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Abstract

The precision navigation capabilities of the Global Positioning System (GPS) are

used extensively within US military operations. However, GPS is highly vulnerable

to intentional and unintentional external interference. Therefore, a need exists to

develop a non-GPS precision navigation method to operate in GPS degraded envi-

ronments. This research effort presents the theoretical limits of a precision navigation

method based on an inertial navigation system (INS) aided by angle measurements

with respect to lunar surface features observed by a fixed camera. To accomplish this

task, an extended Kalman filter (EKF) was implemented to estimate INS drift errors

and bring in simulated lunar feature angle measurements to correct error estimates.

The research scope focused solely on the feasibility of lunar vision aided navigation

with INS where only measurement noise effects from a simulated CCD camera and

barometer were considered. Various scenarios based on camera specifications, lunar

feature quantity, INS grade, and lunar orbital parameters were conducted to observe

the INS drift correction by lunar feature angle measurements. The resulting trade

spaces presented by the scenarios showed theoretical substantial improvement in the

navigation solution with respect to a stand alone INS.
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THEORETICAL LIMITS OF

LUNAR VISION AIDED NAVIGATION

WITH INERTIAL NAVIGATION SYSTEM

I. Introduction

1.1 Purpose

The development of non-Global Positioning System (GPS) based precision navi-

gation methods is vitally important. This is due to GPS’s high vulnerability to inten-

tional and unintentional external interference coupled with the US military’s heavy

reliance on GPS. The following research develops the theoretical limits of a navigation

method integrating inertial sensors and lunar feature angle measurements. The goal

is to provide immutable, robust, self-contained, autonomous precision navigation in

GPS degraded environments.

Since ancient times, the ability to travel from one’s present location to an intended

destination has been practiced on land and sea [28]. Over time, this ability and its

associated methods became the field of study called navigation derived from the

Latin word navis for sea faring ship [3][12]. Of the ancient navigation methods

employed, around two millennia ago, the Polynesians are known to have developed

a form of celestial navigation whereby determining one’s position based on careful

observation of celestial bodies [28]. The Chinese and the Italians are recorded to

have independently developed the compass during the 12th and 13th centuries CE

[28][34]. Later developments in celestial navigation techniques in Europe during the
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18th century allowed for latitude and longitude to be estimated with the development

of the sextant and the chronometer respectively [34].

Technological advances around the beginning of the 20th century brought about

new possibilities for precision navigation methods. New understanding behind ro-

tational motion and acceleration paved the way for navigation based upon inertial

measurements in the form of an inertial navigation system (INS) [28]. The manipu-

lation of radio waves in the 1930s proved that navigation by radio waves was another

viable method of navigation known as the American long range navigation system

(Loran) [9].

With the advent of the space age in the 1950s, the US and Soviet Union realized

the capability to navigate by their own manufactured celestial bodies (or satellites)

rather than rely on natural celestial bodies (e.g. moon and stars). The navigation

satellite constellation developed by the US was known as Navstar GPS. The first GPS

satellite was launched in 1978 [9]. The core positioning methodology of GPS is based

upon streaming and receiving transmitted GPS signals from the satellite constellation

to ground receivers [12]. The detected timing differences due to the signal propagation

from satellite transmitter to a ground based receiver can be multiplied by the speed

of light to get a pseudorange [12]. A pseudorange is a range containing error from the

ground based receiver’s position to the satellite transmitter’s position [12]. A position

fix can be attained from knowing the receiver’s respective timing of received signals

in relation to at least four satellites [9].

The Gulf War in 1991 acted as the debut of GPS in an armed conflict through

the use of GPS based precision guided munitions and ground unit navigation [25].

GPS’s level of precision and robust navigation qualities are said by McLendon to

have enabled the “left hook” maneuver by Coalition forces which destroyed the Iraqi

armored divisions [22]. By the end of the 20th century, GPS had become an integral
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navigation system for the US military [27]. GPS was not without fault and weakness.

Over time, the system has been found to be degraded in certain circumstances. Urban

canyons and jamming systems are known to subdue the effect of GPS in said areas

[9][12]. Thus, the need to counter such weakness exists and can be achieved through

the development of other navigation means independent of GPS.

1.2 Problem Statement

This research effort assumes GPS has been degraded and other means of trajectory

estimation are required for an aircraft to properly navigate. Trajectory is defined as

the position, velocity, and attitude of a vehicle over time [30].

The non-GPS precision navigation system chosen for this research effort is an INS.

An INS performs dead reckoning navigation meaning that a trajectory estimate can

be made based on an INS’s initial position in combination with direction and speed

measurements [28]. Direction and speed measurements are given by accelerometers

and gyroscopes which are inertial sensors within an INS. Accelerometers measure spe-

cific forces acting upon a vehicle body and gyroscopes measure changes in rotational

velocity also with respect to a vehicle body [28]. INSs are highly accurate for short

time periods but accumulate drift error for an extended time length [5]. An optical

sensor with a view of the Moon can provide aiding angular measurements to decrease

the accumulated drift error in the INS.

The goal of this research effort is to explore the theoretical improvement upon

an INS estimated trajectory aided by angular measurements with respect to lunar

features observed by a camera. The improvement of the trajectory estimation will

be measured in terms of the reduction of position state errors over time. The air-

craft trajectory, INS errors, lunar features, and optical sensor measurements will be

simulated.
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1.3 Research Contributions

The following are the research contributions for this thesis:

1. Model the drift errors for an INS (commercial, tactical, and navigation grade).

2. Construct a model of an Earth-based aircraft trajectory with features simulated

at lunar surface locations.

3. Simulate INS drift errors aided by lunar feature angle measurements to demon-

strate a decrease in trajectory error over various scenarios where measurement

noise effects are only considered (e.g. INS grade, pixel size, lens focal length,

feature quantity, and lunar distance and geometry).

As only measurement noise effects upon the system are considered within this research

effort, the results in Chapter 4 are not indicative of realistic lunar vision aided navi-

gation with INS. However, the results present plausible trade spaces for lunar vision

aided navigation with INS that exist with respect to the various scenario parameters

mentioned above in the research contributions.

1.4 Research Assumptions

To limit the scope of the research effort to consider only measurement noise effects

upon lunar vision aided navigation with INS, the following simplifying assumptions

were made:

1. The lunar feature angular measurements observed by the camera were mod-

eled with unbiased Gaussian white noise. This research effort does not include

the more complicated error contained in more realistic feature extraction and

matching techniques such as the Scale Invariant Feature Transform algorithm

(SIFT).
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2. In a realistic scenario, there will be error in the camera alignment with respect

to the local navigation frame. However, in this research effort, it is assumed

that the alignment to the horizon and/or fixed stars was available and known.

Therefore, the camera alignment error was not included.

3. The camera was modeled as fixed to the vehicle body. For a dynamic vehicle,

this scenario would typically induce feature smearing over the duration of the

camera exposure. However, this affect was not considered in the scope of this

research, as wings-level flight was assumed.

4. All objects are assumed to be in the camera’s field of view. In a realistic

scenario, the effects of wide field of view optics or multiple optics would need

to be considered.

1.5 Thesis Overview

The following section outlines the remainder of this thesis. Chapter 2 proceeds

through the mathematical basis behind the research and discusses alternative cur-

rent methods of non-GPS navigation and feature extraction. Chapter 3 presents the

methodology of how the research was conducted and the specific mathematical mod-

els that were incorporated. Chapter 4 shows the results of the trajectory estimation

based on an INS aided by lunar feature angle measurements. Chapter 5 presents the

conclusion and suggestions for future work on this subject.
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II. Background

2.1 Introduction

The following section discusses the theory and various techniques supporting iner-

tial navigation integrated with lunar feature angle measurements. Section 2.2 presents

mathematical notation and constructs. Section 2.3 lays out the frames of reference

and how they will be annotated. Section 2.4 discusses the Kalman Filter, Extended

Kalman Filter, and error state estimation. Section 2.5 covers computer vision and

camera projection theory. Section 2.6 covers the Sun, Moon, and Earth’s orbital

parameters as well as a brief description of the lunar surface features. Section 2.7

presents the literature review covering various image-aided navigation techniques and

current use of natural passive signals to gain navigation information. Lastly, Section

2.8 summarizes the topics discussed in this Chapter.

2.2 Arithmetic Notation

The following notation will be used for the rest of this thesis:

• Upper and lower case italicized letters are representative of scalar variables.

• Bold lower case letters represent arrays.

• Upper case rectified letters denote a cartesian coordinate axis.

• Bold upper case letters represent matrices.

– I is an identity matrix with 3 rows and 3 columns.

– A zero 0 in bold font is a symbol for a 3 rows by 3 columns matrix of zeros.

– T as a superscript of a matrix or an array denotes a transpose, i.e. AT.
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– Direction Cosine Matrices (DCM) are matrices containing information

which is used to move a vector from one frame of reference to another.

DCMs are represented in the matrix notation form with a bold upper case

letter containing a superscript and a subscript variable as shown in Equa-

tion 2.1 [28]. The subscript variable n is the current frame of reference.

The superscript variable b is the reference frame to be transitioned to. By

transposing a DCM, the transition from one frame to another is reversed

as in Equation 2.2 where the transition from the n-frame to the b-frame is

reversed. Section 2.3 provides an explanation for the frames of reference

used in this research effort.

Cb
n (2.1)

Cn
b = (Cb

n)T (2.2)

• Skew symmetric matrices are matrices populated by the elements of a single

vector or array [28]. An array variable next to a × symbol is representative of

a skew symmetric matrix. Specifically, in this research effort, a skew symmetric

matrix is shown as a 3 rows by 3 columns matrix formed from the elements of

a 3 rows by 1 column vector as shown in Equations 2.3 and 2.4.

γ =


γ1

γ2

γ3

 (2.3)

γ× =


0 −γ3 γ2

γ3 0 −γ1

−γ2 γ1 0

 (2.4)
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2.3 Reference Frames

In navigation, distinct frames of reference are needed to explain an aircraft’s tra-

jectory with respect to different origin points. The following subsections discuss each

frame used in this research effort as described in [28].

Earth Centered Inertial Frame (i-frame).

The i-frame is a cartesian coordinate reference frame with origin centered at the

Earth’s center Oi. The three axes within the coordinate system are non-rotating

being considered fixed to the stars [28]. Figure 2.1 shows the three axes as solid

black lines with axes denoted with the subscript i. The Z-axis is pointed through the

Earth’s north pole, the X-axis is pointed through the Earth’s equator towards the

star Aries, and the Y-axis points perpendicular to the X-axis vector along the Earth’s

equator plane [28].

Earth Centered Earth Fixed Frame (ECEF) (e-frame).

The e-frame is a cartesian coordinate reference frame with origin fixed at the

Earth’s center Oe as shown in Figure 2.1. The e-frame axes are denoted by a subscript

e. The Z-axis lies through the center of the Earth and the poles shared by the i-frame

Z-axis. The X-axis lies perpendicular to the Z-axis through the center of the Prime

Meridian, and the Y-axis lies at longitude 90◦E pointing through the Earth’s equator

[30]. The X and Y axes rotate around the Z-axis at the Earth’s rate of rotation (Ω),

which is 7.292115× 10−5 rad
s

(WGS-84) [28].

Earth Fixed Navigation Frame (n-frame).

The n-frame is a three dimensional (3D) cartesian coordinate reference frame that

is aligned to the local area directions of north, east, and down (NED) forming a plane
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tangent to the Earth’s surface [30]. The down direction corresponds to the direction

of the Earth’s gravity towards the center of the Earth. In this research effort, the

orientation of the n-frame is fixed to the aircraft’s trajectory starting position. Figure

2.1 illustrates the n-frame axes with a subscript n. The n-frame origin is at On along

the Earth’s surface.

Body Frame (b-frame).

The b-frame follows a 3D cartesian coordinate system. Figure 2.2 presents an

aircraft body with the origin at the vehicle body center Ob [28]. The body frame

axes are denoted by a subscript b. The X-axis corresponds to the roll axis and points

through the nose of the vehicle body. The Y-axis corresponds to the aircraft pitch

and points through the aircraft wing direction. The Z-axis is tied to the aircraft yaw

and points vertically through the center of the aircraft.

Sensor Frame (s-frame).

The s-frame is a reference frame constructed on the orientation of a sensor (CCD

camera) fixed to the aircraft body. Figure 2.3 shows the sensor with the origin at Os.

For this research effort, the sensor will be fixed to the b-frame with the lens and Z-axis

pointed towards the sky to view the Moon. The X and Y axes point perpendicularly

to each other along a plane parallel to the image plane. The three sensor axes are

denoted by a subscript s.
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Figure 2.1. ECEF and Navigation Frames. Used with permission [30].

Figure 2.2. Vehicle Body Frame. Used with permission [30].
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Figure 2.3. Sensor Frame.

2.4 Estimation

Estimation is the process by which an unknown quantity can be predicted within a

margin of error [20]. The following subsections discuss dynamic systems, the Kalman

Filter (KF), the Extended Kalman Filter (EKF), and error state estimation.

Dynamic Systems.

Equation 2.5 represents a time invariant dynamic system in the form of a linear

differential equation characterized by continuous time [5][20]. The dynamic system

models state behavior as it is propagated over time [5]. A state is a phenomena of

interest, e.g. position, velocity, or attitude [5]. Fx(t) in Equation 2.5 represents the

states mapped to the dynamic system where x(t) is the state vector and F is the
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state mapping matrix. Bu(t) represents the system inputs mapped onto the dynamic

system where u(t) is the system input vector and B is the system input mapping

matrix [20]. Gw(t) represents the system noise where w(t) is the noise vector and G

is the system noise mapping matrix. Equation 2.6 presents Q(t) as the input noise

covariance matrix where the Dirac delta function is represented by δ(t) [21][30].

ẋ(t) = Fx(t) + Bu(t) + Gw(t) (2.5)

Q(t)δ(τ) = E

[
w(t)wT(t+ τ)

]
(2.6)

Equation 2.7 represents the state uncertainty where P(t) is the state covariance ma-

trix. The state covariance propagation equation is shown in Equation 2.8 [20].

Pxx(t) = E

[
x(t)xT(t)

]
(2.7)

Ṗxx(t) = FPxx(t) + Pxx(t)FT + GQ(t)GT (2.8)

Equations 2.9-2.12 represent the continuous dynamic system from Equations 2.5

and 2.8 brought into discrete form. This conversion is needed, because the EKF

algorithm used in this research effort operates in discrete time [5]. For the rest of this

thesis, all discrete form equations hold a time step of (∆t)k where k is the time step

index number. In Equations 2.9 and 2.10, Φ is the state transition matrix and Qd is

the discrete input noise covariance matrix respectively [5][20]. Equation 2.11 shows

the discrete propagation of the state mean and Equation 2.12 shows the discrete

propagation of the state variance.

Φ = eF(∆t)k (2.9)
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Qd = E

[
wkw

T
k

]
(2.10)

xk = Φxk−1 + wk (2.11)

Pk = ΦPk−1Φ
T + Qd (2.12)

Kalman Filter.

The KF is a recursive algorithm that performs minimum mean square error

(MMSE) estimation of state dynamics [5]. The KF’s algorithm design assumes a

Gaussian distribution for the state dynamics to be estimated. This assumption al-

lows the filter to completely describe a state’s dynamics by estimating the state’s

mean and variance or uncertainty [5]. Three components comprise the KF: the prop-

agation phase in Equations 2.13 and 2.14, the measurement model in Equation 2.15,

and the update phase shown in Equations 2.18-2.20.

Propagation Phase.

The propagation phase is comprised of propagating the state mean x̂k and variance

Pk estimates through discrete time steps. When no measurement update is present,

the propagation equations recursively use the previous state mean x̂−
k and variance

P−
k estimates to obtain its current estimation of the state mean x̂+

k and variance P+
k

as shown in Equations 2.13 and 2.14 [5].

x̂−
k = Φx̂+

k−1 + wk (2.13)

P−
k = ΦP+

k−1Φ
T + Qd (2.14)
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Measurements.

KF estimation operates through the introduction of sensor measurements zk into

the filter at specified discrete times [5]. The measurements aid the filter by provid-

ing information about the states. Equation 2.15 below is characteristic of a linear

measurement model [5]. Hkxk represents the relationship between the sensor and the

states where Hk is the measurement matrix. The level of information to which the

sensor knows about the states is dependent upon the sensor specifications denoted by

the state observability quantities in Hk [5]. The measurement noise vk is assumed to

be white Gaussian noise. Equation 2.16 is the measurement noise covariance matrix

Rk.

zk = Hkxk + vk (2.15)

Rk = E

[
vkv

T
k

]
(2.16)

Update Phase.

The final component of the KF algorithm is the update phase. During the update

phase, aiding measurements zk are input into the algorithm to bring about an optimal

estimate of the state mean and variance. The criterion held to determine an optimal

estimate within the KF is an estimate with minimal mean square error Pk [5]. To

achieve this aim, an estimator based upon Bayes rule is used where the optimal

estimate x̂+
k of the states xk is conditioned on the measurement zk [5].

x̂+
k = E(xk|zk) (2.17)

Based on the above Bayesian estimator, the associated updated mean and covariance

equations are shown in Equations 2.18-2.20 where Kk is the Kalman gain. The

Kalman gain is a blending factor that works to blend the measurement with the a

14



priori state estimate to bring about the optimal updated estimate [5].

x̂+
k = x̂−

k + Kk(zk −Hkx̂
−
k ) (2.18)

P+
k = (I−KkHk)P

−
k (2.19)

Kk = P−
k HT

k (HkP
−
k HT

k + Rk)
−1 (2.20)

Extended Kalman Filter.

A modified KF algorithm called an EKF is designed to process non-linear measure-

ment models [5]. Equations 2.21-2.26 represent the EKF algorithm [5]. The propaga-

tion phase consists of Equations 2.21 and 2.22 which are the estimated state mean and

variance propagation equations respectively. Equation 2.21 shows the states propa-

gated by a non-linear function f(x̂k) [21]. The EKF covariance propagation equation

in Equation 2.22 holds the same form as the KF covariance propagation equation in

Equation 2.14.

x̂−
k = f(x̂+

k−1) (2.21)

P−
k = ΦP+

k−1Φ
T + Qd (2.22)

The EKF update phase consists of Equations 2.23 and 2.24. The residual holds a

non-linear function h(x̂k) in Equation 2.23 within its calculation [21]. The Kalman

gain Kk in both equations is the same form as the Kalman gain equation in the

KF algorithm shown in Equation 2.20. The covariance update equation in Equation

2.24 holds the same form as the covariance update equation in the KF algorithm in

Equation 2.19. The form of the linear measurement matrix Hk accommodating the

non-linear measurement function will be presented in Equation 2.26.

x̂+
k = x̂−

k + Kk(zk − h(x̂−
k )) (2.23)
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P+
k = (I−KkHk)P

−
k (2.24)

The measurement model for an EKF is likewise non-linear as shown in Equation

2.25. The linear mapping of the state observabilities onto the state estimate vector

Hkx̂k within the KF algorithm is replaced by passing the estimated states through a

non-linear function h(x̂k) which holds information about the states [5][21].

zk = h(xk) + vk (2.25)

To process the non-linear measurement function h(x̂k) through the EKF, the non-

linearity of the function must be accounted for as the EKF algorithm requires a

linear measurement matrix Hk when calculating the Kalman gain Kk and updated

variance estimate P+
k as shown in Equations 2.20 and 2.24 respectively [21]. During

the update phase, a method is used to linearly approximate around the non-linear

measurement function h(x̂k) to approximate Hk. A linear approximation of a non-

linear function can be found through the use of a first-order Taylor series expansion

known as a Jacobian which consists of partial differentiation applied to the non-linear

measurement function as seen in Equation 2.26 [21].

Hk =
∂

∂x̂k
h(x̂k) (2.26)

Error States.

So far, modeling and estimation has been discussed with regard to direct states

xk. In the case of an INS, the system performance is characterized by the amount of

trajectory drift error over time [28]. Thus, modeling of the INS error states δxk are

more suitable for the INS design. Also, a relationship can be constructed between the

errors δxk, errant truth xINS,k, and true states xk as shown in Equation 2.27 [5][21].
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Lastly, the error states can be modeled in the same way as the direct states just by

modifying the state vector xk to incorporate state errors as shown in Equation 2.28

[28].

xk = xINS,k + δxk (2.27)

δxk = Φδxk−1 + wk (2.28)

2.5 Computer Vision

This section provides an overview of basic optical sensor configuration, camera

projection theory, angular field of view, and angular resolution within diffraction

limited systems.

Camera Projection Theory.

Figure 2.4 illustrates a pinhole camera model. Light reflected or projected from

objects in the scene of the outside world is taken in by the aperture (or opening)

shaped as a double convex lens into a dark space where the image is projected [10].

Based upon the behavior of light rays entering the aperture, the image is naturally

an inverted projection of the outside scene [10]. Depending on the focal length f ,

the projected arrow image can be manipulated. A large focal length will create a

magnified image of the scene with a small field of view. A small focal length will

cause the scene to be viewed from a wide field of view. Equation 2.29 shows the

relationship between the scene, image, and focal length where s1 is the distance from

the scene to the aperture and s2 is the distance from the lens to the projected scene

[10].
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Figure 2.4. Pinhole Camera Model. Used with permission [30].

1

s1

+
1

s2

=
1

f
(2.29)

Figure 2.5. Optical Sensor Model. Used with permission [30].

Figure 2.5 follows the pinhole camera concepts presented in Figure 2.4, but builds

upon the model’s analog aspects with an analog-to-digital interface converting raw

images of the outside world scene into digital information a computer can use to

reconstruct the image. Within Figure 2.6, the image projection from Figure 2.4

is placed in the context of the 3D outside scene projected onto a 2D image plane.

In Figure 2.6, sc is the object location in the outside scene and sproj is the object

location on the 2D projection [30]. The 2D image axes are represented by a 2D
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cartesian coordinate system with xproj and yproj as the horizontal and vertical axes

respectively. The relationship between the object location in the 3D scene sc and

the object projection on to the image sproj is shown in Equation 2.30 where zc is the

direction from the camera to the 3D scene.

Figure 2.6. Camera Projection Model. Used with permission [30].

sproj =

(
f

sc
z

)
sc (2.30)

The object projection location needs to be determined with respect to pixel loca-

tions in the digital image as shown in Equation 2.31 [30]. M and N serve as the digital

array horizontal and vertical axes respectively of width W and height H. Figure 2.7

shows the 2D digital image array coordinate system relating the projected object

location sproj coordinates onto the digital image array coordinate system [30].

spix =

−M
H

0 0

0 N
W

0

 sproj +

M+1
2

N+1
2

 (2.31)
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Figure 2.7. Digital Image Coordinate System. Used with permission [30].

Angular Field of View.

The angular field of view is the angle of the world scene observed by a camera’s

lens [10]. For a camera with a rectangular image array, the resulting angular field of

view is described by two angles: a width angle αw and a height angle αh [1]. Figure

2.8 presents a side view of a camera model showing only the height field of view

parameters. Equation 2.32 shows the height angle field of view equation with respect

to the image array height hf and focal length [1][10].

αh = 2tan−1

(
hf

2f

)
(2.32)

Equation 2.33 shows the determination of the height of the world scene hscene observed

by the camera where dscene is the distance from the lens to the world scene.

hscene = 2dscenetan
(αh

2

)
(2.33)
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To determine the angular field of view for width αw, Equation 2.32 can be used and

the image array height replaced by the image array width wf.

Figure 2.8. Angular field of view based on image array height (Side View).

Diffraction Limited Spot Size.

This subsection discusses the resolution of a point source within an image con-

strained by lens diffraction. In ideal circumstances, a lens would perfectly transfer a

point source in the world scene to its detected location on an image array as shown

in Figure 2.9 [10]. ∆` denotes the center to center pixel separation or pixel size.

Figure 2.9. Ideal Resolution of Point Source Along Image Array.
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Unfortunately, due to diffraction caused by a camera’s finite aperture (neglecting

atmospheric effects), the light of the point source is spread over the detector [10]. The

diffraction limitation of the lens causes angular variance ∆θq in the location of the

point source projection within the pixels [10]. The resulting projection of the point

source on the image results in an Airy disk or diffraction limited spot, meaning that

the point source projection can be located somewhere within the first ring of the Airy

disk radius q1 [10]. Figure 2.10 showcases the angular resolution of a point source in

the world scene upon pixel squares within an image distorted by diffraction.

Figure 2.10. Angular Resolution of Point Source Along the Image Array.

The conversion between q1 and ∆θq is shown in Equation 2.34 [10]. Equations 2.35

and 2.36 describe the relationships between the angle of resolution ∆θq and Airy disk

radius q1 to the focal length f , light wavelength λq, and lens diameter D respectively

[10].

∆θq ≈ sin∆θq =
q1

f
(2.34)

∆θq =
1.22λq

D
(2.35)
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q1 =
1.22fλq

D
(2.36)

Depending on the pixel size ∆`, a mismatch in sampling could occur [10]. Figure

2.11 presents three cases of sampling. Case A shows an over sampled case where the

Airy disk size is spread over multiple pixels. Case B presents the critically sampled

case where the sampling size is equal to the Airy disk diameter cordoning the point

source projection to one pixel. Case C is an under sampled case where the pixel

size is much larger than the point source projection creating ambiguity to where the

projection is located within the pixel itself. To obtain sub-pixel resolution of the Airy

disk, it is preferred to have the Airy disk spread over many pixels [10][18] .

Figure 2.11. Angular resolution of diffraction limited spots with respect to sample size
along the image plane.

2.6 Overview of Moon, Sun, and Earth Orbital Parameters

The following section provides a high level overview of the celestial orientation

between the Sun, Moon, and Earth. Table 2.1 presents the key parameters which

summarize the relationship between the three bodies.

Figures 2.12-2.14 illustrate the Earth holding an axial tilt of 23.44◦ with respect to

its orbit plane around the Sun [31]. The Earth’s sidereal orbit period around the Sun

is 365.256 days traveling in a counter clockwise direction [31]. The Earth performs a
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Table 2.1. Sun [32], Moon [33], and Earth [31] Parameters.

Celestial Body Radius (km) Distance to
Earth (km)

Inclination to
Equator (◦)

Inclination to
Ecliptic (◦)

Obliquity to
Orbit (◦)

Sun 696,000 149,600,000 N/A N/A N/A
Moon 1,738.1 378,000 18.28-28.58 5.145 6.7
Earth 6,378.1 N/A N/A 0 23.44

revolution around its own axis every 23.93 hours [31]. The ecliptic is the plane of the

Earth’s orbit around the Sun [31].

Figure 2.12. View of Orientation of Earth, Moon, and Sun Orbits [31].

The Moon’s revolution period around the Earth is 27.32 days [33]. Figure 2.14

presents the Moon’s orbit inclination with respect to the Earth’s equator ranging from

18.28◦ to 28.58◦ [33]. During the Moon’s orbit around the Earth, the Moon’s axial

tilt varies in librations along its latitude and longitude. Latitude librations occur at

6.7◦, and longitude librations occur at 7.7◦ [11].
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Figure 2.13. Top View of Orientation of Earth [31], Moon [33], and Sun [32] Orbits.

Figure 2.14. Side View of Orientation of Earth [31], Moon [33], and Sun [32] Orbits.
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Figure 2.15 presents a high resolution image of the Moon’s near side captured by

the Lunar Reconnaissance Orbiter wide angle camera (LROC WAC) in partnership

between NASA and Arizona State University. The lunar near side surface contains

unique characteristics defined by smooth basins called seas or mare, craters, channels,

mountains, ejecta rays, and ridges [11]. The lunar mare are the dark smooth areas

along the Moon’s surface in Figure 2.15 [11]. Ejecta rays are the displaced materials

of impact craters that have fallen into place radially around the impact crater [11].

Ejecta rays can be seen in Figure 2.15 as the lighter straight lines oriented radially

around the crater named Mount Copernicus in the middle to left portion of the image

lying surrounded by the dark mare (south of Mare Ibrium) [11].

Figure 2.15. Lunar Near Side. Used with Permission [26].

2.7 Literature Review

This section discusses current non-GPS navigation sensors found in open literature

which extract navigation information from natural phenomena. The first subsection
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presents attitude determination by computer vision techniques based upon lunar and

planetary features. The second subsection discusses other various attitude determina-

tion techniques derived from knowledge of the Sun’s position, Earth’s magnetic field,

and Earth’s horizon, etc. Attitude refers to a vehicle’s orientation in the b-frame

represented by the Euler angles: roll φ, pitch θ, and yaw ψ [28]. Aiding attitude

updates have been shown to improve the uncertainty of KF estimated INS position

error states [2].

Attitude Determination by Lunar or Planetary Features.

Three processes in lunar or planetary image-aided navigation methods are: image

collection, navigation data extraction, and attitude determination [7]. Planetary and

lunar images have been identified as an attitude information source with respect to

a vehicle’s body frame [6][24].

In space, a vehicle’s body frame attitude could be found with respect to a reference

frame based on a plane consisting of the vehicle and two celestial bodies denoted by

the p-frame in Figure 2.16. The p-frame origin Op and the b-frame origin of the vehicle

Ob share the same location. The pitch θ and yaw ψ angles of the b-frame with respect

to the p-frame can be estimated based on the plane established by the three bodies

as shown in Figure 2.16 [8]. The plane in Figure 2.16 consists of the Moon, Sun,

and a vehicle with the plane’s origin at Op. The roll angle φ of the vehicle body

with respect to the p-frame is estimated based upon the measured rotation angle ϑ

of the vehicle body in relation to the Moon. Mortari and Park propose using a stored

catalog Moon image to compare with the observed Moon image. This would allow a

translation and rotation calculation between the images to be performed to determine

ϑ [24]. Enright’s method to determine ϑ differed due to his use of over-exposed star

tracker Moon images instead [8].
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Figure 2.16. Attitude Determination by Celestial Bodies [8].

Key Points Feature Detection.

Key points feature detection and extraction is characterized by the detection and

tracking of features of interest. Absolute attitude sensors such as second generation

star trackers use the method to detect and track celestial bodies, i.e. stars [18]. The

method can also be used on planetary features [15]. The process works by having

key points information stored within a processing software database or catalog. The

database holds information about each key point’s unique characteristics and can be

compared with an observed image of the same terrain or star pattern to gain rotation

and translation information in a vehicle’s body frame [7].

For the star tracker, a star’s magnitude and brightness serve as unique qualities

and are stored in a star catalog [16]. The star catalog holds information about

each stars arrangement in relation to the nearest stars. A set of three stars in close

proximity is called a Triangle Feature (TF) [16]. This can be seen in Figure 2.17. TFs

are the basic pattern from which meaningful attitude information can be extracted
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within a star tracker [16]. The unique characteristics of a TF are listed in Equation

2.37 derived from Figure 2.17 where Star C is the center star, Star A is the first

nearest star to Star C, and Star B is the second nearest neighbor to Star C. Within

[16], the star catalog stores a vast number of TF combinations. Liebe in [16] performs

a quantization on the TF combinations to conserve memory. Under quantization, the

stored TF reference listed in Figure 2.17 would read [55, 81, 32]. A star averages 180

star catalog references in relation to the TFs its contained in [16].

[
Distance to Star A, Distance to Star B, Angle between Stars A and B

]
(2.37)

Figure 2.17. Star Tracker Triangle Feature [16].

In many cases, it is not enough to locate key points based at given pixel locations.

Subpixel resolution quality is needed to determine exactly where the key point is

located within an image. This is called hyperacuity or subpixel precision [18]. To

achieve this goal, the process of centroiding can be used. At the pixel level, a key

point can appear to be uniform in intensity. Centroiding consists of slightly blurring

an image to obtain a Gaussian form of pixel intensities around a key point [18]. The
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tighter mean extracted from the key point intensity distribution provides a more

accurate subpixel level data point supporting an improved attitude determination

[18].

Van Bezooijen’s key point extraction method doesn’t solely rely on TFs for cor-

respondence between the observed key points and its key point catalog [7]. Van

Bezooijen’s algorithm works from the premise that an increase of stars in view cre-

ates a more unique star pattern to improve attitude determination. Based upon Van

Bezooijen’s algorithm, researchers in [7] are working on the statistics and viability of

an N-star pattern recognition algorithm for attitude determination.

Key points extraction and detection methods can be used in extracting planetary

features for navigational purposes [15][17]. Liebe’s criteria in [15] for a robust feature

extraction algorithm upon planet terrain is for the algorithm to operate proficiently

withstanding changes in vantage points, occlusion, lighting, and rotation. He reaches

the conclusion that this aim can be achieved through the use of token-based closed

contour tracking very similar to key points extraction and detection used in star track-

ers. According to Liebe, the features must hold a distinguishable quality that allows

them to be recognized from a wide range of vantage points and lighting conditions

[15]. From images of Jupiter, he was able to extract features to be used for a closed

contour feature constellation while rotation and occlusion separately occurred [17].

Hough Transform.

Another method of feature detection and extraction that has been explored for

attitude determination purposes is the Hough Transform. The Hough Transform is

a robust algorithm used to detect specified shapes within images, particularly, lines

and circles [6][14]. In [6], a circular crater on Saturn’s moon, Mimas, was successfully

detected using the Hough Transform. Both [6] and [14] voice that although the
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transform’s performance is high at detecting shapes within an image, an increase in

the parameters and complexity of the detectable image shapes would greatly increase

the computational memory needed. In [14], the suggestion is made that extensions to

the Hough Transform exist which reduce the inefficient algorithm needs. However, the

stripping away of the algorithm leads to instability in the algorithm when processing

shapes slightly different than the specified template [14].

Gray Level Cooccurance (GLC) Matrices.

In [29], a feature detection method utilizing GLC matrices was implemented to

extract planetary features, e.g. mountains, volcanoes, and valleys. The research in

[29] was conducted in the context of providing extracted features for planetary ter-

rain tracking and navigation purposes. A GLC matrix scans a defined image region

and estimates the second-order probability for a specified gray level change between

adjoined pixels [29]. Each GLC is tuned to extract a type of image feature. Equation

2.38 represents a type of GLC tested in [29] where the gray levels are represented

by Lg, δg is the separation between any two pixels within the local region Tg, and ig

and jg are the gray levels. The Inertia GLC matrix below suited identifying random

gray-leveled areas, and the Entropy GLC matrix was found to be the most robust

GLC matrix [29]. The Cluster Shade GLC matrix was found to favor feature extrac-

tion within high contrasting gray level regions which are characterized by craters.

Although, not holding high performance as the specialized GLCs in their respec-

tive environments, it was consistent in its performance over various local regions and

features.

Inertia:

I(δg, Tg) =

Lg−1∑
ig=0

Lg−1∑
jg=0

(ig − jg)2s(ig, jg, δg, Tg) (2.38)
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Following the GLC matrix tests conducted on images of moons, Triton and Mi-

randa, Udomkesmalee and Antonio concluded that although GLC matrices provided

distinct feature detection results, the quality and the method fell short. This was

due in part to the difficulty of sorting out shadow areas causing mis-characterizations

of planetary features and the complexity surrounding the recognition of numerous

feature types [29].

Template Matching.

Template Matching is another method used in feature detection of planetary ter-

rain and attitude determination as read in [4] and [6]. In [24], a method of tem-

plate matching is performed on Moon images. The algorithm called the Moon-Sun

Attitude Sensor works by matching an observed image of the Moon to a stored ref-

erence image. The resulting captured image is then translated and rotated until it

matches the reference Moon image. Equation 2.39 characterizes the match of the two

Moon images through the quantity r which represents the correlation quantity [24].

Once r equals 0, then a perfect match has been reached. Once the perfect match is

achieved, the phase angle ϑ, which the template was rotated to match the observed

image, can provide information to aid in attitude determination. This was briefly

discussed in the beginning of this section and shown as the end result of Mortari and

Park’s attitude algorithm in Figure 2.18. In Equation 2.39, the image correlation

equation is presented where Im and Jm represent the respective Moon images to be

matched. Īm and J̄m are stated to be the mean value of each image. c and d are the

pixel index numbers.

r =

∑
c,d(Im,(c,d) − Īm)(Jm,(c,d) − J̄m)√∑

c,d (Im,(c,d) − Īm)
2∑

c,d (Jm,(c,d) − J̄m)
2

(2.39)
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A similar equation to Equation 2.39 was found in [6] showing the commonality of the

correlation equation within the template matching method of feature detection. To

increase the efficiency of correlation, [6] suggests that correlation can be carried out

in the Frequency Domain with Fast Fourier Transform.

Figure 2.18. Mortari and Park’s Image Processing Outline. Used with permission [24].

Figure 2.18 is a feature detection algorithm example involving template matching.

From this figure, the various stages of image processing involved in template matching

feature detection can be viewed. Mortari and Park first perform median filtering to

remove noise [24]. From here, a binary image can be created from the observed

image and edge detection conducted. As unique to [24], if the Moon is full and

symmetric, the sea of Crisium will be selected as to perform edge detection upon. At
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this point, the captured edge is translated and rotated to gain the match and phase

angle ϑ as mentioned earlier in this section. Lastly, Mortari admits that the Moon-

Sun Attitude Sensor performance would not match the performance of modern star

trackers; however, the sensor could be viable in budget constrained environments

[23]. Also, a Moon-Sun Attitude Sensor aided INS system could have the potential

to match a star tracker’s performance.

Natural Passive Signals Sensor Methods.

The following subsection covers different sensor types which derive position and

attitude information from natural phenomena. Each listed sensor does not provide a

complete navigation solution on its own, but provides separate angle or range mea-

surements when coupled together can be used in trajectory estimation or to gain a

position fix. Sensor combination addresses this issue by combining the measurements

of disparate sensors to form a complete navigation solution [13].

Sun Sensor.

The Sun holds a predictable ephemeris track across the Earth each day. From

this constant motion, angle measurements can be derived from different Earth loca-

tions with respect to the Sun and the horizon to gain an elevation angle measurement

which holds latitude position information [9]. Modern sun sensors also follow a similar

elevation angle angle concept, however, using the Sun’s angles for attitude determi-

nation instead [18][19]. Liebe has continued research into enhancing the ancient sun

sensor methodology to develop a micro sun sensor providing solar angle information

based around MEMS technology and a centroiding technique [19]. Liebe’s micro sun

sensor consists of a miniature enclosed box with an aperture at the top to create a

well where the Sun’s rays can enter. Based upon the direction that the Sun’s rays

34



strike the wafers aligned along the well floor, an angle of the Sun’s rays can be ob-

tained which leads to a unique attitude solution. Liebe in [18] lists sun sensors with

an accuracy of 1 arcminute for attitude determination.

Magnetometer.

Magnetometers are sensors which employ the Earth’s magnetic field to gain mag-

netic measurements corresponding to a unique attitude determination. The readings

consist of the size and orientation of the magnetic field lines [18]. The reported

accuracy for magnetometers is around 1 arcminute [18].

Horizon Sensor.

Utilizing measurements based upon the limb of the Earth, navigation information

can be derived to gain a unique attitude determination [18]. The limb measurements

are typically captured through an infrared camera [18]. Liebe lists the accuracy of

horizon sensors at 5 arcminutes which is the least accurate as compared to the other

sensors listed in [18].

Star Tracker.

Referenced in the previous subsection, star trackers are optical sensors which

capture constellation information to gain an attitude determination. In this research

effort, second generation star trackers are referred to. Second generation star trackers

consist of a charge coupled device (CCD) camera and an associated software package

which holds a star database and star catalog [16][18]. The captured constellation

images are compared to a stored catalog image of the observed constellation, and a

unique set of angles can be computed which provide a navigation solution [18]. Star
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trackers hold an accuracy of 1 arcsecond as shown in [18]. This is the highest accuracy

in comparison to the other sensors listed.

2.8 Summary

Chapter 2 provided the necessary theoretical background to support the methodol-

ogy approach discussed in Chapter 3. Dynamics models, computer vision techniques,

and camera projection theory were discussed as well as KF and EKF estimation meth-

ods. An overview of the lunar orbital parameters and the lunar surface was covered.

Various open literature methods of non-GPS navigation sensors were presented as

well.
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III. Methodology

3.1 Introduction

The methodology chapter discusses the models and methods that were put into

practice to perform drift correction on INS errors aided by lunar feature angle mea-

surements. Section 3.2 discusses the overall system model. Section 3.3 describes the

truth model used to simulate the flight trajectory. Section 3.4 presents the error state

motion model that was used to simulate INS errors. Section 3.5 shows the validation

of the error state motion model. Section 3.6 covers the measurement model used to

correct the INS errors. Section 3.7 presents the lunar feature model. Section 3.8

discusses the EKF implementation process. Section 3.9 provides the summary of the

section.

3.2 System Overview

To gain an understanding of the system as a whole, the following section discusses

the error state model, the error state estimation model, and presents the system block

diagram.

The INS error model in Equation 3.1 shows the relationship between the INS error

states δxk, errant truth xINS,k, and true states xk [5]. The true states xk hold direct

trajectory information and the trajectory model is presented in Section 3.3. The INS

error states δxk are based on the Pinson 15 error state dynamics model described in

Section 3.4. Equation 3.2 shows how the subtraction of the INS errors from the true

states is used to create the simulated INS trajectory xINS,k. With the error states

modeled on INS error noise strengths (see Table 3.1), the corrupted truth can act as
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a realistic INS modeled trajectory.

xk = xINS,k + δxk (3.1)

xINS,k = xk − δxk (3.2)

With the INS trajectory and INS errors simulated, estimation of the true states xk

can be performed. This research effort utilizes an indirect truth estimation approach

called error state estimation whereby the INS error states δxk are estimated as shown

in discrete form δx̂k in the error estimation propagation equation below [5].

δx̂−
k = Φδx̂+

k−1 + wk (3.3)

Once the INS error states are estimated, Equation 3.4 shows the quantities are added

to the errant INS trajectory xINS,k to bring about an estimation x̂k of the true states

xk.

x̂k = xINS,k + δx̂k (3.4)

Figure 3.1 presents the system block diagram containing the INS trajectory, lunar

vision measurements, and the EKF working together to estimate an aircraft’s true

trajectory based upon the error state estimation model. The system follows an indi-

rect feed forward format [20].

Figure 3.1. Lunar Vision Aided Navigation with INS Block Diagram.
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3.3 Truth Model

The truth model of aircraft motion is simulated by a circular trajectory with

radius 20km along the north and east plane in the n-frame as shown in Equations

3.5-3.8 with distance in meters. µ is the circle central angle. The truth along the

north and east position states was kept unchanged to act a baseline throughout the

various scenarios that were conducted. pN,k and vN,k are the position and velocity of

the aircraft along the north axis respectively.

pN,k = pN,0 + 20000sin(µ) (3.5)

vN,k =
pN,k − pN,k−1

(∆t)k
(3.6)

pE,k = pE,0 + 20000cos(µ) (3.7)

vE,k =
pE,k − pE,k−1

(∆t)k
(3.8)

The down axis motion is generated by a First Order Gauss Markov (FOGM) accel-

eration model which represents aircraft motion in a realistic fashion [5]. Figure 3.2 is

the FOGM acceleration model block diagram representing the down axis of motion

over continuous time. τ is the system’s correlation time constant [20].

Figure 3.2. n-frame Down axis FOGM acceleration model Block Diagram [20].
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The set of first order linear differential equations describing the down axis motion

are shown in Equations 3.9 through 3.11 where each differential equation is defined

by the motion states of acceleration a, velocity v, or position p [20]. w(t) is white

Gaussian noise on the acceleration state.

ȧD(t) =

(
−1

τ

)
aD(t) + wD(t) (3.9)

v̇D(t) = aD(t) (3.10)

ṗD(t) = vD(t) (3.11)

The first order differential equation form of the down axis truth model is shown in

Equation 3.12 with incorporated random noise [20]. However, due to research scope,

the control inputs u(t) are not being evaluated in the state propagation. Therefore,

the control inputs are set to zero in Equation 3.13.

ẋ(t) = Fx(t) + Bu(t) + Gw(t) (3.12)

ẋ(t) = Fx(t) + Gw(t) (3.13)

Equation 3.14 represents the down axis state space truth model.


ṗD

v̇D

ȧD

 =


0 1 0

0 0 1

0 0 − 1
τ




pD

vD

aD

+


0

0

wD

 (3.14)

Equation 3.15 is the down axis input noise covariance matrix Q(t) representing the

input noise for the down axis state space truth model. The input noise is white

Gaussian noise with zero mean [20]. The relationship between the input noise and
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the process noise can be seen in Equation 3.16 where σD is the process noise standard

deviation [20].

Q(t) = E

[
wD(t)wT

D(t)

]
= E

[
w2

D

]
(3.15)

Q(t) =
2σD

τ
(3.16)

3.4 Error State Motion Model

To simulate realistic INS errant behavior, a dynamics model following the con-

tinuous time first order linear differential equation form with incorporated random

noise input was implemented as shown in Equation 3.17 [28]. The control inputs

u(t) are not being evaluated in the error state propagation and are set to zero in

Equation 3.18. The error states are seen in Equation 3.19 which is the error state

vector δx. The five error state categories are position error δp, velocity error δv, tilt

ψ, accelerometer bias δa, and gyroscope bias δb. The error state vector holds fifteen

error states as each of the five error state categories are propagated in three directions

(NED) [28][30].

δẋ(t) = Fδx(t) + Bu(t) + Gw(t) (3.17)

δẋ(t) = Fδx(t) + Gw(t) (3.18)

δx(t) =



δp(t)

δv(t)

ψ(t)

δa(t)

δb(t)


(3.19)

The state space form of the INS error state motion model is shown in Equation 3.20

along with the random noise inputs [28][30]. The position states do not contain any

input noise entering into them due to fact that the position error states are integrated
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directly from the velocity error states which do contain input noise. The δv and ψ

error states both are random walk processes [13][30]. The δa and δb error states

follow a FOGM process [13][30]. It should be noted that the system noise mapping

matrix G is located along the second line of Equation 3.20.



δṗ(t)

δv̇(t)

ψ̇(t)

δȧ(t)

δḃ(t)


=



0 I 0 0 0

Cn
eDCe

n −2Cn
eΩ

e
ieC

e
n (fn×) Cn

b 0

0 0 −(Cn
eω

e
ie)× 0 −Cn

b

0 0 0 − 1
τa

I 0

0 0 0 0 − 1
τb

I





δp(t)

δv(t)

ψ(t)

δa(t)

δb(t)



+



0 0 0 0

Cn
b 0 0 0

0 −Cn
b 0 0

0 0 I 0

0 0 0 I





wδv(t)

wψ(t)

wδa(t)

wδb(t)



(3.20)

The input noise covariance matrix Q(t) for the error state motion model in Equa-

tion 3.21 has input noise entering into the last four error state categories δv, ψ, δa,

and δb [30]. The pre-defined error noise strength values for these states used in INS

error state simulation are presented in Table 3.1. The correlation time constant τ for

the accelerometer bias δa and the gyroscope bias δb for an INS are 3600 seconds for
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error state simulation of each INS grade [13].

Q(t) =



0 0 0 0 0

0
2σδv(t)
τ 0 0 0

0 0
2σψ(t)

τ 0 0

0 0 0
2σδa(t)
τ 0

0 0 0 0
2σδb(t)
τ


(3.21)

Table 3.1. Noise Strength values of INS Grades for use in error simulation [13]

INS Grade σδb(t)

(
rad
s

)
σδa(t)

(
m
s2

)
σδv(t)

(
rad

s
1
2

)
σψ(t)

(
m

s
3
2

)
Commercial (Cloudcap Crista) 8.7× 10−3 1.96× 10−1 6.5× 10−4 4.3× 10−3

Tactical (HG1700) 4.8× 10−6 9.8× 10−3 8.7× 10−5 9.5× 10−3

Navigation (HG 9900 - H764G) 7.2× 10−9 2.45× 10−4 5.8× 10−7 2.3× 10−4

Equation 3.23 is the b-frame to n-frame DCM used in the error state motion model

[30]. The inputs to the DCM are vehicle body Euler angle rotations roll φ, pitch θ,

and yaw ψ which are measured in radians as shown in Equation 3.22. The DCM can

be used to rotate a vector from the b-frame to the n-frame which is in meters [28][30].

A transpose of the DCM Cn
b will result in the reverse DCM Cb

n.

ωb =


φ

θ

ψ

 (3.22)

Cn
b =


cos(ψ)cos(θ) −sin(ψ)cos(φ) + cos(ψ)sin(θ)sin(φ) sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ)

sin(ψ)cos(θ) cos(ψ)cos(φ) + sin(ψ)sin(θ)sin(φ) −cos(ψ)sin(φ) + sin(ψ)sin(θ)cos(φ)

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)


(3.23)
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Equation 3.24 is the DCM that rotates position information from the e-frame to the

n-frame [28][30]. The DCM takes in latitude L and longitude λ coordinates in radians.

Cn
e =


−sin(L)cos(λ) −sin(L)sin(λ) cos(L)

−sin(λ) cos(L) 0

−cos(L)cos(λ) −cos(L)sin(λ) −sin(L)

 (3.24)

The Earth’s rotation must be taken into account when computing errors for an

aircraft traversing over the Earth [30]. Equation 3.25 represents the Earth’s rotation

with respect to the i-frame [30]. In the INS error state motion model, this is rotated

into the n-frame and affects the tilt error state. Equation 3.26 is the skew symmetric

matrix of Equation 3.25. Equation 3.26 accounts for the Earth’s rotation in the

velocity error states [30]. The Earth rotation rate Ω used in this research effort is

7.292115× 10−5 rad
s

(WGS-84) [28].

ωe
ie =


0

0

Ω

 (3.25)

Ωe
ie =


0 −Ω 0

Ω 0 0

0 0 0

 (3.26)

Gravity over the surface of the Earth varies slightly based upon a region’s elevation

[30]. To account for this phenomenon within the position error component of the

velocity error state, a gradient value D is used as a unique regional approximation

of gravity [30]. D in Equation 3.27 represents a gravitational constant unique to a

specific region based around the aircraft’s current position with respect to the e-frame
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p̌e and the skew symmetric of the earth’s rotation vector from Equation 3.26 [30].

The gravitational constant g is 9.8 m
s2

[31].

D = ∇g|pn =
g∥∥∥∥pe

∥∥∥∥3

[
3p̌e(p̌e)T − I

]
− (Ωe

ie)
2 (3.27)

Accelerometers within INS units output specific force measurements which in this

research effort are within vector fb with respect to the b-frame as shown in Equation

3.28 [30]. For the velocity error states, the specific force measurements are taken into

account through rotation into the n-frame as seen in Equation 3.29 [30]. For this

research effort, the simulated aircraft trajectory is a wings level flight.

fb =


fb
φ

fb
θ

fb
ψ

 = Cb
n

(
∆v

∆t

)
(3.28)

fn = Cn
bf

b (3.29)

3.5 Error State Motion Model Validation

To verify the INS error state motion model, it is incumbent to achieve a match

between the simulated error ensemble statistics of the INS error model and the INS

error theoretical statistics [20]. The theoretical or analytical statistics are the INS

grade dependent theoretical results that would be expected of INS errors propagated

over time. The theoretical statistics create a template that shows expected INS errant

behavior over time. The form of the theoretical statistics can be inferred due to the

Gaussian nature of the model’s distribution where the mean is zero and the standard

deviation follows the σ values listed in Table 3.1 [20].

The INS error state motion model’s simulated error statistics are collected from
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propagating multiple runs of the error state motion model over time in Equation

3.20 and then determined by the ensemble mean and standard deviation [5]. If the

ensemble statistics match the form of the theoretical statistics, the model can be

considered sound as a means to simulate INS errors during a vehicle trajectory [20].

To prove the validity of the error state motion model in Equation 3.20, a Monte

Carlo simulation of 10,000 runs was conducted for all three grades of INS based on

the simulation parameters listed in Table 3.2. Figures 3.3-3.5 show the ensemble

and theoretical statistics matching for the position state in three directions for a

propagation of ten minutes. It is clear, the errors decrease exponentially with the

change in the quality of INS grades from Commercial to Navigation Grade.

Table 3.2. Simulation Parameter for Error State Motion Model Validation [13].

Monte Carlo Simulation Parameters
Propagation Time Step (∆t)k 1s

Aircraft Initial Position (0,0,0) m
Aircraft Initial Velocity (200,0,0) m

s

Aircraft Initial Acceleration (0,0,0) m
s2
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Figure 3.3. Monte Carlo Simulation of 10,000 runs for Commercial Grade INS Position
Error for the n-frame North, East, Down axes respectively.

47



Figure 3.4. Monte Carlo Simulation of 10,000 runs for Tactical Grade INS Position
Error for the n-frame North, East, Down axes respectively.
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Figure 3.5. Monte Carlo Simulation of 10,000 runs for Navigation Grade INS Position
Error for the n-frame North, East, Down axes respectively.

3.6 Measurement Model

For this research effort INS drift errors are corrected within an EKF through the

use of lunar feature angle measurements obtained in the n-frame and a barometer.

Lunar Feature Angle Measurement Model.

Equation 3.30 shows the non-linear measurement model containing measurements

zopt,k, the measurement function hopt(·), and measurement noise vopt,k which is a

white Gaussian noise process [21]. Ropt,k is the measurement noise covariance matrix.

The position states pk are the input to the measurement function. The measurement

function hopt(·) consists of two external angle measurements: azimuth η and elevation
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ξ described in Equations 3.33 and 3.34 respectively. The angles are calculated based

upon the relationship of the simulated vehicle position pk to simulated lunar features

T n in the n-frame. hopt(·) is constructed to allow for angles to be calculated based

upon multiple features for batch updating denoted by index 1 to n with discrete times

at index k.

zopt,k = hopt(pk) + vopt,k (3.30)

Ropt,k = E
[
vopt,kv

T
opt,k

]
2n×2n

(3.31)

hopt(pk) =



η1,k

...

ηn,k

ξ1,k

...

ξn,k


2n×1

(3.32)

η is determined by the slope of the vehicle position (pN,pE,pD) in relation to the

feature position (T n
N, T

n
E , T

n
D) within the inverse tangent function along the horizontal

E-N plane as shown in Equation 3.33 and Figure 3.6. The positive E-axis is 0π

rads. ξ is determined based upon the slope of the vehicle position in relation to the

feature position with the rise along the vertical D-axis and the run calculated as a

line projection along the horizontal E-N plane as shown in Equation 3.34 and Figure

3.7.

ηk = tan−1

(
T n

N − pN,k

T n
E − pE,k

)
(3.33)

ξk = tan−1

(
T n

D − pD,k√
(T n

E − pE,k)2 + (T n
N − pN,k)2

)
(3.34)
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Figure 3.6. 3D Angle: E-N Plane.

Figure 3.7. 3D Angle: D-axis and E-N Plane Projection.
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For EKF estimation, simply inputing the non-linear measurement model into the

filter will not work due to the linear nature of the Kalman gain and covariance update

equations [21]. The angle measurements must be linearly approximated along the

three orthogonal axes that comprise the n-frame. A first-order Taylor series expansion

called a Jacobian is used to linearly approximate the non-linear measurement function

as seen in Equation 3.36 [21]. Within the EKF algorithm, the Jacobian is determined

for the estimated angles η̂ and ξ̂ which have been calculated based upon estimated

position states p̂k shown in Equation 3.35.

p̂k = pINS,k + δp̂k (3.35)

Hopt,k =
∂

∂p̂k
hopt(p̂k) (3.36)

Hopt,k represents the measurement matrix comprised of Jacobians required for the

EKF update equations. η and ξ only give observability along the position states.

Hopt,k =



∂
∂p̂N,k

η̂1,k
∂

∂p̂E,k
η̂1,k 0 0 . . . 0

...
...

...
...

. . .
...

∂
∂p̂N,k

η̂n,k
∂

∂p̂E,k
η̂n,k 0 0 . . . 0

∂
∂p̂N,k

ξ̂1,k
∂

∂p̂E,k
ξ̂1,k

∂
∂p̂D,k

ξ̂1,k 0 . . . 0

...
...

...
...

. . .
...

∂
∂p̂N,k

ξ̂n,k
∂

∂p̂E,k
ξ̂n,k

∂
∂p̂D,k

ξ̂n,k 0 . . . 0


2n×15

(3.37)

For η̂, the Jacobians along the north and east position states are represented below.

Hopt,p̂N,k
=

∂

∂p̂N,k

η̂1,k =
−(T n

E − p̂E,k)

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2
(3.38)

Hopt,p̂E,k
=

∂

∂p̂E,k

η̂1,k =
(T n

N − p̂N,k)

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2
(3.39)
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For ξ̂, the Jacobians along the north, east, and down position states are represented

below.

Hopt,p̂N,k
=

∂

∂p̂N,k

ξ̂1,k =
−(p̂N,k − T n

N)(T n
D − p̂D,k)√

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2 ((T n
E − p̂E,k)2 + (T n

N − p̂N,k)2 + (T n
D − p̂D,k)2)

(3.40)

Hopt,p̂E,k
=

∂

∂p̂E,k

ξ̂1,k =
−(p̂E,k − T n

E)(T n
D − p̂D,k)√

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2 ((T n
E − p̂E,k)2 + (T n

N − p̂N,k)2 + (T n
D − p̂D,k)2)

(3.41)

Hopt,p̂D,k
=

∂

∂p̂D,k

ξ̂1,k =
−
√

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2

(T n
E − p̂E,k)2 + (T n

N − p̂N,k)2 + (T n
D − p̂D,k)2

(3.42)

For this research effort, the standard deviation σopt for lunar feature angle mea-

surement noise vopt,k is set as the angular resolution ∆θq of features in an image

constrained by lens diffraction as discussed in Section 2.5. To design the camera de-

tector to the diffraction limit, an assumption was made based on a common optical

design that sampling should be equal to the diffraction limited spot size. With this

stipulation, the Airy disk diameter 2q1 can be assumed to equal the pixel size ∆` for

the diffraction limited system used in this research effort as shown in Equation 3.43

and Figure 3.8. This assumption places the angular resolution within ±1 pixel. To

obtain σopt, Equation 3.44 presents the relationship between the pixel size and the

focal length used to derive ∆θq.

2q1 ≈ ∆` (3.43)

∆θq ≈
∆`

2f
(3.44)
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Figure 3.8. Diffraction Limited Spot diameter assumed equal to Pixel Size.

Barometer Measurement Model.

The down position state is completely observed by a barometer which measures

the aircraft’s altitude as shown in Equations 3.45 and 3.46 [5]. For this research effort,

the barometer measurements are brought into the EKF every 60 seconds.

zbaro,k = Hbaro,kxk + vbaro,k (3.45)

Hbaro,k =

[
0 0 1 0 . . . 0

]
1×15

(3.46)

The barometer measurement noise vbaro,k is a white Gaussian process. The standard

deviation σbaro for the barometer measurement noise is set at ±5m. The measurement

covariance matrix Rbaro,k is represented below.

Rbaro,k = E
[
vbaro,kv

T
baro,k

]
15×15

(3.47)
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3.7 Feature Design and Implementation

To simulate features derived from the lunar surface, randomized azimuth and ele-

vation angles are first generated in vectors θfeat and ψfeat using the Equations 3.48 and

3.49 respectively. These equations represent a common practice in placing points at

random locations along a spherical surface based on the spherical coordinate system

equations. mfeat and nfeat are vectors containing random numbers with range between

0 and 1. The angles are then processed through the MATLAB R© function sph2cart

with the Moon’s radius to gain cartesian coordinate feature positions (T e
X, T

e
Y, T

e
Z)

in the ECEF frame. The cartesian coordinates are then translated to the Moon’s

position in orbit based upon the orbital parameters in Section 2.6 providing an ap-

proximation of lunar surface features. Figures 3.9-3.11 present 1000 simulated lunar

features as green x’s and the Moon as a red spheroid.

θfeat = mfeatπ (3.48)

ψfeat = sin−1(−1 + 2nfeat) (3.49)

Figure 3.9. ECEF Frame: Moon and 1000 Random Lunar Features.
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Figure 3.10. ECEF Frame: Y-Z Plane. Moon and 1000 Random Lunar Features.

Figure 3.11. ECEF Frame: X-Z Plane. Moon and 1000 Random Lunar Features.

3.8 EKF Implementation

This section provides further details about the system algorithm setup and EKF

implementation. To begin, orientation of the aircraft’s truth trajectory xk and the

INS trajectory xINS,k is needed in the context of traveling along the Earth’s surface.

For this reason, the algorithm requires a starting position in geodetic coordinates:

latitude, longitude, and altitude (L, λ, h). The initial geodetic coordinate incorpora-

tion into the Ce
n DCM helps to orient the fixed n-frame of the aircraft’s trajectory to
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the Earth’s surface. Outside of EKF error state estimation propagation, the initial

geodetic coordinate is solely used in the Ce
n DCM to orient the n-frame due to the

small aircraft trajectory modeled. The resulting posture, places the fixed n-frame’s N

and E axes as a plane tangent to the Earth’s surface resting atop the starting geodetic

coordinate where the D-axis points toward the Earth’s center.

An overall system representation for Lunar Vision Aided Navigation with Inertial

Navigation System is shown in Figure 3.12. The figure shows the INS trajectory

xINS,k is rotated from the n-frame into geodetic coordinates and input into the EKF

to estimate INS error states δx̂k and a trajectory estimate x̂k in the n-frame. The

simulated lunar features are in the e-frame to best represent their orientation to Earth.

The lunar features are randomized along the Moon’s near side surface facing Earth.

To perform the η̂ and ξ̂ angle calculations and the Jacobians in Equations 3.38-3.42

within the EKF, the features and the trajectory estimate need to both be within

the same frame. To accomplish this, the lunar features are rotated into the n-frame

based upon the initial geodetic coordinate. Once the EKF estimation is complete,

the estimated trajectory x̂k can be rotated into the e-frame to ECEF coordinates or

converted to geodetic coordinates to gain knowledge of the vehicle trajectory along

the surface of the Earth.
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Figure 3.12. Lunar Vision Aided Navigation with Inerital Navigation System [5].

It should be noted that based on the nature of the Jacobians described in Section

3.6, an angle obtained by a vehicle observing a feature at infinity within the same

reference frame will appear to be constant at 90◦. The lack of change in the observed

angle will cause the Jacobians to converge to zero resulting in an observability loss of

the vehicle’s position error states. In this research effort, however, the fixed n-frame

along the Earth’s surface and the lunar feature finite distances allows for observability

in the position states. The down position state is observed fully by a barometer.

Thus, INS drift error is corrected in all position states. The loss of position state

observability by a decrease in Jacobians based on feature distance will be presented

Chapter 4. Also in Chapter 4, a singularity in the spherical coordinate system where

this concept does not hold true will be shown as well.

3.9 Summary

Chapter 3 provided the research methodology to obtain the results in Chapter 4.

The truth model, error state motion model, measurement model, and lunar feature
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model were presented. The error state motion model validation was shown, and the

EKF implementation was discussed.
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IV. Results and Analysis of the Theoretical Limits of Lunar
Vision Aided Navigation with INS

4.1 Introduction

This chapter presents the results from the research methodology detailed in Chap-

ter 3. The purpose of this research was to simulate and analyze INS drift correction

by lunar feature angle measurements. Various scenarios were considered in order to

better understand the impact that lunar feature aided navigation would theoretically

have on INS drift correction. The affect of lunar feature aided navigation on different

INS grades is shown in Section 4.2. Measurement noise effects from camera specifi-

cations on INS drift correction by lunar feature angle measurements are presented in

Section 4.3. Feature quantity effects are shown in Section 4.4. Section 4.5 covers the

effect of lunar features at increasing distances and different lunar orbit geometries.

Section 4.6 presents the chapter summary.

It must be stated that for the scenarios in Chapter 4, lunar vision aided navigation

with INS was simulated under an idealized set of parameters where measurement noise

effects are only considered. Therefore, the results in Chapter 4 are not indicative of

actual performance by lunar vision aided navigation with INS but present analysis on

the trade spaces resulting from changes to INS grade, camera image array pixel sizes,

camera lens focal length, lunar feature quantity, and lunar feature distance and ge-

ometry. The many assumptions which allow the aforementioned model simplification

are detailed in Section 1.4.

For the following scenarios, unless stated otherwise, the parameters in Table 4.1

are set for the simulated trajectory runs. The default camera measurement noise

standard deviation σopt is set at 0.011mrads based on the angular resolution ∆θq of a

Prosilica GE1660C CCD camera with a 253mm focal length lens. A barometer aids
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the down position state with a measurement noise standard deviation σbaro set at

±5m.

Table 4.1. Default Case Trajectory Parameters

Samples Time Start Pos* (Lλh) INS Prop* Time # of Features Camera Update Baro Update
30 10min (0◦,0◦,0m) Tactical 1s 100 4s 60s

* Prop - Propagation, Pos - Position

Figures 4.1-4.4 present the default orientation of the Moon to the Earth in the

ECEF frame. The blue sphere represents the Earth and the dark red smaller sphere

represents the Moon. In the default orientation, the Moon is at its highest inclination

to the Earth’s equator at 28.58◦. The Moon lies at an offset above the X-axis. In

reference to the true trajectory in the n-frame along the Earth’s surface, the course

of the aircraft travels in a circle with radius 20km along the N-E plane for every

sample in the default case. The height of the aircraft varies based upon the FOGM

acceleration model detailed in Section 3.3.

Figure 4.1. ECEF Frame. Earth and Moon with fixed local level n-frame (Not to
Scale).
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Figure 4.2. ECEF Frame: X-Z Plane. Earth and Moon with fixed local level n-frame
(Not to Scale).

Figure 4.3. ECEF Frame: X-Y Plane. Earth and Moon with fixed local level n-frame
(Not to Scale).

Figure 4.4. ECEF Frame: Y-Z Plane. Earth and Moon with fixed local level n-frame
(Not to Scale).
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4.2 INS Grade Testing

This section presents INS drift correction aided by lunar feature angles against

varying grades of INS. All realizations were ran using the parameters in Table 4.1

with 100 features, and the camera measurement noise standard deviation was kept

at 0.011mrads. Figures 4.5-4.7 show significant decrease between the position state

error for a stand alone INS when compared to the position state errors from an INS

aided by lunar vision angle measurements. In addition, the position state errors show

significant decrease with each change in INS grade when comparing Figures 4.5b, 4.6b,

and 4.7b. For the Commercial Grade INS in Figure 4.5b, the north position state

error variance is at ±58.96m and the east position state error variance is at ±25.85m.

The down position state error variance is sharply high at ±77.62m even with the

barometer having full observability of the down position state. For the Navigation

Grade INS in Figure 4.7b, the error significantly decreases for the position states

with error variances at ±2.946m for the north position state, ±0.9805m for the east

position state, and ±2.328m for down position state.

(a) No Lunar Vision Aiding (b) Lunar Vision Aiding

Figure 4.5. Commercial Grade INS with 100 Features. Position State Error for the
n-frame North, East, Down States respectively.
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(a) No Lunar Vision Aiding (b) Lunar Vision Aiding

Figure 4.6. Tactical Grade INS with 100 Features. Position State Error for the n-frame
North, East, Down States respectively.

(a) No Lunar Vision Aiding (b) Lunar Vision Aiding

Figure 4.7. Navigation Grade INS with 100 Features. Position State Error for the
n-frame North, East, Down States respectively.

4.3 Camera Specifications Testing

The effect of camera measurement noise vopt,k on an EKF estimating INS errors

aided by lunar feature angle measurements can be predicted. A relationship exists

within an EKF whereby the measurement noise amount can cause the EKF to rely

more on the current error state estimate or rather on the correction to the current
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error state estimate brought about by the incorporated measurement zk as shown in

Section 2.4.

An EKF incorporating measurements with high noise will cause a low Kalman

gain. The low Kalman gain will decrease the amount of correction by the measure-

ments causing the EKF to rely more on the current error state estimate. For this

research effort, Figures 3.3-3.5 in Section 3.5 present INS error states without correc-

tion. For lower measurement noises, the error state estimates will be much closer to

the true error states relating to higher accuracy in estimation. Lower measurement

noises allow for a higher quality estimate correction and a Kalman gain which allows

for the full proportion of the near accurate correction to update the current state

estimate.

For this research effort, the standard deviation σopt of the camera measurement

noise that is added to the observed angle measurements is obtained from the angular

resolution ∆θq of a diffraction limited system which is a fixed camera mounted to an

aircraft body frame. It was assumed that the diameter of a diffraction limited spot

2q1 is set equal to the pixel size ∆` of the camera’s image array so as to constrain the

image uncertainty to ±1 pixels. Section 3.6 presented a relationship connecting pixel

size ∆` to the angular resolution ∆θq. Table 4.2 presents a sweep of pixel sizes and

the coinciding angular resolution to test INS drift correction by lunar feature-aided

navigation against. The focal length is set at 253mm. To place the pixel sizes into

Table 4.2. Measurement Noise vk

Measurement Noise Level ∆` (µm) vopt,k (mrads)
1 1000 2
2 100 0.2
3 10 0.02
4 1 0.002

perspective, camera image sensor pixel sizes were obtained from commercial camera
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specifications. For the SCI High Accuracy Star Tracker 2 image sensor, the pixel size

was 18µm. This is near the pixel size for the Prosilica GE1660C camera which was

5.5µm.

From the previous assertions, Figures 4.8-4.11 present the position state error in

the n-frame with corrections from the angle measurements. An accompanying single

run of an estimated trajectory tracking a true trajectory is presented as well in the

right subfigure within Figures 4.8-4.11. All of the trajectories shown are based upon

the parameters listed in Table 4.1.

With each decrease in pixel size and measurement noise, the position state error

decreases for the north and east position states. In Figure 4.8a, north position state

error variance is ±396m and east position state error variance is ±216.5m based

on a measurement noise of 2mrads and pixel size at 1000µm. In contrast, Figure

4.11a presents north position error variance at ±8.33m and ±1.54m for the east

position state for a measurement noise of 0.002mrads and pixel size 1µm. Based upon

this information, the results confirm the predicted increase in state error estimation

accuracy based upon decreasing pixel size within this system model.

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.8. Pixel Size: 1000µm and Measurement Noise: 2mrads.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.9. Pixel Size: 100µm and Measurement Noise: 0.2mrads.

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.10. Pixel Size: 10µm and Measurement Noise: 0.02mrads.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.11. Pixel Size: 1µm and Measurement Noise: 0.002mrads.

Commercial Camera Lenses.

For the below scenarios, the parameters from a commercial camera and various

lenses were obtained to observe their behavior in INS drift correction by lunar vision

aided navigation. The trajectory runs followed the parameters listed in Table 4.1.

The camera used in the simulations was a Prosilica GE1660C CCD Camera with a

pixel size listed in the maintenance guide as 5.5µm×5.5µm. From the relationship

established in Section 3.6 between lens focal length f and the angular measurement

noise standard deviation σopt, a pattern can be shown that as f increases the σopt

decreases. This results in a better trajectory estimation within this model. Table 4.3

presents the lens parameters for lenses that are compatible with the c-mount 2/3”

optical format of the Prosilica GE1660C CCD camera.

The image array is rectangular and has an associated rectangular field of view

(FOV) with width angle αw and height angle αh. Based on the field of view equations

in Section 2.5, the planar area of the observed world scene by the camera can be

calculated as shown in the last column listing the observed world scene width wscene
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and height hscene parameters. The first two lens FOV areas listed can completely

view the Moon’s planar projection within their width and height parameters. The

Moon’s planar projection in the world scene viewed by the camera appears as a

circle with diameter 3475km. The FOV area of the Cinetel III Telephoto Lens falls

short of completely viewing the planar projection of the Moon. However, the zoom

capabilities of the Cinetel III Telephoto Lens with focal length 1000mm allows for a

much closer view of the Moon’s features leading to a smaller measurement noise vopt,k

and a tighter estimate.

Table 4.3. Commercial Lens Parameters

Camera Lens Focal Length
(mm)

σopt f-number Lens Diameter
(mm)

αh(◦) αw(◦) FOV Area
(km)

Tamron 23FM50SP 50 0.055 f/1.4 35.7 7.6 10.06 67, 654.4×50,740.8
Fujinon 22x Telephoto Zoom Lens 253 0.011 f/1.6 158.12 1.5 2 13, 370.4×10,027.83
Cinetel III Telephoto Lens 1000 0.003 f/5.6 178.57 0.4 0.5 3,382.72×2,537.04

Figures 4.12-4.14 present the position state error based upon the Prosilica GE1660C

CCD Camera with the lenses listed in Table 4.3 and the associated measurement noise

σ listed in the respective figure captions. In Figure 4.12a the north position state er-

ror variance is at ±28.67m and the east position state error variance is at ±11.25m.

With the decrease in measurement noise and the increase in focal length to obtain a

closer view of the Moon’s features, Figure 4.14a shows the north position state error

variance decreasing to ±6.42m and the east position state error variance decreasing

to ±2.347m.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.12. Focal Length: 50mm and Measurement Noise σ: 0.055mrads.

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.13. Focal Length: 253mm and Measurement Noise σ: 0.011mrads.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.14. Focal Length: 1000mm and Measurement Noise σ: 0.003mrads.

4.4 Feature Quantity Testing

The following section explores the accuracy of the trajectory estimation predicated

on the amount of lunar features observed. Based upon the EKF algorithm, as a

batch angle measurement update increases in the number of angles measured, the

measurement model zk increases and allows for multiple angles to be used in creating

the estimate correction and provides multiple position state observabilities in the

measurement matrix Hk. The combination of the Kalman gain and the residual built

upon multiple measured angles provides an increasingly accurate correction to the

estimated error states resulting in a more accurate track of the true trajectory by the

estimated trajectory.

From Figures 4.15-4.22, a pattern can be seen in the increase in accuracy as the

amount of lunar features increases. For the single feature in Figure 4.15, it can be

viewed as the green x along the lower portion of the red sphere facing the ECEF Y-

axis. In Figure 4.16a, the north position state error variance at 1 feature is ±273.9m

and the east position state error variance is ±114m. The error variance significantly
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decreases to ±7.435m for the north position state error variance, and the east position

state error variance decreases to ±1.326m as shown in Figure 4.22a. The decrease

in the error variance for the position states confirms the previous prediction that the

increase in features improves the EKF error estimate. The trajectory track in Figure

4.22b shows what appears to be a loose track of the true trajectory when compared to

the trajectory estimation with less features in Figure 4.18b. However, the associated

position state error plots in Figure 4.22a for 1000 features confirms the substantial

decrease in position state error with the increase to 1000 features. The drift in Figure

4.22b can then be attributed to only the down position state which is observed by

a barometer which provides the same down position error correction for all of the

feature quantity testing scenarios.

Figure 4.15. ECEF Frame. Moon and 1 Random Feature.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.16. Feature Quantity: 1.

Figure 4.17. ECEF Frame: Moon and 10 Random Features.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.18. Feature Quantity: 10.

Figure 4.19. ECEF Frame. Moon and 100 Random Features.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.20. Feature Quantity: 100.

Figure 4.21. ECEF Frame. Moon and 1000 Random Features.
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.22. Feature Quantity: 1000.

4.5 Feature Distance and Geometry Testing

The following set of scenarios that were conducted are in reference to performing

INS drift correction aided by lunar features placed at various distances and lunar

geometries to show the effect upon the n-frame position state estimates. All trajectory

runs are based on parameters established in Table 4.1.

Feature Distance Testing.

In this research effort, an EKF incorporates lunar feature angle measurements as

a correction to INS errors. As discussed in Section 3.8, feature distances can effect

the amount of information the measurements provide about the states to the EKF

for error state correction. This is due to the fact that Jacobians based on change in

angle with respect to traveled distances are used to provide linear observability of the

position states. Measured angles of a feature at infinity within the same reference

frame all converge to 90◦. The differences between the measured angles of a feature

at infinity become indiscernible. The resulting calculated Jacobians converge to zero
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providing no observability of the position states in the measurement matrix Hopt,k and

no error state correction. Feature distances and orientation causing unobservability

of each position state distinctly can occur as well when features are placed straight

along an n-frame axis at a great distance. For features located at a far distance along

an n-frame axis, no change in angle occurs with respect to the distance traveled along

the said axis resulting in a lack of observability and correction along the particular

position state.

The following scenarios seek to show that though features at infinity cause unob-

servability, the features located at the Moon’s distance still provide usable Jacobian

values. Also, the effect of feature distances located along an n-frame axis causing

unobservability for the associated position state distinctly will be shown. For the

following simulations, the Sun’s distance is considered infinity for simulation. The

ECEF frame axes are denoted by X ,Y, Z and the fixed local level n-frame axes are

N, E, D as discussed in Section 2.3.

n-frame N-axis Distance Testing.

Figures 4.24-4.29 show the results of INS drift correction aided by lunar features

placed along the north axis as shown in Figure 4.23. The orientation of the features

in Figure 4.23 in no way represents the orientation of the Moon’s orbit around the

Earth. The orientation of the features along the ECEF Z-axis is set up to provide

insight into INS drift correction behavior aided by lunar features located along the

N-axis of the n-frame. Figure 4.24a confirms the assertion that the features directly

along a single axis will cause a decrease in observability of the position state along

that axis. The position state error variance in Figure 4.24a shows a much higher error

variance for the north position state than the east position state. This is due to the

lack of angular changes of the aircraft’s north position with respect to the features
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along the N-axis which causes a low observability of the north position state by the

Jacobian. The pattern is repeated in Figure 4.25a for the features being moved along

the positive ECEF Z-axis to the Sun’s distance. Also, at this distance, the north

position state error variance grows to the form of the uncorrected drift error variance

for the north position state error simulated in Section 3.5 for a Tactical Grade INS.

The east position state error also begins to diverge back to the original uncorrected

drift shown in Section 3.5 for a Tactical Grade INS as well.
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Figure 4.23. ECEF Frame. Features along n-frame N-axis and ECEF Z-axis (Not to
Scale).

79



(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.24. Features Moon Distance along N-axis and ECEF Z-axis.

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.25. Features at Sun Distance along N-axis and ECEF Z-axis.

The ensemble statistics for the azimuth angle Jacobians in Figures 4.26-4.27 also

show the decrease in observability by order of magnitude for the north position error

state with the increase in distance along the N-axis. For the elevation angle Jacobian

ensemble statistics in Figures 4.28-4.29, all three position error states loose observ-

ability by an order of magnitude with the change in distance to the Sun’s distance.
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(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.26a

Figure 4.26. Features at Moon Distance along N-axis and ECEF Z-axis.

(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.27a

Figure 4.27. Features at Sun Distance along N-axis and ECEF Z-axis.
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(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.28a

Figure 4.28. Features at Moon Distance along N-axis and ECEF Z-axis.

(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.29a

Figure 4.29. Features at Sun Distance along N-axis and ECEF Z-axis.

n-frame E-axis Distance Testing.

For the next two scenarios features were placed along the n-frame E-axis at the

Moon’s distance for the first scenario and then at the Sun’s distance for the second

scenario to observe the INS drift correction with lunar features directly along the east
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axis. Figure 4.30 shows the orientation of the features with respect to the n-frame

E-axis which coincides with the ECEF Y-axis for this set of scenarios.

Figure 4.30. ECEF Frame. Features along n-frame E-axis and ECEF Y-axis (Not to
Scale).

Figures 4.31a and 4.32a confirm the claim that the correction to INS errors by

lunar feature angular measurements will decrease at great distances. Both position

state error variances in Figure 4.32a are near the simulated uncorrected Tactical Grade

INS position state error variance presented in Section 3.5. Figure 4.31a also confirms

the relationship of the lack of position state observability with features at the lunar

distance along the E-axis causing a larger variance for the the east position state error

with an approximately 240m greater error variance compared to the north position

state error variance. The azimuth angle Jacobian ensemble statistics in Figures 4.33

and 4.34 confirm a decrease in observability at the greater distance of the features

along the E-axis with the drop in observability by an order of magnitude for the east

position state Jacobian. The elevation Jacobians in Figures 4.35-4.36 also show an

decrease by an order of magnitude for the three position state errors.
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(a) Position State Errors for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.31. Features at Moon Distance along E-axis and ECEF Y-axis.

(a) Position State Errors for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.32. Features at Sun Distance along E-axis and ECEF Y-axis.
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(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.33a

Figure 4.33. Features at Moon Distance along E-axis and ECEF Y-axis.

(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.34a

Figure 4.34. Features at Sun Distance along E-axis and ECEF Y-axis.
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(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.35a

Figure 4.35. Features at Moon Distance along E-axis and ECEF Y-axis.

(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.36a

Figure 4.36. Features at Sun Distance along E-axis and ECEF Y-axis.

n-frame D-axis Distance Testing.

For this set of scenarios, lunar features were placed along the D-axis at great

distances to observe the INS error correction under such circumstances. The location

of the lunar features along the ECEF X-axis for this set of scenarios coincides directly
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with the n-frame D-axis as the initial location of the aircraft’s trajectory is located

at 0◦lat 0◦lon and stays within a small range over its course as shown in Figure

4.37. This feature orientation with respect to the aircraft provides for a special case

in position state observabilities provided by the Jacobians due to the nature of the

spherical coordinate system angles. The azimuth angle Jacobians are solely calculated

for the north and east position states with observabilities along the planar surface of

the E-N plane independent of the down position state observability. The E-N plane is

perpendicular to the D-axis, essentially, still holding Jacobians with observability of

the north and east position states independent of the feature distances along the D-

axis. The elevation angle Jacobians are, however, tied to the position of the features

along the D-axis based upon the nature of the elevation angle holding observabilties

along all three position states.

Figure 4.37. ECEF Frame. Features along n-frame D-axis and ECEF X-axis (Not to
Scale).

Figures 4.38a and 4.39a present the results of the INS drift correction based upon

lunar features directly above the n-frame along the D-axis coinciding with the ECEF

X-axis. Both sets of error variance for the north and east position states stay within

±0.35m when the features are moved from the lunar distance above n-frame to the

Sun’s distance. The behavior is reiterated in the ensemble statistics of the Jacobians.
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The north and east position state’s azimuth angle Jacobians with features at lunar and

solar distances in Figures 4.40 and 4.41 respectively do not show a dramatic change

in observability with the change in distance along the D-axis. On the other hand, the

position state observabilities from the elevation angle Jacobians in Figures 4.42 and

4.43 do show a greater decrease by an order of magnitude for the all three position

states, but the most dramatic decrease is seen in the change for the observability of

the down position state by the elevation angle Jacobian.

(a) Position State Errors for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.38. Features at Moon Distance along D-axis and ECEF X-axis.
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(a) Position State Errors for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.39. Features at Sun Distance along D-axis and ECEF X-axis.

(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.40a

Figure 4.40. Features at Moon Distance along D-axis and ECEF X-axis.
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(a) Azimuth Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.41a

Figure 4.41. Features at Sun Distance along D-axis and ECEF X-axis.

(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.42a

Figure 4.42. Features at Moon Distance along D-axis and ECEF X-axis.
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(a) Elevation Angle Jacobians for the n-frame

North, East, Down axes respectively

(b) Scaled View of Figure 4.43a

Figure 4.43. Features at Sun Distance along D-axis and ECEF X-axis.

Lunar Orbital Geometry Testing.

The following set of scenarios presents the results of performing INS drift cor-

rection aided by lunar feature angle measurements under different lunar geometries

obtained from lunar orbit characteristics detailed in Table 2.1. The previous section

showed that features located at great distances along an n-frame axis will cause mini-

mal INS drift correction for the associated position state error. With this in mind, the

error state estimation and correction performance of the EKF under different lunar

orientations can be predicted. As mentioned in Section 2.6, the two main categories

of lunar celestial geometry that will be looked at are:

1. Lunar feature location at inclination with respect to the Earth’s equator plane.

2. Lunar feature location along the lunar orbit path with respect to the Earth’s

center and Prime Meridian.
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Inclination to Equator.

Different lunar inclinations to the equator are shown in Figure 4.44 providing the

frame for the following scenarios:

1. Lunar features at the highest inclination to equator.

2. Lunar features above the equator and at the zenith of the trajectory.

3. Lunar features at the lowest inclination to equator.

Figure 4.44. Lunar Inclinations to Equator.

For the lunar features at the highest inclination to the equator, Figures 4.45-

4.47 show the orientation of the simulated lunar features with respect to the ECEF

frame and the n-frame. Figure 4.48a shows a greater error variance in the north

position state at ±12.13m along with lower variance for the east position state error

at ±3.981m.
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Figure 4.45. ECEF Frame. Highest Lunar Inclination to Equator (Not to Scale).

Figure 4.46. ECEF Frame: X-Z Plane. Highest Lunar Inclination to Equator (Not to
Scale).
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Figure 4.47. ECEF Frame: Y-Z Plane. Highest Lunar Inclination to Equator (Not to
Scale).

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.48. Features at Highest Lunar Inclination to Equator.
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Figures 4.49 and 4.50 present the scenario where lunar features are located straight

above the equator and the trajectory zenith. The position state errors are shown in

Figure 4.51a. Both the east and north position error states are within ±0.33m. The

geometry of the angles straight above the trajectory provide for excellent observability

of the north and east position states which lie along the N-E plane with the features

lying directly along the D-axis above. This follows the special case of the spherical co-

ordinate system angle calculations mentioned in the previous n-frame D-axis distance

testing subsection.

Figure 4.49. ECEF Frame: Inclination to Equator at 0◦ (Not to Scale).

Figure 4.50. ECEF Frame: X-Z Plane. Inclination to Equator at 0◦ (Not to Scale).
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.51. Features above Equator and at Trajectory Zenith.

The next scenario involves the behavior of the position state estimates aided by

lunar feature measurements located at the lowest inclination to the equator repre-

sented by Figure 4.52. The results can be seen in Figures 4.53a. It is interesting

to note that the north and east position state error variance for lunar features at

the highest inclination to the equator in Figure 4.48a follows a similar error variance

pattern for the position state errors for the lunar features at the lowest inclination to

the equator. This can be explained by both scenario sets having features located at

+28.58◦ or −28.58◦along the same plane used in both scenarios allowing for similar

Jacobians to be calculated for the position states.
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Figure 4.52. ECEF Frame: Lowest Inclination to Equator (Not to Scale).

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.53. Features at Lowest Lunar Inclination to Equator.

Lunar Feature Position Along the Orbit with respect to the Prime

Meridian.

The following scenarios are constructed to understand the behavior of the INS drift

correction aided by lunar features that are located at positions along the lunar orbit

with respect to the Earth’s center and Prime Meridian as represented in Figure 4.54.

The first scenario is represented in Figure 4.55 where the location of the trajectory is
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at 0◦lat 0◦lon and the lunar features lie along the Moon’s orbit at 90◦W of the Prime

Meridian still maintaining the default high inclination to the equator discussed in

Section 4.1. Based upon the behavior of the EKF and the measured angles, the

estimated east position state will have a higher error variance than the north position

state from what was discovered in the feature distance testing with regards to angle

observability of position states.

Figure 4.54. Lunar feature orientations to Earth longitude.
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Figure 4.55. ECEF Frame: Lunar features at 90◦W (Not to Scale).

The results from the scenario can be viewed in Figures 4.56a. As expected, the

error variance for the east position state is much larger at ±228.2m than the north

position state at ±123.7m.

(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.56. Lunar features at 90◦W of the Prime Meridian and Highest Inclination to
Equator.
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The next scenario involved the lunar features being placed along the Moon’s orbit

at 45◦W of the Prime Meridian and at the highest inclination to the equator 28.58◦ as

shown in Figure 4.57. The results can be viewed in Figures 4.58a. The results show

a decrease in error variance for the north and east position states from the results

in the previous scenario with lunar features located at 90◦W. Figure 4.58a shows the

north position state now has ±13.97m and the east position state has ±16.71m error

variance.

Figure 4.57. ECEF Frame: Lunar features at 45◦W and Highest Inclination to Equator
(Not to Scale).
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(a) Position State Error for the n-frame North,

East, Down axes respectively

(b) Estimated vs. True Trajectory

Figure 4.58. Lunar features at 45◦W of the Prime Meridian and Highest Inclination to
Equator.

The scenario for the features above the Prime Meridian and at the highest in-

clination to the equator holds the same orientation for the trajectory and features

represented in Figures 4.45-4.47. With the features at this location, the error variance

for the north position state decreased to ±12.13m, and the east position state error

variance decreased to ±3.981m as shown in Figure 4.48a.

4.6 Summary

Chapter 4 presented the results of the research methodology defined in Chapter

3. The performance of an EKF to estimate the error of an INS with the aiding

of lunar features was investigated under various scenarios. Section 4.1 laid out the

default trajectory parameters and the default orientation between the lunar features,

aircraft trajectory, and Earth in the ECEF frame and n-frame. Section 4.2 showed

the effect of aiding by lunar feature angle measurements on different INS grades.

Section 4.3 tested INS drift correction aided by lunar feature angle measurements

under different camera specifications. Section 4.4 looked at INS drift correction aided
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by lunar features of different quantities. The effects of lunar feature distance and

geometry on lunar vision aided navigation with INS was explored in Section 4.5.

Section 4.6 provided a summary for the chapter.
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V. Conclusions

5.1 Introduction

This research effort presented the theoretical limits of a non-GPS precision navi-

gation method consisting of an INS aided by lunar feature angle measurements where

only measurement noise effects were considered. The following sections summarize

the research methods and results of the scenarios from Chapters 3 and 4 respectively

and conclude with suggested future work.

5.2 Conclusions

The purpose of this research effort was to establish the feasibility of a precision

navigation method by which INS drift error could be corrected through the use of

measured lunar feature angles. To accomplish this task, an EKF algorithm was imple-

mented to process an INS trajectory and estimate the INS error states. Corrections

to the INS error states were made during the EKF update stage with lunar feature

angle measurements. Through the use of Jacobians, the lunar feature angle mea-

surements provided position state observability based on the change in the measured

lunar feature angles with respect to the change in distance along the position states.

A barometer was simulated to aid the down position error state with an update rate

of 60 seconds. Four total categories of scenarios were accomplished to observe the

behavior of the INS drift corrections under different lunar feature conditions.

The first scenario set showed marked improvement in the navigation solution

error at 1σ for an INS aided by lunar feature angle measurements compared to a

stand alone INS. Also, the scenario set showed that the increase in INS grade quality

led to improved position state estimation. Table 5.1 presents the position state error

results for the first scenario set. The use of Commercial Grade INS in the EKF with
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100 lunar feature angle measurements brought about position state error variance of

±58.96m for the north position state and ±25.85m for the east position state. When

using the Navigation Grade INS, the position state error decreased significantly to

±2.946m for the north position state error variance and ±0.9805 for the east position

state error variance.

Table 5.1. Feasibility Table for Lunar-Aided Navigation with respect to INS grade.
Navigation Solution Error at 1σ listed in the right three columns were collected at
10min. Parameters are with respect to a trajectory traveled in a circle with a radius
20km radius with starting location at 0◦lat 0◦lon.

INS Camera Noise (mrads) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

Commercial

100

58.96 25.85 77.62

Tactical 0.011 253 384,400 Highest Inclination to Equator 13.5 4.914 16.43

Navigation 2.946 0.9805 2.328

The second set of scenarios looked at measurement noise effects from camera

specifications upon INS drift corrections by lunar feature angle measurements. A

sweep of the measurement noise vopt,k based on different camera image sensor pixel

sizes ∆` was conducted. As shown in Table 5.2, at the largest pixel size 1000µm

which equated to a measurement noise of 2mrads, the error variance for the north

position state was ±396m and ±216.5m for the east position state. Decreasing the

pixel size to 1µm and the associated noise to 0.002mrads caused the INS error solution

to improve to an error variance of ±8.33m for the north position state and ±1.54m

for the east position state.

Table 5.2. Feasibility Table for Lunar-Aided Navigation with INS with respect to
camera image sensor pixel size. Navigation Solution Error at 1σ listed in the right
three columns were collected at 10min. Parameters are with respect to a trajectory
traveled in a circle with a radius 20km radius with starting location at 0◦lat 0◦lon.

INS Pixel Size (µm) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

Tactical

1000

253 100 384,400 Highest Inclination to Equator

396 216.5 13.18

100 54.04 31 12.53

10 16.97 6.473 12.68

1 8.33 1.54 14.43
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Parameters from a commercial camera were obtained to see the effects of different

lens focal lengths on the measurement noise and position state error corrected by

lunar feature angle measurements. Overall, the results in Table 5.3 pointed to the

increase in lens focal length decreasing the position state error and increasing the

performance of the EKF in estimating the true trajectory.

Table 5.3. Feasibility Table for Lunar-Aided Navigation with INS with respect to Lens
Focal Length. Navigation Solution Error at 1σ listed in the right three columns were
collected at 10min. Parameters are with respect to a trajectory traveled in a circle
with a radius 20km radius with starting location at 0◦lat 0◦lon.

INS Camera Noise (mrads) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

Tactical

0.055 50

100 384,400 Highest Inclination to Equator

28.67 11.25 10.55

0.011 253 7.62 4.805 11.36

0.003 1000 6.42 2.347 9.88

The third scenario set showed that an increase in the lunar feature quantity de-

creased position state error resulting in a stronger trajectory estimate. The results of

the third scenario set are presented in Table 5.4. At one measured lunar feature, the

error variance was at ±273.9m for the north position state and ±114m for the east

position state. At 1000 features, the INS solution was corrected to an error variance

of ±7.435m for the north position state and ±1.326m for the east position state.

Table 5.4. Feasibility Table for Lunar-Aided Navigation with INS with respect to
Feature Quantity. Navigation Solution Error at 1σ listed in the right three columns
were collected at 10min. Parameters are with respect to a trajectory traveled in a
circle with a radius 20km radius with starting location at 0◦lat 0◦lon.

INS Camera Noise (mrads) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

Tactical 0.011 253

1

384,400 Highest Inclination to Equator

273.9 114 14.56

10 33.09 26.61 15.69

100 13.5 4.914 16.43

1000 7.435 1.326 13.31

The next set of scenarios encompassed the effects of feature distance and different

lunar orbit geometries on INS drift correction. In Section 4.5, the feature distance
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scenario set showed that features at distances approaching infinity will cause a lack of

observabilty of the position states resulting in an increased position state error. Also,

the feature distance set of scenarios in Section 4.5 confirmed the assertion that a lack

of observability will occur for a distinct position state when features lie at far distances

along the respective position axis. However, for the increased feature distance along

the n-frame D-axis at the trajectory’s zenith, minimal effect occurred to the position

state errors. Also, at this orientation, the north and east position state error variances

were both shown to be extremely small ±0.35m. This was due in part to the azimuth

Jacobians providing observabilities of the north and east position states independent

of the down position state. The error results for the distance scenarios are not listed

in a table as the feature locations are not set at realistic orbit parameters. The error

results from the distance scenarios can be found in Section 4.5.

For the scenario set dealing with INS drift correction based on lunar features

at different orbital geometries, features were placed at different inclinations to the

equator and at different locations along the lunar orbit with the respect to the Prime

Meridian. The lunar geometries are based on orbital parameters listed in Table 2.1.

During the changes in feature locations at different lunar geometries, the location of

the true trajectory maintained a circular path with a 20 km radius holding a starting

position at 0◦lat 0◦lon. Table 5.5 shows the position state error results for the lunar

surface features placed at different lunar inclinations with respect to the Earth’s

equator. The position state error for the north and east position states were shown

to be minimally changed when the inclination of the feature locations at 28.58◦ was

mirrored and the features were placed on the Moon’s orbit at the lowest inclination

to the equator. This is due to the similar change in angles occurring at both feature

locations causing similar Jacobians which provide the observability of the states to

aid in error state estimation correction.
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Table 5.5. Feasibility Table for Lunar-Aided Navigation with INS with respect to lunar
surface features placed at different Lunar Inclinations to Earth’s equator. Navigation
Solution Error at 1σ listed in the right three columns were collected at 10min. Param-
eters are with respect to a trajectory traveled in a circle with a radius 20km radius
with starting location at 0◦lat 0◦lon.

INS Camera Noise (mrads) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

Highest Inclination to Equator 12.13 3.981 11.88

Tactical 0.011 253 100 384,400 At Zenith & Over Equator 0.322 0.3275 14.64

Lowest Inclination to Equator 8.104 4.098 11.4

With features placed at different locations along the lunar orbit with respect to

the Prime Meridian and maintaining the highest inclination to the equator at 28.58◦,

the INS error correction was shown in Table 5.6 to improve as the features approached

the zenith of the trajectory. With the lunar features located at 90◦W of the Prime

Meridian, the north position state error variance was ±123.7m and the east position

state error variance was ±228.2m. With the change of the feature locations to 45◦W

of the Prime Meridian, the north and east position state error variances decreased to

±13.97m and ±16.71m respectively. The decrease in error continued as the feature

locations were moved to the lunar orbit position lying above the Prime Meridian

with an inclination of 28.58◦ to the equator. The north position error state variance

decreased to ±12.13m and the east position state variance decreased to ±3.981m.

Table 5.6. Feasibility Table for Lunar-Aided Navigation with INS with respect to
lunar surface features placed along different lunar orbit positions and at the highest
inclination to the Equator’s equator. Navigation Solution Error at 1σ listed in the right
three columns were collected at 10min. Parameters are with respect to a trajectory
traveled in a circle with a radius 20km radius with starting location at 0◦lat 0◦lon.

INS Camera Noise (mrads) Focal Length (mm) # of features Distance (km) Lunar Geometry
Error Variance (m)

N E D

90◦W of Prime Meridian 123.7 228.2 6.02

Tactical 0.011 253 100 384,400 45◦W of Prime Meridian 13.97 16.71 11.37

Over Prime Meridian 12.13 3.981 11.88

In conclusion, this research effort presented the theoretical limits of a viable non-

GPS precision navigation method able to operate when GPS is unavailable. The
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method is based on lunar feature angle measurements aiding an INS. Although mea-

surement noise was only considered to effect the model, the results in Chapter 4

showed that INS drift correction provided by lunar feature angle measurements can

theoretically greatly improve a navigation solution compared to a stand-alone INS.

5.3 Future Work

With the conclusion of this research effort, below are areas that are worth exploring

in continuing to pursue lunar vision-aided navigation:

1. Conduct INS drift correction with lunar feature angle measurements under re-

alistic noise parameters considering error in feature extraction and matching

techniques, and the error for a camera’s alignment to the local navigation frame.

2. Observe the simulated INS drift correction aided by feature angles extracted

from lunar feature images. Capture real world lunar images with a camera to

understand the relationship between camera resolution and the observed lunar

images.

3. Implement a feature detection and extraction algorithm such as SIFT or SURF

on lunar images to find out which lunar surface characteristics (seas, craters,

etc.) present the most robust source of features to use for angle measurements.

Investigate feature detection and extraction performance under different visi-

bility scenarios such as moon phases, occlusion, librations, etc.
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