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Abstract 

 Failure of the electrical power system (EPS) to meet mission requirements is a 

common problem in nano-size satellites commonly referred to as CubeSats. The 

motivation for this research stems from the desire to prevent EPS failure through a 

process of testing and space qualification of components. Utilizing models to predict the 

behavior of an EPS before it is designed, built, and tested for space can provide critical 

insight in areas of limitation in performance and survivability. Modeling an entire EPS 

system is challenging because it requires extensive knowledge of all components and 

their behavior. This research focuses specifically on the storage component of the EPS 

often referred to as secondary batteries. The secondary batteries, such as Li-Ion battery 

cells, are modeled to predict the performance of the storage component in the space 

environment. Experimental test data is collected under a simulated space environment 

through the use of a Thermal Vacuum Chamber (TVAC). Data collected from battery 

testing in the space environment is used to validate a modified Thevenin Equivalent 

Circuit model. The experimental test data and battery model are compared and evaluated 

resulting in a promising model that can reasonably predict performance of a battery pack 

in a two-series two-parallel configuration.  
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ANALYSIS OF A MODIFIED EQUIVALENT CIRCUIT MODEL FOR LITHIUM-ION 
BATTERY MODULES IN CUBESATS 

 
1. Introduction 

CubeSats are miniaturized satellites that are typically powered by commercial-off-the-

shelf (COTS) electrical components which make up the electrical power subsystem (EPS). A 

typical CubeSat EPS requires solar arrays to generate power, an EPS board to distribute and 

regulate power, and batteries to store generated power.  Figure 1(a) is an example of a CubeSat 

EPS stack consisting of the EPS board and battery pack. Figure 1(b) is an example of a body 

mounted solar panel.  

 

Figure 1: EPS Stack (a) and 6U Body Mounted Solar Panel (b) 
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Due to risks involved in using COTS components, a CubeSat’s EPS must undergo space 

qualification testing to verify its ability to operate in the space environment. Space qualification 

is a verification process in satellite design which ensures that components will meet their 

designed specification. The life of a satellite can be directly related to how long the EPS can 

provide power in fulfilling a satellite’s mission requirements. Once the EPS fails to meet mission 

power requirements, the satellite’s life could be over. Complete or partial failure of the 

CubeSat’s power system almost always means the end for a CubeSat mission; failure of such 

electrical components motivates space qualifying and testing so there is confidence that the 

components will survive and operate in space. To characterize the behavior of the components in 

the space environment, rigorous environmental testing must be conducted. Testing is a crucial 

step in qualifying components for space applications; however, the ability to accurately model 

and predict the behavior of such components would provide an effective tool in evaluating an 

EPS’s performance. A model that accurately predicts the behavior of an EPS before a CubeSat is 

sent into space could provide confidence and reduce uncertainty in meeting power requirements. 

The motivation for this research stems from the desire to prevent EPS failure through the 

development of a model that can accurately predict the performance of an EPS before a CubeSat 

is designed, built, and operated in space. The challenge behind developing an accurate EPS 

model is the extensive knowledge required of all components in an EPS. The goal of this 

research is to establish a foundation in EPS modeling by conducting analysis of modeling for the 

energy storage component of the EPS using real test data. This research focuses on battery 

modeling and testing. This chapter provides a background on CubeSats, power systems and 

batteries, the problem statement, and a preview of the methodology used in this research.  



3 

1.1 CubeSats 

In 1999, professors Puig-Suari from California Polytechnic State University, San Luis 

Obispo (Cal Poly SLO) and Twiggs from Stanford University invented the CubeSat as a project 

for students to design, build, and test a small satellite in a classroom setting [1]. Although 

CubeSats were originally created to be classroom projects, they are now fully capable of 

fulfilling a wide range of mission requirements, making them valuable assets in the space 

industry. Suari and Twiggs defined the standard known as a “1U.” A 1U CubeSat is typically 

defined as a 10 cm x 10 cm x 10 cm (length, width, height) cube whose maximum mass typically 

does not exceed 1.3 kg [2]. Figure 2 shows an example of a 1U CubeSat. The number in front of 

the “U” is the nominal designator for the number of 1U sized CubeSats that make up the satellite. 

For example, a 6U CubeSat is nominally the size and weight of six 1U CubeSats. Today, 

CubeSats are designed in sizes from 1U all the way up to 27U and are expected to grow larger as 

a result of improvement to containerized CubeSat dispensers [1].   

 

Figure 2: Fox-1 CubeSat from AMSAT [3] 
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1.1.1 CubeSat Power Systems 

Due to size and weight limitations, CubeSat power systems typically do not exceed 100 

Watt-Hour (Wh) of stored or 50 W of generated power; however, there are exceptions, especially 

with newer EPS subsystems. Compared to large satellites that can fit fuel cells, nuclear, or 

radioisotope thermoelectric generators (RTG), CubeSats are almost always limited to generating 

electrical power using solar panels and storing this electrical energy using batteries or like 

devices. Average power generated by the solar panel is limited because a CubeSat’s orbits are 

typically less than 500 kilometers (km) in altitude.  During the eclipse phase of the orbit, the 

CubeSat would not be able to generate any power from the solar panels and must rely on 

batteries to power the spacecraft. Batteries can be categorized into primary and secondary. 

Primary batteries are non-rechargeable and disposable after their use. Secondary batteries are 

rechargeable so they can be used to store and provide power for the CubeSat. Secondary batteries 

are recharged by solar panels when the panels are illuminated by the Sun. Secondary batteries 

allow the CubeSat to store electrical energy for the entire duration of the mission. Typically, 

CubeSats rely on secondary batteries such as Lithium-Ion (Li-Ion), Nickel-Cadmium (Ni-Cd), or 

Nickel-Hydrogen (Ni-H2). This research only evaluates secondary batteries, specifically Li-Ion.   

1.2 Basic Battery Terminology and Definition 

The term battery is often used to describe a source of stored electrical energy. This 

definition of battery can cause confusion as the term battery could refer to either a single cell or 

multiple cells in a pack. A battery cell is a single individual electrochemical storage unit. A 

battery pack is a combination of two or more battery cells connected together in series or parallel 

to form an electrochemical storage unit to provide more capacity. In this research, the term 

battery will be used to describe a combination of multiple battery cells [4]. 
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Battery cells are identified through their nominal voltage and rated current capacity.  The 

term nominal refers to a manufacturer specified reference rating. The nominal voltage can also 

be thought of as the operating voltage of the battery. For Li-Ion battery cells, the nominal voltage 

is typically rated at 3.6 V. The rated current capacity is the charge a battery cell can hold and is 

expressed in units of ampere hours (Ah).  The rated current capacity of a battery is specific for a 

given temperature and discharge rate which will be described shortly. In terms of energy storage, 

the product of nominal voltage and the rated current capacity results in a total nominal energy 

capacity in units of watt hours (Wh).  

Discharge rate, or discharge current is typically expressed as C rate, relative to a cell’s 

rated current capacity. For example, consider a 3.2 Ah capacity battery cell. A 1C discharge rate 

would have a current draw of 3.2 A and would take approximately one hour to be completely 

discharged. A C/2 discharge rate would have a current draw of 1.6A and take approximately 2 

hours to be completely discharged. A 2C discharge rate would have a current draw of 6.4 A and 

take approximately 30 minutes to be completely discharged.  The total available current capacity 

in a battery cell decreases more quickly for higher C rates resulting in a shorter discharge time. 

Alternatively, the total available current capacity decreases more slowly for lower C rates 

resulting in a longer discharge time.  

The cut-off voltage for a battery cell is the minimum voltage that the battery cell can 

operate at. The cut-off-voltage is used to define the empty state of a battery cell. This will 

become more important when describing the relationship between state of charge and voltage. 

A battery pack’s total voltage and current capacity are determined through a series and 

parallel relationship based on the cell configuration in the battery pack. The voltage of battery 

cells connected in series is the sum of each individual cell voltages. The current capacity of 
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battery cells connected in parallel is the sum of an individual cell’s current capacity in each 

parallel string.  

1.3 Problem Statement 

According to Swartwout [5], half of all first-time CubeSats Projects end up in failure [6].  

Common CubeSat failures are caused by the EPS not providing power [7]. Power plays a vital 

role in determining a CubeSat’s success or failure. In the past, AFIT has experienced a failure in 

their ALICE CubeSat through loss of contact, typically a result of failure of the power or 

communication system; however, the cause of failure was never determined. As launching 

CubeSats into space become more widely accessible to the public and universities, the high rate 

of failure becomes a much greater concern; thus, modeling an entire CubeSat before launch will 

become more prominent in the CubeSat design process to mitigate risks. Currently, there is 

minimal to no content publicly available in EPS modeling for CubeSat applications. 

1.5 Research Focus 

The ultimate goal of this research effort is the eventual development of an accurate EPS 

model for a CubeSat; however, the focus of this research is the analysis of currently available 

battery models and evaluating their capability of simulating Li-Ion battery in the space 

environment. The technique used to evaluate the battery model is the comparison of simulated 

results from the models to measured results collected from experimental test data. This research 

will focus on answering the following question: “Can a Thevenin Equivalent Circuit Model be 

used to accurately predict the performance of a Li-Ion battery module for a CubeSat in a 

simulated space environment?” 
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1.6 Research Methodology 

The methodology used to answer the research question is to modify an existing Thevenin 

Equivalent Circuit Model to simulate a battery pack and compare the modified model’s output to 

experimental test data in a simulated space environment. The proposed Thevenin Equivalent 

Circuit Model is modified through replacement of 80 cells in a series configuration inside the 

battery model to 4 cells in a two-series, two-parallel configuration (2S2P). This research will 

compare the modified battery model’s output to experimental data of AFIT’s 2014 battery pack, 

shown in Figure 3, obtained through Thermal Vacuum (TVAC) testing.  

 

Figure 3: AFIT 2014 Battery Pack [8] 

TVAC testing is conducted to simulate the effects the space environmental has on a 

battery pack. Conducting battery performance tests in TVAC will provide experimental data in 

space-simulated environment for comparison with the model. The model will provide an 

analytical basis to be used in prediction and simulation of battery packs in space. Modeling and 

testing are both used to verify that the battery pack will be qualified for use in space. Further 
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studies in battery pack modeling are presented in the literature review to provide a background in 

developing an accurate EPS model. 

1.7 Preview 

Chapter 2 will focus on an extensive literature review of Li-Ion battery cells and battery 

cell modeling. A variety of existing battery models will be presented with a proposed model 

presented at the end of Chapter 2. Chapter 3 will provide a more detailed methodology used to 

modify a battery model capable of predicting the behavior of AFIT’s battery pack in the space 

environment. Chapter 3 will also incorporate more information on TVAC testing. Chapter 4 will 

show the results and analysis between model and environmental test data. Finally, Chapter 5 will 

summarize the research and provide additional future work and recommendations.  
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II. Literature Review 

This chapter will present a thorough description of Li-Ion batteries, battery modeling 

approaches, and battery testing procedures. First, a background on Li-Ion batteries and factors 

that affect their performance will be addressed. Then, an extensive review of existing battery 

modeling techniques will be presented to provide background on techniques used to simulate 

battery behavior. From the techniques presented, a model will be proposed as the basis of 

analysis for this research.  Finally, a description of battery testing procedures will be presented to 

describe what performance parameters are needed to evaluate batteries for space applications.  

2.1 Lithium-Ion Battery 

Li-Ion batteries are electrochemical storage units that convert chemical energy into 

electrical energy. Prior to the 1980’s Ni-Cd was widely used in spacecraft [9]. Between the 

1980s and 1990s Ni-H2 became the more popular type for space applications [9]. Li-Ion batteries 

were not introduced into the market until they were commercialized by Sony in 1991 [10]. 

Today, Li-Ion batteries are more widely used in not only spacecraft but also portable electronics 

such as mobile handheld devices, laptops, and digital cameras. The advantages Li-Ion batteries 

have over Ni-Cd and Ni-H2 in space applications, especially in CubeSats, is their specific mass 

(W/kg) and potential for higher electrical storage capacity due to higher energy density (J/Liter) 

when compared with Ni-Cd and Ni-H2 [9]. The specific mass and energy density is important for 

CubeSats where volumetric size, mass, and power are limited. The disadvantages Li-Ion batteries 

have compared to Ni-Cd and Ni-H2 are in safety [11]. Protection circuits are placed in Li-Ion 

battery cells to limit voltage and discharge current to prevent overcharging, overheating or short-

circuiting that would otherwise result in thermal runaway causing a fire or explosion [12]. Li-Ion 

batteries come in a variety of chemistries which will be described next.  
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2.1.1 Li-Ion Components 

Internally, Li-Ion batteries are composed of the following components: positive electrode, 

negative electrode, electrolyte and a separator. Figure 4 shows a graphic representation of the 

internal structure of a Li-Ion Battery cell. 

 

 

Figure 4: Li-Ion Battery Cell [4] 

An electrode is an electrical conductor that allows current to flow through the medium 

(electrolyte) inside a battery cell.  In Li-Ion battery cells, the negative electrode is typically 

composed of graphite, C6. For the positive electrode, the material used is more variable, such as 

Cobalt (LCO), Nickel Cobalt Aluminum (NCA) and Nickel Manganese Cobalt (NMC) [13]. Li-

Ion batteries are categorized based on the chemistry of the positive electrode. Each of the 

chemical composition of the positive electrode differs in cost, safety and energy density [11]. 

The positive electrode for the battery cells used in this research is of the Nickel Manganese 

Cobalt (NMC) type [14].  NMC was chosen for this research primarily due to safety 
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considerations in preventing thermal runaway when testing at high temperatures inside the 

TVAC chamber. NMC has a higher tolerance to thermal runaway, thus proving better safety 

ratings at higher operating temperatures when compared to LCO or NCA type battery cells [13].  

Most researchers tend to refer to the term cathode and anode to describe the positive and 

negative electrode, respectively. By definition, cathode is where charge current flows out of the 

battery and anode is where charge current flows into the battery. In rechargeable battery cells 

such as Li-Ion, the terms cathode and anode are interchangeable because the current flow 

through the electrodes changes direction depending on state: charge or discharge. Historically, 

the term cathode and anode originated from the positive and negative electrodes, respectively, in 

a primary (non-rechargeable) battery cell during discharge. Thus, in all following discussions, 

regardless of whether the Li-Ion battery cell is undergoing charge or discharge, the positive 

electrode is often referred to as the cathode and the negative electrode is referred to as the anode. 

The electrolyte is the medium that allows ions to flow between the positive and negative 

electrodes. The ions flowing through the electrolyte are known as cations and anions. Cations are 

ions with a positive net charge, and anions are ions with negative net charge. During discharge, 

the cations move through the electrolyte towards the positive electrode, while the anions move 

towards the negative electrode. For Li-Ion battery cells, the electrolyte is typically a salt 

dissolved in a non-aqueous solvent. A non-aqueous solvent is used due to an intense chemical 

reaction between lithium and water that forms highly flammable hydrogen. A commonly used 

salt is Lithium Hexaflurophosphate, LiPF6. Solvents used in Li-Ion cells include Ethylene 

Carbonate, C3H4O3, and diethyl carbonate, C5H10O3. The salt-solvent combination is not a part of 

the chemical processes in a Li-Ion cell but is still important in facilitating transport of lithium 
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ions. The electrolyte is mainly a medium for electrical conduction and does not take part in the 

chemical reaction process of the battery [4].  

The separator is a membrane that physically isolates the positive and negative electrodes. 

Separation between the positive and negative electrodes prevents a short circuit inside the 

battery. Although the separator’s function is to physically isolate the electrodes, the separator is 

permeable. A permeable membrane allows lithium ions to pass through and intercalate with 

either electrode during charge and discharge. Typically, separators in commercial Li-Ion battery 

cells are made out of polyolefin, such as polyethylene or polypropylene [15].  

2.1.2 Charge & Discharge Process for Li-Ion Battery Cells 

For electrochemical cells, the charging and discharging process is conducted through a 

redox, or oxidation-reduction, reaction which is a chemical reaction that allows electrons to 

transfer between two species (atoms, molecules, or ions).  During discharge, the negative 

electrode is oxidized (loses electrons) while the positive electrode is reduced (gains electrons) 

from the circuit. This process of losing electrons and gaining electrons is termed oxidation and 

reduction, respectively. During charge the opposite occurs, the negative electrode is reduced and 

the positive electrode is oxidized [16].  

For Li-Ion batteries, the charge and discharge processes are not a redox reaction but an 

intercalation, or insertion, of lithium ions into the positive and negative electrode. Intercalation 

allows lithium ions to occupy the empty spaces of the crystal lattice in the structure of the 

electrode without changing its overall structure. For intercalation to work, the electrodes must 

have the properties of being an open crystal structure and have the ability to accept electrons 

simultaneously as lithium ions occupy its empty spaces. Lithium atoms are stored inside the 

crystal lattice structure and the atom becomes a positively charged lithium ion when it loses an 
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electron. Inside the electrode, the lithium atoms are able to freely move and are not tightly 

bonded to the electrode [4].  

During discharge, lithium atoms stored inside the negative electrode loses an electron and 

becomes a positively charged lithium ion. The lithium ions move across the separator and are 

intercalated into the positive electrode. At the same time, the electron that the lithium atom lost 

travels from the negative electrode, through the circuit and into the positive electrode where it is 

rejoined with the lithium ion to form lithium atoms without charge. During charge, lithium ions 

flow from the positive electrode and insert into the negative electrode while simultaneously, the 

electrons flow through the circuit from the positive electrode into the negative electrode and 

recombines with the lithium ion in the negative electrode [4]. This process is illustrated in Figure 

5. 

 

Figure 5: Li-Ion Battery Charge and Discharge 
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Through the process of intercalation, Li-Ion battery cells are able to supply and store 

electrochemical energy. During discharge and charge, there is a potential difference between the 

two electrodes from the electrons lost by the lithium and the electrons gain by the lithium ion at 

the opposite electrode. This potential difference between the two electrodes is known as the 

electromotive force (EMF) or cell voltage. EMF or cell voltage is one of the many performance 

battery cell parameters that will be observed in this research [4].    

2.1.3 Li-Ion Performance Characteristics 

Li-Ion battery performance characteristics for space applications are categorized into the 

following: Capacity (charge (Ah) or energy (Wh)), Voltage (V), Depth of Discharge (DOD), and 

Number of Cycles.  Charge capacity is the total amount of charge the battery is capable of 

storing; whereas, energy capacity is the total amount of electrical energy the battery is capable of 

storing. In this research, capacity will be referred to as the charge capacity. Voltage is the 

electrical potential of the battery. DOD is a percentage of the total capacity used up by the 

spacecraft at any given time. Number of cycles is the number of times a battery can charge and 

discharge before permanent loss of capability to store power which is also known as capacity 

fading. Ning et al. [17] presented studies on capacity fading as a result of cycling. Experimental 

results showed a set of Sony 18650 Li-Ion battery cells that underwent 300 cycles at 1, 2, and 3C 

discharge rates resulted in a 9.5%, 13.2% and 16.9% permanent loss of their capability to store 

power. The number of cycles is an important characteristic used to predict the lifetime duration a 

CubeSat will be able to operational in space because a typical satellite in low Earth orbit (LEO) 

will pass through an eclipse 15 times per day. McKissock, Loyselle, and Vogel [18] at NASA 

Glenn Research Center in Cleveland, Ohio established guidelines on the use of Li-Ion for space 

applications. These guidelines provide a broad overview of factors, such as temperature, charge 
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and discharge rate, vibration and shock, and radiation, which affect Li-Ion battery performance 

in the space environment. For this research, the factors being evaluated will be temperature, and 

discharge/charge rate on a battery cell’s voltage and capacity.  

2.2 Battery Modeling 

Extensive research has been conducted to model a battery cell’s behavior and is shown by 

the abundance of battery modeling techniques that available in literature. Sun and Shu [19] 

presents the different types of models in an overview which can be organized into four 

categories: Electrochemical, Mathematical, Electrical, and Adaptive. This research will adhere to 

Sun and Shu’s categorization of battery models.  

Alternatively, Shafiei [20] presents a similar overview to battery modeling; however, he 

categorizes battery modeling into three categories: Electrochemical, Stochastic and Analytical 

(mathematical), and Electrical circuit. Like Sun and Shu, Shafiei also discusses advanced 

modeling techniques using Kalman Filtering (adaptive) but doesn’t treat it as a separate category. 

A brief description of each type of model will now be discussed to provide a background on 

battery modeling, and the proposed model for this research will be discussed in Section 2.4. 

2.2.1 Electrochemical Models 

Electrochemical models are based on the electrochemical reactions that occur inside a 

battery cell. As described earlier in Section 2.1.2, Li-Ion batteries operate based on intercalation 

that allows ionization of lithium, diffusion of lithium ions from one electrode to another, and 

reabsorption of electrons by the lithium ion at the electrode to recombine back into lithium. This 

diffusion and concentration of ions is modeled in electrochemical models. For lithium ion battery 

cells, an electrochemical battery model is presented by Doyle, Fuller, and Newman (DFN) [21]. 

Their model employs six coupled non-linear differential equations to describe the behavior of 
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lithium ion battery cells. Their model specifically describes the diffusion of lithium ions as well 

as the concentration of lithium ions distributed between the electrolyte, separator, and electrodes. 

[22]  It is advised to refer to[21] for more details on the DFN model. 

The DFN model has been shown to accurately model Li-Ion battery behavior, but the 

complexity of the model prevents it from being used for practical real time applications such as 

spacecraft simulation. Forman et al. [23] utilized an algorithm on the DFN model to identify 88 

parameters needed to model a battery cell. DualFoil is an open source program coded in 

FORTRAN that utilizes DFN’s electrochemical model [24]. Due to its high accuracy, researchers 

often use the DualFoil program to validate their own battery models [25]. The main disadvantage 

of utilizing the DualFoil program is that extensive knowledge of battery chemical properties and 

internal battery parameters are required to accurately model a battery cell.  

Although proven to be highly accurate, the complex nature of electrochemical models is 

the main reason electrochemical models are not used as the modeling approach in this research to 

predict battery behavior. For more information on electrochemical battery cell modeling, refer to 

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective [26]. 

2.2.3 Mathematical Models 

Mathematical models are battery models that typically use empirical equations to 

describe the behavior of a battery cell. Mathematical models can be broken down into two 

different types of model: Analytical and Stochastic.  

Analytical Models are battery models that describe the properties of a battery using only 

a few mathematical equations. Peukert’s law is the simplest type of analytical model. Peukert’s 

law uses an empirical equation to describe the lifetime of a battery based on current and capacity. 

The limitation of Peukert’s law is its simplicity. Peukert’s law is not accurate in describing the 
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battery’s behavior due to variable loads [27]. Because satellites have varying loads, Peukert’s 

law would not be an ideal model to use to describe battery behavior. Another analytical model 

that accurately predicts battery behavior due to varying load is presented by Rakhmatov and 

Vrudhula (RV). The RV model, also known as the diffusion model, combines Fick’s law, which 

describes the one-dimensional diffusion process of lithium ions, and Faraday’s law, which 

describes the relationship between flux of lithium ions and current, to obtain an analytical 

solution. Refer to An Analytical High-Level Battery Model for use in Energy Management of 

Portable Electronic Systems for more information on the RV model [27]. The RV model is able 

to accurately describe battery behavior over varying loads much better than Peukert’s law. RV 

compares their model and Peukert’s law to the DualFoil program. RV’s results show a maximum 

of 6% error for the RV model and 42.6% error for Peukert’s law when comparing battery 

lifetime on a constant load profile with the DualFoil simulation under heavy loads. When 

comparing varying loads to the DualFoil simulation, their results showed a maximum of 2% 

error for the RV model and 14.4% error using Peukert’s Law. The limitation of the analytical 

models presented is the inability to capture important battery performance characteristics such as 

the dynamic relationship between current and voltage. Both the RV and Peukert’s models tend to 

predict only the lifetime of a battery cell and do not incorporate temperature as part of their 

mathematical equation.  

 A Stochastic model is another type of Mathematical model that utilizes stochastics to 

simulate the electrochemical processes of a battery cell. Stochastic models are able to model the 

recovery behavior of a battery cell which is observable when a battery is discharged and then 

allowed to settle to an equilibrium state. The battery will return to a state at a much higher 

voltage than under load. In Stochastic models, the recovery behavior is described as a random 
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process, hence the term stochastic. Chiasserini and Rao present a stochastic battery model, 

referred to as the CR model, using Markov chains to model a Li-Ion battery. Markov chains are a 

process that describes the probability of going from one state in time to another without any 

influence from past or future states, specifically the state described is the state of charge of the 

battery cell and its relationship to the voltage and capacity of the battery cell.  

Chiasserini and Rao compared their model to the DualFoil program for a Li-Ion cell. 

Their comparison resulted in a maximum error of 4% in a comparison of overall lifetime 

capacity of the battery cell due to recovery effects. Chiasserini and Rao’s results confirm that the 

CR model is a good model for simulating the recovery effect of a battery cell. For more 

information on the CR model, refer to Energy Efficient Battery Management [28]. Stochastic 

models are accurate in modeling the recovery effects in battery cells, but they do not by 

themselves incorporate other factors that affect battery performance such as variable charge or 

discharge rates.  

 Overall, Mathematical models are accurate in predicting the lifetime of a battery. 

However, the use of empirical equations and probability makes them less ideal for use in real 

time spacecraft simulation or battery performance prediction that incorporates variable 

temperature and loads. Analytical models do not incorporate temperature into their empirical 

equations, while Stochastic models do not accurately predict responses to variable loads. For 

these reasons, this research will not use Mathematical models to simulate battery pack behavior. 

2.2.4 Electrical Models  

Electrical models incorporate electrical circuit theory to predict the behavior of a battery 

cell. Electrical models are intuitive for electrical engineers to relate battery performance 
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parameters such as voltage and current to the electrical components of a spacecraft. Electrical 

models are categorized into the following: Thevenin, Impedance, and Runtime.  

2.2.4.1 Thevenin Equivalent Circuit Model 

Thevenin equivalent circuit models use a circuit network consisting of a voltage source 

,Voc, a series resistor, Ri, and a parallel resistor-capacitor (RC) network ,Rt and Ct, to predict 

battery behavior. Figure 6 shows a basic Thevenin Equivalent Circuit Model with a voltage 

source, resistor, and a single RC network.   

 

Figure 6: Thevenin Equivalent Circuit Model 

Voc is the open circuit voltage of the battery. The open circuit voltage of a battery is the 

potential difference between a battery cell’s cathode (positive) and anode (negative) when the 

battery is not connected to a closed circuit. Voc describes the voltage of the battery when not in 

use.  

Ri is the ohmic resistance of the battery cell. The ohmic resistance creates the drop in 

voltage due to current flowing from one electrode to another. Rt is the resistance that models the 

polarization of the battery. Polarization is the deviation observed between the open circuit 

voltage and terminal voltage as a result of applied discharge or charge current. Ct is used to 

directly influence or control the transient response of the simulated battery. Rt and Ct are used to 

change the behavior of the charging, discharging, and recovery responses of a battery cell.  
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Thevenin electrical models use battery cell experimental data to create lookup tables for 

each parameter in the circuit. The limitation of Thevenin electrical models is the requirement of 

experimental data to establish the necessary RC parameters used in the model. Thevenin 

electrical models typically have one or two RC networks to keep the number of parameters small 

that have to be extracted from the experimental data; however, more networks can be added to 

model other effects. For more information on how to extract parameters from experimental data, 

refer to Time-Domain Parameter Extraction Methods for Thevenin-Equivalent Circuit Battery 

Models by Hentunen, Lehmuspelto and Suomela [29].  

Due to the simplicity and insight on a battery cell’s voltage due to current draw, a 

Thevenin Equivalent Circuit model will be used in this research. Research has been conducted in 

adding thermal effects to the model making it ideal in providing a battery cell model capable of 

simulating the space environment.  A one RC network Thevenin Equivalent Circuit model will 

be analyzed in this research to determine the level of accuracy in the model’s voltage output.    

2.2.4.2 Impedance Battery Model 

Impedance models typically utilize a Randle’s circuit to model the behavior of a battery 

cell. Figure 7 shows the Randle’s circuit. 

 

Figure 7: Randle's Circuit [30] 
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The Randle’s circuit contains an ohmic Resistance, Ri, an activation polarization 

resistance, Rct, a concentration polarization, Zw, and a double layer capacitance, Cdl.   

The ohmic resistance, Ri, defines the overall resistance inside the battery. The activation 

polarization resistance, Rct, directly influences the charge transfer process of a battery which is 

the ionization process at the electrodes which separates lithium into lithium ions and electron. 

The concentration polarization, Zw, is also known as the Warburg impedance and influences the 

diffusion process of lithium ion inside the battery cell. The double layer capacitance, Cdl, models 

the storage of electrical energy inside the battery cell [31]. 

 Impedance models typically utilize a method known as electrochemical impedance 

spectroscopy (EIS) to collect experimental data. In the EIS method, the battery cell’s impedance 

is measured using a frequency response from a sinusoidal input. The resulting output response is 

dependent upon the battery cell’s impedance.  EIS data is represented in either a Nyquist or a 

Bode plot. From which the parameters of the Randle circuit can be extracted. For more 

information on EIS and parameter extraction of the Randle’s circuit, refer to Basics of 

Electrochemical Impedance Spectroscopy by Gamry [32].  

Impedance models are based on alternating current (AC) theory. Typically, a spacecraft 

operates under components that generate (solar panels) and store (batteries) power through direct 

current (DC). Batteries produce direct current; thus, it would be more intuitive to use DC circuit 

theory to model batteries. This research will not utilize impedance models for the reason that 

impedance based modeling would not be practical in system based modeling applications such as 

a spacecraft that is primarily DC powered. 

 
2.2.4.3 Runtime-based models 
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 Runtime-based models are similar to Thevenin Equivalent Circuit Models in terms of 

utilizing DC theory; however, Runtime-based models use a combination of multiple resistor-

capacitor circuits to model a battery cell’s response. Runtime-based models are more complex 

than Thevenin and are typically used in modeling applications in Simulation Program with 

Integrated Circuit Emphasis (SPICE). Alternatively, Runtime-based models can be combined 

with Thevenin Equivalent Circuit Models to create Hybrid Battery models which are described 

next. For more information on Runtime-based models, refer to A PSPICE macromodel for 

lithium-ion batteries by S. Gold [33]. 

2.2.4.4 Hybrid Electrical Battery Models 

Dougal et al. [34] present a dynamic model of a single lithium-ion battery that that is 

capable of modeling the important effects of temperature. The model presented is a hybrid 

between electrical and electrochemical models. The hybrid model closely matches the 

manufacturer’s data sheet and experimental results. Unfortunately, the authors do not 

quantitatively specify how closely their models match the experimental results. The experimental 

results presented in the literature showed that the model agreed with the experimental data and 

the manufacturer’s data sheet. However, the model was only based on discharge characteristics 

and did not include charging characteristics. At lower temperatures (-20° C) or at high discharge 

rates (~1.8C), their model did not match experimental data. Although the model presented by 

Dougal et al. incorporates the effects of temperature, this specific model will not be used in this 

research because the model is used for analysis of a single battery cell and does not present a 

capability to be modified for simulation of multiple battery cells in a battery pack configuration. 

Chen [35] presents an electrical battery model that models the dynamic characteristics of 

the battery. Chen’s model proposes a combination of a Thevenin Equivalent Circuit Model, 
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Impedance model and Runtime-based models. Chen utilized 10 Li-ion battery cells, each tested 

individually, and extracted curves for the parameters in his model. The parameters extracted are 

single variable functions based on a battery’s state of charge (SOC). The single variable 

empirical functions along with Chen’s proposed model are presented in Figure 8. 

 

Figure 8: Chen's Battery Model [35] 

The functions were used by Chen to simulate and compare to experimental data resulting 

in a battery runtime error of 0.1% and a maximum voltage deviation of 21 mV out of 3.6V. 

Although comparison between experimental data and simulation showed high accuracy, Chen’s 

model did not take into account number of cycles, and temperature. Chen’s model is not a viable 
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option for spacecraft battery simulation because the model ignores two main performance 

factors: temperature and number of cycles. 

Erdinc, Vural, and Uzunoglu [36] present a battery model that modified Chen’s work and 

introduced capacity fading and temperature effects through a correction factor term showing that 

battery dynamics are highly affected by not only the temperature and capacity fading, but also 

the charge and discharge rates. The results presented by the authors justify that temperature, 

capacity fading, and charge and discharge rates must be incorporated into the model to 

accurately simulate a battery cell’s dynamics. The authors did not compare experimental data 

with simulated predictions. Instead, data was presented to show changes to battery run time as a 

result of temperature and number of cycles. Their model captures the right trend of the battery, 

but does not show the exact behavior. This model is an ideal model that can be used to simulate 

battery cell dynamics in spacecraft. The modified Chen’s model takes into account capacity 

fading (decrease in capacity due to number of cycles over time), temperature, and 

charge/discharge rates that are prominent in spacecraft battery performance measurements. 

However, this model is not used in this research.  

2.2.5 Adaptive Models 

 Finally, Adaptive battery models are a subcategory of electrical models that use 

Kalman filtering techniques to estimate a battery’s state of charge and simulate behavior in real 

time. Measured input and output data from the current state of the battery is used to update the 

model and predict the future state of the battery. Adaptive models are empirical and cannot be 

used to predict behavior of another different battery pack without additional experimentation on 

the new battery pack. For more information on adaptive models using Kalman filtering, refer to 

On-line adaptive battery impedance parameter and state estimation considering physical 
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principles in reduced order equivalent circuit battery models: Part 1. Requirements, critical 

review of methods and modeling by Fleischer, Waag, Heyne, and Sauer [37]. Adaptive models 

are suited for battery monitoring and control rather than battery prediction and simulation. 

Adaptive models will not be used in this research for battery modeling and will be a discussion 

for further research.  

Overall, electrical models are capable of simulating and predicting battery cell dynamics 

with expected accuracy in predicting responses somewhere between electrochemical and 

mathematical models. Their main disadvantage is the requirement for experimental data to 

estimate RC parameters. Electrical modeling accuracy is highly dependent on the conditions 

under which experimentation have taken place. Electrical models become less accurate for 

temperature, discharge, or charge behavior not present in the experimental data used to estimate 

the RC parameters. 

2.3 Summary of Battery Models 

Table 1 summarizes the advantages and disadvantages of each type of battery model. 

Overall, the electrical battery models are the most intuitive for electrical engineers and will be 

the focus for this research. An electrical battery model that incorporates thermal effects is ideal 

for simulating spacecraft battery behavior. A proposed electrical model that incorporates thermal 

effects will be used in this research to simulate and model a battery pack.  
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Table 1: Summary of Battery Models 

Battery Model Advantages Disadvantages Expected 
Accuracy 

Electrochemical 
Model 

Models battery cell 
based on physics and 
electrochemical process 

Complex ~1% error from 
experimental data Too time consuming to be 

used for simulation 
 

Highest accuracy of all 
battery cell models 

Requires extensive 
knowledge of internal 
battery chemistry 
parameters 

Mathematical 

Simplistic Empirical equations used to 
model battery are non-
intuitive 
 

~4-6% error from 
experimental data 
for battery lifetime 

Models a battery cell 
using a few equations 
 

Equations do not provide 
information of dynamic 
relationship between 
current and voltage 

Electrical 

Provides battery 
performance 
characteristics  

Requires experimental data 
to estimate parameters 
 

~5- 10% error from 
experimental data 

Intuitive for electrical 
engineers 

Not as accurate as other 
methods 

Simplistic 

2.4 Proposed Model 

Although the Modified Chen’s Model is ideal in simulating battery cell dynamics, 

simulation of battery pack dynamics would require further investigation. Thus, an alternative 

approach is proposed to model the behavior of a battery pack. The proposed model in this 

research is presented by Huria, Jackey, Gazzarri, and Ceraolo (HJGC) [38]. The author’s 

electrical model utilizes Simulink and SIMSCAPE in MATLAB to create a Thevenin Equivalent 

Circuit based battery cell model that incorporates temperature effects.  Additionally, HJGC’s 

battery cell model is capable of integrating into a system of multiple battery cells models to form 

and simulate a battery pack. Each battery cell model also introduces RC parameters that are 

variable based on temperature. These RC parameters can be acquired through experimental data 
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and a tool in Simulink known as Simulink Design Optimization.  Refer to High Fidelity 

Electrical Model with Thermal Dependence for Characterization and Simulation of High Power 

Lithium Battery Cells for more information on the HJGC model [38]. This research will modify 

the HJGC model along with generating RC parameters based on experimental data to validate a 

2S2P battery pack. This research will also utilize the modified HJGC model to predict the 

behavior of a 4S2P battery pack.  

2.5 Battery Testing Method 

NASA’s Johnson Space Center (JSC) created a guide on battery test planning [39]. 

Battery testing methods can be categorized into performance and abuse testing. Performance 

testing determines the capabilities of the battery cell under a variety of operating conditions. 

Abuse testing determines the limits of physical and operational abuse that a battery cell can 

endure. 

This research will primarily focus on performance testing of battery cells.  

Performance tests of battery cells used for space applications are conducted in a thermal 

environment chamber to simulate the conditions that a battery is likely to encounter in space. 

Load tests, charge and discharge of a battery cell under a load, are conducted in conjunction with 

thermal environmental cycling to simulate the charge and discharge process a battery 

experiences on a spacecraft.  

For this research, a load test under vacuum and thermal conditions is required to gather 

experimental data. The experimental data is used to estimate RC parameters in the proposed 

HJGC model. Extracted experimental data under various thermal conditions is expected to show 

changes in RC parameters for each temperature test scenario.   
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2.6 Summary 

Research in terms of Li-Ion batteries, battery models, and battery testing was presented in 

this review. The chosen model to simulate spacecraft battery behavior is the Thevenin Equivalent 

Circuit based model presented by Huria, Jackey, Gazzari, and Ceraolo [38]. The proposed HJGC 

model provides a simplistic yet intuitive approach to simulating battery pack performances. The 

model takes into account the effects of environmental temperature through variable RC 

parameters based on temperature. The HJGC model is a Thevenin Equivalent Circuit Model, 

thus experimental data is required to present an accurate model capable of predicting the 

performance of a CubeSat battery pack. Chapter 3 will address the methodology used to modify 

the equivalent circuit model in MATLAB. Chapter 3 will also address the testing approach used 

to acquire experimental data for parameter extraction. 
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III. Methodology 

This chapter will first describe the chosen procedure for modeling, testing, and extracting 

battery parameters. First, the proposed battery pack model will be modified. Next, AFIT’s 

battery pack will undergo environmental testing in the TVAC chamber to simulate operation in 

the space environment. Environmental test data from a Li-Ion cell will be used to extract the RC 

parameters for the battery model. Incorporating the extracted parameters into the modified 

battery model, the modified model will simulate AFIT’s battery pack under a range of 

temperatures. Finally, the model simulation results will be compared to the environmental test 

data. The analysis between model results and experimental data will show the level of accuracy 

in predicting battery pack behavior. Thus, the modified model with extracted RC parameters will 

attempt to answer the research question of can we predict battery pack behavior in a space 

environment.  

3.1 Battery Model Modification 

This research will begin with modifying the battery pack model presented by HJGC [38]. 

The HJGC battery model utilizes an add-on toolbox for MATLAB known as SIMSCAPE that 

allows the user to model systems using blocks that represent physical components such as a 

resistor or capacitor. For more information about SIMSCAPE, refer to the Mathworks website 

for tutorials [40]. The HJGC Model built in Simulink/SIMSCAPE is shown in Figure 9. 
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Figure 9: HJGC Battery Model presented in MATLAB using Simulink and SIMSCAPE. A 

Signal Builder block provides the current and temperature input into the Battery Pack (2S2P) 

mask which displays and stores the outputs through the two scopes. 

The HJGC model’s battery pack architecture is layered using masks which are 

customizable user interface blocks that hide the contents inside the mask. Names of the blocks 

and masks used in the HJGC model will be italicized. The hierarchy of the battery pack 

architecture of the HJGC battery model broken down from top to bottom is shown in Figure 10. 

From left to right the masks on the left contain the masks on the right. 
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Figure 10: HJGC Battery Pack Architecture. The masks used in the HJGC Battery model are 

presented from left to right. The mask on the left contains the mask on the right. The Battery 

Pack (2S2P) mask (a) contains the Stack of 4 Cells mask (b). The Stack of 4 Cells mask contains 

four Lithium Cell masks (c). Each Lithium Cell Mask contains a Thermal Model mask (d). 

 

The Battery Pack (2S2P) mask, Figure 10(a), represents the overall battery pack. The 

Stack of 4 Cells mask, Figure 10(b), represents the stack of cells that make up the battery pack of 

which there is only one in the modified HJGC model. The Lithium Cell mask, Figure 10(c), 

represents an individual Li-Ion battery cell of which there are four in the modified HJGC model. 

Lastly, Thermal Model mask, Figure 10(d), represents the temperature behavior a Li-Ion cell 

experiences due to environmental temperature and internal heating from the resistors. 

The content inside the Battery Pack (2S2P) mask from the original HJGC model is shown 

in Figure 11. The original HJGC model was designed to model the behavior of 80 cells in a 

series configuration. There were a total of 10 Stack of 4 Cells masks, referred to as Stack of 8 

Cells in the original model, each containing 8 Lithium Cell masks. The contents inside the Stack 

of 8 Cells mask are shown in Figure 12. 
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Figure 11: Battery Pack (2S2P) mask contents before modification. The original HJGC 

model contained 10 Stack of 8 Cells masks each containing 8 Lithium Cell masks.  
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Figure 12: Stack of 8 Cell contents before modification.  The original HJGC model contained 

8 Lithium Cell masks in a series configuration inside each Stack of 8 Cell mask. 

The modification from the original HJGC model was to use only one Stack of 4 Cells 

mask to represent one battery pack and is shown in Figure 13. Block 1 labeled “m” is the 

measured outputs from all four Lithium Cell mask. Blocks 1 and 2 labeled “+” and “-” is the 

input of current from the Signal Builder shown in Figure 9. Block 3 labeled “T” is the input of 

temperature from the Signal Builder. The two blocks linked to H1 and H2 on the Stack of 4 Cells 

mask, and block 3 is used to represent the energy transfer of heat through convection between 

the surrounding temperature and the battery cells.  

 



34 

 

Figure 13: Battery Pack (2S2P) Mask Contents after modification. Modifications made to the 

original HJGC model was to delete the other 9 Stack of 8 Cell masks and change the contents 

inside the last Stack of 8 Cells mask to contain 4 Lithium Cell mask. 

 

In the modified HJGC model, the Stack of 8 Cells from the original HJGC model is 

renamed as the Stack of 4 Cells mask which represents a battery pack that has two cells 

connected in series and two cells connected in parallel (2S2P). The four Lithium Cell masks 

inside this the Stack of 4 Cells mask were configured to simulate AFIT’s 2S2P battery pack. It is 

expected that multiple battery pack configurations are feasible inside this mask. The modified 

content inside Stack of 4 Cells mask for a battery pack in a 2S2P configuration is shown in 

Figure 14. 
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Figure 14: Stack of 4 Cell contents after modification. Four Lithium Cell masks are arranged 

in a 2S2P configuration. 

 Inside the Stack of 4 Cells mask are four more masks called Lithium Cell. Each of the 

four Lithium Cell mask represents an individual Li-Ion battery cell in a 2S2P battery pack 

configuration. Similarly to the Stack of 4 Cells mask, blocks 1 and 2 are the inputs of current 

from the Signal Builder; while blocks 3 and 4 are the temperature inputs from the Signal Builder. 

The Convective Heat Transfer block between each Lithium Cell mask simulates the heat transfer 

between each Li-Ion battery cell.  

The contents inside the Lithium Cell mask contain a Thevenin Equivalent Circuit Model 

using a single RC network and the Thermal Model mask. Figure 15 shows the contents of the 

Lithium Cell mask. The blocks inside this mask labeled Em_table, R0, R1, and C1 represent the 

voltage source, ohmic resistance and the RC network from a Thevenin Equivalent Circuit 

respectively. Each of these blocks inside the Lithium Cell mask utilizes a lookup table to model 

the individual battery cells. The lookup table is based on extracted parameters from experimental 

data. Data for the lookup table is stored in an initiation file, along with other information of the 
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battery cell such as battery dimensions and weight that is used by the Thermal Model mask. The 

modified HJGC Model as well as the original, utilizes an initiation file that provides the input 

used primarily by the blocks inside the Lithium Cell mask. 

  

Figure 15: HJGC Lithium Cell Mask Contents. The HJGC Lithium Cell mask contains the 

Thermal Model mask and the Thevenin Equivalent Circuit Model. The voltage is represented by 

the block Em_table, the RC network is represented by blocks R1 and C2, and the ohmic 

resistance is represented by the block R0.  

The Thermal Model mask in the Lithium Cell mask can be used to predict the change in 

behavior of the battery cell due to temperature and change in temperature from the resistors. The 

change in temperature from the resistors is inputted to the Thermal Model mask as the power 

generated by the current flowing through the resistors, P_in, and the temperature of the 

environment input is from the Signal Builder and is represented by the variable H. Figure 16 

represents the thermal model inside the Lithium Cell Mask. 
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Figure 16: Thermal Model Mask Contents.  

The block labeled Battery thermal mass represents a battery’s ability to store internal 

energy. Block 1 labeled P_in is the power input from the resistors. Block 3 labeled T contains the 

temperature output from the battery. Lastly, the block directly connected to Block 3 is the 

temperature sensor in the thermal model used to generate the temperature output. 

3.2 Battery Model Flowchart 

Once the model has been modified, it can be used to simulate the performance of a 2S2P 

battery. A flowchart, shown in Figure 17, depicts the input files needed to build the model, the 

actual model file that is used to generate the simulation, and the outputs from the model.  

Modeling a battery pack starts with an initiation file, loading the HJGC prebuilt Lithium Cell 

mask, and modifying the Signal Builder with a desired load and temperature profile. The Signal 

Builder uses the same the temperature and the current draw found in the experimental data as the 

desired load and temperature profile.  
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Figure 17: Battery Model Flowchart  

The initiation file contains information specific to the battery cell modeled such as the 

lookup tables for each RC parameter, the battery cell’s dimension, and the battery cell’s weight. 

The initiation file, when compiled, stores the information of the lookup tables inside MATLAB’s 

workspace which is accessed the Lithium Cell mask. The other information such as the battery 

cell’s dimension and weight is also stored in MATLAB’s workspace and is accessed by the 

Thermal Model mask.  

Battery cell dimensions can be measured or based off the manufacturer’s specification 

sheet. For this research, the initiation file’s lookup tables, battery dimensions and weight are 

based on extracted parameters from experimental data of a battery cell, and the manufacturer’s 

specification sheet. Once the input files have been loaded and compiled, running the model will 

output temperature, voltage, and state of charge information for each battery cell and voltage and 

current for the battery pack. The output is compared with experimental data collected from 

AFIT’s battery pack in experiments described next in Section 3.3. Before running the model and 
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using it for comparative analysis, collection of experimental data of the battery cell and AFIT’s 

battery pack is required for parameter estimation. 

3.3 Environmental Testing 

Environmental testing is conducted to estimate parameters at various operating 

temperatures. Environmental test data of the battery pack is also compared with the model’s 

simulation output. This section will describe the equipment, setup, and test cases used to gather 

the test data for parameter estimation and comparative analysis.  

3.3.1 List of Equipment  

In order to gather experimental data, the each of the following equipment will be used and 

explained in detail next. 

• ABBESS Thermal Vacuum (TVAC) Solar Simulation System 

o Type-K Thermocouples  

o TVAC Interfacing Connectors 

• CADEX C8000 Battery Testing System 

o CADEX Power Port Cables 

• LG ICR18650C2 Battery Cell 

• AFIT 2S2P Battery Pack (Cells only) 

Along with the computer, the following programs are required to gather data: 

• TVAC Chamber and Thermocouple Software (ABBESS and LabVIEW) 

• CADEX C8000 Software (BatteryLab) 
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3.3.1.1 ABBESS Thermal Vacuum Solar Simulation System 

Figure 18 shows the ABBESS TVAC used to simulate the space environment. The 

ABBESS TVAC chamber contains the following major components: vacuum chamber, thermal 

platen/shroud, and solar simulator. This research will only utilize the vacuum chamber and 

thermal platen/shroud to test the battery. Type K Thermocouples and Interfacing Connectors will 

be described next. The Type K thermocouples are used to monitor the external temperature of the 

battery cell and battery pack to provide thermal data of the batteries. The LabVIEW software is 

used to record temperature data from the thermocouples. The interfacing connector is what 

allows the battery pack and battery cell inside the chamber to be connected with the CADEX 

C8000 Battery Testing System outside the chamber. 
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Figure 18: ABBESS Thermal Vacuum Solar Simulation System [41]  

3.3.1.2 CADEX C8000 Battery Testing System 

Figure 19 shows the CADEX C8000 Battery Testing system used to gather battery cell 

and battery pack data. The CADEX C8000 is capable of charging and discharging the battery 

pack and battery cell through programs in its BatteryLab software. The test cases for this 

research are processed through user created programs inside the BatteryLab software. An 

example of the program used in BatteryLab can be found in the CADEX user manual[42].The 

CADEX C8000 comes equipped with Power Port Cables that are used to connect with the 
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batteries. With four channels, the CADEX C8000 can run four battery pack and individual cell 

tests simultaneously. Refer to the CADEX C8000 product page or the user manual for more 

information on the CADEX C8000 Battery Testing System [42].  

 

Figure 19: CADEX C8000 Battery Testing System [43] 

3.3.1.3 LG ICR18650C2 Battery Cell 

 Since this research focuses on modeling the behavior of the LG ICR18650C2 cells in a 2-

series, 2-parallel (2S2P) battery pack configuration, testing a single LG ICR18650C2 battery 

cell, shown in Figure 20, is necessary for parameter extraction. The model using extracted 

parameters will be validated using test data from a 2S2P battery pack configuration. Figure 21 is 

a table from the manufacturer that shows the battery specifications for a single LG ICR18650C2 

cell.  
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Figure 20: LG ICR18650C2 battery cell 

 

Figure 21: LG ICR18650C2 Battery Cell Specifications [44] 
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3.3.1.4 AFIT Battery Pack 

The 2014 AFIT battery pack, shown previously in Figure 3, includes four LG 

ICR18650C2 cells; when combined in a 2S2P configuration, the battery pack has a total energy 

capacity of 41.66 Wh at a nominal voltage of 7.44 V. To achieve a 2S2P configuration, the 

individual battery cells are welded together using tabs. Figure 22 shows the “tabbed” LG battery 

cells.  

 

Figure 22: Tabbed LG ICR18650C2 Battery Cells 

The battery pack is capable of reaching a peak voltage of 8.6 V at a maximum state of 

charge. Battery pack voltage and capacity can be determined using fundamental circuitry laws 

for series and parallel circuits. For batteries in a series configuration, voltages are added together; 

however, current remains the same. For batteries in a parallel configuration, current is added 

together; however, voltage remains the same. Thus, for four battery cells rated at 4.3 V and 2.8 

Ah each in a 2S2P configuration, the voltage is added together for two cells, to equate 8.6 V, and 
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the current is added together for two cells to equal 5.6 Ah. To get the energy capacity in Watt 

hours (Wh), the total capacity in Ah is multiplied by the nominal voltage, not the peak voltage. 

For the LG batteries, the nominal voltage is 3.72 V— resulting in a total nominal voltage of 7.44 

V for the battery pack. Thus, the total energy capacity of AFIT’s battery pack is 41.66 Wh [44]. 

For this research, AFIT’s battery pack will be tested using only the cells from inside the 

battery pack with no accompanying battery control electronics. The reason is to provide a better 

characterization of the cells inside the battery pack by eliminating any deviations in test data 

caused by wiring and circuitry inside the battery board. The HJGC model does not model the 

losses due to wiring and circuitry for a battery pack.  

3.3.2 TVAC Test Setup 

This section will describe the experimental test setup of the TVAC chamber. Figure 23 

shows the block diagram layout of the CADEX C8000 Battery Testing System, battery cells, and 

ABBESS TVAC Chamber.  

3.3.2.1 Battery Setup 

The individual cell and the “tabbed” cells inside the battery pack stack were setup in a 

TVAC-ready configuration, shown in Figs. 24 and 25, prior to beginning TVAC test.  

In a TVAC ready configuration, the batteries rest on a metallic casing which is used as a 

battery cell container and is placed on the chamber platen to provide thermal contact between the 

platen and cells. Figure 26 shows the metallic casing used to hold the batteries inside the TVAC 

chamber. 
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Figure 23: TVAC Test Setup. The setup shows the battery pack and battery cell connection to 

the CADEX Battery Testing System. From inside the chamber to outside the chamber,  the 

battery cell is connected to channel 1, while the battery pack is connected to channel 2 on the 

CADEX.  



47 

 

Figure 24: Battery Setup inside TVAC Chamber 

 

Figure 25: Battery Cell in TVAC-Ready Configuration 
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Figure 26: Battery Pack Metallic Casing 

Between the metallic casing and the battery cells is a thermal adhesive that is used to 

keep the battery from sliding out of the metallic case during setup inside the TVAC chamber and 

provide a thermal path between the battery cell and case. The thermal adhesive used is 3M VHB 

4930 double-sided sticky tape. The properties for the tape can be found in the manufacturer’s 

specifications sheet [45]. Figure 27 shows the adhesive applied to the battery cells prior to 

placement on the metallic case. During setup inside the chamber, a copper mesh, shown in 

Figure 28, is placed between the metallic case and platen to reduce the thermal resistance 

between the metallic case and platen.  
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Figure 27: Thermal Adhesive on Battery Cells 

 

Figure 28: Copper Mesh 

Prior to integrating the batteries into the TVAC chamber, thermocouples and thermistors 

were installed on the batteries to monitor the temperature of the cells. Figure 29 shows a 

depiction of the general location of the Type K thermocouples on the pack and individual cell.  
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Figure 30 shows a photograph of the placement locations of each Type K thermocouples on the 

test hardware. The placement of the Type K thermocouple on the chamber platen will be shown 

in a later figure. The thermocouples are secured to the test articles using Kapton tape.  

 

 

Figure 29: TVAC Chamber Thermocouple Locations Numbers 1 through 5 

 



51 

 

Figure 30: Thermocouple Locations 

Thermistors, attached to the batteries near the same location as the thermocouples, act as 

the monitor sensors for the CADEX C8000 Battery Testing System. This separate temperature 

sensing system allows testing to be cut off or temporarily suspended if the battery cells exceed 

preset operating temperatures and will resume testing once the measured temperature from the 

thermistor has dropped 5°C below that limit. Figure 31 shows a depiction of the placement 

location of the thermistor setup inside the TVAC chamber. Figure 32 shows the placement 

location of the thermistors on the test article. The thermistors are secured to the battery cell 

through magnets located in the thermistor sensor head package. Figure 25 shows the placement 

location of both the Type K thermocouple and thermistor on the battery cell.   
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Figure 31: TVAC Chamber Thermistor Locations Numbers One and Two 

 

Figure 32: Thermistor Locations 
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Figure 33: Battery Test Setup with Weight and Insulator 

Figure 33 shows the insulator and a metallic block weight on top of the battery cell inside 

the TVAC chamber. The purpose of the weight insures full contact between the metallic case, 

copper mesh and the chamber platen.  Figure 34 shows the full test setup inside the TVAC 

chamber without the weight on the battery pack and cell. The placement of the Type K 

thermocouple on the chamber platen is also shown in Figure 34. Lastly, Figure 35 shows the 

same image but with the metallic block weight on the battery pack and cell. Figure 35 is the final 

version of the test setup.  
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Figure 34: Test Setup inside Chamber without Metal Block Weight 

 

 

Figure 35: Test Setup inside Chamber with Metal Block Weight 
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3.3.2.2 TVAC Interfacing Connectors 

The TVAC interfacing connectors are used to connect the battery cells to the CADEX 

C8000 Battery Testing System. Four female DB25 connectors are required to connect the battery 

cell stacks through the TVAC Chamber to the CADEX C8000 Battery Testing System. Each pin 

and wire on the female DB25 connectors is capable of handling a maximum current draw of 2 A. 

Multiple pins and wires are used to discharge the batteries at a current greater than the 2 A limit. 

The custom-made female DB25 is capable of drawing out a maximum 22 A; however, the 

limitation in current draw is 10 A per channel on the CADEX.  Figure 36 shows one of two 

female DB25 connectors used outside the TVAC chamber that connects the CADEX C8000 to 

the TVAC chamber’s male DB25 interfacing port shown in Figure 37.  

 

 

Figure 36: Custom Female DB25 Connector (Outside Chamber) 
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Figure 37: Male DB25 TVAC Interface Port 

Figure 38 shows the connection between the female DB25 interface connector (outside 

the chamber) from the CADEX C8000 Battery Testing System to the male DB25 TVAC 

interface port. 

 

Figure 38: Outside TVAC Chamber Connection 



57 

 Figure 39 shows the connection for inside the chamber from the battery cell to the male 

DB25 interface port using one of two female DB25 connectors (inside the chamber) and an 

electrical terminal block.  

 

Figure 39: Inside TVAC Chamber Connection 

The female DB25 connector used inside the chamber is connected to an electrical 

terminal block shown in Figure 40. One electrical terminal blocks is used for each test article. 

The electrical terminal block allows the user to connect the battery pack or cell to the male DB25 

TVAC interface port without directly connecting  wires from the battery to the female DB25 

(inside chamber) connector.  
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Figure 40: Electrical Terminal Block Connection 

3.3.2.3 CADEX C8000 Battery Testing System Setup 

The female DB25 coming out of the TVAC chamber are not directly connected to the 

CADEX C8000. The DB25 is connected to the CADEX C8000 through the CADEX C8000 

Battery Port using a modified Power Port Cable shown previously in Figure 36. The unmodified 

Power Port Cable, shown in Figure 41, utilizes banana plugs and a temperature sensor to test 

battery cells.  Modifications were made to the Power Port Cable by cutting off the V sense, V 

Drive and Temperature sensor.  
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Figure 41: CADEX C8000 Power Port Cable [42] 

The cut off temperature sensor is used inside the TVAC chamber and routed through the 

electrical terminal block and female DB25 (inside chamber) connector. The temperature sensor 

is the thermistor attached to the battery. It will be used to gather battery temperature data 

alongside the thermocouple and act as the temperature failsafe mechanism to stop testing if the 

battery surpasses its nominal operating limit.  

3.4 TVAC Test Cases 

Data collection from the individual battery cell test article, for model parameter 

extraction, and the battery pack, for comparative analysis, was conducted using the test cases 

presented in Table 2. Each test case will be tested at the following chamber temperatures: 0°, 

25°, and 40° C. These test cases are presented in more rigorous detail in a test plan to ensure all 

data is gathered and recorded (see Appendix 1.0).  
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Table 2: Battery Test Cases 

Test Name Article 
Tested 

Type of Test Purpose 

High Current 
(1.5C) 

Battery 
Pack 

Constant Current Charge and 
Discharge 

Analyze Model Behavior 
for High Current Scenario 

Normal Current 
(1C) 

Battery 
Pack 

Constant Current Charge and 
Discharge 

Analyze Model Behavior 
for Normal Current 

Scenario 
Low Current 

(0.5C) 
Battery 
Pack 

Constant Current Charge and 
Discharge 

Analyze Model Behavior 
for Low Current Scenario 

Dynamic  
(1C) 

Battery 
Cell 

Pulse Discharge Parameter Estimation for 
Model 

 

3.5 Parameter Estimation 

Single Cell parameter estimation is conducted using the parameter estimation toolbox in 

Simulink to create lookup tables. HJGC created a model separate from the battery model 

presented earlier in Section 3.1 that uses the parameter estimation toolbox to generate lookup 

tables for the Lithium Cell mask [46].  This model, referred to as the Parameter Estimation 

Model, is a Simulink model presented in Figure 42. The Parameter Estimation Model is used to 

extract parameters from experimental data to be used in the modified HJGC model. 
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Figure 42: HJGC Parameter Estimation Model for Lithium Cell Mask [46] 

The CADEX C8000 Battery Testing System stores experimental data in a text file. The 

text file is converted to a XLS file through Microsoft Excel and is imported into MATLAB. Test 

data from the Dynamic test case is used to estimate parameters and develop a lookup table. The 

lookup table will have parameters based on temperatures at 0°, 25°, and 40°C. The modified 

HJGC model interpolates between these the three lookup tables in generating an output. For 

more information on how to use the parameter estimation toolbox in MATLAB, refer to the 

Mathworks website [47]. 

The lookup tables generated from the Parameter Estimation Model are transferred into 

the initiation file to begin modeling the 2S2P battery pack. Comparison analysis between the 

modified HJGC Model and Low, Normal and High Current test cases is conducted in the next 

chapter to validate the model.  
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3.6 Summary 

This chapter presents the methods used to modify the HJGC model, collect data for 

parameter estimation, and insert parameters estimated into the modified HJGC model. The 

following chapter will comparatively analyze the modified HJGC model and experimental data 

for the 2S2P battery pack. 
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IV. Analysis and Results 

This chapter will first present the results of the experiment, the estimated parameters in 

the form of a lookup table, and the model output using the estimated parameters. Then, 

comparisons between model and experimental results will be analyzed, in an attempt to 

determine the level of accuracy of the HJGC model for battery pack performance prediction.  

4.1 Experimental Results of Battery Cell  

The experimental results for the dynamic test cases conducted at 0°, 25° and 40° C are 

shown in Figs. 43, 44, and 45, respectively. The experimental testing procedure for the dynamic 

test case was derived from HJGC where a battery cell was tested under partial discharge and rest 

cycles [38] . For the dynamic test case presented in this research, the battery cell was charged to 

full capacity then discharged at increments of 6 minutes at a rate of 1C in vacuum (< 10-3 Torr). 

Each 6 minute discharge increment equates to a nominal 10% depth of discharge reduction. The 

discharge time for each 10% depth of discharge was calculated using coulomb counting, which is 

integrating current over time to determine the amount of charge leaving the battery. After each 6 

minute discharge, the battery cell was allowed to rest for 30 minutes. Using 6 minutes as the time 

constant, the rest period of 30 minutes was calculated using the relationship between the time 

constant of a RC circuit, and resistance and capacitance. It takes 4 (24 minutes) to 5 (30 minutes) 

time constants for the battery cells to reach a steady state [30].  The purpose of the 30 minute rest 

period, also referred to as the relaxation period, is to capture the recovery effects of the battery 

cell. The experimental results are used with the HJGC Parameter Estimation Model to extract 

the RC parameters for the HJGC Battery Model. 
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Figure 43: Dynamic Test Case Result: 0° C 

 

Figure 44: Dynamic Test Case Results: 25° C 
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Figure 45: Dynamic Test Case Results: 40° C 

4.2 Parameter Extraction  

4.2.1 Calculation of Initial RC parameters 

An initial guess is required to utilize the HJGC Parameter Estimation Model. The initial 

guess was calculated using the equations shown in Figure 46. ΔV0 is the drop in voltage from the 

initial application of current. ΔV0 is calculated as the difference between the initial battery cell 

voltage and the relaxed battery cell voltage. ΔV∞ is the difference in voltage from the battery at 

the end of a discharge pulse to the voltage of the battery at the end of a relaxation period. T is the 

rest period for the battery cell to reach the relaxed voltage. For this experiment, the rest period is 

set to 30 minutes or 5 time constants. Calculating initial parameters of voltage, R0, R1, and C1 

from these equations are only valid for an equivalent circuit model using one RC network [30].  
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Figure 46:Parameter Estimation Initial Guess Formula [30] 

 

Figure 47:  Extraction of Parameters from a Single Pulse[48] 

Figure 47 supplements the formulas shown in Figure 46 by providing a visual of the 

relationship between the pulse discharge curve and each RC parameter. Em represents the 

electromotive force or voltage at each state of charge (SOC). R0 is the ohmic resistance and R-C 
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Transients represent the parameters of the RC network based off the number of RC circuits in the 

Thevenin Equivalent Circuit Model. The initial guess of the parameters are presented in Tables 

3, 4, and 5.  

Table 3: Initial Guess 0° C Lookup Table 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.29 0.059643 0.168214 2140.127 
90 4.123 0.046071 0.178929 2011.976 
80 3.994 0.039643 0.179643 2003.976 
70 3.883 0.024286 0.189643 1898.305 
60 3.815 0.016071 0.206429 1743.945 
50 3.77 0.026071 0.2075 1734.94 
40 3.697 0.003929 0.226071 1592.417 
30 3.686 0.005714 0.218571 1647.059 
20 3.67 0.005 0.192857 1866.667 
10 3.656 0.003214 0.182143 1976.471 
0 3.647 0.003929 0.181429 1984.252 

 

Table 4: Initial Guess 25° C Lookup Table 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.29 0.05 0.085714 4200 
90 4.15 0.035714 0.103571 3475.862 
80 4.05 0.035714 0.103571 3475.862 
70 3.95 0.035714 0.096429 3733.333 
60 3.85 0.017857 0.117857 3054.545 
50 3.8 0.007143 0.139286 2584.615 
40 3.78 0.010714 0.146429 2458.537 
30 3.75 0.046429 0.092857 3876.923 
20 3.62 0.05 0.089286 4032 
10 3.48 0.046429 0.061071 5894.737 
0 3.411 0.021786 0.088214 4080.972 
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Table 5: Initial Guess 40° C Lookup Table 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.29 0.042857 0.071429 5040 
90 4.17 0.039286 0.078571 4581.818 
80 4.06 0.035714 0.082143 4382.609 
70 3.96 0.032143 0.078571 4581.818 
60 3.87 0.021429 0.092857 3876.923 
50 3.81 0.014286 0.1 3600 
40 3.77 0.007143 0.117857 3054.545 
30 3.75 0.032143 0.092857 3876.923 
20 3.66 0.067857 0.053571 6720 
10 3.47 0.05 0.05 7200 
0 3.33 0.014286 0.057143 6300 

 

 

 

Figure 48: Parameter Estimation Analysis using Initial Guess at 0° C 
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Figure 49: Parameter Estimation Analysis using Initial Guess at 25° C 
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Figure 50: Parameter Estimation Analysis using Initial Guess at 40° C 

 

Using just the initial guess, the HJGC Parameter Estimation Model had difficulty 

matching the experimental results. The maximum absolute percent error, shown in Figs. 48, 49, 

and 50, between the experimental results and the Parameter Estimation Model using the initial 

guess was 16.39%, 13.32% and 7.98% for the 0°, 25° and 40° C case respectively. The average 
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absolute percent error across the entire dataset was 2.75%, 1.87%, 1.67% for the 0°, 25° and 40° 

C case respectively. As a comparison to expected results between model and experimental data, 

HJGC was able to achieve a maximum absolute error under a 2%, shown in Figure 51 , using a 

1RC network Thevenin Equivalent Circuit Model, so one could expect a similar level of 

agreement with the results presented here. HJGC does not present an average absolute percent 

error for comparison.  

 

 

Figure 51: HJGC presents an Absolute Error Percent Under 2% [38] 

The initial guess using the equations presented in Figure 46 is shown to not be a valid 

method estimate of the RC parameters. Observation of Figs. 48, 49, and 50 shows that the 

parameters, R0, R1, and C1, calculated for the R-C Transients section of the model is the likely 

cause for error.  

To estimate parameters where the simulated model matches the experimental data, a trial 

and error method of adjusting each set of parameters was used. To minimize the error between 

simulated and measured data, the voltage, ohmic resistance and RC parameter were adjusted by 
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manually inputting guesses for each parameter until the simulated plot closely matched the 

measured curve. The trial and error method showed that the resistances R0 and R1 affects the 

drop in voltage, the Em or voltage affects the relaxation voltage, and C1 affects the curvature of 

the RC Transient section of the plots.   

As stated previously, a maximum absolute error under 2% between experimental data and 

the single cell model is presented by HJGC [38]. Using the trial and error method, the simulated 

HJGC Parameter Estimation Model was able to achieve a maximum absolute error percentage, 

shown in Figs. 52, 53, and 54, of 12.97 %, 10.68% and 5.90% for the 0°, 25° and 40° C case 

respectively. The average absolute percent error across the entire dataset using the trial and error 

method was 0.79%, 0.81%, 0.54% for the 0°, 25° and 40° C case respectively.  
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Figure 52: Parameter Estimation using Final Values at 0° C 
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Figure 53: Parameter Estimation using Final Values at 25° C 
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Figure 54: Parameter Estimation using Final Values at 40° C 

The simulation and measured voltage plots, shown in Figs. 52, 53, and 54, are shown to 

be not identical, especially around the R-C Transients section of the curve. Suggestions for 

improvement in the level of accuracy in estimated parameters would be to research alternative 

methods used to estimate parameters or through adding more RC networks into the Thevenin 

Equivalent Circuit Model. To more closely match the measured data, HJGC used three RC 
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networks to achieve an even higher accuracy of 0.002% maximum error relative to the nominal 

voltage, 3.6 V, of their battery cell [48]. Using more RC networks is an area of future research 

that should be explored for a more accurate battery model overall. Overall, the trial and error 

method implemented to estimate the parameters was able to bring the average absolute error, for 

all 3 temperature cases, below 1%.  

The final lookup table for each test case generated by the HJGC Parameter Estimation 

Model using the trial and error method is presented in Tables 6, 7, and 8. These values are later 

used in the HJGC Battery model and are the same parameters that produced the simulated curve 

shown in Figs. 52, 53, and 54. 

Table 6: Final Lookup Table Values at 0° C 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.2925 0.23826 0.43293 4770.6 
90 4.1156 0.15978 0.12066 2333.8 
80 3.9877 0.16857 0.10116 2299.2 
70 3.8719 0.12662 0.1266 965.28 
60 3.8194 0.19193 0.045512 6805.1 
50 3.7569 0.1474 0.19697 1505.7 
40 3.684 0.12183 0.11493 965.57 
30 3.6371 0.15365 0.18211 783.12 
20 3.67 0.001 0.015 750 
10 3.656 0.001 0.001 750 
0 3 0.001 0.001 200 
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Table 7: Final Lookup Table Values at 25° C 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.273 0.069784 0.058319 1001.8 
90 4.1477 0.10013 0.018314 8831.6 
80 4.039 0.12346 0.010624 3518.2 
70 3.9414 0.097481 0.040095 1703.4 
60 3.8536 0.067991 0.070611 1000.1 
50 3.7913 0.078285 0.056201 1004.6 
40 3.776 0.052089 0.10985 1004.2 
30 3.7717 0.092989 0.079407 1877.4 
20 3.6456 0.094768 0.063552 3604.2 
10 3.4682 0.051122 0.092277 1006.9 
0 3.3627 0.29928 0.00021 1000.5 

 

Table 8: Final Lookup Table Values at 40° C 

SOC (%) Em (V) R0 (Ω) R1 (Ω) C1 (F) 
100 4.2716 0.069503 0.046078 7118 
90 4.1729 0.088688 0.041087 3068 
80 4.0619 0.095503 0.027136 8110.4 
70 3.9625 0.079509 0.042271 3448.1 
60 3.8679 0.077609 0.026512 3326.5 
50 3.8218 0.087043 0.06007 6243.6 
40 3.7761 0.086588 0.050126 3571.1 
30 3.7571 0.093051 0.029761 6292.3 
20 3.6907 0.09868 0.037837 3874.7 
10 3.5426 0.094264 0.010629 3336.4 
0 3.171 0.1245 0.080597 7008.3 

 

4.3 Comparison between Experimental Test (2S2P) and Model Prediction 

Figure 55 shows the comparison between the experimental data and the model’s output 

voltage for the battery pack at 0° C for the Low, Normal and High current test scenarios. Upon 

close inspection of the voltage, the model tracks the experimental data accurately with an 

average absolute error of 1.26% for the entire data set. Error peaks right between the end of 
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discharge and the beginning of charge portions of the graph shown at times 62110 (Low), 

309300 (Normal), and 542100 (High) sec. The model starts to deviate and peak in error by a 

maximum absolute error of 20.56, 21.79 and 21.25% from the experimental data for the Low, 

Normal and High test case scenarios during these times. This deviation can be attributed to 

factors such as temperature or the estimated RC parameters.   

 

 

Figure 55: Battery Pack Voltage Analysis at 0° C 
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One factor is due to the thermal model not accurately predicting the battery pack’s 

temperature at lower states of charge, which will be analyzed in a later section. Alternatively, 

deviations based on the estimated RC parameters for the single cell causes an overall deviation in 

the battery pack model. However, there is no observable correlation between the maximum 

absolute error from the estimated parameter model using the final lookup table values, shown in 

Figure 52 and the battery pack model, shown in Figure 55. The battery pack model is able to 

track the fully charged, 8.6 V, steady-state portions of the experimental data with an absolute 

error between 0.5 to 0.8%. The difference between the charge portion of the model and 

experimental data is due to using only discharge data to model both charge and discharge. The 

difference in voltage between charge and discharge in a battery cell is likely caused by the 

effects of hysteresis.  Hysteresis is the lag, or jump in voltage, that occurs between the initial 

applications of current during a charge or discharge cycle. Hysteresis is a common attribute of 

battery cells that is not accounted for in this model due to the use of a single RC circuit and using 

only discharge data. Incorporating hysteresis effects into the model is an area that is suggested 

for future work. HJGC incorporates the hysteresis effect through the addition of more RC 

networks which is shown to provide an overall higher accuracy [48]. 
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Figure 56: Battery Pack Voltage Analysis at 25° C 

Figure 56 shows the comparison between the experimental data and the model’s output 

voltage for the battery pack at 25° C. For the 25° C case, the model tracks the experimental data 

more accurately than the 0° C case with an average absolute error of 0.76%; however, deviation 

is still apparent near the end of discharge and the initiation of charge portion of the curves at 

times 68410 (Low) ,232100 (Normal), and 380000 (High) sec. The maximum absolute errors at 
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these times are 12.87, 15.31, and 19.93% for the Low, Normal and High current test case 

scenarios respectively. For the 25° C case at time 68410 sec for the Low current test scenario, the 

battery pack model outputs a voltage of 6.6 V whereas the experimental data voltage is at 6 V at 

a 0 % state of charge. The likely cause for deviation is due to the estimated Em parameter in the 

final lookup table presented in Table 7 where at a 0% state of charge, the voltage is 

approximately 3.3 V. This shows that the battery model is highly dependent on the estimated 

parameters. The role of temperature also plays an effect in the model’s output voltage as the 

Normal and High test case scenario’s discharge current were able to reach closer to 6 V. The 

likely correlation is due to the interpolation of Em values between the 25° C and the 40° C 

lookup table used for the Normal and High test case sections of the graph at times 232100 and 

380000 sec respectively. The Normal and High test case sections of the graph reach temperatures 

closer to 40° C; thus these sections use parameters based on the lookup table for the 40° C case. 

 Figure 57 shows the comparison between the experimental data and the model’s output 

voltage for the battery pack at 40° C. As with the 25° C case, the 40° C case is consistent in 

matching the experimental data for the entire dataset, with an average absolute error of 0.61%. 

As with the 0° and 25° C case, maximum absolute error peaks at the end of discharge and the 

beginning of charge sections of the curve at times 89530 (Low), 302700 (Normal), and 908100 

(High) sec. The maximum absolute errors associated at these times are 12.47, 13.98, and 14.27% 

for the Low, Normal, and High test case scenarios respectively. Although not as apparent in the 

0° or 25° C case, the 40° C case shows that the model is not able to predict instantaneous drops 

in voltage due to current spikes caused by the OhmTest function on the CADEX C8000 Battery 

Testing System that is used to measure the internal resistance of the battery during the charging 
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portion of the curves. The instantaneous spikes are located at times 127400, 340900, and 957800 

sec which resulted in an absolute maximum error of 7.66, 11.4 and 16.19 % respectively. 

 

Figure 57: Battery Pack Voltage Analysis at 40° C 
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Figure 58: Battery Cell Temperature Analysis at 0° C 
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Figure 59: Battery Cell Temperature Analysis at 25° C 
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Figure 60: Battery Cell Temperature Analysis at 40° C 

Figs. 58, 59, and 60 compares the temperature output from each battery cell in the 

modified HJGC Battery model with the experimental data collected from the thermistor. The 

model shows an average absolute error of 1.2901, 1.1682, and 0.5799% for the 0°, 25°, and 40° 

C test case respectively. This average absolute error directly corresponds to battery cells 1 and 4 

which represent the outer most cells in the battery pack. The average absolute error for battery 

cells 2 and 3 representing the inner most cells are 1.2921, 1.1659, and 0.6750% for the 0°, 25°, 

and 40° C test case respectively. Similar to the comparison of voltage between the model and 

experimental data for the battery pack, shown previously in Figs. 55, 56, and 57, the model 
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struggles to match the experimental temperature during the transition period between end of 

discharge and beginning of charge. For the 0° C case at Low, Normal and High test scenarios, 

the peak absolute errors, shown in Figure 58, are 3.53, 6.20, and 11.05 % at times 63910 (Low), 

309100 (Normal), and 524700 (High) sec respectively.  

The peak absolute errors for the 25° C case, shown in Figure 59, are 2.61, 4.23, and 8.81 % at 

times 69610, 232100, and 367300 sec respectively. Lastly, the peak absolute errors for the 40° C 

case, shown in Figure 60, are 2.13, 4.55, and 9.67 % at times 89320,274400, and 889800 sec 

respectively. These error peaks are a result of the thermal model predicting rapid temperature 

rise versus the experimental data showing a gradual rise in temperature. The likely cause of such 

an error is due to the thermal model’s assumption of convection heat transfer between the cell 

and the environment rather than conduction and radiation. Although not visible in the 0° and 25° 

C case, the 40° C case shows oscillations in the absolute error and the experimental data. This 

oscillation is due to the PID controller for the temperature monitor of the TVAC chamber. Future 

work should explore the effects of the thermal model on the prediction of the battery pack. As a 

result of the thermal model deviating at these specific time points, it is likely a cause for error 

between the battery pack model output voltage and experimental data, shown previously in Figs. 

55, 56, and 57.  

In the modified HJGC model, the thermal model was not modified from the original 

HJGC model and uses the assumptions of battery cell temperature based on convective heat 

exchanged between the cell and the environment. Further investigation of the thermal effects 

between the battery cell, the environment and the internal battery temperature through 

conduction and radiation should be conducted to improve the thermal aspect of the modified 
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HJGC model. The modified HJGC model does not include any loses due to radiation and 

conduction and should be an area future work.  

4.4 Analysis of Temperature Data 

 The thermocouple data presented in this section is temperature data collected during the 

experimental test process from 0° C to 40° C to 25° C and back down to 0° C. Figure 61 shows 

only the measured temperature data between the cell, the metallic case, and the chamber platen. 

Oscillation of the chamber platen temperature is observed and is caused by the PID controller of 

the temperature monitor on the TVAC chamber. For the single cell experiment, the metallic case 

and chamber platen temperature closely agree which indicates low thermal resistance between 

the case and the platen due to the presence of copper. The average deviation in temperature 

between the Chamber Platen and Single Battery Cell is 1.83° C with a maximum deviation of 

17.78° C throughout the entire dataset. The average deviation in temperature between the 

Chamber Platen and Metallic Case is 0.638° C with a maximum deviation of 8.575° C. The 

average deviation in temperature between the Single Battery Cell and Metallic Case is 1.47° C 

with a maximum deviation of 10.32° C. When the battery cell is undergoing its Dynamic Test 

case, the platen and case measured temperature do not match by a maximum deviation of 8.575° 

C. The thermal energy released by the battery causes an increase in the case temperature which 

becomes more apparent in the battery pack test article.  
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Figure 61: Measured Temperature Data from Thermocouples on a Single Battery Cell 

 

 

Figure 62: Measured Temperature Data from Thermocouples on a Single Battery Cell in a 

Battery Pack 

Figure 62 shows only the measured temperature data of a single cell in the battery pack, 

the metallic case housing the pack, and the chamber platen. Similarly to Figure 61, oscillation of 

the chamber platen temperature is observed. For the battery pack experiment, the metallic case 
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and chamber platen have good conduction; however, like the single battery cell experiment, the 

metallic case deviates from the chamber platen during areas of testing where there is a 

temperature increase in the battery cell. This results in an increase in the metallic case 

temperature as well.  The average deviation in temperature between the Chamber Platen and the 

single battery cell of the Battery Pack is 4.44 ° C with a maximum deviation of 44.09° C 

throughout the entire dataset. The average deviation in temperature between the Chamber Platen 

and Metallic Case of the Battery pack 1.62° C with a maximum deviation of 16.09° C. The 

average deviation in temperature between the single battery cell of the Battery Pack and Metallic 

Case is 3.09° C with a maximum deviation of 28.59° C. 

Comparing the peak temperature values of the thermocouple shown in Figure 62 and the 

peak temperature values of the thermistors shown in Figs. 58, 59, and 60, the thermocouple does 

not match up to thermistor. An example is shown in Figure 62 from datapoint 2500 to 6000, the 

thermocouple data is shown to peak at approximately 51°, 65° and 75° C, respectively. This 

portion of the curve relates to the test cases for the battery pack at 40° C.  From Figure 60, the 

experimental data from the thermistor is shown to peak at approximately 45°, 51°, and 61° C. As 

temperature increases, a larger deviation between the thermocouple and thermistor becomes 

apparent.  Another example is from datapoint 0 to 2000 or 9000 to 11,000 for the 0° C case. The 

peak values from the thermocouple are 19°, 31° and 45° C.  In comparison with Figure 58, the 

thermistor temperatures peak at 10°, 19° and 22° C.  

4.5 Summary 

Overall, the modified Thevenin Equivalent Circuit Model incorporating thermal effects is 

capable of predicting the performance of a 2S2P battery pack in the space environment; 

however, there are areas that could be improved. The modified HJGC model was able to achieve 
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an average absolute error of 1.26, 0.76, and 0.61% for the 0°, 25° and 40° C test cases 

respectively over all three test scenarios: Low, Normal and High current discharges. There are 

areas that need improvement, specifically the thermal model and charging aspect of the model. 

Although the model is accurate in predicting the overall performance of a battery pack, the 

model is inaccurate in regions where the battery pack transitions from an end of discharge state 

to a charge state. This inaccuracy is observable in the analysis of maximum absolute error for 

voltage at the transition region between discharge and charge where the error exceeded expected 

results presented by HJGC [38]. When compared to the results presented by HJGC where the 

maximum absolute error of the voltage did not exceed 2%, the model for all 3 temperature cases 

exceeded this limit.  For the 0° C test case, the Low, Normal and High current test scenarios had 

maximum absolute error of 20.56, 21.79, and 21.25 % respectively. For the 25° C test case, the 

Low, Normal and High current test scenarios had maximum absolute error of 12.87, 15.31, and 

19.93 % respectively. For the 40° C test case, the Low, Normal and High current test scenarios 

had maximum absolute error of 12.47, 13.98, and 14.27 % respectively.  

The thermal aspect of the model shows an average absolute error of temperature for 

battery cells 1 and 4, representing the outer most cells, as 1.2901, 1.1682, and 0.5799% for the 

0°, 25°, and 40° C test case respectively. The average absolute error for battery cells 2 and 3, 

representing the inner most cell, are 1.2921, 1.1659, and 0.6750% for the 0°, 25°, and 40° C test 

case respectively. Overall, the thermal model is able to accurately predict the temperature of the 

battery cells; however, the thermal model had difficulty matching the gradual rise in temperature 

during the initial start of discharge as well in the transition region between discharge and charge. 

During the transition region, the maximum absolute error for the Low, Normal and High current 

test scenarios at 0° C are 3.53, 6.20, and 11.05 %, respectively. For the Low, Normal and High 
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current test scenarios at 25° C, the maximum absolute error are 2.61, 4.23, and 8.81 %, 

respectively. For the Low, Normal and High current test scenarios at 40° C, the maximum 

absolute error are 2.13, 4.55, and 9.67 %, respectively.  

The analysis between the model and experimental data for both voltage and temperature 

show that the modified HJGC Battery model using a single RC network does not accurately 

model a battery pack’s performance in the transition region between charge and discharge when 

compared to expected results presented by HJGC. The inaccuracy is due a combination between 

the thermal model and estimated parameters in the lookup tables. Because the modified HJGC 

Battery model is heavily reliant on the lookup tables to generate the model output of a battery 

pack, any inaccuracy between the Parameter Estimation Model and the experiment data when 

generating the lookup table would result in an inaccurate battery pack model. Hysteresis also 

plays a role in the accuracy of the charge portion of the model and can be incorporated into the 

model by adding an additional RC network. For space simulation that requires a high level of 

accuracy, more modifications to the HJGC model should be investigated in improving the areas 

of thermal modeling and parameter estimation for multiple RC networks.   
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V.  Conclusions and Recommendations 

5.1 Conclusions of Research 

This research presented a background on CubeSats, Li-ion batteries, and battery 

modeling. The proposed model to simulate spacecraft battery behavior is the equivalent circuit 

based model presented by Huria, Jackey, Gazzari, and Ceraolo (HJGC) [38]. The HJGC model 

combines multiple equivalent circuit models that represent a single battery cell to form a larger 

model that represents a single battery pack. The HJGC model was modified through the 

arrangement of four equivalent circuit models of a battery cell to simulate a battery pack in a 

2S2P configuration. Each equivalent circuit model of a battery cell incorporates only one RC 

network. Experimental data was gathered at temperatures of 0°, 25° and 40° C using pulse 

discharges on an LG ICR18650C2 battery cell. The experimental data from the battery cell was 

used to create a lookup table containing the RC parameters using the Parameter Estimation 

Model presented by HJGC. The results of the modified HJGC model was compared to 

experimental test data of battery cells in a 2S2P configuration. This comparison showed that the 

model using a single RC network does not accurately model a battery pack’s performance in the 

transition region between charge and discharge when compared to expected results of absolute 

error not exceeding 2% [38]. During the transition region, the 0° C test case for the Low, Normal 

and High current test scenarios had maximum absolute error for voltage of 20.56, 21.79, and 

21.25 % respectively. For the 25° C test case, the Low, Normal and High current test scenarios 

had maximum absolute error for voltage of 12.87, 15.31, and 19.93 % respectively. For the 40° 

C test case, the Low, Normal and High current test scenarios had maximum absolute error for 

voltage of 12.47, 13.98, and 14.27 % respectively. Inaccuracy of the model at the transition 
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region is due to a combination between the thermal model and estimated parameters from the 

lookup tables.  

5.2 Significance of Research 

Modeling an EPS for CubeSats is an area of research that has not widely been explored. 

The significance of analyzing the HJGC model provides a step towards developing a model that 

is capable of simulating an entire complex CubeSat EPS consisting of solar arrays, EPS card, and 

battery pack. The analysis presented in this research provides recommendations of improvements 

to a pre-existing battery model that can be further enhanced to provide a more accurate 

prediction of battery pack behavior for EPS modeling. The findings of this research showed that 

further research must be conducted in the aspects of battery pack thermal modeling and 

parameter estimation to provide a more accurate model of a battery pack.  

5.3 Recommendations for Action 

  The limitations of the modified HJGC model were due to the accuracy based primarily 

on the parameter estimation of the RC elements and the thermal model. The modified HJGC 

model was also limited in terms of accuracy due to the lack of hysteresis incorporated into the 

model. A recommendation for action to incorporate the hysteresis effect would be to implement 

more RC networks into the equivalent circuit model of each battery cell. Additionally, more 

research on estimating parameters should have been explored earlier during the research to 

provide a more accurate and less tedious method of RC parameter extraction for an equivalent 

circuit model using a single RC network. The thermal model did not incorporate heat loss due to 

convection and radiation and should be an area to explore for further improvement of the 

modified HJGC model.  
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In terms of experimental testing, the contact between the metallic case and chamber 

platen could be improved by replacing the copper mesh with indium or copper foil. The mesh 

has holes where contact between the case and platen is limited. Indium or copper foil would 

provide better contact than a mesh. Additionally, 8 to 10 battery cells should be tested to gather 

more sufficient data on the single battery cell. Not all battery cells are identical, and additional 

single battery cell tests would develop a statistical argument that the experimental data from the 

single battery cell used in this research is representative of the cells used in the 2S2P battery 

pack.   

5.4 Recommendations for Future Research 

Future research should focus on the areas of improving the methods used to estimate RC 

parameter, especially for equivalent circuit models that incorporate two or more RC networks. A 

starting point would be the layered technique presented by HJGC used for parameter estimation 

of a model containing three RC networks[48]. Alternatively, research on the thermal aspects of a 

battery cell would provide a basis on developing a more accurate thermal model capable of 

providing accurate simulation of a battery pack’s temperature.  
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Appendix 1.0 Test Plans 
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1. Introduction 
 

1.1. Purpose 
The purpose of this test plan is to lay out the procedure for gathering discharge 

characteristics of a lithium ion cell and a lithium ion battery pack at various 

temperatures. 

1.2. Scope 
This test plan will provide details on testing for a single cell lithium ion battery and a 

battery pack with 4 cells (2S2P).  

The cell and battery pack will be tested at chamber temperatures of 0° C, 25° C and 

40° C. Battery temperature will be recorded and monitored using thermocouples. 

The single cell and battery pack will be tested simultaneously using two discharge 

profiles:  pulse and constant current.  

The pulse test will only be conducted for the single cell using a discharge current of 

1C at each temperature.  A discharge duty cycle of 360 sec on and 1800 sec (5 time 

constants) off will be used to discharge the cell to the cutoff voltage of 3.0V. The sole 

purpose of the pulse test is to collect data on the battery cell to calculate RC-circuit 

parameters for the used in battery cell modeling.  

The constant current discharge test will be conducted for both cells at a rate of 0.5C, 

1C and 2C at each temperature.  

1.3. Objective 
The objective is to gather cell and battery pack discharge data at various operating 

temperatures. This data will be used to create lookup tables for battery modeling and 

battery behavior prediction. 



2 

 

2. Resource Requirements 
 

2.1. Facilities 
This test shall be performed at the Air Force Institute of Technology, Wright 

Patterson AFB, OH. 

2.2. Roles and Responsibilities 
A Quality Assurance representative shall perform the following: 

a. Inspection of the initial test setup and all configuration changes shall be 
performed. 

b. Visual inspection of the test articles at points indicated in this procedure, 
including visual damage. 

c. Review data and accept at completion of this procedure. 

  A Test director representative shall perform the following: 

a. Confirm facilities and test articles are ready to be tested 
b. Ensure connections and setup meet all requirements as specified by the 

interface control document (ICD) 
c. Verify that all software and equipment are functional in gathering the required 

data 
d. Review data to ensure all required data has been gathered. 

A Test conductor representative shall perform the following: 

a. Inspect and verify all test equipment are working prior to TVAC setup 
b. Execute test plan procedures to ensure all required data has been gathered. 

2.3. Safety Compliance 
a. For operations occurring during normal duty days, all accidents and hazardous 

incidents shall be reported to Chris Sheffield. 
b. During non-standard hours, all accidents and incidents shall be reported to 

Chris Sheffield on the next working day. 

2.4. Hazardous Operation 
As a safety measure to prevent thermal runaway in Lithium-Ion Batteries during the 

40°C test, battery temperature shall be monitored and limited through the BatteryLab 
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Software to not exceed 80° C. If vibration testing is being performed in the lab, 

earmuffs must be worn. 

2.5. Personnel Requirements 
Quality Assurance, Test Director, and Test Conductor shall participate in conducting 

this test procedure. QA shall primarily support the test configuration verification and 

test data review and is not required for the complete duration of testing. The test 

director will ensure equipment is ready to gather data. The test conductor will execute 

the test procedures and gather the data. A list of the test personnel is provided below 

in Table 1.   

 

Table 9 Test Personnel 

Position Team Member Initials 
Quality Assurance Chris Sheffield/Sean Miller  
Test Director James Liu  
Test Conductor James Liu  

 

2.6. Material/Equipment 
The materials and equipment required for this test are shown below in Table 10. 

Table 10 Test Equipment 

Item Description Quantity 

Computer 

Two computers are required to run LabVIEW Software and BatteryLab 
Software 
Each computer shall have a minimum of 2 USB connections for the 
Mouse, Keyboard. Computer connected to the CADEX battery testing 
system shall have access to CubeNet 

2 

Test HW/SW CADEX C8000 Battery Testing System w/ 2 Power Port Cables 
 (http://www.CADEX.com/en/products/c8000-battery-testing-system) 1 

Test HW/SW CubeSat TVAC chamber/ABBESS 1 
Battery Cell 1 Lithium-Ion battery cell 1 
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Battery Pack 4 cell lithium-ion battery pack (2S2P) 1 
Type K 
Thermocouples Measures surface temperature of battery pack and individual battery cell 5 

CADEX C8000 
Thermistor 

Measures surface temperature of battery pack/cell. Used in conjunction 
with BatteryLab software to act as a shutoff mechanism for high 
temperature. 

2 

Multimeter Measures voltage of batteries 1 
Rolling Cart Transporting equipment 1 
Earmuffs Protects ears from loud noises 1 

TVAC 
Connectors 

Cell 
• One DB25 connector to connect the CADEX C8000 Battery Tester 

from outside the chamber to inside the chamber via Channel 1 on 
the CADEX 

• One DB25 connector to connect the battery cell from inside the 
TVAC Chamber to outside the chamber. 

Pack 
• One DB25 connector to connect the CADEX C8000 Battery Tester 

from outside the chamber to inside the chamber via Channel 2 on 
the CADEX 

• One DB25 connector to connect the battery pack from inside the 
TVAC Chamber to outside the chamber. 

Refer to Battery Testing ICD for further details on TVAC connectors 

4 

Gloves (pair) Used to protect test equipment and chamber from contamination. multiple 
Alcohol Used to clean test articles 1 

 

3. Test Configuration 
 

3.1. Test Setup 
This test will take place in the AFIT Space Environmental Chamber Lab.  

Battery cell and Battery Pack Setup 

The battery pack and battery cell will be placed in two separate metallic casings to 

hold the pack and cell.  

Thermocouples will be secured on the metallic casing, the chamber platen and on 

the battery cells to monitor temperature differentials between the case, cell and 

platen temperature. They will be secured on the cell using Kapton tape. 
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Thermistor will be secured in the middle of the battery pack; it will be secured on 

top of the battery cell.  

Note: Refer to Appendix 2.0 for pictures of Thermocouple and Thermistor placement on 

the Battery Pack and Cell 

Test Setup Checklist: 

1. Clean all test articles and connectors using alcohol prior to putting into 
chamber. 

2. Using “Battery Test TVAC ICD” as a reference, connect Inside Female 
DB25 TVAC Connector (connector attached to battery pack and cell) to 
Inside Male DB25 TVAC connection port inside TVAC Chamber. 

3. Using “Battery Test TVAC ICD” as a reference, connect Outside Female 
DB25 TVAC Connector (connector attached to banana plugs) to Outside 
Male DB25 TVAC connection port outside TVAC Chamber. 

4. Connect DB25 connected to battery cell to Ch1 Power Port connector from 
the CADEX C8000. 

5. Connect DB25 connected to battery pack to Ch2 Power Port connector from 
the CADEX C8000. 

3.2. Test Results 
All pass/fail test results will be recorded on this test procedure.  The data that is 

collected from the CADEX C8000 Battery Tester and thermocouples will be recorded 

in an electronic file on the computer.  This data to be collected is shown below. 

Table 11 Data to be Collected 

Data Collected Source: 

Temperature of Battery Cell and Pack from 

Thermocouple 

Refer to APPENDIX 2.0 for Thermocouple 

Location 

LabVIEW Software  
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Discharge Current of Battery Cell & Pack  BatteryLab Software 

Voltage of Battery Cell & Pack  BatteryLab Software 

Temperature of Battery Cell and Pack from 

Thermistor (through DB25) 

Refer to APPENDIX 2.0 for Thermistor Location 

BatteryLab Software  

  

3.3. Test Software 
The CADEX C8000 Battery Testing System has its own software (BatteryLab) 

that can be used to test both the battery cell and pack. ABBESS control software is 

used to control the TVAC chamber.  LabVIEW software is used to record 

thermocouple data and chamber pressure. 

4. TVAC Initial Set Up 

Table 12 Initial Set-Up Procedure 

Step Activity Initials/Date QA/Date 
1.  Gather all equipment from Table 10 and ensure availability 

for duration of test 
  

2.  Ensure that BatteryLab software is working properly on all 
computers that require the software 

  

3.  Ensure TVAC & ABBESS software  is working properly on 
all computers that require the software 

  

4.  Setup/prep the TVAC Chamber 
Refer to section 3.1 Test Setup 

  

5.  Insert Battery cell and Battery Pack into the TVAC chamber 
Refer to TVAC Battery Testing ICD for battery connection 
Refer to section 3.1 Test Setup  

  

6.  Record battery cell and pack voltage using CADEX C8000 
Battery Testing System to determine offset from wires 
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5. Battery Cell & Battery Pack Operational Test 

Table 13 Battery Procedure 

Step Activity Initials/Date QA/Date 
7.  Collect ambient temperature and voltage of battery cell and 

battery pack using CADEX C8000 and Thermocouple  
  

8.  Use CADEX C8000 to draw power from Battery Cell and 
Battery Pack at a rate of 0.5C 
Use CADEX C8000 to charge Battery Cell and Battery Pack 
at a max rate of 0.5C 

  

9.  Ensure Battery Cell is charged to at least 4.3 V 
Ensure Battery Pack is charged to at least 8.6 V 

  

10.  Constant Current Discharge at Ambient Temperature 
Use CADEX C8000 to discharge battery cell and pack at the 
following discharge rates: 0.5C, 1C and 2C. 
Discharge until batteries reach cutoff voltage of 3.0 V (cell) 
and 6.0 V (pack). 
Charge the battery cell and pack back up to at least 4.3 V and 
8.6 V respectively at the end of each discharge at a max rate 
of 0.5C. 
Wait for Battery Cell and Pack to settle at equilibrium 
temperature between each discharge. 

  

11.  Pulse Discharge at Ambient Temperature 
Using the CADEX C8000, pulse discharge the battery cell 

• Discharge rate: 1C (2.70 A at ambient) 
• Period on: 360 seconds 
• Period off: 1800 seconds 
• Set cutoff voltage to 3.0 V 

Charge Battery cell back up to at least 4.3V at a max rate of 
0.5C 

  

12.  Pump chamber down to vacuum pressure    
13.  Ramp temperature down to 0° C   
14.  Wait for Battery Cell and Pack to settle at 0° C   
15.  Measure initial battery temperature using thermocouple 

and initial battery voltage using CADEX C8000 
  

16.  Constant Current Discharge at 0° C 
Use CADEX C8000 to discharge battery cell and pack at the 
following discharge rates: 0.5C, 1C and 2C. 
Discharge until batteries reach cutoff voltage of 3.0 V (cell) 
and 6.0 V (pack). 
Charge the battery cell and pack back up to at least 4.3 V and 
8.6 V respectively at the end of each discharge at a max rate 
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of 0.5C. 
Wait for Battery Cell and Pack to settle at equilibrium 
temperature between each discharge. 

17.  Pulse Discharge at 0° C 
Using the CADEX C8000, pulse discharge the battery cell 

• Discharge rate: 1C (2.7 A at 0° C) 
• Period on: 360 seconds 
• Period off: 1800 seconds 
• Set cutoff voltage to 3.0 V 

Charge Battery cell back up to at least 4.3V at a max rate of 
0.5C  

  

18.  Ramp temperature up to 25° C   
19.  Constant Current Discharge at 25°C 

Use CADEX C8000 to discharge battery cell and pack at the 
following discharge rates: 0.5C, 1C and 2C. 
Discharge until batteries reach cutoff voltage of 3.0 V (cell) 
and 6.0 V (pack). 
Charge the battery cell and pack back up to at least 4.3 V and 
8.6 V respectively between each discharge at a max rate of 
0.5C. 
Wait for Battery Cell and Pack to settle at equilibrium 
temperature between each discharge. 

  

20.  Pulse Discharge at 25° C 
Using the CADEX C8000, pulse discharge the battery cell 

• Discharge rate: 1C (2.7 A at 25° C) 
• Period on: 360 seconds 
• Period off: 1800 seconds 
• Set cutoff voltage to 3.0 V 

Charge Battery cell back up to at least 4.3V at a max rate of 
0.5C  

  

21.  Ramp temperature up to 40° C   
22.  Measure battery pack and cell temperature using 

thermocouple and battery voltage using CADEX C8000 
  

23.  Constant Current Discharge at 40°C 
Use CADEX C8000 to discharge battery cell and pack at the 
following discharge rates: 0.5C, 1C and 2C. 
Discharge until batteries reach cutoff voltage of 3.0 V (cell) 
and 6.0 V (pack). 
Charge the battery cell and pack back up to at least 4.3 V and 
8.6 V respectively between each discharge at a max rate of 
0.5C. 
Wait for Battery Cell and Pack to settle at equilibrium 
temperature between each discharge. 
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24.  Pulse Discharge at 40°C 
Using the CADEX C8000, pulse discharge the battery cell  

• Discharge rate: 1C (2.70 A at 40° C) 
• Period on: 360 seconds 
• Period off: 1800 seconds 
• Set cutoff voltage to 3.0 V 

Charge Battery cell back up to at least 4.3V at a max rate of 
0.5C 
 

  

25.  Ramp temperature down to ambient temperature    
26.  Pump chamber back to atmospheric pressure   
27.  Record ambient Temperature   
28.  Measure initial battery pack and cell temperature using 

thermocouple and initial battery voltage using CADEX 
C8000 

  

29.  Constant Current Discharge at Ambient Temperature 
Use CADEX C8000 to discharge battery cell and pack at the 
following discharge rates: 0.5C, 1C and 2C. 
Discharge until batteries reach cutoff voltage of 3.0 V (cell) 
and 6.0 V (pack). 
Charge the battery cell and pack back up to at least 4.3 V and 
8.6 V respectively between each discharge at a max rate of 
0.5C. 
Wait for Battery Cell and Pack to settle at equilibrium 
temperature between each discharge. 

  

30.  Pulse Discharge at Ambient Temperature 
Using the CADEX C8000, pulse discharge the battery cell  

• Discharge rate: 1C (2.70 A at ambient) 
• Period on: 360 seconds 
• Period off: 1800 seconds 
• Set cutoff voltage to 3.0 V 

Charge Battery cell back up to at least 4.3V at a max rate of 
0.5C 
 

  

31.  Collect final temperature and voltage of battery cell and 
battery pack using CADEX C8000 and Thermocouple  
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Appendix 1.0 – Test Log 

Item TIME EVENT / STATUS FILENAME 

(#) (HHMM) (Desc.) (Type-Current-MMDD-

Cell or Pack) 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

11       

12       

13       
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14       

15       

16       

17       

18       

19       

20       

21       

22       

23       

24       

25       

26       

27       

28       

29       
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30       

31       

32       

33       

34       
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Appendix 2.0 – Test Setup 

 

 

Figure 63: Thermocouple Placement Location 1 through 5 

 

Figure 64: Thermistor Placement Locations 1 and 2 
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Figure 65: Thermocouple and Thermistor Location 
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Thermocouple Location 

1 Metallic Case (Pack) 

2 Cell (Pack) 

3 Single Cell 

4 Metallic Case (Cell) 

5 Chamber Platen 
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