank. This means there is only ONE option every time that’s being employed.

If an agent is going adapt to a player’s skill level, there needs to be a wider variety

of build orders available within the Balanced Annihilation game. This would involve

86

a live, online identification of the enemy’s strategy and adapting the agent’s own

strategy and perhaps even tactics on the fly. This would be an extension of the work

performed by Blackford in implementing adjustments to the build order capability

[5].

Potential New Platform.

The Spring engine is an open source option and has the implied flexibility of all

open source programs. Conversation on the development front is relatively quiet,

however. Continuing work may mean future students working on this project have

difficulty getting support from the Spring engine’s development team. There may

be an engine in existence that the AFIT RTS AI Agent can be ported to in order

to improve the ease of development. Any future platform that this work would be

transitioned to must have a robust method of modifying an AI agent in order to

implement a diverse system like the AFIT RTS AI Agent.

6.3 Final Remarks

The experiments performed in this research effort confirmed the hypothesis that

the positional MOEA is an effective tactical alternative to the already existing tactical

options. The complexity of the problem leaves much to be desired in terms of compu-

tational performance. Overall, this effort can contribute greatly to training in tactical

situations by providing a diverse, unique movement strategy for each situation.

87

Appendix A. Results of Experiment 2: MOEA Effectiveness

This appendix contains the raw data of the second experiment: MOEA Effective-

ness. Firstly, in table 11, it can be seen the wins and losses of each tactical option

against each other version. The format for the table has each row being the top

tactical option and each row is the bottom tactical option. Since an option cannot

be paired up against itself, the cells that are the same matchup are listed as N/A.

While each of the top-bottom matchups where run 15 times, ties are not recorded.

Therefore, each cell that does not add up to 15 matches do so because of ties within

the skirmish.

Each subsequent table in this appendix is the tabular form of each of the matchup

experiments. These tables contain the remaining Hit Point(HP) values for each sur-

viving unit at the end of the match. This means that most entries have a formatting

where one combatant have a set of numbers and the other have 0. Entries relating

to Targeting MOEA have a slight deviation from this style of output. This is due

to an error where the Targeting MOEA’s units would cause a client freeze whenever

they attempted to engage the enemy commander. Since there are no new entries to

the log, it still has the HP values of their units against the remaining units of their

opposition. Majority of the time this resulted in a 5-1 variation which can be easily

assumed to be the Targeting MOEA’s victory.

Table 11. Win/Loss Results of Experiment 2

Top
Bottom

Default Weak Proximity Target
MOEA

Position
MOEA

Hybrid
MOEA

Default N/A 10-5 7-8 7-8 1-14 15-0
Weak 3-12 N/A 1-14 0-15 0-15 0-15
Proximity 4-11 10-4 N/A 7-6 4-11 1-14
Target MOEA 7-7 10-4 11-5 N/A 2-13 1-14
Positional MOEA 13-2 15-0 13-2 13-2 N/A 10-5
Hybrid MOEA 13-2 15-0 9-5 13-1 5-8 N/A

88

Table 12. Default (top) vs Weak (bot) Raw Results

Default(Top) Weak (Bot)
0 1862
0 1052,130

1662,1751 0
0 1179,1440,1548

1182 12,1211
757 0

1248,1142,1617,1626 0
1727 0

1433,1705,1343,1607,1508 0
1680,982,1277 0

0 1645,1732,1517
1458,743,1372,1803 0

1446 0
1767,1860 0

1384,1635,1393,1131 0

Table 13. Summary of Default (top) vs Weak (bot)

Default (Top) Weak (Bot)
Wins 10 5
Best Survival Rate 5 units 3 units
Worst Survival Rate 1 unit 1 unit
Average Survival Rate 2.8 units 2.2 units
Average Total HP 4023.9 1517
Average Individual HP 1437.1 1211.6

89

Table 14. Weak (Top) vs Default (Bot) raw results

Weak (Top) Default (Bot)
0 1568,1615,1604,1744,1512

1676,422,1614 0
0 1633,1172,1789
0 1625,1709,1637,1794
0 1446,1433,1514,1679

964 0
0 1894,1661,1740

1116 1374,1555,1495,1406
0 1291,1777,1391
0 1723,1724,1043
0 1471,1540,1576,1601
0 1767,720,1209
0 1661,1652,1727

436 1849,1318
1660,1617,1596 0

Table 15. Weak (Top) vs Default (Bot) results summary

Default (Bot) Weak (Top)
Wins 12 3
Best Survival Rate 5 units 3 units
Worst Survival Rate 2 units 1 unit
Average Survival Rate 3.4 units 2.3 units
Average Total HP 5873.6 3183
Average Individual HP 1708.5 1364.1

90

Table 16. Default (Top) vs Proximity (Bot) raw results

Default (Top) Proximity (Bot)
1568,1434 0
633,1310 0
1552,1481 0

0 1255,1278,1311
1437,1581,1028 0

1003,1310,1308,330 0
0 818,1444,868
0 1476
0 1350,1102,1665,1619,864
0 1108
0 656,1429,1750

1558 537,323,920,891
0 50,1613,1446,1544,480,500

1357,943,1540 0
1259,1416,964,1464,618 0

Table 17. Default (Top) vs Proximity (Bot) results summary

Default (Top) Proximity (Bot)
Wins 7 8
Best Survival Rate 5 units 6 units
Worst Survival Rate 2 units 1 unit
Average Survival Rate 3 units 3.25 units
Average Total HP 3,650.5 3537.125
Average Individual HP 1,216.8 1088.3

91

Table 18. Proximity(Top) vs Default (Bot) raw results

Proximity (Top) Default (Bot)
1060,1307,835,901 0

0 1308,1183,639,511
1203 1261,1256

710,548,1184 0
0 991,151,1540
0 1151,1428,621

579,1051,590,1662 0
0 286,1202
0 1174,311,1413,1320,801
0 1044,1236,1387,1782,1535,989
0 864,99,1343

631,1021,40 0
0 374,307
0 1301,1753,1495,282,1598,838,832,1443
0 186,747,1810,1677

Table 19. Default (Bot) vs Proximity (Top) results summary

Proximity (Top) Default (Bot)
Wins 4 11
Best Survival Rate 4 units 8 units
Worst Survival Rate 3 units 2 unit
Average Survival Rate 3.5 units 3.8 units
Average Total HP 3,029.7 3,951.7
Average Individual HP 1,216.8 1034.9

92

Table 20. Default (Top) vs Targeting MOEA (Bot) raw results

Default (Top) Target MOEA (Bot)
0 179,1659,1700,1483

262,586,99 0
1041 1738,1410,1440,1647,881

1698,1084,1148,361,139,428 0
895,985,1395 0

0 1696,1612,1073,528,1204,1108
0 455,966,1271

732,1025,20,1615,1429,920 1744
0 1728,1189

1077, 461 0
437 1182
69 710

536,820,1659,1045 1691
298 1328

653,427,456 0

Table 21. Default (Top) vs Targeting MOEA (Bot) results summary

Default (Top) Target MOEA (Bot)
Wins 7 8
Best Survival Rate 6 units 6 units
Worst Survival Rate 2 units 1 unit
Average Survival Rate 3.8 units 3 units
Average Total HP 3,075.2 3523.6
Average Individual HP 797.29 1225.6

93

Table 22. Target MOEA (Top) vs Default (Bot) raw results

Target MOEA (Top) Default (Bot)
858,1702,777,1770 500

965,1224,156 943
0 44,1188

414 785,451
0 1695,828,499,1062

95,1396,1869 410
1782,1603 992

1145 1128,64,521,1048
444,299,1575 1341

1601,1738,1264,1610,1603 1123
1615,1528,1757 334

1670 902,1302,217,1105,414,1262
842 1389,514,498,264,1495
1255 1162

0 738,847,1378,1675

Table 23. Targeting MOEA (Top) vs Default (Bot) results summary

Target MOEA (Top) Default (Bot)
Wins* 7 7
Best Survival Rate 5 units 6 units
Worst Survival Rate 2 units 2 unit
Average Survival Rate 3.2 units 3.8 units
Average Total HP 4747.2 3330.4
Average Individual HP 1444.8 863.4

94

Table 24. Default (Top) vs Positional MOEA (Bot) raw results

Default (Top) Positional MOEA (Bot)
0 1480,1610,1234,1103,1281,1535,1122,1400
0 1814,1573,1646,1629,1658
0 1446,1675,1365,1464,1753,1324
0 1472,1440,105,1654,330

1023,93 1755,997,1498,1753,1634,1537
0 791

31,455 1370
409 1771,1255,1784,1605,1703
0 1607,258,1426,502
0 1702,1721,1746,1288,1657,1708
0 1477,1711,1465,1772
0 1386,1500,454,1604,1439,1607

842 1573,1601,1438,1018,986
0 989,1729,1504,1612
0 1709,1569,1697,1620,1756,1573

Table 25. Default (Top) vs Positional MOEA (Bot) results summary

Default (Top) Positional MOEA (Bot)
Wins 1 14
Best Survival Rate 2 units 8 units
Worst Survival Rate 2 units 1 unit
Average Survival Rate 2 units 5 units
Average Total HP 486 6840.4
Average Individual HP 243 1348.8

95

Table 26. Positional MOEA (Top) vs Default (Bot) raw results

Positional MOEA (Top) Default (Bot)
1290,1754,1691,1612,1607,1761 0

1239,1740,260,1730,1351 0
0 771,1192,1315

1460,1552,1664,1649 0
1825,1741,1764 0

0 209,903,325,999
1545 0

1573,157,1497,1543,1672 0
1668,1711,1256,1609,1625 0

1766,1703,715,1663,1452,1577 0
1410,1702,1408,1054,1243 0

1810,1195,1693,1527,1288,1684 0
1714,1713 0

997,1519,1632 0
1249,1688,1588,1769,1595 0

Table 27. Positional MOEA (Top) vs Default (Bot) results summary

Positional MOEA (Top) Default (Bot)
Wins 13 2
Best Survival Rate 6 units 4 units
Worst Survival Rate 1 units 3 unit
Average Survival Rate 4.3 units 3.5 units
Average Total HP 6458.4 2857
Average Individual HP 1499.2 816.28

96

Table 28. Default (Top) vs Hybrid MOEA (Bot) raw results

Default (Top) Hybrid MOEA (Bot)
0 1606,446,1754,1672,1808
0 1588,1492,549,1367
0 1694,1526,1591,162,1244
0 779,1710,1639,1215,1621,1767
0 814,1483,1709,1633
0 1523,1784,1697,1719
0 1779,1719,577,1500
0 1615,1708,1617,1669,1666
0 1632,1832,11,1723
0 1657,1586,1682,1555
0 1728,1528,1605,1633,1500
0 1239,1634,1196,1548
0 1604,1559,1745,1686,1446
0 1519,1629,1812,1600
0 1302,1620,1783,1750

Table 29. Positional MOEA (Top) vs Default (Bot) results summary

Default (Top) Hybrid MOEA (Bot)
Wins 0 15
Best Survival Rate 0 units 6 units
Worst Survival Rate 0 units 4 unit
Average Survival Rate 0 units 4.4 units
Average Total HP 0 6,653.4
Average Individual HP 0 1,489.3

97

Table 30. Hybrid (Top) vs Default (Bot) raw results

Hybrid MOEA (top) Default (Bot)
0 1463,1181,897,1350

1728,882,1712 0
257,1540,1398,1652 0

857,1706,1188,1426,1729 0
930,531,1335,1220 0

1622,1732,1670,1594,1623 0
1703,1696,1088,1481,1703 0
1647,1696,1612,1597,1277 0

1789,1814,1666 0
1719,603,1782,1703,1584 0

661,1895 0
837,1566,1033,1378,1663,1746,1744 0

1593,8,1672,1409,790,1458 0
1246 464,576,958,347

1558,1232,1506,1529,1321,1640 0

Table 31. Positional MOEA (Top) vs Default (Bot) results summary

Hybrid MOEA (Top) Default (Bot)
Wins 13 2
Best Survival Rate 7 units 4 units
Worst Survival Rate 2 units 4 unit
Average Survival Rate 4.6 units 4 units
Average Total HP 6,517.7 3,618
Average Individual HP 1412.1 904.5

98

Table 32. Weak (Top) vs Proximity (Bot) raw results

Weak (Top) Proximity (Bot)
0 1583,788,1469,1474,1638,590,877
0 1440,1769,1650,1615,1459

90,1015,786 0
0 432
0 1671,1405,1913
0 1669,1156,1548,1736,1593,1600
0 1790,1570,1837
0 1642,1772
0 249,710,442,1646
0 96,347
0 1410,1678
0 1618,1650,1623,1609,1367,1608
0 1558,1688,1777
0 1557,1729,1438,689,1706
0 1746,1313,1661,1545

Table 33. Weak (Top) vs Proximity (Bot) results summary

Weak (Top) Proximity (Bot)
Wins 1 14
Best Survival Rate 3 units 7 units
Worst Survival Rate 3 units 1 unit
Average Survival Rate 3 units 4 units
Average Total HP 1891 5296.1
Average Individual HP 630.3 1373

99

Table 34. Proximity (Top) vs Weak (Bot) raw results

Proximity (Top) Weak (Bot)
1601,1665,1732,1788 0

1529,1213,1035 0
0 683,452,946,350

1737,1450 0
1777,1192,1587,1071,1660 0
942,880,1176,1490,1573 0

0 1407,1761,1763,1558,1770
1769,1539,37,1790,1472 0

1752 0
691,1766,1630,1052,1311 0

682,1316 0
1756 0

0 859,1007
0 903,1474

469 139

Table 35. Proximity (Top) vs Weak (Bot) results summary

Proximity (Top) Weak (Bot)
Wins 10 4
Best Survival Rate 5 units 5 units
Worst Survival Rate 1 units 2 unit
Average Survival Rate 3.3 units 3.25 units
Average Total HP 4566.1 3,733.2
Average Individual HP 1383.6 1,148.6

100

Table 36. Weak (Top) vs Target MOEA (Bot) raw results

Weak (Top) Target MOEA (Bot)
21 1714,1716,1705,1612

1103 1818,1411,1125,892,1554
841 1696,1660,1522,1626,1196
17 1635,1713,1778,1477
*4 1584,1462,1580,1155,1539

1193 1641,1736
79 641,1718,1113,1541,870,1786
254 1693
593 1716,1513,1617,1709
270 1393,1709,1415,951
306 1572,694
54 1769,1627,1612,1715,1630
479 1260,721,1494
294 1768,1722,1747
32 1679,1502,849,1299,609,1430,1328

Table 37. Weak (Top) vs Target MOEA (Bot) results summary

Weak (Top) Targeting MOEA (Bot)
Wins 0 15
Best Survival Rate 0 units 7 units
Worst Survival Rate 0 units 1 unit
Average Survival Rate 0 units 3.8 units
Average Total HP 0 5,863.9
Average Individual HP 0 1,465.9

101

Table 38. Target MOEA (Top) vs Weak (Bot) raw results

Target MOEA (Top) Weak (Bot)
1627,1876,984,909 464

0 1604,1419
1115,1582,1617,1306 68

0 353,786,1560
1659,1478,1330 985

1431,1329,716,588 1365
1122 958

1662,1773,1657,1064 1573
1063 529

1577,957,1636,1657,1484,1727 882
0 793

1161,1012,1840 1262
1402,1840 1043
1198,1106 586

1646,10,443 1239
641 73,564,1653,823,1108

Table 39. Target MOEA (Top) vs Weak (Bot) results summary

Target MOEA (Top) Weak (Bot)
Wins 10 4
Best Survival Rate 6 units 5 units
Worst Survival Rate 2 units 1 unit
Average Survival Rate 3.3 units 2.7 units
Average Total HP 4,639.9 2,684
Average Individual HP 1325.6 976

102

Table 40. Weak (Top) vs Positional MOEA (Bot) raw results

Weak (Top) Positional MOEA (Bot)
0 1711,1750,1664,1766,1594
0 1395,1818,1627,1714,1481,1692
0 1714,1400,1464
0 1786,1696,1794,1634
0 1638,1521,1626
0 1543,1841,1477
0 1674,1538,1397,1516,1610
0 1555,1639,1577,1542,1141,1468
0 1501,1683,1643,1596
0 1608,1590,1556,1690
0 1866,1666
0 1555,1636,1484,196,1109
0 950,1534,1768
0 1744,1848,1641
0 1569,1536,1760,1623

Table 41. Weak (Top) vs Positional MOEA (Bot) results summary

Weak (Top) Positional MOEA (Bot)
Wins 0 15
Best Survival Rate 0 6
Worst Survival Rate 0 2
Average Survival Rate 0 4
Average Total HP 0 6223
Average Individual HP 0 1555.7

103

Table 42. Positional MOEA (Top) vs Weak (Bot) raw results

Positional MOEA (Top) Weak (Bot)
1691,1697,1695,1604,1828 0

1647,1721,1505,1716 0
1686,1512,1629,1465 0
1771,1707,1697,1664 0
1699,1785,1693,1767 0

1524,1739,1700,1618,1246 0
1676,1559,1417,1492,1699 0

1494,1524,1594,1584 0
1442,1763,1601,1197 0

1753,1305,1443,1600,1639,1563 0
361,926,1568,1695,1422,1687 0

1599,1622,1361,1570,1108 0
941,1536,1095,1508 0

1204,1371,1607,1614,1129 0
1626,1614,1598,1696 0

Table 43. Positional MOEA (Top) vs Weak (Bot) results summary

Positional MOEA (Top) Weak (Bot)
Wins 15 0
Best Survival Rate 6 0
Worst Survival Rate 4 0
Average Survival Rate 4.6 0
Average Total HP 7,053.9 0
Average Individual HP 1,533.4 0

104

Table 44. Weak (Top) vs Hybrid MOEA (Bot) raw results

Weak (Top) Hybrid MOEA (Bot)
0 1475,1543,1614,1609,939,1695
0 1686,1774,1769,1316,1710
0 1682,1657,1593,1369,1599
0 1003,1619,1759,1638
0 1682,1622,1727,1628
0 1834,1714,1392,934,1642
0 1708,862,1595,1497
0 1758,1712,1641,1615,1636,1599
0 1600,1521,1728
0 1302,1590,1591,1633,1410,1625,1644
0 1493,1572,1763,1594,1590
0 1616,1646,1205,1428
0 1659,1640,1753,1714
0 1562,1606,1522,1749,1582,1680
0 1628,1769,1469,1846

Table 45. Weak (Top) vs Hybrid MOEA (Bot) results summary

Weak (Top) Hybrid MOEA (Bot)
Wins 0 15
Best Survival Rate 0 7
Worst Survival Rate 0 3
Average Survival Rate 0 4.6
Average Total HP 0 7,578.7
Average Individual HP 0 1,647.5

105

Table 46. Hybrid MOEA (Top) vs Weak (Bot) raw results

Hybrid MOEA (Top) Weak (Bot)
1824,1765,1641,1627,1681,1621 0

1718,1559,1659,1741,1540 0
1497,1570,806,1385 0

639,1692,1543,967,1614 0
1608,1564,1734,1531,1102,915,1598 0

1667,1484,1712,866,1478,1666 0
1766,1632,1752,1654 0

1683,1574,1605,1399,1598,1622,1661,1700 0
1576,1692,1530,1707,1607,1636 0

1280,1786,1728,1410 0
853,1657,1715,1560,1804 0

1698,1359,1624,1584,907,1618 0
1725,1752,1801 0

1695,1366,1611,1539,1758 0
1680,1698,1299,1660,1536 0

Table 47. Hybrid MOEA (Top) vs Weak (Bot) results summary

Hybrid MOEA (Top) Weak (Bot)
Wins 15 0
Best Survival Rate 8 0
Worst Survival Rate 3 0
Average Survival Rate 5.2 0
Average Total HP 8,138.7 0
Average Individual HP 1,565.1 0

106

Table 48. Proximity (Top) vs Targeting MOEA (Bot) raw results

Proximity (Top) Targeting MOEA (Bot)
463,694,465,999,441,961,298 0

1807 0
69,558 0
756,55 1357,1055,527,1428,1530,1467

8 455,1396,68,248,797
1326,1000,1471,1006,1331 0

1590 1388
1420 1651
1655 983,1009
463 699,796

479,989,1716,743,338,899,1249,1188 0
1524 0
52 1624,1723,959

1386,58,588,1170 0
175 1106
6 716,1393,1349

Table 49. Proximity (Top) vs Targeting MOEA (Bot) results summary

Proximity (Top) Targeting MOEA (Bot)
Wins* 7 6
Best Survival Rate 8 6
Worst Survival Rate 1 2
Average Survival Rate 4 3.5
Average Total HP 3,602.2 3,596.5
Average Individual HP 900.5 980.8

107

Table 50. Targeting MOEA (Top) vs Proximity (Bot) raw results

Targeting MOEA (Top) Proximity (Bot)
903,569,622,160 0

1607,1500,1569,1796 0
468 1468,1330

260,1050,1097,23,714,514,1051 0
979,1437,1255,1477,1304 0

325 0
823 185,1825,754,369

782,168 1645,1841,1663
66,703,902,808,364,1074 0

211,423 1290,1022,754
1536,947 0

1235,586,726,1387 0
665,321,1123,577,269,705,978 0

955 1504,1351
1602,1209,914,538,518,1425,1450 583

1011,381,445,102 0

Table 51. Targeting MOEA (Top) vs Proximity (Bot) results summary

Targeting MOEA (Top) Proximity (Bot)
Wins 11 5
Best Survival Rate 7 6
Worst Survival Rate 1 2
Average Survival Rate 4.6 3.5
Average Total HP 4,076.2 3,596.5
Average Individual HP 886.1 980.8

108

Table 52. Proximity (Top) vs Positional MOEA (Bot) raw results

Proximity (Top) Positional MOEA (Bot)
0 912,475,1509,911,1745,1488

939,16,975 0
0 39,1572,1432,1589,886,1469,1603
0 1589,1643,1572,1601,1587,1106,1794
0 1669,1751

23,332,362 0
519 1816

919,400,590,912 730
0 657,745,946,728,1170,980
0 1607,1151,1551,217,1316
0 1686,1701
0 1757,1560,1831,255
0 299,1883,1175
0 1317,763,1809
0 1670,1236,1318,636

316,514,1088,871 0

Table 53. Proximity (Top) vs Positional MOEA (Bot) results summary

Proximity (Top) Positional MOEA (Bot)
Wins* 4 11
Best Survival Rate 4 7
Worst Survival Rate 3 2
Average Survival Rate 3.5 4.4
Average Total HP 2,064.2 5,499.1
Average Individual HP 589.7 1234.5

109

Table 54. Proximity MOEA (Top) vs Proximity (Bot) raw results

Positional MOEA (Top) Proximity (Bot)
0 445,440,127,867,91,611

113,1568,1325,1157 0
1600,948,1373 0

1189,225 0
1744,536 0

1734,141,1834 0
0 434,589

554 0
1783,1627,1582,910 0
677,1753,1585,1688 0

1351,1761,1682,1222,1328,1036 0
1026,1108,1619,1678,927 0
1037,1272,1443,695,873 0

1688,1739 0
1652,1393,1607,1755 0

Table 55. Positional MOEA (Top) vs Proximity (Bot) results summary

Positional MOEA (Top) Proximity (Bot)
Wins 13 2
Best Survival Rate 6 6
Worst Survival Rate 1 2
Average Survival Rate 3.4 4
Average Total HP 5,230.7 1,827.5
Average Individual HP 1,278.6 456.8

110

Table 56. Proximity (Top) vs Hybrid MOEA (Bot) raw results

Proximity (Top) Hybrid MOEA (Bot)
0 1589,1548,950,617,510,1198
0 1720,755

429 1724
0 1047,876
0 1433,1645,766,1069,1606
0 661,1511,1671,1616,1264,569,1586
0 1544,791,1240
92 1857
0 1383,1125,863,946,1052
0 750,1623,573,982
0 1007,1174,862,1348,917,1235
0 1056,507,1118,1219
0 1286,1098,1527,1562,1631,1567

582,855 0
0 1268,1512,1622,1240,1769

Table 57. Proximity (Top) vs Hybrid MOEA (Bot) results summary

Positional MOEA (Top) Proximity (Bot)
Wins 1 14
Best Survival Rate 2 7
Worst Survival Rate 2 1
Average Survival Rate 2 4
Average Total HP 1,438 4,939
Average Individual HP 719 1,213.1

111

Table 58. Hybrid MOEA (Top) vs Proximity (Bot) raw results

Hybrid MOEA (Top) Proximity (Bot)
469,1661,540,1783 0

1757,275,1625,1556,608,429,1640 0
0 521,736,793

1799 294,472
1842 0

0 644,328,1265
298,1581,590,1019 0

0 1545,957,1453,1574,1309,1349,1092
1367,1067,529,228,14,1421 0

1715,1582,320 0
224,1667,1609,142,605,973 0

559,1788,358,304,750 0
0 1548,767,330

1724,1576,1637,348,1690 0
0 554,519

Table 59. Hybrid MOEA (Top) vs Proximity (Bot) results summary

Hybrid MOEA (Top) Proximity (Bot)
Wins 9 5
Best Survival Rate 7 7
Worst Survival Rate 1 2
Average Survival Rate 3.4 4
Average Total HP 4,651.8 3,610
Average Individual HP 1,021.1 902.5

112

Table 60. Targeting MOEA (Top) vs Positioning MOEA (Bot) raw results

Targeting MOEA (Top) Positional MOEA (Bot)
0 775,947,391,617
0 1722,1035,753,1463,1546
0 587,757,1240,1000
0 904,1541,566

363,369,638 978
0 694,1046,368,546,476
0 529,504,1522,1870,1607,251
0 395,1734,1200,768,42,1527
0 1452,1207,986
0 794,1294,759,1223
0 696,1601,1593,1092,1084,1698

1135,78,478,268 1509
0 110,1743,1194,622
0 903,1584,699,1306
0 1569

Table 61. Targeting MOEA (Top) vs Positional MOEA (Bot) results summary

Targeting MOEA (Top) Positional MOEA (Bot)
Wins 2 13
Best Survival Rate 4 6
Worst Survival Rate 3 1
Average Survival Rate 3.5 4.2
Average Total HP 1,673.5 4,320.7
Average Individual HP 478.1 1,021.2

113

Table 62. Positioning MOEA (Top) vs Targeting MOEA (Bot) raw results

Positional MOEA (Top) Targeting MOEA (Bot)
1714 0

1888,566 0
1777,1383,571,722 0

979,756,1203 0
1040,1636 0

722,1607,1693,1616 0
722,1014,752,1201,551,1480 0

1703,923,1615,951,1394 0
725,1117,1568,1079,437,1598,528,711 0

59 832,71,1153,1031,462,759
1295,231,1474,1166,726,28 0

56 287,267,430,77,325
1050,1162,808 0

501,1305,1069,1023 0
1194,84,1097,1403,1363,930 0

Table 63. Positional MOEA (Top) vs Targeting MOEA (Bot) results summary

Positional MOEA (Top) Targeting MOEA (Bot)
Wins 13 2
Best Survival Rate 8 6
Worst Survival Rate 1 4
Average Survival Rate 3.5 5
Average Total HP 4,883.7 4,320.7
Average Individual HP 1,154.3 1,021.2

114

Table 64. Targeting MOEA (Top) vs Hybrid MOEA (Bot) raw results

Targeting MOEA (Top) Hybrid MOEA (Bot)
0 1134,1370,343,640,1464,945,1646,1529,1501
0 650,348,1594
0 1593,1452,7,1273,1394,1650
0 1538,1757,445,147,1704,1178

1640,797,5,300 1596
0 1583,1071,750,718,545
0 1609,1172,1448,1137,1525,970,536
0 1500,682,621,570,1621
0 1607,926,387
0 552,1382,981,1336,1214
0 1050,942,848,343,568
0 356,477,1762,1191,432
0 276,1176,528,1603,1764,294,1239
0 1491,599,570,1579,1424,1230,1022,1195,89
0 1240,1158,995,180,996,1548,1346

Table 65. Targeting MOEA (Top) vs Hybrid MOEA (Bot) results summary

Targeting MOEA (Top) Hybrid MOEA (Bot)
Wins 1 14
Best Survival Rate 4 9
Worst Survival Rate 4 3
Average Survival Rate 4 5.8
Average Total HP 2,742 6,089.7
Average Individual HP 685.5 1,039.7

115

Table 66. Hybrid MOEA (Top) vs Targeting MOEA (Bot) raw results

Hybrid MOEA (Top) Targeting MOEA (Bot)
1499,1766,720,1770,1586 0

1153,1562,629,1356,1195,1056,1258,1423 0
1181,350,1318,340 0
1475,238,1171,816 0

564,1141,1687 0
1367,1370,1076 0

1328,88,1269,705 0
165,714,1354,1431,1381 0

1806,1531,1543,512,1345,620 0
442,1778,1193,923,1412 0
445,655,1205,873,1670 0

1355,1549,963 0
888,808,60,1690,1701,1612 0

82 543,1131,1251,749,949,1341

Table 67. Hybrid MOEA (Top) vs Targeting MOEA (Bot) results summary

Hybrid MOEA (Top) Targeting MOEA (Bot)
Wins 13 1
Best Survival Rate 8 6
Worst Survival Rate 3 6
Average Survival Rate 4.6 6
Average Total HP 5,246.8 5,964
Average Individual HP 1,118.1 994

116

Table 68. Positioning MOEA (Top) vs Hybrid MOEA (Bot) raw results

Positioning MOEA (Top) Hybrid MOEA (Bot)
586,803,29,905 0

1004,338,595,845,1029 0
0 1415,448,689,611

839,1291,1195,62,934,1173 0
1213,1101,1322,1516,1079,904,775 0

846 0
612,809,795,1135,1299,530 0

0 1379,430,423
0 601,193

1489,289,1236,1251,1034,1452,997 0
1143,261,831,1409,601,1263,382,468 0

0 1096,399,920,98
569,1147,690,341,575,487,481,1045 0

276,448,938,638,253,1399 0
0 642,207,382,763

Table 69. Positional MOEA (Top) vs Hybrid MOEA (Bot) results summary

Positional MOEA (Top) Hybrid MOEA (Bot)
Wins 10 5
Best Survival Rate 7 4
Worst Survival Rate 1 2
Average Survival Rate 5.8 3.4
Average Total HP 4,895.7 2,139.2
Average Individual HP 844.0 629.1

117

Table 70. Hybrid MOEA (Top) vs Positional MOEA (Bot) raw results

Hybrid MOEA (Top) Positional MOEA (Bot)
0 444,1233,1235,942,1235,1303

526 87,881
483,138,1538,149,531 0

0 1405,1307,739
355,30,675,215 0

0 887,483,856
0 1081,445,604,778

550,1145,1407 0
0 707,1115

373,699,1398 0
0 1410,8,1198,1345,501

1012,382,1047,564,328 0
0 1323,1190
- -

Table 71. Hybrid MOEA (Top) vs Positional MOEA (Bot) results summary

Hybrid MOEA (Top) Positional MOEA (Bot)
Wins* 5 8
Best Survival Rate 5 6
Worst Survival Rate 3 2
Average Survival Rate 4 3.3
Average Total HP 2,603.7 3,092.7
Average Individual HP 650.9 916.3

118

Bibliography

1. John R. Boyd, “The essence of winning and losing,” http://www.danford.net/

boyd.essence.htm, Accessed: March 10, 2015.

2. “Dune II - wikipedia, the free encyclopedia,” http://en.wikipedia.org/wiki/

Dune_II, Accessed: March 10, 2015.

3. Cavedog Entertainment, “Total annihilation,” https://en.wikipedia.org/

wiki/Total_Annihilation, Accessed: April 24, 2016.

4. “Sparcraft image from github,” https://github.com/davechurchill/

ualbertabot/wiki, Accessed: April 24, 2016.

5. Jason M Blackford, “Online build-order optimization for real-time strategy agents

using multi-objective evolutionary algorithms,” M.S. thesis, Air Force Institute

of Technology, 2014.

6. Donald A Gruber, “Tactical ai in real time strategy games,” M.S. thesis, Air

Force Institute of Technology, 2015.

7. “Boss image from github,” https://github.com/davechurchill/

ualbertabot/wiki, Accessed: April 24, 2016.

8. Craig Reynolds, “Boids,” http://www.red3d.com/cwr/boids/, Accessed: April

24, 2016.

9. Lyall J Di Trapani, “A real-time strategy agent framework and strategy classifier

for computer generated forces,” M.S. thesis, Air Force Institution of Technology,

2012.

119

10. Carlos Coello Coello, Gary B Lamont, and David A Van Veldhuizen, Evolutionary

algorithms for solving multi-objective problems, 2nd edition, Springer Science &

Business Media, 2007.

11. “Real-time strategy - wikipedia, the free encyclopedia,” http://en.wikipedia.

org/wiki/Real-time_strategy, Accessed: March 10, 2015.

12. Malcolm Gladwell, Blink: The power of thinking without thinking, Hachette

Digital, Inc., 2007.

13. “Fog of war - wikipedia, the free encyclopedia,” http://en.wikipedia.org/

wiki/Fog_of_war, Accessed: March 10, 2015.

14. Blizzard Entertainment, “Blizzard entertainment: Classic games,” http://us.

blizzard.com/en-us/games/legacy, Accessed: March 10, 2015.

15. Blizzard Entertainment, “Starcraft,” http://us.blizzard.com/en-us/games/

sc/, Accessed: April 24, 2016.

16. Blizzard Entertainment, “Starcraft ii world championship series,” 2016.

17. Relic Entertainment, “Company of heroes,” http://www.companyofheroes.

com/, Accessed: April 24, 2016.

18. “Spring rts engine,” http://springrts.com, Accessed: March 10, 2015.

19. “Balanced annihilation - spring,” https://springrts.com/wiki/Balanced_

Annihilation, Accessed: May 01, 2016.

20. “Welcome to the air university,” http://www.au.af.mil/au/soc/sos.asp, Ac-

cessed: March 10, 2015.

21. “Wargus — home,” www.wargus.sourceforge.net, Accessed: March 10, 2015.

120

22. “Sparcraft - starcraft combat simulation,” https://code.google.com/p/

sparcraft/, Accessed: March 10, 2015.

23. Carl Von Clausewitz, On war, Digireads.com Publishing, 2004.

24. U.S. Army, Army Field Manual FM (3-0) Unified Land Operations, 2012.

25. Guillaume Chaslot, Monte-carlo tree search, Ph.D. thesis, Maastricht University,

2010.

26. U.S. Army, Field Manual 3-21.8 (FM 7-8) The Infantry Rifle Platoon and Squad,

2007.

27. U.S. Army, Field Manual 3-21.8 (FM 7-8) The Infantry Rifle Platoon and Squad,

2007.

28. Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David

Churchill, and Mike Preuss, “A survey of real-time strategy game AI research and

competition in starcraft,” Computational Intelligence and AI in Games, IEEE

Transactions on, vol. 5, no. 4, pp. 293–311, 2013.

29. Kurt Weissgerber, “Developing an effective and efficient real time strategy agent

for use as a computer generated force,” M.S. thesis, Air Force Institute of Tech-

nology, 2010.

30. David Churchill, ,” http://webdocs.cs.ualberta.ca/~cdavid/rts_research.

31. “Starcraft AIb competition,” http://webdocs.cs.ualberta.ca/~cdavid/

starcraftaicomp/, Accessed: March 10, 2015.

32. Buro Churchill, “Portfolio greedy search and simulation for large-scale combat

in starcraft,” CIG 2013, 2013.

121

33. Buro Churchill, “Incorporating search algorithms into rts game agents,” AIIDE,

2011.

34. Spronck Heijden, Bakkes, “Dynamic formations in real-time strategy games,”

IEEE, 2008.

35. Bjorn Gmeiner, Gerald Donnert, and Harald Kostler, “Optimizing opening strate-

gies in a real-time strategy game by a multi-objective genetic algorithm,” Re-

search and Development in Inteligent Systems, XXIX, 2012.

36. “Multi-objective optimization - wikipedia, the free encyclopedia,” http://en.

wikipedia.org/wiki/Multi-objective_optimization, Accessed: March 10,

2015.

37. “Welcome to PyGMO,” http://esa.github.io/pygmo/, Accessed: March 10,

2015.

38. “MOEA framework, a java library for multi-objective evolutionary algorithms,”

http://www.moeaframework.org/, Accessed: March 10, 2-15.

39. “ParadisEO, paradiseo home page,” http://paradiseo.gforge.inria.fr/, Ac-

cessed: March 10, 2015.

40. “ParadisEO, paradiseo documentation,” http://eodev.sourceforge.net/, Ac-

cessed:April 20, 2016.

41. “jMetal web site,” http://jmetal.sourceforge.net/, Accessed: March 10,

2015.

42. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan, “A fast

and elitist multiobjective genetic algorithm: NSGA-II,” Evolutionary Computa-

tion, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

122

43. Eckart Zitzler, Marco Laumanns, Lothar Thiele, Eckart Zitzler, Eckart Zitzler,

Lothar Thiele, and Lothar Thiele, “SPEA2: Improving the strength pareto evo-

lutionary algorithm,” 2001.

44. Yang Liu, “A fast and elitist multi-objective particle swarm algorithm: NSPSO,”

in Granular Computing, 2008. GrC 2008. IEEE International Conference on.

IEEE, 2008, pp. 470–475.

45. R. Kennedy, J.; Eberhart, “Partical swarm optimization,” in Proceedings of IEEE

International Conference on Neural Networks. IEEE, 1995, pp. 1942–1948.

46. “Spring engine maps,” https://springrts.com/wiki/Maps, Accessed: May 11,

2016.

47. “Balanced annihilation v7.60 - armstump,” http://imolarpg.dyndns.org/

modinfo/ba760/armstump.html, Accessed: March 10, 2015.

48. “What is the rationale behind the magic number 30 in statistics?,”

https://www.researchgate.net/post/What_is_the_rationale_behind_

the_magic_number_30_in_statistics, Accessed: May 11, 2016.

49. Lpez-Ibez Paquete Vahrenhold Beume, Fonseca, “On the complexity of comput-

ing the hypervolume indicator,” IEEE Transactions on Evolutionary Computa-

tion, 2009.

50. Corne Knowels, “On metrics for comparing nondominated sets,” .

51. Schwarz-Bernt Middendorf Moritz, Reich, “Refined ranking relations for selection

of solutions in multi objective metaheuristics,” .

123

52. David H Wolpert and William G Macready, “No free lunch theorems for opti-

mization,” Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp.

67–82, 1997.

53. “Ecma-404 the json data interchange standard,” http://www.

ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf,

Accessed: May 11, 2016.

54. “15.3. time time access and conversions,” https://docs.python.org/2/

library/time.html, Accessed: April 26, 2016.

124

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

16-06-2016 Master’s Thesis Sept 2014 — June 2016

A Multi-Objective Approach to
Tactical Manuvering Within
Real Time Strategy Games

Ball, Christopher D., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-J-004

Intentionally Left Blank

Distribution Statement A:
Approved for Public Release; Distribution Unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States

The real time strategy (RTS) environment is a strong platform for simulating complex tactical problems. The overall
research goal is to develop artificial intelligence (AI) RTS planning agents for military critical decision making education.
This particular research effort of RTS AI development focuses on constructing a unique approach for tactical unit
positioning within an RTS environment. By utilizing multiobjective evolutionary algorithms (MOEAs) for finding an
“optimal” positioning solution, an AI agent can quickly determine an effective unit positioning solution with a fast, rapid
response. The resulting agent does not requires the usage of training or tree searches to optimize, allowing for consist
effective performance across all scenarios against a variety of opposing tactical options.

RTS, Tactics, MOEA, Optimization

U U U UU 140

Dr. G. B. Lamont, AFIT/ENG

(937) 255-3636, x4718; gary.lamont@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-16-2016

	A Multi-Objective Approach to Tactical Maneuvering Within Real Time Strategy Games
	Christopher D. Ball
	Recommended Citation

	tmp.1511803496.pdf.JUETz

