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Abstract

Dynamic optimization of spacecraft attitude reorientation maneuvers can result in

significant savings in attitude determination and control system size, mass, and power.

Optimal control theory is generally applied using an open loop trajectory which is vulner-

able to disturbances. A closed loop implementation of optimal control has been difficult

to achieve due to the computational requirements needed to quickly compute solutions

to the optimal control problem. This research focuses on evaluating a near real-time op-

timal control (RTOC) system for large angle slew maneuvers on the Air Force Institute

of Technology’s spacecraft simulator called SimSat. A near RTOC algorithm computes

optimal control solutions at a rate of 0.4 Hz using a pseudospectral-based solver. The

solutions or trajectories are then resampled at a fixed time step of 100 Hz and fed forward

to a closed loop on SimSat. This algorithm is developed and tested on the hardware and

compared to simulated and hardware results of a proportional-integral-derivative (PID)

controller and an open loop optimal control controller for 90 degree and 180 degree Z-axis

rotations. The benefits of decreased time to complete the maneuver and increased accu-

racy at the end of the optimal maneuver are shown to be improvements over traditional

over PID control and open loop optimal control.
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Analysis of a Near Real-Time Optimal Attitude Control

for Satellite Simulators

I. Introduction

1.1 Motivation

Optimal control theory is an extension of the calculus of variations that applies

the methods of static optimization to a dynamic control problem [7]. Optimal control

theory can be applied to generate the “optimal” or “near optimal” control input for

a given performance index to generate a trajectory that maximizes or minimizes the

performance index. For instance, a spacecraft’s trajectory could be optimized for the

minimal amount of fuel for an orbit transfer maneuver or an aircraft’s autopilot could

optimize a route from one location to another that takes the least amount of time to

complete. Optimal control theory is generally applicable to all engineering disciplines.

Commuters normally use optimal control theory every day to determine the shortest

route home from work during rush hour traffic which may not be the shortest route but

may be the one that minimizes time.

The application of optimal control theory to the spacecraft reorientation problem

may likely be of interest to all stakeholders in the satellite design process. Many remote

sensing satellites have requirements for rapid, accurate slewing. A spacecraft using op-

timal control theory could be applied so that these slew maneuvers could be completed

in less time or with less control effort than a spacecraft using traditional control tech-

niques. This would allow an imaging satellite for instance to gather more images on a

single pass or switch between modes in less time. However, optimal control theory is

generally applied as open-loop with little to no feedback to correct for errors along the

manuever. Any disturbance that is not anticipated, such as gravity-gradient torques or

air drag, can cause the satellite to deviate from the optimal trajectory if the disturbances

are not modeled. If left uncorrected, these effects may result in a pointing error at the

end of a maneuver or in an absolute worst-case scenario the loss of the satellite. These
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disturbances must be accounted for or corrected in order for optimal control techniques

to be applied to the spacecraft reorientation problem.

One method of counteracting these disturbances is near real-time optimal control

(RTOC) where the controller computes a new optimal control solution on a frequent

basis. The spacecraft can then follow the most recently computed optimal solution for a

given performance index. While computationally intensive, near RTOC may provide a

time-optimal reorientation solution in the presence of external disturbances.

1.2 Research Objectives

The goal of this research is to evaluate the application of optimal control theory

to the spacecraft reorientation maneuver problem. This will be accomplished in order to

reduce the time required to complete the maneuver through the application of near RTOC

techniques. AFIT’s spacecraft simulator, SimSat, shown in Fig. 1.1, is the test platform

on which a near RTOC controller is compared with an open-loop optimal controller and

a traditional proportional-integral-derivative (PID) controller. This research will apply

near RTOC techniques developed first by Ross et. al [34] and modified for planned use on

SimSat by McFarland [26] Parameters in the near RTOC algorithm affecting trajectory

switching and optimal control solver settings will be modified and the effects of changing

those parameters on the performance of the near RTOC controller will be analyzed.

1.3 Methodology

The near RTOC controller evaluated on a AFIT’s SimSat to assess the feasibility

of decreasing the time required to complete a reorientation maneuver. A PID controller,

an open-loop optimal controller, and a near RTOC controller were designed and imple-

mented on SimSat. Two different rest-to-rest reorientation maneuvers were performed

over all three axes and state data was collected. Near RTOC parameters determining

when the algorithm switched from one trajectory to another were varied in order to deter-

mine which values yielded the best performance. Metrics to compare optimal manuevers

with non-optimal maneuvers were developed and the three methods of spacecraft control

will be compared.
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Figure 1.1: SimSat, AFIT’s 2nd-generation Simulated Spacecraft

1.4 Thesis Outline

Chapter II provides an extensive literature review on spacecraft dynamics, opti-

mal control theory, spacecraft simulators, and applications of optimal control on space-

craft. Chapter III describes SimSat’s hardware and software, and methods and results

of preliminary hardware integration, and the methods used for simulating and physically

implementing optimal control on the spacecraft simulator. Chapter IV provides the re-

sults and analysis of optimal control simulation and experimental testing on SimSAT

II. Chapter V provides conclusions on the presented research and recommendations for

future research.
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II. Background

This chapter presents a literature review of topics relevant to this research. The first

section reviews spacecraft rigid body dynamics in order to determine state equations of

motion (EOM). The next section gives an overview of optimal control theory from which

solutions will be tested on a the spacecraft simulator in order to improve reorientation

performance. The following section provides a historical background on spacecraft sim-

ulators with the final section covering applied optimal control research and development

activities as applied to spacecraft and spacecraft simulators. These two sections will

provide a background on previous research completed using optimal control theory on

spacecraft simulators.

2.1 Spacecraft Dynamics

2.1.1 Rigid Body Dynamics. For deriving the equations of motion for atti-

tude dynamics, a spacecraft is treated as a rigid body with six degrees of freedom that

allows for rotational as well as translational motion. This section will only discuss rota-

tional degrees of freedom (DOF). The angular momentum of a rigid body is obtained by

integrating over the entire body as can be seen from [43]

~H0 =

∫
body

~ρ× ~v dm. (2.1)

The inertial velocity of a particle of the rigid body mass dm relative to the origin O can

be written as

~v = ~ωbi × ~ρ. (2.2)

Therefore, the angular momentum of the rigid body about the origin O can be computed

from[41].

~H0 =

∫
body

(~ρ× (~ωbi × ~ρ))dm. (2.3)
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The vector ~ρ from the center of mass of the rigid body to dm and the instantaneous

angular velocity vector of the body frame with respect to the inertial frame ~ωbi are

expressed in the body frame as

~ρb = xb̂1 + yb̂2 + zb̂3 (2.4)

and

~ωbib = ω1b̂1 + ω2b̂2 + ω3b̂3. (2.5)

Eq. (2.3) can be rewritten as

~H0 =

∫
body


(ω1(y

2 + z2)− ω2xy − ω3xz)b̂1

(−ω1xy + ω2(x
2 + z2)− ω3yz)b̂2

(−ω1xz − ω2yz + ω3(x
2 + y2))b̂3

 dm. (2.6)

Since ~ωbi is the same for all points on the rigid body, it can be extracted from the body

integral and the mass moment of inertia Ib is now defined as

Ib =


∫
b
(y2 + z2)dm −

∫
b
yx dm −

∫
b
zx dm

−
∫
b
xy dm

∫
b
(x2 + z2)dm −

∫
b
zy dm

−
∫
b
xz dm −

∫
b
yz dm

∫
b
(x2 + y2)dm

 . (2.7)

Eq. (2.6) can now be expressed as

~H0 = Ib~ω
bi
b (2.8)

where Ib is assumed constant in the body frame because of the rigid body constraint.

The inertial derivative of ~H0 with respect to time is

~̇H0 = Ib~̇ω
bi
b + ~ωbib × Ib~ωbib . (2.9)
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The time rate of change of the angular momentum is ~̇H0 of the entire spacecraft is

equivalent to the net external torque shown in Eq. (2.11) which is the rotational analog

to the change in linear momentum ~F . Dropping subscripts and superscripts in Eq. (2.9)

by assuming all expressions from this point forward are expressed in the body frame

results in

~̇H = I~̇ω + ~ωxI~ω (2.10)

where ωx is a skew-symmetric matrix equivalent to performing a vector cross product.

It can be shown [42] that the inertial time derivative of angular momentum is also

equal to the external moment acting upon the rigid body. This results in

~M = ~̇H = I~̇ω + ~ωxI~ω (2.11)

where ~M is the vector sum of all external moments on the spacecraft. This vector

equation is known in component form as Euler’s equations which come from the Swiss

mathematician Leonard Euler’s laws of motion which extend Isaac Newton’s laws of

motion for particles to rigid bodies.[27] Solving Eq. (2.11) for the time rate of change of

angular velocity ~̇ω is

~̇ω = −I−1(~ωxI~ω − ~M). (2.12)

2.1.2 Quaternions. The most common way to transform a vector in one ref-

erence frame to another is through a direction cosine matrix (DCM), also known as a

rotation matrix [41]. This is a 3x3 orthonormal matrix. Rbi transforms a vector from

an inertial frame î to a body-fixed frame b̂ and can be expressed as

Rbi = {b̂} · {̂i}T . (2.13)
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Rbi will transform a vector ~vi, which has its components expressed in the inertial frame,

to the vector ~vb which has its components expressed in the body frame through

~vb = Rbi~vi. (2.14)

The nine values of this DCM are interrelated three independent DOF and six constraints.

The constraints are the following: every column or row must have a magnitude of one

and the columns or rows must be orthogonal.

A rotation described using Euler angles which are expressed as three successive

rotations about orthogonal frame axes [37]. This allows for a 3-DOF rotation that is

three successive simple rotations expressed as direction cosine matrices. However, all

Euler axis rotations have a singularity [41]. This singularity can be seen when one

attempts to extract of Euler angles from a rotation matrix describing the full rotation.

Due to the singularities, Euler angles are not the best choice for computation but they

still provide an excellent method of describing and visualizing rotations.

An alternative method of representing rigid body rotations is the Euler axis/angle

or eigenaxis representation. Any rigid body rotation can be described as a rotation about

an angle that is fixed to the body and is stationary in an inertial reference frame [42].

This allows the three rotation sequence of Euler angles to be performed in one step.

However, this approach also has a singularity at 0◦ rotation.

A third method of attitude representation, and the one most commonly used on

spacecraft today, is quaternions. Based on the Euler angle/axis set, it consists of a 3x1

vector ~q and a scalar component q4. Together, they form a 4x1 quaternion q̄ consisting

of a 3x1 vector ~q and an independent parameter q4. Quaternions are singularity-free

and provide compuational advantages over other rotational parameter sets due to their

lack of triginometric computation. From a given Euler axis â and rotation angle φ, a

quaternion can be defined as
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~q =


q1

q2

q3

 = âsin

(
φ

2

)
(2.15)

and

q4 = cos

(
φ

2

)
. (2.16)

resulting in a full quaternion of

q̄ = [~q q4]
T = [q1 q2 q3 q4]

T (2.17)

Since quaternions have four parameters and only three are required, a constraint is

required which can be written as [42]

q21 + q22 + q23 + q24 = 1. (2.18)

The way to calculate quaternion error between two quaternion is to use the quater-

nion transmuted matrix which is defined by


q1,error

q2,error

q3,error

q4,error

 =


q′′4 q′′3 −q′′2 q′′1

−q′′3 q′′4 q′′1 q′′2

q′′2 −q′′1 q′′4 q′′3

−q′′1 −q′′2 −q′′3 q′′4




q
′
1

q
′
2

q
′
3

q
′
4

 (2.19)

where the quaternion error values found in the left array are the error quaternion pa-

rameters between q′ and q′′ [26].

In a 3D rotational dynamic system, a rotational rate cannot be directly integrated

to obtain rotational parameters such as the Euler Angles or quaternions due to the path

dependent nature of rotations [41]. The rate of change of quaternions can be described

by the following equation
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˙̄q = Q(q̄)~ω. (2.20)

where Q is defined as

Q =
1

2


q4 −q3 q2

q3 q4 −q1
−q2 q1 q4

−q1 −q2 −q3

 . (2.21)

2.1.3 Reaction Wheels. The most common angular momentum control device

used on spacecraft today is the reaction wheel. They are used for attitude control on

many large and small spacecraft that require accurate pointing. [36]. A reaction wheel

array (RWA) usually contains three (or more) reaction wheels that consist of a flywheel

and motor with independent microcontrollers to manage the required angular speed and

acceleration of each wheel in the RWA. The RWAs exchange momentum between the

wheels and spacecraft, allowing for the spacecraft to change in attitude without having

to apply an external torque. The total angular momentum of a spacecraft, in the absence

of external torques, is constant. The total spacecraft angular momentum can be written

as

~Htot = ~HS/C + ~hRW (2.22)

where ~HS/C is the total angular momentum of the spacecraft and ~hrw is the total angular

momentum of the reaction wheels.

Eq. (2.12) can be now be written as

~̇ω = −I−1(~ωxI~ω −M + ~ωx~hrw + ~̇hrw). (2.23)

The reaction wheel angular momentum of a RWA ~hrw with n reaction wheels is defined

as
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Figure 2.1: Representative Reaction Wheel Array in a Generic Spacecraft Body

~hrw = D~ψ1 +D~ψ2 +D~ψ3 + ...D~ψn (2.24)

and the torque generated is

~̇hrw =
n∑
i=1

D~ψi. (2.25)

where ψi is the angular velocity of the reaction wheel, ψ̇ is the angular acceleration of

the reaction wheel, and D is the scalar mass moment of inertia of the reaction wheel

array about its spin axis. The reaction wheels are can be aligned with the body axes

but often are not in the case of 4 or more wheels in order to create redundancy in case

a wheel fails on orbit. A case where the reaction wheels are aligned with the body axes

is shown in Fig. 2.1.

2.2 Optimal Control Theory

2.2.1 Optimization. This section will describe static optimization, such as siz-

ing an airfoil for an aircraft or reaction wheels for a spacecraft. The act of obtaining the

“best” result under given circumstances is optimization.[13] What is optimal and what
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is not depends on the problem at hand, but the techniques used to optimize a set of pa-

rameters are the same across engineering disciplines.[1] In engineering and mathematics,

the optimization of a system usually refers to finding the desired extrema of a function.

Optimal design is applying mathematical methods to find the extrema of a function that

represents the defined optimality of system.

For optimal design problems, regardless of what is being optimized, there exists

a standard mathematical notation. The problem consists of design variables, a cost

function, and constraints. Design variables ~x are the parameters of the system being

optimized that are varied by the optimizer to achieve the desired optimality. A cost

function f(~x) is a function of one or more design variables. This cost function, also

referred to as a performance index or an objective function J has extrema from which

the optimum design variables can be determined. The equality constraint functions h(~x)

such as h1(~x) = 2 and inequality constraint functions g(~x) such as g1(~x) ≤ 5 enforce

limits on one or more design variable that must be satisfied.

Optimal design problems can be linear or nonlinear. If both the cost and constraint

functions contain only linear terms, the problem is classified as a linear programming

(LP) problem that can be solved using LP techniques. However, if a single nonlinear

term exists in either the cost or constraint functions, the problem is now classified as a

nonlinear programming (NLP) problem. Most engineering optimal design problems are

nonlinear.

Methods of formulating and solving NLP problems can be classified as direct or

indirect. Direct methods use numerical methods to iteratively obtain and improve an

optimal solution. Indirect methods use analytical solutions that involve the calculus of

variations to minimize a function. While the best method to use is dependent on the

optimization problem, indirect methods work best for simple problems with only a few

constraints and states. Direct methods are used on most aerospace problems due to

their highly coupled and nonlinear nature. This research will formulate the problem

using indirect methods and then solve for optimal solutions using direct methods.
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2.2.2 Optimal Control. Section 2.2.1 presents static optimization. Dynamic

optimization extends the same theories to a dynamic system to determine the control

and state histories over a finite time period to minimize some performance index or cost

function.[7] This is also refered to as Optimal Control Theory (OCT). The constraint

functions h(~x, ~u) describing the dynamics of the system in the formulation of an optimal

control problem are differential equations. The constraints can also contain a second

design vector ~u that represent the control input to the system. This control input is able

to manipulate the system’s dynamics and drive the system to its desired end state. The

cost function J of an optimal control problem is a functional, rather than a function,

since the solution to minimize the performance index is now a function of functions.

The goal of optimal control of a system is to find a time history of the control

inputs to the system that minimizes the performance index within the constraints of the

system. There are four general types of optimal control problems: fixed final time and

fixed final state; fixed final time and free final state; free final time and fixed final state;

and free final time and free final state. This research will only consider the free final

time and fixed final state problem which will be convered in depth in the next section.

2.2.3 Free Final Time and Fixed Final State Optimal Control. This section

considers the methods of formulating and solving a free final time and fixed final state

optimal control problem. While the problem can be solved using direct or indirect

methods, this section will only consider the indirect methods to compute an analytical

solution. This section will then identify where it is mathematically infeasible to use

indirect methods and perferable to use direct methods. The direct methods approach

used in this research will be discussed in Section 2.2.5.

The general form of a free final time, fixed final state optimal control problem is

J = φ(tf , xf ) +

∫ tf

t0

L(t, ~x, ~u)dt (2.26)
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where φ is a function of the final time and state constraints and L is an integral cost

function. The generalized system dynamics for this problem are described by the vector

differential constraint

~̇x = f(t, ~x, ~u). (2.27)

This problem is subject to initial conditions

t0 = t∗0 (2.28)

and

~x(t0) = ~x∗0 (2.29)

where t∗0 and ~x∗0 are the initial time and state, respectively. There are also constraints

on the final condition given as

ψ(tf , ~xf ) = ~xf − ~x∗f = 0, (2.30)

where ψ must contain at least one state with final condition ~x∗f .

The augmented cost functional is equal to[3]

J
′
= Φ(tf , ~xf , ν) +

∫ tf

t0

[H(t, ~x, ~u)− ~λT ~̇x]dt (2.31)

where Φ is the endpoint function equal to

Φ = φ(tf , ~xf ) + νTψ(tf , ~xf ) (2.32)

and H is the Hamiltonian of the system defined as

H = L(t, ~x, ~u) + ~λTf(t, ~x, ~u). (2.33)
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There are both first and second order differential conditions that need to be satisfied

for a solution to be optimal. The first are the Euler-Lagrange (E-L) equations.[20] They

are the state, costate, and stationary equations which are derived from the augmented

performance index in Eq. (2.31). The state equation is

~̇x = HT
λ = f(t, ~x, ~u), (2.34)

the costate equation is

λ̇ = −HT
x (t, ~x, ~u,~λ), (2.35)

and the stationary equation is

0 = HT
u (t, ~x, ~u,~λ). (2.36)

These three equations are subject to the boundary conditions in Eqns. (2.28), (2.29)

and (2.30) and to the constraints

Φtf (tf , ~xf , ν) + L(tf , ~xf , ~uf ) + Φxf (tf , ~xf , ν) = 0 (2.37)

and

λf = ΦT
xf

(tf , ~xf , ν). (2.38)

If an optimal control problem has a state vector ~x of dimension n and a control vec-

tor ~u of dimension m, there are 2n differential equations from Eq. (2.34) and Eq. (2.35)

and m differential equations from Eq. (2.36) that are solved while satisfying the n ini-

tial conditions in Eqns. (2.28) and (2.29) and n final conditions found by combining

Eqns. (2.30), (2.37), and (2.38) [23].

If an analytical solution exists for a a free final time, fixed final state optimal control

problem, the solution must meet the Weierstrass first order necessary condition and the
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Legende-Clebsh second order sufficient condition in order to be considered an optimal

solution for the problem [20]. The Weierstrass condition can be written as

H(t, ~x, ~u,~λ)−H(t, ~x, ~u∗, ~λ) > 0 (2.39)

and must be satisfied for all ~u 6= ~u∗ where ~u∗ is the optimal control solution for the

given performance index and ~u is all other admissible control paths. The Hamiltonian

must be minimized at all time t along the optimal control solution. The Legendre-Clebsh

condition is

Huu(t, ~x, ~u,~λ ≥ 0. (2.40)

which also must be satisfied at all time t along the optimal control solution.

An analytical, closed-form solution may not exist when the dynamical constraints

of the system are characterized by a system of nonlinear, coupled differential equations.

In this research, the SIMSAT’s governing dynamics and kinematics equations can be

expressed by a set of seven coupled nonlinear differential equations. Instead of solving

for optimal control solutions analytically, a pseudospectral-based direct method tool,

GPOPS-II, is used.

2.2.4 Optimal Control Problem Formulation. Before discussing pseudospec-

tral methods, we need to discuss the optimal control problem formulation. In order to

evaluate the application of optimal control theory’s application to spacecraft the method-

ologies developed in this research are tested on the SIMSAT, a satellite testbed that can

be described as a dynamic system. The system dynamics of the attitude of SIMSAT in

quaternion parameters can be found in Eq. (2.20). The kinematic equations of the body

angular rates can be found in Eq. (2.12). ~u is the control vector of the optimal control

problem and is related to the torque produced by the reaction wheels by the equation

~u = ~̇hrw. (2.41)
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where

~x =


q̄

~ω

~hrw

 (2.42)

which has a dimension of 7x1. The performance index for the particular free final time

and fixed final state control problem used in this research is

J =

∫ tf

t0

dt = tf . (2.43)

There is no integral cost function as in Eq. (2.26) because the only parameter being

minimized is the final time.

2.2.5 Pseudospectral Methods. A pseudospectral-based direct method tool,

GPOPS-II, is used in this research to generate or near-optimal optimal control solutions.

Pseudospectral methods were originally used to solve partial differential equations [9]

but now are commonly used to solve optimal control problems [33]. They discretize the

state vector and control vector onto a Lagrange interpolating polynominal. There are a

number of distribution methods for defining the locations of the discretized nodes of the

Lagrange interpolating polynominal including: uniform distribution, Legendre-Gauss-

Radau (LGR) points, Legendre-Gauss-Lobatto (LGL) points, Chebyshev-Gauss points,

Chebyshev-Gauss-Radau points, Legendre-Gauss points, and Chebyshev-Gauss-Lobatto

points [16]. GPOPS-II employs a LGR quadrature collocation method [28]. It is a

Gaussian quadrature implicit integration method where collocation is performed at LGR

points. GPOPS-II uses the discretized approximation of the state and control vectors to

form a new approximate cost function. The cost function in Eq. (2.43) is minimized by

GPOPS-II and results in a minimum-time optimal solution at the collocation points. It

is not truely optimal because linear interpolation must be used outside of the collocation

points. The number of minimum and maximum collocation points can be varied to form
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a more accurate or less accurate solution. GPOPS-II is referred to as GPOPS throughout

the remainder of this document.

2.3 Spacecraft Simulators

2.3.1 Types of Spacecraft Simulators. All spacecraft, regardless of size or mis-

sion, represent a large investment in time and capital on the part of all stakeholders

involved in the project. Therefore, the testing and validation of the spacecraft before it

is launched into orbit is a crucial element of the design process. The attitude determina-

tion and control subsystem (ADCS) is a critical part of almost all spacecraft that allows

the spacecraft to estimate inertial attitude and change its orientation. The ADCS poses

unique challenges to being tested on the ground due to the difference in gravity between

the testing facility and orbit.

The most common method to simulate near-orbit conditions for a spacecraft’s

ADCS is the use of an air bearing to create a frictionless boundary between two surfaces

[10]. There are two types of air bearings: planar and rotational. Rotational air bearings

resemble a ball-in-socket joint and allow for three rotational DOF but no translational

DOF. This research only uses a rotational air bearing on the SimSat.

Rotational air bearings, also referred to as spherical air bearings, are the most

widely used to test an ADCS subsystem. An ideal rotational air bearing would be in the

shape of a sphere and allow for unconstrained motion in all three axes[35]. This would

allow for a gravity torque-free environment that simulates the space enviornment found

on-orbit. Creating a gravity torque-free environment of a spacecraft simulator using a

rotational air bearing depends on the alignment of the center of mass of the simulated

spacecraft with the air bearing’s center of rotation [26]. The freedom of spin about a par-

ticular axis is dependent on the structure of the simulated spacecraft and its configuration

relative to the spherical air bearing. A common configuration for spacecraft testbeds us-

ing a rotational air bearing has been the ”tabletop” or ”umbrella.” This design allows for

the Yaw axis to have full rotational range of motion but has limited rotation about the

Roll and Pitch axes[19][12]. A more recent configuration is the ”dumbbell” configuration

that enables uninhibited rotation about the Yaw and Roll axes with limited rotation
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about the Pitch axis [8]. The “tabletop,” “umbrella,” and “dumbbell” configurations are

shown left-to-right in Fig. 2.2. The SimSat is a ”tabletop” satellite simulator.

Figure 2.2: “Tabletop,” “Umbrella,” and “Dumbbell” Configurations[26]

2.3.2 System Mass Properties. Accurate knowledge of a spacecraft’s mass

properties is needed for all stages of the spacecraft’s life, from design to launch to on-

orbit operations to disposal [6]. The mass properties of a spacecraft are its mass, the

location of its center of gravity (CG), and the mass moment of inertia (MOI) matrix

which describes the distribution of the mass throughout the spacecraft as described in

Eq. (2.7). For this research, the total mass of the spacecraft simulator is not a factor

because air bearings are known for their ability to support large masses. However, the

location of the center of gravity and MOI matrix play a key part in the spacecraft

simulator’s behavior due to the rotational dyanmics involved in spacecraft reorientation.

A spacecraft simulator floating on a spherical air bearing has to have its CG at the

center of rotation (CR) of the air bearing in order to simulate a torque-free enviornment

[5]. If the CG is above the CR, the spacecraft is in an unstable configuration similar to

an inverted pendulum which will tilt due to gravity causing a torque about the CR. If

the CG is below the CR the spacecraft will tend to oscillate and will eventually come

to rest with its center of mass at its lowest equilibrium point. There are two ways to

attempt to locate the spacecraft’s CG at the CR of the spherical air bearing. Boynton

18



[6] suggests to counterbalance the satellite or split it into two halves. Ross [34] suggests

actively compensating for the offset between the spacecraft CG and air bearing CR in

the spacecraft’s equations of motion. In this research, the adjustable counterbalance

approach will be taken. A set of weights shown in Fig. 2.3 are used in conjuction

with an onboard algoirthm that determines how far to move the weights to align the

CG and CR. The tan weight in the center of the figure can be moved left or right to

balance the spacecraft simulator on its respective axis. The X-axis and Y-axis must be

balanced before every experiment on the SimSat while the Z-axis is balanced weekly as

it experiences less change over time.

The mass of the spacecraft does not appear explicitly in the equations of motion for

attitude control problems. However, the MOI does and has a significant impact on the

dynamics of the spacecraft. A spacecraft can be designed with one MOI matrix in mind

designed around the principle axis body frame with no products of inertia ion the off-

diagonals can change on orbit due to structural flexing, sloshing of fuel, or other causes.

Any changes to the mass distribution of the spacecraft will change the MOI. This research

uses a script created by Wright for his research which runs a number of maneuvers on the

spacecraft simulator and conducts post-processing to determine accurate MOI with the

products of inertia included in order to use the most accurate MOI possible for attitude

control [44]. The actual MOI used in this research is found in Eq. (44).

2.3.3 AFIT Simulated Spacecraft. AFIT has designed, built, and tested two

spacecraft simulators whose primary purpose is attitude control simulation since 1999.

The first, SimSat I, was designed using the ”dumbbell” configuration as described in

Sec. 2.3.1 and built in 1999 and is shown in Fig. 2.4 [10]. For the next 8 years, dynamics

and control research was conducted on SimSat I [11] [17] [38]. However, due to its large

mass and inertia, it could not conduct rapid slew maneuvers or achieve spin stabilization

[30]. Its momentum wheels also saturated quickly and the simulator itself experienced

structural deflections resulting in a preferred orientation. AFIT faculty requested that a

new, more up-to-date spacecraft simulator be designed and built.
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Balance Mass 

Figure 2.3: Manual Mass Balance of the SimSat

Figure 2.4: SimSat I

SimSat II, AFIT’s second spacecraft simulator, was designed in 2007 and 2008 by

Roach, Rohe, and Welty [30]. Since it is the most recent AFIT spacecraft simulator

and the one that new research is being conducted on, the ”II” was dropped and it is

commonly referred to as just ”SimSat.” SimSat consists of a ground station which is a

Windows XP-based PC that communicates with the testbed, a tri-axial air bearing which

the testbed floats on, and the spacecraft simulator itself. It is a ”tabletop” configuration
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as compared to the ”dumbbell” configuration of SimSat I. The tabletop configuration

allows for a full 360◦ degrees of freedom about the Z-axis and ±25◦ about the X-axis and

Y-axis. SimSat has an IMU for attitude sensing and reaction wheels, control moment

gyros (CMGs), and fans (to simulate thrusters on a real spacecraft) as attitude actuators.

The full configuration of the spacecraft simulator will be covered in depth in Chapter III.

A picture of SimSat at the time this research was conducted is provided in Fig. 1.1.

SimSat was made operational with just the fans as its only means of attitude

control. Since it came online the 2nd generation SimSat has been used for seven dif-

ferent M.S. and Ph.D research projects involving attitude determination and control.

McFarland designed and implemented a near-real time optimal control algorithm on

the testbed with the fans as his actuators but was unable to transfer optimal control

trajectories quickly enough from the ground station to the testbed in order to work as

anticipated in 2009 [26]. His algorithm is discussed further in Sec. 3.3.3.1 because this

presented research is an extension of his work. Snider developed a reaction wheel-based

PID controller in 2010 [39]. McChesney designed, implemented, and tested reaction

wheels and CMGs for SimSat in 2011 [25]. Padro developed a star tracker for use on

SimSat in 2012 [29] which had further work on the topic performed by Grunwald in 2014

[18]. Wright investigated in-flight MOI and structural deflection algorithms in 2015 [44].

Doupe studied the optimal combination of reaction wheels and CMGs in 2015 [14].

2.4 Spacecraft Applications of Optimal Control

This section will discuss the historical uses of optimal control theory as it exists

in open literature and is applied to spacecraft with an emphasis on the time-optimal

reorientation problem.

2.4.1 History of Spacecraft Optimal Control. The development of numerical

methods for solving optimal control aerospace problems has paralleled the exploration

of space and the advancement of computing technologies [3]. Optimal control theory

has been applied to spacecraft reorientation maneuvers with the objective of minimiz-
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ing the time of the maneuever, the control effort required, or the structural vibrations

encountered [4].

Since the 1960s, the time-optimal reorientation maneuver of a rigid body spacecraft

was thought to be an eigenaxis rotation [15] as described in Section 2.1.2. This is

intuitvely faster than an Euler axis rotation as the Euler axis sequence has three rotations

while the eigenaxis rotation can be accomplished in just one.

In 1984, Vadali et al. showed that Junkins and Turner’s previous work on optimal

large-angle attitude maneuvers of rigid spacecraft using an integral performance index

can have a closed-form solution for special cases of single-axis manuevers using Euler pa-

rameters [40]. They imposed an orthogonality constraint between the Euler parameter

vector and the corresponding costate vector and proved that this is equivalent to mini-

mizing the norm of the Euler parameter costate vector. This allowed for a closed-form

solution for certain cases of the reorientation problem. The optimal control problems for

the maneuvers in this research do not have a closed-form solution and must be solved

using indirect methods.

Junkins and Turner published Optimal Spacecraft Rotational Maneuvers in 1986 as

a collection of their work on manuevering modern spacecraft [22]. Their book covers both

open- and closed-loop optimal control of rigid-body and flexible spacecraft but make no

claims as to whether the time-optimal open-loop solutions they generate in Chapter 8 of

their text are more time-optimal than an eigenaxis maneuver. They do note that open-

loop optimal maneuvers are subject to disturbances and require some kind of terminal

control at the end of the manuever in order to correct for errors during the reorientation.

Junkins and Turner also mention work done on the NOVA spacecraft which performed

open-loop time-optimal control using magnetic torques as opposed to reaction wheels.

They also added that this is a much slower motion than using reaction wheels and took

place over a matter of hours as opposed to seconds in this presented research.

In 1988, Wie et al. explored the use of a quaternion feedback regulator for eigenaxis

rotational maneuvers of an asymmetric spacecraft. Their research discussed gain selec-

tion so that a quaternion feedback regulator will consistently provide a near-eigenaxis
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maneuver. This gain selection will also guarantee global stability of the controller using

a Lyapunov function.

In 1993, Bilimora and Wie proved that the time-optimal solution for a rigid body

reorientation was not the eigenaxis maneuver [4]. They refuted Li and Bainum’s work

which claimed that the eigenaxis rotation is time-optimal for independent three-axis con-

trol and ”near” the time-optimal solution for other cases. The minimum-time rest-to-rest

maneuver was found using Pontryiagin’s Minimum Principle to resemble a ”bang-bang”

control input. When observed in the inertial frame, the rigid body experiences a geo-

metrically complex motion that has a significant nutational component. The spacecraft

is able to provide more torque along the desired inertial axis of rotation.

2.4.2 On-Orbit Maneuvers. In 2007, a team of researchers from Draper Lab-

oratories, Rice University, and the Naval Postgraduate School (NPS) applied optimal

control theory to controlling the attitude of the International Space Station (ISS) [2].

The Zero-Propellant Maneuver allowed the CMGs of the ISS to perform a full reorien-

tation manuever without reaching rate limits by applying a control trajectory generated

using pseudospectral methods. This allowed the ISS to change its attitude without hav-

ing to fire its cold-gas thrusters which extends the time between refuelings.

Another example of optimal control theory applied to spacecraft in orbit was the

time-optimal reorientation of a NASA spacecraft. On August 10, 2010, a NASA space

telescope called TRACE executed the first ever minimum-time rotational maneuver per-

formed in orbit [21]. Pseudospectral methods were used to generate a more efficient

solution than the traditional eigenaxis maneuver. The researchers also performed a more

realistic test by pointing the spacecraft in a STAR maneuver at five separate celestial

targets and showed that the time-optimal control solution using pseudospectral methods

was 10% more efficient than the eigenaxis solution.

2.4.3 Near Real-Time Optimal Control. What is now referred to as Real-Time

Optimal Control (RTOC) was discussed by Ross et. al in 2006 in a conference paper

discussing their application of pseudospectral feedback methods to the NPS’s satellite

simulator, NPSAT1 [34]. They presented a sample-and-hold technique for calculating
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the optimal control solution of a fixed interval by sampling the state and control mea-

surements and feeding them through the pseudospectral software package called DIDO

and then connecting the different solutions to form one piecewise trajectory. Ross et al.

also discussed the difficulties in piecing together optimal trajectories and computational

delay in generating new solutions from updated sensor data.

Ross and others examined an approach for trading computational cost with solution

optimality and accuracy in what they refer to as the Bellman Pseudospectral Method

[32]. This principle states that as the number of nodes used in calculating an optimal

solution using pseudospectral methods increases, the computational time required to

compute the solution as well as the error between the optimal solution generated using

pseudospectral methods and the analytical, true solution can both increase. Ross et al.

were able to demonstrate that using a fixed ”small” set of nodes in their pseudospectral

package and then implementing Bellman’s principle of optimality as shown in Fig. 2.5 and

recalculating the solution starting from intermediate points along the original optimal

trajectory the error in the final states of the solution could be significantly reduced. This

allows for calculations only requiring a few nodes which greatly decreases computational

time between trajectory calculations. This research uses their method of solving the

optimal control problem at different points along the spacecraft’s trajectory and using

fewer collocation points in the pseudospectral optimal control solver.

In 2009, McFarland’s research was an attempt to further the work of Ross et al.

by applying RTOC to SimSat [26]. He was successful in characterizing the drag model

of SimSat and running open-loop optimal control and eigenaxis rotation optimal control

on the spacecraft simulator but due to time constraints was forced to simulate his near

real-time optimal control results using his air drag model of SimSat to simulate external

disturbances to the spacecraft. His research used DIDO as an optimal solver and had

only fans as a means of actuation. At this time he did not have the benefits of Wright’s

research on balancing the testbed and calculating a more accurate MOI with the products

of inertia. McFarland only used measured body frame moments of inertia and assumed

they were principal in the form of a a diagonal matrix for his state equations [44] which

could have resulted in a less than optimal control solution.
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Figure 2.5: Bellman Optimality Principle

This presented research extends McFarland’s work in which reaction wheels are

used instead of fans and GPOPS-II instead of DIDO as the optimal control solver[26].

A near real-time controller based on McFarland’s work will be implemented on SimSat.

The ground station PC (faster than the one McFarland had access to) will continually

compute new solutions using GPOPS-II. The on-board computer will read the new solu-

tions and determine whether the new solution is more ”optimal” than the previous one

and if so switch to the new one. This controller will be compared to a PID controller

and an open-loop optimal control solution with error metrics discussed in Chapters III

and IV.

25



III. Methodology

3.1 Introduction

Chapter III presents the design, implementation, and testing of a near RTOC

controller on AFIT’s spacecraft simulator. The first section describes the hardware and

software on SimSAT, the ground station, and how they are configured. The second

section covers the different controller models used in this research. The third section

discusses the design of the experiments used to evaluate the Near RTOC implementation

in this research. The fourth section descibes the simulation that is compared against the

hardware data. The final section is the description of error metrics used to compare the

different experimental results.

3.2 Hardware and Software Configuration

SimSat is the second AFIT spacecraft attitude determination and control testbed

built and tested by students as described in Sec. 2.3.3. There are three main subsytems

that compose the main SimSat system:

• the SimSat spacecraft simulator

• a ground station (GS) PC

• a tri-axial air bearing.

These three components of SimSat will be discussed in depth in the next three

subsections.

3.2.1 SimSat Spacecraft Simulator. The SimSat spacecraft simulator was de-

signed, built, and tested by Roach, Rohe, and Welty between 2007 and 2008 [30]. SimSat

is a tabletop configuration which came about as a result of a trade study between different

hardware configurations [30] [31]. An image of SimSat is shown in Fig. 1.1.

At the time of this research SimSat has only one method of dynamic attitude

determination sensors, a Northrup Grumman LN-200 Fiber Optic Gyroscope, which is a

space-rated inertial measurement unit (IMU) also used on AMRAAM air-to-air missiles
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and Mars rovers. While there is a star dome and a star sensor currently onboard the

SimSat it is insufficient for dynamic observations.

The IMU consists of three fiber optic gyroscopes and three accelerometers. The

fiber optic gyroscopes generally have three pairs of long coils of fiber optic cables in which

light is transmitted through them by means of a laser diode. While the gyroscope rotates

with the spacecraft simulator, light traveling along the axis of rotation will experience a

shorter path due to the Sagnac effect [24]. Sensors at either end of the coil will measure

the effect that the shorter path has on the light, which is translated to an angular rotation

rate. Since the LN-200 is aligned with the principal axes of SimSat, the angular rotation

rates measured by the IMU are the same as those for the spacecraft simulator. The

accelerometers are used to level SimSat prior to an experiment being run. A table of

the LN-200’s specifications is found in Table 1. An image of the LN-200 can be found in

Fig. 6.

Table 1: Northrop Grumman LN-200 IMU [26]

Parameter Value Unit
Weight 700 g
Diameter 8.9 cm
Height 8.5 cm
Power Consumption 10 W
Bias Repeatability 1-10 /hr

Random Walk 0.04-0.1 ◦ hr
1
2 power spectral density

Data Latency <1 msec
Data Protocol RS-485 -
Data Structure - Synchronous Data Link Control (SDLC)

SimSat has three attitude control subsystems: six fans powered by electric motors

to simulate the effects of thrusters, three reaction wheels, and four CMGs arranged in a

pyramid configuration. These actuators can be used independently or simultaneous to

provide torque to the simulator.

The six orthogonal fans are composed of a Maxon EC motor model 118895 with

attached Landing Products LP05050 propellers and plexiglass safety cowlings. They are

the original means of attitude control when SimSat was first constructed and were used

by McFarland in his research [26]. The motors are digitally controlled via a Controller
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Figure 6: LN-200 Fiber Optic Gyroscope

Area Network (CAN) interface from on-board the dSPACE MicroAutoBox. Two motors

operating along the principal axes of the SimSat but in opposite directions allow for full

three-axis control of the spacecraft simulator. An image can be found in Fig. 7.

McFarland’s research focused on using the fans as the primary means of actuation

because the reaction wheels and control moment gyros were not installed at that point.

This research uses the fans before and after each experiment in order to stabilize the

testbed and zero the reaction wheels to 0 RPM. The reaction wheels are the only means

of actuation during each test run. The control moment gyros are not used in this research.

The reaction wheels were designed, built, and tested by Snider in 2010 which were

followed by McChesney’s addition of control moment gyros in 2011 [25]. They took

on the task of adding additional actuators to SimSat to be used by future students in

attitude determination and controls research.

Snider added three reaction wheels with one on each body frame axis. They were

10.6 cm diameter solid stainless steel wheels with an MOI of 0.00261kg −m2. They are

powered by the same Maxon EC brushless motors as the fans and are controlled by Maxon

EPOS 70/10 motor control units. While the EPOS boxes support multiple modes this

research uses velocity mode for the reaction wheels which uses a PI regulator to achieve
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Figure 7: Fan on SimSat

and mantain the desired motor speed. The EPOS units are able to communicate with

the MicroAutoBox using the CANOpen communications protocol on the CAN bus.

McChesney removed the 10.6 cm wheels as they had a poor MOI-to-mass ratio of

1.719x10−3m2 and limited the capability of SimSat to perform large angular reorientation

maneuvers. The new wheels uses spokes and have a diameter of 20.32 cm. They possess

an MOI of roughly 0.008 kg-m2 which is a significant improvement over the original

design. Each wheel has a slightly different MOI but they only differ by 1×10−4kg −m2.

An image of a 20 cm reaction wheel can be found in Fig. 8.

The reaction wheel MOIs by axis are found in Table 2. They were determined

using AFIT’s Space Electronics XR250 MOI measuring system [25]. The XR250 uses a

torsion spring oscillator to measure the MOI about the axis of rotation.

Table 2: SimSAT Reaction Wheel Mass Moments of Inertia

Axis MOI (kg-m2)
X 0.0079119
Y 0.0079304
Z 0.0079204

.
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Figure 8: 20 cm Reaction Wheel Mounted on SimSat

All sensors and actuators with the exception of the star sensor are connected to a

dSPACE MicroAutoBox. This is a programmable real-time microcontroller that executes

programs found on the on-board computer that have been precompiled in the Simulink

interface. It is the link between the MATLAB interface on the on-board computer and

the motors powering the actuators on SimSat. The MicroAutoBox provides the interfaces

to send and receive data from the sensors and actuators and the on-board PC. An image

of the MicroAutoBox is found in Fig. 9.

The on-board computer is a Mini-Box PC. It has three purproses. The first is

to provide a software environment for creating and editing the Simulink models and

then compiling them to real-time programs. These real-time programs are compiled on

the on-board computer which is remotely controlled by the GS PC. The second is to

interface with the MicroAutoBox during real-time operations and tests using dSPACE

ControlDesk or the mLib MATLAB interface. The third is to provide a wireless link

between the Ground Station PC and SimSat using a 802.11b/g interface. This is done

with the Windows XP Remote Desktop interface or with MATLAB UDP or TCP/IP

commands.This research uses UDP instead of TCP/IP due to the need for real-time

communications. The increased accuracy of TCP/IP communication is not as important

for Near RTOC as than the increased speed of UDP. This PC-to-PC interface is discussed
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Figure 9: dSPACE MicroAutoBox

in depth in Sec. 3.3.3.1. The on-board computer runs MATLAB 7.0.4. and 2009 but

only 7.0.4 is used in this research. It is shown in Fig. 10 and its specifications are in

Table 4.

Table 3: SimSAT II Mini-box PC Components

Parameter Value
Processor x86 1500MHz
Motherboard Jetway Hybrid MicroATX
Memory 1024 MB
Storage 40 GB
Wireless Linksys Compact Wireless USB Network Adapter

SimSat has well defined mass properties explored by Wright in his research [44].

The values for the mass moment of inertia tensor in the body frame derived from Eq. (2.7)

used in this research is

Ib =


6.454 −0.197 −0.175

−0.142 9.716 −0.197

−0.175 −0.142 12.848

 kg −m2. (44)

.
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Figure 10: On-Board PC

3.2.2 Ground Station PC. The ground station consists of a custom-built PC

running Windows XP Professional Service Pack 2 and MATLAB 2013b. It has an Intel

Core i7 920 quad-core processor running at 2.67 GHz and 4 GB of RAM, but only 2 GB

are usable by Windows XP due to the limitations of 32-bit operating systems. The full

specifications of the GS PC are found in Table 4. It has a wired connection to a Linksys

WRT54G wireless router. This allows for bidirectional communication between the GS

and the on-board computer. This PC is not the original configuration designed for use

with SimSat by Roach et. al ; it was upgraded during McFarland’s research in order to

provide more processing capaiblities for resource-intensive optimal control software such

as DIDO or GPOPS which is important to this presented research. Possible upgrades to

the GS PC are found in Sec. 5.2.1.

Table 4: SimSAT II Ground Station PC Components

Parameter Value
Processor Intel Core i7 2.66GHz Quad-Core Processor
Motherboard BIOSTAR Intel X58 ATX Motherboard
Memory 4GB DDR3 SDRAM (2GB Unused)
Storage 240 GB
Video Radeon x850 Series
Wireless Linksys Wireless-G Broadband Router
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The GS PC serves two purposes in this research. The first is to provide the ability

to control the on-board computer on SimSat without having a display cable connected

to a monitor. This is crucial as any extraneous cables attached to the testbed will not

only prevent the spacecraft simulator from being able to rotate its full range of motion

but also create additional torques that will cause deviations in SimSat’s trajectory. This

capability is provided using the Remote Desktop Connection feature in Windows XP. A

user can log onto the on-board PC from the GS and use the same keyboard, mouse, and

monitor to control both computers.

The second purpose is to compute the optimal control solutions and transfer them

to the on-board computer where they will be computationally tranlated into commands

for the actuators on SimSat. The on-board computer is less powerful overall than the

GS PC. The solution is to have a MATLAB instance on the GS connected via User

Datagram Protocol (UDP) to a MATLAB instance on the on-board computer. The on-

board computer sends state information to the GS and receives updated trajectory and

control arrays from the GS. The logic of this method of near RTOC is discussed in depth

in Sec. 3.3.3.1. The GS PC runs MATLAB 2013b and GPOPS-II which is depicted in

Fig. 11.

Figure 11: Ground Station PC
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3.2.3 Tri-Axial Air Bearing. The air bearing used by SimSat is the Space

Electronics, Inc. Model SE-9791 Tri-Axis Spherical air bearing. An image is shown in

Fig. 12. It provides a friction-free enviornment for the ball bearing and has three DOF

rotational motion. This allows SimSat to rotate in a near torque-free environment similar

to a spacecraft on orbit. The X- and Y- axes are limited to ±30◦ rotation and the Z-axis

has unlimited rotation. Its measureables are shown in Table 5.

Figure 12: Tri-Axial Air Bearing

Table 5: Space Electronics, Inc. Tri-Axis Air Bearing

Parameter Value Unit
Ball Bearing Diameter 22.00 cm
Pedestal Cup Diameter 5.72 cm
Unloaded Ball Bearing Mass 19.05 kg
Maximum Loaded Ball Bearing Mass 136.08 kg
1-Axis Max Rotation Angle ±25 deg
2-Axis Max Rotation Angle ±25 deg
3-Axis Max Rotation Angle - -

3.3 Controller Models

The SimSat simulated satellite uses real-time Simulink control blocks to interact

with the different hardware interfaces. The model is compiled and then executed on the
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dSPACE MicroAutoBox. The MicroAutoBox is the control hub of SimSat, as discussed

in Sec. 3.2.1, and directly controls the sensors and actuators on-board. The Simulink

model is found in Fig. 13.

For all three controllers tested, the SimSat’s Simulink model:

• Receives Measured Angular Rotation Rates from LN-200 IMU,

• Converts Measured Angular Rotation Rates to Quaternions

• Commands RPM Inputs to the Fans,

• Commands RPM Inputs to the Reaction Wheels,

• Receives and Executes External Control Commands,

• Performs Closed Loop Control Calculations (PID controller only).

• Executes Open Loop Control Trajectory (Open Loop Optimal Control and Near

RTOC Only)

The Simulink model connects to the MATLAB command line interface through

the mLib interface allowing the model to directly interface with the sensor and actuator

hardware. This interface is crucial for the near RTOC implementation as well as data

collection at the end of each experiment.

For every experiment, two MATLAB files must be run. The first is a script named

SlewScript.m which declares the target orientation, maximum time for the experiment to

run, and controller type to use. For optimal control runs, the initial ~̇hrwa and time series

are loaded here. All of these values are passed to the second file, a MATLAB function

named slewRW.m. This file interfaces directly with the Simulink model loaded into the

dSPACE ControlDesk software which interfaces with the dSPACE MicroAutoBox.

3.3.1 PID Controller. For PID control of the SimSat the Simulink model

computes the quaternion error between the desired quaternion and the current quaternion

from which PID is computed and sent to the actuators to drive the error to 0.

The quaternion error is calculated using Eq. (2.19). The quaternion error’s deriva-

tive and integral are calculated numerically. The error, integral of the error, and the
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derivative of the error are mulitplied by gain matrices calculated using a series of equa-

tions found in Wie’s Space Vehicle Dynamics and Control [42]. The desired natural

frequency and percent overshoot are both 0.707 which was found to produce a time-

optimal response from simulation. The gain matrices for each are

Table 6: Gain Matrices for PID Control

Axis KP KI KD

1 3.4786 0.1564 22.3586
2 5.2368 0.2356 33.6591
3 6.9249 0.3116 44.5093

.

A nonlinear correction term ωx(I~ω + hrwa) is subtracted in order to account for the

nonlinear term in the equations of motion. The full feedback term for the control ~u is

found to be

~u = ~̇hrwa = KP I~qerror +KDI~ω +KI∆t~qerror − ωx(I~ω + hrwa)

This control vector is commanded to the reaction wheels and the spacecraft sim-

ulator will turn to the desired orientation. PID control is advantageous in that it has a

long history of success in aerospace applications and with the proper gains will reach the

desired target but it can produce an undesired overshoot of the target orientation and

for a Z-axis slew will only use the reaction wheel aligned with that axis [42].

For this research, a fixed time is set for the maximum time that the experiment will

run for. The PID controller will drive the spacecraft simulator to the desired orientation

and hold that orientation unless the maximum time is reached.

PID testing is accomplished via a script interface in MATLAB and ControlDesk

software which interacts directly with the hardware. The dSPACE mLib package is used

to write a trigger directly to the Simulink model. This trigger will activate the Simulink

real-time model that interfaces with ControlDesk and will level the spacecraft simulator

using the accelerometer on the IMU, zero the reaction wheel speeds if necessary, and

begin the experiment. SimSat will use the PID controller with the gains in Table 6 in
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the Simulink model to reorient itself from its initial orientation to its final orientation

using only the reaction wheels. Once the experiment reaches its final time as specified in

the MATLAB script, the test run will cease and state data throughout the run sampled

at 100 Hz will be saved.

3.3.2 Open Loop Optimal Control. Open-loop optimal control is a control his-

tory calculated ahead of time using GPOPSII and fed-forward directly to the reaction

wheels with no closed-loop feedback present. The control algorithm and MATLAB files

used in this control scheme are similar to those of Near RTOC but are calculated once

before the experiment is run instead of continually throughout the maneuver. The de-

velopment of the equations and values used in the general open-loop optimal control

solution generated using GPOPSII will be developed in this section while specifics to the

near real-time application of this solution are developed in Sec. 3.3.1.

GPOPSII requires three MATLAB files to generate an optimal control solution:

a main script, a function file containing the state equations and their relation to one

another, and a function file containing endpoint conditions and the cost function. The

costate, stationary, and stationary equations do not need to be defined explicitly. The

two function files were kept constant for all optimal control calculations while the main

file was changed.

In the main file, the initial state is
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q1,initial

q2,initial

q3,initial

q4,initial

ω1,initial

ω2,initial

ω3,initial

h1,initial

h2,initial

h3,initial



=



0

0

0

1

0

0

0

0

0

0



. (46)

This represents an initial orientation of Euler angles 0◦, 0◦, 0◦, body rates in each

axis of 0 rad/s, and initial angular momentum produced by the reaction wheels of 0

kgms−1. The initial control vector is set to

~uinitial =


0

0

0

 . (47)

The final state is set to the same as the initial orientation for the body rates

ω1, ω2, ω3 and angular momentum h1, h2, h3. The final quaternion parameters are set

to the quaternion which represents the desired Euler angle orientation of the spacecraft

simulator. The final control vector is set to be 0 as well. In vector form this is
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q1,final

q2,final

q3,final

q4,final

ω1,final

ω2,final

ω3,final

h1,final

h2,final

h3,final



=



q1,desired

q2,desired

q3,desired

q4,desired

0

0

0

free

free

free



(48)

and

~ufinal =


0

0

0

 . (49)

Another required input for GPOPSII is the upper and lower limits for each state

variable and control variable. The four parameters that make up the quaternion, q1, q2, q3.

and q4 are able to vary from −1 to 1. The body angular rates for each axis are allowed to

vary from −0.5 to 0.5 rad/sec. This limit was derived from Doupe’s experimental results

where he found through stressing SimSat that it would not rotate in any axis more than

30 deg/s or 0.5 rad/s [14]. The limits on angular momentum produced by the reaction

wheels is set to be from −2.1962 to 2.1962 kg − m2. These angular momentum limits

are calculated from the max reaction wheel velocities. The limits on each control is from

−.25 to .25 kg −m2 − s−1 which is also derived from Doupe’s experiments [14].

Also in the main file are the initial guesses for the state and control histories which

are set as the desired initial and final states in matrix form due to the lack of knowledge

of the trajectories. These guesses are used as initial conditions in the two-point boundary

value problem solved by the optimal control solver.
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The final settings are the options for the GPOPS-II pseudospectral solver. The

options selected for open loop optimal control are different than those for near RTOC due

to the lack of real-time processing requirement. Open loop optimal control trajectories

can be calculated ahead of time, saved, and then fed-forward on-board the SimSat. Near

RTOC trajectories are calculated during the reorientation maneuver where the time

required to calculate the optimal solutions is a factor.

The three settings that make the most impact on the accuracy of the solution as

well as the time required for a PC to solve the optimal control problem are the number

of mesh iterations, mesh tolerance, and number of collocation points on the mesh. These

settings affect the mesh that is used by GPOPS-II to solve the pseudospectral problem

presented in Sec. 2.2.5. A small mesh tolerance such as 10−9 and a large number of

collocation points such as 1,000 or 5,000 and a high number of iterations such as 100 or

200 result in a control solution that is accurate throughout the trajectory but takes a

great deal of computational power. Such a solution may take minutes or even hours to

compute. The reverse is also true. A large tolerance such as 10−3 but fewer collocation

points such as 10 or 20 and fewer mesh iterations such as 20 or 30 result in a less accurate

but quickly computed solution.

For this research, an open loop optimal control solution was computed using the

following settings: a mesh tolerance of 10−6, mesh maximum iterations of 70, and 10, 000

collocation points. These settings result in a computational time on the order of magni-

tude of 2 to 5 minutes.

The two function files needed for GPOPS-II are the “continuous” function which

contains state information and the “endpoint” function which contains the performance

index. The continuous file requires the state equations of the dynamic system in first-

order differential form. The state equations were found through the expansion of Eq. (2.20)

and Eq. (2.23). The time derivatives of the three angular momentum components from

the reaction wheels are the three control vectors respectively. The endpoint function has

the cost function from Eq. (2.43).

On the on-board PC, the optimal control history is loaded into the MATLAB

workspace. A loop is created where at each timestep of 0.01 seconds a control value for
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each reaction wheel is interpolated from the control history generated using GPOPS-II.

This is crucial as the optimal control solver does not produce a control history linearly

sampled over the time required for the manuever. It has a cluster of points near the start

of the maneuver, a cluster near the end, and a few points in the middle. This is a result

of the two-point boundary value problem that makes up an optimal control problem and

the pseudospectral methods used to solve it. The time history of the control trajectory

and the sampling rate of SimSat’s control system may not match up. A lookup table

must be used to generate the correct ḣ value at each timestep.

There is no feedback from the sensors to the actuators. The only purpose of the

LN-200 is to collect data for later analysis. Once the control history has concluded and

there are no more optimal control values the PID controller is turned on in order to hold

the SimSat at its target orientation.

3.3.3 Near RTOC. First we will discuss the near RTOC algorithm. We will

discuss the decision logic used to maintain on the current optimal control trajectory or

query the GS PC for an updated control trajectory. There are two loops of the Near

RTOC implementation, the “outer” loop which brings SimSat from its initial conditions

to its final conditions and the “inner” loop which continually recomputes optimal control

solutions. After describing the algorithm, we will describe the specific implementation

of that algorithm on the SimSat on-board PC and the GS PC.

3.3.3.1 Near RTOC Algorithm. The Near RTOC algorithm used by

McFarland for his research is shown below in Fig. 14 [26].

This image will be described from left to right as the algorithm, initially developed

by Ross et. al and implementation in simulation by McFarland, has been only slightly

modified for this research [34]. The optimal control solver begins computing optimal

control solutions based on the initial conditions and feeds an initial optimal control

trajectory to the plant. The plant starts reorienting on the received optimal trajectory

and sends state information back to the optimal solver at a predetermined sampling rate.

After the optimal control solver computes a solution, the solver sends the solution to the

plant and immediately begins computing a new solution based on the state information
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Figure 14: McFarland Near RTOC Algorithm

it most recently received from the plant. The plant receives the new optimal control

solution from the optimal control solver and determines whether to stay on the trajectory

it is currently on or to switch to the new trajectory. These three actions make up the

“inner” loop of Near RTOC. The “outer” loop tracks how close the plant is to the final

conditions and determines when to terminate control actuation when the final conditions

are met.

This research takes this Near RTOC algorithm and modifies it to work on the

hardware and software of SimSat. A more specific version of this algorithm used in this

research is shown in Fig. 15.

The inner and outer loops are more specifically defined. Both PCs are operating

on the same rate of 100 Hz. The largest difference comes in the transfer of optimal

control trajectories and solutions in the “inner” loop of the Near RTOC algorithm. In

McFarland’s research, the orientation trajectory and control history are transferred to

the plant each time they are computed in the optimal control solver. In this research,

they are transferred only when the error between the actual trajectory and the optimal

trajectory is larger than a set threshold value. When that occurs, the plant reads the

most recently computed optimal control trajectory and control history from the optimal

control solver and implements them directly in that timestep’s actuation. This is a
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necessity with the use of UDP communication as described in Sec. 3.2.1. UDP packets

can be lost in transmission and not received at the plant. To limit the chance for a

packet loss, as few packets as possible are transmitted over the wireless link between the

plant and optimal control solver. UDP is discussed in depth in the next section.

3.3.3.2 Near RTOC Implementation. This implementation of Near RTOC

requires two computers: the on-board PC on SimSat and the GS PC. The algorithm de-

scribed in the above subsubsection is spread across the two computers and requires both

to be operating correctly to function. The combination of the two computers’ functions

on one PC is something suggested in Sec. 5.2 as future work.

The Simulink model and MATLAB script for the Near RTOC implementation is

the same as the one used in PID control and Open Loop Optimal Control described in

Sec. 3.3.1 and Sec. 3.3.2 respectively. The difference between Near RTOC and Open

Loop Optimal Control is the updated optimal control trajectory written by mLib to the

Simulink model. Instead of one optimal trajectory that was solved at an earlier time and

that does not change, the optimal trajectory and control history change over the course

of the experiment. The function that directly interfaces with the hardware is changed

to reflect the Near RTOC algorithm.

The current state of SimSat and updated quaternion time history and control time

history in the form of ~̇hrwa, the change in angular momentum of the reaction wheels,

are transferred between the GS PC and on-board PC using UDP. In MATLAB, UDP

is implemented via the Instrument Control Toolbox. Binary data in a variety of types

to include as int8, int16, single, and double can be transmitted and received between

computers on the same Local Area Network (LAN) running MATLAB. On each PC, a

UDP object is created and then written to or read from, depending on the need.

In this research each data type is only transmitted and received unidirectionally.

The on-board PC on SimSat transmits current state data:time, quaternion,body rates,

reaction wheel angular rates, and change in reaction wheel angular momentum. The

on-board PC receives the quaternion trajectory and control history with an associated

time series from the GS PC. The GS PC transmits the quaternion trajectory, control
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history, and associated time series and receives the current state information. Each port

and associated UDP object is only used for one data type. This lessens the chance that

data intended for one purposes, such as an updated body rate to be plugged into the

optimal control solver, is read into the wrong variable on the receiving computer.

A UDP object used as a trigger is created. Its purpose is to delay the optimal

control solution computation on the GS PC until the on-board computer on SimSat

has completed its preparation to begin the experiment so that the two computers are

synced. This is necessary due to the increased speed of the GS PC, which has a much

faster processor and more RAM than the on-board computer. This object is created

before any of the other pre-experiment commands are run. The GS PC gets ready to

start its part of the “inner” loop of the Near RTOC algorithm by declaring all of the

necessary variable for GPOPS-II and waits for the on-board computer to begin its control

loop. The on-board PC sends a Boolean value of “1” to the GS PC using this UDP object

and the GS PC’s script starts calculating its first optimal control solution.

The UDP ports are selected as to not interfere with any other Windows services

or processes such as Windows Remote Desktop Manager that are also required for this

research. To ensure that there are no conflicts, each UDP port number was tested

separately to transfer data from one PC to another while the Remote Desktop Manager

feature was active. The ports chosen do not impede any needed Windows process or

service from running. The list of ports is shownin Table 7 with GS in the PC column

referring to the GS PC and OB referring to SimSat’s on-board computer. Different ports

numbers are used for the same data type on the sending and receiving PCs to minimize

the chance that data is sent to an incorrect port.

On the on-board PC, an error value is set for the “inner” loop of the Near RTOC

algorithm. This is the threshold for the algorithm to determine whether to stay on the

current optimal trajectory or to request and switch to a new optimal trajectory calculated

on the GS PC. If qerror,4 calculated using Eq. 2.19 is more than this value, the algorithm

will switch trajectories. Otherwise, SimSat will remain on the trajectory it is already

on. This will be discussed further later in this section. This value will be changed for

each test run in order to determine the time-optimal and most accurate value for Near
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Table 7: List of UDP Ports and Functions

PC Port Function Send/Receive
GS 9101 Quaternions Receive
GS 9091 Body Angular Rate Receive
GS 9092 Reaction Wheel Angular Momentum Receive
GS 9093 Reaction Wheel Angular Momentum Change Receive
GS 9094 Time Receive

GS 10000 ~̇h1 Trajectory Send

GS 10001 ~̇h2 Trajectory Send

GS 10002 ~̇h3 Trajectory Send
GS 10003 q1 Trajectory Send
GS 10004 q2 Trajectory Send
GS 10005 q3 Trajectory Send
GS 10006 q4 Trajectory Send
GS 10100 Time History Send
GS 11119 Optimal Control Computation Trigger Receive
OB 9096 Quaternions Send
OB 9097 Body Angular Rate Send
OB 9098 Reaction Wheel Angular Momentum Send
OB 9099 Reaction Wheel Angular Momentum Change Send
OB 9100 Time Send

OB 10013 ~̇h1 Trajectory Receive

OB 10014 ~̇h2 Trajectory Receive

OB 10015 ~̇h3 Trajectory Receive
OB 10016 q1 Trajectory Receive
OB 10017 q2 Trajectory Receive
OB 10018 q3 Trajectory Receive
OB 10019 q4 Trajectory Receive
OB 10101 Time History Receive
OB 12000 Optimal Control Computation Trigger Send
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RTOC. The three values tested are 0.05, 0.1, and 0.5 which were generated from initial

runs of the Near RTOC implementation on SimSat. Values smaller than 0.05 caused

the spacecraft simulator to collide with the tri-axial air bearing and values larger than

0.5 did not switch optimal trajectories until SimSat was well off of its current optimal

trajectory.

A timeout value is also set to 0.1 seconds. This value dictates the amount of

time that the PC will wait for new data to be written to the UDP object. A smaller

timeout value will cause less interruption of the algorithm but may result in no data

being transferred at all between the two computers. The case where data is not received

by one of the computers is discussed later in this section.

The UDP objects are created using the “udp” command. They are set to be

single precision data type with the exception of the Boolean trigger for optimal control

computation. This is accurate enough for the binary data transferred between the two

PCs but does not create arrays with a size greater than MATLAB’s UDP buffer limit

of 8192 bytes. The state information sent by the on-board PC are only one capture of

the state variables; with the quaternion parameters, body angular rates, and reaction

wheel angular momentum having size 1x4, 1x3, and 1x3 respectively. The time sent by

the on-board PC is a single precision value. On the GS PC, the collocation points for

quaternion parameters, ~̇h, and the associated time series are linearly interpolated onto

a time series of 100 values between the start of the optimal trajectory and the end time

of the optimal trajectory.

On both the on-board PC and the GS PC an initial optimal trajectory calculated

before the experiment is loaded. This trajectory contains a timeseries, the planned

quaternion trajectory for SimSat to follow, and the ~̇h control history needed to achieve

that trajectory.

On the GS PC, the GPOPS-II settings and parameters discussed in Sec. 3.3.2 are

declared. The values for mesh tolerance, number of iterations, and number of collocation

points are set to 1 × 10−4, 10, and 20 respectively. These values result in GPOPS-

II generating an optimal control solution in roughly 10 seconds. Variation of these
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parameters and their effects on the peformance metrics of SimSat are discussed further

in Sec. 4.4.3.

All UDP ports are opened and the GS PC waits for the on-board PC to finish

leveling using the fans and despinning its reaction wheels. Once that occurs the trigger

to begin calculating optimal control solutions along with the state data read using the

mLib library from the first timestep are sent from the on-board PC to to the GS PC via

the UDP objects previously declared. The GS PC begins calculating the first optimal

control solution using GPOPS-II with the initial conditions being the state and time

information sent from the on-board PC and the final conditions being the desired final

orientation of the spacecraft simulator. On the on-board PC, the first ~̇h command is

sent to the reaction wheels via the Simulink model after being generated from a lookup

table of the optimal control history using MATLAB’s interp1 command which linearly

interpolates the correct control input for the clock value of the system from the optimal

control history and timeseries in order to fit the data within the UDP data buffer limit

of 8192 bytes.

For the state and time data being read on the GS PC, as well as the optimal control

data that is read on the on-board PC and discussed later in this section, an algorithm

is used to determine whether the data received is a new valid data point or points or

empty data written in error. This is shown in Fig. 16. The MATLAB command “fread”

reads the data from the UDP object created on the other PC on the network. The first

check is to see if any data at all was received. If no data was received by the computer,

the control model uses the most recently received data that has been checked and moves

on to reading the next data type. The second check is to see if the 2-norm of the data

received is equal to 0. Due to noise in the system and other factors no value received via

the dSPACE MicroAutoBox, no matter how small, will have a 2-norm equal to 0. If that

is the case, an empty matrix was written to the UDP object instead of the data intended.

In this case, the control model uses the previously received value. These checks on the

integrity of the UDP data received prevent unnecessary errors in transmission as one or

both scripts will stop if an empty matrix is used instead of a state or optimal control
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data array. By using the previous value, despite the fact that it may not be the most

accurate value needed, the experiment can continue.

Can a value be read from the 
UDP object? 

Yes No 

Read value as updated variable Use previous value 
 

Does the value have a norm of 0? 

No Yes 

Figure 16: UDP Read Logic

After the ~̇h values are written to the Simulink model and executed as reaction wheel

angular accelerations, the error in orientation from the planned optimal trajectory using

Eq. (2.19). The first three values of the error quaternion give knowledge of the error about

each axis but do not give an overall knowledge of the total error of the orientation of the

spacecraft simulator. The fourth quaternion parameter is better indicator of the total

error between the desired quaternion from the optimal trajectory and the true quaternion

calculated by integrating over the body angular rate of the spacecraft simulator due the

relationship found in Eq. 2.18.

This error value, q4 error, is checked against the error threshold value discussed

earlier in this section on the on-board PC. If the error quaternion parameter is smaller

than the error threshold value, SimSat continues on the current optimal trajectory. If

the error quaternion parameter is greater than the error threshold value, a new optimal

control trajectory is requested from the GS PC. This consists of a new quaternion trajec-

tory, new ~̇h history, and new timeseries for the two values. The GS PC uses the initial,

precalculated trajectory for its initial write to the associated UDP objects but updates

the UDP objects over time with trajectories calculated using updated state and time in-
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formation. Each quaternion and control array is separate to reduce reading errors on the

on-board PC. The arrays are 1 by 50 in size in order to not break the UDP buffer limit

of 8192 bytes for single precision data. The UDP read error checks discussed previously

in this section are used on the on-board PC to determine whether the trajectory received

is a valid one. If they are not met, the previous trajectory is used instead. If the checks

are met, the previous trajectory is discarded and the new trajectory becomes the “old”

one for comparison purposes.

The “outer” loop tracks whether the spacecraft has reached its final desired state or

not. Once it has come within 1% of the target quaternion, the GS PC stops calculating

new optimal control solution and the on-board PC turns on the PID controller is turned

on to bring the spacecraft to its desired orientation if is not already there. This prevents

collisions but that data is not used. At the conclusion of the experiment, the data is

saved for analysis in the same manner as PID and Open Loop Optimal Control.

3.4 Experiment Design

Two different reorientation maneuvers were selected for this research: a 90 degree

slew about the Z axis and a 180 degree slew about the Z-axis. These two maneuvers

were chosen in order to study the performance of near RTOC on a reorientation slew

maneuver. The PID controller will only primarily use one reaction wheel on the Z-axis

to bring SimSat from its initial orientation to its final one. Optimal control methods

will allow SimSat to tilt and take advantage of reaction wheels on the X and Y axes to

generate additional torque that is predicted to result in for a faster orientation.

These two maneuvers will be performed by SimSat and compared to simulated

data of which the generation of is discussed in the next section, Sec. 3.5. The PID data

will be compared to the simulated PID data. The open-loop optimal control simulated

data will be compared to the data generated by Near RTOC and Open-Loop Optimal

Control test runs since there is no feasible way to simulate Near RTOC given the current

SimSat configuration.

Prior to each experiment, SimSat will be manually balanced on each axis. A script

created by Wright for his research will be run [44]. It calculates the imbalance of each axis
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and should limit errors caused by disturbance torques created by the center of gravity

not being located at the center of rotation as described in Sec. 2.3.2.

3.5 Simulation

For this research, a software simulation model of the SimSat hardware was created

in order to have a series of expected results that can be used to validate data collected

in the experiments. This validates the state equations used in the optimal control solver

GPOPS-II and gives a validation of the data generated by the hardware during tests.

Simulated data for both a PID-controlled reorientation and an optimal control reorien-

tation are generated.

The Simulink diagram for the open loop case is shown in Fig 17.

 

Figure 17: Open Loop Simulation Simulink
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It appears similar to the on-board controller Simulink diagram because it is based

on the same equations of motion. These are the same equations of motion used by

GPOPS-II. The timestep is set to be fixed at 0.01 seconds, the same as the SimSat

Simulimk model.

For a PID simulated run, the same gains are used as the hardware model imple-

mented on SimSat. Initial state conditions and desired final orientations are set and

the model is run. Simulated SimSat quaternion, body rate, reaction wheel rates, and

reaction wheel accelerations are saved in a time history.

For an open-loop optimal control run, an optimal control trajectory generated using

the methods in Sec. 3.3.2 is resampled to the 0.01 seconds used by SimSat. It is loaded

into the workspace and the model is run. The same data is collected as in the PID

simulation.

The data collected in simulation is discussed in Sec. 4.2 and compared to data

collected on SimSat in Sec. 4.4.1.

3.6 Performance Metrics

In this research there are two performance metrics used to compare different tra-

jectories and test runs: time and quaternion error. For the PID test runs and simulated

data, the time metric is defined as the time when the spacecraft simulator’s orientation is

within 1 percent of the desired orientation. For the open loop optimal control and Near

RTOC test runs and simulated data, this is defined as the time that the optimal control

portion ends in the test run regardless of the SimSat’s orientation at this time. This

corresponds with the cost function of the optimal control problem found in Eq. 2.43.

Data past this point will be ignored. This is a key performance characteristic as this

research attempts to decrease the time in reorientation maneuvers of spacecraft. In this

research, a smaller time to target orientation is desired.

The second performance characteristic is quaternion error as calcuated in Eq. 2.19.

At the final time of the maneuver, the error quaternion will be calculated between the

desired quarternion and actual quaternion. An additional calculation of
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qerror metric =
√
q2error,1 + q2error,2 + q2error,3 (50)

will be used to find a scalar quaternion error for easier comparison. For this research, a

smaller quaternion error at the final time is desired.

3.7 Summary

This chapter first discussed the hardware and software configuration of SimSat:

the testbed itself, the Ground Station PC, and the tri-axis air bearing. The next section

discussed the different control models implemented on the hardware. The third section

covered the design of the different experiments conducted in this research. The fourth

section discussed the generation of simulated data to validate data received from the

hardware experiments. The final section describes performance metrics used to compare

different test runs.
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IV. Results and Analysis

4.1 Introduction

This chapter presents the results of the simulations and experiments described

in Sec. 3.5 and Sec. 3.4, respectively. The first section discusses the results from the

simualted PID and Open Loop Optimal Control reorientation maneuvers of 90 degrees

and 180 degrees. The next section covers the experimental results for the three control

models: PID, OLOC, and Near RTOC. The third section discusses the comparions be-

tween simulated data versus hardware data and the effects of varying different parameters

in the Near RTOC script.

4.2 Simulated Results

This section discusses the results from the simulation described in Sec. 3.5 and

their impact on what is expected in the hardware tests on SimSat. The first section

is the results of a 90 degree and then a 180 degree Z-axis reorientation of a simulated

SimSat using a PID control and the second is the same 90 degree and then 180 degree

Z-axis reorientations using an open loop optimal control input that is precalculated using

GPOPSII. The simulation uses the MOI matrix found in Eq. (44) and the reaction wheel

MOI values found in Table 2. The equations that are used to propagate the state forward

are found in Eq. (2.23) and Eq. (2.20). The simulation assumes that the SimSat starts

at rest and has no external torques applied to it throughout the reorientation maneuver.

4.2.1 PID Control Simulation. This simulation uses the PID controller de-

scribed in Sec. 3.3.1. The gains for the PID controller are found in Table 6.

4.2.1.1 90 Degree Z-Axis Reorientation. The first experiment is a 90

degree reorientation of SimSat about its Z axis. The SimSat starts at rest with an initial

orientation of 3-2-1 Euler angles 0◦, 0◦, 0◦ which corresponds to quaternion parameters

[0001] and uses its reaction wheels to achieve an orientation of 0◦, 0◦, 90◦.

The quaternion parameters for this maneuver are shown in Fig. 4.1. The body

angular rates are shown in Fig. 4.2. The reaction wheel angular rates are shown in

Fig. 4.3 and angular accelerations are shown in Fig. 4.4.
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Figure 4.1: Simulated PID Controller 90 Degree Z-Axis Reorientation Quaternion Pa-
rameters

Figure 4.2: Simulated PID Controller 90 Degree Z-Axis Reorientation Body Angular
Rates

The PID controller brings SimSat from its initial orientation to its final orientation

within 1% in 29.9 seconds. There is no error at the final time as the PID controller
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Figure 4.3: Simulated PID Controller 90 Degree Z-Axis Reorientation Reaction Wheel
Angular Rates

Figure 4.4: Simulated PID Controller 90 Degree Z-Axis Reorientation Reaction Wheel
Angular Accelerations

brings the simulated SimSat directly to its final orientation of Euler angles 0◦, 0◦, 90◦. In

Sec. 4.3.1.1, this simulated data will be shown to be a reasonably accurate simulation of
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SimSat with respect to the experimental data which will be used as justification that the

equations of motion used for the state equations in the optimal control solver GPOPS-II

are reasonable. The simulation results also provide a baseline for optimal control results

to be compared against as PID control is the most common means of spacecraft attitude

control currently.

A point of note is that the plots of reaction wheel angular rates and accelerations,

Fig. 4.3 and Fig. 4.4 respectively, show that SimSat’s PID control model uses the reaction

wheel aligned with the 3rd axis represented by ψ3 almost exclusively during the maneuver.

This shows that PID control on SimSat for a reorientation about one axis, in this case

the Z-axis, primarily uses the reaction wheel aligned with that axis in the absence of

external torques. The reaction wheels aligned with the X-axis and Y-axis, represented

by ψ1 and ψ2 respectively, are used in the initial few seconds of the maneuver but are

not generating the torque along the Z-axis during the majority of the reorientation. This

limits the amount of torque produced along the axis of rotation and will be discussed

further in Sec. 4.4.1.

4.2.1.2 180 Degree Z-Axis Reorientation. The second simulated experi-

ment is a 180 degree reorientation of SimSat about its Z axis. Like with the 90 degree

Z-axis reorientation, SimSat starts at an initial orientation of 3-2-1 Euler angles 0◦, 0◦, 0◦

and reorients itself to 0◦, 0◦, 180◦ using only the reaction wheels as actuators. The gain

matrix used in this simulation is the same as the one in the 90 degree Z-axis reorientation

and is found in Table 6.

The quaternion parameters for this maneuver are shown in Fig. 4.5. The body

angular rates are shown in Fig. 4.6. The reaction wheel angular rates are shown in

Fig. 4.7 and angular accelerations are shown in Fig. 4.8.

The maneuver takes 45.4 seconds to complete and there is no error at the final

time for the same reasons as in the previous section. The PID model here again does not

use the reaction wheels aligned with the X-axis or Y-axis to generate torque as shown in

Fig. 4.7 and Fig. 4.8. The reaction wheel aligned with the Z-axis is the primary means

of torque generation to reorient SimSat.
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Figure 4.5: Simulated PID Controller 180 Degree Z-Axis Reorientation Quaternion
Parameters

Figure 4.6: Simulated PID Controller 180 Degree Z-Axis Reorientation Body Angular
Rates

4.2.2 Open Loop Optimal Control Simulation. This section describes the sim-

ulated results of 90 degree and 180 degree Z-axis reorientations using the open loop
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Figure 4.7: Simulated PID Controller 180 Degree Z-Axis Reorientation Reaction
Wheel Angular Rates

Figure 4.8: Simulated PID Controller 180 Degree Z-Axis Reorientation Reaction
Wheel Angular Accelerations

optimal control model described in Sec. 3.3.2. These results are crucial as they represent

the time-optimal“’best case” scenario for SimSat for these two maneuvers. The graphs
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here will be used again in Sec. 4.3.3 to be compared agains the hardware results of the

Near RTOC controller since it is infeasible to simulate results for Near RTOC.

4.2.2.1 90 Degree Z-Axis Reorientation. The first open loop optimal

control experiment is a 90 degree reorientation of SimSat about its Z-axis. The initial

state is found in Eq. 46 and the final desired state is
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(4.1)

.

Like the PID tests in the previous section this is intended to be a rest-to-rest

maneuver. For this experiment the time plot of quaternion parameters is found in Fig. 4.9

and the time plot of body angular rates is found in Fig. 4.10. The reaction wheel angular

rates and accelerations are found in Fig. 4.11 and Fig. 4.12 respectively.

Each of the four plots is a linear interpolation of the LGR points versus time.

There are 10,000 collocation points that are linearly interpolated between to create a

continuous plotof the time history of that state variable.

SimSat completes its maneuver from an initial orientation of 3-2-1 Euler angles

0◦, 0◦, 0◦ to 0◦, 0◦, 90◦ in 16.46 seconds, which is significantly faster than the PID con-

troller which had a rest-to-rest time of 29.9 seconds. This represents a 44.9% improve-

ment over the traditional PID-basd control for the gain setting selected for PID control

found in Table 6. There is no final error in the simulated open loop result. Some error
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Figure 4.9: Simulated Open Loop Optimal Control 90 Degree Z-Axis Reorientation
Quaternion Parameters

Figure 4.10: Simulated Open Loop Optimal Control 90 Degree Z-Axis Reorientation
Body Angular Rates

is expected on the hardware model due to imbalances on the spacecraft simulator which

generate additional torques not accounted for in the state equations and leave SimSat un-
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Figure 4.11: Simulated Open Loop Optimal Control 90 Degree Z-Axis Reorientation
Reaction Wheel Angular Rates

Figure 4.12: Simulated Open Loop Optimal Control 90 Degree Z-Axis Reorientation
Reaction Wheel Angular Accelerations

able to respond to them due to the open loop nature of the controller. Another potential

source of error is air drag which is not considered in the on-board model.
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In Fig. 4.10, it can be sheen that SimSat in a 90 degree Z-axis open loop optimal

control maneuver is rotating about all three axes significantly compared to most of its

rotation about one axis, the Z-axis, while using a PID controller in Fig. 4.2. This is also

shown in the greater variation of q1 and q2 in the plots of quaternions in Fig. 4.9 than

in Fig. 4.1 which uses PID control. SimSat “dips down” and uses additional reaction

wheels aligned with the body X-axis and Y-axis as shown in Fig. 4.11 and Fig. 4.12 to

generate additional torque when using an optimal control trajectory than using a PID

controller. This is why SimSat in simulation demonstrates a 44.9% improvement when

using open loop optimal control. A more finely tuned PID controller may reduce the

amount of improvement but is not considered in this research. However as shown in

Sec. 4.3.2.1 and Sec. 4.3.2.2 on the actual hardware the open loop optimal controller

generates significant error along the trajectory but especially near the terminal phase

due to the disturbance torques described in the previous paragraph. Due to the cross-

coupling terms found in Euler’s equation rotation about one axis will produce rotation

about the other two axes. These disturbance torques are why Near RTOC can apply

optimal control techniques to spacecraft control to improve on PID or other traditional

methods and is a better method than open loop optimal control.

4.2.2.2 180 Degree Z-Axis Reorientation. This section describes the

results of a 180 degree Z-axis rotation of SimSat using an open loop optimal control

trajectory. The initial state is found in Eq. 46 and the final desired state of SimSat is
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(4.2)

.

The quaternion parameters vs time plot is shown in Fig. 4.13. The body angular

rates vs time are shown in Fig. 4.14. The reaction wheel angular rates vs time are shown

in Fig. 4.15 and the reaction wheel angular accelerations vs time are shown in Fig. 4.16.

Figure 4.13: Simulated Open Loop Optimal Control 180 Degree Z-Axis Reorientation
Quaternion Parameters
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Figure 4.14: Simulated Open Loop Optimal Control 180 Degree Z-Axis Reorientation
Body Angular Rates

Figure 4.15: Simulated Open Loop Optimal Control 180 Degree Z-Axis Reorientation
Reaction Wheel Angular Rates

The simulated SimSat completes the maneuver in 20.94 seconds, a 53.88% improve-

ment over the PID control simulated.As in the previous section SimSat uses the reaction
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Figure 4.16: Simulated Open Loop Optimal Control 180 Degree Z-Axis Reorientation
Reaction Wheel Angular Accelerations

wheels aligned with the X-axis and Y-axis, shown in Fig. 4.15 and Fig. 4.16, to generate

additional torque which results in a faster maneuver.

4.3 Hardware Results

This section discusses the results from SimSat hardware test runs. The first section

covers 90 degree and 180 degree Z-axis reorientations of SimSat using a PID controller

and compares the results to the simulated results found in Sec. 4.2.1. The second sec-

tion covers the hardware results same two maneuvers with an open loop optimal control

trajectory and is compared to the simulated results found in Sec. 4.2.2. The final sec-

tion describes the results of the two reorientations using Near RTOC techniques and is

compared to the best-case open loop simulation also found in Sec. 4.2.2.

4.3.1 PID Control. This section covers hardware testing using SimSat’s PID

controller.

4.3.1.1 90 Degree Z-Axis Reorientation. The first reorientation is of 90

degrees about the Z-axis and is compared to Sec. 4.2.1.1. The plot of quaternions vs
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time is found in Fig. 4.17. The plot of body angular rates vs time is found in Fig. 4.18.

The plot of reaction angular rates vs time is found in Fig. 4.19 and the plot of reaction

wheel angular accelerations vs time is found in Fig. 4.20.

Figure 4.17: Experimental and Simulated PID Controller 90 Degree Z-Axis Reorien-
tation Quaternion Parameters

As can be seen in Fig. 4.18 there is a great deal of variation about the X-axis

and Y-axis found in the system not only with both body rates determination but also

in the reaction wheel rate and acceleration measurement. This could be caused by the

PID gain settings or by noise in the attitude determination system. The quaternion

parameter trajectory is not affected by this. If the variation about 0 on the X-axis and

Y-axis is caused by the PID gains, new gains could be calculated. If it is noise, a filter

could be added to the system to improve the accuracy of measurement. Due to the

limited time available for this research and the lack of effect this had on the spacecraft’s

trajectory neither were implemented. This idea is expanded upon in Sec. 5.2. The

reaction wheel angular accelerations found in Fig. 4.20 are not the measured angular

accelerations but the commanded angular accelerations. The reaction wheels do not

reach their max angular speed of 274 rad/s and instead are limited to a max angular

speed of just over 200 rad/s. This may be the reaction wheel motor keeping the reaction
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Figure 4.18: Experimental and Simulated PID Controller 90 Degree Z-Axis Reorien-
tation Body Angular Rates

Figure 4.19: Experimental and Simulated PID Controller 90 Degree Z-Axis Reorien-
tation Reaction Wheel Angular Rates

wheels from saturation. The fact that maximum reaction wheel rates on the SimSat are
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Figure 4.20: Experimental and Simulated PID Controller 90 Degree Z-Axis Reorien-
tation Reaction Wheel Angular Accelerations

less than what the wheels and motors are intended for should be accounted for in future

research.

The spacecraft simulator completes the reorientation maneuver in 30.3 seconds,

slightly slower than the simulated SimSat’s 29.4 seconds, and there is no terminal error

at the end of the maneuver.

The hardware experiment’s quaternion traejctory follows the “shape” of the sim-

ulated plot but takes a longer time to complete the maneuver. The plot of the body

angular rate comparing the simulated body rates about each axis to the hardware body

rates show the same difference. This could be due to a number of factors. First, the

simulation as well as the hardware model in Simulink on SimSat itself do not account

for air drag. This could be created by the movement of SimSat through its reorientation

or by the reaction wheels spinning up or down. This would not be a factor in a space

environment with negligible atmosphere but have an impact at ground level where Sim-

Sat is located. The second reason is imbalances on SimSat causing additional gravity

torques not accounted for in either model but only present when the test is conducted on

actual hardware. This issue is discussed further in the OLOC and Near RTOC results
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in Sec. 4.3.2 and Sec. 4.3.3 as it has a greater impact on those control methods. These

two factors explain the discrepancy between the simulation and hardware model. The

state equations used in the simulation, which are also the equations used in calculating

optimal control solutions, are verified.

4.3.1.2 180 Degre Z-Axis Reorientation. This experiment is similar to

the previous one but has SimSat reorient itself 180 degrees about its Z-axis instead of 90-

degrees. The plot of quaternions vs time comparing the hardware results to the simulated

results found in Sec. 4.2.1.2 is found in Fig. 4.21. The plot of body angular rates vs time

is found in Fig. 4.22. The results of the reaction wheel angular rates is found in Fig. 4.23

and reaction wheel angular accelerations are found in Fig. 4.24.

Figure 4.21: Experimental and Simulated PID Controller 180 Degree Z-Axis Reorien-
tation Quaternion Parameters

The plot of quaternions vs time is similar to that of the 90 degree Z-axis PID reori-

entation found in Fig. 4.17 with the shape of the quaternion trajectory of the hardware

test run being similar to that of the simulation but taking more time to complete the

maneuver. The hardware takes 49.9 seconds to reach the desired orientation compared

to 45.4 seconds in the simulation. There is no error in the simulation due to the nature of
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Figure 4.22: Experimental and Simulated PID Controller 180 Degree Z-Axis Reorien-
tation Body Angular Rates

Figure 4.23: Experimental and Simulated PID Controller 180 Degree Z-Axis Reorien-
tation Reaction Wheel Angular Rates

the PID controller. The spacecraft simulator does not reach a rest state but the quater-

nion meets the final error requirements. The variation found in Fig. 4.22, Fig. 4.23, and
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Figure 4.24: Experimental and Simulated PID Controller 180 Degree Z-Axis Reorien-
tation Reaction Wheel Angular Accelerations

Fig. 4.24 around 0 about the X-axis and Y-axis is in this experimental result as well but

does not affect the calculation of the quaternion parameters from the body rates.

The plots of the hardware body angular rates and reaction wheel rates and ac-

celerations look very different than their simulations. This is due to the linearization

assumptions used to create the PID feedback controller. Small angle assumptions, small

body angular rates, and Mext = 0 are all used in the creation of the PID controller. In this

reorientation, they stop being valid as the spacecraft reorients itself 180 degrees about

its Z-axis with high body rates. This works in the simulation as there are no disturbance

torques but on the SimSat hardware there are due to the gravity environment. The sim-

ulation assumes a torque-free enviornment on orbit but since SimSat is on the ground

gravity disturbance torques act on it during the maneuver. This is both a limitation of

the hardware as well as of the PID controller. An open loop optimal control scheme is

less dependent on linearization and with the additional of a near real-time component

can peform large-angle slews faster and more accurately than a PID-controlled system.

This idea is discussed further in the next two sections.
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4.3.2 Open Loop Optimal Control. This section discusses the results of hard-

ware testing of SimSat using an open loop optimal control trajectory found using GPOPS-

II. These results are compared to the simulations run in Sec. 4.2.2.

4.3.2.1 90 Degree Z-Axis Reorientation. The first open loop optimal con-

trol experiment run is a 90 degree reorientation about the Z-axis of SimSat. As described

in Sec. 3.4 a precalculated optimal control trajectory consisting of an orientation tra-

jectory and a time history of ~̇h values is read into the Simulink model which calculates

the reaction wheel accelerations ~̇ψ that are commanded directly to the reaction wheel

motors. There is no feedback as the spacecraft simulator continues along its planned

trajectory regardless of disturbances or deviations.

The plot of quaternion parameters vs time for both the simulated and actual results

is found in Fig. 4.25. The body angular rate comparison of simulated vs actual is

found in Fig. 4.26. The plot of reaction wheel angular rates is found in Fig. 4.27.

The plot of reaction wheel angular accelerations is found in Fig. 4.28 and is compared

to the simulated ~̇ψ found in Fig. 4.12. The ~̇h values that were fed-forward into the

MicroAutoBox as optimal control inputs are shown in Fig. 4.29.

As can be seen in the plot of quaternions, Fig. 4.25, there is some error between the

simulation and the hardware result. The spacecraft simulator completes its maneuver in

19 seconds which is the end of the optimal control portion of the maneuver. There is a

great deal of error at the end of the maneuver compared to the desired final quaternion

in Fig. 4.21. The error metric calculated using Eq. (50) is 0.1886 or 18.86% error. This

is in comparison to the simulated maneuver which completed in 16.46 seconds with 0

error.

The plots of quaternions and body angular rates show that SimSat is able to use

all three reaction wheels to generate torque. It “tilts” up on one side so that all three

wheels’ acceleration are assisting in the maneuver and can generate additional torque

than the PID case where only one reaction wheel generates the majority of the torque

needed.
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Figure 4.25: Experimental and Simulated Open Loop Optimal Controller 90 Degree
Z-Axis Reorientation Quaternion Parameters

Figure 4.26: Experimental and Simulated Open Loop Optimal Controller 90 Degree
Z-Axis Reorientation Body Angular Rates

The error at the end of the maneuver and the additional time required to complete

it are caused by two factors. The first is gravity disturbance torques generated by SimSat
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Figure 4.27: Experimental and Simulated Open Loop Optimal Controller 90 Degree
Z-Axis Reorientation Reaction Wheel Angular Rates

Figure 4.28: Experimental and Simulated Open Loop Optimal Controller 90 Degree
Z-Axis Reorientation Reaction Wheel Angular Accelerations

as it rotates about its X-axis or Y-axis. The X-axis and Y-axis are well-balanced as shown

in Fig. 4.17 and Fig. 4.21 where q1 and q2 do not stray too far from their simulated values
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Figure 4.29: Experimental and Simulated Open Loop Optimal Controller 90 Degree

Z-Axis Reorientation ~̇h Trajectory

near 0 throughout the trajectory. However, in the open loop hardware run described in

this section, q1 and q2 do not follow their pre-planned trajectory and show a significant

amount of error through the manuever. While the mass moment of inertia is well known,

the gravity gradient torques caused by SimSat not having a uniform shape and mass

distribution are not accounted for.

The second is the hard-coded limits in the SimSat model. SimSat cannot rotate

more than 25◦ about its X-axis or Y-axis. Doing so would result in a collision between a

piece of SimSat and the air bearing. A ~̇h trajectory that pushes the spacecraft simulator

past these limits will find itself limited by the Simulink model. The planned quaternion

trajectory violates these restrictions which amount to roughly ±0.2 on q1 and q2. The

model is able to account for this restriction and prevents SimSat from colliding with the

tri-axial air bearing but this does change the commanded reaction wheel speeds. Fig. 4.27

shows that the commanded reaction wheel accelerations are significantly lower than the

planned simulation values. This is a result of SimSat’s Simulink model attempting to

and succeeding in avoiding a collision. This is shown in Fig. 4.28 where the reaction
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wheel angular accelerations expected by the simulation are significantly less than the

angular accelerations predicted by the simulation.

4.3.2.2 180 Degre Z-Axis Reorientation. This section covers the open

loop optimal control reorientation of SimSat of 180 degrees about its Z-axis. The data

from this experiment is compared to the simulated result found in Sec. 4.2.2.2. The plot

of quaternion parameters vs time is found in Fig. 4.30. The plot of body angular rates

vs time is found in Fig. 4.31. The plots of reaction wheel angular rates and accelerations

vs time are found in Fig. 4.32 and Fig. 4.33 respectively. The ~̇h trajectory used in this

experiment is found in Fig. 4.34.

Figure 4.30: Experimental and Simulated Open Loop Optimal Controller 180 Degree
Z-Axis Reorientation Quaternion Parameters

The maneuver is completed in 26.36 seconds and has 14.79% error at the end of

the optimal control trajectory.

Fig. 4.30, Fig. 4.31, and Fig. 4.32 show that the planned trajectory and the actual

trajectory that the hardware followed over the reorientation maneuver are very dissimilar.

The previous three sections of hardware results, Sec. 4.3.1.1, Sec. 4.3.1.2, and Sec. 4.3.2.1

all show SimSat follow the shape of the planned reorientation trajectory closely, if not ex-
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Figure 4.31: Experimental and Simulated 180 Degree Z-Axis Reorientation Body An-
gular Rates

Figure 4.32: Experimental and Simulated Open Loop Optimal Controller 180 Degree
Z-Axis Reorientation Reaction Wheel Angular Rates

actly, with minimal error throughout the maneuver. This deviation is due to the gravity

disturbance torques and the hard-coded limits on the amount of torque provided by the
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Figure 4.33: Experimental and Simulated Open Loop Optimal Controller 180 Degree
Z-Axis Reorientation Reaction Wheel Angular Accelerations

Figure 4.34: Experimental and Simulated Open Loop Optimal Controller 180 Degree

Z-Axis Reorientation ~̇h Trajectory

reaction wheels to limit collisions. Air drag is not accounted for in either the simulation

or experimental model. The gravity torques on SimSat discussed in the previous section
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are able to act on SimSat for a longer period of time due to the greater length of the

maneuver causing an increase in the error at the terminal phase of the optimal control

trajectory. They are able to deviate SimSat significantly from its planned course. The

simulation assumes that SimSat is able to rotate a full 360 degrees about its X-axis and

Y-axis. In the hardware model, this is not the case. SimSat will generate less torque in

order to keep itself from colliding with the air bearing that it is floating on.

4.3.3 Near RTOC. This section discusses the results of experiments peformed

on SimSat using a near RTOC controller. The first subsection discusses a 90 degree

reorientation about SimSat’s Z-axis and the second subsection covers the results of a

180 degree reorientation about SimSat’s Z-axis. A cursory glance at the results of these

experiments is found here in these two subsections while further in-depth analysis of the

effectiveness of near RTOC and its comparison to traditional control techniques is found

in Sec. 4.4.

4.3.3.1 90 Degree Z-Axis Reorientation. A modified approach was used

for the calculation of optimal control solutions in experiment than with the OLOC pre-

sented in Sec. 4.3.2.1 and Sec. 4.3.2.2. The Simulink model of SimSat included torque

output constraint in order to prevent a collision between SimSat and its air bearing.

The hardware results of open loop experiments deviated from the simulated results pre-

sented in Sec. 4.2.2.1 and Sec. 4.2.2.2 and had a great deal of error at the end of the

maneuver, which was expected due to gravitational disturbances but not to the degree

present. However, the OLOCled SimSat was still able to bring itself to the target. To

counteract this issue, additional limits were set on the quaternion parameters q1 and q2

than was discussed in Sec. 3.3.2. Instead of being able to go between -1 and 1, they

were limited to be between ±0.2. This will keep the spacecraft simulator within its ±25◦

limits on rotation about its X-axis and Y-axis. The quaternion parameters q3 and q4 are

not limited. This constraint does not change the open loop optimal results in Sec. 4.3.2.1

and Sec. 4.3.2.2.

The plots of quaternion paramters vs time are found in Fig. 4.35. The plot of body

angular rates vs time is found in Fig. 4.36. The plots of reaction wheel angular rates and
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accelerations are found in Fig. 4.37 and Fig. 4.38, respectively. The plots of the different

~̇h trajcetories followed during the maneuver are found in Figs. 4.39, 4.40, and 4.41.

Figure 4.35: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation Quater-
nion Parameters

Figure 4.36: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation Body
Angular Rates
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Figure 4.37: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation Reac-
tion Wheel Angular Rates

Figure 4.38: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation Reac-
tion Wheel Angular Accelerations

In Fig. 4.35 the experimental quaternion parameters are shown in solid colors.

The three calculated optimal trajectories are shown in dashed lines. The initial optimal
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Figure 4.39: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation ~̇h Tra-
jectory 1

Figure 4.40: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation ~̇h Tra-
jectory 2

trajectory is blue, the second trajectory used (the first trajectory switched to) is red,

and the third is green.
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Figure 4.41: Hardware Near RTOC Controller 90 Degree Z-Axis Reorientation ~̇h Tra-
jectory 3

The 90 degree reorientation maneuver is completed in 23.5 seconds with 2% error

at the terminus of the near RTOC portion of the maneuver. The spacecraft simulator

uses three different optimal control trajectories in the maneuver, the original trajectory

that was calculated before the maneuver began and used as the initial ~̇h input and

two optimal trajectories calculated on the GS PC during the maneuver. The switches

occur at 6.29 seconds and 15.44 seconds respectively and can be seen on Fig. 4.35 as

the quaternion parameter plots with the dashed lines. The three different ~̇h used as

inputs into the Simulink model during the maneuver are found in Fig. 4.39, Fig. 4.40,

and Fig. 4.41 while all other optimal control trajectories calculated on the GS PC were

discarded throughout the maneuver as an updated one was calculated. Each of these

optimal trajectories resembles a “bang-bang” controller as predicted by Wie for rotation

about a single axis[42]. The optimal control trajectories were calculated in an average of

2.5 seconds. Some optimal control solutions took longer than others due to the extreme

nonlinearity of the spacecraft reorientation problem. The first switch is caused by error

about the X-axis and Y-axis while the second switch is caused by error about the X-axis

and Z-axis.
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The body rates shown in Fig. 4.36 display high angular rates of 15 rad/sec or 8.6

deg/sec about all three axes demonstrating that near RTOC is able to generate torque

about all three axes by using three reaction wheels throughout the maneuver as opposed

to predominately just one for the PID controlled experiment. This is confirmed by the

plots of reaction wheel angular rates and accelerations in Figs. 4.37 and 4.38, respectively.

Note that the reaction wheel angular accelerations are the commanded accelerations ~̇h

inputs, not the accelerations read by the reaction wheel motors.

4.3.3.2 180 Degre Z-Axis Reorientation. This section discusses the results

of SimSat reorienting itself 180 degrees about its Z-axis with a near RTOC controller.

The plot of quaternions vs time with the solved optimal quaternion trajectories in dashed

lines is found in Fig. 4.42. The plot of body angular rates vs time is found in Fig. 4.43.

The plots of reaction wheel angular rates and accelerations vs time are found in Fig. 4.44

and Fig. 4.45, respectively. The ~̇h trajectory values that were used in this maneuver are

found in Fig. 4.46, Fig. 4.47, Fig. 4.48, and Fig. 4.49, .

Figure 4.42: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation
Quaternion Parameters
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Figure 4.43: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation Body
Angular Rates

Figure 4.44: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation Re-
action Wheel Angular Rates

In Fig. 4.42 the experimental quaternion parameters are shown in solid lines and

the planned trajectories calculated from the optimal control solver are shown in dashed
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Figure 4.45: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation Re-
action Wheel Angular Accelerations

Figure 4.46: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation ~̇h Tra-
jectory 1

lines. The initial trajectory is blue, the 2nd trajectory switched to is red, the third is

green, and the last one is black.
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Figure 4.47: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation ~̇h Tra-
jectory 2

Figure 4.48: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation ~̇h Tra-
jectory 3

The maneuver is completed in 31.14 seconds with 7.23% error at the end of the

optimal control maneuver. The plot of quaternions vs time found in Fig. 4.42 shows
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Figure 4.49: Hardware Near RTOC Controller 180 Degree Z-Axis Reorientation ~̇h Tra-
jectory 3

the SimSat gets off of its planned trajectory at just 4.51 seconds into the reorientation

despite the fact that q3 has not significantly deviated from its planned trajectory. The

cause of this is q1 and q2 have significant deviations from their planned path. The error

metric found in Eq. (50) takes all three quaternion parameters into account when it is

calculated on the on-board PC. q1 and q2 deviated due to the instability about the X-axis

and Y-axis. The SimSat is balanced before ever test run but the CG and CR are never

collocated as they would be on orbit. The allows gravity disturbance torques to act on

the spacecraft simulator and cause the SimSat to leave its planned trajectory on the

X-axis and Y-axis but not the Z-axis. The near RTOC algorithm also makes trajectory

switches during the maneuver at 12.76 seconds and 21.54 seconds.

The spacecraft simulator uses four different ~̇h trajectories during the reorienta-

tion: the original one calculated prior to the start of the experiment and trajectories

calculated at 3.1 seconds, 12.04 seconds, and 20.93 seconds. These trajectories resemble

“bang-bang” control histories like the previous section. All other trajectories calculated

throughout the maneuver are discarded as they are replaced by an updated one from the
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GS PC. The only ones that are saved at the end of the maneuver are the ones used by

the SimSat to reorient itself. They are found in Figs. 4.46, 4.47, 4.48, and 4.49.

The plot of the body rates about each axis vs time show that like in the previous

experiment in Fig. 4.36, SimSat is able to rotate onto its side as far as its ±25◦ X-axis and

Y-axis limits allow it to and use the reaction wheels aligned with the X-axis and Y-axis

to generate additional torque as compared to the PID controller found in Fig. 4.22 which

primarily rotates about its Z-axis, the axis of rotation. The plots of reaction wheels rates

and accelerations vs time in Fig. 4.44 and Fig. 4.45 support this by showing the wheels

generating angular momentum with all three wheels but primarily in direction of the

Z-axis.

The plots of the ~̇h trajectories show discontinuities in all four of the plots, especially

in Fig. 4.47 and Fig. 4.48. This would be corrected if the optimal control solver was able

to use more collocation points but due to the increased computational power that requires

it must use fewer points. This is not an issue for the hardware however as the MATLAB

function interp1 is able to use a lookup table to linearly interpolate an ~̇h value to prevent

discontinuities in the commands sent to the hardware.

Another point fo note is that the end time of the maneuver increases for each

calculated optimal trajectory. The original optimal path is the time-optimal maneuver

to take the SimSat from its original orientation to its final one. Any other maneuvers

may be time-optimal for that state and time given by the on-board PC but are not

time-optimal for the maneuver. This causes the completion time of the reorientation to

increase with each new trajectory computed by the optimal control solver.

4.4 Comparison and Analysis

This section covers analysis of the 90 and 180 degree Z-axis reorientations of SimSat

using a PID controller, an OLOC controller, and a near RTOC controller and variations

of the optimal configuration of the near RTOC controller. The first section discusses

the differences between the three controllers and the advantages and disadvantages of

the near RTOC approach. The second section covers the effects of varrying the “inner”

loop of the near RTOC algorithm’s error metric to determine when to switch trajecto-
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ries. The third section presents the effect of changing various parameters of the optimal

control solver has on the near RTOC controlled system and the optimal control solutions

generated.

4.4.1 PID vs Open Loop vs Near RTOC. In this section, we will discuss the

three different controllers presented and their hardware results with an emphasis on the

near RTOC controller as that is the primary focus of this research.

There are two performance characteristics used in this research to determine the

effectiveness of the different control schemes. The first is the time to complete the

maneuver, defined for the PID controlled simulation and hardware experiment as the

time from the start of the experiment to within 1% error of the final desired quaternion

and for the OLOC controlled simulation and experiment and the near RTOC experiment

to be from the start of the experiment of simulation to the time where the optimal control

portion terminates regardless of the pointing error at that time. The second characteristic

is the pointing error at the end of the optimal control portion of the experiment for the

OLOC and near RTOC experiments as calculated in Eq. (50). The PID controller is

assumed to have 0 error at the end of its maneuver. These performance characteristics

are discussed further in Sec. 3.6.

In Sec. 4.2, simulated results of a 90 degree and 180 degree Z-axis rotation are

discussed. Likewise, in Sec. 4.3, the hardware results of the same two maneuvers are

presented. The performance metrics for the four simulations and six hardware test runs

are presented in Table 4.1.

There are a number of observations that can be made from these results.

The first obersvation is the difference in time to complete the maneuver between

the simulation and hardware results for the 180 degree maneuvers. This is a maneuver

that the PID controller and the OLOC controller are ill-suited for due to the small angle

assumption no longer being true and the extended time of the maneuver compared to

the 90 degree maneuvers allowing disturbance torques, errors in state measurement, and

other issues to compound themselves. The OLOC controller is especially effected as the

simulation predicted a time to completion of 20.94 seconds while the actual hardware
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Table 4.1: Performance Metrics for Simulated and Hardware Test Results

Type Controller Maneuver (deg) Time to Complete (sec) % Error Metric at End
Simulated PID 90 29.9 0
Simulated PID 180 45.4 0
Simulated OLOC 90 16.46 0
Simulated OLOC 180 20.94 0
Hardware PID 90 30.3 0
Hardware PID 180 49.9 0
Hardware OLOC 90 19 18.9
Hardware OLOC 180 26.36 14.8
Hardware Near RTOC 90 23.5 2
Hardware Near RTOC 180 31.14 7.2

performed the maneuver with 14.8% error in 26.36 seconds. Some of this can be explained

by the spacecraft simulator avoiding a collision but a greater factor is the gravitational

disturbances as SimSat tilts on its side to generate torque from the reaction wheels

aligned with the X-axis and Y-axis. Additional analysis found that an OLOC trajectory

that took into account the limits on SimSat’s X-axis and Y-axis did not complete the

maneuver. This could perhaps be a timing issue on the reaction wheels or an interpolation

issue with determining the correct ~̇h values to determine reaction wheel rates.

A general trend in the results is that the PID controller is more accurate than the

OLOC controller while the OLOC controller is able to complete the 90 degree maneuver

and especially the 180 degree reorientation maneuver in a shorter amount of time. This

is a function of the amount of disturbance torques affecting the maneuver. This differ-

ence between the PID and OLOC controllers comes as a result of the PID’s abilty to

use feedback to take state information from the attitude determination system, in this

case the Northrop Grumman LN-2000 Laser Gyroscope, and use that information as

part of the next ~̇h command to the reaction wheels. It is able to respond to disturbances

such as gravity disturbance torques and counteract them with additional torque from

the actuators. The OLOC system is “fire and forget.” It cannot be changed once the

experiment begins. However, OLOC does have the advantage in the end time perfor-

mance parameter. It is able to use additional torque from all 3 reaction wheels to go

from its initial orientation to its final orientation faster than the PID controlled system
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which primarily only uses one reaction wheel. In these experiments the PID controlled

experiments primarily use the Z-axis reaction wheel while the OLOC controlled system

uses all 3 wheels. In the PID simulation the other two wheels are accelerated slightly

at the beginning of the maneuver but quickly decelerate to allow the Z-axis wheel to

complete the reorienation.

The near RTOC system is able to combine the benefits of PID’s increased accuracy

at the end of the reorientation maneuver and OLOC’s increased speed to complete the

maneuver. Throughout the first part of the reorientation maneuver, the near RTOC

controlled system appears to be closer to the OLOC system in quaternion trajectory

as shown in Fig. 4.35 and Fig. 4.42. The first switch (or two in the case of the 180

degree reorientation) appear to be course corrections while the final switch appears to

be more of a PID or feedback trajectory to bring the spacecraft back to its target. The

near RTOC controlled system is able to bring the system from its initial orientation

to its final orientation in 23.5 seconds in the case of the 90 degree Z-axis reorientation

and 31.4 seconds in the 180 degree Z-axis reorientation with 2% and 7.23% error at the

end of the maneuver respectively. It does not continue to the exact final orientation as

the error metric at the end of the optimal trajectory is not enough to switch to a new

trajectory; if this was the case the algorithm would request and move to a new optimal

trajectory. The best-case scenarios as calculated by the optimal control solver GPOPS-II

are 16.46 and 20.94 seconds for the 90 degree and 180 degree maneuvers respectively with

no disturbance or other external torques on the system. In the experimental cases these

times are 19 and 26.36 with the additional time due to differences in the model. The

model in this research does not take into account any external torques on the system

such as air drag.

The near RTOC controller is unable to reach the time-optimal trajectories and the

resulting maneuver end time calculated in Sec. 4.2.2.1 and Sec. 4.2.2.2 for a 90 degree

Z-axis reorientation and a 180 degree Z-axis reorientation, respectively. After the first

time the near RTOC algorithm switches to a new optimal trajectory, it is no longer

time-optimal for that manuever from the time the SimSat starts its reorientation to the

end time but it is optimal for the case of its current orientation slewing to the final
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orientation. The time-optimal case is found in Sec. 4.3.2.1 and Sec. 4.3.2.2 to be faster

than near RTOC but has more terminal error.

The performance of the PID controller is extremely dependent on the gains used for

KP , KI , and KD. Gain settings that produce a time-optimal response for one maneuver

may not produce a time-optimal response in another maneuver. The gain matrix used in

this research was constant throughout all simulations and experiments. While the near

RTOC controller presented is more time-optimal than the presented PID controller for

the 90 and 180 degree Z-axis reorientations, this may not be the case for another PID

controller with different gains. Additional research is needed to determine if the near

RTOC controller presented here is more time-optimal than a PID controller tuned to

decrease the time needed to complete the maneuver.

The cost of using near RTOC is increased processing power. The optimal control

solver on the GS PC was able to compute solutions every 2.49 seconds in both maneuvers.

This is much slower than the 20 Hz sampling rate of the controller on the hardware.

As can be seen in Sec. 4.4.3 this can be improved slighly by decreasing the number

of collocation points but it is limited by the GS PC’s lack of addressable memory. A

true real-time optimal control scheme would have to be able to calculate a new optimal

trajectory faster than the sampling rate of the controller and its actuators and sensors

to reach the desired time-optimal trajectory.

Overall, the near RTOC controller was able to reorient itself in less time than the

PID controller with the gains found in this research and have more terminal accuracy

than the OLOC controller. However, it is unable to reach the true “optimal” trajectory

generate by the optimal control solver. More research is needed to bring the current near

RTOC implementation closer to the true optimal solution.

4.4.2 Variation of Near RTOC “Inner” Loop Error Parameter. This section

discusses the effect changing the “inner” loop error parameter in the near RTOC imple-

mentation has on the speed and accuracy of SimSat performing a 90 degree reorientation

maneuver.
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This is the metric by which the Near RTOC algorithm on the on-board PC knows

whether to stay on its current trajectory and control history or request, receive a new

trajectory and control history, and implement the new control history in that timestep. If

the scalar quaternion error from the current trajectory is lower than the error parameter

SimSat stays on its current optimal trajectory. If the scalar quaternion error is greater

than the error parameter the new trajectory is implemented.

Fig. 4.50 shows the effect changing this parameter has on q3, the quaternion pa-

rameter associated with the Z-axis which in this maneuver is the axis of rotation. Error

parameters of 0.05, 0.1, and 0.5 are used with 0.1 being the error parameter used in the

previous section for the near RTOC 90 degree Z-axis reoreintation maneuver.

Figure 4.50: Hardware q3 for a 90 Degree Reorientation Maneuver For Various Inner
Error Metrics

The number of switches performed by the near RTOC algorithm for a 90 degree

Z-axis reorientation are 3 for the 0.01 case, 2 for the 0.1 case, and 1 for the 0.5 case.

The 0.01 case completes the reorientation in 23.24 seconds, the baseline 0.1 case in 23.5

seconds, and the 0.5 case in 29.75 seconds. The 0.01 case has 5.3% error at the end of

its optimal maneuver, the 0.1 case has 2% error, and the 0.5 case has 10.42% error.
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The 0.01 case performs the manuever faster than the other two error metric values

but does has additional terminal error. This error is due to a switch at 15.14 seconds

when the spacecraft simulator is almost at the desired orientation. The motors on the

reaction wheels do not perform well when the rates are quickly changed and cause SimSat

to overshoot its target q3 of 0.707, faster than was anticipated by the planned optimal

trajectory, and have to come back to the target. This shows that feedback in near RTOC

is a large advantge over open-loop solutions as the spacecraft simulator’s implementation

of the near RTOC algorithm is able to correct for an error at the rate of the inner error

metric.

The 0.5 case only switches once during the maneuver. It is still faster and more

accurate than an open loop implementation but is slower and less accurate than the

experiments with the other two error metric values.

The inner error metric is related to the rate at which optimal control solutions

are calculated on the GS by the optimal control solver. The near RTOC algorithm

only requests a new trajectory when the inner error metric is crossed. If the inner

error metric continually is crossed by error in the quaternion parameter trajectory but

a new solution has not been computed by the optimal control solver, the algorithm

will continue to request and receive the same optimal control trajectory that was most

recently computed. This trajectory may or may not be the most time accurate at the

time of the switch. This issue can be improved by increasing the rate at which optimal

control trajectories are computed.

Different equations used to calculated this inner error metric are not presented in

this research. More research can be done in this area to optimize the “inner” loop’s error

metric. This is discussed further in Sec. 5.2.2.

4.4.3 Optimal Control Solver Parameter Variation. The three settings in the

optimal control solver GPOPS-II that have the greatest effect on solution accuracy and

time needed to compute the solution are number of collocation points, mesh error toler-

ance, and number of iterations needed to compute an optimal solution. This section will
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discuss the changes in the speed of the optimal control solution when these parameters

are modified independently.

The default settings used in this research for mid-experiment calculations of new

optimal control solutions are 1 × 10−4 for mesh tolerance, 10 for number of iterations,

and 20 for number of collocation points. These values were chosen through iteration to

determine a set of parameters for GPOPS-II that produced an optimal control solution

in less than 5 seconds but that had enough collocation points that a complete quaternion

and ~̇h trajectories could be linearly interpolated. Throughout the two experiments of

near RTOC this translated to an average computational time from receiving the state

information to outputting a new optimal control solution of 2.49 seconds. The state

information between the first switch and the second switch on the 90 degree near RTOC

reorientation was saved as initial conditions for the optimal control solver GPOPS-II and

the final state information was the same as found in Eq. (48). Each of these parameters

listed above was varied independently while the other parameters were held at the default

values. No information about the accuracy of the optimal solution was determined and

all calculations were performed on the same GS PC used in this research.

Table 4.2 shows the effect the number of collocation points has on the time to

compute an optimal solution. As can be seen in the table, computation time increases

with the number of collocation points. Changing this parameter to 1000 or more takes

almost as long to compute a solution as the reorientation maneuver itself. This would

introduce a great deal of phase lag as the spacecraft simulator is likely not where the near

RTOC controller expects it to be as it implements the new trajectory. This solution is

likely more accurate but due to the Bellman Optimality Principle discussed in Sec. 2.4.3

it is more effective to use a small set of nodes and update more frequently as proved by

Ross et al. [32].

Table 4.3 shows the effect of changing the mesh tolerance. Decreasing the mesh

tolerance also has a negative impact on the speed of the optimal control solver. This

parameter change also increases the accuracy of the optimal control solution due to the

increased accuracy of the solution on each mesh but as the solution gets more accurate
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Table 4.2: Time to Compute Solution - Change in Number of Collocation Points

Collocation Points Time (sec)
10 1.94
20 2.49
50 4.57
100 7.60
200 10.11
500 11.43
1000 24.01

more time is needed to compute it. The setting chosen for this research seems to be the

optimal one to not increase too much of a delay to the system.

Table 4.3: Time to Compute Solution - Change in Mesh Tolerance

Mesh Tolerance Time (sec)
10−3 2.24
10−4 2.49
10−5 5.68
10−6 35.61
10−7 109.64
10−8 304.1

Table 4.4 shows the effect of changing the number of mesh iterations. The number

of mesh iterations does not appear to have much of an affect for this optimal control

solution. Less than 10 did not result in a solution being found by the solver while any

number greater than 10 did not change the speed at which the solution was calculated.

This is due to the number of iterations needed to calculate the optimal solution being

somewhere between 5 and 10, in this case it is 8. In a different case when more than 8

meshes are needed to calculate a solution this may change the impact that the number

of mesh iterations has on the computational time but in this case changing the number

of mesh iterations has no impact.

4.5 Summary

This chapter covered the simulated and experimental results of this research using

the methods found in Ch. III. The first section discussed the simulated 90 degree and
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Table 4.4: Time to Compute Solution - Change in Number of Mesh Iterations

Number of Iterations Time (sec)
5 N/A
10 2.49
15 2.49
25 2.49
50 2.49
100 2.49

180 degree reorientation of SimSat about its Z-axis using a PID controller and an OLOC

controller. The second section presented the hardware results of the same two maneuvers

using a PID controller, an OLOC controller, and a near RTOC controller, and compared

these results to the simulated results in the previous section. The third section discusses

the analysis of these results as well as variations of inner loop and optimal control solver

parameters for the near RTOC controller.
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V. Conclusions and Recommendations

5.1 Conclusions

The primary objective of this research is to implement a near RTOC controller

on the SimSat hardware and determine its performance relative to PID and OLOC

controllers for spacecraft. The equations needed to develop a near RTOC algorithm

were outlined and the state equations needed for an optimal control solver, along with

a brief history of the spacecraft time-optimal reorientation problem, were presented in

Chapter II. A PID controller and an open loop optimal control scheme, as well as a near

RTOC algorithm and implementation, were developed in Chapter III. In Chapter IV,

in simulation and on the SimSat hardware, two different reorientation maneuvers were

conducted for these control methods, a 90 degree Z-axis reorientation and a 180 degree

Z-axis reorientation. The accuracy and speed at which the different control methods

complete the maneuvers were analyzed and compared. The “inner” loop error metric

in the near RTOC implementation was varied in order to determine its effect on the

effectiveness of the near RTOC solution, as was the number of collocation points in the

optimal control solver.

Near RTOC demonstrates some advantages over PID and OLOC but has its dis-

advantages as well. The time to complete the two reorientations for near RTOC is less

than the PID controller used. However, as mentioned in Sec. 4.4.1 the gains for the PID

controller are constant throughout the research. A tuned PID controller may be more

effective than the near RTOC approach presented. This near RTOC controller is more

time-optimal than this PID controller but this may not be the case for all reorientations

or for a tuned PID controller. The true optimal control trajectory found in simulation

in Sec. 4.2.2.1 and Sec. 4.2.2.2 is not realized. The OLOC controller is faster in both

reorientations than the near RTOC controller but has significant terminal error of over

10% about its X-axis and Y-axis at the end of the maneuver. In this case, the near

RTOC controller is more accurate with terminal errors of under 10% for both maneu-

vers. However, in a true torque-free environment, this will not be the case as the errors

are caused by gravity disturbance torques acting on the SimSat.
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The purpose of near RTOC is to bring a form optimal control to an environment

with disturbances. This research shows that this is possible; however, the gains realized

may not be worth the effort expanded to implement near RTOC outside of the laboratory

environment. A spacecraft that is constantly slewing 90 degrees or more may see some

advantages but another spacecraft that rarely rapidly changes its orientation may not

find near RTOC worthwhile.

This research shows the promise of near RTOC but still needs additional work.

The near RTOC algorithm is spread out over two PCs. This is not ideal and should

be improved upon before future work is conducted. Recommendations are made in the

following section as to how the on-board PC could be upgraded and made to be able to

compute optimal control solutions instead of having the GS PC compute the solutions

and transfer via UDP to the on-board PC.

The next step for this research is to implement a near RTOC solution on flight

hardware. GPOPSII, the optimal control solver used in this research, is dependent on

MATLAB. Most ADCS on satellites do not run MATLAB or have the computational

resources to run such a computationally intensive program. Many changes must be

made to the work done in this research, including rewriting most of the near RTOC

code in C or another low-level programming language, in order to have the near RTOC

implementation described here work on an actual satellite.

5.2 Future Work and Recommendations

This section discusses suggestions for future work and research in the fields of Near

RTOC, spacecraft control, and improvements to the SimSat II testbed. The first section

covers upgrades to the SimSat testbed and the second section discusses future work to

be researched in Near RTOC and spacecraft control.

5.2.1 Upgrades to SimSat. This section covers upgrades to the SimSat testbed

in order to improve it both in order to conduct near RTOC research and as a general

spacecraft attitude dynamics and control testbed. The largest limitation in this research

is the inability of the Windows XP-based MiniPC on-board SimSat to calculate optimal
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control solutions using GPOPSII. This greatly complicates the optimal control imple-

mentation by necessitating the need for control data to be transferred between PCs. The

processor and memory on the on-board PC are insufficient to solve the optimal control

problem in anything approaching a reasonable amount of time. An optimal control so-

lution using the equations in this research that may take a minute or two to solve on a

traditional desktop computer such as the GS PC takes hours on the on-board PC. This

issue could be remedied by upgrading the on-board computer to a modern Windows

7-based system running an Intel Atom or comparable multicore processor and with addi-

tional addressable RAM. This upgrade would negate the need for the GS PC to receive

the state information from the on-board PC, calculate a new optimal control solution,

and send it back to the on-board PC for implementation. This would greatly improve the

performance of the near RTOC implementation on SimSat as well as any other control

research conducted.

Some integration work would have to be accomplished with the dSPACE MicroAu-

toBox but this would not preclude the on-board PC from being replaced.

Another upgrade that could be made is to upgrade the GS PC from the Windows

XP 32-bit OS to a Windows 7 64-bit installation. While there are 8 GB of RAM installed

on the GS PC, only 2 GB are seen in the operating system. 32-bit operating systems

such as the one currently installed are only able to address a maximum of 2 GB of RAM.

Since the primary purpose of the GS is to use the Remote Desktop feature to connnect

wirelessly to the on-board PC during an experiment, this would be a low-hassle upgrade

that would increase the processing power of the GS PC as GPOPS-II’s processing speed

for an optimal control solution is partially dependent on the amount of RAM available

to MATLAB.

Another upgrade to the SimSat testbed is the PhaseSpace motion capture system

that is intended for installation and integration with SimSat in the Spring of 2016.

This system will provide a “truth” orientation to SimSat that is not currently available.

The LN-2000 fiber optic gyroscope currently installed on SimSat is accurate but has no

dynamic external “truth” orientation to be compared against. The PhaseSpace system

will provide greater accuracy for future control system testing.
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5.2.2 Future Research. An area of future research in the area of Near RTOC is

to add a filter to the measurement data received from the sensors before it is inputted as

initial conditions in the optimal control solver. Currently there is no filtering of the data

received by the sensors during the maneuver or in post-processing. Any noise or other

errors in the system are carried through to the optimal control problem or to the data

collected. A simple moving average filter or a more capable one such as a variant of the

Kalman filter should be added to the existing Near RTOC algorithm and implementation

in order to increase the accuracy of the angular acceleration measurements of the LN-

2000 gyroscope and the angular rates and quaternion parameters that are integrated

from those measurements. The increase in processing power as suggested in Sec. 5.2.1

could offset the increased computational requirements that filtering the data during the

maneuver would require.

The PID controller could have its gains tuned in order to produce a time optimal

response. The gains should be tuned for the two different maneuvers. This would produce

a “best-case” PID controller that the near RTOC algorithm could be compared against.

The error metric in the “inner” loop was not changed much after its implementation

other than the values that it uses as a threshold to switch trajectories. No effort was

made in this research to determine whether the orientation defined by the quaternion

parameters, Euler angles, or the body rates was the most effective “inner” loop metric.

The answer may be one or the other or some combination of, or perhaps the error metric

presented in this research is sufficient with some tweaking. Each quaternion parameter

was weighed the same, this could be changed to have different weights for different

maneuvers depending on the axis of rotation. Another thought along this line is to

determine whether one ~̇h should be completely replaced by a new one from the optimal

control solver or only certain axes need to be.

Another area for future research is optimizing the GPOPS-II settings of number

of collocation points, mesh tolerance, and number of iterations. This research covers the

effect of changing these properties independently has on the time it takes to compute an

optimal control solution but does not take into account what the optimum settings are

for near RTOC nor the effect changing one setting has on another. A static optimization
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problem could be formulated and solved using nonlinear programming techniques to

determine the optimal settings for the time-optimal reorientation problem. Another

parameter that could be optimized is the timeout value when the near RTOC algorithm

decides to use an old value to compute the new optimal solution.

Different maneuvers could be conducted to test near RTOC’s effectiveness for other

maneuvers. For the sake of time, this research only covered large angle maneuvers about

one axis. Future work could try to have a target orientation about more than just the

Z-axis or small angle maneuvers. Eventually the research should go in the direction of

multiple large angle maneuvers in order to test the ability of near RTOC to conduct

simultaneous maneuvers that stress the ADCS of the spacecraft simulator.

Finally, additional actuators could be added to the near RTOC implementation

discussed in this research in order to better simulated an on-orbit spacecraft that uses

more than reaction wheels to reorient itself. The equations of state used in GPOPS-II

and the Simulink model could be altered to add the CMGs, the fans, or both instead of

or in addition to the reaction wheels.
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