
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-24-2016

Improving System Design Through the Integration
of Human Systems and Systems Engineering
Models
Michael E. Watson

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Systems Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Watson, Michael E., "Improving System Design Through the Integration of Human Systems and Systems Engineering Models" (2016).
Theses and Dissertations. 417.
https://scholar.afit.edu/etd/417

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/417?utm_source=scholar.afit.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

IMPROVING SYSTEM DESIGN THROUGH THE INTEGRATION OF HUMAN
SYSTEMS AND SYSTEMS ENGINEERING MODELS

THESIS

Michael E. Watson, Captain, USAF

AFIT-ENV-MS-16-M-190

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-16-M-190

IMPROVING SYSTEM DESIGN THROUGH THE INTEGRATION OF HUMAN
SYSTEMS AND SYSTEMS ENGINEERING MODELS

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Michael E. Watson, BS

Captain, USAF

March 2016

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-16-M-190

IMPROVING SYSTEM DESIGN THROUGH THE INTEGRATION OF HUMAN
SYSTEMS AND SYSTEMS ENGINEERING MODELS

Michael E. Watson, BS

Captain, USAF

Committee Membership:

Maj C. F. Rusnock, PhD
Chair

Dr. J. M. Colombi, PhD
Member

Dr. M. E. Miller, PhD
Member

iv

AFIT-ENV-MS-16-M-190

Abstract

The human is a critical aspect of many systems, but frequently there is a failure to

properly account for human capabilities and involvement during system design. This

inattention results in systems with higher lifecycle costs, decreased user compatibility,

and the potential to produce disastrous consequences. This research presents an approach

to integrating the human into system models by using two methods: static and dynamic

modeling. The static method uses a user-centered design framework to create system-

and human-centered models that deconstruct the system and user into their respective

components. These models are integrated to create system models that include relevant

information about the human and highlight potentially conflicting tasks. The dynamic

method uses a human performance modeling tool to create a discrete event simulation

(DES) of the system. This DES model is used to perform an analysis between system

trades, by which constraints and assumptions placed on the human are verified. Data

gained from the analysis are integrated back into system models in order to reflect true

system performance. By applying these two integration methods early in the system’s

lifecycle, system models can more effectively account for the human as a critical

component of the system, thus improving system design.

v

AFIT-ENV-MS-16-M-190

To my wife for her never-ending patience and support

vi

Acknowledgments

I would like to express my sincere gratitude to my research advisor, Major Christina

Rusnock, for her continuous mentorship throughout this thesis effort. I would also like to

thank my committee members, Dr. John Colombi and Dr. Michael Miller, for sharing

their unique insights and feedback along the way. My appreciation goes to Mr. Michael

Hoepf at the 711th Human Performance Wing for familiarizing me with Vigilant Spirit

and for his subject-matter expertise. Finally, special thanks go to the Human Research

and Engineering Directorate at the Army Research Laboratory for making this research

possible.

 Michael E. Watson

vii

Table of Contents

Page

Abstract .. iv

Table of Contents .. vii

List of Figures .. xi

List of Tables ... xiii

I. Introduction ...1

Chapter Overview ...1

Background...1

Problem Statement..3

Research Objective ...4

Research Question / Investigative Questions ...5

Methodology...5

Assumptions / Limitations ..6

Preview ...7

II. Improving System Models by Integrating User-Centered Design8

Chapter Overview ...8

Abstract...8

Introduction ..9

Background...10

Methodology...24

Results and Analysis...29

Discussion and Conclusions ...39

Chapter Summary ...41

viii

III. Performing System Tradeoff Analyses Using Human Performance Modeling44

Chapter Overview ...44

Abstract...44

Introduction ..45

Background...46

Methodology...55

Results and Analysis...59

Discussion and Conclusions ...76

Chapter Summary ...77

IV. Conclusions and Recommendations ...82

Chapter Overview ...82

Research Overview ...82

Investigative Questions ..83

Recommendations for Future Research..85

Significance of Research ..88

Appendix A – Literature Review ...90

Overview ..90

Systems Engineering ..90

Human Systems Integration ...92

MBSE Tradeoffs and Methods ...93

IMPRINT Tradeoffs and Methods ...96

Processes, Methods, and Tools ...99

Process-Level Integration ...99

Methods-Level Integration ...100

ix

Tools-Level Integration ..106

Integration Efforts via IMPRINT Modeling...107

Research Gap ..109

Appendix B – Baseline Model Description ...111

Overview ..111

Introduction ..111

Surveillance Task ...112

Communication Task..120

Post-HVT/Communications Iterations ...124

Assumptions ...125

Model Verification ...127

Appendix C – Baseline Model Validation ...131

Overview ..131

Model Response Variables ...131

Real-World Response Variables...131

Validating Performance Score ..132

Validating Workload ..136

Appendix D – Alternative Model Description ...139

Overview ..139

Introduction ..139

Changes from Baseline Model ...140

Assumptions ...143

Appendix E – Alternative Model Output Analysis ..144

Overview ..144

x

Introduction ..144

Performance Score..145

Workload ..150

Bibliography ..155

xi

List of Figures

Page

Figure 1: SysML Diagram Taxonomy – adapted from (Delligatti, 2014) 12

Figure 2: Human View Development – adapted from (Handley & Knapp, 2014) 19

Figure 3: Integration Efforts in the Vee Process Model – adapted from (Forsberg, Mooz,

& Cotterman, 2005) ... 23

Figure 4: Vigilant Spirit Experiment Setup .. 26

Figure 5: Activity Diagram of Vigilant Spirit Tasks .. 30

Figure 6: Sequence Diagram of System-Centered Surveillance Task 32

Figure 7: Sequence Diagram of System-Centered Communication Task 33

Figure 8: Sequence Diagram of Human-Centered Surveillance Task 35

Figure 9: Sequence Diagram of Human-Centered Communication Task 36

Figure 10: Sequence Diagram of Integrated Surveillance Task 37

Figure 11: Sequence Diagram of Integrated Communication Task 38

Figure 12: Screenshot of Vigilant Spirit Camera Feed ... 57

Figure 13: System Block Definition Diagram .. 61

Figure 14: System Requirements Diagram ... 61

Figure 15: System Parametric Diagram .. 62

Figure 16: Activity Diagram of Vigilant Spirit Tasks .. 64

Figure 17: Baseline IMPRINT Task Network .. 65

Figure 18: Confidence Intervals for Real-World and Baseline Model Score Data 66

Figure 19: Alternative IMPRINT Task Network .. 67

Figure 20: Confidence Intervals for Baseline/Tradeoff Models for Score 69

xii

Figure 21: Confidence Intervals for Baseline/Tradeoff Models for Workload 71

Figure 22: Integrated Requirements Diagram ... 73

Figure 23: Integrated Parametric Diagram ... 74

Figure 24: Integrated Block Definition Diagram .. 75

Figure 25: SysML Diagram Taxonomy – adapted from (Delligatti, 2014) 92

Figure 26: Human View Development – adapted from (Handley & Knapp, 2014) 104

Figure 27: Baseline Vigilant Spirit Model in IMPRINT .. 112

Figure 28: Sample Operator Workload Graph .. 129

Figure 29: Confidence Intervals for Real-World and Baseline Model Score Data 134

Figure 30: Alternative Vigilant Spirit Model in IMPRINT .. 140

Figure 31: Confidence Intervals for Baseline/Tradeoff Models for Score 147

Figure 32: Tukey Differences of Means for 95% CI for Score 149

Figure 33: Confidence Intervals for Baseline/Tradeoff Models for Workload 152

Figure 34: Tukey Differences of Means for 95% CI for Workload 154

xiii

List of Tables

Page

Table 1: Scanning Algorithm Accuracy and Speed Settings .. 60

Table 2: Tukey’s HSD Results for Baseline/Trades for Score ... 69

Table 3: Tukey’s HSD Results for Baseline/Trades for Workload 70

Table 4: Baseline Model Assumptions ... 125

Table 5: Real-World Data Statistics for Score .. 133

Table 6: Model Data Statistics for Score .. 134

Table 7: Independent-Samples T-Test Results ... 135

Table 8: Alternative Model Assumptions ... 143

Table 9: Scanning Algorithm Accuracy and Speed Settings .. 144

Table 10: Tradeoff Data Statistics for Score ... 146

Table 11: One-Way ANOVA Data for Score ... 148

Table 12: Tukey’s HSD Results for Baseline/Trades for Score 149

Table 13: Baseline/Tradeoff Data Statistics for Workload ... 151

Table 14: One-Way ANOVA Data for Workload .. 153

Table 15: Tukey’s HSD Results for Baseline/Trades for Workload 154

1

IMPROVING SYSTEM DESIGN THROUGH THE INTEGRATION OF HUMAN

SYSTEMS AND SYSTEMS ENGINEERING MODELS

I. Introduction

Chapter Overview

This chapter begins by explaining the background and problem relating to

systems engineering (SE) practices and the lack of integrated models for considering

Human Systems Integration (HSI). The chapter then discusses a solution of integrating

the HSI and SE processes, followed by focusing on questions regarding how to

successfully do so. Next, the chapter addresses the methodology that will be undertaken

to answer these questions, highlights assumptions unique to this research, and concludes

with an overview of the remaining chapters.

Background

Systems engineering (SE) has become an increasingly important part of the

lifecycle management of Department of Defense (DoD) systems, and has even been

institutionalized as the disciplinary approach to acquisition program development

(Department of Defense, 2015). SE is a unique approach to system development that

concentrates on a holistic, top-down view of the system and breaks it down into its

multiple components (International Council on Systems Engineering, 2015). It is

important to consider the human as one of the system’s components, as nearly every

system is constructed to fulfill a human need and therefore requires some manner of

human involvement. The process by which the human can be effectively accounted

2

during system development is called Human Systems Integration (HSI) (U.S. Air Force,

2010).

It is important to consider HSI during the SE process, as failure to do so can lead

to serious consequences. For example, independent investigations found that inadequate

design of the Global Hawk unmanned aerial vehicle and Patriot air and missile defense

(AMD) systems led to the Global Hawk and Patriot operators’ over-reliance on

automation and a lack of situation awareness, resulting in mission degradation and two

Patriot AMD fratricide incidents (Hopcroft, Burchat, & Vince, 2006; Hawley, 2011).

Poor HSI also contributed to the partial nuclear meltdown of the Three Mile Island power

plant in 1979. A combination of confusing warning display design, absence of

instruments displaying critical information, and improper operator training led to the

worst nuclear power plant accident in U.S. history (U.S. Nuclear Regulatory

Commission, 2014).

DoD Instruction 5000.02 (2015) recognizes the need to consider HSI during

system development, mandating that HSI be taken into account for new acquisition

systems and continue to be considered throughout the system’s lifecycle. However, HSI

implementation has received criticism as neither occurring at a sufficient level of detail,

nor at the correct time (Handley & Knapp, 2014). Others have suggested that systems

engineers do not apply HSI during early design stages of the system’s lifecycle as they

should (Orellana & Madni, 2014; Hardman & Colombi, 2012). This failure to integrate

the HSI and SE processes has been attributed to producing systems that have higher costs

later in the lifecycle and are less compatible with the user (Mitchell, Agan, & Samms,

2011; Hardman & Colombi, 2012).

3

Problem Statement

 There have been several efforts to better integrate the HSI process into SE

(Bodenhamer, 2012; Handley & Smillie, 2009; Hardman, Colombi, Jacques, & Miller,

2008; Mitchell, Agan, & Samms, 2011; Orellana & Madni, 2014). These efforts strive to

solve the problem by focusing on the issue at varying levels of scope: the process,

methods, and tools levels. The relationship between these three levels is defined in terms

of detail: a process is supported by methods, which are facilitated by tools (Martin,

1996). For example, at the process level, Chua and Feigh (2011) offer general ways the

human may be considered in early system design. At the tools level, other researchers

propose the use of modeling and simulation (Boy & Narkevicius, 2013; Mitchell D. K.,

2005) or system diagramming techniques (Ramos, Ferreira, & Barcelo, 2013). However,

integration efforts at the tools level have been relatively few. Of those efforts, an

integration plan is lacking to inform system models following human analysis.

Additionally, most efforts direct focus on integration only in the concept and architectural

phases of system development.

This research addresses integration by focusing on HSI and SE at their respective

tools levels of scope – as opposed to the higher process and methods levels – through the

use of models. The research also looks at integration primarily during the preliminary or

detailed design phases of the system’s lifecycle, later than the concept and architectural

phases seen in many other studies. By focusing on integration slightly later in system

design, more system information is known, thus enabling effective human and system

consideration at the tools level of detail. However, current SE and HSI models are

4

disjointed from each other with no clear integration path. For an extended review of the

definitions and integration efforts relating to SE and HSI, see Appendix A.

Research Objective

This research effort has several objectives. First it must be determined if it is

possible for HSI to be incorporated into SE practices. The next objective is to determine

how to effectively perform this integration. The final objective is to demonstrate the

value of integration. SE and HSI practitioners conduct system tradeoff analyses when

designing the system. In order to meet these objectives, first it is important to understand

what tradeoffs are associated with each practice and how these tradeoff analyses are

being performed. Additionally, a review of the literature is necessary to establish the

extent of efforts to integrate the SE and HSI processes thus far. Knowing this

information aids this research in completing the first two objectives by understanding the

possibility of integration and potential methods to perform this integration. To complete

the final objective, this research effort makes use of a selected military-relevant scenario

combined with an associated trade study in order to demonstrate the value of integration.

The Systems Modeling Language (SysML) is chosen as the SE modeling tool with which

to depict the system-centered models. Software called the Improved Performance

Research Integration Tool (IMPRINT) is chosen as the HSI tool with which to create

human-centered models. By completing these objectives, this research seeks to

contribute to the SE and HSI disciplines by increasing the knowledge related to

integrating these modeling perspectives and demonstrating a method for integration. This

5

integration will allow human considerations to be effectively considered during

development, thus improving system design.

Research Question / Investigative Questions

 In order to guide this research effort’s objectives, the following research question

is formulated: How can HSI models be integrated with SE models in order to perform

system design tradeoffs?

Furthermore, the research question is divided into the following four investigative

questions:

1. What information should be captured in human-centric and system-centric models

to enable effective integration?

2. What considerations and decisions must be made when integrating between

human-centric and system-centric models?

3. What information can currently be passed from IMPRINT to SysML models?

4. What information do SysML models need from IMPRINT to effectively inform

tradeoff analyses?

Methodology

The software tool MagicDraw is used to create the SysML models of the system.

Additionally, the software tool IMPRINT is used to model the human. To perform the

scenario-specific trade study, a human subjects experiment from the 711th Human

Performance Wing (HPW) at Wright-Patterson Air Force Base is utilized. The 711th

HPW’s study involves a synthetic task environment called Vigilant Spirit, which

simulates a remotely-piloted aircraft surveillance mission. This research effort uses the

6

Vigilant Spirit simulation and the experiment data collected by the 711th HPW as the

scenario with which to demonstrate integration.

Assumptions / Limitations

Context Assumptions

This research focuses on improving integration between the SE and HSI processes

via system models. Therefore, it is assumed that the developmental lifecycle stages for a

typical system employ a model-based SE approach, and further utilize SysML as the

preferred modeling language.

It is assumed that the HSI professional’s view of the system is unique from other

engineering disciplines, therefore necessitating the creation of more human-centered

viewpoints of the system in order to capture this unique perspective. However, this

research also assumes that HSI professionals prefer to develop human-centered models

that are inherently useful for them, as opposed to creating specific models with utility

solely for systems engineers. As such, the best way to perform integration is to utilize

information that is also beneficial to the HSI professional.

Though this research specifically focuses upon the human factors engineering HSI

domain for analysis, it is assumed that this analysis may also be extended to some or all

of the remaining eight HSI domains in order to achieve effective integration.

Model Assumptions

It is assumed that this research’s case study involving the Vigilant Spirit

simulation is an accurate representation of the typical tradeoff analyses that systems

engineers perform during system design and development. Further, elements of this

7

research are predicated upon the experiment performed and associated data collected by

the 711th HPW. As such, it is assumed that the data used for the purposes of this

research are correct and that the source of the data is reliable. Additionally, assumptions

concerning the baseline and alternative Vigilant Spirit models created in IMPRINT may

be found in Appendices B and D, respectively.

Preview

This chapter explained the background relating to SE and HSI, the problem of a

lack of integration between the two processes, and the necessity of integration. Chapter

II addresses the first two investigative questions by providing a static method for

integrating user-centered design into system models. Chapter III addresses the last two

investigative questions and re-addresses the first two questions from a dynamic

standpoint, using human performance modeling to perform system-related tradeoff

analyses. Chapter IV summarizes significant findings and insights from the research,

draws conclusions, and offers recommendations for future research related to SE and HSI

process integration.

8

II. Improving System Models by Integrating User-Centered Design

Chapter Overview

This chapter begins to address the first two investigative questions of the research.

Specifically, it addresses what information should be captured in both human- and

system-centric models to enable effective integration, and what considerations and

decisions need to be made when integrating these two modeling perspectives. The

chapter presents a static method of integration, where systems engineers can use the

concept of user-centered design to integrate relevant information about the human into

system design models while staying within the SE toolset. The work presented in this

chapter is an adaptation of a journal article in submission.

Abstract

 The human user is important to consider during system design. However, failure

to properly integrate the user in system design is still commonplace. This research

presents a method for integrating human factors considerations into system models

through user-centered design (UCD). First, a task analysis is performed on the as-is

system and used to build Systems Modeling Language (SysML) diagrams. System-

centered diagrams are created from the systems engineer’s perspective; then, using UCD,

human-centered SysML diagrams are created from the human factors engineer’s

perspective. These diagrams are compared and, using common anchor-points between

the two, new diagrams are created which incorporate both the system and user into one

integrated set. These new system models capture the important aspects of the human,

9

allowing both systems and human factors engineers to effectively account for the user in

system design.

Introduction

 Systems engineering (SE) approaches design and development by focusing on the

complete system and deconstructing it into its multiple components (International

Council on Systems Engineering, 2015). In many systems, the human operators and

maintainers are among these components, and often the most important to consider.

Systems engineers can design for the human through a process called Human Systems

Integration (HSI) (U.S. Air Force, 2010). Because nearly every system requires a human

user in some manner, failure to consider the user in system design could yield negative

consequences.

 Failures in system design allowed for human error to cause catastrophic and fatal

results in the SpaceShipTwo crash in 2014. The accident occurred when the co-pilot

initiated the spacecraft’s re-entry system too early, causing the crash and killing the co-

pilot. However, National Transportation Safety Board Chairman Christopher Hart

suggests that the system’s designers were ultimately responsible due to a “failure to

consider and protect against the possibility that a single human error could result in a

catastrophic hazard” (Malik, 2015).

 As a historic example, in 1979, a partial nuclear meltdown occurred at the Three

Mile Island power plant near Harrisburg, Pennsylvania. The precipitating cause of the

incident was a relief valve stuck in an open position. Because of a combination of

confusing warning display design, absence of instruments displaying critical information,

10

and improper training, operators misinterpreted the nature of the malfunction and took

actions that actually worsened the situation, leading to the worst nuclear power plant

accident in U.S. history (U.S. Nuclear Regulatory Commission, 2014).

 These examples illustrate the importance of integrating the HSI process into SE

by focusing on the user. A failure to integrate the human with the system could cause a

variety of issues, to include ineffective system interfaces, increased developmental and

operational costs, and loss of user safety. Unfortunately, lack of HSI is still

commonplace during development. This paper seeks to counteract this problem by

proposing a method of integrating the HSI and SE processes in order to improve system

designs, and does so by focusing specifically on integrating user-centered design into

system modeling products. By performing this integration method, human factors

engineers gain a way to incorporate their user-centered design practices into the SE

process, and systems engineers gain a way to incorporate human considerations into their

existing SE framework, thus improving system design.

Background

Processes, Methods, and Tools

For the purposes of this paper, a process is defined as a philosophical approach

defining what activities should be accomplished to achieve an objective. Methods

support processes by defining in greater detail how to accomplish those activities. Tools

are the enabling mechanisms that facilitate and enhance the implementation of a given

method (Martin, 1996). There may be more than one tool capable of supporting a

11

particular method, and there likewise could be multiple methods capable of supporting a

process.

Systems Engineering

SE is a process that has become an increasingly important part of the overall

lifecycle management of Department of Defense (DoD) systems, to the point of

becoming an institutionalized disciplinary approach to the development of defense

acquisition programs (Department of Defense, 2015). The International Council on

Systems Engineering (INCOSE) (2015) defines a system as “an integrated set of

elements, subsystems, or assemblies that accomplish a defined objective,” whereas these

elements could not otherwise produce the same results by themselves. Elements may

include hardware, software, people, information, and facilities. SE offers a holistic

approach to developing these systems by integrating the many disciplines involved and

thereby accounting for factors such as requirements, cost, and schedule early in the

system’s lifecycle and continuing through development, operation, and eventually

disposal. To support this consideration throughout the lifecycle, the SE process is

composed of 14 technical sub-processes ranging from stakeholder requirements

definition to system disposal (International Council on Systems Engineering, 2015).

There are many different methods of practicing SE. Model-based systems

engineering (MBSE) is an emerging method with which to perform SE. Whereas the

traditional document-based method is driven by the development of a set of disjointed

documents, each separately detailing system-related information such as requirements or

design specifications, MBSE allows for the development of the same information through

a series of interrelated models that together form a complete system model (Friedenthal,

12

Moore, & Steiner, 2014). The MBSE method results in improved team communication,

increased quality of the system’s specification and design, and the ability to reuse the

model throughout the system’s lifecycle (Friedenthal, Moore, & Steiner, 2014).

If MBSE is a method of practicing SE, then the Systems Modeling Language

(SysML) is a tool with which to implement MBSE. There are several graphical modeling

languages available for SE applications, SysML being one of them (Delligatti, 2014).

SysML provides a means of communicating system information via a selection of

uniquely-purposed diagrams. These diagrams allow the modeler to represent

requirements as well as behavioral and structural aspects of the system, as shown in

Figure 1 (Delligatti, 2014).

Figure 1: SysML Diagram Taxonomy – adapted from (Delligatti, 2014)

Human Systems Integration

The human should also be a critical consideration during system development and

the SE process in general. The Air Force HSI Handbook defines HSI as the “process by

SysML
Diagrams

Behavior
Diagrams

Activity
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

Requirement
Diagram

Structure
Diagrams

Block
Definition
Diagram

Internal
Block

Diagram

Parametric
Diagram

Package
Diagram

13

which to design and develop systems that effectively and affordably integrate human

capabilities and limitations” (U.S. Air Force, 2010). This approach is necessary because

humans who operate, maintain, and support the system are an integral part of the total

system itself (Department of Defense, 2013). HSI is divided into nine domains:

manpower, personnel, training, human factors engineering, environment, safety,

occupational health, survivability, and habitability (U.S. Air Force, 2010).

Human factors engineering is the primary HSI domain with which to focus on

integration (U.S. Air Force, 2010). Human factors engineering, also called ergonomics,

is the study of the interactions between the human and system, and the efficiency of those

interactions (International Ergonomics Association, 2016).

There are various methods of practicing human factors engineering, one of which

is through user-centered design (UCD). UCD is the idea of designing a system with a

focus primarily on the user and involving the user in the design process. By focusing on

the user’s goals, preferences, tools needed, and tasks performed, the goal is that the end-

system will be best suited for what the user needs (Norman & Draper, 1986).

The DoD recognizes the need for consideration of HSI during system

development. DoD Instruction 5000.02 (2015) mandates that HSI be taken into account

for each new acquisition system and continue to be considered throughout the system’s

lifecycle. The goal of incorporating HSI into system development is to increase the

potential for the user to successfully and efficiently conduct the mission while

maximizing system performance (Department of Defense, 2015). However, HSI

implementation has been criticized as neither occurring at a sufficient level of detail, nor

at the correct time (Handley & Knapp, 2014). Within the SE literature, it has been

14

acknowledged that systems engineers do not apply HSI during early design stages of the

system’s lifecycle as they should (Orellana & Madni, 2014; Hardman & Colombi, 2012).

Furthermore, even the DoD’s template for acquisition system planning and development,

called the DoD Architecture Framework (DoDAF), only minimally accounts for humans

in its products. The DoDAF treats humans either as an invisible part of the system, as

generic “performers,” or as elements of larger organizations (Department of Defense,

2009). Thus, the DoDAF has been criticized for not properly accounting for human

impacts on system performance or the human specifications needed to operate and

maintain the system (Handley & Knapp, 2014). This failure to integrate the HSI process

with SE results in a system that has higher lifecycle costs and is less compatible with the

user (Mitchell, Agan, & Samms, 2011). In addition, the system may have imbedded

design flaws that could manifest in disastrous consequences during operation, as

illustrated in previous examples.

 There have been several efforts to better integrate human systems considerations

into the SE process. These efforts strive to solve the problem by focusing on the issue at

varying levels of scope: the process level, the methods level, and the tools level.

Process-Level Integration

 Integration efforts at the process level strive to fundamentally change or augment

the SE and/or HSI process itself. Chua and Feigh (2011) offer various ways in which

human factors may be generally included in early system development. They organize

their ideas according to four system design stages: requirements acquisition, concept

generation, preliminary, and detailed. Admittedly at a high level of detail, Chua and

Feigh provide general suggestions in an effort to encourage communication between

15

systems engineers and human factors engineers, and to promote awareness of human

factors during system design.

 Hardman and Colombi (2012) extend the idea of augmenting the SE process by

highlighting the necessity for quantitative methods of expressing HSI requirements in

order to be properly considered by program management during system development. As

such, Hardman and Colombi outline areas in which to emphasize HSI throughout the

early requirements analysis, function allocation, and design stages of system

development, and further suggest the usage of empirical measures such as safety and

human subjects data to minimize subjectivity.

 Another process-level idea is to standardize the terminology between SE and HSI.

Hardman, Colombi, Jacques, and Miller (2008) clarify the HSI terminology across the

DoD and HSI communities due to inconsistencies between numerous DoD and HSI

publications, such as between the DoDAF, Defense Acquisition Guide, and INCOSE’s

handbook. The idea of standardization may be extended from the DoD to the entire SE

community (Madni, 2009; Orellana & Madni, 2014). Orellana and Madni (2014) argue

that the reason why there is a lack of integration between the SE and HSI processes is

because differences in terminology prevent systems engineers and those untrained in HSI

from communicating with those who are trained. A proposed solution is to build a

common HSI ontology to connect the semantics of the two fields, thus providing a means

to address HSI concerns during system design (Madni, 2009; Orellana & Madni, 2014).

Bruseberg (2008) corroborates Orellana and Madni’s claim, citing several examples of

differences between HSI and SE’s interpretations of terminology. For instance, whereas

16

the term “activity” has a high-level connotation to systems engineers, its scope is more

low-level and detailed to human factors engineers.

Methods-Level Integration

 Efforts at the methods level strive to enhance integration by improving one of the

existing SE design or analysis methods, or by proposing a new method. Crisp, Hoang,

Karangelen, and Britton (2000) do the latter. Continuing the ideas put forth by Hardman

et al. (2008), Orellana and Madni (2014), and Bruseberg (2008), once a common

language between SE and HSI is established, Crisp et al. propose a way to further

establish an effective integration. Due to the need for systems engineers to synchronize

multiple disciplines, a central software interchange could implement this common

language as a data schema in order to translate information between disciplines’ software

tools and allow communication.

Hardman et al. (2008) propose an augmentation to the DoDAF to improve

integration. They examine how each of the nine HSI domains can be addressed in the

existing DoDAF products. Each HSI domain lends itself to a DoDAF capability. For

example, since the manpower and personnel domains deal with the numbers of users and

associated knowledge and skills needed to operate the system, these domains may be

addressed by the DoDAF’s Operational or Services Views. A properly developed use

case can also address manpower in addition to addressing the training domain. Human

factors engineering is a key domain to address in system development since it addresses

system limitations as a result of human involvement. As such, there are many DoDAF

products that may be used to identify problem areas or tradeoff opportunities, such as the

17

Systems Interface Description (SV-1), Systems-Systems Matrix (SV-3), and the Systems

Functionality Description (SV-4).

Piaszczyk (2011) proposes a method of integration similar to Hardman et al.’s

(2008) DoDAF augmentation. However, Piaszczyk uses a MBSE approach instead,

focusing on the DoDAF’s graphical products to represent the human. He describes how

to factor the human into existing DoDAF views in order to derive human-related

requirements and drive system design throughout the acquisition lifecycle. These product

re-scopes encompass the DoDAF’s Operational and System Views. For example, the

Operational Architectural Diagram (OV-2) is used to derive system operator

requirements and the Organizational Relationships Diagram (OV-4) is used to define the

human’s roles with regard to the system. The methods proposed by Hardman et al. (2008)

and Piaszczyk (2011) present ways to include HSI in the DoDAF without developing

new products.

Another integration method is to create a new, human-focused product to augment

existing architecture frameworks. In 2007, representatives from the United States, United

Kingdom, Canada, and the Netherlands convened the North Atlantic Treaty Organization

(NATO) Human View Panel in order to examine the current state of Human View

presence within architecture frameworks around the world, and to propose a standard

Human View that could be adopted by any architecture framework (Handley & Smillie,

2008). The resultant NATO Human View is comprised of eight products:

• HV-A: Concept

• HV-B: Constraints

• HV-C: Tasks

18

• HV-D: Roles

• HV-E: Human Network

• HV-F: Training

• HV-G: Metrics

• HV-H: Human Dynamics

All of these products are designed to address different human aspects that are

important to consider during system design and development. For example, the Concept

(HV-A) offers a high-level look at the human component of the system, while Constraints

(HV-B) focuses on weaknesses or limitations the human brings that affect the system.

HV-B can be further subdivided into subviews such as Manpower Projection Constraints

and Personnel Policy Constraints. Since most of these views are static by nature, Human

Dynamics (HV-H) is designed to address the dynamic aspects from each of the other

views, to include state changes, conditions, time units, and performance measures. The

Human View is intended to force systems architects to consider the human in its own

architecture framework view instead of arbitrarily adding human considerations into

other views. Another goal of adding a Human View directly into an architecture

framework is to enable systems engineers and HSI analysts to collaborate early in system

development, thus contributing more effectively to design (Smillie & Handley, 2009).

Furthermore, Handley and Knapp (2014) detail four stages by which to compile

the Human View products, with each stage focusing on certain sets of models at a time.

Moving to the next stage shifts focus to another model, while still reiterating through

previous models in order to ensure a complete product is formed. Figure 2 shows the

completed Human View development (Handley & Knapp, 2014).

19

Figure 2: Human View Development – adapted from (Handley & Knapp, 2014)

Handley (2011) made an effort to further adapt the NATO Human View

specifically to the DoDAF. The DoDAF 2.0, released in 2009, allows for easier

integration of human-centered information within the framework, mainly due to the

inclusion of the DoDAF 2.0 Meta Model (DM2). Since the DM2 allows the system

architect to create “Fit for Purpose” views to augment the existing architecture

20

framework, Handley claims that the NATO Human View may be mapped to the DM2

more easily than in previous DoDAFs.

Similarly, Bruseberg (2008) proposed a Human View specifically for the British

Ministry of Defence Architecture Framework (MODAF). Listing several of the same

human-related shortcomings in the MODAF as does Handley (2014) for the DoDAF,

Bruseberg (2008) details ways in which her Human View can improve the MODAF’s

representation of the human during system development. She argues that human views

aid in modeling the “soft systems” human side of system development, thus bridging the

communication gap between systems engineers and human factors engineers. The

MODAF Human View is comprised of seven products, HV-A through G. These

products largely parallel the NATO Human View’s eight products. For example, the

MODAF Human View also has products capturing human functions and tasks (HV-E),

roles and competencies (HV-F), and dynamic aspects of human behavior (HV-G).

Though similar to the DoDAF-centered Human View, development of the MODAF

Human View predates Handley’s work and even the NATO Human View.

Sharples (2014) put the NATO Human View into practice to solve a real-world

problem for German-based Airbus Defence and Space. Sharples integrated the Human

View with Airbus’s existing architecture for a remotely-piloted aircraft (RPA) system in

order to identify human-related deficiencies and refine the architecture. By taking the

Human View’s separate products and augmenting the operational and system views from

the existing RPA architecture, Sharples was able to identify system gaps such as the

absence of several roles from the original model.

21

Tools-Level Integration

 The most in-depth, narrowly-scoped way to integrate the HSI and SE processes is

to approach integration at a tools level. Efforts at this level focus on improving the way

in which tools such as SysML can be used to incorporate the human into SE. While some

researchers advocate the use of modeling and simulation in general to consider HSI (Boy

& Narkevicius, 2013), some efforts have specifically used MBSE modeling to

accomplish this task. Bodenhamer (2012) states that to understand the human’s

interaction with the system, the human must first be deconstructed into the functional

components necessary to operate the system. These components include sensory

channels, cognitive processing, psychomotor capabilities, and physical interfaces. The

system itself must also be deconstructed into its components, treating the user as one of

these components. Using a landmine detector system as a case study, Bodenhamer

created a high-level architectural concept of the system to demonstrate this concept. He

modeled the behavioral aspects of the system by creating activity and sequence diagrams.

These diagrams visually highlight the human-system interaction that is necessary for

mission success. By doing so, Bodenhamer claims that the modeler can identify HSI-

related problems that could affect system performance or mission success.

 Ramos, Ferreira, and Barceló (2013) address human integration from the process,

methods, and tools levels. As part of their larger effort to enhance the overall SE process

they amalgamate aspects from a variety of methodologies in order to present a revised,

more agile MBSE methodology. However, their main focus is at the tools level. HSI is

considered as a part of the overall methodology, in which Ramos et al. advocate a

22

systems engineer-focused implementation of HSI via SysML diagrams such as activity

and internal block diagrams.

Orellana and Madni (2014) also address integration from multiple levels of scope.

After proposing their process-level HSI ontology, they narrow to the tools level.

Orellana and Madni’s ontology is influenced by defining the human in terms of SysML

diagrams. The goal of the ontology is to “bridge the gap” between systems engineers and

human factors engineers by allowing systems engineers to define the human using their

own MBSE modeling methods. Orellana and Madni provide a high-level description of

ways in which the human can generally be represented through SysML diagrams. Ahram

and Karwowski (2009) also recommend a common language by incorporating a HSI

framework into systems engineers’ SysML modeling practices.

Research Gap

 There have been several efforts to integrate the HSI and SE processes. These

efforts have addressed the integration problem from various standpoints: the process

level, methods level, and tools level. Numerous processes and methods have been

proposed, but relatively few efforts have tried to integrate by addressing SE at the tools

level. Additionally, most efforts have focused on integration only at the concept or

architecture phase of the system’s lifecycle.

The purpose of this paper is to present a different integration approach at the tools

level to be used during the preliminary or detailed design phases, later in the system’s

lifecycle. Ideally, this approach should be used in combination with the other integration

efforts so the human is considered at each phase. By focusing on integrating HSI

methods like UCD directly with MBSE tools like SysML, the resulting system models

23

allow for human consideration at a lower level of system detail. This system detail is

enabled by focusing on integration later in the system design lifecycle phases when more

information about the system is known, thus allowing for a more thorough consideration

of the human. Therefore, all aspects of the human can be effectively considered during

system design. Figure 3 shows that this paper’s research lies in the preliminary and

detailed design phases of the SE Vee process model. By contrast, other integration

efforts from the literature tend to focus only on the conceptual phase.

Figure 3: Integration Efforts in the Vee Process Model – adapted from (Forsberg,

Mooz, & Cotterman, 2005)

This paper integrates human considerations with system considerations by

creating SysML diagrams to represent the human as an equal component of the system.

These diagrams are sequentially built using various perspectives and the concept of UCD

within human factors engineering. The premise is that by correcting the integration

problem at the SysML level through UCD, the higher-level SE and HSI processes are

thereby integrated as well, thus improving system design.

24

Methodology

 This study demonstrates a method of integrating UCD with SysML using a series

of steps. First, a task analysis is performed on an example system as a case study. Next,

both system- and human-centered diagrams are created to represent different viewpoints

of the system. These diagrams are compared and analyzed with each other, and then new

diagrams are created which incorporate both system and human considerations together

into one integrated set of diagrams.

Perform Task Analysis

 First, a task analysis is performed on the system to identify the relevant processes

and activities, permitting them to be accurately represented in subsequent models. With

UCD in mind, the task analysis may also include tasks required of the operator to perform

the mission that are either within or outside the boundary of the system under design.

This study uses a synthetic task environment called Vigilant Spirit as the system

case scenario with which to demonstrate integration. Vigilant Spirit is used by the 711th

Human Performance Wing (HPW) at Wright-Patterson Air Force Base, Ohio to conduct

human-in-the-loop experiments studying the effects of certain tasks on participants’

performance, workload, and physiology (Hoepf, Middendorf, Epling, & Galster, 2015).

Vigilant Spirit was designed to simulate RPA missions with a single operator controlling

the RPA(s). This synthetic task environment is a suitable case study because the overall

system requires a combination of both human and system activities. Vigilant Spirit is

also a relatively simple system, allowing the study to remain narrow in scope in order to

focus on the methodology involved instead of the intricate details of a complex system.

This scope allows for results to be more easily generalized to other systems.

25

Using Vigilant Spirit, the pilot performs a surveillance mission attempting to

locate and follow a high value target (HVT) walking through an urban marketplace. The

HVT is identified by a rifle he is carrying, but there are also distractors walking

throughout the market who are either unarmed or carrying pistols or shovels. Participants

are seated in front of two monitors that display the simulated RPA camera feed and a

communications window. They use a computer mouse to click within the camera feed

window to move the camera and re-center the RPA’s loiter circle, and scroll the mouse

wheel to zoom the camera in and out. Subjects use a keyboard to indicate to the system

when they locate the HVT. Beside the primary task of surveilling the HVT, there is also

a secondary communication task. Throughout the mission the operator is asked a series

of route navigation, math-based questions through a headset. To answer the questions,

the operator uses the keyboard to open a communication line to orally respond via

headset. Figure 4 shows the 711th HPW’s experimental setup for the Vigilant Spirit

environment.

26

Figure 4: Vigilant Spirit Experiment Setup

 This study’s task analysis of Vigilant Spirit is accomplished through physical

observation of the simulation itself during an experimental dry-run, as well as through

analysis of the human subjects’ data collected by the 711th HPW. The behavioral dataset

from the 711th HPW’s experiment is used to analyze the activities the subjects

accomplished, the order activities were performed, and tasks in which the subjects

succeeded or failed. The analysis is used to build task networks as a way of visually

representing system and human tasks.

Build System-Centered Diagrams

 In order to build the SysML diagrams of the system, the necessary information

must first be identified and collected. The requisite information is dictated to some

extent by the focus of the modeler, whether looking at structural/physical data or

behavioral aspects of the system. Regardless of focus, at a minimum the information

collected will include identification of relevant subsystems, how they communicate with

27

each other and with external entities, and what information is passed back and forth

therein. The task analysis’ identification of the system’s internal tasks and processes is

particularly useful for building activity or sequence diagrams. This is because the focus

of such diagrams is to represent the activities involved in performing a certain mission,

with varying levels of detail. Within this study’s human context, the most relevant

diagrams will be behavioral and activity-based.

Build Human-Centered Diagrams

 Building the human-centered diagrams is accomplished similarly to the system-

centered diagrams. Whereas the system-centered diagrams represent the system

primarily from the systems engineer’s point of view, the human-centered diagrams

instead represent that same system from the unique perspective of the human factors

engineer. Building these human-centered diagrams can be accomplished by using UCD

concepts. By interacting directly with the end-user, modelers can see how the system is

experienced from the user’s perspective and define human considerations more easily. In

this manner, aspects of the user and its interaction with the system may be uncovered that

would otherwise go unaccounted. This approach is similar to a human factors engineer’s

approach to defining the system. A key factor upon which to focus when generating these

diagrams is how the user communicates with the system. What interfaces are used to

communicate with the system, and which of the user’s senses are utilized to interact with

those interfaces? Cognitive processes should also be analyzed with respect to these

interactions, including: the choices or decisions the user makes, how the interface design

affects the user’s workflow, and the user’s desired workflow. The focus is now

specifically on the user as part of the system. As part of the UCD approach, the process

28

of understanding and modeling the system may involve some iterations of user

interaction in order to get the diagrams to a sufficient point to move forward.

This study will build the human-centered diagrams by also using SysML. SysML

is the standard modeling framework in SE, thus we are intentionally modeling the human

using this existing framework in order to encourage wider adoption and communication

with the SE community, and to facilitate rapid integration. If SysML is able to meet

systems engineers’ needs and sufficiently represent HSI considerations, then it would

greatly facilitate integration between the two disciplines. Because the human aspect of

the system is more behavioral in nature, SysML activity and sequence diagrams play an

important role in the human’s representation.

Compare and Analyze the Differences

 The generated system- and human-centered diagrams are qualitatively compared

to identify and analyze the differences between them. The relevant diagrams that are

generated from both the system’s and human’s focus, in this case activity and sequence

diagrams, tend to have similarities in overall mission-related activities and tasks

performed. These similarities found in both sets of diagrams may be used as common

anchor-points with which to compare the system’s handling of tasks versus that of the

human. For example, a single task may include both human and system involvement,

therefore the task will appear on each of the separate diagrams. This common task would

then serve as an anchor-point, connecting the separate human and system inputs that feed

into that task. This visual comparison of the system- and human-centered diagrams aids

in determining perspective-related differences.

29

Create an Integrated Set of Diagrams

 The differences noted by comparing the separate system- and human-centered

diagrams can be used to create new diagrams which integrate both the system and human

perspectives. Specific areas highlighted by one set of diagrams can be used to augment

the other diagrams that do not focus on the same areas. The result is a single set of

diagrams that accounts for both the system and human by combining the system- and

human-centered diagrams’ strengths while minimizing their individual weaknesses. Re-

iteration using the same UCD concepts as in the human-centered diagrams may also be

helpful with these integrated diagrams in order to ensure relevant human considerations

have been maintained.

Results and Analysis

 The process of a subject participating in the Vigilant Spirit simulation was

analyzed to identify the various tasks performed by the system and operator throughout

the procedure. The results of the task analysis revealed essentially three separate

processes occurring during the simulation: two system processes and one human process.

The system has an independent set of activities it performs for the surveillance and

communication tasks, each of which precipitate response activities from the human

operator. For example, the system spawns a HVT at the beginning of each of four

iterations, for which the operator must search, indicate if found, and then zoom in and

follow. The system also asks four iterations of communications questions, prompting

calculations and answers from the operator. A SysML activity diagram was selected to

represent these tasks, shown in Figure 5. Activity diagrams are conducive to representing

30

task analyses during early system design because they are able to visually depict mission

activities at a high level, allowing modelers to consider the actors, decisions, and task

flows involved.

Figure 5: Activity Diagram of Vigilant Spirit Tasks

31

 The activity diagram in Figure 5 also offered our first look at representing the

system through SysML diagrams. Its broad depiction of the system’s activities and

interactions served as a basis with which to expand upon and incorporate more details in

new diagrams. Sequence diagrams were used for this purpose, as they are better suited

for illustration of subsystem activities and inter-system communication.

 When creating the sequence diagrams, it became clear that the Vigilant Spirit

system is actually composed of two separate subsystems: surveillance and

communication. The surveillance and communication tasks occur independently of each

other from a system standpoint, and would likely use different hardware in a real-world

implementation. Therefore, we divided each of the surveillance and communication

subsystems into their individual components with separate sequence diagrams instead of

representing them as one system. Doing so allows for a functional allocation of who or

what will be handling these different system aspects. The system-focused sequence

diagrams of the surveillance and communication tasks are shown in Figure 6 and Figure

7, respectively.

32

Figure 6: Sequence Diagram of System-Centered Surveillance Task

33

Figure 7: Sequence Diagram of System-Centered Communication Task

 In the surveillance diagram in Figure 6, the system is divided into five abstract

subcomponents: the user interface (UI), controller, target, distractors, and score. The use

of a UI and controller are common when depicting software-based systems. It is

important to note that even though these are system-centered diagrams, the human is still

represented to a degree. The operator, represented by a single lifeline on the leftmost

side of the diagram, interacts solely with the UI. The controller manages the system’s

activities and timing, creates and manipulates objects such as the HVT and distractors,

and delegates tasks such as continuously updating the score until the mission has ended.

34

The sequence diagram generally depicts the same task flow as the activity diagram, but

with more details of what is specifically involved with each task. For example, searching

for the HVT consists of the operator continuously sending commands to the controller via

the UI to move the RPA camera and adjust the zoom level until the operator finds the

HVT. By contrast, the activity diagram in Figure 5 represents searching for the HVT

simply by a single action node. The communication diagram in Figure 7 is similarly-

focused, with the system divided into four subcomponents: the UI, controller, question

bank, and score.

 Because the sequence diagrams were built from a systems engineer’s point of

view, less emphasis is placed on the user. To rebuild the diagrams from a human factors

engineer’s perspective instead, we analyzed in more detail the ways in which the user

specifically interacts with the system. In the same manner that the system was split into

subcomponents, the user can likewise be represented not just as a single entity, but

composed of several “subsystems” or resources, where each performs specific tasks. For

example, listening tasks such as hearing the communication question can only be

performed by the human’s auditory system. Likewise, response tasks such as indicating

the HVT as found or answering the question are performed by the human’s motor

systems. Though Vigilant Spirit is an existing system, if the system had not yet been

designed, the human factors engineer would have options for the implementation of

certain tasks. For example, responding to the communication question could occur orally

through headset or manually through keyboard. These options could have implications

not only for system design but for overall system performance.

35

As these diagrams are purely human-centered, less emphasis is placed on inter-

system events and instead the system is abstracted to just focus on its interaction with the

user. The re-designed, human-centered sequence diagrams are shown in Figure 8 and

Figure 9, in which the human is divided into its visual, auditory, cognitive, and

psychomotor components (highlighted in blue) and the system’s UI is further divided into

three subcomponents with which the user interacts: the computer keyboard, mouse, and

monitor (highlighted in green).

Figure 8: Sequence Diagram of Human-Centered Surveillance Task

36

Figure 9: Sequence Diagram of Human-Centered Communication Task

 Having sets of diagrams from both the system’s and human’s perspectives, we

qualitatively compared the diagrams to find similarities and differences. The system-

centered sequence diagrams contained detailed depictions of Vigilant Spirit’s subsystems

and its inter-system communication while treating the user as a “black box.” Conversely,

the human-centered sequence diagrams focused upon the human’s subcomponents and

the ways in which they interact with the system while treating the system as a “black

box.” However, each set of diagrams’ narrow focus is also its unique strength, providing

system and human insights into Vigilant Spirit that demonstrate the benefit of creating an

integrated set. Because the medium with which the user and system communicate to

each other is the UI, this served as the bridge to connect the two diagram sets. The

37

integrated diagrams are shown in Figure 10 and Figure 11 with the UI’s subcomponents

highlighted in green.

Figure 10: Sequence Diagram of Integrated Surveillance Task

38

Figure 11: Sequence Diagram of Integrated Communication Task

 Because the UI is the anchor-point between the system and user, incorporating the

UI’s subcomponents into the integrated diagrams provides the systems engineer insight

into human-system interaction without also needing to include the human’s resources.

Thus, the diagrams allow for the necessary amount of detail for a systems engineer’s area

of interest in a modeling language with which the systems engineer is familiar. It is

39

mainly important that the human is considered and included in the system diagrams; its

resources are implied by the UI breakout and sufficiently represented therein.

The benefit of creating these integrated diagrams is the ability to gain additional

insight into the human processes and interfaces involved while the user is interacting with

Vigilant Spirit. For instance, by specifically depicting the types of interfaces with which

the user interacts and when the user must use them, the potential for imbalance of

resource allocation may be more easily identified. An example of an imbalance would be

if the user were required to answer the question by typing the answer while still needing

to search for and indicate the HVT, thus requiring the use of the same keyboard/mouse

interface for concurrent tasks. This benefit comes without needing to sacrifice detailed

models of Vigilant Spirit and its subsystems.

Discussion and Conclusions

 As with the specific Vigilant Spirit scenario, creating a set of SysML diagrams

integrated with UCD concepts provides advantages for systems in other contexts as well.

Systems engineers understand the benefit of dividing the system into its subcomponents,

thus allowing the system designer to look at system aspects in detail and the interaction

thereof. Dividing the human into its “subcomponents” provides the same benefit. A

result of this representation is the realization that if the human’s subsystems are tasked to

do multiple tasks simultaneously, conflicts may occur. The human-centered diagrams

represented the human’s visual, auditory, cognitive, and psychomotor subcomponents as

resources of attention. If one of those resources is allocated to a specific function, it may

not be available for another function. The integrated diagrams capture this concept by

40

depicting how the human interacts with the system interfaces, thus allowing the systems

engineer to determine the human’s attention capabilities. For example, if two tasks are

designed to use a keyboard and monitor, the user may have to disengage from one task in

order to perform the other. Whereas, if one task were an auditory/oral task and the other

a visual/manual task, then the user could potentially multitask and perform both

simultaneously. By revising system diagrams to include the human, systems engineers

can gain insight into the possibility for the human to perform all or some of its allocated

tasks, and the potential for conflicts. Accounting for resource allocation helps mitigate

creating unrealistic expectations of the human’s naturally limited resources of attention.

This consideration would not necessarily be otherwise accounted for by normal SE

practices.

 Future work in this area of study will focus on further bolstering SE-HSI process

integration using human performance modeling. A discrete event simulation software

tool called the Improved Performance Research Integration Tool (IMPRINT) will be used

to fully capture the dynamic aspects of the human’s performance. By utilizing

IMPRINT, we will be able to analyze the interaction between the system and human

across a range of dynamic activities occurring in the Vigilant Spirit environment.

Additionally, this proposed integration method need not be limited to the specific MBSE

and HSI tools this research used. There may be other modeling tools besides SysML

which would yield the same benefits from integrating human considerations. Likewise,

though this paper focused on the human factors engineering domain to integrate, a future

goal is to expand integration efforts across the rest of the nine HSI domains.

41

To better integrate human considerations into system designs, it is necessary for

systems engineers to first acknowledge and consider the human as an important part of

the system. However, mere acknowledgment is not enough if the human is not integrated

sufficiently into the SE process. Similarly, human factors engineers need to be a part of

the SE process in order to ensure sufficient human integration. Integration needs to be

sufficiently scoped and at a level of detail that is able to capture the important aspects of

the human as well as implications for human-based system performance effects. At the

tools level, MBSE’s SysML is a vehicle by which this may be accomplished, and this

study’s proposed approach provides an avenue to achieve that goal. Localizing UCD

early in the process allows for a reduction in total system cost while still achieving

effective user interfaces. By performing a system task analysis, creating and analyzing

system- and human-centered diagrams, then creating an integrated set of diagrams to

inform system design, both systems and human factors engineers will be able to

effectively account for the human as a crucial component of system development.

Chapter Summary

 This chapter addressed the first two investigative questions of the research. The

following is a discussion each question:

1. What information should be captured in human-centric and system-centric

models to enable effective integration?

 To answer this question, the type of information needed depends upon the

purpose of the integration effort. Since the purpose of this article was to integrate

human- and system-centric models through interface design, the behavioral interactions

42

between the system and human were analyzed. This purpose also drove the use of

behavioral SysML diagrams. Activity and sequence diagrams were specifically chosen

with which to perform integration. Activity diagrams offer a high-level look at the

actions the system and human must perform during the mission, in terms of inputs and

outputs through a flow of activities. Sequence diagrams look at these activities in more

detail, with a focus on processes internal to the system and human in terms of messages

sent between subcomponents. Because of the behavioral nature of these diagrams,

relevant information about the human could be more easily identified, such as the

human’s actions and resources. Note that the other behavioral SysML diagrams, state

machine and use case, might also be successfully used as well.

With the types of SysML diagrams chosen, the question’s focus shifts to building

these diagrams. SysML diagrams are traditionally understood as being system-centered.

However, this article used a unique approach where SysML was used to build both

system- and human-centric models. In this manner, we stayed within the SE toolset of

SysML and folded the human perspective inside of it. For the system-centric models, it

is necessary to identify what systems and subsystems there are, how the systems

communicate with each other, and what information is exchanged. For the human-centric

models, it is necessary to identify how the human communicates with the system, which

of the human’s resources are used to communicate, and with what interfaces that

communication occurs. The method of building both types of models is similar, but with

a shift in perspective. The activity diagram in the article allowed an initial look at

Vigilant Spirit and served as a stepping stone to building the sequence diagrams, which

were then used as the diagrams with which to integrate the two perspectives.

43

2. What considerations and decisions must be made when integrating between

human-centric and system-centric models?

 The previous investigative question addressed what types of SysML diagrams to

integrate and what information is needed to build system- and human-centered SysML

diagrams. This question addresses what is involved during the actual integration of the

two types of models. As the purpose of the final model is to offer systems engineers an

integrated human- and system-centered view of Vigilant Spirit, it is important to consider

what information is necessary to include in these integrated diagrams. However, it is

important to not merely try and include all the information from both models, as doing so

would result in an overabundance of information and unnecessarily cumbersome models.

Some of this information may be superfluous and irrelevant to the systems engineer, thus

degrading the quality of the final integrated model. Therefore, a balance between the two

types of models must be achieved and a decision must be made on what information to

include and not include in the integrated model. When performing a combined modeling

methodology of staying within a particular toolset, such as this article’s use of SysML, it

is important to include only the information relevant to that particular toolset. To aid in

making that determination, this article suggested the use of similarities as anchor-points

between models. These anchor-points can be used to direct the focus of the integrated

model.

44

III. Performing System Tradeoff Analyses Using Human Performance Modeling

Chapter Overview

This chapter continues the concepts presented in the previous chapter by

revisiting the first two investigative questions, in addition to addressing the final two

investigative questions. Specifically, the new investigative questions addressed are what

information can currently be passed between IMPRINT and SysML models, and what

information do SysML models actually need to inform tradeoff analyses. The chapter

discusses a dynamic method of integration, in which human factors engineers can use

IMPRINT’s human performance modeling functionality in order to perform tradeoff

analyses that inform system design. This methodology maintains the SE and HSI

disciplines’ individual toolsets while enabling cross-communication. The work presented

in this chapter is an adaptation of a journal article in submission.

Abstract

 The human is a critical aspect of the system, but there is generally a failure to

properly account for human capabilities and involvement during system design. This

research presents an approach for human factors engineers to integrate the human into

system models using human performance modeling. Starting with a set of system-

centered Systems Modeling Language (SysML) diagrams, a task analysis is performed to

understand the user’s tasks and to create a baseline model in the Improved Performance

Research Integration Tool (IMPRINT). An alternative IMPRINT model is created with

varying design parameters and utilized to perform a tradeoff analysis between system

trades. Through the tradeoff analysis, constraints and assumptions placed on the human

45

are verified and the results applied to create a human-system integrated set of SysML

models. These new system models account for the human, allowing systems engineers to

make more informed system design decisions.

Introduction

 The human is a crucial aspect of nearly every system, making it vital to consider

during system development. Designers can effectively account for the human during

systems engineering (SE) by practicing Human Systems Integration (HSI) (U.S. Air

Force, 2010). However, research indicates that HSI is not often applied during the SE

process, especially early, resulting in the human being inadequately considered (Orellana

& Madni, 2014). Failure to properly account for the human during early system design

decisions, when tradeoffs are being made, may lead to unreasonable expectations of

overall system performance. The human’s performance also needs to be captured to truly

understand the ramifications of design decisions.

Not understanding the interaction between the human and system can lead to

significant system failures. For example, investigations involving the Global Hawk

unmanned aerial vehicle and Patriot air and missile defense (AMD) systems have

attributed some serious issues to improper system design. In both cases, during the

implementation of automation, system designers undervalued the human’s role. This led

to Global Hawk and Patriot operators over-relying on their system’s automation and

losing situation awareness. The final result was mission degradation and, in the case of

the Patriot AMD system, two fratricide incidents when the system misclassified friendly

forces as threats (Hopcroft, Burchat, & Vince, 2006; Hawley, 2011).

46

 The previous examples highlight the importance of accounting for the human’s

capabilities and role in system design. Failure to do so may result in a system design that

makes unrealistic assumptions about the human, leading to an overestimation of the

human’s capabilities and thus the system’s capabilities. To fully understand the system’s

performance, the HSI process must be better integrated into the SE process. This paper

proposes a method of integration that allows human factors engineers to use human

performance simulation to verify and update system models. Using these updated

models, systems engineers can make design decisions that also account for the human.

Background

Human Systems Integration

HSI is a process that allows for effective consideration of the human during

system design. The U.S. Air Force divides HSI into nine domains, and considers human

factors engineering as the primary domain with which to focus integration (2010). One

of the methods of practicing human factors engineering is through human performance

modeling, where the human is modeled mainly via simulation (Allender, 2000). One

such modeling tool is called the Improved Performance Research Integration Tool

(IMPRINT). Developed by the Army Research Laboratory to support HSI efforts,

IMPRINT is used to analyze the interaction between the system and humans. IMPRINT

allows the analyst to first represent a mission in terms of a series of functions and tasks

performed by both the system and human, then run a discrete event simulation (DES) of

the system and human accomplishing the mission. In this manner, the analyst can

47

observe effects on performance and cognitive workload (Mitchell, Agan, & Samms,

2011). For a more detailed review of the definitions relating to HSI, see Appendix A.

Systems Engineering

The data gained from HSI analyses, such as those using IMPRINT, can be used to

inform the SE process. SE offers a unique approach to system development by

integrating all the components and disciplines of the system throughout its lifecycle

(International Council on Systems Engineering, 2015). Model-based systems

engineering (MBSE) is a method of practicing SE, where the system is represented

through descriptive models and analytical simulation (Friedenthal, Moore, & Steiner,

2014). The Systems Modeling Language (SysML) provides a means of visualizing

MBSE models through diagrams (Delligatti, 2014). For a more detailed review of the

definitions relating to SE, see Appendix A.

Although it is important to consider HSI during the early stages of the system’s

lifecycle, this is not often accomplished. This lack of integration contributes to higher

lifecycle costs and decreased compatibility (Orellana & Madni, 2014; Hardman &

Colombi, 2012; Mitchell, Agan, & Samms, 2011), as well as more serious consequences,

as previously illustrated.

 This paper explores integration of the HSI process with SE by creating system

models with MBSE and conducting a theoretical trade study using IMPRINT. To make

this trade study representative of those conducted in the real world, the sections below

review the types of tradeoffs considered using MBSE and IMPRINT and the methods

with which such trade studies are performed.

48

MBSE Tradeoffs and Methods

 Systems engineers, now using MBSE practices, perform tradeoff analyses

involving several factors such as cost, mission effectiveness, size (weight and volume),

performance, and the “-ilities.” Cost is a common factor among system tradeoffs (Crane

& Brownlow, 2015; Do, Cook, & Lay, 2014; Russell, 2012). It is often traded between

factors influencing mission effectiveness such as supportability (Russell, 2012) and

performance (Crane & Brownlow, 2015). System designers commonly have to make

decisions regarding increasing the performance of a system at the expense of also

increasing system cost. A balance must be reached between the level of performance

desired by the system stakeholders and an acceptable total cost.

 Mission effectiveness is a broad factor that includes system tradeoffs such as

mobility, survivability, supportability, and performance (Cloutier, Sauser, Bone, &

Taylor, 2015; Crane & Brownlow, 2015; Kaslow, Soremekun, Kim, & Spangelo, 2014;

Russell, 2012). These individual factors may be traded between themselves or other

tradeoff factors such as equipment weight and volume (Cloutier, Sauser, Bone, & Taylor,

2015; Crane & Brownlow, 2015; Kaslow, Soremekun, Kim, & Spangelo, 2014). For

example, decreasing a system’s weight and volume may increase mobility, which affects

the system’s survivability and overall mission effectiveness (Cloutier, Sauser, Bone, &

Taylor, 2015). However, increasing the system’s volume may allow for more armor or

ammunition, thus increasing the system’s lethality and again affecting survivability.

Equipment weight and volume may also be traded with cost, such as within the context of

a satellite constellation when considering orbital altitude and constellation size (Crane &

Brownlow, 2015). At a higher altitude, fewer satellites are needed to cover an area, but at

49

the cost of needing better-quality sensors. Conversely, spacecraft are cheaper at lower

altitudes due to size and weight reductions, but more are needed to cover the same area.

 When faced with similar alternatives, adding other tradeoff factors may aid in

deciding on a solution. For instance, in satellite constellation design, other factors that

could be considered are disaggregation, resiliency, and lower costs (Thompson, Colombi,

Black, & Ayres, 2015).

 MBSE tradeoff analyses are performed using both qualitative and quantitative

methods. The primary qualitative method used to perform these analyses involves

visualization of the system via SysML diagrams (Cloutier, Sauser, Bone, & Taylor, 2015;

Russell, 2012). These SysML diagrams are used to analyze tradeoffs and enable system

design decisions. Activity diagrams and use case diagrams provide the MBSE

practitioner a way to graphically highlight dependencies between components within the

system.

 Quantitative methods mainly involve the use of simulations (Crane & Brownlow,

2015; Kaslow, Soremekun, Kim, & Spangelo, 2014). In these methods, MBSE

parametric diagrams are commonly created to establish relationships between the

system’s requirements and design constraints, which then feed into simulation models.

Based on the parameter inputs, the modeler can see the outputs’ impact on mission

performance and determine if requirements are being met. Aside from simulations,

quantitative analyses may also be uniquely developed to suit the system (Do, Cook, &

Lay, 2014). For example, Do et al. (2014) self-developed a tradeoff analysis method by

first assigning a series of weight and value functions to the system tradeoffs, then

evaluating those functions to quantitatively determine a system design solution.

50

IMPRINT Tradeoffs and Methods

 One tool human factors engineers use is IMPRINT. Using this tool, human

factors engineers perform tradeoff analyses involving several factors, which include

manning, performance, workload, equipment design, and task allocation. These factors

are different than those relating to MBSE because they focus specifically on the human

instead of the broader system. However, they still indirectly relate to and affect some

MBSE factors, such as usability and system performance. Manning is a key factor in

many human-related system tradeoff studies (Allender, 2000; Mitchell D. K., Samms,

Henthorn, & Wojciechowski, 2003; Mitchell, Samms, & Wojcik, 2006; Mitchell D. K.,

2008). Even the U.S. Navy-developed predecessor to IMPRINT, called HARDMAN

(Hardware vs. Manpower), was created with the intention of analyzing tradeoffs between

hardware and manpower (Dickason, Sargent, & Bagnall, 2009).

Many studies examine the impact of a reduction in manning on the other tradeoff

factors mentioned (Allender, 2000; Mitchell D. K., Samms, Henthorn, & Wojciechowski,

2003; Mitchell, Samms, & Wojcik, 2006). For example, Allender (2000) describes a

trade study in which the manning on a U.S. Navy destroyer bridge was reduced with the

expectation of maintaining the same operational performance. Various IMPRINT models

were built to measure the variation in the crew’s workload and determine the feasibility

of this plan. Results showed that the reduction in manning caused an unsustainable

workload for the reduced crew. In addition to workload, the influence of manning

reductions is also studied on equipment design (Allender, 2000) and performance, where

performance may be defined in terms of mission performance (e.g. time taken to

51

complete the mission) or in terms of human performance (e.g. the number of errors

committed) (Allender, 2000; Mitchell, Samms, & Wojcik, 2006).

 System automation is sometimes used to offset tradeoff factors such as manning

(Mitchell D. K., 2003; Mitchell D. K., Samms, Henthorn, & Wojciechowski, 2003;

Allender, 2000) and task allocation (Colombi, et al., 2011; Mitchell & McDowell, 2008;

Wickens, Bagnall, Gosakan, & Walters, 2012). In the Navy bridge crew trade study, a

proposed solution to offset the manning reduction was to supplement the bridge crew

with automation (Allender, 2000). A similar solution was proposed in a trade study

performed on task allocation for remotely-piloted aircraft (RPA) operators, in which task

automation was suggested as a way to offload some of the operator’s tasks and balance

workload (Wickens, Bagnall, Gosakan, & Walters, 2012). However, Colombi et al.

(2011) recommend the strategic implementation of automation, warning that simply

automating the “easiest” functions could actually have a negative effect on workload.

 Workload is a focus of many human-related trade studies performed using

IMPRINT. The assessment of workload is usually placed in the larger context of

evaluating other tradeoff factors like manning requirements or operator performance.

Aside from manning, a modeler may wish to determine which crewmember could assume

additional tasks with the least amount of added workload while maintaining performance

(Mitchell & Chen, 2006; Mitchell & McDowell, 2008), or to determine the task

allocation for the entire crew (Mitchell D. K., 2003). The type of study in which

IMPRINT is used to evaluate the effect on workload from changing another factor, is

common throughout the U.S. Army (Allender, 2000; Mitchell, Samms, & Wojcik, 2006;

Mitchell & Chen, 2006; Mitchell & McDowell, 2008; Mitchell D. K., 2008; Cassenti,

52

Kelley, Colle, & McGregor, 2011), Navy (Allender, 2000), Air Force (Colombi, et al.,

2011; Wickens, Bagnall, Gosakan, & Walters, 2012), and academia (Harriott, Zhang, &

Adams, 2013; Rusnock & Geiger, 2014).

 Equipment or system designs may drive performance analyses, where

performance is measured through IMPRINT workload modeling. For instance, Rusnock

and Geiger (2014) performed a trade study which analyzed the effect on performance due

to varying workload levels for each of four different system designs. While most

workload studies deal with the human’s cognitive workload, Harriott, Zhang, and Adams

(2013) uniquely studied the effect on physical workload from a human-robot partnership

system design.

 These tradeoff factors may vary and even interchange as independent, dependent,

and controlled variables, depending on the particular trade study’s objectives. For

instance, while equipment design was previously described as being dependent on

manning, it could, conversely, influence manning. The number of crewmembers may

need to be reduced to accommodate a smaller vehicle (Mitchell D. K., 2008), or the

manning required to operate a system may need to be re-assessed due to an equipment re-

design (Allender, 2000).

 Tradeoff analyses using IMPRINT are performed using similar methods as in

Allender’s (2000) trade study of the Navy destroyer. A series of baseline and alternative

models may be built in IMPRINT either as a feasibility study or to determine the tradeoff

effect of one factor on another. IMPRINT trade studies may be implemented by

simulating human workload or performance, where performance could be measured by

factors such as task time, accuracy, or completion rates.

53

Integration Efforts via IMPRINT Modeling

There have been efforts to integrate the human into system design using

IMPRINT, with all approaching integration in various ways. Mitchell, Agan, and Samms

(2011) expanded upon IMPRINT’s pre-conceived utility by modeling the system in

addition to the human. They emphasize that deconstructing the system and human are

essential to system development, but these processes should not be conducted

independently of each other. If so, each side misses key variables that could have been

otherwise accounted. Mitchell et al. (2011) used IMPRINT to model both the system

capabilities and the human functions of a conceptual system in order to identify areas in

which both sides can be accounted to improve success.

Smillie and Handley (2009) used IMPRINT to augment a human-focused

architectural framework view called the Human View. While the Human View’s purpose

is to provide system developers a means to focus on the human, Smillie and Handley

sought to use the dynamic nature of IMPRINT’s DES capabilities to expand upon the

Human View. First utilizing the Human View to define a model of a system in a sample

case study, they then translated various components of the Human View into IMPRINT.

For example, the Human View’s Roles, Tasks, and Constraints subviews translated into

IMPRINT inputs such as operators, assignments, and moderators. Finally, the IMPRINT

model’s outputs were analyzed to evaluate the system’s impact on the human’s

performance and workload.

Both Mitchell (2005) and Colombi et al. (2011) used established system models

to inform IMPRINT in order to perform system analyses. Colombi et al. used SysML

diagrams representing the system’s operational concept as a basis for defining the

54

human’s tasks, which in turn fed the creation of a workload model. By analyzing the

human’s envisioned tasks and resultant workload, IMPRINT is able to act as a method of

assessing system feasibility early in development.

Although Mitchell (2005) used SysML’s predecessor, the Unified Modeling

Language (UML), to build the diagrams in her study, the concept is similar to Colombi et

al.’s (2011). Mitchell states that while the UML and IMPRINT are effective for

developing system and human requirements, respectively, they are not affected by the

other’s constraints as they should. For example, an activity diagram alone cannot

properly depict human performance impacts on the system. Mitchell used a pilot study to

develop an approach to link the two modeling methods. An activity diagram depicting

the system was used to populate an IMPRINT model representing the human-system

interaction, which was then run and the resulting workload outputs analyzed. Through

this manual translation from UML to IMPRINT, the analyst is able to see the feasibility

of the constraints placed on the human. However, Mitchell admits that a limitation to the

study is the absence of a translation from the IMPRINT analysis back to UML, which

would help ensure that the human is properly represented by the system.

Research Gap

 There have been relatively few efforts to integrate the HSI process with SE using

human performance tools like IMPRINT. These efforts largely utilize IMPRINT to

assess human performance and workload with regard to the system, but lack an

integration plan to inform system-level models following human-performance analysis.

Further, SysML has been integrated with a variety of software tools (Rashid, Anwar, &

Khan, 2015), but there is a noticeable lack of integration with HSI tools. SysML

55

diagrams are indeed useful for informing IMPRINT models on which tasks, activities,

and interactions need to be captured in a human-performance simulation. However,

following IMPRINT analysis, results should feed back into SysML to allow the system

model to capture a system-human integrated perspective. Any constraints on human-

performance identified through the HSI tools may be used to update the system’s

requirements and constraints. This consideration enables effective attention to all aspects

of the human in system design.

The purpose of this paper is to present an approach for human factors engineers to

integrate human considerations into system design. Starting with a set of system-

centered SysML diagrams, a DES model is built in IMPRINT in order to verify and

update the system diagrams’ constraints and assumptions placed on the human. The

results are then used to inform the SysML diagrams. These new system models account

for the human and may be used by systems engineers to enhance system trade studies,

allowing for more informed design decisions.

Methodology

 This study’s methodology is similar to common human-centered design processes

(Rogers, Sharp, & Preece, 2011), but adapted to include system elements and modeling.

Using an example system as a case study, SysML diagrams are generated to serve as a

pre-existing, system-centered basis. A task analysis is performed to understand the user’s

tasks, then a baseline model is created in IMPRINT and validated. An alternative model

is next created with varying design parameters and used to perform a sample trade study

56

between several system tradeoffs, the results of which are evaluated and applied to update

the system diagrams.

Obtain or Create System Diagrams

 For this study, SysML diagrams of the system are created to serve as a pre-

existing basis with which to later integrate results. Realistically, these diagrams would

either be obtained from the systems engineer or created from a systems engineer’s

perspective. As such, the emphasis in these diagrams is centered on the system. The

focus of these diagrams could include the structural layout of the system, performance-

related requirements, and performance- or specification-related constraints on the system.

As in the previous chapter, this study’s integration method is demonstrated using Vigilant

Spirit as the example system. For an extended review of Vigilant Spirit and the 711th

Human Performance Wing’s (HPW) experiment, see Chapter II.

Perform Task Analysis

A functional decomposition/task analysis is performed on the system to identify

the relevant task flows and interactions between the system and human. This task

analysis is accomplished through observation of Vigilant Spirit and analysis of the 711th

HPW’s human subjects’ data, where relevant activities and tasks performed by both the

system and participants are identified and represented by task networks.

Of note for this study is that participating subjects are given scores for how well

they perform the Vigilant Spirit surveillance and communication tasks. The score for the

surveillance task is based on how long they can follow an identified high value target

(HVT), while subjects are scored for the communication task based on how quickly they

correctly answer the questions. The surveillance and communication scores together

57

comprise a total performance score. A sample screenshot of the Vigilant Spirit camera

feed displaying the HVT and marketplace is shown in Figure 12.

Figure 12: Screenshot of Vigilant Spirit Camera Feed

Create Baseline Model

 The results of the task analysis are used to build a baseline model of the system in

IMPRINT. Through the process of the task analysis, a conceptual model of the system is

developed that translates into the IMPRINT task network. This task network captures the

human and system tasks involved in performing a mission, the tasks’ path flow, and the

timing, accuracy, and associated workload of each task. Once the baseline model is built,

it is verified against the conceptual model to ensure it performs as intended and its

outputs make sense. Ways in which the model is verified include analyzing the task

durations, the number of task repetitions, the model’s overall clock timing, the values of

variables, and trends in workload levels. Additionally, the model is peer- and subject-

matter expert- (SME) reviewed to verify task sequencing, model assumptions, and task

workload value assignments. After the baseline is verified, it is validated against Vigilant

58

Spirit’s real-world data. The model’s performance output data is statistically compared

with real-world data. However, the model’s workload output data cannot be directly

compared with the real-world data, so validation occurs through SME review. Once the

baseline IMPRINT model is validated, it can reliably be used to simulate the system in

order to perform the tradeoff study.

Perform Trade Study

 To perform the trade study, relevant system tradeoffs are identified. For the

Vigilant Spirit tradeoff scenario, six different scan algorithms are selected as trades.

These trades are driven by conflicting parameters such that one tradeoff is not clearly

better than another. The six algorithms vary on independent variables of scan accuracy

and speed. IMPRINT is the tool used to assess these trades in relation to the dependent

variables of performance and workload. An alternative model is created in IMPRINT

that varies the tradeoff parameters, the outputs of which are compared against the

baseline to determine the effects on the system. From this trade study, the preferred

alternative is identified.

Integrate Results into System Diagrams

 Once the trade study identifies the preferred alternative, the results are integrated

back into existing system diagrams. Originally system-focused, SysML diagrams like

block definition, requirements, and parametric diagrams are updated to reflect the results

of the tradeoff analysis. The result is a set of diagrams that accounts for both the system

and human, which may then be used to better inform system design.

59

Results and Analysis

The intention of performing the trade study on Vigilant Spirit is to demonstrate

the value of accounting for human-performance when making system design decisions

based on total system performance. By considering a human-focused viewpoint of the

system, potential HSI-related insights may be gained and integrated back into existing

SysML diagrams of the system. An example scenario was created to serve as an impetus

for system analysis. From the review of literature concerning tradeoffs, we see that

automation is sometimes used to offset human workload as an HSI-related tradeoff factor

(Allender, 2000; Colombi, et al., 2011; Mitchell & McDowell, 2008; Wickens, Bagnall,

Gosakan, & Walters, 2012). Additionally, automation could also be used to potentially

improve system performance – a key MBSE-related tradeoff factor. Thus, in our

scenario, the system developer seeks to redesign Vigilant Spirit by incorporating system

automation to improve HVT identification, and thus overall score. While the operator

searches for the HVT, the system automation also scans the potential targets on-screen

and notifies the operator if the system assesses that it successfully identified the HVT.

However, from a SE perspective, one might wish to specify the required

performance of the algorithm. Two typical tradeoff factors associated with this system

automation which might be evaluated are the speed and accuracy of the scanning

algorithm. In this analysis, we assume that these two factors have inverse (but not

necessarily linear) relationships, in that the faster the scanning algorithm’s speed, the

lower its accuracy and vice-versa. The scanning algorithm uses a number of features

from the environment to identify the HVT, such as on-screen individuals’ movements,

60

behaviors, and equipment. As such, to increase the algorithm’s scanning speed, fewer

environmental criteria are used to assess potential targets, thus decreasing accuracy.

Six algorithm settings were chosen to analyze as trades, each with varying levels

of speed and accuracy, listed in Table 1. Accuracy is defined in terms of the percentage

of time a suggested target identified by the automation is actually the true HVT. Speed is

defined in terms of the number of seconds it takes the automation to suggest a HVT, and

is a Weibull probability distribution with a threshold of four and defined shape and scale

parameters. The Weibull distribution was chosen because its versatility allows modeling

of many types of characteristics, to include the search times for this scenario, and because

of its similarity to the 711th HPW’s human subjects search data.

Table 1: Scanning Algorithm Accuracy and Speed Settings

 Accuracy
Speed (4+Weibull)

Shape Scale Mean (M) Variance
(V)

Trade 1 90% 8.5 25.5 28.084 11.399
Trade 2 6.4 23.5 25.879 15.955
Trade 3 80% 6.7 20 22.666 10.669
Trade 4 4 17 19.409 18.687
Trade 5 70% 3.2 10 12.957 9.438
Trade 6 1.7 7 10.246 14.301

Obtain or Create System Diagrams

First, we created sample SysML diagrams depicting the Vigilant Spirit system

with the addition of automation. These diagrams are modeled from a systems engineer’s

perspective. Because they are system-focused, the diagrams place less emphasis on the

61

human. Figure 13 through Figure 15 show the SysML block definition, requirements,

and parametric diagrams of the system, respectively.

Figure 13: System Block Definition Diagram

Figure 14: System Requirements Diagram

62

Figure 15: System Parametric Diagram

The block definition diagram portrays the structural aspect of the Vigilant Spirit

system, to include the operator, automation, and system software. Note that the human is

included as an actor in the block definition diagram, albeit from a generalized viewpoint.

Three performance requirements are highlighted in the requirements diagram upon which

to focus. However, additional system requirements would realistically exist. The

63

performance requirements are defined in terms of score, where there is a separate

requirement each for the surveillance, communication, and total scores. Generally, the

operator without automation can achieve a surveillance score of 600 points by finding the

HVT in 23 seconds and continuing to follow without losing it, or by finding the HVT in

less than 23 seconds with minimal lost-HVT time. Similar reasoning applies to the

communication requirement, as well. The parametric diagram further defines the

performance and specification requirements from the requirements diagram, as well as

the automation’s scanning settings from the block definition diagram.

It is unclear from studying either the SysML diagrams or Table 1 which

automation setting will produce the best results, or if any of the settings would even meet

the performance requirements. The existing system models are insufficient by

themselves to evaluate these trades. Fortunately, IMPRINT can be used to perform a

trade study to determine the effects of each of the automation options on overall system

performance.

Perform Task Analysis

To inform our IMPRINT model, our task analysis of Vigilant Spirit examined the

tasks required of both the system and operator throughout the simulated mission (without

any automated search algorithms). The analysis showed two independent sets of

activities performed by the system and operator for each of the surveillance and

communication tasks. During each iteration of the surveillance task, the system spawns a

HVT, for which the operator searches, indicates if found, and follows. Likewise, during

each iteration of the communications task, the system asks a question, prompting

calculations and answers from the operator. A SysML activity diagram was selected to

64

represent the results of the task analysis, shown in Figure 16. Activity diagrams are well-

suited for representing task analyses because of their ability to visually depict the actors,

decisions, and task flows involved in activities at a high level.

Figure 16: Activity Diagram of Vigilant Spirit Tasks

65

Create Baseline Model

Starting from the above activity diagram as a basis, a task network was built in

IMPRINT to represent Vigilant Spirit. The baseline task network is shown in Figure 17.

Figure 17: Baseline IMPRINT Task Network

There is a clear resemblance between the activity diagram and task network in

Figure 16 and Figure 17, respectively. While building the IMPRINT model, the task

flow was largely kept the same as in the activity diagram. Each task network node

contains coding for task effects, timing, path logic, and workload demand. The system’s

tasks are shown in purple, and the human’s tasks in blue. When the model starts, two

separate task flows occur: the surveillance task in the top half of the network and the

communication task in the bottom half of the network. At the conclusion of the mission,

both flows converge to aggregate the operator’s performance scores and end the model.

For a detailed description of the baseline model, see Appendix B.

 The baseline model was validated against the real-world Vigilant Spirit simulation

with regard to two of the model’s outputs: operator performance score and workload. An

66

independent-samples t-test was conducted to compare the performance scores for the

model and the human subjects experiment data collected by the 711th HPW. There was

not a significant difference in the scores for the model (M=487.286, SD=141.088) and

real-world (M=480.984, SD=152.858) conditions; t(75)=0.19246, p=0.84791. These

results suggest that there is insufficient evidence that the baseline model differs from the

real-world, thus resulting in a successful validation. A visual evaluation of the

confidence intervals for the real-world and model data corroborates this result, as the two

data sets almost completely overlap, shown in Figure 18.

Figure 18: Confidence Intervals for Real-World and Baseline Model Score Data

Unlike the score data, the model’s workload outputs could not be directly

compared against the real-world. The human subjects in the 711th’s study completed

NASA-TLX (Hart & Staveland, 1988) forms upon completion of the experiment. By

contrast, IMPRINT measures workload using the visual, auditory, cognitive,

psychomotor (VACP) method (Bierbaum, Szabo, & Aldrich, 1989). These two

differently formatted workload measurements prevented statistical comparison between

the two data sets. Therefore, the baseline model’s workload outputs were validated using

67

peer and SME reviews. For a detailed description of how the baseline model was

validated for both score and workload, see Appendix C.

Perform Trade Study

 Once the baseline model was successfully validated, an alternative model

incorporating the automation settings was built in order to conduct the trade study. The

alternative model’s task network is shown in Figure 19.

Figure 19: Alternative IMPRINT Task Network

The alternative IMPRINT model looks largely the same as the baseline, but

includes some key differences. The “Search for HVT” task node incorporates both the

automation and operator searching for the HVT. The “Suggest HVT” node is highlighted

in green as a system-automated task, wherein the system automation suggests the HVT to

the operator if it identifies the HVT first. The “Confirm HVT” node encompasses the

operator either confirming the suggested HVT as correct or incorrect if the automation

identified the HVT first, or self-identifying the HVT if the operator is faster than the

automation. It should also be noted that if the system automation incorrectly identifies a

68

HVT, then both the operator and automation revert back to searching for the HVT. For a

detailed description of the alternative model, see Appendix D.

 The alternative model was run for each of the six algorithm setting trades shown

in Table 1, with automation accuracy and speed parameters varying per trade. Each

trade’s performance score and workload data were collected and statistically evaluated

against the baseline’s. A one-way analysis of variance (ANOVA) was conducted to

compare the effect of scan accuracy and speed on score in the baseline and each of the six

trade conditions. There was a significant effect of scan accuracy and speed on score at

the p<0.05 level for the baseline and six trade conditions [F(6, 231) = 41.93, p = 0.000].

Post hoc comparisons using Tukey’s honest significant difference (HSD) test indicated

that the mean scores for all six trades were significantly different than the baseline.

However, it should be noted that although all six trades were statistically better than the

baseline, they were not necessarily statistically different from each other. The mean,

standard deviation, and relative groupings of scores for the baseline and six trades are

shown in Table 2, where means that do not share a grouping letter are significantly

different.

69

Table 2: Tukey’s HSD Results for Baseline/Trades for Score

 Mean (M) Standard
Deviation (SD) Grouping

Baseline 487.3 141.1 A
Trade 1 669.0 71.3 B
Trade 2 678.6 71.4 B
Trade 3 675.3 82.3 B
Trade 4 714.2 95.3 B C
Trade 5 779.1 80.5 C D
Trade 6 822.1 108.4 D

These results suggest that the automation accuracy and speed settings in all six

trades significantly improved performance scores from the baseline. This can also be

clearly observed in Figure 20, where the vertical red line indicates the original score

requirement.

Figure 20: Confidence Intervals for Baseline/Tradeoff Models for Score

 A one-way ANOVA was also conducted to compare the effect of scan accuracy

and speed on workload in the baseline and each of the six trade conditions. There was a

700

70

significant effect of scan accuracy and speed on workload at the p<0.05 level for the

baseline and six trade conditions [F(6, 231) = 3.48, p = 0.003]. Post hoc comparisons

using Tukey’s HSD test indicated that the mean workload for Trades 5 and 6 were

significantly different than the baseline. However, Trades 1-4 did not significantly differ

from the baseline or each other. The mean, standard deviation, and relative groupings of

workload for the baseline and six trades are shown in Table 3, where means that do not

share a grouping letter are significantly different.

Table 3: Tukey’s HSD Results for Baseline/Trades for Workload

 Mean (M) Standard
Deviation (SD) Grouping

Baseline 20.116 0.806 A
Trade 1 19.645 0.598 A B
Trade 2 19.693 0.668 A B
Trade 3 19.827 0.777 A B
Trade 4 19.751 0.833 A B
Trade 5 19.483 0.704 B
Trade 6 19.425 0.604 B

These results suggest that the automation accuracy and speed settings in Trades 5

and 6 were the only two alternatives to significantly improve workload from the baseline.

Figure 21 shows that even though workload is decreased for all alternatives, the data sets

from Trades 5 and 6 are the only ones that do not overlap the baseline. For a detailed

description of the alternative model’s score and workload output analysis, see Appendix

E.

71

Figure 21: Confidence Intervals for Baseline/Tradeoff Models for Workload

From analysis of the alternative model’s varying score and workload outputs,

Trades 5 and 6 offer the best automation settings with which to aid the operator and

improve performance. These two trades are when the automation has a higher scanning

speed, but at the expense of having only 70% accuracy. Therefore, upon performing the

tradeoff analysis, it can be concluded that Vigilant Spirit’s system automation speed is

more important than its accuracy for achieving increased performance score.

Surprisingly, the best scores are produced when the automation has its highest speed but

lowest accuracy. This observation is not something we could have predicted without

running the human-performance analysis in IMPRINT. However, it should also be noted

that even the lowest scores with automation are still higher than the human working

alone, showing the general advantage of this particular automation implementation for

the improvement of system performance, regardless of settings. Because Trades 5 and 6

are statistically the same, the decision of which to implement may be based on other

72

factors, such as cost or complexity. For the purposes of this example, Trade 6 was

assumed to be the preferred automation setting to implement based on these secondary

factors.

Integrate Results into System Diagrams

 The results of the trade study were then integrated back into the existing SysML

diagrams of Vigilant Spirit. The idea of the operator and automation performing as a

single, cohesive team was formed by the human focus of the trade study. This concept

was incorporated into the integrated diagrams. The original requirements diagram shown

previously in Figure 14 stated requirements of achieving a surveillance score of 600,

communication score of 180, and a total score of 700. By conducting the trade study, we

see that the surveillance and total score requirements can only be met with the system

automation aiding the human. However, the addition of the automation has no impact on

the communication score, and we observed that even with the human-automation team,

the communication requirement cannot be achieved. Therefore, a decision would need to

be made on whether to accept the risk, modify the requirement, or adjust the system’s

design.

Additionally, the preferred automation settings identified by the trade study may

be used to create automation performance requirements. Adding these new requirements

to the diagram will help ensure the automation settings are maintained. Note that, in

addition to automation, new human requirements could also be created with regard to

accuracy and speed. These human performance requirements would translate into

training requirements to ensure system operators can perform at the level necessary to

achieve the score requirements. An updated requirements diagram is shown in Figure 22,

73

with the automation requirements added and met and unmet requirements outlined in

green and red, respectively.

Figure 22: Integrated Requirements Diagram

Additional insight can also be gained by examining the process itself leading to

the trade study. By interpreting the 711th HPW’s experimental data, building the

IMPRINT models, and performing the trade study, limitations of the human were

uncovered. For example, we learned that the operator has an initial rate of losing the

HVT of 43.8%, but that rate decreases to 34% if the HVT has already been lost in that

iteration. Additionally, the operator has a very high rate (93.8%) of correctly answering

the communication question. Concerning the operator and automation working together

to perform the mission, the team had a combined HVT identification accuracy of 74%.

Previously unaccounted in the system model, these human constraints allow for a more

accurate picture of the system’s constraints. This information was used to update the

74

system’s parametric diagram. The integrated parametric diagram in Figure 23 shows

these new constraints highlighted in green.

Figure 23: Integrated Parametric Diagram

75

The constraints uncovered within the parametric diagram also feed into the block

definition diagram. Whereas the human was first portrayed in the block definition

diagram at a high level, we can now further define the human to include constraint

properties that were unknown prior to the analysis. The updated block definition diagram

shown in Figure 24 includes both the human’s constraints and the human-automation

team’s constraints.

Figure 24: Integrated Block Definition Diagram

By performing this tradeoff analysis, we were able to gain insight into the

human’s capabilities with regard to Vigilant Spirit. By then further integrating the

analysis’ results back into existing system models, we saw how these insights affect the

overall system. The results of the tradeoff analysis and the observations gained by

76

performing the process of the analysis were used to update the assumptions and

limitations placed on the human via the system’s block definition, requirements, and

parametric diagrams. In this manner, we were able to gain insight into the Vigilant Spirit

system’s limitations and constraints, verify requirements and even add new system

requirements.

Discussion and Conclusions

 As with the specific Vigilant Spirit scenario, the benefits gained from the process

of integrating human trade study results into system models may also be applied to

systems in other contexts. Any system design that does not properly account for the

human’s involvement may make unrealistic assumptions about the human,

overestimating the human’s capabilities and thus overestimating the system’s capabilities.

Therefore, it is essential for human considerations to be integrated into system design and

development.

 Though this study highlighted the benefit of using IMPRINT to inform system

models, the results of the IMPRINT analysis were translated manually back into the

SysML diagrams. Future work will focus upon developing a means to automate this

information transfer between IMPRINT and MBSE software. Being able to

automatically update relevant diagrams of the system with IMPRINT’s outputs would

reduce potential interpretation errors, further enable human factors engineers to

effectively communicate human considerations to systems engineers, and improve

efficiency while exploring alternate system designs. Additionally, although this method

focused specifically on integrating IMPRINT analyses with SysML, the use of other HSI

77

and SE tools could yield similar or additional benefits. Likewise, integration efforts

could also be expanded across the rest of the nine HSI domains besides just human

factors engineering.

 Using human performance- and workload-modeling tools such as IMPRINT to

perform tradeoff analyses, human factors engineers can attain realistic data about the

human subsystem. These data may then be integrated back into existing SysML

diagrams created by the systems engineers. In so doing, additional insights into the

whole system can be gained that would not be possible if human factors engineers and

systems engineers worked independently. Thus, the human is effectively incorporated

into the system’s design and the total system performance may be predicted, allowing for

an improved system design.

Chapter Summary

This chapter addressed the final two investigative questions, in addition to

revisiting the first two questions. Because this article presented a different method of

integration than the previous article, it was necessary to re-address the first two

investigative questions. The following is a discussion of each question:

1. What information should be captured in human-centric and system-centric

models to enable effective integration?

 The purpose of this article was to integrate human- and system-centric models by

analyzing how the human’s performance affects that of the system. As such, SysML

diagrams relating to performance, such as block definition, requirements, and parametric

diagrams, were chosen for this integration effort. Requirements diagrams capture system

78

requirements, many of which are measured and evaluated based on performance.

Parametric diagrams capture the system’s constraints, which can also be performance-

related. The nature of these diagrams allows for the inclusion of human performance

requirements and constraints. The block definition diagram was used to clarify the

requirements and parametric diagrams by defining the structure of the Vigilant Spirit

system.

This article recognized that the SE and HSI disciplines have separate and unique

toolsets, and capitalized on the benefits of maintaining both toolsets while still having

cross-communication. The human-centric models were defined as the IMPRINT models

of Vigilant Spirit, and the system-centric models defined as the initial system-focused

SysML diagrams of Vigilant Spirit. Because the article made use of traditionally-

purposed models to perform integration, the information needed to build the IMPRINT

and SysML models was no different than would be required if they were built separately

by engineers from their respective disciplines. The article assumed the system-focused

SysML models were already built, and instead focused primarily on building the

IMPRINT model. A task analysis of the system is necessary before creating the

IMPRINT model, as the analysis will uncover the mission task flow and interactions

between the system and human. Because of this study’s performance focus, Vigilant

Spirit’s scoring algorithm was coded into the IMPRINT model in order to measure the

human’s simulated performance.

79

2. What considerations and decisions must be made when integrating between

human-centric and system-centric models?

 Because requirements and parametric diagrams tend to be more data-focused, the

integration of the results from the IMPRINT analysis is straightforward: Once the

IMPRINT-enabled trade study is complete and the preferred trade is selected for

implementation, the initial SysML models of the system can be updated to include this

new data. A compromise in information is unnecessary when using a modeling

methodology that keeps both disciplines’ toolsets and allows communication between the

two. Therefore, updates to the SysML diagrams in this study could be made without

compromise because relevant human information could more directly flow into them.

However, note that updating the block definition diagram is more subjective and based on

any enlightening information gained while performing the IMPRINT analysis.

3. What information can currently be passed from IMPRINT to SysML models?

 Because of the versatility and range of available diagrams within SysML,

virtually all output data gained from performing IMPRINT analyses can be passed to

SysML models. IMPRINT has the ability to output many types of information in report

or chart form, to include mission performance, task sequence, and human workload data.

Additionally, myriad other types of data can be output through the use of customizable

“snapshots,” which capture specific variable data. This data can all be readily passed to

SysML models in order to validate system requirements or add/update existing system

constraints. However, higher-level information such as task flows, allocations, or

relationships between the system and human cannot as readily be passed. This is because

such information is more abstract and does not afford a direct data transfer to SysML

80

models, as is the case for hierarchical system diagrams. Thus, more effort must be

applied to synthesize, translate, and pass this information to SysML models.

4. What information do SysML models need from IMPRINT to effectively

inform tradeoff analyses?

 SysML diagrams are uniquely-purposed to convey specific types of information;

thus, each diagram uses information from IMPRINT in a different way in order to be

effective. Parametric diagrams are primarily data-focused, so they need the data gained

from IMPRINT’s output reports, discussed in the previous question. Additionally,

information gained through the task analysis as part of the integration process itself may

be helpful, such as user accuracy and success/failure rates. This data can be used to

either add or update existing constraint blocks.

The task analysis can also be used to inform block definition diagrams, as it may

uncover parts of the system that previously were not considered, such as the idea of the

human-automation team from Vigilant Spirit. Since the information from the task

analysis is used to build the IMPRINT model, IMPRINT should be capable of conveying

any new human-system interactions so that the block definition diagram can capture

those relationships.

Similar to parametric diagrams, requirements diagrams can use IMPRINT’s

output data to verify if requirements are able to be met or to create new requirements.

This is easier with performance-related requirements, as they are usually quantifiable.

The IMPRINT model should output meaningful data that can be used to verify

requirements. For example, a variable “snapshot” was created in Vigilant Spirit’s model

to specifically capture the operator’s score data to be compared with the defined

81

requirements. Note that some information may be useful to other SysML diagrams in

different ways. The score data used to verify requirements could have also been used to

inform a parametric constraint.

These concepts may also be applied to other SysML diagrams besides just the

ones discussed. With each SysML diagram uniquely utilizing IMPRINT’s output and

task analysis information, systems engineers can be better equipped with the necessary

information to make effective system trades and informed design decisions.

82

IV. Conclusions and Recommendations

Chapter Overview

This chapter begins by providing an overview of this research, to include the

current problem and motivation behind the research, previous efforts to address the

problem, research gap, and objectives of the research. The chapter then discusses how

the four investigative questions were answered by the research, provides

recommendations for future work in this area, and concludes by summarizing the

significance of the research.

Research Overview

Systems engineering (SE) is an important part of the lifecycle management of

systems. As a part of the SE process, it is imperative to consider the human as an integral

component of the system. The process by which the human can be effectively accounted

during system development is called Human Systems Integration (HSI) (U.S. Air Force,

2010). Failure to consider HSI during the SE process can lead to serious consequences,

such as Global Hawk’s mission degradation, the Patriot air and missile defense system’s

fratricide incidents, and Three Mile Island’s partial nuclear meltdown (Hopcroft, Burchat,

& Vince, 2006; Hawley, 2011; U.S. Nuclear Regulatory Commission, 2014).

The Department of Defense (DoD) recognizes the necessity of HSI during system

development, and has even mandated its implementation during the system’s lifecycle

(Department of Defense, 2015). However, there is currently a failure to integrate the HSI

process into the SE process at the correct level of detail and developmental phase

(Handley & Knapp, 2014; Orellana & Madni, 2014; Hardman & Colombi, 2012),

83

resulting in a system with higher lifecycle costs and less compatibility (Mitchell, Agan, &

Samms, 2011; Hardman & Colombi, 2012). There have been several efforts to integrate

the HSI and SE processes, but few have focused on development phases past concept

development. Additionally, few efforts have focused at the tools level of scope, and

those at the tools level lack an integration plan to re-inform system models. Therefore,

this research focused on integration during the preliminary or detailed system design

phases, and at their respective tools levels of scope.

This research had three objectives that were met. The first two objectives were to

determine first if it is possible to integrate the HSI process into SE practices, then how to

effectively do so. These objectives were both completed by conducting an extensive

review of literature and identifying the research gap. The final objective was to

demonstrate the value of integration, which was evinced by the methods prescribed in

Chapters II and III. These objectives were guided by the following research question:

How can HSI models be integrated with SE models in order to perform system design

tradeoffs?

Investigative Questions

 To aid in answering the research question and meeting the research objectives,

four investigative questions were formulated. These questions were addressed by the

articles in Chapters II and III using static and dynamic methods, respectively.

The first question asked what information should be captured in human-

centric and system-centric models to enable effective integration. This information is

uncovered by analyzing the places where relevant interactions occur between the human

84

and system, with regard to the purpose of integration. If the purpose is system interface

design, as was the case for the static method, then those interactions occur at the interface

level. Therefore, it is necessary to know the different system and human components and

how they communicate. As such, behavioral SysML diagrams like activity and sequence

diagrams are conducive to capturing this information. If the purpose is instead

performance-related, as was the case for the dynamic method, then relevant performance

interactions and task flows between the human and system should be captured.

Requirements diagrams, along with structural SysML diagrams such as parametric and

block definition diagrams, are conducive to the integration of human information when

focusing on the system’s and human’s performance.

The second question asked what considerations and decisions must be made

when integrating between human-centric and system-centric models. When

integrating within one discipline’s toolset, a balance must be achieved between keeping

relevant and helpful information in the integrated model and eliminating irrelevant or

superfluous information. This was evinced during the static method, when SysML was

used to create both human- and system-centric models. However, if each disciplines’

toolsets are maintained during integration, this compromise is unnecessary because the

human data may directly feed into the other toolset. For example, during the dynamic

method, the use of SysML requirements and parametric diagrams allowed for direct

input of the information gained from the IMPRINT analysis.

The third question asked what information can currently be passed from

IMPRINT to SysML models. Relating to the second question, because of the versatility

of SysML diagrams, all output data gained from IMPRINT analysis can be passed to the

85

SysML models by updating existing diagram components or creating new ones.

However, more abstract information about task flows and general relationships cannot be

readily passed without manual synthesis and translation.

The final question hones the previous by asking, although most information can

be passed, what information do SysML models need from IMPRINT to effectively

inform tradeoff analyses. Of the SysML diagrams discussed, the most beneficial data

comes from IMPRINT’s output reports and variable “snapshot” data. This information is

needed by parametric diagrams to update constraints or add new ones and by

requirements diagrams to verify performance-related requirements. Additionally, the less

data-focused and more design-focused information gained from task analyses may also

be used by parametric diagrams, and is needed to update system-human relationships

depicted in block definition diagrams.

Recommendations for Future Research

While this work successfully answered the research question by providing

methods of integrating the HSI process into SE, there are still areas of this research that

can be expanded upon and further improved.

Automate the IMPRINT-SysML Data Transfer

 Although the approach presented in Chapter III offered an integration plan for re-

informing previously system-centered SysML diagrams following IMPRINT analysis,

this currently involves a manual transfer of information. The hazard of a manual transfer

is that it opens the opportunity for translation mistakes and interpretation errors to occur.

Such errors could be mitigated if system diagrams were able to be automatically updated

86

with IMPRINT’s outputs. An automatic data transfer would further enable effective

communication between human factors engineers and systems engineers, and ultimately

ease analysis for systems engineers.

 If this transfer were automated, what data should be passed to the SysML

software? Ideally, variables within the IMPRINT model would store the necessary

output data following analysis. These variables would then be passed to the SysML

requirements and parametric diagrams and would either update existing SysML diagram

blocks or create new blocks with the new information gained.

Similarly, automating the IMPRINT tradeoff analysis would also provide

benefits. If the process to run the tradeoff analysis in IMPRINT could be automated so

that the preferred alternative is chosen and used to update system models, errors would be

further reduced and efficiency increased. Additionally, the data from the unsuccessful

trades could be documented and stored for later reference, as needed.

Translate Sequence Diagrams into IMPRINT

The sequence diagrams presented in Chapter II could also be used to inform

IMPRINT models. For example, the diagrams’ different user interface (UI) lifelines

could be translated into corresponding keyboard, mouse, monitor, and headset interfaces

in IMPRINT.

Additionally, greater definition between the operator-UI interaction in the

sequence diagram could provide further benefits. While messages that pass between the

system subcomponents are highly defined, messages between the UI and operator

generally are more abstract. Therefore, increasing the definition of this interaction could

provide added value to the integration process. One method of accomplishing such

87

definition could be through visual, auditory, cognitive, and psychomotor (VACP)

measures, as was used in Chapter II. Using VACP for this approach allows for a direct

translation of the sequence diagrams’ VACP components into corresponding workload

assignments in IMPRINT.

Generate Human Training Requirements

The trade study conducted in Chapter III allowed for the creation of new system

requirements, baselining the automation’s required accuracy and speed in order to meet

score requirements. Similar requirements could also be generated for the human. By

conducting human performance modeling, traits about the human’s accuracy and speed

are also obtained. For example, the operator has a percentage of time and a speed at

which he or she finds the target. Using this data, training requirements could be created

as a similar baseline for the operator.

Apply Integration Methods in Different Contexts

 The integration approaches presented in Chapters II and III offer a way of

integrating SE and HSI processes in a specific context; however, this context could be

expanded in several areas. The first area is in the example Vigilant Spirit case scenario.

While this case scenario was meant to be broad in order to expand its applicability,

demonstrating these same methods of integration in a different scenario could uncover

unique benefits or additional challenges.

 The next area to expand is by integrating different MBSE tools besides SysML

and different HSI methods and tools besides user-centered design and IMPRINT. The

use of other tools could yield similar or additional benefits. Even within SysML, other

diagrams besides those used in this research could also provide integration benefits.

88

 Similarly, while this research focused on the human factors engineering domain,

further research could address integration of the remaining eight HSI domains.

 Additional research could also focus on implementing human considerations into

system design in other lifecycle phases. Past efforts integrated primarily in the concept

phase, while this research integrated further in the preliminary and detailed design

phases. Future work could address integration at even later lifecycle phases.

Significance of Research

This research showed that integration of the HSI process into the SE process is

achievable through various methods, including both static and dynamic modeling. The

static method is a unique approach that uses user-centered design to break out both the

system and user into their different components in order to determine the functional

allocation of tasks. This approach provides the benefit of identifying potential conflicts if

any of these subsystems are asked to perform simultaneous tasks. Therefore, this static

approach allows systems engineers to see whether it is possible for the human to perform

some of these tasks, and the potential for conflicts.

The dynamic method approaches integration from a performance standpoint. By

utilizing the human performance simulation tool IMPRINT, this method provides human

factors professionals with a mechanism for conveying important human considerations to

systems engineers, and does so by using SysML to convey that information. The benefit

of this approach is the added ability to combine both system and human considerations

into a single performance measure, allowing system tradeoff analyses to be more

effectively performed.

89

By applying either of these integration methods early in the system’s lifecycle,

systems engineers can recognize that humans are indeed critical components of the

system, and gain additional ways to effectively account for the human during system

design and development. Thus, system design is improved through the integration of

human systems and systems engineering models.

90

Appendix A – Literature Review

Overview

Systems engineering (SE) approaches development from a holistic perspective,

dividing the system into its components. As one of these components, the human is an

important part of nearly every system. However, currently Human Systems Integration

(HSI) is not being implemented during the SE process, resulting in higher lifecycle costs

and decreased user compatibility (Mitchell, Agan, & Samms, 2011; Hardman &

Colombi, 2012). To address this problem, the HSI process needs to be integrated with

SE.

This appendix begins by providing a background on SE and HSI. To enhance

future integration efforts, it is helpful to know what tradeoffs are considered during

system design. Thus, the appendix reviews the types of Model-Based Systems

Engineering (MBSE)-related tradeoffs and tradeoffs using the Improved Performance

Research Integration Tool (IMPRINT), and how such analysis methods are being

performed. It then discusses various integration methods at the process, methods, and

tools levels of scope, and continues at the tools level by discussing integration efforts

using IMPRINT modeling. The appendix concludes by highlighting the research gap in

integration efforts thus far.

Systems Engineering

SE is a process that has become an increasingly important part of the overall

lifecycle management of Department of Defense (DoD) systems, to the point of

becoming an institutionalized disciplinary approach to the development of defense

91

acquisition programs (Department of Defense, 2015). The International Council on

Systems Engineering (INCOSE) (2015) defines a system as “an integrated set of

elements, subsystems, or assemblies that accomplish a defined objective,” whereas these

elements could not otherwise produce the same results by themselves. Elements may

include hardware, software, people, information, and facilities. SE offers a holistic

approach to developing these systems by integrating the many disciplines involved and

thereby accounting for factors such as requirements, cost, and schedule early in the

system’s lifecycle and continuing through development, operation, and eventually

disposal. To support this consideration throughout the lifecycle, the SE process is

composed of 14 technical sub-processes ranging from stakeholder requirements

definition to system disposal (International Council on Systems Engineering, 2015).

There are many different methods of practicing SE. Model-based systems

engineering (MBSE) is an emerging method with which to perform SE. Whereas the

traditional document-based method is driven by the development of a set of disjointed

documents, each separately detailing system-related information such as requirements or

design specifications, MBSE allows for the development of the same information through

a series of interrelated models that together form a complete system model (Friedenthal,

Moore, & Steiner, 2014). The MBSE method results in improved team communication,

increased quality of the system’s specification and design, and the ability to reuse the

model throughout the system’s lifecycle (Friedenthal, Moore, & Steiner, 2014).

If MBSE is a method of practicing SE, then the Systems Modeling Language

(SysML) is a tool with which to implement MBSE. There are several graphical modeling

languages available for SE applications, SysML being one of them (Delligatti, 2014).

92

SysML provides a means of communicating system information via a selection of

uniquely-purposed diagrams. These diagrams allow the modeler to represent

requirements as well as behavioral and structural aspects of the system, as shown in

Figure 25 (Delligatti, 2014).

Figure 25: SysML Diagram Taxonomy – adapted from (Delligatti, 2014)

Human Systems Integration

The human should also be a critical consideration during system development and

the SE process in general. The Air Force HSI Handbook defines HSI as the “process by

which to design and develop systems that effectively and affordably integrate human

capabilities and limitations” (U.S. Air Force, 2010). This approach is necessary because

humans who operate, maintain, and support the system are an integral part of the total

system itself (Department of Defense, 2013). HSI is divided into nine domains:

manpower, personnel, training, human factors engineering, environment, safety,

occupational health, survivability, and habitability (U.S. Air Force, 2010).

SysML
Diagrams

Behavior
Diagrams

Activity
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

Requirement
Diagram

Structure
Diagrams

Block
Definition
Diagram

Internal
Block

Diagram

Parametric
Diagram

Package
Diagram

93

Human factors engineering is the primary HSI domain with which to focus on

integration (U.S. Air Force, 2010). Human factors engineering, also called ergonomics,

is the study of the interactions between the human and system, and the efficiency of those

interactions (International Ergonomics Association, 2016).

There are various methods of practicing human factors engineering. One method

is through user-centered design (UCD). UCD is the idea of designing a system with a

focus primarily on the user and involving the user in the design process. By focusing on

the user’s goals, preferences, tools needed, and tasks performed, the goal is that the end-

system will be best suited for what the user needs (Norman & Draper, 1986).

Another method of practicing human factors engineering is through human

performance modeling, where the human is modeled mainly via simulation (Allender,

2000). One such modeling tool is called the Improved Performance Research Integration

Tool (IMPRINT). Developed by the Army Research Laboratory to support HSI efforts,

IMPRINT is used to analyze the interaction between the system and humans. IMPRINT

allows the analyst to first represent a mission in terms of a series of functions and tasks

performed by both the system and human, then run a discrete event simulation (DES) of

the system and human accomplishing the mission. In this manner, the analyst can

observe effects on performance and cognitive workload (Mitchell, Agan, & Samms,

2011).

MBSE Tradeoffs and Methods

 Systems engineers, now using MBSE practices, perform tradeoff analyses

involving several factors such as cost, mission effectiveness, size (weight and volume),

94

performance, and the “-ilities.” Cost is a common factor among system tradeoffs (Crane

& Brownlow, 2015; Do, Cook, & Lay, 2014; Russell, 2012). It is often traded between

factors influencing mission effectiveness such as supportability (Russell, 2012) and

performance (Crane & Brownlow, 2015). System designers commonly have to make

decisions regarding increasing the performance of a system at the expense of also

increasing system cost. A balance must be reached between the level of performance

desired by the system stakeholders and an acceptable total cost.

 Mission effectiveness is a broad factor that includes system tradeoffs such as

mobility, survivability, supportability, and performance (Cloutier, Sauser, Bone, &

Taylor, 2015; Crane & Brownlow, 2015; Kaslow, Soremekun, Kim, & Spangelo, 2014;

Russell, 2012). These individual factors may be traded between themselves or other

tradeoff factors such as equipment weight and volume (Cloutier, Sauser, Bone, & Taylor,

2015; Crane & Brownlow, 2015; Kaslow, Soremekun, Kim, & Spangelo, 2014). For

example, decreasing a system’s weight and volume may increase mobility, which affects

the system’s survivability and overall mission effectiveness (Cloutier, Sauser, Bone, &

Taylor, 2015). However, increasing the system’s volume may allow for more armor or

ammunition, thus increasing the system’s lethality and again affecting survivability.

Equipment weight and volume may also be traded with cost, such as within the context of

a satellite constellation when considering orbital altitude and constellation size (Crane &

Brownlow, 2015). At a higher altitude, fewer satellites are needed to cover an area, but at

the cost of needing better-quality sensors. Conversely, spacecraft are cheaper at lower

altitudes due to size and weight reductions, but more are needed to cover the same area.

95

 When faced with similar alternatives, adding other tradeoff factors may aid in

deciding on a solution. For instance, in satellite constellation design, other factors that

could be considered are disaggregation, resiliency, and lower costs (Thompson, Colombi,

Black, & Ayres, 2015).

 MBSE tradeoff analyses are performed using both qualitative and quantitative

methods. The primary qualitative method used to perform these analyses involves

visualization of the system via SysML diagrams (Cloutier, Sauser, Bone, & Taylor, 2015;

Russell, 2012). These SysML diagrams are used to analyze tradeoffs and enable system

design decisions. Activity diagrams and use case diagrams provide the MBSE

practitioner a way to graphically highlight dependencies between components within the

system.

 Quantitative methods mainly involve the use of simulations (Crane & Brownlow,

2015; Kaslow, Soremekun, Kim, & Spangelo, 2014). In these methods, MBSE

parametric diagrams are commonly created to establish relationships between the

system’s requirements and design constraints, which then feed into simulation models.

Based on the parameter inputs, the modeler can see the outputs’ impact on mission

performance and determine if requirements are being met. Aside from simulations,

quantitative analyses may also be uniquely developed to suit the system (Do, Cook, &

Lay, 2014). For example, Do et al. (2014) self-developed a tradeoff analysis method by

first assigning a series of weight and value functions to the system tradeoffs, then

evaluating those functions to quantitatively determine a system design solution.

96

IMPRINT Tradeoffs and Methods

 One tool human factors engineers use is IMPRINT. Using this tool, human

factors engineers perform tradeoff analyses involving several factors, which include

manning, performance, workload, equipment design, and task allocation. These factors

are different than those relating to MBSE because they focus specifically on the human

instead of the broader system. However, they still indirectly relate to and affect some

MBSE factors, such as usability and system performance. Manning is a key factor in

many human-related system tradeoff studies (Allender, 2000; Mitchell D. K., Samms,

Henthorn, & Wojciechowski, 2003; Mitchell, Samms, & Wojcik, 2006; Mitchell D. K.,

2008). Even the U.S. Navy-developed predecessor to IMPRINT, called HARDMAN

(Hardware vs. Manpower), was created with the intention of analyzing tradeoffs between

hardware and manpower (Dickason, Sargent, & Bagnall, 2009).

Many studies examine the impact of a reduction in manning on the other tradeoff

factors mentioned (Allender, 2000; Mitchell D. K., Samms, Henthorn, & Wojciechowski,

2003; Mitchell, Samms, & Wojcik, 2006). For example, Allender (2000) describes a

trade study in which the manning on a U.S. Navy destroyer bridge was reduced with the

expectation of maintaining the same operational performance. Various IMPRINT models

were built to measure the variation in the crew’s workload and determine the feasibility

of this plan. Results showed that the reduction in manning caused an unsustainable

workload for the reduced crew. In addition to workload, the influence of manning

reductions is also studied on equipment design (Allender, 2000) and performance, where

performance may be defined in terms of mission performance (e.g. time taken to

97

complete the mission) or in terms of human performance (e.g. the number of errors

committed) (Allender, 2000; Mitchell, Samms, & Wojcik, 2006).

 System automation is sometimes used to offset tradeoff factors such as manning

(Mitchell D. K., 2003; Mitchell D. K., Samms, Henthorn, & Wojciechowski, 2003;

Allender, 2000) and task allocation (Colombi, et al., 2011; Mitchell & McDowell, 2008;

Wickens, Bagnall, Gosakan, & Walters, 2012). In the Navy bridge crew trade study, a

proposed solution to offset the manning reduction was to supplement the bridge crew

with automation (Allender, 2000). A similar solution was proposed in a trade study

performed on task allocation for remotely-piloted aircraft (RPA) operators, in which task

automation was suggested as a way to offload some of the operator’s tasks and balance

workload (Wickens, Bagnall, Gosakan, & Walters, 2012). However, Colombi et al.

(2011) recommend the strategic implementation of automation, warning that simply

automating the “easiest” functions could actually have a negative effect on workload.

 Workload is a focus of many human-related trade studies performed using

IMPRINT. The assessment of workload is usually placed in the larger context of

evaluating other tradeoff factors like manning requirements or operator performance.

Aside from manning, a modeler may wish to determine which crewmember could assume

additional tasks with the least amount of added workload while maintaining performance

(Mitchell & Chen, 2006; Mitchell & McDowell, 2008), or to determine the task

allocation for the entire crew (Mitchell D. K., 2003). The type of study in which

IMPRINT is used to evaluate the effect on workload from changing another factor, is

common throughout the U.S. Army (Allender, 2000; Mitchell, Samms, & Wojcik, 2006;

Mitchell & Chen, 2006; Mitchell & McDowell, 2008; Mitchell D. K., 2008; Cassenti,

98

Kelley, Colle, & McGregor, 2011), Navy (Allender, 2000), Air Force (Colombi, et al.,

2011; Wickens, Bagnall, Gosakan, & Walters, 2012), and academia (Harriott, Zhang, &

Adams, 2013; Rusnock & Geiger, 2014).

 Equipment or system designs may drive performance analyses, where

performance is measured through IMPRINT workload modeling. For instance, Rusnock

and Geiger (2014) performed a trade study which analyzed the effect on performance due

to varying workload levels for each of four different system designs. While most

workload studies deal with the human’s cognitive workload, Harriott, Zhang, and Adams

(2013) uniquely studied the effect on physical workload from a human-robot partnership

system design.

 These tradeoff factors may vary and even interchange as independent, dependent,

and controlled variables, depending on the particular trade study’s objectives. For

instance, while equipment design was previously described as being dependent on

manning, it could, conversely, influence manning. The number of crewmembers may

need to be reduced to accommodate a smaller vehicle (Mitchell D. K., 2008), or the

manning required to operate a system may need to be re-assessed due to an equipment re-

design (Allender, 2000).

 Tradeoff analyses using IMPRINT are performed using similar methods as in

Allender’s (2000) trade study of the Navy destroyer. A series of baseline and alternative

models may be built in IMPRINT either as a feasibility study or to determine the tradeoff

effect of one factor on another. IMPRINT trade studies may be implemented by

simulating human workload or performance, where performance could be measured by

factors such as task time, accuracy, or completion rates.

99

Processes, Methods, and Tools

 Before discussing previous integration efforts at the process, methods, and tools

levels, it is necessary to first define these three levels of scope. For the purposes of this

research, a process is defined as a philosophical approach defining what activities should

be accomplished to achieve an objective. Methods support processes by defining in

greater detail how to accomplish those activities. Tools are the enabling mechanisms that

facilitate and enhance the implementation of a given method (Martin, 1996). There may

be more than one tool capable of supporting a particular method, and there likewise could

be multiple methods capable of supporting a process.

Process-Level Integration

 Integration efforts at the process level strive to fundamentally change or augment

the SE and/or HSI process itself. Chua and Feigh (2011) offer various ways in which

human factors may be generally included in early system development. They organize

their ideas according to four system design stages: requirements acquisition, concept

generation, preliminary, and detailed. Admittedly at a high level of detail, Chua and

Feigh provide general suggestions in an effort to encourage communication between

systems engineers and human factors engineers, and to promote awareness of human

factors during system design.

 Hardman and Colombi (2012) extend the idea of augmenting the SE process by

highlighting the necessity for quantitative methods of expressing HSI requirements in

order to be properly considered by program management during system development. As

such, Hardman and Colombi outline areas in which to emphasize HSI throughout the

100

early requirements analysis, function allocation, and design stages of systems

development, and further suggest the usage of empirical measures such as safety and

human subjects data to minimize subjectivity.

 Another process-level idea is to standardize the terminology between SE and HSI.

Hardman, Colombi, Jacques, and Miller (2008) clarify the HSI terminology across the

DoD and HSI communities. There are inconsistencies between numerous DoD and HSI

publications, such as between the DoDAF, Defense Acquisition Guide, and INCOSE’s

handbook. The idea of standardization may be extended from the DoD to the entire SE

community (Madni, 2009; Orellana & Madni, 2014). Orellana and Madni (2014) argue

that the reason why there is a lack of integration between the SE and HSI processes is

because differences in terminology prevent systems engineers and those untrained in HSI

from communicating with those who are trained. A proposed solution is to build a

common HSI ontology to connect the semantics of the two fields, thus providing a means

to address HSI concerns during system design (Madni, 2009; Orellana & Madni, 2014).

Bruseberg (2008) corroborates Orellana and Madni’s claim, citing several examples of

differences between HSI and SE’s interpretations of terminology. For instance, whereas

the term “activity” has a high-level connotation to systems engineers, its scope is more

low-level and detailed to human factors engineers.

Methods-Level Integration

 Efforts at the methods level strive to enhance integration by improving one of the

existing SE design or analysis methods, or by proposing a new method. Crisp, Hoang,

Karangelen, and Britton (2000) do the latter. Continuing the ideas put forth by Hardman

101

et al. (2008), Orellana and Madni (2014), and Bruseberg (2008), once a common

language between SE and HSI is established, Crisp et al. propose a way to further

establish an effective integration. Due to the need for systems engineers to synchronize

multiple disciplines, a central software interchange could implement this common

language as a data schema in order to translate information between disciplines’ software

tools and allow communication.

Hardman et al. (2008) propose an augmentation to the DoDAF to improve

integration. They examine how each of the nine HSI domains can be addressed in the

existing DoDAF products. Each HSI domain lends itself to a DoDAF capability. For

example, since the manpower and personnel domains deal with the numbers of users and

associated knowledge and skills needed to operate the system, these domains may be

addressed by the DoDAF’s Operational or Services Views. A properly developed use

case can also address manpower in addition to addressing the training domain. Human

factors engineering is a key domain to address in system development since it addresses

system limitations as a result of human involvement. As such, there are many DoDAF

products that may be used to identify problem areas or tradeoff opportunities, such as the

Systems Interface Description (SV-1), Systems-Systems Matrix (SV-3), and the Systems

Functionality Description (SV-4).

Piaszczyk (2011) proposes a method of integration similar to Hardman et al.’s

(2008) DoDAF augmentation. However, Piaszczyk uses a MBSE approach instead,

focusing on the DoDAF’s graphical products to represent the human. He describes how

to factor the human into existing DoDAF views in order to derive human-related

requirements and drive system design throughout the acquisition lifecycle. These product

102

re-scopes encompass the DoDAF’s Operational and System Views. For example, the

Operational Architectural Diagram (OV-2) is used to derive system operator

requirements and the Organizational Relationships Diagram (OV-4) is used to define the

human’s roles with regard to the system. The methods proposed by Hardman et al. (2008)

and Piaszczyk (2011) present ways to include HSI in the DoDAF without developing

new products.

Another integration method is to create a new, human-focused product to augment

existing architecture frameworks. In 2007, representatives from the United States, United

Kingdom, Canada, and the Netherlands convened the North Atlantic Treaty Organization

(NATO) Human View Panel in order to examine the current state of Human View

presence within architecture frameworks around the world, and to propose a standard

Human View that could be adopted by any architecture framework (Handley & Smillie,

2008). The resultant NATO Human View is comprised of eight products:

• HV-A: Concept

• HV-B: Constraints

• HV-C: Tasks

• HV-D: Roles

• HV-E: Human Network

• HV-F: Training

• HV-G: Metrics

• HV-H: Human Dynamics

All of these products are designed to address different human aspects that are

important to consider during system design and development. For example, the Concept

103

(HV-A) offers a high-level look at the human component of the system, while Constraints

(HV-B) focuses on weaknesses or limitations the human brings that affect the system.

HV-B can be further subdivided into subviews such as Manpower Projection Constraints

and Personnel Policy Constraints. Since most of these views are static by nature, Human

Dynamics (HV-H) is designed to address the dynamic aspects from each of the other

views, to include state changes, conditions, time units, and performance measures. The

Human View is intended to force systems architects to consider the human in its own

architecture framework view instead of arbitrarily adding human considerations into

other views. Another goal of adding a Human View directly into an architecture

framework is to enable systems engineers and HSI analysts to collaborate early in system

development, thus contributing more effectively to design (Smillie & Handley, 2009).

Furthermore, Handley and Knapp (2014) detail four stages by which to compile

the Human View products, with each stage focusing on certain sets of models at a time.

Moving to the next stage shifts focus to another model, while still reiterating through

previous models in order to ensure a complete product is formed. Figure 26 shows the

completed Human View development (Handley & Knapp, 2014).

104

Figure 26: Human View Development – adapted from (Handley & Knapp, 2014)

Handley (2011) made an effort to further adapt the NATO Human View

specifically to the DoDAF. The DoDAF 2.0, released in 2009, allows for easier

integration of human-centered information within the framework, mainly due to the

inclusion of the DoDAF 2.0 Meta Model (DM2). Since the DM2 allows the system

architect to create “Fit for Purpose” views to augment the existing architecture

framework, Handley claims that the NATO Human View may be mapped to the DM2

more easily than in previous DoDAFs.

105

Similarly, Bruseberg (2008) proposed a Human View specifically for the British

Ministry of Defence Architecture Framework (MODAF). Listing several of the same

human-related shortcomings in the MODAF as does Handley (2014) for the DoDAF,

Bruseberg (2008) details ways in which her Human View can improve the MODAF’s

representation of the human during system development. She argues that human views

aid in modeling the “soft systems” human side of system development, thus bridging the

communication gap between systems engineers and human factors engineers. The

MODAF Human View is comprised of seven products, HV-A through G. These

products largely parallel the NATO Human View’s eight products. For example, the

MODAF Human View also has products capturing human functions and tasks (HV-E),

roles and competencies (HV-F), and dynamic aspects of human behavior (HV-G).

Though similar to the DoDAF-centered Human View, development of the MODAF

Human View predates Handley’s work and even the NATO Human View.

Sharples (2014) put the NATO Human View into practice to solve a real-world

problem for German-based Airbus Defence and Space. Sharples integrated the Human

View with Airbus’s existing architecture for a remotely-piloted aircraft (RPA) system in

order to identify human-related deficiencies and refine the architecture. By taking the

Human View’s separate products and augmenting the operational and system views from

the existing RPA architecture, Sharples was able to identify system gaps such as the

absence of several roles from the original model.

106

Tools-Level Integration

 The most in-depth, narrowly-scoped way to integrate the HSI and SE processes is

to approach integration at a tools level. Efforts at this level focus on improving the way

in which tools such as SysML can be used to incorporate the human into SE. While some

researchers advocate the use of modeling and simulation in general to consider HSI (Boy

& Narkevicius, 2013), some efforts have specifically used MBSE modeling to

accomplish this task. Bodenhamer (2012) states that to understand the human’s

interaction with the system, the human must first be deconstructed into the functional

components necessary to operate the system. These components include sensory

channels, cognitive processing, psychomotor capabilities, and physical interfaces. The

system itself must also be deconstructed into its components, treating the user as one of

these components. Using a landmine detector system as a case study, Bodenhamer

created a high-level architectural concept of the system to demonstrate this concept. He

modeled the behavioral aspects of the system by creating activity and sequence diagrams.

These diagrams visually highlight the human-system interaction that is necessary for

mission success. By doing so, Bodenhamer claims that the modeler can identify HSI-

related problems that could affect system performance or mission success.

 Ramos, Ferreira, and Barceló (2013) address human integration from the process,

methods, and tools levels. As part of their larger effort to enhance the overall SE process

they amalgamate aspects from a variety of methodologies in order to present a revised,

more agile MBSE methodology. However, their main focus is at the tools level. HSI is

considered as a part of the overall methodology, in which Ramos et al. advocate a

107

systems engineer-focused implementation of HSI via SysML diagrams such as activity

and internal block diagrams.

Orellana and Madni (2014) also address integration from multiple levels of scope.

After proposing their process-level HSI ontology, they narrow to the tools level.

Orellana and Madni’s ontology is influenced by defining the human in terms of SysML

diagrams. The goal of the ontology is to “bridge the gap” between systems engineers and

human factors engineers by allowing systems engineers to define the human using their

own MBSE modeling methods. Orellana and Madni provide a high-level description of

ways in which the human can generally be represented through SysML diagrams. Ahram

and Karwowski (2009) also recommend a common language by incorporating a HSI

framework into systems engineers’ SysML modeling practices.

Integration Efforts via IMPRINT Modeling

One of the methods of integration at the tools level is through IMPRINT

modeling. There have been efforts to integrate the human into system design using

IMPRINT, with all approaching integration in various ways. Mitchell, Agan, and Samms

(2011) expanded upon IMPRINT’s pre-conceived utility by modeling the system in

addition to the human. They emphasize that deconstructing the system and human are

essential to system development, but these processes should not be conducted

independently of each other. If so, each side misses key variables that could have been

otherwise accounted. Mitchell et al. (2011) used IMPRINT to model both the system

capabilities and the human functions of a conceptual system in order to identify areas in

which both sides can be accounted to improve success.

108

Smillie and Handley (2009) used IMPRINT to augment a human-focused

architectural framework view called the Human View. While the Human View’s purpose

is to provide system developers a means to focus on the human, Smillie and Handley

sought to use the dynamic nature of IMPRINT’s DES capabilities to expand upon the

Human View. First utilizing the Human View to define a model of a system in a sample

case study, they then translated various components of the Human View into IMPRINT.

For example, the Human View’s Roles, Tasks, and Constraints subviews translated into

IMPRINT inputs such as operators, assignments, and moderators. Finally, the IMPRINT

model’s outputs were analyzed to evaluate the system’s impact on the human’s

performance and workload.

Both Mitchell (2005) and Colombi et al. (2011) used established system models

to inform IMPRINT in order to perform system analyses. Colombi et al. used SysML

diagrams representing the system’s operational concept as a basis for defining the

human’s tasks, which in turn fed the creation of a workload model. By analyzing the

human’s envisioned tasks and resultant workload, IMPRINT is able to act as a method of

assessing system feasibility early in development.

Although Mitchell (2005) used SysML’s predecessor, the Unified Modeling

Language (UML), to build the diagrams in her study, the concept is similar to Colombi et

al.’s (2011). Mitchell states that while the UML and IMPRINT are effective for

developing system and human requirements, respectively, they are not affected by the

other’s constraints as they should. For example, an activity diagram alone cannot

properly depict human performance impacts on the system. Mitchell used a pilot study to

develop an approach to link the two modeling methods. An activity diagram depicting

109

the system was used to populate an IMPRINT model representing the human-system

interaction, which was then run and the resulting workload outputs analyzed. Through

this manual translation from UML to IMPRINT, the analyst is able to see the feasibility

of the constraints placed on the human. However, Mitchell admits that a limitation to the

study is the absence of a translation from the IMPRINT analysis back to UML, which

would help ensure that the human is properly represented by the system.

Research Gap

 There have been several previous efforts to integrate HSI methods into systems

engineering practices. These efforts have addressed the integration problem from various

standpoints: the process level, methods level, and tools level. Numerous processes and

methods have been proposed, but most efforts have focused on integration only at the

early concept phase of the system’s lifecycle. Additionally, few efforts have tried to

integrate by addressing SE at the tools level, especially using human performance tools

like IMPRINT. These efforts largely utilize IMPRINT to assess human performance and

workload with regard to the system, but lack an integration plan to inform system-level

models following human-performance analysis. SysML has been integrated with a

variety of software tools (Rashid, Anwar, & Khan, 2015), but there is a noticeable lack of

integration with HSI tools. SysML and HSI tools are currently disjointed from each other

with no clear path on how to integrate them.

 A solution to the lack of integration between the HSI and SE processes is to

address integration later in the design phases of the system’s lifecycle and at the tools

level of scope. Focusing at the tools level, system models can incorporate information

110

from human models and UCD at a lower level of system detail. This detail is enabled by

integrating later in the system’s design phases, such as preliminary or detailed design,

when more information about the system and human are known. HSI methods like UCD

enable a focus on system design from a user perspective. Similarly, HSI tools like

IMPRINT model human performance, the results of which can be used to update system

models. The result is system models that better attend to human considerations, thus

improving system design.

111

Appendix B – Baseline Model Description

Overview

 This appendix provides a detailed description of the Improved Performance

Research Integration Tool (IMPRINT) baseline model of Vigilant Spirit, the assumptions

made when creating the model, and how the model was verified.

Introduction

 A baseline model was established to accurately represent the 711th Human

Performance Wing’s (HPW) human subjects experiment. The baseline model was

developed to replicate scenario four of the experiment, in which there are a high level of

distractors (48) and visual static noise imposed over the camera feed. Figure 27 shows

the baseline model that was built using IMPRINT. The model assumes the Operator has

been trained on how to perform the mission. There are two preconditions for the mission:

that the Operator is sitting at the remotely piloted aircraft (RPA) simulation station with

the experiment’s equipment operational and running, and that the experiment

administrator has started the program for the Operator and the mission has begun. Upon

Model Start, two separate task flows initialize and run concurrently. The primary task

flow is the high value target (HVT) surveillance task. The secondary task flow is the

communication task. Purple nodes shown in Figure 27 are tasks performed by the

system, and blue nodes are tasks performed by the Operator.

112

Figure 27: Baseline Vigilant Spirit Model in IMPRINT

Surveillance Task

 The following is a detailed description of the surveillance portion of the model,

with a step-by-step walkthrough of each task node within the network.

Node 1: Spawn HVT

 This task is performed by the system. When the surveillance entity arrives at the

Spawn HVT node, the integer global variable HVTIteration is immediately incremented

up by one. HVTIteration keeps track of how many HVT iterations there have been,

therefore this signifies that the first, or next, HVT has been spawned. Additionally, the

Boolean global variable LoseHVT is set to false and the floating point global variable

TtlFollowTime is set to 0, which serve as variable “resets” for each iteration. These two

variables will be further explained in later nodes. This task takes 0 seconds to complete,

so as not to detract from the 59 seconds that the Operator has to search for the HVT.

 Note that each of the four HVT iterations are spawned at 0, 60, 120, and 195

seconds, corresponding to the global Clock variable.

113

Node 3: Search for HVT

In this node, the Operator searches for the HVT and either succeeds in locating it

within 59 seconds or fails to find the HVT. To determine success or failure, a local

variable named random is created and set to a randomly-generated floating point number

between 0 and 1. If random is less than 0.63, then the Operator found the HVT. 0.63 is a

probability derived from analyzing the 711th HPW’s experiment data. Subjects found

the HVT 121 times out of 192 iterations of searching, yielding 0.63 as the probability.

Three global variables are used in this task node. FoundHVT tracks whether or

not the Operator found the HVT in an iteration. It is a Boolean variable with an initial

value of false. SearchTime is the time it takes the Operator to search for the HVT. It is a

floating point variable. SearchTime, along with all other floating point variables in the

model, has an initial value of 0. SurvTimeLeft is the time remaining in the iteration after

the Operator searches for the HVT and either finds the HVT or does not. It is also a

floating point variable.

If the HVT is found, FoundHVT is set to true and SearchTime is set to a value

determined by a Weibull distribution with a threshold of 4 and with shape and scale

parameters of 1.74 and 25.7, respectively. The Weibull distribution was determined by

inputting the experiment subjects’ 121 successful search times into Arena’s Input

Analyzer software and choosing a best fit distribution to model the data. The Weibull

distribution had the least square error, with a value of 0.007866. Operators have 59

seconds to search for the HVT. Thus, because the Weibull distribution has no upper

bound, any values generated that are greater than 58.8 seconds are rounded to equal 59

seconds. The 0.2 second difference is because if the Operator finds the HVT but does not

114

have at least 0.2 seconds to indicate the HVT is found (described in the next task node),

then the search time takes the entire 59 seconds. SurvTimeLeft is set to SearchTime

subtracted from the originally allotted 59 seconds.

If the Operator never finds a HVT in an iteration, SearchTime is set to 60 seconds

and all subsequent task nodes in the iteration are set to 0 seconds to provide a seamless

transition for the Operator to continue searching into the next HVT iteration without a

break in workload. Additionally, FoundHVT is set to false and SurvTimeLeft is set to 0

seconds.

The task time for this node is the SearchTime, however long it took the Operator

to search for the HVT.

Node 4: Indicate HVT Located

As determined by IMPRINT’s micromodel for single finger keying rate, it takes

the Operator 0.2 seconds to press the F key on the keyboard if the HVT is found. If

SurvTimeLeft is at least 0.2 seconds, then the task time is simply 0.2 seconds and

SurvTimeLeft’s value is updated to subtract 0.2. Otherwise, SurvTimeLeft is 0 seconds.

This means the Operator either spent the entire 59 seconds searching but never found the

HVT, or found the HVT but did not have enough time to indicate so. If SurvTimeLeft

equals 0, then this node’s task time is also 0 seconds.

Node 7: Follow HVT

In this node, the Operator either follows the HVT for the remaining time in the

iteration, or follows for some time then loses track of the HVT. This node uses the

Boolean LoseHVT, floating point FollowTime, and floating point TtlFollowTime global

variables. LoseHVT tracks whether or not the Operator lost the HVT once found in an

115

iteration. FollowTime is the time it takes the Operator to follow the HVT in this task

node. TtlFollowTime is the total amount of time the Operator has followed the HVT in

the entire iteration.

Upon entering the node, if SurvTimeLeft is greater than 0 and LoseHVT is false,

then the Operator found the HVT for the first time in this iteration. To determine if the

Operator loses the HVT, a local variable named random is created and set to a randomly-

generated floating point number between 0 and 1. If random is less than 0.562, then the

Operator follows the HVT for the remaining time without losing it. 0.562 is a probability

derived from analyzing the 711th HPW’s data, where subjects did not lose the HVT 68

times out of 121 iterations of following, yielding 0.562 as the probability. If the Operator

does not lose the HVT, then LoseHVT is set to false, FollowTime is set to equal

SurvTimeLeft, and the task time for this node is the value of SurvTimeLeft.

If the Operator loses the HVT, then FollowTime is set to a value determined by a

Beta distribution with a threshold of 42 and shape parameters of 0.588 and 1.23. The

Beta distribution was determined by inputting the experiment subjects’ 53 follow times

(if lost HVT) into Arena’s Input Analyzer and choosing a best fit distribution to model

the data. The Beta distribution had the least square error, with a value of 0.007394.

Because the time spent following the HVT cannot be longer than the time remaining in

the iteration, if the FollowTime value generated is greater than SurvTimeLeft, then it is

assumed that the Operator successfully followed the HVT for the remaining time without

losing it. Therefore, LoseHVT is set to false and FollowTime is set to equal

SurvTimeLeft. Else, LoseHVT is set to true. In either case, SurvTimeLeft is updated to

subtract the FollowTime, and the task time for this node is the value of FollowTime.

116

Alternatively, upon entering the node, if SurvTimeLeft is greater than 0 and

LoseHVT is true, then the Operator had previously found the HVT in this iteration, but

lost it and had to re-search and find the HVT again. The logic is the same for this task

path as in the previous two paragraphs, with the exceptions being a different probability

and probability distribution. The reason for this change is because Operators have a

higher probability of successfully following the HVT if they have already previously lost

and found it again. Therefore, to determine if the Operator loses the HVT again, a 0.66

probability is used. Out of 53 times of originally losing the HVT, 711th HPW subjects

never lost the HVT again 35 times, yielding 0.66.

If the Operator loses the HVT again, the FollowTime is set to an Exponential

distribution with a mean of 12.2, determined by inputting the subjects’ 78 re-follow times

(after losing the HVT, re-searching, and finding again) into Arena’s Input Analyzer and

choosing a best fit distribution. The Exponential distribution had the least square error,

with a value of 0.007821.

If SurvTimeLeft is 0 seconds, then the Operator either never found the HVT or did

not have enough time to indicate and start following, thus this task is “skipped.”

LoseHVT is set to false, FollowTime is set to equal SurvTimeLeft, and the node’s task

time is 0 seconds.

Regardless of the task time, the node has an ending effect that updates the

TtlFollowTime variable, which is calculated by summing the original TtlFollowTime with

FollowTime from this task. If this is the first time the Operator followed the HVT, then

the original TtlFollowTime is 0, yielding a new TtlFollowTime equal to this task’s

117

FollowTime. But if the Operator has previously followed the HVT in this iteration and

lost it, then the original TtlFollowTime is any time spent previously following the HVT.

This node has tactical path logic. If LoseHVT is false, then the Operator did not

lose the HVT and follows the HVT for the remainder of the iteration, so the entity moves

to Node 8: Calculate Surveillance Score, described later. If LoseHVT is true, then the

Operator lost the HVT and searches for it again in Node 20: Re-Search for HVT,

described next.

Node 20: Re-Search for HVT

In this node, the Operator re-searches for the HVT after having lost it, and either

locates it in the time remaining or fails to find the HVT again in the iteration. To

determine success or failure, a local variable named random is created and set to a

randomly-generated floating point number between 0 and 1. If random is less than 0.929,

then the Operator found the HVT again. 711th HPW subjects found the HVT 78 times

out of 84 iterations of re-searching, yielding 0.929 as the probability.

This node uses the floating point global variable ReSearchTime, which is the time

it takes the Operator to search for the HVT again after losing it.

If the HVT is found again, ReSearchTime is set to a value determined by a

Lognormal distribution with a mean and standard deviation of 3.03 and 3.61,

respectively. The Lognormal distribution was determined by inputting the experiment

subjects’ 84 re-search times into Arena’s Input Analyzer and choosing a best fit

distribution. The Lognormal distribution had the least square error, with a value of

0.004792. Because the time re-searching cannot be longer than the time left in the

iteration, any ReSearchTime values generated that are greater than SurvTimeLeft are set

118

to equal SurvTimeLeft, meaning the Operator re-searches for the remainder of the

iteration. SurvTimeLeft is updated to subtract the ReSearchTime.

If the Operator never finds the HVT again in the iteration, ReSearchTime is set to

equal SurvTimeLeft, meaning the Operator re-searches for the remainder of the iteration.

Additionally, SurvTimeLeft is set to equal 0.

The task time for this node is the ReSearchTime. Upon completion of this node,

the entity loops back to Node 7: Follow HVT for re-evaluation.

Node 8: Calculate Surveillance Score

In this node, the system calculates the Operator’s surveillance score for the

iteration completed. The Operator receives four points per second for the total time spent

following the HVT after it was found and indicated as found. The value of

TtlFollowTime is the time used to calculate the score because it is the total time the

Operator spent following the HVT, disregarding any time spent re-searching for the HVT

if the Operator lost it. The score is saved in the global variable SurvScore, which is a

floating point variable. Each subsequent iteration adds the score for that iteration to the

previous SurvScore value for a cumulative surveillance score.

The time for this task is dependent on if the Operator found the HVT. If

FoundHVT is set to true, meaning the Operator found the HVT, then the task time is 1

second. This is because each HVT is spawned every 60 seconds, so there is a 1 second

pause between when an iteration’s HVT is removed and the next iteration’s HVT

appears. Note that FoundHVT can be true even if the Operator did not have enough time

to indicate the HVT as found. In such a case, there is still a break in searching because

the Operator did actually still find the HVT, albeit with however little time left. If

119

FoundHVT is set to false, meaning the Operator never found the HVT and spent the

entire iteration searching, then the task time is 0 seconds. This is to represent that since

the Operator spent the entire iteration searching, he/she will continue searching into the

next iteration without a break, as the removal and re-spawning of the HVT is transparent

to the Operator. Recall that, in this case, SearchTime is the full 60 second iteration length

and all other variable times are 0 seconds.

This node has tactical path logic. If HVTIteration is less than three, then the

surveillance entity will directly return to Node 1: Spawn HVT, thus beginning the next

iteration and repeating the previously described task nodes. If HVTIteration equals three,

then the entity will move to Node 19: Surv 15 s Delay, described next. If HVTIteration

equals four, then the mission is complete and the entity moves to Node 10: Inform Msn

Ended, described later.

Node 19: Surv 15 s Delay

After the third iteration, the Operator searches for the HVT for 15 seconds before

the system actually spawns the fourth and final HVT. This is to represent that in the

711th HPW’s experiment, in between the third and fourth iterations a bio marker was

implanted in each subject’s mouth, thus a 15 second buffer was built into the timing so as

not to give the subjects a disadvantage at searching due to the interruption. In the model,

the task is 15 seconds and the Operator experiences the same workload as in Node 3:

Search for HVT. Upon completion, the entity returns to Node 1: Spawn HVT where the

final iteration is started. Recall that Node 1: Spawn HVT task time is 0 seconds, so the

flow from Node 19: Surv 15 s Delay to Node 3: Search for HVT is transparent to the

Operator.

120

Communication Task

While the primary surveillance task flow is being accomplished, the secondary

communication task flow concurrently runs. The following is a description of the

communication path, with descriptions of each task node.

Node 18: Initial 30 s Delay

After Model Start, the system waits 30 seconds before asking the first

communication question. This is because each of the four communication questions is

asked halfway through each corresponding HVT iteration.

Node 2: Listen to Question

In this node, the Operator listens to a communication question being asked by the

system. When the communication entity arrives at Node 2: Listen to Question, the

integer global variable CommIteration is immediately incremented up by one.

CommIteration keeps track of how many iterations of communication questions there

have been, therefore this signifies that the first, or next, question has been asked.

There are a variety of communication questions the system may ask, with length

ranging from 15 to 23 words. As determined by IMPRINT’s micromodel for speech, it

takes the system 5.17 seconds to speak 15 words and 7.93 seconds to speak 23 words.

The floating point global variable AskTime represents the time it takes the system to ask

the communication question, and is set to a value determined by a Rectangular

distribution with a minimum of 5.17 and mean of 6.55, where the mean is determined by

averaging 5.17 and 7.93 seconds. A Rectangular distribution was chosen because there

are equal chances of the system asking a question 15 to 23 words long. The task time for

this node is the AskTime.

121

The global variable CommTimeLeft is the time remaining in the iteration after the

system asks the question and, later in the model, after the Operator either calculates and

answers the question or does not. It is a floating point variable, and acts as the

“countdown timer” for each iteration. For communication iterations one and two, the

iteration lasts 60 seconds. Therefore, CommTimeLeft is set to AskTime subtracted from

the original 60 seconds. To account for the bio marker implantation described

previously, an extra 15 seconds is added to the third communication iteration for a total

length of 75 seconds. Therefore, CommTimeLeft is set to AskTime subtracted from 75

seconds. The fourth and final iteration is only 30 seconds, thus CommTimeLeft is set to

AskTime subtracted from 30 seconds.

Recall that each question is asked halfway through each HVT iteration, at 30, 90,

150, and 225 seconds according to the Clock variable.

Node 11: Calculate Answer

In this node, the Operator attempts to calculate the answer to the communication

question and either successfully calculates the answer or fails to do so. Success is

defined as calculating the answer within 30 seconds, which will be elaborated upon later.

To determine success or failure, a local variable named random is created and set to a

randomly-generated floating point number between 0 and 1. If random is less than 0.938,

then the Operator successfully calculated the answer. 0.938 is a probability derived from

analyzing the 711th HPW’s data. Out of 192 questions asked, subjects answered within

30 seconds 180 times, yielding 0.938 as the probability.

The global variable CalcTime is the time it takes the Operator to calculate the

answer to the question, and is a floating variable. If the answer is successfully calculated,

122

CalcTime is set to a value determined by a Lognormal distribution offset by 6 and with a

mean and standard deviation of 6.75 and 4.24, respectively. The Lognormal distribution

was determined by inputting the experiment subjects’ 180 successful calculation times

into Arena’s Input Analyzer and choosing a best fit distribution. The Lognormal

distribution had the least square error, with a value of 0.000477. Operators only have the

remaining iteration time after the system asks the question. Thus, because the Lognormal

distribution has no upper bound, any CalcTime values generated that are greater than the

value of CommTimeLeft are rounded to equal the value of CommTimeLeft.

If the Operator fails to calculate an answer, CalcTime is set to equal the value of

CommTimeLeft to represent that the Operator spent the entire communication iteration

attempting to calculate an answer. As a result, all subsequent task node times in the

iteration are 0 seconds so that the Operator continues to calculate an answer until asked

another question.

 Additionally, CommTimeLeft is updated to subtract out the CalcTime. If the

Operator failed to answer the question, then this value results in 0 seconds. The task time

for this node is the CalcTime: however long it took the Operator to calculate an answer.

Node 12: Answer Question

In this node, the Operator answers the question if he/she was able to successfully

calculate it. The length of an answer may range from 5 to 8 words. As determined by

IMPRINT’s micromodel for speech, it takes the Operator 1.72 seconds to speak 5 words

and 2.76 seconds to speak 8 words. The floating point global variable AnsTime is the

time it takes the Operator to answer the communication question, and is set to a value

determined by a Rectangular distribution with a minimum of 1.72 and mean of 2.24,

123

where the mean is determined by averaging 1.72 and 2.76 seconds. A Rectangular

distribution was chosen because there are equal chances of the Operator’s answer being 5

to 8 words long.

 The task time for this node is the AnsTime. If CommTimeLeft is at least equal to

AnsTime, then CommTimeLeft’s value is updated to subtract out the AnsTime. Otherwise,

two updates occur. First, AnsTime is set to equal CommTimeLeft. This means that the

Operator either never calculated an answer or calculated an answer but did not have

enough time to fully answer, thus the Operator talked for whatever time remained in the

iteration. Note that this is still considered a failure. Second, CommTimeLeft is set to 0

seconds. If AnsTime is 0 seconds, this means the Operator spent the entire iteration

calculating an answer, thus this task is “skipped.”

Node 16: Calculate Comm Score

In this node, the system calculates the Operator’s communication score for the

iteration completed. The Operator may earn a maximum of 50 points per question. The

Operator receives full points if the question is answered in 20 seconds or less, then loses

five points for every second taken afterwards, until the Operator finally receives no points

if answered in 30 seconds or greater. The total time of CalcTime added to AnsTime is the

value used to calculate the score because it is the time the Operator spent both calculating

and answering the question. Note that the Operator receives all 50 points in the fourth

iteration, regardless of the time. This is due to the Operator’s impaired speaking ability

resulting from the implanted bio marker. The score is saved in the global variable

CommScore, which is a floating point variable. Each subsequent iteration adds the score

for that iteration to the previous CommScore value for a cumulative communication

124

score.

 The time for this task is simply the time remaining in the iteration, as determined

by CommTimeLeft. If the Operator answered the question relatively quickly, then this

time will be several seconds long. If the Operator spent the entire iteration calculating

the answer, then this task time is 0 seconds.

 This node has path logic associated with it. If CommIteration is less than four,

then the communication entity will return to Node 2: Listen to Question, thus beginning

the next iteration and repeating the previously described task nodes. Otherwise,

CommIteration equals four and the task flow stops because the mission has ended.

Post-HVT/Communications Iterations

After both the surveillance and communication task flows are complete, the

model ends by performing the following two tasks:

Node 10: Inform Msn Ended

This is a system node modeled to convey that the system informs the Operator

that the mission has ended. It has no effects or task time.

Node 17: Aggregate Scores

This is also a system node, where the system combines the Operator’s

surveillance and communication scores to form a total score. The cumulative scores from

all four iterations, recorded in SurvScore and CommScore, are added together. The

resulting value is saved in the global variable TotalScore, which is a floating point

variable. This node has 0 seconds task time.

125

After the previous task node is complete, the Model Ends. The model takes 255

seconds to complete, corresponding to the Clock variable.

Assumptions

The baseline model was created with several underlying assumptions. These

assumptions are described in Table 4 below.

Table 4: Baseline Model Assumptions

Assumption Rationale

The data in the “Surveillance Scenario 4 –
Reverse Engineer.xls” file are correct.

The human subjects’ various times were
extracted from this file and used to fit
several probability distributions for the
model’s HVT search and follow times.
Since the file is used as the basis for the
model and will be what the model results are
compared to, it is assumed that the data
within the file is correct.

The data in the “HUMAN Formal Study 1
Key Press Data.xls” file are correct.

The times spent calculating the answers to
the communications questions were
extracted from this file and used to fit a
probability distribution for the model’s
answer times. It is assumed that the data
within the file is correct.

The HVT is visible for exactly 59 seconds
once it spawns.

The actual visible time in the experiment
varied between 54-56 seconds, as the HVT
is obscured while walking in or out of the
tent. 59 seconds was modeled to
standardize the model’s timing.

It always takes the Operator 0.2 seconds to
press the F key to indicate the HVT as
found.

IMPRINT’s micromodel for single finger
keying rate (to press the F key) was chosen
in order to simplify the model, though the
actual time would vary per individual.

126

A false alarm of hitting the F key when no
HVT is on-screen has a 0% probability of
occurring.

Since a false alarm occurred rarely to never
in the experiment, the Operator was
modeled as never incorrectly hitting the F
key in order to simplify the model.

The Operator has already zoomed the
camera in enough for maximum points when
he/she finds the HVT and starts following.

The mouse data from the experiment was
unavailable. However, upon visual
inspection of the score data, it appeared that
most or all of the experiment subjects were
already zoomed in when they started
following the HVT.

If the Operator finds the HVT but loses and
re-finds again, he/she does not have to re-
indicate the HVT as found.

As in the experiment, the Operator’s initial
indication of finding the HVT alerts the
system to begin scoring, thus the system is
henceforth aware of whether the HVT is on-
screen and does not need to be re-alerted.

If the Operator finds the HVT in an iteration,
it takes the system 1 second to calculate the
surveillance score.

This task’s timing was modeled in this
manner to ensure each iteration lasted 60
seconds. Each HVT is visible for 59
seconds, then re-spawns 1 second thereafter.

Answering a communication question
incorrectly has a 0% probability of
occurring.

Since answering a communication question
incorrectly occurred rarely to never in the
experiment, the Operator was modeled as
never incorrectly answering the question in
order to simplify the model.

The Operator already has a hand positioned
on the respective keyboard keys when
indicating that he/she has found the HVT
and when answering a communication
question.

This assumption affects the timing and
cognitive workload of associated tasks in the
model. Although it is unknown where the
subjects actually placed their hands, it is
probable that their hands were positioned in
this way during the experiment, as opposed
to re-positioning every time. Thus, it is
modeled as such in order to simplify the
model.

127

For the timing of the Calculate Comm Score
task, it takes the system whatever the
difference is between the total time allotted
for that iteration and how long it took the
Operator to calculate the answer.

As with the Calculate Surv Score task, this
task’s timing was modeled to maintain the
experiment’s timing. Each new question is
asked at certain times during the
experiment, so this task makes up the timing
difference.

The VACP workload values assigned to the
Operator are representative of workload
experienced during the experiment.

Without the knowledge of each subject’s
personal strategy or what they were actually
thinking, workload values are assigned in
the model to reflect how the experiment was
intended to be completed. For example, that
the Operator is actively searching for the
HVTs and trying to calculate the answer to
the questions, as opposed to not trying.

The Operator completes each task modeled
without deviating from the model.

As with the previous assumption, each
subject’s personal strategy or what they
were actually thinking is unknown. Thus,
the Operator was modeled as following each
task in order to reflect how the experiment
was intended to be completed.

The workload experienced while performing
the secondary communication task does not
affect the Operator’s workload for the
primary surveillance task.

Without the knowledge of each subject’s
personal strategy or what they were
thinking, workload was modeled in this way
in order to simplify the model.

Model Verification

To verify that the baseline model’s results were as expected, several factors

regarding task performance and workload were evaluated while running the IMPRINT

model.

Task Performance

The number of times tasks were performed: The appropriate surveillance task

nodes (Spawn HVT, Search for HVT, Indicate HVT Located, and Calculate Surv Score)

128

and communication task nodes (Listen to Question, Calculate Answer, Answer Question,

and Calculate Comm Score) were each performed four times, corresponding to the four

iterations. Recurring nodes (Follow HVT and Re-Search for HVT) were performed

multiple times during iterations, corresponding to the Operator losing and re-finding the

HVT. Other nodes (Initial 30 s Delay, Surv 15 s Delay, Inform Msn Ended, and

Aggregate Scores) were only performed once because they only occurred at single points

in the model.

The task durations: All nodes with deterministic times (Spawn HVT, Initial 30 s

Delay, Surv 15 s Delay, Inform Msn Ended, and Aggregate Scores) were unchanged.

The other nodes that had stochastic or tactical task times exhibited times consistent with

the model’s coding and values within parameters. Additionally, the model’s total run

time was indeed 255 seconds.

Workload

The task start times: All tasks that were supposed to occur at certain times

performed as expected. Each new HVT was spawned every 60 seconds and each new

communication question was asked 30 seconds into each HVT iteration.

Congruence of the Operator’s workload throughout the model: As seen in the

sample workload graph in Figure 28, most HVT iterations generally start with the

Operator searching for the HVT with a VACP workload of 17.4. A slightly lower score

shows the Operator found the HVT and has indicated so, followed by an even lower score

as the Operator progresses into “follow” mode. This decreased workload makes sense, as

the Operator is not as actively engaged and merely must follow the HVT. When a

communication question is asked, this naturally increases the Operator’s workload. Note

129

that calculating an answer has a higher workload than listening to the question. This is

because of the combination of looking up the necessary value on the monitor to calculate

the answer, and the cognitive process of actually calculating the answer. The workload

value when answering the question is in between the workload values of the two other

communication tasks due to the high number of channels used but relatively lower

cognitive demand. The sharp drop-offs in workload occur when the Operator is

following an HVT and the HVT is removed at the end of the iteration. For that one

second, the Operator has nothing to do before starting to search for the next HVT.

Figure 28: Sample Operator Workload Graph

130

All of the results presented in the IMPRINT reports were as expected and within

parameters. Thus the baseline model was successfully verified to match the conceptual

model and was consistent with how the model was intended to perform.

131

Appendix C – Baseline Model Validation

Overview

This appendix provides a detailed description of how the Vigilant Spirit baseline

Improved Performance Research Integration Tool (IMPRINT) model was validated.

Model Response Variables

Two response variables were measured in the model and validated. The first

variable is the operator’s performance score. This is the total score resulting from

aggregating the individual surveillance and communication scores from the primary and

secondary tasks during the mission. The surveillance score measures how quickly the

operator located the four HVTs and how well he/she was able to follow the HVTs once

located. The communication score measures how quickly and accurately the operator

was able to answer four questions asked during the mission. The two scores combined

measure the operator’s total performance during the mission.

The second variable is the operator’s workload. IMPRINT models workload

using the visual, auditory, cognitive, psychomotor (VACP) method (Bierbaum, Szabo, &

Aldrich, 1989). In this method, each of the operator’s tasks are assigned a workload

value corresponding to the auditory, cognitive, fine motor, gross motor, speech, tactile,

and visual demands associated with that task.

Real-World Response Variables

The real-world data to validate against was collected during a study conducted by

the 711th Human Performance Wing (HPW). In this study, operator performance scores

and workload were also measured. The performance score is described in the same way

132

as the model. Since the study involved subjects undergoing a computer-simulated

mission, the score data was collected directly via the simulation software.

The workload data collected is different than the model’s data. After the 711th

HPW’s subjects completed the mission, they filled out a NASA-TLX form, in which they

rated the mental demand, physical demand, temporal demand, performance, effort, and

frustration they experienced during the entire mission (Hart & Staveland, 1988). NASA-

TLX workload measurements are subjective and empirical in nature. By contrast, the

VACP method is more objective and analytical. The dichotomy between these two

methods precludes a statistical validation of the model’s workload with the real-world.

Validating Performance Score

The model’s performance score was assessed via two methods: visual and

statistical evaluation.

First, in order to determine the number of model replications needed to validate

the data, a desired confidence interval was determined. To aid in doing so, the

descriptive statistics for the real-world data were calculated, shown in Table 5. This

included calculating the corresponding interval half-widths for various confidence levels

to get an idea of the data spread.

133

Table 5: Real-World Data Statistics for Score

n 48
Confidence

Level .95 .90 .80 .70 Mean (M) 480.984
Std Deviation
(SD)

152.858

Variance 23365.617

Half-Width 44.385 37.020 28.678 23.122 Min 200
Max 851.452
Range 651.452

The 37.020 half-width for a 90% confidence level corresponded to a 15.4% range

of the full data set centered on the mean. This 15.4% range provided a tight interval of

(443.964, 518.004) while also keeping a high confidence level. Therefore, the 90%

confidence level with a half-width of 37.020 (highlighted in Table 5) was chosen as the

desired half-width for the model data.

Next, an initial set of ten pilot runs were performed by the model to determine the

number of replications needed to achieve the desired half-width. A 90% confidence level

on the pilot runs yielded a half-width of 68.203. Thus, it was calculated that 34

replications were needed to achieve the closest half-width to 37.020. These replications

were run, with the descriptive statistics shown in Table 6.

134

Table 6: Model Data Statistics for Score

n 34
Mean 487.286
Std Deviation 141.088
Variance 19905.85
Min 122.773
Max 704.569
Range 581.796
Confidence Level .90
Half-Width 40.949

The model’s 40.949 half-width for a 90% confidence level corresponded to a

16.8% range of the full data set centered on the mean. This range also provided a tight

interval of (446.337, 528.235), which is only 1.5% different than the spread of the real-

world data. The confidence intervals for the real-world and model data were plotted and

are shown in Figure 29.

Figure 29: Confidence Intervals for Real-World and Baseline Model Score Data

Upon visual evaluation of the confidence intervals, there is a 72 point overlap

between the two data sets. This overlap is significant, considering it is greater than the

135

half-widths of either sample. This overlap provided an indication that the model’s data

was similar enough to the real-world data that the model may be valid.

Next, a statistical evaluation of the data was conducted by performing an

independent-samples t-test between the two data sets. The null hypothesis H0 was

defined such that there was no difference between the real-world and model data, while

the alternative hypothesis HA stated that there was a difference. The t-test results are

displayed in Table 7.

Table 7: Independent-Samples T-Test Results

T-Value 0.19246
degrees of freedom (df) 75
Critical Value (t.90, 75) 1.6654
P-Value 0.84791

There was not a significant difference in the scores for the model (M=487.286,

SD=141.088) and real-world (M=480.984, SD=152.858) conditions; t(75)=0.19246,

p=0.84791. The critical region in which H0 should be rejected is t>1.6654. Since

t=0.19246, we failed to reject H0, meaning there was insufficient evidence the model

differed from the real-world. Further, using the p-value approach, the fact that

p=0.84791 was significantly greater than the chosen critical value of p=0.10 indicated

that there was no significant difference between the two sets.

These results suggested that there is insufficient evidence the baseline model

differs from the real-world, thus resulting in a successful validation of score.

136

Validating Workload

As previously mentioned, the contrast between the model’s VACP method and

the 711th HPW’s NASA-TLX workload assessment prevented a direct comparison

between the two data sets. However, the model’s workload was still assessed via peer

and subject matter expert (SME) review.

First, peer reviews were conducted with two colleagues, during which each of the

model’s human tasks were explained to them and they provided their opinions on the

associated workload levels for each task. An analysis of their assigned workloads

revealed the same overall trend in surveillance workload patterns throughout the mission

as in the model. The Search for HVT node has a higher workload than Follow HVT,

while the Indicate HVT Located workload values are similar to Search for HVT. There

was some disagreement between whether Indicate HVT Located should be a higher or

lower value than Search for HVT. For the communication tasks, there was no general

agreement on an overall workload pattern between Listen to Question, Calculate Answer,

and Answer Question. However, the demand values between the model and peers only

varied by one or two points, and were all between 7 and 11. For all task nodes, when

both peers assigned workload values that were consistently higher or lower than the

model’s, adjusting the corresponding value within the model was considered. Otherwise,

personal judgment was used to assess whether the model’s workload values needed to be

changed. Following analysis of the peer reviews, the cognitive workload values for

Search for HVT, Indicate HVT Located, and Follow HVT were increased. Overall, the

workload values from the peer reviews closely correlated with those of the model, and

little adjustment was necessary.

137

For the SME review, a member of the 711th HPW that was involved in

conducting the experiment was interviewed. The following questions were asked in

order to aid the SME in assessing his opinion on task workload levels in relation to each

other:

1. Do you think workload is higher (or the same) when the Operator is searching for

the HVT, or following the HVT?

2. Do you think the workload for indicating the HVT is located is higher or lower

than either or both of the other two tasks?

3. Do you think workload is higher (or the same) when the Operator is listening to

the question or answering the question?

4. Do you think the workload for calculating the answer is higher or lower than

either or both of the other two tasks?

For the surveillance tasks, the SME’s responses correlated with the trend in the

model’s workload patterns. Search for HVT is unequivocally the task with which

Operators experience the highest demand. Indicate HVT Located follows, which the

SME stated was slightly more difficult than Follow HVT. For the communication tasks,

the SME agreed that Calculate Answer had the highest workload. However, the SME’s

opinion on the two remaining tasks slightly differed from the model’s workload. The

SME thought that Listen to Question had a higher demand than Answer Question because

all the latter involves is stating the answer since the Operator already calculated it. In

contrast, the model places a higher workload value on Answer Question than Listen to

Question. However, the SME pointed out uncertainty in his assessment of Listen to

Question being higher demand, stating that the two tasks are very close. This agrees with

138

the model, as the VACP point difference between the two tasks is only 1.2. Therefore, it

was decided that the model’s current workload values were acceptable as is. The reason

for this decision is that a high-level discussion of workload fails to take into account the

intricacies of the different channels used in a particular task. Most people do not consider

the fine motor and tactile activities that are part of answering the question, which are the

key factors that make Answer Question a slightly higher demand value than Listen to

Question in the model.

Following peer and SME review, it was concluded that the model’s workload

response variable was validated. The demand values assessed by peers and the opinions

discussed by the SME either directly agreed with the model or differed slightly enough as

to yield no significant changes to the model. The only change to workload values in the

model was an increase in cognitive demand for the surveillance tasks.

139

Appendix D – Alternative Model Description

Overview

 This appendix provides a detailed description of the Improved Performance

Research Integration Tool (IMPRINT) alternative model of Vigilant Spirit, to include

changes from the baseline, and the assumptions made when creating the model.

Introduction

The alternative design of the remotely piloted aircraft (RPA) surveillance mission

incorporates a theoretical system automation in an effort to aid the operator’s

performance and workload. The system automation uses an algorithm to scan for the

high value target (HVT) within the camera’s field of view while the operator also

searches the market. The scanning algorithm uses a number of features from the

environment to identify the HVT, such as on-screen individuals’ movements, behaviors,

and equipment. If the system determines the HVT is in view, it notifies the operator and

requests confirmation. If the potential target is indeed the HVT, then the operator

confirms by pressing the F key and proceeds to follow the HVT. If the operator denies

the potential HVT, the system begins scanning for the HVT again while the operator

continues searching. Figure 30 shows the IMPRINT task network for the alternative

model, with the system automated task in green.

140

Figure 30: Alternative Vigilant Spirit Model in IMPRINT

Changes from Baseline Model

 The following is a detailed description of all of the alternative model’s changes

from the baseline.

Node 1: Spawn HVT

 The only change with this node is the addition of another variable setting, where

SurvTimeLeft is set to 59 seconds. The reason for this change is because of the increased

complexity and recurrent nature of subsequent nodes.

Node 3: Search for HVT

 This task is now performed by both the Operator and Automation instead of just

the Operator, and has several changes. The key difference is that both the Operator and

Automation search for the HVT independently of each other. The Operator’s probability

of finding the HVT and probability distribution of search time are unchanged, but the

data is now captured in the human-specific variables HmnFoundHVT and

HmnSearchTime instead of FoundHVT and SearchTime. The Automation’s search time

141

is captured by the system-specific variable SysSearchTime, and is determined by a

Weibull distribution with a threshold of 4 and varying shape and scale parameters. For

an explanation of the Weibull shape and scale parameters used for the Automation, see

Appendix E. Any Weibull values generated that are greater than 58.56 seconds are

rounded to equal 60 seconds. This is because if the Automation finds the HVT but the

Operator does not have 0.44 seconds to confirm (discussed later in Node 4: Confirm

HVT), or if the Automation never finds the HVT in an iteration, then the Automation

continues searching into the next iteration. In that case, the system-specific variable

SysFoundHVT is set to false. If the Automation finds the HVT, then SysFoundHVT is set

to true. SearchTime and FoundHVT correspond to whoever’s search time is the shortest:

the Operator or Automation. If the Automation finds the HVT faster than the Operator,

then SearchTime equals SysSearchTime, FoundHVT equals SysFoundHVT, and

HmnFaster is set to false, where HmnFaster is a Boolean variable that tracks whether or

not the Operator found the HVT before the Automation. Otherwise, SearchTime,

FoundHVT, and HmnFaster are set accordingly to the human-specific values.

 If FoundHVT is true, meaning if either the Operator or Automation found the

HVT, then SurvTimeLeft is updated to subtract SearchTime. If the value of SearchTime

is greater than SurvTimeLeft, then SearchTime is set to equal SurvTimeLeft and

SurvTimeLeft is set to 0 seconds. If the HVT was not found, then SearchTime is set to

equal SurvTimeLeft plus 1 second so that the Operator and Automation continue

searching into the next iteration, and SurvTimeLeft is set to 0 seconds.

142

Node 21: Suggest HVT

 This is a new task node and is performed by the Automation. It is modeled to

convey that the Automation indicates to the Operator a suggested HVT, requesting

confirmation. This happens virtually instantaneously, so the node has no task time or

effects.

Node 4: Confirm HVT

 This task node is modified from the baseline’s Node 4: Indicate HVT Located.

The first thing that happens in this node is a determination of whether or not the

Automation correctly identified the HVT. This data is captured by the integer variable

SysWrong with an initial value of 0. If there is no time left in the iteration (SurvTimeLeft

= 0 seconds) or if the Operator found the HVT first (HmnFaster = true), then SysWrong

is set to 0 (i.e. not applicable). If the Automation found the HVT first, its accuracy is set

by a local random variable named random that creates a randomly-generated floating

point number between 0 and 1. If random is less than a varying number (0.9, 0.8, or 0.7),

then the Automation accurately identified the HVT and SysWrong is set to 2 (i.e. false).

Else, the Automation was incorrect and SysWrong is set to 1 (i.e. true). For an

explanation of the accuracy parameters used for the Automation, see Appendix E.

 If the Operator found the HVT first, then the task time for this node is unchanged

from the baseline. If the Automation found the HVT first, then 0.44 seconds is the value

used instead of the baseline’s 0.2 seconds. This is determined by IMPRINT’s

micromodel for choice reaction time, where it takes 0.24 seconds to choose between two

possible alternatives. Once the Operator decides, it still takes 0.2 seconds to press a

keyboard key to confirm or deny, adding to 0.44 total seconds.

143

 The node now has tactical path logic. If there is no time left in the iteration

(SurvTimeLeft = 0), the Operator found the HVT first (HmnFaster = true), or if the

Automation accurately identified the HVT (SysWrong = 2), then the entity continues to

Node 7: Follow HVT. Otherwise, the Operator and Automation must continue searching

for the HVT, so the entity loops back to Node 3: Search for HVT.

Assumptions

As with the baseline model, the alternative model was created with several

assumptions. These assumptions are described in Table 8 below.

Table 8: Alternative Model Assumptions

Assumption Rationale
It takes the Automation 0 seconds to indicate
to the Operator if it thinks it found the HVT.

In reality it would take a small amount of
time for the Automation to process the
information and send the command to
indicate to the Operator. However, this time
is assumed to be 0 seconds to simplify the
model.

It always takes the Operator 0.24 seconds to
decide whether the System found the HVT.

IMPRINT’s micromodel for choice reaction
time between two choices (confirm or deny)
was chosen in order to simplify the model,
though the actual time would vary per
individual.

It always takes the Operator 0.2 seconds to
press the F key to either indicate the HVT as
found or to confirm whether the Automation
found the HVT.

IMPRINT’s micromodel for single finger
keying rate (to press the F key) was chosen
in order to simplify the model, though the
actual time would vary per individual.

If the Automation suggests a HVT and the
Operator denies it as correct, then both begin
searching again using the same probability
distributions for Search Times.

In reality the Operator’s search efforts might
be affected, consciously or subconsciously,
by the distraction of the Automation’s
incorrect suggestion. However, the
Operator is assumed to be unaffected in
order to simplify the model.

The addition of Automation does not affect the
probability distribution for the Operator’s
Calculate Answer time for the
communications questions.

The probability distribution for the task
timing is kept the same as the baseline’s to
avoid introducing subjectivity into the
model by creating an arbitrary distribution.

144

Appendix E – Alternative Model Output Analysis

Overview

 This appendix provides a detailed description of how the Improved Performance

Research Integration Tool (IMPRINT) alternative model’s output analysis was compared

to the baseline model.

Introduction

Recall that the alternative model implemented an automated scanning algorithm

designed to aid the operator in searching for the high value target. Six algorithm settings

were chosen to analyze as trades, with automation accuracy and speed parameters

varying per trade, listed in Table 9.

Table 9: Scanning Algorithm Accuracy and Speed Settings

 Accuracy
Speed (4+Weibull)

Shape Scale Mean Variance

Trade 1
90%

8.5 25.5 28.084 11.399
Trade 2 6.4 23.5 25.879 15.955
Trade 3

80%
6.7 20 22.666 10.669

Trade 4 4 17 19.409 18.687
Trade 5

70%
3.2 10 12.957 9.438

Trade 6 1.7 7 10.246 14.301

The alternative model was run for each of these six tradeoffs and the outputs

compared against the baseline. The goal was to successfully validate that the alternative

tradeoff models provided significant increases in performance and decreases in user

workload from the baseline. In order to test at a 90% confidence level if the alternative

145

improved upon the baseline in both performance and workload, a Bonferonni Correction

yielded the requirement to test each response variable individually at a 95% confidence

level.

Performance Score

The tradeoff alternative models’ performance scores were assessed via two

methods: visual and statistical evaluation. As previously determined from the baseline

model validation, the IMPRINT simulation was run 34 times for each of the six tradeoff

alternative trials to collect the correct data sample size to compare with the baseline. The

descriptive statistics for the tradeoff data were calculated, shown in Table 10.

146

Table 10: Tradeoff Data Statistics for Score

Trade 1: 90%, 4+Weibull(8.5, 25.5) Trade 2: 90%, 4+Weibull(6.4, 23.5)
n 34 n 34
Mean 668.981 Mean 678.57
Std Deviation 71.259 Std Deviation 71.439
Variance 5077.899 Variance 5103.560
Min 518.073 Min 489.533
Max 801.996 Max 817.605
Range 283.922 Range 328.072
Confidence Level .95 Confidence Level .95
Half-Width 24.864 Half-Width 24.926

Trade 3: 80%, 4+Weibull(6.7, 20) Trade 4: 80%, 4+Weibull(4, 17)
n 34 n 34
Mean 675.292 Mean 714.185
Std Deviation 82.309 Std Deviation 95.286
Variance 6774.828 Variance 9079.450
Min 528.215 Min 511.860
Max 796.587 Max 875.007
Range 268.372 Range 363.147
Confidence Level .95 Confidence Level .95
Half-Width 28.719 Half-Width 33.247

Trade 5: 70%, 4+Weibull(3.2, 10) Trade 6: 70%, 4+Weibull(1.7, 7)
n 34 n 34
Mean 779.081 Mean 822.092
Std Deviation 80.510 Std Deviation 108.436
Variance 6481.904 Variance 11758.288
Min 621.604 Min 544.017
Max 924.039 Max 972.681
Range 302.435 Range 428.664
Confidence Level .95 Confidence Level .95
Half-Width 28.091 Half-Width 37.835

The 95% confidence intervals for the baseline and tradeoff data were plotted and

are displayed in Figure 31.

147

Figure 31: Confidence Intervals for Baseline/Tradeoff Models for Score

Upon visual evaluation of the confidence intervals, all six trades appeared to be

significantly improved from the baseline. The goal was to have no point overlap between

the baseline and alternative data sets, which all alternatives achieved. Trade 1 contained

the lowest scores out of the six alternatives, and its interval’s minimum value was still

108 points higher than the baseline’s maximum value. Thus, it appeared that all tradeoff

alternatives improved performance enough to be significantly different than the baseline.

Next, each trade’s score data were statistically evaluated against the baseline. A

one-way analysis of variance (ANOVA) was conducted to compare the effect of scan

accuracy and speed on score in the baseline and each of the six trade conditions. The null

hypothesis H0 was defined such that there was no difference between the baseline and

alternative data, while the alternative hypothesis HA stated that there was a difference.

The ANOVA found a significant effect of scan accuracy and speed on score at the p<0.05

148

level for the baseline and six trade conditions [F(6, 231) = 41.93, p = 0.000]. Thus H0

was rejected, meaning there was sufficient evidence that at least one of the alternatives

differed from the baseline. The results of the ANOVA are displayed in Table 11.

Table 11: One-Way ANOVA Data for Score

Source DF SS MS F P
Base, Trades 1-6 6 2306807 384468 41.93 0.000
Error 231 2117999 9169
Total 237 4424806

Post hoc comparisons using Tukey’s honest significant difference (HSD) test

indicated that the mean scores for all six trades were significantly different than the

baseline. These statistical observations confirm what was visually observed in Figure 31.

However, it should be noted that although all six trades were statistically better than the

baseline, they were not necessarily statistically different from each other. The mean,

standard deviation, and relative groupings of scores for the baseline and six trades are

shown in Table 12, where means that do not share a grouping letter are significantly

different. Similarly, the Tukey differences of means for simultaneous 95% confidence

intervals of the baseline and six trades are displayed in Figure 32, where mean intervals

that do not contain zero are significantly different.

149

Table 12: Tukey’s HSD Results for Baseline/Trades for Score

 Mean Standard
Deviation Grouping

Baseline 487.3 141.1 A
Trade 1 669.0 71.3 B
Trade 2 678.6 71.4 B
Trade 3 675.3 82.3 B
Trade 4 714.2 95.3 B C
Trade 5 779.1 80.5 C D
Trade 6 822.1 108.4 D

Figure 32: Tukey Differences of Means for 95% CI for Score

Trade 6 - Trade 5
Trade 6 - Trade 4
Trade 5 - Trade 4
Trade 6 - Trade 3
Trade 5 - Trade 3
Trade 4 - Trade 3
Trade 6 - Trade 2
Trade 5 - Trade 2
Trade 4 - Trade 2
Trade 3 - Trade 2
Trade 6 - Trade 1
Trade 5 - Trade 1
Trade 4 - Trade 1
Trade 3 - Trade 1
Trade 2 - Trade 1

Trade 6 - Base
Trade 5 - Base
Trade 4 - Base
Trade 3 - Base
Trade 2 - Base
Trade 1 - Base

4003002001000-100

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for Score

150

Workload

The alternative tradeoff models’ workload values were also assessed visually and

statistically. To do this, the IMPRINT baseline and six alternative trials were each run 34

times and a time-weighted average workload was derived for each run. The data sample

size of 34 was chosen for consistency with the performance score data. From this data,

the descriptive statistics were calculated and are shown in Table 13.

151

Table 13: Baseline/Tradeoff Data Statistics for Workload

Baseline
n 34
Mean 20.116
Std Deviation 0.8062
Variance 0.6499
Min 18.973
Max 22.399
Range 3.426
Confidence Level .95
Half-Width 0.2813
Trade 1: 90%, 4+Weibull(8.5, 25.5) Trade 2: 90%, 4+Weibull(6.4, 23.5)

n 34 n 34
Mean 19.645 Mean 19.693
Std Deviation 0.5985 Std Deviation 0.6677
Variance 0.3582 Variance 0.4459
Min 18.984 Min 18.960
Max 21.120 Max 21.545
Range 2.136 Range 2.585
Confidence Level .95 Confidence Level .95
Half-Width 0.2088 Half-Width 0.2330

Trade 3: 80%, 4+Weibull(6.7, 20) Trade 4: 80%, 4+Weibull(4, 17)
n 34 n 34
Mean 19.827 Mean 19.751
Std Deviation 0.7775 Std Deviation 0.8328
Variance 0.6045 Variance 0.6936
Min 18.826 Min 18.743
Max 21.549 Max 21.504
Range 2.723 Range 2.761
Confidence Level .95 Confidence Level .95
Half-Width 0.2713 Half-Width 0.2906

Trade 5: 70%, 4+Weibull(3.2, 10) Trade 6: 70%, 4+Weibull(1.7, 7)
n 34 n 34
Mean 19.483 Mean 19.425
Std Deviation 0.7042 Std Deviation 0.6043
Variance 0.4959 Variance 0.3652
Min 18.577 Min 18.503
Max 21.468 Max 21.211
Range 2.891 Range 2.708
Confidence Level .95 Confidence Level .95
Half-Width 0.2457 Half-Width 0.2108

152

The 95% confidence intervals for the baseline and alternative tradeoff data were

plotted and are displayed in Figure 33.

Figure 33: Confidence Intervals for Baseline/Tradeoff Models for Workload

Upon visual evaluation of the confidence intervals, it was observed that all the

tradeoffs’ interval values were less than the baseline’s, showing that workload was

decreased. However, Trades 1-4’s values all overlapped the baseline by varying

amounts. Only Trades 5 and 6 had intervals that did not overlap the baseline. Thus, it

appeared that Trades 5 and 6 were the only two alternatives to have significantly

improved workload values.

As with the performance score data, each trade’s workload data were statistically

evaluated against the baseline. A one-way ANOVA was also conducted to compare the

effect of scan accuracy and speed on workload in the baseline and each of the six trade

conditions. The null hypothesis H0 was defined such that there is no difference between

153

the baseline and alternative data, while the alternative hypothesis HA stated that there was

a difference. The ANOVA found a significant effect of scan accuracy and speed on

workload at the p<0.05 level for the baseline and six trade conditions [F(6, 231) = 3.48, p

= 0.003]. Thus H0 was rejected, meaning there was sufficient evidence that at least one

of the alternative models differed from the baseline. The results of the ANOVA are

displayed in Table 14.

Table 14: One-Way ANOVA Data for Workload

Source DF SS MS F P
Base, Trades 1-6 6 10.79 1.7984 3.48 0.003
Error 231 119.24 0.5162
Total 237 130.03

Post hoc comparisons using Tukey’s HSD test indicated that the mean workload

for Trades 5 and 6 were significantly different than the baseline. However, Trades 1-4

did not significantly differ from the baseline or each other. These statistical observations

corroborate what was visually observed in Figure 33, showing that Trades 5-6 are the

only two alternatives to be statistically different than the baseline. The mean, standard

deviation, and relative groupings of workload for the baseline and six trades are shown in

Table 15, where means that do not share a grouping letter are significantly different. The

Tukey differences of means for simultaneous 95% confidence intervals of the baseline

and six trades are displayed in Figure 34, where mean intervals that do not contain zero

are significantly different.

154

Table 15: Tukey’s HSD Results for Baseline/Trades for Workload

 Mean Standard
Deviation Grouping

Baseline 20.116 0.806 A
Trade 1 19.645 0.598 A B
Trade 2 19.693 0.668 A B
Trade 3 19.827 0.777 A B
Trade 4 19.751 0.833 A B
Trade 5 19.483 0.704 B
Trade 6 19.425 0.604 B

Figure 34: Tukey Differences of Means for 95% CI for Workload

Trade 6 - Trade 5
Trade 6 - Trade 4
Trade 5 - Trade 4
Trade 6 - Trade 3
Trade 5 - Trade 3
Trade 4 - Trade 3
Trade 6 - Trade 2
Trade 5 - Trade 2
Trade 4 - Trade 2
Trade 3 - Trade 2
Trade 6 - Trade 1
Trade 5 - Trade 1
Trade 4 - Trade 1
Trade 3 - Trade 1
Trade 2 - Trade 1

Trade 6 - Base
Trade 5 - Base
Trade 4 - Base
Trade 3 - Base
Trade 2 - Base
Trade 1 - Base

0.50.0-0.5-1.0

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for Workload

155

Bibliography

Ahram, T., & Karwowski, W. (2009). Human Systems Integration Modeling Using
Systems Modeling Language. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting (pp. 1849-1853). San Antonio: SAGE.

Allender, L. (2000). Modeling Human Performance: Impacting System Design,
Performance, and Cost. Proceedings of the Military, Government and Aerospace
Simulation Symposium, 2000 Advanced Simulation Technologies Conference, (pp.
139-144). Washington D.C.

Bierbaum, C. R., Szabo, S. M., & Aldrich, T. B. (1989). Task Analysis of the UH-60
Mission and Decision Rules for Developing a UH-60 Workload Prediction Model,
Volume 1: Summary Report. Fort Rucker: U.S. Army Research Institute.

Bodenhamer, A. (2012). Adaptations in the US Army MANPRINT process to utilize
HSI-inclusive systems architectures. Procedia Computer Science 8, 249-254.

Boy, G. A., & Narkevicius, J. M. (2013). Unifying Human Centered Design and Systems
Engineering for Human Systems Integration. Proceedings of the 4th International
Conference on Complex Systems Design and Management (pp. 151-162). Paris:
Springer.

Bruseberg, A. (2008). Human Views for MODAF as a Bridge Between Human Factors
Integration and Systems Engineering. Journal of Cognitive Engineering and
Decision Making, 220-248.

Cassenti, D. N., Kelley, T. D., Colle, H. A., & McGregor, E. A. (2011). Modeling
Performance Measures and Self-Ratings of Workload in a Visual Scanning Task.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp.
870-874). Las Vegas: SAGE.

Chua, Z. K., & Feigh, K. M. (2011). Integrating Human Factors Principles into Systems
Engineering. Digital Avionics Systems Conference Proceedings (pp. 6A11-
6A111). Seattle: IEEE.

Cloutier, R., Sauser, B., Bone, M., & Taylor, A. (2015). Transitioning Systems Thinking
to Model-Based Systems Engineering: Systemigrams to SysML Models. IEEE
Transactions on Systems, Man, and Cybernetics, 662-674.

156

Colombi, J. M., Miller, M. E., Schneider, M., McGrogan, J., Long, D. S., & Plaga, J.
(2011). Predictive Mental Workload Modeling for Semiautonomous System
Design: Implications for Systems of Systems. Systems Engineering, 448-460.

Crane, J., & Brownlow, L. (2015). Optimization of Multi-Satellite Systems Using
Integrated Model Based System Engineering (MBSE) Techniques. IEEE
International Systems Conference (pp. 206-211). Vancouver: IEEE.

Crisp, H. E., Hoang, N. T., Karangelen, N. T., & Britton, D. A. (2000). An Integrated
Tools Environment for Human Centered Design of Complex Systems.
Proceedings of SPIE - The International Society for Optical Engineering (pp.
155-163). San Diego: SPIE.

Delligatti, L. (2014). SysML Distilled: A Brief Guide to the Systems Modeling Language.
Upper Saddle River: Addison-Wesley.

Department of Defense. (2009). DoDAF V2.0, Vol 2: Architectural Data and Models.
Washington, DC.

Department of Defense. (2013). Defense Acquisition Guidebook. Washington, DC.

Department of Defense. (2015). DoD Instruction 5000.02: Operation of the Defense
Acquisition System. Washington, DC.

Dickason, D., Sargent, B., & Bagnall, T. (2009). Investigating the Incorporation of
Personality Constructs into IMPRINT. Millington: Navy Personnel Research,
Studies, and Technology.

Do, Q., Cook, S., & Lay, M. (2014). An investigation of MBSE practices across the
contractual boundary. Conference on Systems Engineering Research (pp. 692-
701). Redondo Beach: Elsevier B.V.

Forsberg, K., Mooz, H., & Cotterman, H. (2005). Visualizing Project Management, 3rd
ed. Hoboken: John Wiley & Sons, Inc.

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical Guide to SysML: The
Systems Modeling Language, 3rd ed. Waltham: Morgan Kaufmann OMG Press.

Handley, H. A. (2011). Incorporating the NATO Human View in the DoDAF 2.0 Meta
Model. Systems Engineering, 108-117.

157

Handley, H. A., & Smillie, R. J. (2008). Architecture Framework Human View: The
NATO Approach. Systems Engineering, 156-164.

Handley, H. A., & Smillie, R. J. (2009). Human View Dynamics - The NATO Approach.
Systems Engineering, 72-79.

Handley, H., & Knapp, B. (2014). Where are the People? The Human Viewpoint
Approach for Architecting and Acquisition. Defense Acquisition Research
Journal, 852-874.

Hardman, N., & Colombi, J. (2012). An Empirical Methodology for Human Integration
in the SE Technical Processes. Systems Engineering, 172-190.

Hardman, N., Colombi, J., Jacques, D., & Miller, J. (2008). Human Systems Integration
within the DoD Architecture Framework. IIE Annual Conference and Expo (pp.
840-845). Vancouver: IIE.

Harriott, C. E., Zhang, T., & Adams, J. A. (2013). Assessing Physical Workload for
Human-Robot Peer-Based Teams. International Journal of Human Computer
Studies, 821-837.

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research. In P. A. Hancock, & N. Meshkati
(Eds.), Human Mental Workload (pp. 139-183). Amsterdam: Elsevier.

Hawley, J. K. (2011). Not By Widgets Alone: The Human Challenge of Technology-
Intensive Military Systems. Armed Forces Journal, 24-28, 41.

Hoepf, M., Middendorf, M., Epling, S., & Galster, S. (2015). Physiological Indicators of
Workload in a Remotely Piloted Aircraft Simulation. 18th International
Symposium on Aviation Psychology (pp. 428-433). Dayton: Curran Associates,
Inc.

Hopcroft, R., Burchat, E., & Vince, J. (2006). Unmanned Aerial Vehicles for Maritime
Patrol: Human Factors Issues. Victoria: Defence Science and Technology
Organisation.

International Council on Systems Engineering. (2015). Systems Engineering Handbook.
Hoboken: John Wiley & Sons, Inc.

International Ergonomics Association. (2016). Definition and Domains of Ergonomics.
Retrieved from International Ergonomics Association: http://www.iea.cc/whats/

158

Kaslow, D., Soremekun, G., Kim, H., & Spangelo, S. (2014). Integrated Model-Based
Systems Engineering (MBSE) Applied to the Simulation of a CubeSat Mission.
IEEE Aerospace Conference (pp. 1-14). Big Sky: IEEE Computer Society.

Madni, A. M. (2009). Integrating Humans with Software and Systems: Technical
Challenges and a Research Agenda. Systems Engineering, 232-245.

Malik, T. (2015, July 28). Deadly SpaceShipTwo Crash Caused by Co-Pilot Error:
NTSB. Retrieved from Space.com: http://www.space.com/30073-virgin-galactic-
spaceshiptwo-crash-pilot-error.html

Martin, J. N. (1996). Systems Engineering Guidebook: A Process for Developing Systems
and Products. Boca Raton: CRC Press.

Mitchell, D. K. (2003). Advanced Improved Performance Research Integration Tool
(IMPRINT) Vetronics Technology Test Bed Model Development. Aberdeen
Proving Ground: Army Research Laboratory Human Research & Engineering
Directorate.

Mitchell, D. K. (2005). Enhancing System Design by Modeling IMPRINT Task
Workload Analysis Results in the Unified Modeling Language (UML).
Proceedings of the ASME Human Systems Integration Symposium. Arlington.

Mitchell, D. K. (2008). United We Stand: Using Multiple Tools to Solve a Multi-
dimensional Problem. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (pp. 1939-1943). New York: SAGE.

Mitchell, D. K., & Chen, J. Y. (2006). Impacting System Design with Human
Performance Modeling and Experiment: Another Success Story. Proceedings of
the Human Factors and Ergonomics Society Annual Meeting (pp. 2477-2481).
San Francisco: SAGE.

Mitchell, D. K., & McDowell, K. (2008). Using Modeling as a Lens to Focus Testing.
International Symposium on Collaborative Technologies and Systems (pp. 477-
482). Irvine: IEEE.

Mitchell, D. K., Agan, K., & Samms, C. (2011). Both Sides of the Coin: Technique for
Integrating Human Factors and Systems Engineering in System Development.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp.
2025-2029). Las Vegas: SAGE.

159

Mitchell, D. K., Samms, C. L., Henthorn, T., & Wojciechowski, J. Q. (2003). Trade
Study: A Two- Versus Three-Soldier Crew for the Mounted Combat System (MCS)
and Other Future Combat Systems Platforms. Aberdeen Proving Ground: Army
Research Laboratory, Human Research & Engineering Directorate.

Mitchell, D. K., Samms, C., & Wojcik, T. M. (2006). System-of-systems Modeling: The
Evolution of an Approach for True Human System Integration. 15th Conference
on Behavior Representation in Modeling and Simulation (pp. 67-74). Baltimore:
SISO.

Norman, D. A., & Draper, S. W. (1986). User Centered System Design: New
Perspectives on Human-Computer Interaction. Hillsdale: Lawrence Erlbaum
Associates.

Orellana, D. W., & Madni, A. M. (2014). Human System Integration Ontology:
Enhancing Model Based Systems Engineering to Evaluate Human-System
Performance. Procedia Computer Science 28, 19-25.

Piaszczyk, C. (2011). Model Based Systems Engineering with Department of Defense
Architectural Framework. Systems Engineering, 305-326.

Ramos, A. L., Ferreira, J. V., & Barcelo, J. (2013). LITHE: An Agile Methodology for
Human-Centric Model-Based Systems Engineering. IEEE Transactions on
Systems, Man, and Cybernetics: Systems and Humans, 504-521.

Rashid, M., Anwar, M. W., & Khan, A. M. (2015). Toward the Tools Selection in Model
Based System Engineering for Embedded Systems - A Systematic Literature
Review. The Journal of Systems and Software, 150-163.

Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human-Computer
Interaction, 3rd ed. Chichester: John Wiley & Sons Ltd.

Rusnock, C. F., & Geiger, C. D. (2014). Simulation-based Assessment of Performance-
Workload Tradeoffs for System Design Evaluation. IIE Annual Conference and
Expo (pp. 394-403). Montreal: Institute of Industrial Engineers.

Russell, M. (2012). Using MBSE to Enhance System Design Decision Making.
Conference on Systems Engineering Research (pp. 188-193). St Louis: Elsevier
Ltd.

160

Sharples, R. A. (2014). Introduction of Human Views into Operational Capability
Development within an Architectural Framework. IEEE International Systems
Conference (pp. 325-329). Ottawa: IEEE Computer Society.

Smillie, R., & Handley, H. (2009). Human-Centered Design Focus in Systems
Engineering Analysis: Human View Methodology. Proceedings of the
International Conference on Contemporary Ergonomics (pp. 310-319). London:
Taylor & Francis.

Thompson, R. E., Colombi, J. M., Black, J., & Ayres, B. J. (2015). Disaggregated Space
System Concept Optimization: Model-Based Conceptual Design Methods.
Systems Engineering, 549-567.

U.S. Air Force. (2010). Air Force Human Systems Integration Handbook.

U.S. Nuclear Regulatory Commission. (2014, December 12). Backgrounder on the Three
Mile Island Accident. Retrieved from United States Nuclear Regulatory
Commission: http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-
isle.html

Wickens, C., Bagnall, T., Gosakan, M., & Walters, B. (2012). A Cognitive Model of the
Control of Unmanned Aerial Vehicles. International Symposium on Aviation
Psychology (pp. 535-540). Dayton: Curran Associates, Inc.

161

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-03-2016
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

October 2014 – March 2016

TITLE AND SUBTITLE

Improving System Design Through the Integration of Human
Systems and Systems Engineering Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Watson, Michael E., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-16-M-190

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Human Research and Engineering Directorate
Army Research Laboratory
Christopher Best
2800 Powder Mill Road
Adelphi, MD 20783-1138
christopher.j.best17.civ@mail.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

ARL/HRED
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT
The human is a critical aspect of many systems, but frequently there is a failure to properly account for human
capabilities and involvement during system design. This inattention results in systems with higher lifecycle costs,
decreased user compatibility, and the potential to produce disastrous consequences. This research presents an
approach to integrating the human into system models by using two methods: static and dynamic modeling. The static
method uses a user-centered design framework to create system- and human-centered models that deconstruct the
system and user into their respective components. These models are integrated to create system models that include
relevant information about the human and highlight potentially conflicting tasks. The dynamic method uses a human
performance modeling tool to create a discrete event simulation (DES) of the system. This DES model is used to
perform an analysis between system trades, by which constraints and assumptions placed on the human are verified.
Data gained from the analysis are integrated back into system models in order to reflect true system performance. By
applying these two integration methods early in the system’s lifecycle, system models can more effectively account for
the human as a critical component of the system, thus improving system design.

15. SUBJECT TERMS
 SE, MBSE, SysML, HSI, human factors, UCD, human performance modeling, IMPRINT, tradeoffs
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

175

19a. NAME OF RESPONSIBLE PERSON
Maj Christina F. Rusnock, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 x4611
(christina.rusnock@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-24-2016

	Improving System Design Through the Integration of Human Systems and Systems Engineering Models
	Michael E. Watson
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	Chapter Overview
	Background
	Problem Statement
	Research Objective
	Research Question / Investigative Questions
	Methodology
	Assumptions / Limitations
	Context Assumptions
	Model Assumptions

	Preview

	II. Improving System Models by Integrating User-Centered Design
	Chapter Overview
	Abstract
	Introduction
	Background
	Processes, Methods, and Tools
	Systems Engineering
	Human Systems Integration
	Process-Level Integration
	Methods-Level Integration
	Tools-Level Integration
	Research Gap

	Methodology
	Perform Task Analysis
	Build System-Centered Diagrams
	Build Human-Centered Diagrams
	Compare and Analyze the Differences
	Create an Integrated Set of Diagrams

	Results and Analysis
	Discussion and Conclusions
	Chapter Summary
	1. What information should be captured in human-centric and system-centric models to enable effective integration?
	2. What considerations and decisions must be made when integrating between human-centric and system-centric models?

	III. Performing System Tradeoff Analyses Using Human Performance Modeling
	Chapter Overview
	Abstract
	Introduction
	Background
	Human Systems Integration
	Systems Engineering
	MBSE Tradeoffs and Methods
	IMPRINT Tradeoffs and Methods
	Integration Efforts via IMPRINT Modeling
	Research Gap

	Methodology
	Obtain or Create System Diagrams
	Perform Task Analysis
	Create Baseline Model
	Perform Trade Study
	Integrate Results into System Diagrams

	Results and Analysis
	Obtain or Create System Diagrams
	Perform Task Analysis
	Create Baseline Model
	Perform Trade Study
	Integrate Results into System Diagrams

	Discussion and Conclusions
	Chapter Summary
	1. What information should be captured in human-centric and system-centric models to enable effective integration?
	2. What considerations and decisions must be made when integrating between human-centric and system-centric models?
	3. What information can currently be passed from IMPRINT to SysML models?
	4. What information do SysML models need from IMPRINT to effectively inform tradeoff analyses?

	IV. Conclusions and Recommendations
	Chapter Overview
	Research Overview
	Investigative Questions
	Recommendations for Future Research
	Automate the IMPRINT-SysML Data Transfer
	Translate Sequence Diagrams into IMPRINT
	Generate Human Training Requirements
	Apply Integration Methods in Different Contexts

	Significance of Research

	Appendix A – Literature Review
	Overview
	Systems Engineering
	Human Systems Integration
	MBSE Tradeoffs and Methods
	IMPRINT Tradeoffs and Methods
	Processes, Methods, and Tools
	Process-Level Integration
	Methods-Level Integration
	Tools-Level Integration
	Integration Efforts via IMPRINT Modeling
	Research Gap

	Appendix B – Baseline Model Description
	Overview
	Introduction
	Surveillance Task
	Node 1: Spawn HVT
	Node 3: Search for HVT
	Node 4: Indicate HVT Located
	Node 7: Follow HVT
	Node 20: Re-Search for HVT
	Node 8: Calculate Surveillance Score
	Node 19: Surv 15 s Delay

	Communication Task
	Node 18: Initial 30 s Delay
	Node 2: Listen to Question
	Node 11: Calculate Answer
	Node 12: Answer Question
	Node 16: Calculate Comm Score

	Post-HVT/Communications Iterations
	Node 10: Inform Msn Ended
	Node 17: Aggregate Scores

	Assumptions
	Model Verification
	Task Performance
	Workload

	Appendix C – Baseline Model Validation
	Overview
	Model Response Variables
	Real-World Response Variables
	Validating Performance Score
	Validating Workload

	Appendix D – Alternative Model Description
	Overview
	Introduction
	Changes from Baseline Model
	Node 1: Spawn HVT
	Node 3: Search for HVT
	Node 21: Suggest HVT
	Node 4: Confirm HVT

	Assumptions

	Appendix E – Alternative Model Output Analysis
	Overview
	Introduction
	Performance Score
	Workload

	Bibliography

