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Abstract

The United States Air Force (USAF) owns a total of 30.9 million linear feet (LF)
of storm sewer pipes valued at approximately $2.3B in its vast portfolio of built
infrastructure. Current inventory records reveal that 78% of the inventory (24.1 million
LF) is over 50 years old and will soon exceed its estimated service life. Additionally, the
USAF depends on contract support while its business processes undervalue in-service
evaluations from long-term funding plans. Ultimately, this disconnect negatively impacts
infrastructure performance and overall strategic success. Without a sustainable method
of providing accurate, repeatable, and verifiable condition data for underground storm
sewer pipes, the USAF civil engineering community risks making uninformed decisions
in a fiscally constrained environment.

This research presents a proof of concept effort to automate storm sewer
evaluations for the USAF using unmanned ground vehicles and computer vision
technology for autonomous defect detection. The results conceptually show that a low-
cost autonomous system can be developed using commercial off the shelf (COTS)
hardware and open-source software to quantify the condition of underground storm sewer
pipes with an efficiency of 36%, determined by the maximum F-measure possible at a
single intensity threshold setting. Additionally, this research shows that 3D printing can
be leveraged to exploit multi-sensor inputs during asset management (AM) data
collection. While the results show that the prototype developed for this research is not
sufficient for operational use, it does demonstrate that the USAF can leverage COTS

systems in future AM strategies to improve asset visibility at a significantly lower cost.
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EVALUATING STORM SEWER PIPE CONDITION USING AUTONOMOUS

DRONE TECHNOLOGY

I. Introduction

“The real voyage of discovery consists not in seeking new landscapes, but in
having new eyes.” — Marcel Proust

Chapter Overview

The main purpose of this chapter is to introduce the focus of this research effort
and relevant background information. This chapter defines the problem statement and
establishes research objectives. In the background section, the chapter introduces the
history of asset management within the United States Air Force (USAF) and continues
with significance of condition assessments within the asset management framework. The

chapter concludes with a summation of the report structure for subsequent chapters.

Background

The USAF operates and maintains a massive infrastructure portfolio valued at
$276B located across 183 active, guard, and reserve installations positioned around the
world (DUSD(I&E), 2015). The infrastructure portfolio is comprised of complex
systems including facilities, pavements, utilities, waste management, and natural
infrastructure systems. This research collectively refers to these complex systems and
their components as built infrastructure. Each unique system and component of the built

infrastructure age at different rates, and consequently deteriorate differently over time.



Thus, recurring sustainment investments are required to ensure satisfactory performance
and USAF mission reliability.

Improved asset visibility and performance modeling through asset management
enables objective financial decisions for sustainment investment strategies. In recent
years, the Federal government instituted policies promulgating asset management to all
agencies. In February 2004, President George W. Bush signed Executive Order 13327,
Federal Real Property Asset Management, which recognizes the need for a structured real
property management framework on a government-wide scale. The executive directive
seeks “to promote the efficient and economical use of America’s real property assets and
to assure management accountability for implementing Federal real property reforms”
(Executive Order 13327, 2004). The Air Force issued Policy Directive 32-90 in August
2007 to enforce the Executive Order, which empowered the USAF civil engineering (CE)
community to adopt asset management principles and processes at all Air Force
installations.

Asset management (AM) methodology facilitates targeted, informed, and
predictive decision-quality data. This data enables USAF engineers to optimize resources
and investments towards aging infrastructure by creating a framework to answer the

following questions (Vanier, 2001):

e What infrastructure does the USAF have?
e What is its worth?
e What is its condition?

e What is the remaining service life?



e What do you fix first?

Asset condition inspections, proactively executed on a routine basis and yielding
accurate condition data, are critical for fiscally responsible decision making. In-service
inspections of performance are a large component of the asset management methodology,
and align with Goal #3 of the USAF Civil Engineering Strategic Plan (USAF, 2011):

Asset visibility and performance data will allow Civil Engineers to

leverage strategic sourcing for requirements needed across our portfolio...

Total asset visibility will be implemented across all functional areas to
account for every piece of the Air Force Civil Engineering enterprise.

The USAF Civil Engineering Strategic Plan Goal #3 establishes the significance
of in-service asset condition inspections within the asset management framework — it is
through these inspections that the USAF has financial accountability of its budget. This
research studies a conceptual methodology to generate accurate, repeatable, and
verifiable condition data for underground storm sewer pipes in the USAF real property

inventory.

Problem Statement

The USAF owns a total of 30.9 million linear feet (LF) of storm sewer pipes
valued at approximately $2.3B. Within the Air Force asset management framework,
these storm sewer pipes should have a service life of 40 to 70 years depending on the
pipe material (AFCEC, 2014b). Current inventory records reveal that 78% of the USAF
storm sewer pipe inventory (24.1 million LF) is over 50 years old. Furthermore, 53%
(16.4 million LF) of the total storm sewer pipe inventory is at least 60 years of age
(Figure 1). These ages are significant as they indicate that the USAF storm sewer pipe

3



inventory will soon exceed their estimated services lives. In addition, the USAF does not
know the condition of many of these pipes. Given the large volume of assets, the age of
these assets, and their unknown conditions, the Air Force cannot conduct effective

infrastructure asset management.

USAF Storm Sewer Pipe Inventory Age
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Figure 1. Total USAF Storm Sewer Pipe Inventory Age by MAJCOM (AFCEC, 2014a)

Storm sewer pipe location and condition data is critical to effective management
of aging storm sewer assets. This data is difficult to obtain because storm sewer systems
have the following characteristics: (1) pipes are often underground with limited access;

(2) storm water collection system have an expansive footprint across installations,
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sometimes exceeding 150 miles per installation (AFCEC, 2014a); and (3) the pipe
structure is a confined space in which to perform inspection. Collecting data inside of
storm water pipes requires specialized equipment, most commonly closed-circuit
television (CCTV) inspection systems. These CCTV systems require specialized skills
and experience to operate effectively.

USAF civil engineering (CE) business practices do not support a sustainable
method of performing comprehensive in-service evaluations using its own personnel or
equipment. Although some CE organizations do have smaller CCTV inspection systems
available for small-scale inspections and repairs, the USAF on a whole outsources that
capability to private-sector firms. These firms have larger inventories of CCTV
equipment and specially trained staff which often produce written reports on the
condition of surveyed pipes. However, the reports generated by these private-sector
firms are typically stand-alone products that are difficult to incorporate into the USAF
software used to manage infrastructure. The USAF currently does not have a sustainable
organic capability to provide accurate, repeatable, and verifiable condition data for

underground storm sewer pipes.

Research Objectives and Investigative Questions

This research sets out to prove that a low-cost autonomous system can quantify
the condition of underground storm sewer pipes as good as or better than a CCTV
inspection. The operational goals of this system are to operate inside a storm sewer

pipeline with minimal human operator activity and take measurements for the accurate



location and current condition of the pipes. To limit the scope of the problem into

achievable objectives, this research asks the following investigative questions:

1. How can a small autonomous unmanned ground vehicle (UGV) be configured to
collect pipe condition information?

2. What field data and programming code is required to develop a data processing
algorithm for pipeline fault detection?

3. How can the quality of pipeline fault detection data be quantified in order to
inform decision-makers on pipe condition?

Assumptions and Limitations

This research presents a proof of concept effort to automate storm sewer
evaluations for the USAF; therefore, a complete system design is not the focus of this
study. The researcher considered only critical requirements and capabilities in the
development of the data collection system prototype. Additionally, redundancy was not a
priority for the critical capabilities in the system architecture.

According to the Pipeline Assessment and Certification Program (PACP), there
are many possible defects within storm sewer pipes (NASSCO, n.d.). Figure 2 displays
the four major categorizations of these various defects. Due to the complexity of the
problem and breadth of available technologies, this research does not consider all
possible defects in pipes and only focuses on crack detection. Further, it does not classify
the severity or type of cracks detected. Rather, this work identified whether or not a
crack or cracks existed in a section of the surveyed pipes. To validate the algorithm
developed, subject matter experts were employed to “ground truth” images. A team of

individuals interpreted the images and identified the crack location.
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Figure 2. Defect classifications in sewer pipes according to PACP (NASSCO, n.d.)

With respect to location, the Global Positioning System (GPS) used for navigation
could not operate within subterranean storm water pipes. While navigation in the
absence of GPS is a current research focus area at the Air Force Institute of Technology
(AFIT), it was not feasible to incorporate that work into this research due to time
constraints. As a result, this research uses an open storm water drainage channel in place

of an underground storm water pipeline for field testing.



Finally, this research is limited to the environmental conditions present during the
field test performed. Due to time constraints and unpredictable weather events, this
research performs only one field test, and the sample size was limited to the images
collected at that time. Although the limitation of a single field test impacts sample size

significantly, it is deemed sufficient for a proof of concept.

Overview

This thesis report follows the traditional five-chapter format. Chapter | provided
the background and context for this thesis’s research problem. Next, Chapter 11 consists
of an extensive literature review of sewer evaluation technologies and robots used in civil
engineering, and other viable technologies used in asset management for underground
pipes. Chapter Il presents the methodology employed in this study, which is field testing
of the prototype system developed in this research effort. Chapter IV includes the
analysis and results from the field tests. It includes the validated results from subject
matter expert judgment through a “ground truthing” process. Finally, Chapter V presents
a discussion of the results, conclusions that can be made from this research, implications
for USAF infrastructure asset management and asset management practice in general, and

suggestions for future research.



Il. Literature Review

Chapter Overview

This chapter provides a foundation for understanding the central topics of this
research based on existing literature. First, the importance of in-service evaluations to
effective asset management is detailed. A discussion on in-service evaluations
establishes the relevance of this research towards the effective asset management of
storm water systems. Next, a summary of sewer evaluation technologies, and a
comparison of advantages and disadvantages, is used to explain the selection of available
sensors available. Robots used in infrastructure inspections, including both unmanned
aerial vehicle (UAV) and unmanned ground vehicle (UGV) platforms, are introduced as
models for this research. Sewer evaluations using robots integrated with sensors are
described with two specific systems, KANTARO and PIRAT, highlighted. Finally, the
concepts of computer vision techniques and mathematical modeling are introduced as a

method of automating pipeline fault detection.

Asset Management

Any real property owner requires standardized processes and tools to effectively
manage these assets. Using the analogy of a homeowner with a single home, it seems
obvious that the owner must first know all systems (e.g. electrical, plumbing, exterior
structure, interior structure) and components (e.g. fuse box, furnace, roof, painted
drywall) that make up the house. The owner must then use systematic processes to

inspect each system and component routinely in order to detect significant deterioration



and anticipate failure. The homeowner must understand, on a holistic or macro-scale,
what they have, what condition it is in, and remaining service life in order to make
decisions about maintenance and repair investments.

The USAF is much like this homeowner, but owns multiple assets and varying
types of built infrastructure (e.g. buildings, roads, airfields, buried utilities) which creates
a challenging scenario for the service. Because of the wide variation in its asset portfolio,
the USAF is at increased risk of poor investment decisions. In general terms, asset
management (AM) is the processes, tools, and culture necessary to manage complex built
infrastructure from “cradle to grave”. Figure 3 shows a graphical model of AM for an
organization (TMI Africa, n.d.), which is a similar process to that which the USAF

follows.

ACQUIRE
Negotiate agreements
10 maximize value

CONTROL AUDIT DEPLOY

Processes to
ensure standardized,
RETIRE committed Return
Provide for orderly RECONCILE On Investment

disposition of assets
disposed, auctioned,
donated and
employee E
purchase tinfra

Figure 3. Example asset management framework. (TMI Africa, n.d.)
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The USAF defines AM as “use of systematic and integrated processes to manage
natural and built assets and their associated performance, risk, and expenditures over their
lifecycles to support missions and organizational goals” (USAF, 2012: 196). The AM
processes and systems play a critical role in controlling the lifecycle expenditures of an
asset. By ensuring timely maintenance and rehabilitation requirements and ensuring asset
performance meets strategic goals and needs, the USAF has a method to optimize its
investments using limited funding. In short, it is identifying investments for the right
expense at the right time (USAF, 2011: 2).

As part of a long-term investment strategy, in-service assessment is an essential
part of effective infrastructure AM and controlling lifecycle expenditures. In-service
evaluations involve monitoring the use and physical condition of an asset on a recurring
basis. In-service evaluations can focus on either functional, structural, or environmental
aspects of the system (Uddin, Hudson, & Haas, 2013). Functional evaluations focus on
how effectively the asset performs its intended functions. Storm sewer system functional
evaluations, for example, would measure the number of breaks and/or leaks per year,
average volumetric flow, and quantity and type of repairs on the system. By comparison,
structural evaluations assess the structural integrity of the asset by performing material
tests. A storm sewer structural evaluation would analyze the type of pipe break in order
to determine the remaining life of the pipe material. Finally, environmental evaluations
focus on health and safety and require subjective data such as user satisfaction and hazard
assessments.

Asset managers analyze the information collected during in-service evaluations to

support decisions on performance and investment strategies. Uddin, Hudson, and Haas
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(2013) detail that asset managers use data for analysis of failure calculations, establishing
maintenance and repair schedules, validation of predicted component and asset
performance data, and as a basis for evaluating construction and maintenance techniques.
In-service evaluations of storm sewer systems and the data it produces play a pivotal role
in establishing valid long-term investment strategies within AM.

Currently, the USAF CE community completes very limited in-service
assessments for storm sewer networks, and typically assessments are not completed on a
regularly-scheduled basis. The USAF routinely depends on recurring contracts to
private-sector companies specializing in this service on an as-needed basis rather than use
in-house personnel and equipment. The cost of the contracted surveys depends greatly on
the quantity or length of pipes surveyed, complexity of data required, and market
availability of specialized contractors. However, they can range from approximately
$30K for a limited survey to $350K for a more comprehensive inspection (Isaacs, 2015).
As a result of the substantial costs and the process to prioritize and allocate investments
across the USAF, comprehensive surveys of an installation are typically completed only
every 5-10 years (Isaacs, 2015).

Compounding this issue, storm water system assessments are not highly
prioritized investments in the USAF integrated priority list (IPL). Assessments typically
only score high enough to warrant funding if there is supporting evidence of catastrophic
failure or a well-crafted justification statement illustrating significant cost avoidance
through the investment (AFCEC, 2014b). In one instance, an inflow/infiltration (1/1)
study valued at $300K to identify the inappropriate connection of surface drainage into

sanitary sewer systems at Mountain Home AFB, ID was not funded. This project
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received a score of 88.4 out of a possible 210 points through the IPL process. This score
placed it in the lower third of other ranked, unfunded projects and guaranteed that it
would not receive funds for several years (Isaacs, 2015). This I/1 study was funded in
FY15 only after the base justified that $615K in unnecessary wastewater treatment would
be avoided over a period of three years by completing an 1/1 study and targeting repairs to
the storm water system (Isaacs, 2015). Based on current business rules, the USAF IPL
consistently undervalues in-service evaluations from the long-term funding plans.
Routinely failing to fund needed in-service evaluations has a direct impact to the
USAF’s infrastructure AM. AM activities are interdependent and collaborative, therefore
omitting evaluations will negatively impact decision making (EI-Akruti, Dwight, &
Zhang, 2013). Specifically, unreliable or sporadic condition assessments impact the
accuracy of performance analysis and evaluation, which in turn impacts decisions
regarding the maintenance and rehabilitation of assets. The lack of reliable and timely
assessments negatively impact infrastructure performance and overall strategic success
(El-Akruti et al., 2013). The USAF needs organic capabilities to support reliable and

timely in-service assessments of its storm sewer infrastructure.

Sewer Pipe Condition Assessment Technologies

Various technologies exist for performing storm sewer condition assessments. In
general, the alternative used in sewer evaluation is based on relevant characteristics of the
pipe including sewer pipe geometry, the type of pipe material, and the nature of failures
of the pipe network (Duran, Althoefer, & Seneviratne, 2002). Additionally, whether the
evaluation is environmental, functional, or structural will have a bearing on the
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technology selected (Uddin et al., 2013). For example, a structural condition assessment
may require a comprehensive internal inspection that extends to the soil beyond the inner
surface of the pipe wall to detect corrosion through the pipe wall, soil settling, and root
invasion damage to the pipe by vegetation. A functional condition assessment, by
contrast, would require internal investigation of the state of pipe compared to normal
operating parameters (e.g. leakage and capacity ratings).

Sewer pipe monitoring and evaluation alternatives are listed below and discussed
in more detail in the next several subsections of this report. A comparison of advantages,
disadvantages, and detection limitations for each technology are summarized below, and
further displayed in Table 1 on page 20 (Costello, Chapman, Rogers, & Metje, 2007;
Duran et al., 2002; Koo & Ariaratnam, 2006). Listed below are the main categories of
these inspection techniques, the remainder of this section is organized according to these

five categories:

1. Optical inspection (CCTV most typical)

2. Sewer Scanning and Evaluation Technology (SSET)
3. Acoustic and ultrasonic testing

4. Infrared (IR) thermography

5. Ground penetrating radar (GPR)

Closed Circuit Television (CCTV)
Closed-circuit television (CCTV) surveys are currently the most common method

for assessing the condition of storm sewer networks (Duran et al., 2002). CCTV

14



inspection systems basically consist of a camera and lighting source mounted on a
remote-controlled vehicle similar to that shown in Figure 4. The CCTV camera records
massive amounts of digital images of the pipe interior, and transmits the footage to a
display within the support vehicle.

(@) TV camera car 1

(2) Human Inspector

@ Sewer TV camera
-

Figure 4. CCTYV pipeline inspection system. Created using images from (Koo &
Ariaratnam, 2006; Nassiraei, Kawamura, Ahrary, Mikuriya, & Ishii, 2007)

Condition assessment using CCTV systems is a time-intensive procedure. The
placement, operation, and recovery of CCTV inspection systems from the pipe demand a

significant amount of time in the field simply for data collection. Operators perform a
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minor amount of defect investigation and classification in the field; however, technicians
typically review the footage after-the-fact and classify the defects off-site. Therefore,
CCTV systems require a two-fold investment of human labor: operation of the systems
in the field (i.e. data collection), and post-processing for condition rating (i.e. footage
evaluation by technicians) (Romanova, Horoshenkov, Tait, & Ertl, 2012) .

The cost of CCTV assessment systems can be expensive. An example of one
commercially available pipe inspection robot is the FiberScope.net® Pipe Crawler
STORMER S3000™, where a single system is currently priced at $35,900
(FiberScope.net, 2015). This research did not find a statistical study of typical CCTV
inspection rates and costs in available literature. However, one study cited an inspection
rate of 300 meters per day at approximate cost of $16 USD/meter (Nassiraei et al., 2007).
It is difficult to estimate the average field inspection rate with CCTV systems. The time
it takes to inspect a pipe is highly dependent on the number of defects, the degree of
deterioration, and the proficiency of the operators (Wirahadikusumah, Abraham, Iseley,
& Prasanth, 1998). However, in general researchers and industry experts subjectively
estimate that the inspection rate using CCTV ranges from 300 to 1800 meters/day
(Cancilla, 2016; Nassiraei et al., 2007) .

In addition to the high cost and slow inspection rate, there are several limitations
with respect to the quality of CCTV assessments. Some of major drawbacks are the lack
of visibility, potential for obstructions, and the non-uniform shape inside sewer pipes
(Duran et al., 2002; Romanova et al., 2012). As a result of these limitations, engineers
have pursued multi-sensor technologies to either replace or enhance the CCTV for

optimal sewer inspections.
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Sewer Scanning and Evaluation Technology (SSET)

Sewer Scanning and Evaluation Technology (SSET) complements conventional
CCTYV cameras with a 360° digital laser scanner and additional lighting systems. This
increases the accuracy and resolution of the recorded images by creating a surface profile
of the pipe interior (Costello et al., 2007; Duran et al., 2002; Koo & Ariaratnam, 2006).
There are several profiling techniques possible with SSET, however in each case the
operator must take precautions. For example, the operator must keep the angle between
the camera and the illumination source on the same virtual optical axis in order to avoid
complex geometric analyses required to reduce measurement error (Duran et al., 2002).

The main drawbacks to laser-based systems are a lack of calibration with respect
to measuring changes in shape, and the need for specialized camera and lighting systems
when working in water. Also, they cannot inspect beyond the inner pipe wall like other
advanced sensing methods (Costello et al., 2007; Duran et al., 2002).

Acoustic and Ultrasonic Testing

Ultrasonic-based sensors use high-frequency sound waves to detect material
thickness, lamination, and planar defects on surfaces that reflect acoustic energy back to a
transducer. Ultrasonic is a very versatile and commercially available technology;
however some components, such as improved air operational transducers and
electromagnetic acoustic transducers, have not been successfully used in sewer
assessment (Duran et al., 2002).

A major drawback of these systems is the inability of ultrasonic sensors to
measure flooded and dry areas simultaneously, due to the optimal operating frequencies

in those two mediums (Costello et al., 2007). As well, technicians using sonar
17



technology require a high level of experience to successfully interpret results (Koo &
Ariaratnam, 2006). Overall, the presence of water, non-uniform pipe materials, and
rough surfaces inherent with a sewer system create difficulties with using ultrasonic
technology for sewer inspections.

Infrared (IR) Thermography

Infrared (IR) thermography measures temperature differences across an object
resulting from IR radiation distributing heat in a closed environment (Duran et al., 2002).
The measured heat distribution is then converted into a visible image, where areas of
differing temperatures are distinguished by different colors.

Duran et al. (2002) detail two different processes applicable in IR thermography:
active (i.e. where an artificial heating source is required) and passive (i.e. no heating
source is used). According to Wirahadikusumah, Abraham, Iseley, & Prasanth (1998),
subsurface defects in sewer pipes previously not visible in conventional CCTV surveys
were successfully identified using passive IR thermography. These defects included
deteriorated pipeline insulation, leaks, and voids. Overall, the authors conclude that IR
thermography is intrinsically safe, allows for measurement of large areas in shorter
assessment periods, and is a viable method for performing sewer inspections.

Ground Penetrating Radar (GPR)

Ground Penetrating Radar (GPR) emits short pulses of electromagnetic energy to
provide information about the pipe and the surrounding soils. It is possible to use GPR
either inside or outside the pipe. According to Duran et al. (2002), sewer networks in
France were successfully inspected using CCTV systems augmented with the GPR. The

researcher was not able to confirm this work using the original source, however.
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The main advantages of GPR are that: 1) the antenna does not have to be in
contact with the surface of the pipe, 2) it can penetrate depths beyond the pipe wall to
collect surrounding soil information, and 3) the inspection speed is much faster when
compared to other methods (Duran et al., 2002).

Table 1 summarizes a general description of each technology and compares the
advantages, disadvantages, and detection limitations for each. The information
consolidated in Table 1 came from the research of Costello et al.(2007), Duran et al.
(2002), and Koo & Ariaratnam (2006). The detection limitations listed are restrictions
specifically called out in research source that influence the use of this technology in

sewer condition assessments.
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Table 1. Inspection and Data Collection Technique Comparison (Costello et al., 2007; Duran et al., 2002; Koo & Ariaratnam, 2006)

Method Description Advantages Disadvantages Limitation

Closed Circuit | A skilled technician controls | ¢  Most conventional e Quality of assessment e Subsurface inspection
Television a vehicle/platform fitted with method of assessment, highly dependent on past inner wall of pipe
(CCTV) a color, high-resolution video increases equipment quality of acquired images IS not possible

camera and lighting system.
Camera acquires images of
the inner surface of the pipe,
and operator examines
footage to classify and rate
severity of pipe defects.

availability and decreases
costs

and operator training
Size of data generated per
assessment is exorbitant
and major hindrance for
conducting large-scale
surveys (e.g. 30 hrs. of
video per 10 km of pipe
assessed)

Assessment quality
impacted by changes in
pipe shape, obstructions,
and lack of visibility

o Visibility of operator
limited by system
lighting

Sewer Scanning
& Evaluation
Technology
(SSET)

Conventional CCTV camera
equipment, plus:

- structured light sources
(e.g. laser diodes)

- fiber optic gyroscope

- fish eye digital scanner

Additional equipment
increases the accuracy and
resolution of the recorded
images by creating a surface
profile of the pipe interior and
provides added
coverage/mobility of camera.

Better resolution than
conventional CCTV
images

Continuous 360° image
Increased accuracy of
wall defect detection and
improves assessment
productivity

Configuration of detector
and objective lens is
limited with respect to
optical axis

e Subsurface inspection
past inner wall of pipe
is not possible

e Limited to data
collection above water
line
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Acoustics and
Ultrasonic
testing (Sonar)

High frequency sound waves
used to measure geometrical
changes in sewer inner wall
(e.g. material thickness,
lamination, and planar defects
on surfaces).

Very accurate results

Can detect corrosion pits,
voids, and perpendicular
cracks on pipes inner wall
Versatile technology,
different commercial
probes/ measurement
modes available

e Requires high level of
experience and training to
interpret results

e Large amounts of data are
usually generated

¢ Non-uniform pipe
materials affect
measurements

¢ Rough surfaces of pipes
can create coupling
problems

o Difficult to create guided
waves and mode
conversion (e.g.
longitudinal waves
transformed to transverse)

e Subsurface inspection

past inner wall of pipe
is not possible

e Cannot measure

flooded and dry areas
of pipe simultaneously

Infrared (IR)

IR radiation (heat) is used to

Subsurface inspection

¢ High sensitivity to

e More than one

Thermography | generate temperature beyond the pipe wall (e.g. illumination subsurface defect at
differences across an object in soil condition) is possible same position cannot be
a closed environment, then Inspection speed is high detected
measured. The measured relative to other methods
heat distribution is then Not affected by type of
converted into a visible material to be tested
image, where areas of
differing temperatures are
distinguished by different
colors.
Ground Equipment emits short pulses GPR can be used either e Requires high level of unknown
Penetrating of electromagnetic energy to inside or outside the pipe experience and training to
Radar (GPR) | provide information about the Subsurface inspection interpret results

pipe and the surrounding
soils.

beyond the pipe wall (e.g.
soil condition) is possible
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Robots Used in Civil Engineering

Underground infrastructure inspections in civil engineering are typically
performed by robots that can more easily travel inside of confined spaces and over longer
distances without fatigue. The previous section discussed different sensing technologies;
robots are the systems that integrate these sensors with a transport platform, data storage,
and sometimes processing. Robots can be semi-autonomous or autonomous depending
on the degree to which they leverage autonomous navigation or computer algorithms to
interpret the sensor data (Nassiraei et al., 2007; Wirahadikusumah et al., 1998). A semi-
autonomous robot is typically tethered to a support vehicle, allowing a human operator to
partially control the robot during navigation using remote-control equipment, or have
algorithms that interpret only part of the data collected, requiring a human operator to
interpret the remaining data based on subjective judgment (Nassiraei et al., 2007). Fully
autonomous robots, by comparison, are self-contained and do not require human operator
inputs for either navigation or data interpretation.

Robots can be fitted with one or more of the advanced sensor technologies
discussed in the previous section. Koo and Ariaratnam (2006) and Guo, Soibelman, &
Garrett Jr. (2009) both provide evidence that combining collaborative (i.e. multiple)
sensor technologies increases accuracy and yields better evaluation results. Koo and
Ariaratnam (2006) performed field and experimental testing of sanitary sewer pipe using
a prototype GPR and SSET combined tractor systems and found that the multi-sensor
approach “overcomes the limitations of each technology” (2006: 487). Additionally, Guo

et al. (2009) performed a case study to explain how an autonomous multi-sensor robot
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platform coupled with an autonomous defect detection algorithm would make
conventional sewer pipeline condition assessments significantly better. The researchers
collaborated with RedZone Robotics® to test their proposed change detection approach
using a dataset of 103 CCTV images, taken by RedZone Robotics® using multi-sensor
robot systems. There are two sewer evaluation robots used as models for this research:
the PIRAT semi-autonomous system (Kirkham, Kearney, & Rogers, 2000) and
KANTARO fully autonomous pipe inspection robot (Nassiraei et al., 2007).

Pipe Inspection Real-time Assessment Technique (PIRAT)

The Pipe Inspection Real-time Assessment Technique (PIRAT) (Kirkham et al.,
2000) was a semi-autonomous (i.e. remote-controlled) in-pipe vehicle developed in 1996
in Australia. The PIRAT is a customized CCTV system augmented with laser scanning
and sonar sensors (Kirkham et al., 2000). The researchers custom-built a vehicle (Figure
5) using commercial CCTV systems as a model, but improved it for additional payload,
smooth continuous motion via tracks in lieu of wheels, and operation in flooded sewers.
The PIRAT in-pipe vehicle was designed to fit 24-inch diameter pipes, and be semi-
manually operated and is tethered by an 820-ft umbilical cable to the support vehicle.
The umbilical cable serves a dual purpose of both transferring information from the
PIRAT robot to the support vehicle and a means of retrieving the robot should it

malfunction.
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Figure 5. PIRAT in-pipe vehicle, support. (Kirkham et al., 2000)

The concept of PIRAT involves using the semi-autonomous vehicle to create a
geometric model of the sewer pipe using measurements taken by laser and sonar
scanners. PIRAT uses machine learning as a method of recognizing defects in sewer
pipes based on data-driven predictions. It also uses neural network techniques, which use
input factors or measurements to classify an output, to classify and rate various pipe
defects (Kirkham et al., 2000: 1042). Kirkham et al.’s research focus was the collection
and analysis of data rather than vehicle design and navigation. Therefore the PIRAT in-
pipe vehicle is not overly maneuverable and relatively large compared to other sewer

inspection robots.
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The PIRAT prototype performed laboratory experiments in wet and dry concrete
and vitrified clay pipes. The researchers performed subsequent field tests in wet and dry
vitrified clay, concrete, and brick sewer pipes. Overall, the PIRAT results were superior
to conventional CCTV in large diameter concrete and clay sewer pipes (Kirkham et al.,
2000: 1052).

KANTARO Robot

The KANTARO sewer robot is a custom-built system developed in Japan in
2007. The KANTARO prototype (Figure 6) proved to be a superior design to the
PIRAT, miniaturized to navigate pipes within a diameter range of 8 to 12 inches.
KANTARO includes a patented moving mechanism that integrates artificial intelligence
and highly sophisticated navigation techniques. The mechanism, which the researchers
call “naSIR mechanism”, has the capability to maneuver through a wide variety of pipe
bends and joints, traverse obstacles, and travel different size pipes without navigation

controller intelligence or sensor inputs.

IR sensors

Laser scanner

Figure 6. KANTARO system in field test pipe.(Nassiraei et al., 2007)
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“KANTARO?’s sensor system includes an intelligent laser scanner, one fish eye
camera, two IR sensors, and an inclination sensor” (A. Nassiraei et al., 2007: 141). With
this sensor selection and configuration, KANTARO has the capability to inspect pipes for
fault-detection, correct sensor measurements for robot tilt and rotation, and avoid
obstacles. Additionally, it uses a robust microprocessor that uses navigational landmarks
such as manholes and pipe joints for navigation, called “fault-navigation” or
“localization” (A. Nassiraei et al., 2007: 137). Three separate programs automate the
analysis of sensor data by: (1) distinguishing landmarks from sewer features, (2)
classifying sewer features into one of nine distinct sewer distresses via a patented fault
detection algorithm, and (3) determining the location of the defect within the pipe
network.

KANTARO has not been commercially marketed since its development in 2007.
Nassiraei, Honda, and Ishii (2010) have continued to develop the autonomous
localization of the KANTARO concept by adding passive arms mounted to the naSIR
platform. The main reason this technology is not readily available within the sewer
inspection industry is that “these complexities in mechanism and data processing make [it
difficult] to realize reliable commercial products, especially for [small diameter] pipes”

(A. Nassiraei et al., 2007: 137).

Automated Crack Detection
There are two main concepts that are relevant in automated crack detection:
computer vision techniques and mathematical modeling. Computer vision generally

refers to using computers to process two-dimensional camera imagery into real-world
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information (Klette, 2014). Mathematical modeling involves using mathematical
relationships between inputs and outputs to predict a response, typically identifying an
equation or using software to build a model. Using one or both of these concepts with
respect to sewer pipe condition is not a new area of research—there are numerous journal
articles detailing research on innovative approaches using both CCTV footage and multi-
sensor UGVs. The following paragraphs discuss a sample of the work in the computer
vision and math modeling areas as they relate to this research.

Computer Vision Techniques

McKim and Sinha (1999) apply computer vision techniques to automatically
assess the structural condition of underground sewer pipes using SSET imagery. The
researchers used an image enhancement method to eliminate non-uniform background
noise (e.g. pipe joints, landmarks, and changes in lighting) and increase the probability of
successful detection and processing. They then used image segmentation to partition an
input image into its constituent parts or raw pixel data, and ran a line detection algorithm
for statistical differences in the mean and standard deviation of pixels between images.
Although the authors do not present actual results, the study does show that “elimination
of non-uniform background [noise] without assuming any particular statistical
distribution for the source image gray-levels” is feasible (McKim & Sinha, 1999: 36).

Guo et al. (2009) studied sewer pipe defects using a combination of pattern-
recognition technologies and change detection through “frame differencing”. Frame
differencing involves a pixel-by-pixel comparison of an image to a pre-selected reference

image (Guo et al., 2009) . The comparison results in the presence or absence of a defect
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in an image by means of statistical analysis. A simplified summary of the change

detection method is illustrated in Figure 7.

Histogram matching or equalization to eliminate
effects of uneven ilumination
Spatial filtering to reduce noise

+  Image differencing
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Figure 7. Change detection approach, modified from (Guo et al., 2009)

Guo et al. considered several sewer pipe defects in their research including cracks,
surface corrosion, and landmarks (e.g. joints). The researchers collaborated with
RedZone Robotics® on a case study of wastewater utility systems around Pittsburgh, PA,
where existing CCTV inspections were available. Guo et al. tested the proposed change
detection approach using a dataset of 103 CCTV images, taken by RedZone Robotics®,
of a 60-meter length of storm water pipe in Pittsburgh. The researchers used the certified
CCTV inspector results as a “ground truth” for comparison to the change detection
experimental results. The study measured performance using three metrics (Guo et al.,

2009):
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1. Accuracy: defined as “the percentage of correct detections, including both
correctly detected defects and non-defects, among all the images”

2. True Accuracy: defined as the “the percentage of all the predicted images
excluding the missed defective images among the entire actual images under
analysis”

3. “False alarm rate” (FAR): defined as “the false positive rate...the probability
of false detection”

The overall results of the experiment found the change detection method yielded
84% accuracy, 95% true accuracy, and 21% FAR. Based on these results, the researchers
found that the change detection method was useful for preliminary defect detection only
but could not fully replace human evaluation of results. The change detection method
facilitated faster CCTV condition assessments by reducing the workload of certified
inspectors, who could focus on regions a high quantity of positive detections to
distinguish the false alarms from true positives.

A similar approach was used by Zou, Cao, Li, Mao, & Wang (2012) for crack
detection in pavement images. Although Zou et al. focus solely on one defect (i.e.
cracks) and in a different infrastructure system (i.e. pavements), the overall methodology
is the same. The researchers detection method, called CrackTree, breaks down into three
basic steps (Zou et al., 2012: 227):

1. Image enhancement to remove background noise: the researchers used a
geodesic shadow-removal algorithm

2. Crack fragment connection using tensor voting: this produces a crack
probability map, which the researchers used to enhance the connection of
crack fragments with good proximity and curve continuity

3. Minimum spanning trees and tree-edge pruning: researchers used these
methods to identify desirable cracks and further reduce noise and potential
false positives
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Zou et al. tested CrackTree using 206 images of various cracks in pavements. The
researchers use Precision, Recall, and F-measure as performance evaluation metrics.

Both Guotte & Gaussier (2005) and Ting (2011: 781) define these metrics as:

e Precision: the ratio of true positives assigned by the algorithm to total
positives assigned by the algorithm (i.e. true positives + false positives)

e Recall: the ratio of true positives assigned by the algorithm to the actual

true positives possible identified in the ground truth (i.e. true positives +
false negatives)

e F-measure: asingle measure of algorithm performance; also the weighted
harmonic mean of Precision and Recall

The confusion matrix in Table 2 is used to classify every output from the
algorithm for use in the measures of Precision and Recall (Ting, 2011). True positives
(TP) are when the algorithm finds a crack that the ground truth also identified. True
negatives (TN) are where the algorithm does not detect a crack, and neither does the
ground truth. While false positives (FP) are when the algorithm finds a crack, but the
ground truth confirms it does not exist. Conversely, false negatives (FN) are where the

algorithm does not detect a crack that ground truth identifies is present.

Table 2. Confusion matrix used to define Precision and Recall, modified from (Ting,
2011)

Algorithm Prediction
Positive Negative

Positive | True Positive (TP) |False Negative (FN)

Ground
Truth

Negative |False Positive (FP) | True Negative (TN)
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In practice, the Precision, Recall, and F-measure metrics are very similar to Guo
et al. use of accuracy, true accuracy, and FAR. The final results of the crack detection in
pavement images using CrackTree was 79% Precision, 92% Recall, and 85% F-measure.

Mathematical Models

Several studies have used the logistic regression models to predict condition in
sewer pipes, however this research only highlights two. Koo and Ariaratnam (2006)
successfully validated research where pipe age, cumulative volumetric flow, and slope
were significant inputs to determining if a pipe has failed or not. However, this binary
regression model relegated pipe condition into two states, failed and not failed, and does
not account for any intermediate states.

Tran, Perera, and Ng (2009) compared using Probabilistic Neural Network (PNN)
and Multiple Logistic Regression Models (MLRM) to predict the structural deterioration
in storm water pipes. The researchers used influential factors of pipe size, depth, and age
in the MLRM. “The results showed that the PNN model was more suited for modeling
the structural deterioration of storm water pipes than the MLRM” (Tran et al., 2009:

553).

AFIT Research in Autonomous Drones

In 2015, an AFIT study explored using UAVs and computer vision algorithms as
a viable way of performing autonomous pavement assessments of asphalt roads. The
research used a fixed-wing Telemaster unmanned aerial vehicle (UAV) to collect
pavement images at Camp Atterbury, Indiana using a Prosilica GE1660 camera travelling

at an altitude of approximately 100-200 feet and speed of 25 mph (Grandsaert, 2015).
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Images taken with this UAV system were 2 megapixel grayscale format. A total of 30
images were used as a sample data set for analysis.

The researcher successfully developed a crack detection algorithm to process the
pavement imagery based on CrackTree (Zou et al., 2012). The algorithm uses pixel
thresholding to determine the surrounding intensity level of each pixel and determines a
thresholding value as the maximum intensity-difference in the image. Next, the algorithm
performs a logical connection query that plots a graph of potential edge pixels and
connects points that are within 40 pixels of each other. To reduce the runtime for this
connection query, the researcher used a KD-tree method of indexing multi-dimensional
search trees. Finally, minimum spanning trees using Kruskal’s algorithm was used to
detect cracks refine edges. The research implemented the algorithm in Python computer
language using a an Intel® Core™ i5 (1.8 GHz processor), 120 GB solid state hard drive,
8 GB of RAM, running a Linux Ubuntu version 14.1 operating system.

Grandsaert (2015) established a ground truth by hand marking the visible cracks
in each pavement image in Microsoft Paint. The algorithm compared the ground truth
images to the results in order to evaluate the effectiveness of the algorithm using
Precision, Recall, and F-measure calculations. The algorithm did not successfully
perform at the optimal thresholding value. However, after experimentation at varying
threshold intensity shifts, results yielded a maximum F-measure of 40% in his field

testing. Figure 8 shows the qualitative results of the research.
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“Ground Truth” Experimental Results

Original Imagery

Figure 8. Experimental results of AFIT research (Valencia & Grandsaert, 2015)

Although this work focused on aerial imagery for roadways, it laid the foundation
for the proposed research in this thesis. Both concepts involve the use of drones for
infrastructure asset management surveys. The drones vary in that one collects data from
the air and the other from the ground. However, both drones integrate vehicle, sensor,
and algorithm technology for the singular purpose of collecting data. Crack detection,
both in roadways and storm water pipes, is used in both studies as a litmus test for
infrastructure AM assessment. The overall methodology behind the roadway crack

detection algorithm is based on Zou et al.’s CrackTree, and is very similar to the change
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detection methodology used by Guo et al to find defects in sewer pipes. Therefore, the

same algorithm is compatible with crack detection in storm sewer pipes in this thesis.

Summary

This chapter provided a summary of key concepts related to this research.
Specifically, this chapter first addressed the relevance of performing in-service
assessments in the AM process and system. It went on to discuss applications of UGV
technology in civil engineering, specifically in underground pipe networks. This chapter
also examined recent attempts to use computer vision techniques and mathematical
modeling to autonomously quantify pipe condition as an alternative to humans visually
recognizing and classifying pipe defects on CCTV footage. Finally, a summary of recent
AFIT research regarding using autonomous drones to perform AM assessments was

presented as a model for this research.
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I11. Methodology

Chapter Overview

This chapter discusses four aspects of the research method. First, a summary of
the system architecture provides a context for the final conceptual design used for the
data collection system fabrication. Second, the equipment used to collect the pipe
condition data on the prototype is detailed. This chapter provides details regarding the
sensor technology, unmanned ground vehicle (UGV), and automated navigation system
used. Next, the chapter summarizes the automated evaluation of condition based on
processing the imagery through computer vision algorithm. Finally, the field testing

scenario used to collect data for analysis is generally described.

Systems Architecture

Systems architecture is useful for conceptualizing, designing, and building unique
or complex systems. At its core, system architecture is a management tool that facilitates
decisions for system development. Specifically, it outlines the structure of components,
the relationships, and the principles and guidelines governing the design and evolution of
a system (ISO, 2010).

This research culminates in an autonomous system, consisting of a drone, sensor,
and algorithm technology, designed and fabricated for the express purpose of collecting
storm sewer data. Systems architecture allowed the researcher a scalable structure for

problem solving and planning for this system prototype. Additionally, the researcher
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used the system architecture detailed in this chapter and in Appendix A to select

hardware and software for the prototype construction.

ASSETS Architecture

The system is collectively referred to as Automated Storm Sewer Evaluation

Technical System (ASSETS). The Department of Defense Architecture Framework

(DoDAF) Version 2.0 is the basis for ASSETS system architecture. DoDAF is

comprised of different viewpoints, sets of architectural data organized around central

concepts. The viewpoints used in ASSETS architecture are explained in Table 3.

Table 3. DoDAF Viewpoints used in ASSETS Architecture (DoD Deputy Chief

Information Officer, 2015)

Viewpoint

Description

Capability Viewpoint
(CV)

CV describes a vision for performing specified activities to achieve
desired resource states under specified standards and conditions. It
applies specified guidance and specified performers to those tasks.

Operational Viewpoint
(OV)

OV describes organizations, activities they perform, and resources
they exchange to fulfill DoD missions. This viewpoint includes the
types of information exchanged, the frequency of such exchanges,
the activities supported by information exchanges, and the nature of
information exchanges.

Systems Viewpoint (SV)

SV describes system activities and resources that support
operational activities.

Data and Information
Viewpoint (DIV)

The Data and Information Viewpoint (DIV) describes information
needs, data requirements, and the implementation of data elements
within an architectural description. This viewpoint includes
information associated with information exchanges in the
architectural description, such as the attributes, characteristics, and
inter-relationships of exchanged data.

Systems modeling language (SysML) using Sparx® Enterprise Architect™

Version 10 and Visio® software provided visual modeling capability for ASSETS. This
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research presents a proof of concept effort to automate storm sewer evaluations for the
USAF. Therefore, a complete system design is not the focus of this study. Instead, this
research targets only essential capabilities, functions, requirements, and data/resource
flows.

Terminology

Even though the design for ASSETS is simplified to only essential requirements,
the architecture has numerous terms and acronyms that require explanation for consistent
interpretation. Table 4 contains a summary of key terms and definitions used for the
system architecture and referenced in later sections. The system elements listed in Table
4 are either physical components of the system (i.e. entity item), external systems that
provide data to ASSETS (i.e. actor), or a requirement achieved by ASSETS (i.e.

capability). The element type, the second column in Table 4, clarifies this distinction.

Table 4. Summary of Key Terms for ASSETS Architecture

Element Type Definition
ASSETS Entity Item Autqmated Storm Sewer Evaluation Technical System - the system being
architected.
ASSETS Component - Entity | ASSETS system component - contains a mathematical algorithm that
Data Analysis System ntity Item ultimately quantifies the condition of the pipe.
The self-contained data collection system that would be capable of
ASSETS Component - Entity Item detecting the presence and location of damages inside of storm sewer
Drone pipes and collecting asset attribute data (location, diameter).
ASSETS Component - Entity It ASSETS system component - The system to transfer data from the Drone
Relay Point naty ftem to the Data Analysis System.
ASSETS Component - ASSETS system component - the medium for engineer to
User interface to Data | Entity ltem manipulate/work with data analysis system.
Analysis System
ASSETS Component - ASSETS system component - the medium for utility craftsman to
User interface to Entity Item manipulate/work with drone.
Drone
Conditi Entity It A quantified measure of the physical and functional integrity of the
ondrtion nlity ftem pipeline compared to its initial state when constructed and installed.
Dat Entity It Measurements and statistics collected together for reference or analysis of
ata nuty ftem the storm sewer pipe.

37




Existing information to be uploaded to the ASSETS prior to deployment.
. . Tentatively will include:
Mission plan Entity Item 1. Existing pipe attribute data to be verified
2. Pre-determined route that the ASSETS will survey
Pipe database Actor Storage system for pipe characteristics.
Relevant data about the storm sewer pipe that will be collected/recorded
during the evaluation. Including (at this time):
Pipe measurements Capability 1. Location in 3D space
2. Diameter
3. Surface features
Retrieval point Entity It A location that can be used to either deploy or retrieve the ASSETS from
etrieval poin nlity ftem the storm water network. The most typical example is a manhole.
Infrastructure Sustainment Management System (SMS), a software system used by
Management Software | Actor Civil Engineering community to manage infrastructure assets. Examples:
System BUILDER, PAVER, GIS
Waypoint Entity Item The geographic coordinates or spatial reference of a specific location.

Assumptions and Constraints

The following assumptions and constraints were taken into account when defining

requirements for ASSETS architecture:

This research presents a proof of concept effort to automate storm sewer
evaluations for the USAF, therefore, a complete system design is not the focus

of this study.

Drone will be deployed only when storm sewer pipes are mostly dry (less than

1 inch depth of water).

Drone navigation can occur without external inputs.

Drone shall have minimum slippage on pipe surface during transit.

Drone shall be operational in pipes having a diameter between 8 inches and 36

inches.

Mission Plan, generated from existing pipe geographic information system
(GIS) database, shall include coordinate data for waypoint navigation.

Concept Definition

ASSETS is a system comprised of the following: (1) an autonomous drone

integrated with sensors, hardware, controllers, and data storage; (2) a separate data

analysis system with an algorithm to evaluate inputs and determine the condition of the
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pipe; and (3) a relay point between the drone and the data analysis system. There are also
two distinct user interfaces for the drone and data analysis system.

The Operational Concept (OV-1) for ASSETS, Figure 9, serves as a graphical
overview of the system capabilities, components, and relationships of stakeholders that
interact with the system. Before deployment in the field, the autonomous drone receives
mapping information from a pipe database. The human operator deploys the drone
through a manhole. While the drone is in the storm sewer, it autonomously measures and
detects different features with minimal input from human operators. After a mission, the
human operator retrieves the drone. The pipe measurements from the drone are used in
the algorithm to quantify a pipe condition. The algorithm updates the pipe database and
sends the condition quantity to the infrastructure management software. Ultimately, the
base civil engineer uses the infrastructure management software to make decisions

regarding maintenance and repair investments.
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Figure 9: High Level Operational Concept (OV-1) - Created using images from
(Alibaba.com, n.d.; Clipart, n.d.; Shel-Daat, n.d.)

The Operational Activity Decomposition Model (OV-5a), Figure 10, breaks down
ASSETS field inspection capabilities into operational activities. This hierarchical
structure defines the basic functionality of ASSETS and enables the researcher to identify

adequate system components for each function.
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Figure 10. Operational Activity Decomposition Model (OV-5a)




The researcher used the OV-5a to create the modified SV-7 traceability matrix in
Table 5, which identifies which component performs which function (i.e. OV-5a
capability). This allowed the researcher to select equipment for each function using
commercial off the shelf (COTS) hardware and open-source software. An analysis of this
table indicates that the existing system design is not overly robust—only critical
capabilities are mapped to system components. Additionally, it does not account for
redundancies to key operational activities such as “Power Propulsion”—in other words,
there is no backup if the drone vehicle propulsion should fail. The lack of redundancy is
a system limitation. However, since the focus of this architecture is only critical
activities, the fact that at least one component is assigned to each operational activity

confirms a complete conceptual design.
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Table 5. Operational Activities to Systems Components Traceability Matrix (modified SV-7)

Utility Craftsman: R/C Radio

SV-4::0perate Propulsion Components

SV-1::Drone Memory Storage

Groundstation: Video Receiver

Groundstation: Software Module

Groundstation: Modem

Groundstation: Computer

Drone: Video Transmitter

Drone: Video Camera

Drone: Vehicle Propulsion System (rover)

Drone: Receiver

Drone: LiDAR sensors

Drone: GPS

Drone: Comm Modem

Drone: Auto Pilot

Drone: Battery #2 (sensors)

Drone: Battery #1 (propulsion,
computing)

Drone: Data Storage

OV-5::Determine Horizontal Movement
OV-5::Determine Vertical movement

OV-5::Follow Navigation

OV-5::Power Electronics

OV-5::Power Propulsion
OV-5::Recall Mission

OV-5::Receive Message
OV-5::Send Message

OV-5::Sense Pipe Diameter

OV-5::Sense Pipe Surface

OV-5::Store Measurements

OV-5::Use Propulsion System
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Equipment

The researcher selected all system components using the complete ASSETS architecture
(Appendix A). In the interest of time and cost constraints on this study, the researcher selected
commercial-off-the-shelf (COTS) hardware and open-source software for all components. An
itemized listing of all components and associated costs are in Table 6 on page 51. The most
relevant equipment selection and rationale are detailed in the following paragraphs.

Sensor Technology

The researcher examined several sensor technologies, as detailed in Chapter 2, in
selecting an appropriate sensor package for the prototype. Based on the literature review of
infrared (IR) thermography, this technology provides superior performance in sewer pipe
functional evaluations for crack detection. Unfortunately, a thermal camera was not readily
available within the researcher’s timeframe. Optical inspection using closed circuit television
(CCTV) and sewer scanning evaluation technology (SSET) were available and selected as the
most applicable technologies for crack detection.

SSET:

A combination of two laser-based SSET sensors is used for this research effort. The
Hokuyo® URG-04X-UGO01 scanning laser range finder was selected to scan the interior pipe
surface to confirm pipe diameter and detect obstructions. The Hokuyo® was selected based on
its 240 degree scan angle, accuracy (+/- 1.0 cm), low power demand (5V DC), and relatively
small footprint. Although the hardware was integrated into the ASSETS prototype, time
constraints impeded the researcher from developing the programming code necessary to use the

Hokuyo® URG-04X-UGO01 scanning laser in the field.
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The Pulsed Light, Inc® LiDAR Lite™ unidirectional laser range finder (Figure 11) was
selected to facilitate determining the location within the pipe by ranging the distance between the
drone and a reflective board installed at the retrieval point. The LiDAR Lite™ was selected

based on its low power demand (6V DC), reasonable accuracy (+/- 2.5 cm), and extremely small

footprint.

Figure 11: LiDAR Lite™ range finder (RobotShop, n.d.)

Camera:
The Prosilica® GC1290C camera (Figure 12) is used to capture imagery for this research
effort. The camera was selected based on its relatively fast exposure rate (32 frames/sec at 1.2
megapixels) and extremely small footprint (59 x 46 x 33 mm). The small footprint is possible

because the camera does not have on-board data storage and rather it transfers imagery to a
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computer via a gigabit Ethernet port rated at 1,000 MB/sec. This interface allowed the
researcher a higher storage capacity of images, but required more complex software control
through a third-party computer software developed in Python (Appendix B. Programming
Code). The Python code leveraged the free Vimba® software available through Allied Vision
Technologies, Inc. and a Python wrapper, known as Pymba, to successfully capture images with
the Prosilica® GC1290C camera. A 3-cell 11V lithium polymer (LiPo) battery powers the

camera.

GiG=

VISION

PRSI

Figure 12. Prosilica GC1290C camera (AVT, n.d.)

On-board and Off-board Computers

An Intel® Next Unit Computing (NUC) is used to provide on-board data storage and
processing capability to the ASSETS drone. The NUC computer has an Intel® Core™ i5 (1.6
GHz processor), 250 GB solid state hard drive, 8 GB of RAM, and runs a Microsoft® Windows
7™ operating system. A 6-cell 22.2V LiPo battery, connected via a voltage regulator, powers

the NUC while operational in the field. The NUC and the 22.2V LiPo battery are relatively large
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in both size and weight compared to the other ASSETS components. However, the NUC’s
capability with respect to data processing and storage capability, even with the tradeoff, is
superior to other alternatives such as the Raspberry Pii. The NUC contains all software
necessary for data collection and analysis for this research, and is essentially the groundstation
controller.

In order to make any adjustments in the field, an off-board groundstation laptop computer
running TeamViewer™ Version 10 software is used to remote control the NUC. TeamViewer™
software streams the operating system on the NUC to the groundstation laptop display, and
allows the researcher to control the NUC via this interface. The researcher used TeamViewer™
to adjust camera settings, run Python and Mission Planner® scripts, and verify images collected
during the field test.

uGgv

A hobbyist Traxxas® Stampede™ radio controlled car chassis is used for this research
effort. Very little modification to the motor, suspension, frame and wheels was done. The
aesthetic plastic shell was removed and a platform was attached to the frame, on which most of
the other system components were attached.

The SSET sensors, camera, and two batteries were attached to the UGV platform and
chassis using 3D printed brackets. The researcher collaborated with a fellow AFIT researcher to
pinpoint the design constraints and objectives for 3D printing. The brackets were designed in
SolidWorks® to print four separate brackets. The process to create these critical components,
from preliminary design to second prototypes, was completed within one week. A full
description of all four brackets is documented in Shields (2016). One bracket is detailed below

to better illustrate how the 3D printed brackets influenced this research.
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Prior to the introduction of the 3D printed brackets, the geometry of the platform limited
the configuration of the camera and SSET sensors (Figure 13). The Prosilica® camera was
previously mounted to the bottom of the platform, pointing directly forward. This orientation
resulted in skewed images starting at approximately 1 meter in front of the UGV. The 3D
printed bracket simultaneously improved the vantage point of the Prosilica® GC1290C camera
by raising it higher and angling down to the area of interest, and secured the Hokuyo® URG-
04X-UGO01 scanning laser range finder (Figure 14). The overlap of the camera lens and
Hokuyo® does not impede readings as currently tested.

Table 6. ASSETS itemized components and cost summarizes all ASSETS component
selections, the desired specification from the systems architecture, and individual and total costs.
The researcher set baselines, objectives, and targets based on the assumptions and constraints of
the ASSETS architecture. Again, in order to reduce time and cost demands on this study, the
researcher selected COTS hardware and open-source software for all components. The overall
cost of ASSETS is $4,500, which is relatively inexpensive when compared to other CCTV

systems detailed in Chapter II.
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Figure 13. LiDAR and camera attached to platform (prior to 3D printed brackets).
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Figure 14. LiDAR and camera installed in 3D printed bracket.
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Table 6. ASSETS itemized components and cost

Architectural

Selected Hardware/

Element Type Measure Baseline Objective Target Software Component Cost
The autonomous navigation
hardware and software Compatible with
Drone: Auto required to navigate the pipe, 12C, sensor interface
Pilot Component | ideally in the absence of GPS PWM 12C requirements 3DR Pixhawk $ 199.99
The greatest frequency
allowable within
standards, compatible
with autopilot
The frequency on which navigation and
Drone: Comm autopilot communicates with groundstation
Modem Component | groundstation 915 MHz 915 MHz | software. 3DR Radio Set $ 100.00
Maximum update rate
Update rate for GPS data to available, compatible
provide for autonomous with autopilot 3DR uBlox GPS with
Drone: GPS Component | navigation by autopilot system 5 Hz 5 Hz software. Compass Kit $ 89.99
Maximum coverage
for scanning pipe
diameter, and
Scan angle as close to 360 maximum range of (1) Pulsed Light -
degrees as possible (for pipe unidirectional scan for | LiDAR Lite
Drone: LiDAR diameter), minimum range of location within the (2) Hokuyo - URG-04X-
Sensors Component | 60 meters. 20m 60 m pipe uG01 $ 1,229.95
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Drone: Vehicle

Minimum speed of
0.25 m/sec (i.e. faster
than walking speed),
maneuverability to
allow for reasonable

Propulsion Speed and maneuverability of 0.25 amount of

System (rover) | Component | vehicle m/sec 2 m/sec maneuverability Traxxas E-Maxx Truck 750.00
Ability to capture
images with minimal
blur at target

Fastest image capture with 1 2 inspection speed of 2 Prosilica (AVT)

Drone: Camera | Component | maximum resolution Megapixel | Megapixels | m/sec GC1290C 1,125.00

Groundstation:

Computer Component Lenovo Yoga 2.0 -
The greatest frequency
allowable within
standards, compatible
with autopilot

The frequency on which navigation and

Groundstation: autopilot communicates with groundstation

Modem Component | groundstation 915 MHz 915 MHz | software. 3DR Radio Set 100.00
Software system that
is compatible with

Groundstation: autopilot, and can

Software Compatibility with autopilot process waypoints in 3DR APM Mission

Module Component | hardware n/a n/a 3D space. Planner - Rover -

SV-1::Drone Data storage for 4 hrs | Removable media (e.qg.

Memory The data storage capacity of of sensor SD card @ 512 GB or

Storage Component | the drone 500 GB >1TB measurements USB 3.0) 90.00
The greatest velocity

SV-4::Operate The maximum horizontal allowable with

Propulsion velocity of the drone in the 0.25 accurate sensor

Components Function pipe m/sec 2 m/sec measurements Rover propulsion -
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SV-4::Provide

Electricity to: The power/battery capacity 2,000 Power capacity for 4
camera Function available for camera mAh 5,000 mAh | hr field deployment Battery #2 35.00
SV-4::Provide The power/battery capacity
Electricity to: available for vehicle
(1) Propulsion propulsion, autopilot, and 2,000 Power capacity for 4
& (2) AutoPilot | Function LiDAR sensors mAh 5,000 mAh | hr field deployment Battery #1 -
SV-4::Provide The power/battery capacity
Electricity to: available for vehicle
Computing propulsion and computing 2,000 Power capacity for 4
Component Function components mAh 5,000 mAh | hr field deployment Battery #3 80.00
SV-4::Send
Measurements The speed at which sensor Processing capability
to Memory measurements can be to enable a speed of 30
Storage Function converted to memory. 500 MHz 700 MHz | ft/min Processor (NUC) 350.00
The greatest frequency
allowable, but R/C
Radio should be fully
Utility The frequency on which compatible with FRSKY Taranis PPM-
Craftsman: R/C autopilot commuincates with autopilot hardware and | Sum Compatible
Radio Component | groundstation 2.4 GHz 2.4 GHz software. Transmitter 295.00
TOTAL COST = 4,444.93
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Computer Vision

This research uses the same crack detection algorithm developed in Grandsaert (2015) for
detecting cracks in pavement images, which is based on the CrackTree concept (Zou et al.,
2012). As previously mentioned in Chapter 11, the overall methodology Zou et al. use for
CrackTree is the same as the change detection methodology used by Guo et al to find defects in
sewer pipes. Therefore, the algorithm employed in Grandsaert (2015) is compatible with crack
detection in storm sewer pipes in this study. Future research should consider improving the
algorithm with robust image enhancement similar to that tested by Guo et al to eliminate non-
uniform background noise (e.g. pipe joints, landmarks, and changes in lighting).

Except for minor updates for file path and image size, this research did not adjust the
algorithm from the final working code in Grandsaert (2015). The algorithm uses pixel
thresholding to determine the surrounding intensity level of each pixel and determines a
thresholding value as the maximum intensity-difference in the image. Next, the algorithm
performs a logical connection query that plots a graph of potential edge pixels and connects
points that are within 40 pixels of each other. A KD-tree reduces runtime for this connection
query and finally Kruskal’s algorithm is used to create minimum spanning tress and prune edges.

This research evaluates algorithm effectiveness using Precision, Recall, and F-measure
metrics, as defined by Guotte & Gaussier (2005) and Ting (2011: 781):

e Precision: the ratio of true positives assigned by the algorithm to total positives

assigned by the algorithm (i.e. how many of the cracks that the algorithm found
were true cracks), calculated in Equation (1)
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True Positives Found by Algorithm (1)
True Positives + False Positives

Precision =

e Recall: the ratio of true positives assigned by the algorithm to the actual true
positives possible identified in the ground truth (i.e. Recall is how many of the
true cracks the algorithm found), calculated in Equation (2)

True Positives Found by Algorithm
True Positives + False Negatives

@)

Recall =

e F-measure: asingle measure of algorithm performance; also the weighted
harmonic mean of Precision and Recall, calculated in Equation (3)

* « ..
F _ Measure 2*Recall Pl’e.CI.SIOI’] 3)
Recall + Precision

Field Testing and Validation

Field Testing

Field testing was performed on a concrete-lined drainage channel on Wright-Patterson
AFB, OH (Figure 15). The intent of using a concrete-lined drainage channel is to simulate storm
pipe infrastructure, but avoid the challenges associated with not having a GPS signal
underground. As this research is a proof of concept, successful field testing on a concrete
channel shows that the system can autonomously collect images and process the data via
computer vision algorithm. Unfortunately, autonomous navigation using the Pixhawk® autopilot
was not possible for the field test—the ASSETS drone was operated manually using the Taranis®

R/C controller. Preliminary trials at AFIT campus prior to field testing revealed a drift error

when the autopilot navigated the drone in place of manual controls. The drift error was too great
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to compensate for with gain settings in the Mission Planner® software. This can be corrected in
future research by additional calibration with the Mission Planner® software settings, or even

working with the open source community for a proven solution.

JdField Test Site
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Figure 15. Storm water drainage channel used as field test site, Wright-Patterson AFB OH.
(Google, n.d.)

The 50-meter section of channel on the western edge, demarcated with a yellow line in
Figure 15, was field tested on 4 December 2015. The weather that day was partly cloudy and 32
degrees F. This section was tested by manually driving the ASSETS drone through the center of
the channel and executing the image acquisition code to capture 50 images. This was completed

four times, for a total of 200 images.
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Subject Matter Expert (SME) Validation of Ground Truth

Two civil engineers from the 88th Civil Engineer Squadron visually inspected all 200
images collected during the field test to “ground truth” the defects in the drainage channel. As
each image was reviewed, the SMEs discussed the image and reached consensus on the presence
of a crack in the image. If a crack was detected, one of the engineers used a hardcopy of the
image to draw the crack and define the edges. The ground truth information on the hardcopy was
transferred to a digital image using Microsoft Picture Manager (to draw the crack) and Microsoft
Word (to remove the background). The algorithm compared this digital ground truth to the
results created by the computer algorithm. This process with SME inputs and digital file

manipulation provided the data set against which the algorithm output could be validated.

Statistical Methods for Evaluating Crack Detection Effectiveness

This research used Precision, Recall, and F-measure to evaluate the effectiveness of the
algorithm in detecting cracks. The algorithm calculated Precision, Recall, and F-measure by
comparing the algorithm image output to its paired ground truth image and applying Equations
(1) through (3), respectively. The fundamental analytical goal of this research was to explain if
these factors were statistically different at the various intensity thresholds applied, but more
importantly to identify under which scenario the algorithm performed best.

The researcher applied several statistical methods in JMP® v11 in order to explain the
variance in F-measure, as this factor takes into account Precision and Recall. An analysis of
variance (ANOVA) test was performed to determine what factors explained the variance
observed in the F-measure results. The ANOVA was validated by testing its assumptions via the

Shapiro-Wilk test for normality of the residuals, the Breusch-Pagan test for homoscedasticity
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(constant variance) of the residuals, and finally the Durbin-Watson test for residual
independence. LS Means plots, Tukey HSD and Student’s T tests were performed where
applicable.

The researcher tested the associated null hypothesis of each statistical method. Rejection
or failure of rejection of each null hypothesis was further evaluated with respect to its
significance to the research goal. For this study, the null hypotheses (H,) and alternate
hypotheses (H,) for each test are defined below:

Overall F-Test

e Hoi: None of the factors explains the observed variance in F-measure.
e Hgi: At least one of the factors explains the observed variance in F-measure.

Effect Tests

e Hg,: The F-measure means of the Images are the same.

e Hg,: At least one of the Images has a different F-measure mean.

e Hys: The F-measure means of the Intensity Thresholds are the same.

e Hj3: At least one of the Intensity Thresholds has a different F-measure mean.

Shapiro-Wilk W Test

e Hy4: The population of the residuals is normally distributed.
e H,4: The population of the residuals is not normally distributed.

Breusch-Pagan Test

e Hgs: The residuals display constant variance.

e H,s: The residuals do not display constant variance.
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Durbin-Watson Test
e Hgs: The residuals are independent of one another.

e Hgg: The residuals are dependent of one another.

Summary

This chapter presents an overview of the system architecture, equipment, and computer
vision techniques used in this research effort. The ASSETS prototype for this research effort is
field tested using a concrete drainage channel at Wright-Patterson AFB, OH. A crack detection
algorithm in Python applies computer vision techniques to process the imagery collected by
ASSETS. The cracks detected by the algorithm are then compared to a ground truth, established
based on a consensus of two expert opinions, which represents the true cracks in the drainage
channel. The algorithm calculates Precision, Recall, and F-measure results for each image.
These quantitative results are analyzed using an ANOVA to determine what factor, if any,

explains the variance observed in F-measure.
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IV. Analysis and Results

Chapter Overview

This chapter contains the results of the field testing, SME validation, and
algorithm processing. Each section in this chapter describes the relevant observations, processes,
or techniques used for the data collection and analysis, and presents an overview of the results.
Finally, this chapter concludes with presenting qualitative and quantitative results of the image
processing performed by the algorithm. The analysis in this chapter lays the groundwork for

Chapter V which interprets the results from the perspective of the research questions.

Results

Field Testing and SME Validation

Field testing occurred on 4 December 2015 from approximately 1330 — 1500 hours local
time. The researcher used the ASSETS prototype described in Chapter 111 to collect a total of
200 images of the 50-meter section of storm water drainage channel (Figure 15). The researcher
completed four different trial runs of the same route, referenced as Runs A, B, C, and D. Each
trial run collected 50 images, for a total of 200 images.

The exposure settings on the Prosilica® GC1290C camera were adjusted at the field test
site prior to Run A for optimal performance using a simple technique. Based on the expertise
and guidance of the AVT Technical Services staff, the researcher manually adjusted the camera
iris into the fully open position and decreased the absolute exposure time setting (i.e.
ExposureTimeAbs) in Vimba® software to 1,513 microseconds. The Vimba® software settings

are used when the Python image acquisition code script is executed. These adjustments ensured
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the fastest exposure time at the specific lighting conditions present at the field test site. This
technique improved exposure rate from 0.86 to 1.39 frames per second (fps), and resulted in

clearer pictures, as illustrated in Figure 16.

(a) Exposure rate at 0.86 fps (b) Exposure rate at 1.39 fps
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Figure 16. Comparison of exposure settings before (a) and after (b) using improved technique.

The images collected represented a wide range of crack scenarios, ranging from no cracks
to many cracks plus debris. Lighting conditions were fairly uniform since the weather remained
overcast throughout the field test. However, several images were darker and contained more
debris (e.g. leaves) as the last 20 meters of the route was covered with trees.

The SMEs from the 88th CES confirmed cracks in 90 (45%) of the 200 images collected
during the field test. If a crack was detected, one of the engineers used a hardcopy of the image
to draw the crack and define the edges. The researcher later used the ground truth information
on the hardcopy to create a digital image using Microsoft Picture Manager (to draw the crack in
red) and Microsoft Word (to remove the background). Through this process, 90 pairs of images

(i.e. one original image and one digital ground truth image) resulted from the field testing and
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SME validation steps. The researcher used these pairs of images in the algorithm processing
discussed in the Image Processing section.

Algorithm Control Test

A control test was performed in order to better understand algorithm performance and to
evaluate the image processing results for inaccuracies. The researcher created a control image
consisting of two black lines, both 1 pixel wide, going across the length of the image and
crossing orthogonally exactly at their midpoints. Line A was 1 pixel wide by 960 pixel long, and
Line B was 1 pixel wide by 1280 pixels long. A separate ground truth control image (Figure 17)
was created by duplicating the control image exactly, but changing the color to red. This pair of

images was used as the control test inputs for the algorithm processing.

\ Line A: 1 pixel wide by 960 pixels

long

/J‘

Line B: 1 pixel wide by 1280 pixels long

Figure 17. Ground truth control image.

The algorithm processing results are both qualitative (i.e. output images created by

algorithm) and quantitative (i.e. calculations of Precision, Recall, and F-measure). The control
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test output image (Figure 18) visually confirms that the algorithm did a reasonably good job
detecting the lines, but with some inaccuracies. First, lines detected by the algorithm were drawn
wider than the true width represented in the control image. Both Line A and Line B were
recreated 3 pixels wide instead of 1 pixel wide, causing a fairly large amount of false positives.
Second, the algorithm missed 8 pixels on the far edge of each line, shown in red circles in Figure
18. These missed pixels resulted in a small amount of false negatives. Finally, the algorithm
misrepresented the midpoint crossing of the two lines by omitting 5 pixels (i.e. false negatives)
and mistakenly drawing approximately 20 pixels for the “diagonal’” connections between the two

lines (i.e. false positives).

\ Line A: 3 pixels wide by 952 pixels

long
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Line B: 3 pixels wide by 1272 pixels long

D

Figure 18. Algorithm output image from control tests, errors highlighted in red.

Based on the evaluation of the qualitative output image, the researcher hand-calculated

expected values for Precision, Recall, and F-measure (Table 7) by using Equations (1) through
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(3), respectively. The actual quantitative output results calculated by the algorithm are shown in
Table 8. The algorithm calculated a Recall of 57.2%, which was surprising given the relatively
low amount of false negatives in the output image. Upon further investigation, the researcher
found that the equations for Precision and Recall were inverted in the programming code used in
Grandsaert (2015). However, since the F-measure is the harmonic mean of Precision and Recall
this inversion does not change the overall results presented by Capt Grandsaert. The researcher
corrected the inverted labels in the algorithm used for this study. Lines 104-114 of the
“Comparebxb” programming code script, found in Appendix B. Programming Code, were
modified for the corrected equations for Precision and Recall.

Table 7. Expected quantitative results using control image evaluation.

Precision 33.5%
Recall 99.1%
F-measure 50.0%

Table 8. Actual quantitative results calculated for control test.

Precision 31.1%
Recall 57.2%
F-measure | 40.3%

The inverted labels do not fully explain the discrepancies between Table 7 and Table 8.
In other words, inverting these values in Table 8 uncovers that the algorithm is not calculating
false positives and false negatives as anticipated by the researcher. There are several “tuning
parameters” applied by the algorithm that can be adjusted to investigate performance changes.
An example of one of these tuning parameters is a 15 pixel tolerance between a found crack

pixel and the ground truth pixel (i.e. algorithm will positively count a crack pixel that is in the
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pixel location +/- 15 pixels in the ground truth image). The researcher did not tune these
parameters to refine performance because the actual F-measure was fairly close to expected in
the control test. However, this type of tuning is recommended for future research.

Although there were some inaccuracies in the algorithm results, overall the control test
validated that the algorithm methodology successfully performed crack detection. The control
test identified one error in the programming code from Grandsaert (2015), the inverse of
Precision and Recall labels. The programming code was modified to correct this inverse, and
was used for the field image processing detailed in the following section.

Image Processing

The algorithm could not process all 90 images at one time due to the limitations of the
computer hardware used. A single batch process of all 90 images overwhelmed the NUC’s
processing memory, and resulted in unusable images starting at approximately image #33. The
NUC’s Intel® Core™ i5 (1.6 GHz processor) and 8 GB of RAM could not handle the massive
amount of potential crack pixels within close proximity in the entire image data set. To avoid
this problem, the images were processed in multiple batches. The researcher processed images
in four different sets correlating to the four different trials performed during the field test. The
largest set was 26 images, and took approximately 9 hours to process at an intensity threshold
shift -40. At the intensity threshold -35, however, the system was again overwhelmed due to the
increase of potential crack pixels at the lower threshold. For this setting, the researcher
processed the images in eight smaller sets of approximately 10-12 images.

In total, the researcher processed the 90 pairs of images through the algorithm at three

different intensity threshold shifts: -35, -40, and -45. The algorithm processing results are both
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qualitative (i.e. resulting images created by algorithm) and quantitative (i.e. calculations of
Precision, Recall, and F-measure).

The qualitative results from three representative images at intensity threshold shift -40 are
shown in Figure 19. A comparison of the qualitative results of the same three images, processed

at the other intensity thresholds, are shown in Figure 20.

Original Image Ground Truth Algorithm Results

Figure 19. Crack detection on three representative images at intensity threshold shift -40.
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Figure 20. Comparison of algorithm processing results at intensity thresholds -35, -40, and -45.

Once the algorithm produced a resulting image, the program compared the output image

to the digital ground truth and calculated a Precision, Recall, and F-measure for each image. The
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data was compiled in JMP® v11 and two quantitative analyses were performed: (1)
interpretation of the summary statistics, and (2) an ANOVA test of the F-measure results (See
Appendix C. Quantitative Data).

Interpretation of Summary Statistics

Figure 21 shows that the mean Recall achieved by the algorithm is 97.6% considering all
thresholds. This mean includes several outliers, including four instances of an observed Recall
of 0% in image #4, 60, 66, and 67 at threshold intensity -45. The researcher suspects that the
extremely low Recall in those images is attributed to excessive debris in the images; however no
further analysis was performed to confirm this suspicion. The reported mean is a conservative
estimate of Recall, and the true Recall could possibly be higher if excluding these outliers was

justified.

st ey 01207233
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Figure 21. Overall Recall summary statistics (all thresholds)
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A breakdown of the observed Recall at each intensity threshold shift using histograms is
illustrated in Figure 22. To offer another perspective, a visual comparison of the group means
using comparison circles for the All Pairs, Tukey HSD is illustrated in Figure 23. Intensity
threshold -45 has the highest observed mean Recall at 99.04%, but intensity threshold -35 was

almost equal with less variance.
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Figure 22. Recall quantitative summary statistics by intensity threshold
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Figure 23. Comparison of Recall group means, with Tukey HSD comparison circles

Figure 24 shows that the mean Precision achieved by the algorithm is 17.2% considering
all thresholds. This mean includes four possible outliers on the higher side of the range — image
#33 at intensity threshold -40, and images #23, 33, and 40 at intensity threshold -35. In the case
of image #33, the researcher again suspects that excessive debris may have affected the measure
of Precision; however no further analysis was performed to confirm this suspicion. Additionally,
there was no observed debris in images #23 and 80, so the high Precision observed is not fully

explained by the presence or absence of debris.
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Figure 24. Overall Precision summary statistics (all thresholds)

A breakdown of the observed Precision at each intensity threshold shift is illustrated in
Figure 25. To offer another perspective, a visual comparison of the group means using
comparison circles for the All Pairs, Tukey HSD is illustrated in Figure 26. Intensity threshold -

35 has the highest observed mean Precision at 23%.
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Figure 25. Precision quantitative summary statistics by intensity threshold
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Oneway Analysis of Precision By Intensity Threshold
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Figure 26. Comparison of Precision group means, with Tukey HSD comparison circles

Of the three parameters discussed, F-measure, as the harmonic mean of the other two
factors, is the main value used for evaluating the effectiveness of the algorithm. Harmonic mean
is a measurement of central tendency that is applicable when averaging rates (“Harmonic Mean
Calculator, Formula & Calculation,” n.d.). Figure 27 shows that the mean F-measure achieved

by the algorithm is 28% considering all thresholds. This mean does not appear to include any

outliers.
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Figure 27. Overall F-measure summary statistics (all thresholds)
A breakdown of the observed F-measure at each intensity threshold shift is illustrated in
Figure 28. To offer another perspective, a visual comparison of the group means using
comparison circles for the All Pairs, Tukey HSD is illustrated in Figure 29. Intensity threshold -

35 has the highest observed mean F-measure at 36.1%.
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Figure 28. F-measure quantitative summary statistics by intensity threshold
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Oneway Analysis of F-Measure By Intensity Threshold
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Figure 29 Comparison of F-measure group means, with Tukey HSD comparison circles

ANOVA test of F-measure

This research uses an analysis of variance (ANOVA) test to determine what factors
explain the variance observed in the F-measure results. In this study, the only two factors under
consideration are Image and Intensity Threshold. Image is the ordinal value for the image that
distinguishes it from the rest of the images (i.e. File 1 through 90), where each image is non-
identical and independent of the rest. Based on this fact, the F-measure was expected to vary
greatly based on Image; however, accounting for this variance in the model was critical.
Intensity Threshold is one of three threshold settings (i.e. -35, -40, or -45) used in the algorithm
for image processing.

The results of the ANOVA test, found in Figure 30, show the overall F-test resulted in a
p-value less than 0.0001. The null hypothesis, Ho1, is that none of the factors can explain the
variance. Using an overall alpha value of 0.05, @, = 0.05, the ANOVA test successfully
rejected the null hypothesis H,;, showing that at least one of the factors can explain the variance

in F-measure. Next, the effects tests of the two factors were analyzed using a comparison wise
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error rate, . = 0.025. The effects tests analyze whether the difference of mean F-measure by
each factor, Image or Intensity Threshold, are the same or statistically different. The null
hypotheses Ho, and Hys are that the means are the same in Image and Intensity Threshold,
respectively. The effect tests of each factor, also found in Figure 30, show both p-values are less
than 0.0001, far less than the @, Therefore, both tests rejected H,, and Hoz, showing that at least
one of the Image or Intensity Threshold means are statistically different and affect F-measure

variability.

78



Whole Model

Actual by Predicted Plot

#-Measure Actual

Summary of

Rsquare

Rsquare Ad)

Root Mean Square Eror

Mean of Response

Observations (o Sum Wots)

Analysis of Variance

Source.

Model

Eror

€ Total

Effect Tests

Source.

image

Intensity Theshold

00%

s00%

s00%

a00%

300%

200%

100%

Residual by Predicted Plot

004

002

000

F-Measure Resicual

002

004

200%

 Measure Preclted <0001 RSq=098 RMSE=0.0244

Sum of

Squares

54767053

01055745

55822799

oss1088

0971419

o035

0280356

Mean Square

0060184

0000593

Sum of

Squares

35292

L3761

00%

FRatio

1014702

Prob > F

Fratio

2305

9544310

100%

200%

F-Measure Predicted

0%

6005

Figure 30. ANOVA results from JMP®
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Figure 30 shows the R? value from the ANOVA. The R? value indicates that
approximately 98% of the overall variance is explained by the factors of Image and Intensity
Threshold. However, high R? values also indicate that the tests for assumptions of normality,
independence, and constant variance will be more difficult to pass. The Durbin-Watson test,

found in Table 9, resulted in a p-value of 0.6086 and successfully confirmed independence.

Table 9. Durbin-Watson independence test results

Durbin-  Number

ooooo

In Figure 31, the Shapiro-Wilk Goodness-of-Fit p-value is 0.0249, which is less than the

a. and therefore indicates the residuals are not normally distributed.

Figure 31. Histogram of residuals with Shapiro-Wilk W test results

Similarly, the Breusch-Pagan test of constant variance, found in Table 10, resulted in a p-
value of 0.0000429 which is drastically below the . and confirms that the residuals do not have

constant variance.
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Table 10. Breusch-Pagan constant variance results

n 270 observations

df(exp) 91 Model (ANOVA)

SSE 0.1055746 error Sum of Squares(ANOVA)
SSR 0.00004704| new Model (ANOVA from Res”2)
TS 153.8317414 (SSR/2)/(SSE/n)"2

Pvalue = 4.2939E-05 Chi dist

Although the Shapiro-Wilk and Breusch-Pagan tests were unsuccessful, ANOVA is
robust against deviations in normality and variance. Normality and constant variance is
confirmed by the histogram of residuals (Figure 31) and residual by predicted plot (Figure 30),
respectively. Therefore, this research concludes that the ANOVA is valid and that F-measure
variability is attributed to the Image and Intensity Threshold factors. Upon further investigation
of the effect test results, the LS Means Plot and Tukey HSD of Intensity Threshold, found in
Figure 32, show that F-measures at each intensity threshold are statistically different.
Additionally, Figure 32 shows that an intensity threshold shift of -35 is the most effective (i.e.

highest F-measure) for this algorithm with a mean of 36%.

81



LSMeans DifferencesTukey HSD

LS Means Plot M= 0050 Q= 236353
70.0% LShi=an(l
i1 Mean[l-Mean[i35 |40 |45
60.0% St Err DiF
et Lower €L D
o 50.0% Upper CLDif
S c ar B 1
25 40.0% F— 3
3 —3
E“ = 30.0% =
1 b |
T2 20.0% I is
10.0%
0.0% =
35 40 45
Intensity Threshold
Least
Level SqMean
35 033204111
40 B 030747778
45 € o23ss1in1

Levels notconnected by same letter are sign ificanthy different.

Figure 32. LS Means Plot and Tukey HSD results

Summary

This chapter presented the results of the field testing of the ASSETS prototype to collect
imagery, and the subsequent SME validation of those images for to determine ground truth.
Next, the qualitative results of the algorithm were summarized. A quantitative analysis of the
Precision, Recall, and F-measure data was accomplished by interpreting the summary statistics
and performing an ANOVA test to determine whether one of the factors (Image or Intensity
Threshold) could explain the variance observed in the F-measure results. A complete dataset of
Precision, Recall, and F-measure values is presented in Appendix C. Quantitative Data. The

following chapter provides an interpretation of these results and a research conclusion.
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V. Conclusions and Recommendations

Chapter Overview

This chapter interprets and discusses the results presented in this research. Specifically,
this chapter draws conclusions from each analysis performed and highlights implications for
USAF infrastructure asset management. This chapter also reviews and answers the research

questions presented in Chapter I. Finally, suggestions for future research are detailed.

Conclusions of Research

This research has shown that it is conceptually possible to complete storm pipe condition
assessments using a low-cost drone comprised of all COTS and open-source components. The
photographic imagery collected was of sufficient quality and quantity that the algorithm could
detect cracks autonomously with 36% efficiency. Efficiency, the F-measure, is the harmonic
mean of Precision and Recall. Precision is the ratio of true positives assigned by the algorithm to
total positives assigned by the algorithm (i.e. true positives + false positives), while Recall is the
ratio of true positives assigned by the algorithm to the actual true positives possible identified in
the ground truth. Evidence of an extremely high overall Recall (97.6%) and relatively low
Precision (17.2%) indicates that the algorithm is detecting an excessive amount of false
positives, instances where the algorithm detects a crack that the ground truth identifies is not
present. Due to time constraints, no further analysis was possible regarding the low Precision.
However, the images were taken very close to the pavement surface and it is very probable that
normal surface features at this vantage point are mistaken for cracks in the algorithm as written.

However, future research efforts to increase the Precision of the algorithm should consider more
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aggressive noise reduction and/or edge pruning techniques to reduce false positives resulting
from enhanced surface features, uneven lighting, and debris present in the images.

The algorithm uses pixel thresholding to determine the surrounding intensity level of
each pixel and determines an optimal thresholding value as the maximum intensity-difference in
the image. As with the work performed in pavement crack detection, the algorithm did not
perform successfully at the optimal thresholding value therefore intensity threshold shifting was
required (Grandsaert, 2015). The ANOVA validates that intensity threshold shifts have a
significant impact on F-measure response in this algorithm. For this system and application,
intensity threshold -35 is the most effective threshold tested with this research. However, even
with an observed mean of 36% (Figure 32), it is unlikely that the system as designed will be
adopted for operational use. Infrastructure asset managers will likely desire increased F-Measure
and Precision metrics. Still, this research does elucidate potential aspects of improving this
technology to obtain more accurate crack detection data in the future.

With an R? of 98% the ANOVA accounts for almost all of the observed F-measure
variance with only two independent variables — Image and F-measure. This research has shown
that no additional input factors (e.g. asset age, construction material type) are required to control
F-measure in the algorithm outputs. Because there is no need to collect other data, it is possible
to detect cracks in photographic images using this algorithm at a minimal cost. However, other
data inputs may be required if the research aperture were opened to include other types of
defects. Also, the algorithm needs to be refined for better Precision (i.e. less false positives) to
be operationally useful. This research draws from these conclusions to answer the investigative

questions posed in Chapter I.
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Investigative Questions Answered

This goal of this research was to prove that a low-cost autonomous system could quantify
the condition of underground storm sewer pipes as good as or better than a CCTV inspection.
The investigative questions posed in this study contribute to an effort focused on leveraging
technology to autonomously detect condition defects in storm pipes. The results of this research
and the answers to these questions can potentially aid USAF CE personnel in enterprise

strategies for completing infrastructure AM condition assessments across the Air Force.

1. How can a small autonomous UGV be configured to collect pipe condition information?

A UGV used to collect pipe condition data is simply a means to an end, a tool for the
specific purpose of collecting information. A system architecture can be used not only to create
a drone by integrating a vehicle, applicable sensors, and algorithm technology towards data
collection, but also to integrate the drone into the larger CE infrastructure asset management
system. Literature shows that several sensor technologies can collect relevant sewer pipe
condition information, including closed circuit television (CCTV) imagery, sewer scanning and
evaluation technology (SSET), acoustic and sonar testing, infrared (IR) thermography, and
ground penetrating radar (GPR). A UGV integrated with one or more of these sensors can
collect data to quantify the condition of storm sewer pipes. This research demonstrates the use
of an optical sensor for this application.

This research has proven that even a hobbyist radio controlled car can be used to collect
pipe condition information by integrating it with a CCTV camera, LIDAR sensors, a computer

processor, and a detection algorithm. Although this research was not able to leverage the
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autopilot hardware and software for autonomous navigation in the field, this proof of concept

shows that a UGV can be manually controlled to collect pipe information in the field.

2. What field data and programming code is required to develop a data processing
algorithm for pipeline fault detection?

Literature shows that there is a multitude of computer vision techniques and
mathematical models tested to predict sewer condition. The field data required for pipeline fault
detection is dependent on the type of evaluation performed. Additionally, Koo and Ariaratham
(2006) and Guo et al. (2009) both provide evidence that using multi-sensor platforms to collect
the data increases detection accuracy and yields better evaluation results.

This research focuses on functional in-service evaluations, which speak to how
effectively the asset performs its intended functions. This study uses photographic imagery
collected in the field and a pavement crack detection algorithm developed in the Python
programming language (see Appendix B. Programming Code) to detect cracks with 36%
efficiency. This research shows that the algorithm, originally designed for crack detection in
roadways, is also applicable for crack detection in storm sewer pipes.

3. How can the quality of pipeline fault detection data be quantified in order to inform
decision-makers on pipe condition?

Once found, pipeline defects must be quantified into a logical representation of real-
world pipe condition in order to be useful in AM decision-making. This can be accomplished in
different ways, and depends on how the pipeline defects were found (i.e. mathematical modeling
or computer vision techniques). This research used computer vision and metrics of Precision,
Recall, and F-measure to evaluate the algorithm’s success in detecting cracks. The algorithm

calculated Precision, Recall, and F-measure by comparing the algorithm output image to its
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paired ground truth image and applying Equations (1) through (3), respectively. These factors
were then statistically analyzed using analysis of variance (ANOVA) to show the significance of
various intensity thresholds applied, but more importantly to identify under which scenario the
algorithm performed best.

The results of this research show that with an F-measure of 36%, the algorithm is only
partially successful in detecting cracks. The ANOVA successfully explained what factors
affected the algorithm’s effectiveness, but it did not quantify the condition into a logical value
that would useful in AM decision-making. A more appropriate value would be a composite
index, where the condition of a pipe section based on all relevant evaluation attributes (e.g.
presence and severity of cracks, breaks, obstructions) is weighted and combined into a single
value. This research is a proof-of-concept that the USAF could reengineer the AM inspection
process to replace recurring contracts with government-owned and operated drones capable of

classifying pipe defects into a quantifiable utility condition index (UCI).

Implications for USAF Infrastructure Asset Management

The existing USAF CE process architecture simply cannot provide the fundamental asset
condition data at the speed necessary to effectively manage aging sewer assets across the world.
By continuing to depend on contract support in a process architecture that undervalues in-service
evaluations from the long-term funding plans, the USAF negatively impacts infrastructure
performance and overall strategic success. Figure 33 is an example of how a condition decay
curve could be used to develop preservation strategies based on an asset’s remaining useful life
and minimal acceptable performance level. It is critical to know where on the curve is the asset’s

current condition and what service life remains in order to make an informed decision. Because
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of sporadic funding support for contracted assessments, the USAF cannot accurately model the

deterioration curve and has unknown risk in its storm sewer infrastructure.

PCi

100 Excellent =

Good = | 40% Drop in Quality Spending 51 on
preservation here,..
. b 75% of Life
Fair =
~eliminates or delays
spending 5610 510
Poor — on rehabilitation or

40% Drop in Quality reconstruction here,

20 Very Poor =

1.2% of Life N
Failed T T T i

0 3 10 13 20

Figure 33. Example asset preservation strategy using condition modeling (Galehouse,
Moulthrop, & Hicks, 2011)

The USAF needs organic capabilities to support reliable and timely in-service
assessments of its storm sewer infrastructure. This research shows that a low-cost autonomous
system can be developed using COTS hardware and open-source software to quantify the
condition of underground storm sewer pipes. Additionally, it shows that 3D printing can be
leveraged to exploit multi-sensor inputs during data collection. While the results show that the
prototype developed for this research is not sufficient for operational use, it does demonstrate
that the USAF can leverage COTS systems in future AM strategies. The significance in this

concept is that the USAF could in essence reengineer the AM inspection process to replace
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recurring contracts with government-owned and operated drones capable of classifying pipe

defects into a quantifiable utility condition index (UCI).

Recommendations for Future Research

This research has many outlets for future studies. Although this research could not
achieve fully autonomous navigation, there is a good probability this can be resolved. The
preliminary trials revealed that a drift error when the autopilot navigated the drone in place of
manual controls. This drift error was too great to compensate for this research with gain settings
in the Mission Planner® software. However, additional calibration with software settings or
working with the open source community for a proven solution could correct the drift error.
Once corrected, the ASSETS prototype could also be used to research other infrastructure
systems (e.g. roads or airfield pavements where UAV flights may be impacted by real world
operations).

Overcoming the challenge of autonomous navigation in the absence of GPS is a
prerequisite for application of this technology in underground pipelines. Other researchers at
AFIT and beyond have developed this capability; examples include Machin (2016) where UAVs
navigate based on topographical landmarks, and Nassiraei et al. (2010) for sewer robot self-
localization using passive arms and sensor inputs on the “naSIR mechanism” used in the
KANTARO robot. Also, future research should consider improving the crack detection
algorithm with robust image enhancement similar to that tested by Guo et al to eliminate non-
uniform background noise (e.g. pipe joints, landmarks, and changes in lighting). Furthermore,
additional sensors could be added to ASSETS for improved condition assessment. It is possible

that using IR sensors and thermal post-processing analysis of the resulting imagery could provide
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the capability to detect subsurface anomalies such as impending root infiltration and soil
loosening from leakage.

Another area of potential research is the development of a usable UCI based on an
industry-recognized assessment standard such as the National Association of Sewer Service
Companies (NASSCO) Pipeline Assessment Certification Program (PACP) condition rating
methodology. This would also enable the development of an intelligent algorithm that could
classify defects in pipes in accordance with the PACP ratings.

Finally, the effectiveness metrics used in this research could be improved by applying a
probabilistic interpretation of Precision, Recall and F-score (Guotte & Gaussier, 2005). This
probabilistic interpretation would potentially result in more accurate sample means or medians as
well as better confidence estimates of Precision, Recall, and F-measure based on a probabilistic

framework.

Recommendations for Action

With the recent accessibility and continued advancement of drone technology, there is a
multitude of COTS options for ready-to-go systems that would drastically accelerate future
research efforts in automating sewer pipe condition assessment. This research recommends that
future research fund the purchase of a COTS ready-to-go system and target developing a
detection algorithm using this system. For example, the RedZone Robotics® Solo™ pipe
inspection robot (Figure 34) is an example of a fully autonomous CCTV system that can
navigate and inspect 8-12” sewer pipes without a human operator. It does not, however,

autonomously classify pipe defects and would be a good candidate for future research in that
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area as RedZone® is the developer of its own asset management software and may be willing to

work with the USAF.

Figure 34. RedZone Robotics® Solo™ robot (RedZone-Robotics, n.d.)

A more comprehensive business case analysis should be performed prior to selecting a
COTS system candidate for future research efforts. Systems such as the RedZone Robotics®
Solo™ can inspect pipes at a much faster rate, approximately 190 meters per hour versus the
CCTV system rate of 37 meters per hour (Nassiraei et al., 2007; RedZone-Robotics, n.d.). This
estimate is based on the advantage that one operator can manage up to four RedZone Robotics®
Solo™ robots simultaneously. The RedZone Robotics® Solo™ robot is commercially available
for approximately $60,000 per unit, which is nearly twice the cost of the larger FiberScope.net®
Pipe Crawler STORMER S3000 (FiberScope.net, 2015). However, this cost comparison does

not account for the additional manpower required to operate the Pipe Crawler STORMER
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S3000. By completing a thorough cost analysis of available COTS solutions, the USAF could
target a viable system to use as a starting point for algorithm development. However, the goal of
any future algorithm development should be to find an agile solution that would be compatible

with other COTS data collection systems.

Summary

The fundamental objective of this research was to advance the USAF towards its goal of
total asset visibility. Without a sustainable method of providing accurate, repeatable, and
verifiable condition data for underground storm sewer pipes, the USAF CE community risks
making uninformed decisions in a fiscally constrained environment.

This research conceptually shows that a low-cost autonomous system can be developed
using COTS hardware and open-source software to quantify the condition of underground storm
sewer pipes with an efficiency of 36%. Additionally, it shows that 3D printing can be leveraged
to exploit multi-sensor inputs during AM data collection. While the results show that the
prototype developed for this research may not be immediately adopted, it does demonstrate that
the USAF can leverage COTS systems in future AM strategies to improve asset visibility at a

significantly lower cost.
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Appendix A. ASSETS System Architecture
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Automated Storm Sewer Evaluation
Technical System (ASSETS)

Full System Architecture

SENG 640, Spring 2015

Group Members:

Lt Erich Maxheimer
Lt Devin Menetee
Ms. Tracy Meeks

Created using images from (Shel Daat, n.d.) (Pan and Tilt Duct Inspection Robot, 2015) (Durden, 2014)
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Project Proposal

Project Title: Automated Storm Sewer Evaluation Technical System (ASSETS)

Problem Statement: The United States Air Force (USAF) operates and maintains
$247B of infrastructure across 185 active, guard, and reserve installations globally
(Deputy Under Secretary of Defense (Installations and Environment) (DUSD(I&E)),
2013). Part of this infrastructure includes an estimated 100,000 miles of storm sewer
pipes (USAFE MAJCOM Asset Management Plan (MCAMP), 2013) which collect and
drain excess surface runoff to avoid flooding and meet mission requirements. The
accurate location and current condition of storm water pipes is critical information to
effectively managing these assets. However, typically this data is very limited or even
unknown because of the following storm water system characteristies: (1) pipes are often
underground with limited access; (2) storm water collection systems have an expansive
footprint across installations, sometimes exceeding 500 miles per installation; and (3)
the pipe structure is a confined space in which to perform inspection. As a result of the
lack of accurate information regarding storm water systems, expensive repairs to large
sections of pipe are accomplished without ability to optimize repairs to only problem
areas.

Architectural Goal: Inspection using ASSETS will be architected as a cost effective
solution to assessing the condition of underground storm water pipes in the USAF
inventory. The autonomous drone will be a self-contained system capable of detecting
the presence and location of damages inside of storm sewer pipes, collecting asset
information (location, diameter). The ASSETS determine current state and ultimately
predict the future condition of the pipe. The ASSETS will be used by the Air Force Civil
Engineering (USAF CE) community as a system-of-systems (SoS) within the asset
management strategy adopted to effectively manage and sustain aging infrastructure
assets across all AF bases.

Scope: An autonomous drone prototype will be developed by 2016 as part of a group
member’s AFIT thesis research, and implementation to the field is targeted, but not
defined, to occur by 2020. This proposal will encompass the 5 year timeframe of proto-
type development and implementation of the ASSETS, and will make assumptions with
respect to the integration into the USAF CE asset management SoS.

Context: The specific capability of the proposed architecture will be to accurately
determine the state and predict the future condition of a storm water system and make
more informed decisions for maintenance and repair investments. All base organiza-
tions, as invested stakeholders interested in functional infrastructure supporting mission
requirements, are impacted by the potential capabilities of this architecture. However,
Civil Engineering is the main AF mission area pertaining to the identified problem
detailed in the Architectural Goal above and will be the primary organization involved.
References relevant to this proposed architecture include:

i. Executive Order 13327: Federal Real Property Asset Management (Feb
2004)

ii. Executive Order 13423: Strengthening Federal Environmental, Energy,
and Transportation Management (Jan 2007)

4
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1.

iv.

V.
Vi.

Executive Order 13514: Federal Leadership in Environmental, Energy,
and Economic Performance (Oct 2009)

White House Memo: Disposing of Unneeded Federal Real Property (Jun
2010)

AFPD 32-10: Installations and Facilities (Mar 2010)

AF/A7C Strategic Plan, Goal #3: Build Sustainable Installations

6. Critical Questions: As this is a complex and very specific problem with relatively

original scope in the USAF CE context, there are many unknown elements which will
likely affect the architectural design of the ASSETS. The critical questions identified at
this time are listed below. As the research is preliminary, the priority order of eritical
questions is not known.

1.

1.

Vi.

How much of the pipe infrastructure requires assessment to yield a condi-
tion of statistical significance?

What type, quantity, and configuration of sensor technology is optimal for
use in autonomous drone surveys of sanitary mains for the purpose of
evaluating pipe condition?

What field measurements, machine learning, and/or programming code
is required to develop a data processing algorithm which will autono-
mously detect faults from background “neise”(e.g. pipe joints, manhole
gaps) in sewer pipes?

What low-cost vehicle option is optimal for use in an integrated autono-
mous drone?

How will the drone navigate existing pipe infrastructure? What pipe
characteristics are required prior to deploying the drone for a successful
inspection?

What will be the user interface between the pipe measurements gathered
from the drone and meaningful data to be used by USAF CEs?

7. Team Experience: Briefly describe each team member’s experience highlighting
factors that may be relevant to the problem and/or design solution.

i

1.

Tracy Meeks: Graduate of Boise State University with a bachelor of sci-
ence in Civil Engineering (BSCE). Approximately 10 years of USAF CE
experience and has held positions at Mountain Home AFB, ID and Ram-
stein AB, Germany dealing with environmental engineering, pavement
engineering, project management, asset optimization, and project pro-
gramming. Her work as a civil engineer will lend experience in storm wa-
ter systems, asset management principles and processes, and infrastruc-
ture maintenance and repair requirements.

Lt Erich Maxheimer: Graduate of University of Illinois with a BSCE. Ap-
proximately 1 year active duty in the USAF as a developmental engineer
(62E). He is a systems engineering major at AFIT, therefore has back-
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1ii.

ground in SE principles and processes that will be necessary in this archi-
tecture.

Lt Devin Menefee: Graduate of The United States Air Force Academy with
a bachelor of science in Mechanical Engineering (ME). Approximately 3
yvears of active duty in the USAF as a developmental engineer (62E) with
positions in MQ-1/9 and KC-46, both at WPAFB, OH. Work as a combat
engineer for the Air Forces largest “drone” program, he has experience
with remotely piloted/ autonomous systems along with ground control
stations/user interface.
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Concept for Automated Storm Sewer Evaluation
Technical System (ASSETS)

Executive Summary

Condition assessments for underground storm sewers typically are accomplished by closed
circuit television (CCTV) systems, which consist of a transport vehicle deployable underground,
camera system, human operator(s), and a supporting vehicle located aboveground. The CCTV
assessment systems are expensive, ranging from $50K to $500K, and require a significant
amount of human labor to both deploy the systems for data collection as well evaluating the data
to determine condition. As a result, using these systems is not an organic capability within US
Air Force (AF) civil engineering (CE) organizations.

The proposed ASSETS concept will fill this capability gap by the design of a cost-effective
autonomous system to assess the condition of underground pipelines. The ASSETS will be able
to operate inside a storm sewer pipeline with minimal human operator activity, take
measurements for the accurate location and current condition of the pipes, and ultimately
predict the condition of a pipe section with significance. A successful prototype is desired by
2016 with possible production and deployment by 2020.

Purpose

This architecture will enable the development of a cost-effective autonomous system to assess
the condition of storm sewer pipes. The primary undertaking of the ASSETS is to accurately
determine current state and predict the future condition of storm sewer pipes to facilitate
decision-making for infrastructure investments, however a secondary capability of ASSETS will
be to validate existing pipe characteristics in AF records (e.g. location, diameter).

Background

The United States Air Force (USAF) operates and maintains $247B of infrastructure across 185
active, guard, and reserve installations globally (Deputy Under Secretary of Defense
(Installations and Environment) (DUSD(I&E)), 2013). Part of this infrastructure includes an
estimated 100,000 miles of storm sewer pipes which collect and drain excess surface runoff to
avoid flooding and meet mission requirements. The accurate location and current condition of
storm water pipes is critical information to effectively managing these assets. However,
typically this data is very limited or even unknown because of the following storm water system
characteristics: (1) pipes are often underground with limited access; (2) storm water collection
systems have an expansive footprint across installations, sometimes exceeding 500 miles per
installation; and (3) the pipe structure is a confined space in which to perform inspection.

As aresult of the lack of accurate information regarding storm water systems, expensive repairs
to large sections of pipe are accomplished without ability to optimize repairs to only problem
areas. As an example, a sanitary sewer repair project was executed at Mountain Home AFB, ID
to replace a complete loop (approximately 5,000 linear feet) of pipe between 2007-2009.
Because the pipe had the same typical age, no effort was taken to distinguish the condition of the
pipe sections (smaller lengths of 25-50 linear feet) and the overall effort cost approximately
$2M. If this concept were realized, the repairs could have been localized to the worst condition
sections of sewer versus a complete replacement. Additionally, there were two additional phases
of this project to other loops at Mountain Home AFB, ID with the same logic applied, and the
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total investment to this strategic sewer rehabilitation effort for Mountain Home AFB was closer
to $7M.

Future Environment

The ASSETS will need to enable decision-makers at all levels of the AF to optimize application of
resources and investments by providing targeted, informed, and predictive decision quality data
— better known as asset management. This aligns to the AF/A7C Strategic plan (2011), Goal #3:
Develop sustainable installations by implementing asset management principles for built and
natural assets, which states:

“Asset visibility and performance data will allow Civil Engineers to leverage strategic sourcing
for requirements needed across our portfolio (e.g., the annual chiller requirements we need
across the Air Force can be strategically purchased, leveraging size for reduced costs, and
delivery on demand). Total asset visibility will be implemented across all functional areas to
account for every piece of the Air Force Civil Engineering enterprise.”

Specifically, the following future environmental factors will have a role in this concept:
1. Changes in pipe network configurations and loads in response to future mission
capabilities
2. The future implementation of standardized infrastructure assessment techniques and
software (e.g. Sustainment Management Systems (SMS) and NextGen IT)
3. The continued deterioration of current infrastructure with time

Concept Time Frame/Scope

An autonomous drone prototype will be developed by 2016 as part of a group member’s AFIT
thesis research, and implementation to the field is targeted, but not defined, to occur by 2020.

Concept scope will encompass the 5 year timeframe of prototype development and
implementation. Further, the ASSETS concept will be integrated into the USAF CE asset
management timeline, which has not been formally identified.

Relevant references pertaining to scope and context of this architecture include:

s Unified Facilities Criteria (UFC) 3-201-01, Civil Engineering

¢ Civil Engineering enterprise architecture — NexGen IT or SMS

o Department of Defense Handbook (MIL-HDBK 1138), Wastewater Treatment System
Operations and Maintenance Augmenting Handbook

Militarv Need Statement

As a result of the lack of accurate information regarding storm water systems, expensive repairs
to larger sections of pipe are sometimes accomplished without consideration of optimizing
repairs to only problem areas. Additionally, resources such as manpower to support
preventative maintenance (e.g. snaking lines, clean outs, inspection) and corrective
maintenance (e.g. spot repairs) are sometimes not optimized given the vast quantity of assets
across an installation. The USAF CE community has a need for a low-cost, sustainable
inspection system given the state of aging underground assets.
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Central Idea

The autonomous drone will be a self-contained system capable of detecting the presence and
location of damages inside of storm sewer pipes, collecting asset information (location,
diameter), determining the current state and ultimately predicting the future condition of the
pipe. It will require minimal human operators during deployment, and will work in conjunection
with separate computing hardware and software for data analysis.

The autonomous drone could be a system comprised of a robotic vehicle integrated with sensors
hardware, controllers, and data storage and will be used to take measurements in the pipeline
and record them. It will then transfer data to a separate computer with algorithms to evaluate
inputs and determine the condition of the pipe.

2

Capabilities

The autonomous drone will take measurements inside of the pipe (e.g. presence/location of
damages, configuration/location of pipe in 3D space, diameter of pipe) which will ultimately be
used by an algorithm in a separate computer system to determine the current state and predict
the future condition of the pipe segments. The predicted condition of the pipe segment will be
quantified as a utility condition index (UCI), likely a range of o to 100. Once the algorithm is
caleulated, all data will be uploaded to an existing Sustainment Management System (SMS) for
analysis and decision-making.

In general, the pipe measurements collected and the calculated UCI will be used to model the
o 3

deterioration of the pipe network over time in the SMS. This information is critical and will be

used to make decisions regarding maintenance and repair investments, operational

performance measures, optimization of resources, and capacity calculations for new

construction efforts.

Risks

Risk to Mission: The major risk to the mission will be if the ASSETS were unable to be retrieved
from the pipeline (e.g. due to malfunction) ultimately introducing an obstruction to storm water
flow within the network. This scenario could cause an additional resource expense in order to
retrieve it, but also a delay in effective storm water drainage in a localized area of the base. If
this were to occur it could risk further damage to the pipe network. To mitigate this risk, the
ASSETS should have a “backup retrieval” option if possible via either a tethered attachment to
infrastructure or alternatively recovery by another ASSETS. There is always a risk of
malfunction of any system, so this concept will allow for redundancy to eritical subsystems
where necessary.

Risk to Institution: Data storage requirements will be significant for the ASSETS, due mainly to
the sheer size of the storm water pipe networks and potentially large file size depending on
sensor type. The hardware, software, and human capital costs to support the data storage and
management will be a risk to the force because it could drive additional secondary costs which
are intangible in this concept architecture.
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Summary

The USAF CE community has a need for a low-cost, sustainable inspection system given the
state of aging underground assets. The ASSETS will be able to operate inside of a storm sewer
pipeline with minimal human operator activity, take measurements for the accurate location
and current condition of the pipes, and ultimately predict the condition of a pipe section with
significance.

10
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Collect Data
Fully Dressed Use Case

1. Collect Data
1.1. Automated Storm Sewer Evaluation Technical System (ASSETS) Component — Drone
(DRONE) travels through a storm sewer pipe and collects pipe measurements using
sensors. This data is recorded to an onboard data storage device.

2, Actors Involved
2.1.1. Utility Craftsman (Primary)
2.1.2. Pipe Database (Supporting)

3. Flow of Events
3.1. BASIC PATH
3.1.1.  Utilitv Craftsman initiates DRONE.
3.1.2. DRONE begins ongoing collection of pipe measurements through sensors.
3.1.3. DRONE moves at a preprogrammed rate towards next waypoint.
3.1.4. DRONE reaches wavpoint.

If addition waypoints, go to 3.1.3
else continue to 3.1.5

3.1.5. DRONE waits at retrieval point.
3.1.6. DRONE sends “mission complete” message to Utility Craftsman.
3.1.7. DRONE goes into standby mode until retrieved.

3.2. ALTERNATE FLOWs
*a At any time, DRONE encounters significant obstruction in pipe.
1. DRONE sensors detect significant obstruction.
2. DRONE halts movement and goes into standby mode.

. DRONE sends “obstruction” message to Utilitv Craftsman.

3
4. Utility Craftsman evaluates “obstruction” message.
. Utility Craftsman manually maneuvers DRONE around obstruction.

5a. Utility Craftsman commands DRONE to go to nearest safe retrieval
point if obstruction is impassible.

6. Resume BASIC FLOW at 3.1.2
*b  Atany time, DRONE experiences subsystem malfunction.

. DRONE detects subsystem malfunction.

w

=

[

. DRONE halts movement and goes into standby mode.

. DRONE sends “malfunction” message to Utility Craftsman.

3
4. Utility Craftsman evaluates “malfunction” message.

. Utility Craftsman commands DRONE to continue mission if malfunction is
fixable or minor.

w
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5a. Utility Craftsman commands DRONE to go to nearest retrieval point
if malfunction is significant and not fixable.

6. Resume BASIC FLOW at 3.1.2

3.3. EXCEPTION FLOWs
*a  Atany time, DRONE loses the capability to move.
1. DRONE sends “malfunction” message to Utility Craftsman if able.

Go to “Retrieve System” Use Case for an emergency retrieval sequence.
*b  Atany time, DRONE needs to be extracted before mission is complete.
1. Utility Craftsman overrides DRONE current mission.
2. Utility Craftsman commands DRONE to go to a nearby retrieval point.
3. Go to BASIC FLOW 3.1.3.

Special Requirements/Assumptions

4.1. DRONE shall only be deployed when storm sewer pipes are mostly dry (<1” depth of
water).

4.2. Mission Plan shall include data for waypoints.

4.3. DRONE shall have minimal slippage on pipe surface during transit.

4.4. DRONE shall be operational in pipes having a diameter between 8” and 36".

Preconditions

5.1. DRONE is located in the pipe.

5.2. DRONE has mission plan loaded.

5.3. DRONE is turned on.

5.4. DRONE’s subsystems are functioning and calibrated.
5.5. DRONE’s is fully charged.

5.6. DRONE has full data storage capacity.

. Postconditions

6.1. DRONE has recorded pipe measurements.
6.2. DRONE is waiting at retrieval point.
6.3. DRONE is in standby mode

Glossary of Terms
7.1. Underlined terms are defined in AV-2.
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Overview and Summary Information (AV-1)

Architecture Project Identification

Name

Automated Storm Sewer Evaluation Technical System
(ASSETS)

Description

The primary undertaking of the ASSETS is to accurately
determine current state and predict the future condition of
storm sewer pipes to facilitate decision-making for
infrastructure investments, however a secondary capability of
ASSETS will be to validate existing pipe characteristics in AF
records (e.g. location, diameter). ASSETS will be a system
comprised of: (1) an autonomous drone integrated with
sensors, hardware, controllers, and data storage; (2) a separate
data analysis system with an algorithm to evaluate inputs and
determine the condition of the pipe; and (3) a relay point
between the drone and the data analysis system; and (4) and
(5) the user interfaces, respectively.

Architects

Lt Erich Maxheimer, Lt Devin Menefee, Ms. Tracy Meeks

Organization

Air Force Institute of Technology

Assumptions and
Constraints

The ASSETS architecture will be constrained by the following
assumptions:

- DRONE will only be deployed when storm sewer pipes are
mostly dry (less than 1” depth of water).

- DRONE navigation can occur without external input

- DRONE shall have minimal slippage on pipe surface during
transit.

- DRONE shall be operational in pipes having a diameter
between 8" and 36".

- Mission Plan shall include data for waypoints.

- Utility Craftsman and Engineer are trained in their respective
user interfaces.

Approval
Authority

LtCol Tom Ford

Date Completed

Final architecture to be released no later than 6 June 2015

Scope: Architectur

e View and Models Identification

Views Developed

- CONOPS

- Use Cases

- Overview and Summary (AV-1)

- High Level Operational Concept Graphic (OV-1)

- Capability Taxonomy (CV-2)

- Capability to Operational Activities Mapping (CV-6)

- Operational Resource Flow Description (OV-2)

- Operational Resource Flow Matrix (OV-3)
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- Organizational Activity Relationships Chart (OV-4)

- Operational Activity Decomposition Tree (OV-5a)

- Operational Activity Model (OV-5b)

- Operational Rules Model (OV-6a)

- State Transition Description (OV-6b)

- Event Trace Description (OV-6¢)

- Logical Data Model (DIV-2)

- Systems Interface Description (SV-1)

- Systems Funectionality Description (Sv-4)

- Operational Activity to systems Function Traceability Matrix
(Sv-5)

- Integrated Dictionary (AV-2)

Capabilities

- Primary:

1. Accurately determine current state of storm sewer pipes.

2. Predict the future condition of storm sewer pipes

3. To facilitate decision-making for infrastructure investments

- Secondary: Validate existing pipe characteristics in AF
records (e.g. location, diameter)

Time Fraines

A successful demonstration is desired by 2016 with possible

Addressed implementation by 2020.
Organizations - Air Force Institute of Technology (system architect)
Involved

- Air Force Civil Engineer Center (customer and SMS services)

- Base Civil Engineering (system owner)

Air Force Materiel Command (Acquisition and Sustainment)

Purpose and Viewpoint

Purpose

Condition assessments for underground storm sewers typically
are accomplished by closed circuit television (CCTV) systems,
which consist of a transport vehicle deployable underground,
camera system, human operator(s), and a supporting vehicle
located aboveground. The CCTV assessment systems are
expensive, ranging from $50K to $500K, and require a
significant amount of human labor to both deploy the systems
for data collection as well evaluating the data to determine
condition. As a result, using these systems is not an organic
capability within US Air Force (AF) civil engineering (CE)
organizations.

The proposed ASSETS concept will fill this capability gap by

the design of a cost-effective autonomous system to assess the
condition of underground pipelines. The ASSETS will be able
to operate inside a storm sewer pipeline with minimal human
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(Problems,
Needs, Gaps)

operator activity, take measurements for the accurate location
and current condition of the pipes, and ultimately predict the
condition of a pipe section with significance. A successful
prototype is desired by 2016 with possible production and
deployment by 2020.

Questions to be
Answered

1. How much of the pipe infrastructure requires assessment to
yvield a condition of statistical significance?

2. What type, quantity, and configuration of sensor technology
is optimal for use in autonomous drone surveys of sanitary
mains for the purpose of evaluating pipe condition?

3. What field measurements, machine learning, and/or
programming code is required to develop a data processing
algorithm which will autonomously detect faults from
background “noise”(e.g. pipe joints, manhole gaps) in sewer

pipes?

4. What low-cost vehicle option is optimal for use in an
integrated autonomous drone?

5. How will the drone navigate existing pipe infrastructure?
What pipe characteristics are required prior to deploying the
drone for a successful inspection?

6. What will be the user interface between the pipe
measurements taken from the drone and meaningful data to be
used by USAF CEs?

Architecture
Viewpoint

The ASSETS architecture will be developed from the
perspective of USAF CE and its feasibility as a future
infrastructure assessment tool. All viewpoints will have a focus
intended to appeal to the USAF.

Context

Mission

To accurately predict the condition of storm sewer pipe
networks.

Doctrine, Goals,
Vision

The ASSETS will need to enable decision-makers at all levels of
the AF to optimize application of resources and investments by
providing targeted, informed, and predictive decision quality
data — better known as asset management. This aligns to the
AF/A7C Strategic plan (2011), Goal #3: Develop sustainable
installations by implementing asset management principles for
built and natural assets.
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Rules,
Conventions, and
Criteria

The ASSETS architectural data conforms to the DoD
Architectural Framework (DoDAF) Version 2.0.

References relevant to this proposed architecture include:

i. Executive Order 13327: Federal Real Property Asset
Management (Feb 2004)

ii. Executive Order 13423: Strengthening Federal
Environmental, Energy, and Transportation Management (Jan
2007)

iii. Executive Order 13514: Federal Leadership in
Environmental, Energy, and Economic Performance (Oct
2009)

iv. White House Memo: Disposing of Unneeded Federal Real
Property (Jun 2010)

v. AFPD 32-10: Installations and Facilities (Mar 2010)

vi. AF/A7C Strategic Plan, Goal #3: Build Sustainable
Installations

Linkages to Other
Architectures

The ASSETS is linked to the SMS architectures.

Tools and File Formats to be Used

Sparx Enterprise Architect V10.0, Visio, Microsoft Word, Excel, & Powerpoint

Findings

| See “Additional Insights” and “Critique” on pgs. 42 and 43.
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High Level Operational Concept Graphic (OV-1)
" ational Concept

Craftsman

Autonomous
Drone

Created using images from (Shel Daat, n.d.) (Pan and Tilt Duct Inspection Robot, 2015) (Durden, 2014)
(Clip Shrine, n.d.) (Gross, 2012) (Worker, 2015)

The image above is the Operational Concept for ASSETS. It is meant to serve as a
graphical overview of the system and includes most of the components and relationships
which interact with the system. To clarify any confusions, this paragraph will explain
the image. Before being deployed, the ASSETS Autonomous Drone receives mapping
information from a Pipe Database. The Utility Craftsman deploys the Drone through a
manhole. While the Drone is in the storm sewer, it autonomously measures and detects
different features. This inspection process is completely autonomous. The only time
that the Drone needs human assistance is if it malfunctions, detects an obstruction
which may be impassible, or needs to be removed from the storm sewer prematurely. In
those situations, the Utility Craftsman would interact with the Drone to solve the
problem. After a mission, the Utility Craftsman retrieves the Drone. The pipe
measurements are transferred from the Drone to the Algorithm which is processed into
a UCL The Algorithm updates the Pipe Database and sends the UCI to the SMS
Software. Ultimately, the BCE uses the SMS to make decisions.
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Capability Taxonomy (CV-2)
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The CV-2 above depicts the high-level capabilities of the ASSETS and how they are broken down into more specific operational activities. The CV-2 is relatively balanced and shows approximately equal focus on both

Command and Control and Logistics capabilities. We believe this is appropriate given that the complexity of ASSETS is matched equally by the abstract nature of the Logistics capabilities within civil engineering. In a fully
dressed CV-2, there would be addition intermediates between some nodes. For example, a node for “Maintain” and “Field Maintenance” would be above “Field Maintenance Inspect.” “Engineering” would be above “General

Engineering.” “Installation Services” would be above “Launch Serviees.” Finally, “Organize Information” would be above “Compile Information.” Each of these intermediates have many other sub-capabilities, besides
ASSETS’s. These nodes were not included in this CV-2 because the goal was to only contain ASSETS capabilities. To do this some intermediates would only include one sub-capability of ASSETS. The CV-2 leafs (at the

bottom of the diagram) are the operational activities that feed the Operational Activity Model (OV-5a).
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Capability to Operational Activities Mapping (CV-6)
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The CV-6 identifies how operational activities in the OV-5a fulfill the capability elements in the
CV-2. For this class, we have only performed an OV-5a on the capability element “Field
Maintenance Inspect.” For this reason, all of the operational activities map onto “Field
Maintenance Inspect.” “Determine Vertical Movement,” “Determine Horizontal Movement,”
“Sense Pipe Diameter,” “Sense Pipe Surface,” and “Store Measurements” all map onto many
capability elements. This indicates that they are critical activities to the success of the system.
On the other hand, the other remaining operational activities do not map onto any capability
elements besides “Field Maintenance Inspect.” This proves that the specifics of how the system
communicates and moves is not as important.
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Operational Resource Flow Description (OV-2)
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The diagram above is meant to show the “resource” flow, primarily of commands, within the
ASSETS system during an inspection mission. The main nodes for this ASSETS OV-2 are the;
Engineer, Utility Craftsman, Drone, and the User Interface to Drone. While the Drone itself
contains the majority of the operational activities, the User Interface to Drone creates 4
needlines and receives 8, which is just one shy of the total. The amount of User Interface to the
Drone needlines depicts how the ASSETS requires it for not only the communication between
the main actors/nodes, but also for the medium in which the navigation, messages, and pipe
measurements are e‘(ch’mged The Drone Message Relay Station and-the Base Pipe Networkare
is used in this situation purely as a medium for the resource transition. The Pipe Database
contains the information (Pipe Characteristics) the Engineer needs to create the Inspection
Mission while the SMS software system receives the newly collected Pipe Measurements. SMS
Software System and Pipe Database nodes currently do not contain any operation activities

because we have not vet created an OV-5a for every leaf level capability in the CV-2.

If we were

to create an OV-5a for the “Information Analysis” capability, some of its activities would be
included under the SMS Software System node. If we were to create an OV-5a for “Information
Compilation” capability, some of its activities would be included under the Pipe Database node.
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Operational Resource Flow Matrix (OV-3)

Connector_Name

Producer_Name

Consumer_Name

Pipe Measurements Drone User Interface to Drone
Mission Complete Message Drone User Interface to Drone
Obstruction Message Drone User Interface to Drone
Malfunction Message Drone User Interface to Drone
Inspection Mission Engineer User Interface to Drone
Pipe Characteristics Pipe Database Engineer

Inspection Mission User Interface to Drone | Drone

Power Up Command User Interface to Drone | Drone

Power Down Command User Interface to Drone | Drone

Pipe Measurements

User Interface to Drone

SMS software system

Power Down Command

Utility Craftsman

User Interface to Drone

Power Up Command

Utility Craftsman

User Interface to Drone

Send Measurements Command ‘ Utility Craftsman User Interface to Drone

This chart is a simplified list of all the resources/products from the OV-2. Of note, 8 of the

products are commands or messages which apply directly to the execution of the inspection
mission. Also of note, the User Interface to Drone is either a Producer or a Consumer of all
connectors except for the Pipe Characteristics.
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Organizational Relationships Chart (OV-4)
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The OV-4 above depicts the organizations having a part in the activities of using the ASSETS
and implementing its capabilities. The OV-4 reinforces that the preponderance of the
involvement is at the base level, which is the eritical vantage point of effective asset
management. There most knowledgeable people about the infrastructure are typically those
base CE personnel that manage that infrastructure on a day-to-day basis. Additionally, the
analysis of the data within SMS is critical for base asset management. However, funding for
maintenance, repair, and construction of infrastructure has been centralized at the Air Force
Civil Engineering Center (AFCEC), and policy and guidance continues to be issued from
Headquarters Air Force (HAF). As a result, it is eritical that information collected by ASSETS be
transparent to the Headquarters Air Force (HAF) level for strategic policy implementation and
AFCEC for investment decisions.
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Operational Activity Decomposition Tree (OV-5a)
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The OV-5a above depicts the “Field Maintenance Inspect” operational activity of the ASSETS. The OV-5a is a bit unbalanced with more definition (an additional level) under the

“Facilitate Drone” activity. However, makes logical sense since this represents the eritical thinking that has taken place with regards to the ASSETS Drone that is the focal part of
a member’s thesis at this time.
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Uszer Interface to Drone

Operational Activity Model (OV-5b)

Riecievs Massans

Enc inspect

Urility Craftsman

SOV-8 OV-3b S

Loeate Pipe Inspection
i wicn

Misien 7

-

Turii o0 Dioie User
Iriwcface

ey

Caaftzrman
I| Starts Lezne pinad Mizaien ento Drane)

Inspact

Mizsion
| ] -

Dron= Mo
W o
Faliow fawigation Stop Movement and
Collection
| /

|
| 3

a 7

|'
} \ Power Fropulsion
|

f A

Fowar Elctronies

Use Propulsion System

e —
T
Sense Pipe Surface

Flovemant
Dhstrusted

Sanse Pipe Diameler

—
Detanming Vieal

Store Migasuremaents

|| |I|;_ Miovement
| /
—
f Dimtermine Horizonta |
I| L Movemant
|
\ | T
[ J Enginesr
Lmuemu Database Greate Fipe Mission H’Gﬁlualnmmmi“j
Waypainia
25
118




The activity diagram shown in the OV-5b is for the Field Maintenance Inspect activity. The
Field Maintenance Inspection activity was decomposed in the OV-5a on page 23, however there
is a lack of concordance as additional activities from the decomposition of other operational
capabilities in the CV-2 were used besides those detailed on page 23. Before the activity even
starts, the mission needs to be determined, to include the waypoint(s), by the engineer and
uploaded and made available for the Utility Craftsman via the User Interface to Drone. From
there, the Utility Craftsman can initialize the mission by; turning on the User Interface and
drone, locating the mission specific for the pipes set to be inspected, and uploading them onto
the drone. The drone autonomously runs the inspect mission by; recalling the mission, moving
through the pipe, and collecting measurements. There will be continuous collection of
measurements along with the continued check of if the drone has stopped movement for any
reason or reached the retrieval waypoint. If either of these are true, the drone will send a
corresponding message to the User Interface for the Drone. Then, the Utility Craftsman will
collect and turn off the drone, thus ending the inspect mission.
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Operational Rules Model (OV-6a)
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The OV-6a Rules Model above specifies operational constraints relating to what the ASSETS
architecture will do. As has been evident in other views, the OV-6a is very focused on the
ASSETS Drone since this represents the critical thinking that is the focal part of a member’s
thesis at this time. Most of the operational rules, five of six in the diagram, are mapped to
operational activities from the OV-5a. However, the rule pertaining to integrating ASSETS into
the existing svstems was mapped to high-level capabilities from the CV-2. This was appropriate
because the existing systems are currently being developed, and there are no specific details yet
available on how ASSETS will tie into them; but the capability that integration is achieved is
absolutely critical.
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State Transition Description (OV-6b)
OW-Bb State Transition Dascription f'
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The above OV-6b is the State Transition Diagram for the ASSETS Drone. The initial state
assumes that the Drone is in storage and the final state is when the Drone is turned off after a
mission. In reality, there are other state which the Drone could be in, and other ASSETS
comments which have their own states. For the scope of this class, we only evaluated the states
of just the Drone during pipe inspection. The diagram uses activities from the OV-5a and OV-
5b, or notes, as the events which trigger state transition. Note, the transition arrows in our
model do not include solid triangles because of EA challenges. A choice node is used to show
that there are two options when an issue occurs. The Utility Craftsman will use judgement to
attempt to resolve the issue or abort the mission. This OV-6b represents a typical single use
transition from storage to operation. In reality, the drone may not always start from storage.
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Event Trace Description (OV-6¢)
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The above OV-6c¢ is the Event-Trace Description for the overall, high level, mission scenario of
assets. It uses nodes and messages from the OV-2 and is consistent with elements from the
DIV-2. The diagram only represents the “happy case” and does not account for alternate
scenarios. “Request Pipe Characteristies()” is included as the trigger for this diagram even
though it is not include in other diagrams since it is assumed to be true.
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Logical Data Model (DIV-2)
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The DIV-2 above is a visual representation of the data requirements and information transfers
in ASSETS. This DIV-2 is not exhaustive to all data requirements (e.g. it does not include all
person actors from the Use Case Diagram; interfaces are not detailed). However, it does include
the most critical data requirements of the ASSETS operational concept. From the DIV-2 above
it is clear that the “ASSETS Drone” is a key entity of the data model, as it has the most
connections of any entity. It is the Iynchpin for the operational capability of ASSETS, since the
sensor and sensor measurements entities are contained within the Drone. There are very
detailed attributes contained within the “Pipe Section” and “Sensor Measurements” because
these data will be inputs into the algorithm within the “Analysis Tool” entity.
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Systems Interface Description (SV-1)
5V-1 Systems Interface Description
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The primary purpose of the above diagram is to show the methods and mediums of interaction
between the ASSETS systems and actors. The process starts with the Engineer accessing the
Pipe Database (which holds the known pipe characteristies) through his workstation and
creating the inspection mission. From the Utility Craftsman’s workstation, he can locate the
Inspection Mission and download it onto the portable User Interface to Drone via USB. The
Utility Craftsman can then plug in the Drone to the User Interface to Drone and upload an
Inspection Mission prior to the mission; and after the mission download the collected
Measurements using the same method. At the start of the mission, the Utility Craftsman can
confirm everything is working correctly by connecting to a hardline run from the Drone Message
Relay Station. During the mission, the Drone can communicate with the Utility Craftsman via
a wireless signal sent through the Drone Message Relay Station and then sent from the Relay
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Station to the Utility Craftsman through a cellular transmitter. After all inspection missions are
completed, the Drone can send a mission complete message to the Utility Craftsman, notifying
him to pick up the Drone and Relay Station. He then can upload the Pipe Measurements from
the User Interface to Drone to the SMS Software system when he plugs the User Interface into

his workstation.

(5]
(3]
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Systems Functionality Description (SV-4)
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The above SV-4 only provides the system functions under the “Field Maintenance Inspection”
capability. Each of the leaf level activities from our OV-5a were included in the diagram as the
higher level blocks. Since our system is not vet known, the diagram was created by starting with
the OV-5a leaf level activities and determining system functions which would be needed for the
activity to occur. Our OV-5a was very detailed so only one layer of system functions are included
under each block.
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Operational Activity to Systems Function Traceability Matrix (SV-5)
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The above SV-5 is balanced where there is no overlap or gaps between the operational activities (from the OV-5a) and functions (from

the OV-5a to

functions — in essence, the level of abstraction on the two source views is the same. Because there is no overlap or gaps, at this time

there is no resiliency or redundanc

ing

-4 was created by decompos

“to-be” system and the SV

the SV-4). This seems appropriate since ASSETS is a

v in the system design.
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Systems Measures Matrix (SV-7)

Systems Measures Matrix (SV-7)

Architectual El - Type ~ Measure - Baseline [specifled range) Objective Target
The maximum distance a message can be
d from Drone Message Relay Station to [Communicate with ground station (drone
SV-4:Recelve Message Function Drone 1,000 ft 3,000 ft interface) with minimum reach of 1,000 ft
The maximum distance 2 message can be sent [Communicate with ground station (drone
SvV-4:Transmit Function  [from Drone to Drone Relay Station  [1,000ft 3,000 ft interface) with minimum reach of 1,000 ft
Data storage for 4 hrs of sensor
SV-1:Drone Memory Storage Subsystern  [The data storage capacity of the drone 500 GB =1 TB measuremants
The power/battery capadty available for
SV-4::Provide Electricity to Computing Com poFunction P 5i 2,000 mAh 5,000 mAh Power capadty for 4 hr field deployment
The power/battery capadty available for
5W-4::Frovide Electricity to Lighting Function o] i 2,000 mAh 5,000 mAh Power capadty for 4 hr field deployment
The power/battery capadty available for
SV-4:Provide Electricity to P Ision Compo|Function p Isi 2,000 mAh 5,000 mAh Power capadty for 4 hr field deployment
The power/battery capadty available for
SV-4::Provide Electricity to Sensors Function p Isi 2,000 mAh 5,000 mAh Power capadty for 4 hr field deployment
The speed at which sensor measurements can Processing capability to enable a speed of 30
SWV-4::Send Measurements to Memory StoragdFunction be converted to memory. 500 MHz 700 MHz ft/min
The maximum horizontal velocity of the drone The greatest velocity allowable with accurate
SV-4::0perate Propulsion Components Function in the pipe 10 ft/min 30 ft/min sensor measurements

The SV-7 model purpose is to identify and describe measures for evaluating systems within a described architecture. The SV-7 model
above is limited in that it does not document all functions or ASSETS subsystems or components, rather only critical functions and
subsystems were included. In reality, this SV-7 will grow in detail and size with the continued development of this architecture.
Baselines, objectives, and targets were set based on assumptions and the anticipated constraints of ASSETS at this time, but will
definitely change as the architecture is refined and ultimately when the system prototype is developed and tested.
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System Technologies and Skills (SV-9)

Technology

Pipe Characteristics Validation

UClI Algorithm Calculation

Complex Autonomous Maneuvering

Drone Size

Description

A secondary capability of ASSETS
is to validate existing pipe
characteristics in Air Force
records. This would include pipe
types and diameters. The
validation of the system as a
whole needs to be done with
sample measurements taken by
the drone.

The UCI algorithm calculates a
UCl index for large sections of
pipe using measurements of the
pipe and extrapolation. This
concept is in practice for
infrastructure like pavements,
but has not be fully developed
for pipes.

Sewer pipes have a variety of different

junction types and sizes. An automated
drone needs to be able to navigate any
real world configuration.

The minimum pipe diameter
for our system is 8 inches.
Past prototypes with full
measurement capabilies have
been too large for to meet
this requirement.

Justification

The statistical concepts have
been applied in the past to
storm sewer pipes with CCTV
assessments.

This concept has been applied
to other infrastructure types
and past research has yielded
algorithms with limited
capabilites for storm sewer
pipes. Further research is
required to reach level 7, but
this should be easily achieved
given success in other fields.

Simplified prototypes have been
developed to navigate many different
configurations autonomously. The
prototypes do not fully match the
vision of ASSETs, yet they share the
same basic conceptual design.

Drones with limited capabilies
have achieved the 8 inch pipe
target. Miniaturization of
sensors, batteries, and
computing devices supports
the ability to achieve this goal
with research.

Current TRL

6

3

Time to TRL7

18 months

12 months

Technology Readiness Level (TRL) 7 represents a prototype at or near the planned operational system. This threshold defines the
point where risk is minimized by operational testing of a prototype in an environment similar to what is expected. The SV-9 above

depicts the current and future critical technologies that can be reasonably forecasted. The timeframes estimated to TRL 7 were
estimated based on the timeframes documented in the concept of operations.
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Integrated Dictionary (AV-2)

Element =] Type L Definition |
W alfunction” Message ¢ apability A t.\,fpa ofmessage sent fDI'.FI ASSETS to I:ILIIT\EI'\ operators, meaning that ASSETS has lost its
ability to return to any possible retrieval point
1t oo - . A type of message sent fom ASSETS to human operators, meaning that the pre-determined suney
M ission complete” Message (Capabili
P 9 i il is complete and that the Drone is at the retreival point.
- - A type ofmessage sent fom ASSETS to human operators, meaning that there is a signiicant
Obstruction” Message Capabili
g P ty obstruction in the pipe where ASSETS is deployed
ASSETS E ntity tem Automated Storm Sewer E valuation Technical System - the system being architected.
ASSETS Component - Data E ntity tem ASSETS system compent - contains an mathematical algorithm that ultim ately predict the
Analysis System Y condition of the pipe (ref UCI).
The selfcontained data collection system that would be capable of detecting the presence and
ASSETS Component - Drone  |E ntity tem location ofdamages inside ofstorm sewer pipes and collecting asset attribute data (location,
diameter),
ASSETS Component - Relay E ntity tem ASSETS system compent - The system to trans&r data fom the Drone to the Data Analysis
Point Y System
ASSETS Component - User
interfice to Data Analysis E ntity tem :f;:;s system component - the medium for engineer to manipulate/work with data analysis
System i
fﬂ\SSE TS Component - User E ntity tem ASSETS system component - the medium for utility cratsman to manipulate/work with drone.
interfice to Drone
BCE Actor Base Civl Engineer
’ ; 4 quantified measure ofthe physical and functional integrity ofthe pipeline compared to its initial
Condition Eniy tem state when constructed and installed.
Data E ntity tem measurements and statistics collected together for reference or analysis ofthe storm sewer pipe.
FOA Actor Field Operating Agency
HAF Actor Headquarters Air Force
Existing inbrmation to be uploaded to the ASSETS prior to deployment. Tentatively will include:
Mission plan E ntity tem 1. Existing pipe attribute data to be verified

2. Pre-determined route that the ASSETS will suney

Pipe characteristics

[Actor (secondary) / Capability

Relevant data about the storm sewer pipe that will be used by ASSETS for navigation
this time):

1. Location in 30 space

2. Diameter

3. Surface features

Including (at

Pipe database Actor Storage system for pipe charactenstics.
Relevant data about the storm sewer pipe that will be collected/recorded during the ewaluation
Including (at this time):
Pipe measurements C apa bility 1. Location in 30 space
2. Diameter
3. Surface features
A location that can be used to either deploy or retrieve the ASSETS from the storm water network
Retrieval point E ntity tem . .
The most typical example is a manhole.
Significant obstruction E ntity tem An obstruction that is large enough to impede the ASSETS from nawigating through the pipe.
Sustainment Management System, a sofware system used by Civil E ngineering community to
SWS Sotware System Actor manage infastructure assets. Examples: BUILDER, PAVER, Geographic Inbrmation Systems
(GIs)
Standby mode Capability State where ASSETS is powered down to minimal leve| to consene battery.
Utility Condition Index - part ofthe Data Analysis System component being architected. UClis a
quantified representation ofthe condition ofthe storm sewer pipes; it would be on a standardized
uct C apa bility scale (e.g. 0 to 100} and could be used by decision makers to assess the state ofinfastructure for
maintenance and repair investments.
Utility cratsman Actor A technically trained person fom the WFSM shop.
‘Waypoint E ntity tem The coordinates or spatial reference ofa speciic location.
WFSM P ost W ater Fuels System Maintenance shop.

w
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Architecture Evaluation

OV-1

Purpose: It is meant to serve as a graphical overview of the system and includes most of the
components and relationships which interact with the system.

Focus: Before being deployed, the ASSETS Autonomous Drone receives mapping information
from a Pipe Database. The Utility Craftsman deploys the Drone through a manhole or similar
opening. While the Drone is in the storm sewer, it autonomously measures and detects different
features. The inspection process is completely autonomous. The only time that the Drone needs
human assistance is if it malfunctions, detects an obstruction which may be impassible, or needs
to be removed from the storm sewer. In those situations, the Utility Craftsman would interact
with the Drone to solve the problem. After a mission, the Utility Craftsman retrieves the Drone.
The pipe measurements are transferred from the Drone to the Algorithm which is processed into
a UCI. The Algorithm updates the Pipe Database and sends the UCI to the SMS Software.
Ultimately, the BCE uses the SMS to make decisions.

Limitations: The OV-1 does not go into significant detail due to the overall/big picture view of
the diagram. In order to cover all of the ASSETS scope, specifics such as the malfunction actions
listed above, are not included.

CV-2

Purpose: The CV-2 depicts the high-level capabilities of the ASSETS and how they are broken
down into more specific operational activities.

Focus: The CV-2 is relatively balanced and shows approximately equal focus on both Command
and Control and Logistics capabilities. We believe this is appropriate given that the complexity
of ASSETS is matched equally by the abstract nature of the Logistics capabilities within civil
engineering. The CV-2 leafs (at the bottom of the diagram) are the operational activities that
feed the Operational Activity Model (OV-5a).

Limitations: In a fully dressed CV-2, there would be addition intermediates between some
nodes. For example, a node for “Maintain” and “Field Maintenance” would be above “Field
Maintenance Inspect.” “Engineering” would be above “General Engineering.” “Installation
Services” would be above “Launch Services.” Finally, “Organize Information” would be above
“Compile Information.” Each of these intermediates have many other sub-capabilities, besides
ASSETS’s. These nodes were not included in this CV-2 because the goal was to only contain
ASSETS capabilities. To do this some intermediates would only include one sub-capability of
ASSETS.

CV-6

Puwrpose: The CV-6 identifies how operational activities in the OV-5a fulfill the capability
elements in the CV-2.

Focus: All the operational activities shown map onto “Field Maintenance Inspect.” “Determine
Vertical Movement,” “Determine Horizontal Movement,” “Sense Pipe Diameter,” “Sense Pipe
Surface,” and “Store Measurements” all map onto many capability elements. This indicates that
these are critical activities to the success of the system.

Limitations: We have only performed an OV-5a on the capability element “Field Maintenance
Inspect.” The other remaining operational activities do not map onto any capability elements
besides “Field Maintenance Inspect,” which proves the specifics of how the system
communicates and moves is not as important.

» @
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ov-2
Purpose: The diagram is meant to show the “resource” flow, primarily of commands, within the
ASSETS system during an inspection mission.

Focus: The main nodes for this ASSETS OV-2 are the; Engineer, Utility Craftsman, Drone, and
the User Interface to Drone. While the Drone itself contains the majority of the operational
activities, the User Interface to Drone creates 4 needlines and receives 8, which is just one shy of
the total. The amount of User Interface to the Drone needlines depicts how the ASSETS
requires it for not only the communication between the main actors/nodes, but also for the
medium in which the navigation, messages, and pipe measurements are exchanged. The Drone
Message Relay Station is used in this situation purely as a medium for the resource transition.
The Pipe Database contains the information (Pipe Characteristics) the Engineer needs to create
the Inspection Mission while the SMS software system receives the newly collected Pipe
Measurements.

Limitations: SMS Software System and Pipe Database nodes currently do not contain any
operation activities because we have not vet created an OV-5a for every leaf level capability in
the CV-2. If we were to create an OV-5a for the “Information Analysis” capability, some of its
activities would be included under the SMS Software System node. If we were to create an OV-
5a for “Information Compilation” eapability, some of its activities would be included under the
Pipe Database node.

ov-3
Purpose: This chart is a simplified list of all the resources/products from the OV-2.

Focus: 8 of the products shown are commands or messages which apply directly to the execution
of the inspection mission. Of note, the User Interface to Drone is either a Producer or a
Consumer of all connectors except for the Pipe Characteristics.

Limitations: Similar to the OV-2, limitations in this diagram exist in the non-documented
“Information Analysis” and “Information Compilation” capabilities.

OV-4

Purpose: The OV-4 depicts the organizations having a part in the activities of using the ASSETS
and implementing its capabilities.

Focus: The OV-4 reinforces that the preponderance of the involvement is at the base level, which
is the critical vantage point of effective asset management. There most knowledgeable people
about the infrastructure are typically those base CE personnel that manage that infrastructure
on a day-to-day basis. Additionally, the analysis of the data within SMS is critical for base asset
management. However, funding for maintenance, repair, and construction of infrastructure has
been centralized at the Air Force Civil Engineering Center (AFCEC), and policy and guidance
continues to be issued from Headquarters Air Force (HAF). As a result, it is critical that
information collected by ASSETS be transparent to the Headquarters Air Force (HAF) level for
strategic policy implementation and AFCEC for investment decisions.

Limitation: For the goal of this diagram, there are minimal limitations. However the diagram
does not fully depict how ASSETS will connect Air Force wide with implementation on multiple
bases.

OV-5a
Purpose: The OV-5a depicts the decomposition of “Field Maintenance Inspect” operational
activity of the ASSETS.

Focus: The diagram decomposes the operational activities directly associated with the ASSETS
drone. The movement, measurement collection, and communication activities are shown.
Limitation: The OV-5a is a bit unbalanced with more definition (an additional level) under the
“Facilitate Drone” activity. However, this makes logical sense since it represents the critical
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thinking that has taken place with regards to the ASSETS Drone that is the focal part of a
member’s thesis at this time. In addition, there are many other aspects of the ASSETS which is
not encompassed in this OV-5a which would require significant more decomposition from
additional top level activities.

OV-5b

Purpose: The activity diagram shown in the OV-5b is an Operation Activity Model of the Field
Maintenance Inspect activity struetured in a logical, left-to-right sequence of events.

Focus: Before the activity even starts, the mission needs to be determined, to include the
waypoint(s), by the engineer and uploaded and made available for the Utility Craftsman via the
User Interface to Drone. From there, the Utility Craftsman can initialize the mission by; turning
on the User Interface and drone, locating the mission specific for the pipes set to be inspected,
and uploading them onto the drone. The drone autonomously runs the inspect mission by;
recalling the mission, moving through the pipe, and collecting measurements. There will be
continuous collection of measurements along with the continued check of if the drone has
stopped movement for any reason or reached the retrieval waypoint. If either of these are true,
the drone will send a corresponding message to the User Interface for the Drone. Then, the
Utility Craftsman will eollect and turn off the drone, thus ending the inspect mission.
Limitation: The Field Maintenance Inspection activity was decomposed in the OV-5a on page
23, however there is a lack of concordance as additional activities from the decomposition of
other operational capabilities in the CV-2 were used besides those detailed on page 23.

OV-6a

Purpose: The OV-6a Rules Model specifies operational constraints relating to what the ASSETS
architecture will do.

Focus: Most of the operational rules, five of six in the diagram, are mapped to operational
activities from the OV-5a. However, the rule pertaining to integrating ASSETS into the existing
systems was mapped to high-level capabilities from the CV-2. This was appropriate because the
existing systems are currently being developed, and there are no specific details yet available on
how ASSETS will tie into them; but the capability that integration is achieved is absolutely
critical.

Limitations: The OV-6a is very focused on the ASSETS Drone since this represents the critical
thinking that is the focal part of a member’s thesis at this time.

OV-6b

Purpose: The OV-6b is the State Transition Diagram for the ASSETS Drone which depicts the
different states of the drone and the logical sequence.

Focus: The initial state assumes that the Drone is in storage and the final state is when the
Drone is turned off after a mission. In reality, there are other state which the Drone could be in,
and other ASSETS comments which have their own states. For the scope of this class, we only
evaluated the states of just the Drone during pipe inspection. The diagram uses activities from
the OV-5a and OV-5b, or notes, as the events which trigger state transition. Note, the transition
arrows in the model do not include solid triangles because of EA challenges. A choice node is
used to show that there are two options when an issue occurs. The Utility Craftsman will use
judgement to attempt to resolve the issue or abort the mission.

Limitations: This OV-6b represents a typical single use of the ASSETS Drone transition from
storage to operation. In reality, the drone may not always start from storage. Asimplied, this
diagram does not cover the entirety of the ASSETS.
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OV-6e

Purpose: The OV-6¢ is the Event-Trace Description for the overall, high level, mission scenario
of ASSETS to show how messages are sequenced between nodes.

Focus: Nodes and messages from the OV-2 are used and the diagram is consistent with elements
from the DIV-2. “Request Pipe Characteristics()” is included as the trigger for this diagram even
though it is not include in other diagrams since it is assumed to be true.

Limitations: The diagram only represents the “happy case” and does not account for alternate
scenarios.

DIV-2

Purpose: The DIV-2 is a visual representation of the data requirements and information
transfers in ASSETS.

Focus: The most critical data requirements of the ASSETS operational concept are included.
From the DIV-2 it is clear the “ASSETS Drone” is a key entity of the data model, as it has the
most connections of any entity. It is the lynchpin for the operational capability of ASSETS, since
the sensor and sensor measurements entities are contained within the Drone. There are very
detailed attributes contained within the “Pipe Section” and “Sensor Measurements” because
these will be inputs into the algorithm within the “Analysis Tool” entity.

Limitations: This DIV-2 is not exhaustive to all data requirements (e.g. it does not include all
person actors from the Use Case Diagram; interfaces are not detailed).

SV-1

Purpose: The primary purpose of the SV-1 is to show the methods and mediums of interaction
between the ASSETS systems and actors.

Focus: The process starts with the Engineer accessing the Pipe Database (which holds the
known pipe characteristics) through his workstation and creating the inspection mission. From
the Utility Craftsman’s workstation, he can locate the Inspection Mission and download it onto
the portable User Interface to Drone via USB. The Utility Craftsman can then plug in the Drone
to the User Interface to Drone and upload an Inspection Mission prior to the mission; and after
the mission download the collected Measurements using the same method. At the start of the
mission, the Utility Craftsman can confirm everything is working correctly by connecting to a
hardline run from the Drone Message Relay Station. During the mission, the Drone can
communicate with the Utility Craftsman via a wireless signal sent through the Drone Message
Relay Station and then sent from the Relay Station to the Utility Craftsman through a cellular
transmitter. After all inspection missions are completed, the Drone can send a mission
complete message to the Utility Craftsman, notifving him to pick up the Drone and Relay
Station. He then can upload the Pipe Measurements from the User Interface to Drone to the
SMS Software system when he plugs the User Interface into his workstation.

Limitations: For the completion of the entirety of the ASSETS, many more connections would be
made from both the Pipe Database and the SMS Software system. However, the extent of this
diagrams depth is enough to portray a primary inspection mission.

SV-4
Purpose: The SV-4 provides the system functions under the “Field Maintenance Inspection”
capability.

Focus: Each of the leaf level activities from the OV-5a were included in the diagram as the
higher level blocks. Since the system is not vet known, the diagram was created by starting with
the OV-5a leaf level activities and determining system functions which would be needed for the
activity to occur.

Limitations: The OV-5a was very detailed so only one layer of system functions are included
under each block.
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SV-5

Purpose: The SV-5 traces all leaf-level activities from the ASSETS OV-5 to the SV-4 in a matrix.
Focus: The SV-5 is balanced where there is no overlap or gaps between the operational activities
(from the OV-5a) and functions (from the SV-4). This seems appropriate since ASSETS is a “to-
be” system and the SV-4 was created by decomposing the OV-5a to functions — in essence, the
level of abstraction on the two source views is the same. Because there is no overlap or gaps, at
this time there is no resiliency or redundancy in the system design.

Limitations: This diagram contains the same limitations from the OV-5a and the SV-5.

SV-7
Purpose: The SV-7 model purpose is to identify and describe measures for evaluating svstems
within a described architecture.

Focus: Baselines, objectives, and targets were set based on assumptions and the anticipated
constraints of ASSETS at this time, but will definitely change as the architecture is refined and
ultimately when the system prototype is developed and tested.

Limitations: The SV-7 model is limited in it does not document all functions or ASSETS
subsystems and/or components, rather only critical functions and subsystems were included.
This SV-7 would grow in detail and size with the continued development of this architecture.

SV-9
Purpose: The SV-9 depicts the current and future critical technologies that can be forecasted.
Focus: Technology Readiness Level (TRL) 7 represents a prototype at or near the planned
operational system. This threshold defines the point where risk is minimized by operational
testing of a prototype in an environment similar to what is expected. The timeframes estimated
to TRL 7 were estimated based on the timeframes documented in the concept of operations.
Limitations: We cannot accurately predict changes in the future and the changes we predict are
only 18 months out.

Additional Insights
There were many different difficulties when creating architecture for something un-

known like ASSETS. The most reoccurring difficulty was one of scope. Throughout most
DODAF view construction, group members had to work together to clarify “to what extent” and
“how deep” each diagram would reach. The system itself is so massive with so many actors and
branches, the group found the best approach to this first iteration of views was to primarily
focus on what we saw as the foundational purpose of ASSETS; to collect pipe measurements.
Because of this focus, many of the diagrams we created center around the inspection mission of
the ASSETS Drone. There are diagrams which reach out past the inspection mission give a
glimpse of; where the information from the mission will come from, where the collected
information will go, and who all will be involved in the mission before, during, and after.
However, the bulk of the detail is really centered on how ASSETS will gather data.

The OV-4 does a great job at showing all the many hands which touch and are effected by
the ASSETS. It gives an excellent view of how “big” the system could be. However, diagrams
like the OV-5b and the SV-1 provide an in depth look at how the pipe measurements are
collected and the actual execution of ASSETS’s root operation.

Two DODAF models which could be beneficial to the ASSETS architecture would be the
CV-3 and the StdV-2. The Capability Phasing (CV-3) model is meant to show different phases of
capability at different points in time. This could help the ASSETS architecture because the
svstem could be modeled as first a data collection system, and then add data analysis, then and
analysis implementation, and so on. The Standards Forecast (StdV-2) describes emerging
standards and their potential impacts. ASSETS is set to integrate with a changing SMS system
and an evolving Pipe Database, in addition to the always changing UCI standards.
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Critique

ASSETS itself looks to have great potential. It is no mystery the DoD and the AF are
trying to make the evermore dwindling budget stretch as far as possible. It is also apparent
when you look at our KC-135s and our B-52s still in action that the AF likes to make our systems
last. However those airframes have had continued maintenance, our facilities pipelines, not so
much.

With that said, I completely encourage more work towards better maintenance of our
facilities and base pipe networks. The thought of cutting down work force necessary to do this
by use of drones is also something I agree with.

It is this next part of the architecture which I am vet to be sold on. The ASSETS has my
full buy in on execution of these inspection missions (given the ASSETS Drone comes into
existence with the promised capabilities), but the men and women make the AF. I need to see
more of how ASSETS works with humans and how my people can make ASSETS a reality.
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Appendix B. Programming Code

ImageAcquisition.py

=

#Image acquisition script to take 5 sets of 10 images (50) consecutively with no delay

from pymba import *

import time

import cv2

import numpy as np

import matplotlib.pyplot as plt
import time

from ImgCap import ImageCapture
. import random

VWoONOUVh WN

[EEQE
NR® -

. Fltnum
. Imgnum
. Setnum
.cnt =1
16. while Setnum <= 5:

17. cnt = 1

18. while cnt <= 1@:

19.

20. ImageCapture(Fltnum, Imgnum)
21. time.sleep(9)

22. Imgnum += 1

23. cnt += 1

24. #tspacertime = random.randint(3,7)
25. #ttime.sleep(spacertime)

26. Setnum += 1

1
1
1

=
w

[
D
]

=
Ui

ImgCap.py

1. #ImgCap script -
finds and uses camera via Vimba software, uses camera settings in Vimba during executi
on

from pymba import *

import time

import cv2

import numpy as np

import matplotlib.pyplot as plt
import time

VWoONOUVA~ WN

10. def ImageCapture(Fltnum, Imgnum):
11. #start Vimba

12. with Vimba() as vimba:

13. #get system object

14. system = vimba.getSystem()

15.

16. #list available cameras (after enabling discovery for GigE cameras)
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17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42.
43,
44.
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

if system.GeVTLIsPresent:
system.runFeatureCommand("GeVDiscoveryAllOnce")
time.sleep(0.2)
cameralds = vimba.getCameralds()
print vimba.getCameraIds()
#for camerald in cameralds:
#print 'Camera ID:', camerald

#get and open a camera
camera® = vimba.getCamera(cameralds[@])
camera®.openCamera()

#list camera features
cameraFeatureNames = camera®.getFeatureNames()
#for name in cameraFeatureNames:

#print 'Camera feature:', name

#tget the value of a feature
#print camera@.AcquisitionMode

#set the value of a feature
print 'camera Acquisition Mode:', camera@.AcquisitionMode
camera@.AcquisitionMode = 'SingleFrame’

#create new frames for teh camera
frame® = camera®.getFrame() #creates a frame
framel = camera®.getFrame() #tcreates a second frame

#announce frame
frame0.announceFrame()

#capture a camera image
camera®.startCapture()
framed.queueFrameCapture()
camera®.runFeatureCommand('AcquisitionStart")

camera®.runFeatureCommand( 'AcquisitionStop")
frame0d.waitFrameCapture()
dtime = time.strftime("h%Hm%Ms%S")

#get image data...
imgData = frame@.getBufferByteData()

#i#...0r use NumPy for fast image display
moreUsefullImgData = np.ndarray(buffer = frame@.getBufferByteData(),
dtype = np.uint8,
shape = (frame@.height,
frame@.width,

1))

#clean up after capture
camera®@.endCapture()
camera®.revokeAllFrames()
#close camera
#print moreUsefullImgData.shape
imgRGB = cv2.cvtColor(moreUsefullImgData, cv2.COLOR_BAYER_RG2RGB)
#print imgRGB.shape
#img = cv2.cvtColor(imgRGB, cv2.COLOR_RGB2GRAY)
print img.shape
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76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.

# print moreUsefullImgData.shape
#Save Image
#plt.imshow(imgRGB, cmap = 'gray')
# plt.show()
fname = '/Flight%03d Img%03d Time %s.png' %(Fltnum, Imgnum, str(dtime))
print fname
cv2.imwrite('C:/Test' +fname, imgRGB)
if __name__ =='__main__':
Fltnum = 1
Imgnhum = 1
ImageCapture(Fltnum, Imgnum)

SimplelmageConvert.py

1. from PIL import Image

2o

3. img = Image.open('C:/Users/NUCANT/CrackTest/Roads2/Need to convert/90.png').convert('L"
)

4. img.save('C:/Users/NUCANT/CrackTest/Roads2/90.png")

Testlb.py

1. #import Thesis code files

2. dimport compare5xb

3. import plot2lb

4.

5. #import libraries to process images

6. from PIL import Image

7. dimport cv2

8.

9. diff=40#the value the intensity is shifted. This value is changed for each run ofthe s
cript

10. num_imgs = 91

11. #Different File names for the different variations of the algorithm that were run

12. #name="-"+str(diff)+' histogram '

13. #name="-"+str(diff)+' histogramstatic '

14. name="-
"+str(diff)+' run2normal '#the last file name for processing images from one flight

15.

16. for x in range(69,num_imgs):

17. print 'count number:', x

18. #tcreates a red image for the algorithm image. crack identification algorithm

19. #is successful, the red image is overwritten. if the algorithm runs into memory is
sues

20. #the compare script skips processing the image

21. im=Image.new("RGB", (1280,960), "red")

22. im.save('C:/Users/NUCANT/CrackTest/algocrack/'+str(name)+ str(x)+'.jpg")

23.
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24. plot21b.plot(name,x,diff)
25.
26. #opens csv for each iteration. The csv is evaluated in excel
27. f = open('effeciency'+str(name)+'.txt',"'a")
28. count=0
29. total=0
30.
31.
32. #compares each algorithm image produced with each ground truth image
33. for x in range(69,num_imgs):
34. total+=1
35. im3=cv2.imread("C:/Users/NUCANT/CrackTest/algocrack/"+str(name)+str(x)+".jpg",1)
36.
37. #if image is red, algorithm image was not created, so the image is skipped
38. if im3[1&1].any()==[0&0&254]:
39. continue
40.
41. f.write('File '+str(x)+'\t'+compare5xb.compare(x,name)+'\n")
42. count+=1
43.
44. #writes percentage of 30 images that were successfully processed
45. f.write('& comp\t'+"{:.1%}".format(float(count)/float(total))+'\n")
46.
47. f.close()
Plot21b.py
1. #plot2ib.py
20
3. #This Function takes the filename of the image to be processed as well as how much to s
hift
4. #the intensity level from what the algorithm calculates to be the brightest crack pixel
5. def plot(name,file,thresh):
6.
7. #Imports to be able to draw a node
8. import networkx as nx
9. import matplotlib.pyplot as plt
10. import matplotlib.image as mpimg
11. import matplotlib
12.
13. #Imports numberical tools and arrays
14. import numpy as np
15. from scipy import spatial
16.
17. #Imports computer vision tools
18. import cv2
19.
20. #Tools to determine how long each step takes for operator awareness
21. import sys
22. import time
23.
24. #Image Loading Tools
25. from PIL import Image
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26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

#Load image as grayscale

#Takes File from function call in order to load the correct image

gray=cv2.imread('C:/Users/NUCANT/CrackTest/Roads2/'+str(file)+'.png',cv2.CV_LOAD_IM
AGE_GRAYSCALE)

print 'C:/Users/NUCANT/CrackTest/Roads2/'+str(file)+"'.png’
print "Loaded Image"

#Loaded Image to show user it loaded correctly
namedWindow( 'dst_rt")
#tcv2.resizeWindow('dst_rt', window_width, window_height)

imshow('dst_rt', gray)

waitKey(0)
destroyAllWindows ()

#Determines Image Dimensions,
width,height = gray.shape
width-=1

height-=1

gradient=[]

pair=[]

findthresh=[]

threshold=0

maxT=0

intensities=[0]*256

#Start Clock to Determine how long this step takes
begin=time.time()

gray[0,0]=0

gray[0,height]=0

gray[width,height]=0

gray[0,height]=0

# Ctrl Q to comment and uncomment blocks

#Runs Algorithm to determine brightest crack pixel

#loops through each pixel in loaded image and determines its brightness relative to

its neighbors
#Positive result indicates it is a darker pixel compared to its neighbors
#teach result is added to an array index from © to 255, the array index is determine
d by the intensity of the center pixel
for j in range( 1, (height-1)):
for i in range( 1, (width-1)):
pixelintesity=0
pixelintesity=pixelintesity+int(gray[(i-1),(j-1)]-gray[i,]j])
pixelintesity=pixelintesity+int(gray[i,(j-1)]-gray[i,j])
pixelintesity=pixelintesity+int(gray[(i+1),(j-1)]-gray[i,]j])
pixelintesity=pixelintesity+int(gray[(i-1),j]-gray[i,j])
pixelintesity=pixelintesity+int(gray[(i+1),j]-gray[i,j])
pixelintesity=pixelintesity+int(gray[(i-1),(j+1)]-gray[i,]j])
pixelintesity=pixelintesity+int(gray[i, (j+1)]-gray[i,j])
pixelintesity=pixelintesity+int(gray[(i+1),(j+1)]-gray[i,j])
intensities[gray[i,j]]=intensities[gray[i,j]]+pixelintesity
if j%100 == o:
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82. print "...... "t+str(int(100*(float(j)/float(height))))+"%\r",
83.

84. #Ends Clock and prints time to determine how long step took

85. end=time.time()

86. print "step time: " + str(int(end-begin))+" seconds"

87.

88. #print intensities

89. # Bar Chart

90. #fig, ax = plt.subplots()

91.

92. n_groups=len(intensities)

93.

94. index=np.arange(256)

95.

96. bar_width=.1

97. opacity=4

98. error_config={"'ecolor': '0.3'}

99.

100. #trects=plt.bar(index,intensities,bar_width)

le1. #plt.show()

102.

103. max=0

104.

105. #Finding brightest probable crack pixel by finding the intensity with the hi
ghest difference from its neighbors

106. begin=time.time()

107. i=0

108. for i in range(256):

109. if intensities[i]>max:

11e. max=intensities[i]

111. threshold=i

112.

113. end=time.time()

114. print "step time: " + str(int(end-begin))+" seconds"

115. print threshold

116.

117. #Adjusting threshold by value of the function call

118. threshold-=thresh

119. pointmatrix=np.array

120. begin=time.time()

121.

122. #turning any pixel below threshold white and all others black

123. for j in range( @, height):

124. for i in range( 0, width):

125. if gray[i,j]>threshold:

126. gray[i,j]=0

127. else:

128. gray[i,j]=255

129.

130. end=time.time()

131. print "step time: " + str(int(end-begin))+" seconds"

132. print "thresholded image"

133.

134. o

135. Checks for debugging

136. namedWindow( 'dst_rt', WINDOW_NORMAL)

137. #tcv2.resizeWindow('dst_rt', window_width, window_height)

138.

139. imshow('dst_rt', gray)
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140.

141. waitKey(@)

142. destroyAllWindows ()

143.

144. o

145.

146. G =nx.Graph()

147. #Creating list of crack pixels

148. pos={}

149, k=int(0)

150.

151. for j in range( 9, height):

152. for i in range( 0, width):

153. if gray[i,j]>e:

154. gray[i,j]=int(255)

155. pos[k]=((height-j)*(-1), (width-1i))

156. k+=int (1)

157.

158. if k%100 == 0:

159. print "...... "+str(int(100*(float(j)/float(height))))+"%\r",

160. #print pos[0]

161.

162. print "created crack pixels"

163.

164. #creating nodes from crack pixels

165. G.add_nodes_from(pos.keys())

166.

167. print "Created Nodes"

168.

169. nx.draw_networkx(G, pos,with_labels=False)

170. #plt.axis('off")

171. #plt.show()

172. #print k

173.

174. print len(pos)

175.

176. #Creating list of pixel locations

177. dictlist=[]

178. temp=[]

179. for key in range(@, len(pos)):

180. temp = pos[key]

181. dictlist.append(temp)

182.

183. #tprint len(dictlist)

184.

185. kdtree = spatial.KDTree(dictlist)

186. other = kdtree

187. #print type(dictlist)

188.

189. k=0

190. print "made kd tree"

191.

11928 #Takes the nodes of each crack pixel in a KD-
tree and finds the nearest neighbor for th value specified

193. #This is a much faster way of pairing nodes that are close to each other, ra
ther than looking at each

194. #node and comparing it to each other node

195. begin=time.time()

196. try:
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197. pairs=kdtree.query_pairs(7)

198. except MemoryError:

199. return

200.

201. #tpairs=kdtree.query_ball tree(other,r=40)

202. #print type(pairs)

203.

204. end=time.time()

205. print "step time: " + str(int(end-begin))+" seconds"

206.

207. #print type(pairs)

208. #tprint len(pairs)

209. print "made pairs"

210.

211. #adds edges between nodes that are close enough

212. try:

213. G.add_edges_from(pairs)

214. except MemoryError:

215. return

216.

217. #creates minimum spanning tree with kruskals algorithm in order to remove un
neccessary edges

218. #This is done to save memory and runtime

219. s=nx.Graph()

220. s=nx.algorithms.mst.minimum_spanning_tree(G)

221.

222. print "added edges"

223.

224, #tconnected crack pixels are drawn on a graph

225. nx.draw_networkx(s,pos,False,width_labels=False,node_size=0)

226. #plt.show()

227.

228. cv2.waitKey(0)

229. cv2.destroyAllWindows ()

230. h=nx.Graph()

231. h=s

287

233. #tremoves nodes with only one connection, reduces errors

234. outdeg = h.degree()

235, to_remove=[n for n in outdeg if outdeg[n] ==1]

236. h.remove_nodes_from(to_remove)

237.

238. plt.figure(figsize=(12.8,9.6))

239. nx.draw_networkx(h,pos,False,with_labels=False,node_size=0)

240. plt.axis('off")

241. plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

242. plt.x1im((-1280,0))

243. plt.ylim((0,960))

244,

245, #Saves Graph as a jpg

246. plt.savefig('C:/Users/NUCANT/CrackTest/algocrack/'+str(name)+str(file)+'.jpg
', dpi=100,pad_inches=0)

247. #plt.show()

248. plt.close()

249.

250. return(None)
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Compare5xb.py

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.

50.
51.

52.

f#tcompares Pixels

def

AGE_

compare(file,name):

import networkx as nx

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib

import numpy as np
import cv2

import sys
import time

from PIL import Image

#Loads File crack file developed by algorithm from called arguments as well as
#hand identified crack file
iml=cv2.imread("C:/Users/NUCANT/CrackTest/Cracks2/"+str(file)+".png",cv2.CV_LOAD_IM
GRAYSCALE)
im2=cv2.imread("C:/Users/NUCANT/CrackTest/algocrack/"+str(name)+str(file)+".jpg",cv

2.CV_LOAD_IMAGE_GRAYSCALE)

ing

print "test"

#tchecks files are loaded
#cv2.namedWindow('dst_rt")
#cv2.imshow('dst_rt', iml)
#cv2.waitKey(0)
#cv2.destroyAllWindows ()

#image sizes
width=960
height=1280

#tchecks files are loaded

#tcv2.resizeWindow( 'dst_rt', window_width, window_height)
#tcv2.resizeWindow( 'dst_rt', window_width, window_height)
#cv2.waitKey(0)

#cv2.destroyAllWindows ()

#tcv2.resizeWindow('dst_rt', window_width, window_height)
#plt.imshow(im2)

#cv2.waitKey(9)

#cv2.destroyAllWindows ()

span=15#distance to check pixels to check for truth,

#if less, crack pixel is a false positive or false negative

foundcrackpixels=0

count=0

truecrack=False

#tbegins iteration of checking every ground truth crack pixel against the correspond
pixel

#of the algorithm image within the specified range. The loop counts all true posit

ives and

#all positives possible found by the ground truth. False positives are delta betwe

en true positives and total positives.
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53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

77.

78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
lo1.
102.
103.
104.
105.
106.
107.

begin=time.time()
for x in range(@,width-1):
for y in range(@,height-1):
if iml[x,y]<200:
foundcrackpixels+=1
for x2 in range(-span,span):
for y2 in (-span,span):
if (x-x2)<1 or (x+x2)<1 or (x+x2)>width-1 or (x-x2)>width-1:
break
if (y-y2)<1 or (y+y2)<1 or (y+y2)>height-1 or (y-y2)>height-

continue
if im2[x-x2,y-y2]<200:
truecrack=True
if truecrack==True:

count+=1
truecrack=False
if x%10 == 0:
print "...... "+str(int(100*(float(x)/float(width))))+"%\r",

print "First Run Completed"
end=time.time()
print "step time:

+ str(int(end-begin))+" seconds"

#begins iteration of checking every algorithm truth crack pixel against the corresp

onding pixel

#of the true crack image within the specified range. The loop counts all false neg

atives
FalseNegative=0
begin=time.time()
for x in range(@,width-1):
for y in range(@,height-1):
if im2[x,y]<200:

for x2 in range(-span,span):
for y2 in (-span,span):
if (x-x2)<1 or (x+x2)<1 or (x+x2)>width-1 or (x-x2)>width-1:
break
if (y-y2)<1 or (y+y2)<1 or (y+y2)>height-1 or (y-y2)>height-

continue
if iml[x-x2,y-y2]<200:
truecrack=True
if truecrack==False:
FalseNegative+=1
truecrack=False
if x%10 == 0:
print "...... "+str(int(100*(float(x)/float(width))))+"%\r",
end=time.time()
print "step time:

+ str(int(end-begin))+" seconds"

#makes sure the script doesnt throw an error for dividing by zero
if foundcrackpixels!=0:
Precision=(float(count)/float(foundcrackpixels))
else:
Precision=0
#print "true crack pixels = "+str(count)
if count==0 and foundcrackpixels==0:
Precision=1
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108.

109. if FalseNegative!=0 and count!=0:

11e. Recall = float(count)/float(count+FalseNegative)

111. else:

112. Recall=0

113. if count==0 and FalseNegative==0:

114. Recall=1

115.

116. #print "false crack pixels ="+str(foundcrackpixels-count)

117. #False Positive rate

118. if Recall!=0 and Precision!=0:

119. Fmeasure= 2*(Precision*Recall/(Precision+Recall))

120. else:

121. Fmeasure=0

122.

123. #Prints results of each image to a csv file that will be opened in excel

124. t#trecords the file number, Precision, Recall, and F-Measure

125. print "File number: " + str(file)

126. print "Precision =" + "{:.1%}".format(Precision)

127. print "Recall =" + "{:.1%}".format(Recall)

128. print "F-Measure =" + "{:.1%}".format(Fmeasure)

129.

130. return "{:.1%}".format(Precision)+'\t'+"{:.1%}".format(Recall)+"\t"'+"{:.1%}"
.format(Fmeasure)
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Appendix C. Quantitative Data from JMP®

F- Intensity Residual F-
Image Recall | Precision | measure | Threshold | Shaded Debris measure
File 1 0.992 0.259 0.411 35 0 0 0.018988889
File 2 0.99 0.312 0.474 35 0 0 0.035655556
File 3 0.988 0.193 0.323 35 0 0 0.022322222
File 4 0.995 0.389 0.559 35 0 0 0.016322222
File 5 0.994 0.254 0.405 35 0 0 0.026655556
File 6 0.994 0.262 0.414 35 0 0 0.023655556
File 7 0.994 0.368 0.537 35 0 0 0.036655556
File 8 0.992 0.318 0.481 35 0 0 0.037988889
File 9 0.991 0.31 0.473 35 0 0 0.040322222
File 10 0.993 0.411 0.581 35 0 0 0.036322222
File 11 0.992 0.214 0.353 35 0 0 0.019655556
File 12 0.992 0.121 0.215 35 0 0 0.003322222
File 13 0.985 0.282 0.439 35 0 1 0.009322222
File 14 0.969 0.083 0.153 35 0 0 -0.020011111
File 15 0.997 0.327 0.493 35 0 0 -0.019011111
File 16 0.996 0.086 0.158 35 0 1 -0.022677778
File 17 0.989 0.084 0.155 35 0 1 -0.021677778
File 18 0.994 0.119 0.213 35 0 1 -0.029011111
File 19 0.993 0.166 0.285 35 0 1 -0.027011111
File 20 0.992 0.394 0.564 35 0 0 0.038322222
File 21 0.992 0.252 0.401 35 0 0 0.023988889
File 22 0.993 0.303 0.464 35 0 0 0.036655556
File 23 0.988 0.475 0.641 35 0 0 0.027988889
File 24 0.99 0.387 0.556 35 0 0 0.024988889
File 25 0.99 0.293 0.452 35 0 0 0.030322222
File 26 0.988 0.163 0.279 35 0 0 0.008655556
File 27 0.994 0.202 0.336 35 0 0 0.023655556
File 28 0.988 0.172 0.293 35 0 0 0.012655556
File 29 0.986 0.147 0.256 35 0 1 0.005322222
File 30 0.996 0.387 0.558 35 0 1 -0.028011111
File 31 0.996 0.304 0.465 35 0 1 -0.001011111
File 32 0.997 0.322 0.486 35 0 1 -0.007677778
File 33 0.992 0.494 0.66 35 0 1 -0.031011111
File 34 0.942 0.099 0.179 35 0 1 -0.036011111
File 35 0.932 0.076 0.14 35 0 1 -0.035344444
File 36 1 0.164 0.282 35 0 1 0.003322222
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File 37 0.988 0.156 0.27 35 0 1 -0.032011111
File 38 0.997 0.202 0.336 35 0 1 -0.005011111
File 39 0.998 0.16 0.276 35 0 1 -0.032677778
File 40 1 0.189 0.317 35 0 1 -0.005344444
File 41 0.997 0.161 0.278 35 0 1 -0.036677778
File 42 1 0.104 0.188 35 0 1 0.008988889
File 43 0.993 0.2 0.333 35 0 0 0.008322222
File 44 0.992 0.273 0.428 35 0 0 0.036322222
File 45 0.989 0.167 0.286 35 0 0 0.001322222
File 46 0.991 0.228 0.371 35 0 0 0.024655556
File 47 0.994 0.21 0.347 35 0 0 0.021655556
File 48 0.995 0.218 0.358 35 0 0 0.038988889
File 49 0.994 0.134 0.236 35 0 0 0.003322222
File 50 0.995 0.111 0.199 35 0 0 -0.008677778
File 51 0.99 0.116 0.208 35 0 0 -0.005011111
File 52 0.994 0.084 0.156 35 0 0 -0.016011111
File 53 0.995 0.108 0.196 35 0 1 -0.004011111
File 54 0.993 0.41 0.58 35 0 1 -0.024677778
File 55 0.995 0.2 0.333 35 0 0 -0.016011111
File 56 0.998 0.415 0.586 35 0 0 -0.015677778
File 57 0.999 0.279 0.436 35 0 1 -0.017011111
File 58 0.976 0.226 0.367 35 0 1 -0.021011111
File 59 0.992 0.122 0.217 35 0 1 -0.015344444
File 60 0.998 0.119 0.212 35 0 1 0.009988889
File 61 0.998 0.304 0.467 35 0 1 0.002655556
File 62 0.918 0.108 0.194 35 0 1 -0.046344444
File 63 0.97 0.079 0.146 35 0 1 -0.039677778
File 64 1 0.128 0.227 35 0 1 -0.029011111
File 65 0.977 0.15 0.26 35 0 1 -0.015344444
File 66 0.999 0.104 0.188 35 0 1 0.013322222
File 67 0.998 0.126 0.223 35 0 1 0.022655556
File 68 0.995 0.15 0.26 35 0 1 -0.014011111
File 69 0.992 0.359 0.527 35 0 0 0.016988889
File 70 0.988 0.323 0.487 35 0 0 0.014655556
File 71 0.991 0.42 0.59 35 0 0 0.017322222
File 72 0.991 0.32 0.484 35 0 0 0.032988889
File 73 0.992 0.246 0.394 35 0 0 0.019655556
File 74 0.991 0.268 0.422 35 0 0 0.019655556
File 75 0.992 0.267 0.421 35 0 0 0.022988889
File 76 0.991 0.306 0.468 35 0 0 0.019322222
File 77 0.996 0.188 0.317 35 0 0 0.010988889
File 78 0.992 0.361 0.529 35 0 1 -0.019011111
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File 79 0.992 0.33 0.496 35 0 0 -0.006344444
File 80 0.997 0.455 0.625 35 0 0 -0.013011111
File 81 0.999 0.271 0.427 35 1 1 -0.014344444
File 82 1 0.228 0.371 35 1 1 -0.016011111
File 83 0.963 0.112 0.2 35 1 1 -0.030344444
File 84 0.981 0.138 0.242 35 1 1 -0.030677778
File 85 0.999 0.184 0.311 35 1 1 -0.023677778
File 86 0.996 0.186 0.313 35 1 1 -0.013344444
File 87 0.999 0.182 0.307 35 1 1 -0.028011111
File 88 0.999 0.193 0.323 35 1 1 -0.022344444
File 89 0.999 0.163 0.28 35 1 1 -0.020677778
File 90 0.996 0.231 0.376 35 1 1 -0.014011111
File 1 0.994 0.182 0.307 40 0 0 -0.000477778
File 2 0.99 0.214 0.352 40 0 0 -0.001811111
File 3 0.987 0.117 0.21 40 0 0 -0.006144444
File 4 0.996 0.299 0.46 40 0 0 0.001855556
File 5 0.995 0.17 0.29 40 0 0 -0.003811111
File 6 0.994 0.178 0.302 40 0 0 -0.003811111
File 7 0.994 0.266 0.42 40 0 0 0.004188889
File 8 0.993 0.213 0.351 40 0 0 -0.007477778
File 9 0.991 0.213 0.351 40 0 0 0.002855556
File 10 0.994 0.307 0.469 40 0 0 0.008855556
File 11 0.993 0.139 0.244 40 0 0 -0.004811111
File 12 0.991 0.064 0.12 40 0 0 -0.007144444
File 13 0.984 0.213 0.35 40 0 1 0.004855556
File 14 0.95 0.041 0.078 40 0 0 -0.010477778
File 15 0.997 0.275 0.432 40 0 0 0.004522222
File 16 0.996 0.049 0.093 40 0 1 -0.003144444
File 17 0.991 0.045 0.087 40 0 1 -0.005144444
File 18 0.997 0.084 0.155 40 0 1 -0.002477778
File 19 0.993 0.132 0.233 40 0 1 0.005522222
File 20 0.993 0.285 0.443 40 0 0 0.001855556
File 21 0.992 0.169 0.289 40 0 0 -0.003477778
File 22 0.994 0.202 0.336 40 0 0 -0.006811111
File 23 0.989 0.37 0.539 40 0 0 0.010522222
File 24 0.991 0.29 0.448 40 0 0 0.001522222
File 25 0.991 0.203 0.336 40 0 0 -0.001144444
File 26 0.988 0.099 0.18 40 0 0 -0.005811111
File 27 0.995 0.126 0.223 40 0 0 -0.004811111
File 28 0.988 0.107 0.194 40 0 0 -0.001811111
File 29 0.987 0.087 0.159 40 0 1 -0.007144444
File 30 0.997 0.339 0.507 40 0 1 0.005522222

151




File 31 0.996 0.232 0.376 40 0 1 -0.005477778
File 32 0.998 0.257 0.409 40 0 1 -0.000144444
File 33 0.993 0.444 0.614 40 0 1 0.007522222
File 34 0.933 0.069 0.128 40 0 1 -0.002477778
File 35 0.922 0.046 0.087 40 0 1 -0.003811111
File 36 1 0.108 0.194 40 0 1 -0.000144444
File 37 0.989 0.122 0.218 40 0 1 0.000522222
File 38 0.997 0.151 0.262 40 0 1 0.005522222
File 39 0.999 0.126 0.224 40 0 1 -0.000144444
File 40 1 0.139 0.245 40 0 1 0.007188889
File 41 0.997 0.131 0.232 40 0 1 0.001855556
File 42 1 0.056 0.106 40 0 1 0.011522222
File 43 0.994 0.132 0.233 40 0 0 -0.007144444
File 44 0.994 0.178 0.302 40 0 0 -0.005144444
File 45 0.988 0.111 0.199 40 0 0 -0.001144444
File 46 0.991 0.15 0.261 40 0 0 -0.000811111
File 47 0.994 0.133 0.235 40 0 0 -0.005811111
File 48 0.996 0.131 0.231 40 0 0 -0.003477778
File 49 0.995 0.076 0.141 40 0 0 -0.007144444
File 50 0.997 0.061 0.114 40 0 0 -0.009144444
File 51 0.991 0.064 0.121 40 0 0 -0.007477778
File 52 0.996 0.042 0.08 40 0 0 -0.007477778
File 53 0.997 0.056 0.105 40 0 1 -0.010477778
File 54 0.994 0.354 0.523 40 0 1 0.002855556
File 55 0.997 0.15 0.261 40 0 0 -0.003477778
File 56 0.998 0.353 0.522 40 0 0 0.004855556
File 57 0.999 0.229 0.372 40 0 1 0.003522222
File 58 0.979 0.185 0.311 40 0 1 0.007522222
File 59 0.996 0.081 0.149 40 0 1 0.001188889
File 60 1 0.082 0.151 40 0 1 0.033522222
File 61 0.999 0.238 0.385 40 0 1 0.005188889
File 62 0.917 0.086 0.157 40 0 1 0.001188889
File 63 0.961 0.052 0.098 40 0 1 -0.003144444
File 64 1 0.093 0.17 40 0 1 -0.001477778
File 65 0.977 0.11 0.197 40 0 1 0.006188889
File 66 1 0.049 0.093 40 0 1 0.002855556
File 67 1 0.072 0.135 40 0 1 0.019188889
File 68 0.997 0.106 0.192 40 0 1 0.002522222
File 69 0.992 0.272 0.426 40 0 0 0.000522222
File 70 0.987 0.243 0.39 40 0 0 0.002188889
File 71 0.991 0.327 0.492 40 0 0 0.003855556
File 72 0.991 0.222 0.363 40 0 0 -0.003477778
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File 73 0.993 0.167 0.286 40 0 0 -0.003811111
File 74 0.991 0.192 0.322 40 0 0 0.004188889
File 75 0.994 0.187 0.315 40 0 0 0.001522222
File 76 0.991 0.224 0.365 40 0 0 0.000855556
File 77 0.997 0.121 0.216 40 0 0 -0.005477778
File 78 0.993 0.308 0.471 40 0 1 0.007522222
File 79 0.994 0.267 0.421 40 0 0 0.003188889
File 80 0.998 0.383 0.554 40 0 0 0.000522222
File 81 1 0.215 0.354 40 1 1 -0.002811111
File 82 1 0.176 0.299 40 1 1 -0.003477778
File 83 0.959 0.079 0.147 40 1 1 0.001188889
File 84 0.985 0.102 0.184 40 1 1 -0.004144444
File 85 1 0.145 0.253 40 1 1 0.002855556
File 86 0.997 0.138 0.242 40 1 1 0.000188889
File 87 0.999 0.14 0.246 40 1 1 -0.004477778
File 88 0.999 0.15 0.261 40 1 1 0.000188889
File 89 0.999 0.12 0.214 40 1 1 -0.002144444
File 90 0.996 0.179 0.303 40 1 1 -0.002477778
File 1 0.995 0.121 0.215 45 0 0 -0.018511111
File 2 0.991 0.14 0.246 45 0 0 -0.033844444
File 3 0.985 0.067 0.126 45 0 0 -0.016177778
File 4 0.996 0.224 0.366 45 0 0 -0.018177778
File 5 0.996 0.109 0.197 45 0 0 -0.022844444
File 6 0.994 0.119 0.212 45 0 0 -0.019844444
File 7 0.994 0.177 0.301 45 0 0 -0.040844444
File 8 0.994 0.145 0.254 45 0 0 -0.030511111
File 9 0.992 0.131 0.231 45 0 0 -0.043177778
File 10 0.994 0.206 0.341 45 0 0 -0.045177778
File 11 0.994 0.087 0.16 45 0 0 -0.014844444
File 12 0.99 0.03 0.057 45 0 0 0.003822222
File 13 0.98 0.148 0.257 45 0 1 -0.014177778
File 14 0.932 0.023 0.045 45 0 0 0.030488889
File 15 0.998 0.226 0.368 45 0 0 0.014488889
File 16 0.996 0.025 0.048 45 0 1 0.025822222
File 17 0.996 0.023 0.045 45 0 1 0.026822222
File 18 0.999 0.061 0.115 45 0 1 0.031488889
File 19 0.994 0.096 0.175 45 0 1 0.021488889
File 20 0.993 0.196 0.327 45 0 0 -0.040177778
File 21 0.993 0.11 0.198 45 0 0 -0.020511111
File 22 0.994 0.136 0.239 45 0 0 -0.029844444
File 23 0.989 0.263 0.416 45 0 0 -0.038511111
File 24 0.992 0.209 0.346 45 0 0 -0.026511111
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File 25 0.991 0.133 0.234 45 0 0 -0.029177778
File 26 0.989 0.057 0.109 45 0 0 -0.002844444
File 27 0.996 0.072 0.135 45 0 0 -0.018844444
File 28 0.987 0.059 0.111 45 0 0 -0.010844444
File 29 0.987 0.05 0.094 45 0 1 0.001822222
File 30 0.998 0.29 0.45 45 0 1 0.022488889
File 31 0.997 0.186 0.314 45 0 1 0.006488889
File 32 0.999 0.207 0.343 45 0 1 0.007822222
File 33 0.993 0.386 0.556 45 0 1 0.023488889
File 34 0.93 0.05 0.095 45 0 1 0.038488889
File 35 0.941 0.029 0.056 45 0 1 0.039155556
File 36 1 0.062 0.117 45 0 1 -0.003177778
File 37 0.992 0.096 0.175 45 0 1 0.031488889
File 38 0.998 0.1 0.182 45 0 1 -0.000511111
File 39 0.999 0.101 0.183 45 0 1 0.032822222
File 40 1 0.088 0.162 45 0 1 -0.001844444
File 41 0.999 0.106 0.191 45 0 1 0.034822222
File 42 0 0.019 0 45 0 1 -0.020511111
File 43 0.995 0.09 0.165 45 0 0 -0.001177778
File 44 0.996 0.112 0.202 45 0 0 -0.031177778
File 45 0.988 0.068 0.126 45 0 0 -0.000177778
File 46 0.993 0.089 0.164 45 0 0 -0.023844444
File 47 0.996 0.082 0.151 45 0 0 -0.015844444
File 48 0.997 0.067 0.125 45 0 0 -0.035511111
File 49 0.996 0.041 0.078 45 0 0 0.003822222
File 50 0.998 0.034 0.067 45 0 0 0.017822222
File 51 0.99 0.035 0.067 45 0 0 0.012488889
File 52 0.997 0.019 0.037 45 0 0 0.023488889
File 53 0.999 0.029 0.056 45 0 1 0.014488889
File 54 0.996 0.306 0.468 45 0 1 0.021822222
File 55 0.998 0.117 0.21 45 0 0 0.019488889
File 56 0.998 0.294 0.454 45 0 0 0.010822222
File 57 0.999 0.182 0.308 45 0 1 0.013488889
File 58 0.979 0.139 0.243 45 0 1 0.013488889
File 59 0.999 0.046 0.088 45 0 1 0.014155556
File 60 0 0.054 0 45 0 1 -0.043511111
File 61 1 0.175 0.298 45 0 1 -0.007844444
File 62 0.923 0.068 0.127 45 0 1 0.045155556
File 63 0.951 0.036 0.07 45 0 1 0.042822222
File 64 1 0.068 0.128 45 0 1 0.030488889
File 65 0.978 0.067 0.126 45 0 1 0.009155556
File 66 0 0.01 0 45 0 1 -0.016177778
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File 67 0 0.035 0 45 0 1 -0.041844444
File 68 0.998 0.068 0.127 45 0 1 0.011488889
File 69 0.992 0.201 0.334 45 0 0 -0.017511111
File 70 0.987 0.175 0.297 45 0 0 -0.016844444
File 71 0.992 0.245 0.393 45 0 0 -0.021177778
File 72 0.991 0.151 0.263 45 0 0 -0.029511111
File 73 0.994 0.111 0.2 45 0 0 -0.015844444
File 74 0.992 0.124 0.22 45 0 0 -0.023844444
File 75 0.994 0.121 0.215 45 0 0 -0.024511111
File 76 0.992 0.156 0.27 45 0 0 -0.020177778
File 77 0.997 0.077 0.142 45 0 0 -0.005511111
File 78 0.994 0.251 0.401 45 0 1 0.011488889
File 79 0.995 0.21 0.347 45 0 0 0.003155556
File 80 0.998 0.327 0.492 45 0 0 0.012488889
File 81 1 0.176 0.3 45 1 1 0.017155556
File 82 1 0.142 0.248 45 1 1 0.019488889
File 83 0.961 0.053 0.101 45 1 1 0.029155556
File 84 0.989 0.08 0.149 45 1 1 0.034822222
File 85 1 0.109 0.197 45 1 1 0.020822222
File 86 0.998 0.099 0.181 45 1 1 0.013155556
File 87 0.999 0.117 0.209 45 1 1 0.032488889
File 88 0.999 0.117 0.209 45 1 1 0.022155556
File 89 0.999 0.09 0.165 45 1 1 0.022822222
File 90 0.997 0.142 0.248 45 1 1 0.016488889
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By 1st Lt. Bradford Shields
and Maria Meeks

Air Force Institute of Technology
Students

In a time of declining budgets and
increasing demands, Air Force civil
engineering is searching for more
efficient technologies and innova-
tive processes to complete mission
requirements. Additive manufactur-
ing, commeonly known as 30 printing,
is a burgeoning technology that offers
cost-effective and flexible methods to
produce unique objects on demand.
For high-value, low-demand items,
AM can offer significant cost savings,
reduce logistical time and increase
flexibility in configuration manage-
ment. The importance and role of AM
cannot be underestimated in austere
environments, especially for military
applications that often utilize systems
made of one-of-a-kind components.

The opportunities for AM within civil
engineer squadrons are endless;
however, very few applications have
been researched. Explosive ordnance
disposal operations afforded us this
opportunity, A graduate research

effort at the Air Force Institute of Tech
nology demonstrates one possible
application of AM technology to mili-
tary operations. Specifically, students
researched the mission of the 88th
CES EOD flight at Wright-Patterson Air
Force Base, Ohio, to attach environ-
mental sensors to a remote-controlled
robot.

EOD robots

EQD technicians at Wright-Patterson
employ the Northrup-Grumman
Remotec® unmanned ground vehicle
for hazardous duty operations, which
include field inspection and detona-
tion of explosive devices. In some
operations, the vehicle must be fitted
with environmental sensors to detect
chemical and radiclogical threats.
Both the vehicle and sensors are spe-
cialized equipment and are uniquely
paired on a case-by-case basis. Cur-
rently, technicians use adhesive

tape to secure these sensors to the
vehicle’s arm and spend valuable time

- J T ARSI

From drawing to reality: The 3D
model (left) eventually led to the
operational prototype. (above) (U.S. Air

Force photo/ist Lt. Bradford Shields/Released)

headway

removing each sensor from the robot.
Although this is an effective, low-cost
solution, it takes a significant amount
of time to change sensors in the field
and during post-mission clean-up. A
universal bracket would reduce that
time and effort, but no bracket capa
ble of mounting differently shaped
sensors to the UGV is commercially
available.

At Wright-Patterson, EOD technicians
typically utilize four different sen-
sors for environmental sampling and
ordnance testing. All sensors operate
independently; there is no recurring
need to attach more than one sensor
to the robot at any one time. Because
of its size, the Victoreen® Fluke® Bio-
medical 451P sensor was used for the
universal bracket prototype design.

In the lab

The laboratory equipment used for
the design and production of the EOD
bracket prototypes included a 3D Sys-
tems® ProJet™ 1500, printer, polycar-
bonate solvent washer and a UV lamp
for curing. The design and production
process began with an initial design
created in a 3D modeling program.
The software allowed the design team
to have a firm grasp on the exact
shape and dimensions of the bracket
before actually creating the prototype.

The driving factor in print time for all
machines is the total height of the
print, or depth in the z-coordinate
direction. The rule of thumb for print-
ing with the ProJet” 1500 is approxi
mately four hours per inch printed in
the z-direction, The actual print time
changes based on the part’s
geometry.

Air Force Civil Engineer Vol. 23 No. 1, FalL 2015
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The final step, and one that is often
overlooked, is post-processing, which
follows three basic steps. First, a sol-
vent wash is employed to remove
uncured material from the prototype's
surface. Then, curing in a UV lamp
cabinet increases the strength of

the prototype. Finally, support struc-
tures are cut away and the surface is
smoothed.

Results

Unmanned ground vehicles help

EOD technicians identify ordnance
through cameras and video feeds.
The vehicle also is used to disarm ord-
nance. Because these two capabilities
are critical to neutralizing threats, the
research team determined that any
AM solution also must maintain these
capabilities. Full range of motion of
the UGV arm assembly and visibility
of the sensor display were key design
drivers.

The research team used the spiral
process model commonly used by
systems engineers, to ensure all fac-
tors were considered in the design.
The team designed, analyzed and
manufactured four prototypes in nine
weeks,

The process also allowed the team to
address and resolve two AM develop-
ment factors: poor tolerances from
the 3D printer used and printing time
reduction. The design of the opera-
tional prototype resulted from the var-
ious successes and failures of the first
three prototypes. The final design con-
cept employs a base plate to cradle
the sensor and integrated studs with
commonly available bungee fasteners
attached to hold the sensor in place.

The team encountered several chal-
lenges during the final stage of
development. An imperfect method
of detaching the printed part from its
supports often left uneven surfaces
that required additional tooling. Also,
thinner dimensions on the printed
part were at risk for breakage. Interior
supports were not easily accessible
and sometimes required much effort
to remove completely, Finally, the
printing.mat — the surface where the

e o g
The new bracket exceeded expectations
during testing, saving EOD technicians 60
to 90 seconds when changing sensors.
(U.5. Air Force photo/Maria Meeks/Re-
leased)

part is produced — was extremely
difficult to remove from the printer
plate and required rigorous cleaning
between prints.

A successful preliminary test of the
final bracket was performed in March
2015 at the 88th CES EOD flight. In
early August, the 88th CES EOD flight
set up a challenge course to test the
bracket under normal field and oper-
ating conditions. For this test, EOD
training aides were placed in locations
similar to those where explosives
might be found in an operational situ-
ation. The bracket performed excep-
tionally well, saving between 60 and
90 seconds in switching to different
sensors. During all situations, except
when in a low-lit area, the robot’s
main camera was able to capture the
readings from each of the EOD bio-
logical and HAZMAT sensors, With 3D
printing, Airmen can easily design a
simple mount for a camera and light
to overcome the low-light challenge.

Along with the four different sen-
sors, the EOD Airman conducted
an unplanned test of the bracket.
A PDX/2 LRM radionuclide sensor,
weighing 15 pounds that's used for

Air Force Civil Engineer Vol. 23 No. 1, FalL 2015

searching large shipping containers,
was strapped to the bracket. Nor-
mally, an Airman would wear this sen-
sor while sweeping an area; however,
the printed bracket securely held

the backpack and found the hidden
training aide. Overall, this final round
of testing resulted in the bracket
exceeding expectations, cutting the
time required to switch sensors, and
possibly saving EOD flights around
the world from having to send their
Airmen into harm's way. The design
team will make a few minor changes
and then present the 88th CES EOD
flight with its very own 3D printed
EOD HAZMAT sensar mount.

Outlook

AM could revolutionize operations
within the Air Force CE community.
This research demonstrated that

a universal bracket for unmanned
ground vehicles could be designed,
analyzed and manufactured within
nine weeks using systems engineer-
ing principles and relatively low-cost
3D printing equipment. The digital file
for the operational prototype could
be shared with EOD units acrass the
Air Force,

The overall method and parts pro-
duced could be duplicated Air Force-
wide at a relatively low cost.

We foresee AM being an integral

part of CES operations. With simple
file sharing, engineers worldwide
could collaborate to solve problems
encountered in the field. The process
of developing and testing prototypes
in the field would be greatly expe-
dited because design, production,
transportation cost and time require-
ments are reduced or eliminated. This
research demonstrates that AM could
provide a solution to the growing
demands for CE capabilities and long-
term budget constraints within the
LS. Air Force.

Editor’s Note: Shields and Meeks are
students at the Air Force Institute of
Technology Department of Engineering
Management and Systems Engineering.
The adviser for the authors was Mayj.
Vhance Valencia.
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