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Abstract

This work examines the scattered fields produced when a transient wave is reflected

from an infinite perfect electric conductor (PEC) ground plane with multiple embedded

cavities. Incident and reflected waves will be decomposed into transverse magnetic to

the z direction (TMz) and transverse electric to the z direction (TEz) polarizations, with

primary focus given to the TMz. Cavities may be unfilled, partially filled, or fully filled

with non-magnetic dielectric material and no assumptions are made regarding similarity,

regularity, or periodicity. The Newmark method is used to discretize time and a variational

formulation is presented for each time step. The principle outcome is to show that the

variational formulation of the scalar problem is well posed.

Additionally, the variational formulation is applied in a stable numerical model using

the finite element-boundary integral (FE-BI) method. Interior fields are approximated using

the finite element method (FEM) for each time step, then the boundary integral is applied

using the appropriate Green’s function to approximate exterior scattered fields. The exterior

fields for one time step provide the boundary conditions for the interior problem at the next

time step. In this way, the numerical model marches through time.

Various numerical experiments are run to examine the effect of coupling on aperture

and external fields. Of particular interest are the differences between single-cavity and

multiple-cavity solutions.
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TIME DOMAIN ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM

MULTIPLE CAVITIES EMBEDDED IN A GROUND PLANE

I. Background

In today’s digital world, electromagnetic (EM) waves are omnipresent, surrounding us

every day in every place on earth. Analysis of the patterns present in these waves

holds the promise of a vast quantity of potential information about position, size, shape,

composition, and motion of objects in our environment. The challenge presented by this

ocean of data is in how to filter, collect, process, and exploit the knowledge available to us

in these waves. As a military organization, the United States Air Force (USAF) is in the

business of leveraging advantages in knowledge and technology to the ends of securing our

nation’s domestic and foreign interests. While we attempt to know increasingly more about

our adversaries actions, we face the challenge of preventing others from gaining insight into

our military operations. Thus, in order to gain and maintain the upper hand, the U.S. must

continue to improve both detection and anti-detection technologies. Applications for EM

wave scattering models support this goal by providing relatively cost-effective ways to test

proposed designs prior to prototype production for expected scattering profiles and radar

cross section (RCS).

1.1 A Brief History

The study of electromagnetic phenomena dates back over many centuries to the

discovery and description of the compass over two millenia ago. The earliest documented

description of magnetism as such may have been by Pierre de Maricourt in 1269 [11].

Static electricity and attractive forces had also been observed long before the term electric

1



was coined by William Gilbert in the 17th century [11]. Properties of electric and

magnetic forces and fields were researched extensively in the 18th and 19th centuries

by heavyweights like Henry, Poisson, Coulomb, Gauss, Ampère, Faraday, and Maxwell,

leading to the mathematical understanding of electromagnetics still employed today. More

recently, in World War II, air forces found applications in radar (originally an acronym

for RAdio Detection And Ranging) for air defense purposes. Proliferation of radar

technologies sparked an electronic arms race where better sensors led to more reliable

air defense systems, prompting development of electronic countermeasures like avoidance

methods, jammers, anti-radiation missiles, and stealth - or low observable - technologies.

In order to stay one step ahead of competitors, continued research into the strengths

and weaknesses of low-observable technology as well as properties of EM radiation and

scattering is required.

Presently, RCS analysis is common when considering new aircraft acquisitions and

possible modifications. Unfortunately, full scattering analysis of large, complex structures

continues to be computationally challenging. Most real-world applications require high-

powered computing (HPC) with parallel processing to produce accurate models. To this

end, much recent research into computational electromagnetics (CEM) has focused on

reducing the computational complexity of scattering problems.

The study of scattering from cavities is very useful in this context because engine

inlets and other cavity-like structures on aircraft “have a very significant impact on the

overall signature of the airplane structure” [3]. Major scattering sources can be separated

into the following categories: reentrant structures, specular scattering, traveling wave

echoes, edge and vertex diffraction, creeping waves, interations, and surface discontinuties

[24], of which the greatest contributors are reentrant structures and specular scattering.

As RCS reduction methods are growing in sophistication, understanding lesser scattering

sources, such as edge diffraction, interactions, and discontinuities, becomes of greater
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importance. A few examples of necessary aircraft features that create gaps or cavities

are control surfaces, access panels, ordnance bay doors, engine inlets, exhaust nozzles,

etc. [34]. Additionally, the electromagnetic environment has become more complex, and

engineers must now consider a wider range of frequencies than in the past. A structure

which may respond like a gap or crack at one frequency [33], may function like a reentrent

structure at a much higher frequency. Transient analysis of scattering is useful in this case

because it generates a wide-band solution and may capture potential non-linear behavior

and interactions not visible in time-harmonic solutions.

A survey of recent work, specifically related to the cavity scattering problem is given

in Chapter 2.

1.2 General Problem Statement

Figure 1.1: Two cavity environment
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This work examines the scattered fields produced when a transient wave is reflected

from an infinite PEC ground plane with multiple embedded cavities. For ease of

orientation, the planar surface is refered to as the ground plane, and the axes will be oriented

such that the PEC lies in the xz-plane. Incident and reflected waves are decomposed into

TMz and TEz polarizations, with primary consideration given to the TMz case for numerical

implementation. Cavities may be unfilled, partially filled, or fully filled with non-magnetic

dielectric material. Additionally, no symmetry or similarity among cavity geometries is

assumed.

Consider an infinite PEC ground plane with n embedded two-dimensional cavities. In

three dimensions, these cavities are z-invariant infinite grooves, or channels. Orientation

of the fields is TMz, indicating that wave propagation and the magnetic field are fully

described in the xy-plane, and the electric field is fully z-directed, but described as a

function of (x, y). The region above the ground plane is considered free space R2
+ =

{x, y ∈ R2 : y ≥ 0} with constant material parameters ε0, µ0 describing the permittivity

and permeability of free space.

The cavities themselves are denoted by Ω j, j = 1, 2, ..., k. Within each cavity,

there may be a non-magnetic, homogeneous, dielectric filler, with parameters µ0, ε j with

ε j ∈ C,Re{ε j} ≥ δ > 0, Im{ε j} ≥ 0. Finally, the walls of the cavity are considered PEC as

well. Figure 1.1 illustrates an example domain for k = 2.

Through the development and analysis of the multiple cavity scattering problem, the

primary aim of this research is to establish a variational formulation for the weak solution

and prove that said variational formulation is well-posed. The secondary aim of this work

is to demonstrate that the proposed solution method may be numerically implemented in

a stable manner using FEM. The final goal is to establish methods for quantifying the

influence of coupling between additional cavity scatterers on a solution.
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This research contributes to the growing body of work in the field by providing a

framework for numerically modeling the total transient scattered field produced by multiple

cavities using a coupled boundary condition at the aperture of each cavity and proving that

a unique solution to this problem exists for each discrete step in time.

This document is laid out as follows. Chapter two is a summary of related work.

Chapter three contains the analysis of the discretized multiple cavity problem, including

Green’s function derivation, variational formulation, and proof that the variational

formulation is well-posed. Chapter four describes the numerical methods for implementing

the FE-BI. Chapter five demonstrates results from computational experiments with two and

three cavities. Finally, chapter six discusses conclusions and directions for future research.

1.3 Electromagnetics Fundamentals

In this section, we present for reference Maxwell’s equations, requirements for

electromagnetic fields at boundaries, as well as common function spaces and theorems

that are background information for problem development.

1.3.1 Maxwell’s Equations.

The building blocks of modern EM research regarding transmission and scattering

are the differential (curl) equations formalized by James Clerk Maxwell and based on the

works of Gauss, Ampere, and Faraday [4].

∇ × ~E = −
∂~B
∂t

(1.1)

∇ × ~H = ~J +
∂~D
∂t

(1.2)

In source-free linear, homogeneous, isotropic media, these equations simplify to

∇ × ~E = −µ
∂ ~H
∂t
, and ∇ × ~H = ε

∂~E
∂t
. (1.3)
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Table 1.1: Definition of Symbols from Maxwell’s Equations

Symbol Description

∇× Curl operator

~E Electric field intensity (volts/meter)

~B Magnetic flux density (webers/meter)

~H Magnetic field intensity (amperes/meter)

~J Electric current density (amperes/square meter)

~D Electric flux density (coulombs/square meter)

µ Magnetic permeability (henries/meter)

ε Electric permittivity (farads/meter)

t Time

The electric and magnetic fields, ~E and ~H may be represented by their scalar

components, Ex, Ey, Ez, Hx, Hy, and Hz such that

~E = x̂Ex + ŷEy + ẑEz, ~H = x̂Hx + ŷHy + ẑHz. (1.4)

Let Ex, Ey, Ez, Hx, Hy, and Hz all be twice differentiable continuous functions that map

from R3 × R+ into [0,∞). Substituting (1.4) into (1.3) gives

∇ × (∇ × ~E) = ∇ ×

−µ∂ ~H
∂t


= −µ

∂(∇ × ~H)
∂t

= −µ
∂(ε∂~E

∂t )
∂t

= −µε
∂2 ~E
∂t2 .

For the magnetic field equations, applying the same analysis produces the equation

∇ × (∇ × ~H) = −εµ
∂2 ~H
∂t2 .
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In the case of TMz polarization, the electric field is wholly described in its Ez component

as a function of x and y. Setting Ex = Ey = 0, and any partial derivatives with respect to z

equal to zero, the equations above simplify to

∇ × (∇ × ~E) = −
∂2Ez

∂x2 −
∂2Ez

∂y2 = −µε
∂2Ez

∂t2 . (1.5)

In the case of TEz polarization, the magnetic field is wholly described in its Hz component

as a function of x and y. Letting Hx = Hy = 0, and any partial derivatives with respect to z

equal zero, the equations for the magnetic field simplify to

∇ × (∇ × ~H) = −
∂2Hz

∂x2 −
∂2Hz

∂y2 = −εµ
∂2Hz

∂t2 . (1.6)

1.3.2 Boundary Conditions.

In the absence of external electric or magnetic sources, fields must satisfy the

following four conditions [23] along an interface:

n̂ × (~E1 − ~E2) = 0 (1.7)

n̂ × ( ~H1 − ~H2) = 0 (1.8)

n̂ · (~D1 − ~D2) = 0 (1.9)

n̂ · (~B1 − ~B2) = 0 (1.10)

n̂ is the normal vector to the interface pointing into region 1. In simple media, ~D = ε~E and

~B = µ ~H, which allows equations (1.9, 1.10) to be restated as

n̂ · (ε1 ~E1 − ε2 ~E2) = 0

n̂ · (µ1 ~H1 − µ2 ~H2) = 0.

PEC surfaces are idealized materials which contain no internal fields. Consequently,

equation (1.7) reduces to

n̂ × (~E) = 0.

This is to say that tangential electric fields are zero on the surface of a PEC.
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1.3.3 Function Spaces.

Maxwell’s equations in differential form, as introduced in section 1.3, are only valid

when “the field vectors are single-valued, bounded, continuous functions of position and

time and exhibit continuous derivatives.” [4] However, at interfaces with discrete changes

in material parameters, discontinuities may exist. Relaxing the requirements on continuity

of the derivatives in order to find a weak solution, the function space for our solutions

will be constrained to those which are square integrable and which have square integrable

derivatives. Due to the non-zero boundary condition and potential discontinuities at

interfaces, the Sobolev space W1,2, or H1, will be used.

H1(Ω) = {u ∈ L2(Ω) : ‖∇u‖2L2 + ‖u‖2L2 < ∞}.

The following definition will be used for norms of Sobolev spaces adapted from [35]:

For functions in H1(Ω) when Ω ⊂ R2,

‖u‖H1(Ω) =

(∫
Ω

u2 dr +

∫
Ω

∇u · ∇u dr
)1/2

.

For functions in H1/2(Γ) where Γ ⊆ ∂Ω,

‖g‖H1/2(Γ) =

(∫
Γ

g(x)2 dx + |g|21/2

)1/2

,

|g|21/2 =

∫
Γ

∫
Γ

|g(x) − g(y)|2

|x − y|2
dxdy.

As a result, g ∈ H1/2 implies piecewise differentiability of g on the contour Γ.

Additionally, we define H−1/2(Γ) as the dual space to H1/2(Γ) such that for f ∈ H1/2(Γ)

and g ∈ H−1/2(Γ), the inner product 〈 f , g〉Γ is a bounded linear functional. In other words,∫
Γ

f (r)g(r)dr ∈ R < ∞.

We define the space Hm(Ω) required for the multiple cavity problem, which allows for

a coupled interior function defined over a finite number disjoint domains. Let Ω be a finite
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collection of disjoint domains Ωi, i = 1, 2, ...k defined by

Ω =

k⋃
i=1

Ωi, Ωi ∩Ω j =


∅ i , j

Ωi i = j
i = 1, 2, ..., k, j = 1, 2, ..., k.

Then the multiple-cavity function space is defined as

Hm(Ω) = Hm(Ω1) + Hm(Ω2) + ... + Hm(Ωk),

by which we mean given ,Ω =

k⋃
i=1

Ωi, for any f ∈ Hm(Ω), there exist k unique functions

fi, i = 1, 2, ..., k, such that

f (~r) = fi(~r), for all ~r ∈ Ωi,

and each component function, fi, there exists a function h ∈ Hm(Ωi) such that fi can be

written as

fi =


h in Ωi,

0 in Ω\Ωi.

Thus, we write for f ∈ Hm(Ω),

f =

k∑
i=1

fi.

Additionally, we define some useful notation for functions in these spaces. We define

integration over Ω by ∫
Ω

f (~r) d~r =

k∑
i=1

∫
Ωi

fi(~r) d~r, i = 1, 2, ..., k, (1.11)

and multiplication of two functions in Hm(Ω) by

f g =

k∑
i=1

figi. (1.12)

The norm of functions in these spaces is defined as

‖ · ‖2Hm(Ω) =

k∑
i=1

‖ · ‖2Hm(Ωi).

The spaces presented in this section are necessary for the analysis conducted in Section 3.7

and are introduced now as a background for the problem statement.
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1.3.4 Useful Theorems.

In this section, some common theorems are presented to provide background for the

problem statement and development. In section 3.7, these important results will be used to

prove the well-posedness of the multiple-cavity variational formulation.

The Trace theorem, as presented in [35] states that for u ∈ W s,p(Ω), with 1 < p < ∞,

g : Γ → R is the trace of u on boundary set Γ defined by Γ ⊆ ∂Ω if and only if

g ∈ W s−1/p,p(Γ). And there exists a bounded linear operator Ltr, such that g = Ltru = u|∂Ω,

and

‖u‖1−1/p,p,Γ ≤ ‖u‖1−1/p,p,∂Ω ≤ C‖u‖1,p,Ω.

The Poincaré inequality is useful in demonstrating an operator is coercive. For

u ∈ Hk
0(Ω) and differential operator, Dα of order α, Poincaré’s inequality, as presented

in [32], states:

there exists a constant c ∈ (0,∞) such that

‖u‖22 ≤ c
∑
|α|=k

‖Dαu‖22, ∀u ∈ Hk
0(Ω).

When working with inner products and norms, one will commonly refer to the

Cauchy-Schwarz inequality, which is defined in [18] as

‖α + β‖ ≤ ‖α‖ + ‖β‖

The proof that a variational formulation is well posed often relies on the Lax-Milgram

theorem, which, as presented in [32], states that if B is a bilinear mapping of two elements

x and y each members of a Hilbert space, H, i.e. B : H × H → R, then as long as

∃ c1, c2 ∈ R, c1, c2 < ∞ such that

|B(x, y)| ≤ c1‖x‖H‖y‖H ∀x, y ∈ H,

B(x, x) ≥ c2‖x‖2H ∀x ∈ H,
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then for every f , a functional of x in the conjugate space H∗, there exists a unique y ∈ H

such that

B(x, y) = f (x) ∀x ∈ H.
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II. Related Work

Recent work on cavities and cavity-backed apertures have focused on the FE-BI

method [23] as an efficient way to couple the interior cavity region, solved

numerically with the finite element method, and the exterior region which is solved

analytically with the half-space Green’s function. Transient scattering from a single cavity

in three dimensions was analyzed in [27], and numerical modeling of the two-dimensional

problem was described in [36], utilizing the Newmark method for time-stepping. The

Newmark method discretizes the time-dependent equations into forced time-independent

Helmholtz equations solved at each time step. Numerical handling of the multiple-cavity

time-harmonic problem was well explained in [25] along with proof of well-posedness of

the problem. The finite element method is utilized due to its flexibility in conforming to

different geometries as well as the ease of imposing the boundary conditions.

2.1 Cavity Scatterers

In most cases, cavity problems are set into an infinite ground plane, where cavity edges

are flush to the ground. Thus, half-plane Green’s functions and image theory are applied to

simplify the exterior problem. The two-dimensional half space analysis of electromagnetic

problems is well established in various texts, including [4, 23], and Green’s functions for

PEC planar surfaces are relatively straightforward to derive, as will be shown in section

3.3.1. A thorough development of a time-harmonic Green’s function including impedence

conditions at the ground plane is given in [29], and [7] demonstrates how to derive the time-

variant Green’s function for a similar problem. The time-harmonic scattering of a cavity

embedded in the ground plane is well described in [25] and [23]. For high frequencies or

large cavities, [39, 42] present highly accurate computational methods, while bounds and

stability are addressed in [5, 6, 9]. For overfilled cavities, such that the material filling
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protrudes somewhat from the cavity opening, or cavities with non-flush edge conditions,

the FE-BI method is still appropriate as in [19–21]. For cavities which are completely

flush with the ground plane, the transparent boundary can be drawn at the aperture itself

using the half-space Green’s function for the exterior solution. However, for overfilled

cavities, as with other general surface discontinuities, a semi-circular boundary is drawn

surrounding the cavity and protruding material and the known Green’s function for the

semi-circle used for the exterior solution. In the same manner, scattering from a cavity

covered by a dielectric layer is examined in [31]. A straightforward proof of existence and

uniqueness of a solution to the general single-cavity time-harmonic problem is presented

in [2] utilizing the Fredholm Alternative theorem.

Integral methods are also used for certain cavity scattering problems, as in [29, 30],

and are calculated specifically according to the shape of the cavity or protrusion. Far field

patterns are computed using Green’s functions build from Sommerfeld integrals.

2.2 Time-Variant Single Cavity

Van and Wood [36], present a thorough analysis of the one-cavity problem in the

time domain. The key result being that the variational formulation of the TMz problem

has a unique weak solution for each discretized time step. Callihan [7], extended this

result to transient scattering from a single overfilled cavity in an impedence ground plane.

Alternatively, Huang et al. [21] used a Laplace transform method to represent the scattered

fields and define boundary conditions on a semi-circular region enclosing the cavity. The

interior problem was discretized using a central difference scheme and solved using FEM

at each time step.

The multiple cavity problem discussed in this work has many parallels with the single-

cavity problem. The primary difference that is faced in the multiple cavity problem is the

coupling between cavities.
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2.3 Multiple Scatterers

A multiple-body scattering problem in free space is examined in [16]. This analysis

provides a backbone for similar analysis of coupled scatterers in the half-plane as was

conducted in [25] for the time-harmonic problem. Additionally, a thorough treatment of

a general 2-D multiple scattering problem for time-harmonic waves in free space is found

in [38], where the treatment of various boundary conditions and interfaces as well as their

numerical handling is discussed in depth. Furthermore, a general solution for multiple

rectangular cavities is presented in [12] using Fourier transform methods. In two papers,

Li and Wood [25, 26] present thorough analysis of the n-cavity problem in the frequency

domain. The key result is that the variational formulation of the TMz problem has a unique

weak solution. This result is extended in this work to the multiple-cavity transient problem.

2.4 Computational Methods

Computing numerical models for complex or wideband problems is a challenging

task. Operationally, CEM is currently one of the largest consumers of HPC processing

time. Computational methods for reducing complexity of the standard matrix operations

and domain decomposition for use with parallel processing are active areas of mathematical

research. Generally speaking, three principle techniques are commonly employed for

CEM problems: FEM, method of moments (MoM), and finite difference time domain

(FDTD). As the name might imply, FDTD is designed around application to transient

field problems. However, FDTD models are cumbersome to adapt to variable geometries

and irregular boundaries. Furthermore, in scattering problems, the infinity of free space

must be truncated with an artificial boundary condition which introduces additional error

to the solution.

The MoM utilizes integral methods to compute total fields based on known principles,

incident fields and other imposed conditions. One drawback of this method for ground

plane scattering problems is that truncation must be applied to the infinite ground plane
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which introduces unnecessary error into the system. A popular application for MoM is to

model scattering patterns from closed, mostly-convex shapes.

Following dramatic increases in computing power and numerical methods for

inverting matrices, FEM has become the favored method for many of today’s complex

CEM problems. The theory of finite elements is general enough to be applied to a variety

of problems. The basis functions provide an efficient vehicle for imposing boundary

conditions and continuity constraints. Additionally, the elements themselves are units of a

decomposed domain, which allow for convenient parallel processing. The largest limitation

of FEM in computational handling of electromagnetic scattering problems is inverting the

N × N model matrix, for which in some problems, N may be several millions or more.

Stability of solutions is a critical piece of numerical simulations in the time domain.

Time-domain FEM relies on time-discretization to step through time. Explicit methods will

generally be subject to constraints on the size of time steps in order to guarantee stability.

Implicit solvers, like the Newmark method, are numerically stable for larger time steps but

lose accuracy as the step size increases [22]. Recently, an unconditionally stable explicit

method for three-dimensional problems has been developed in [17] by building upon the

mode-matching methods and removing unstable modes.
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III. Multiple Cavity Formulation

Consider k cavities embedded in a PEC ground plane as illustrated for k = 2 in

Figure 1.1. The three-dimensional equivalent is k infinite trenches or grooves in

a PEC ground plane. The axes are oriented such that the ground plane is at y = 0,

the geometry is invariant with respect to the z-axis, so a two-dimensional analysis is

sufficient to characterize the fields. For consistency, cavity interiors will be denoted with

Ωi, i = 1, 2, ..., k. PEC cavity walls are denoted S i, i = 1, 2, ..., k, and cavity apertures are

denoted Γi, i = 1, 2, ..., k, respectively for cavities 1 through k. Throughout this chapter,

examples for k = 2 will be given to clarify to arguments. We stipulate that ∂Ωi = Γi ∪ S i, is

a continuous Lipschitz boundary and that for i , j, ∂Ωi ∩ ∂Ω j = ∅. Define regions

Ω, Γ, S

as the union of k disjoint subdomains.

Ω =

k⋃
i=1

Ωi, Γ =

k⋃
i=1

Γi, S =

k⋃
i=1

S i.

With the following properties:

∃Cx, Cy, with 0 < Cx, Cy < ∞, such that ∀(x, y) ∈ Ω, |x| < Cx, and −Cy < y < 0,

∀(x, y) ∈ S , |x| ≤ Cx, and −Cy ≤ y < 0,

∀(x, y) ∈ Γ, |x| ≤ Cx, and y = 0.

Define the upper half plane

R2
+ := {(x, y) ∈ R2, y > 0}.

Finally, define the PEC ground plane

ΓC :=
{
(x, y) ∈ R2, y = 0, (x, y) < Γ

}
.
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For this problem, assume that the upper half plane R2
+ consists of free space with

electric permittivity and magnetic permeability ε0, µ0 respectively. Assume that ΓC, and S

are PEC and therefore tangential electric fields are zero along those surfaces. The cavities

may be filled with non-magnetic, non-dispersive, simple dielectric materials, with relative

permittivity, εr satisfying

εr ∈ L∞(Ω), Re{εr(x, y)} ≥ δ > 0, Im{εr(x, y)} ≥ 0, for all (x, y) ∈ Ω.

3.1 TMz Field Problem Statement

This work assumes that all media are linear and isotropic, with homogeneous free

space above the ground plane and homogeneous, non-dissapative, dielectric material inside

the cavities. Making use of linear superposition, the electric field may be split into its TMz

and TEz components, and each field can be analyzed independent of the other. The TMz

field can be described as in equation (1.5). Letting u = Ez and scaling time to free space

light meters (LM) gives the following scalar wave equations for u ∈ H1(R2
+ ∪Ω):


∆u − utt = 0 in R2

+,

∆u − εrutt = 0 in Ω.
(3.1)

Applying PEC boundary conditions and field continuity properties gives
u = 0 on ΓC ∪ S ,

lim
y→0+

∂
∂yu(x, y) = lim

y→0−

∂
∂yu(x, y) (x, 0) ∈ Γ.

(3.2)

It is known that the total field can be decomposed into the sum of its parts. Given an

incident TMz field with Einc
z = uinc, where uinc ∈ H1(R2), the total field u can be written

u =


uinc + ure f + us in R2

+ ∪ Γ,

ui in Ωi,
(3.3)
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where i = 1, 2, ..., k and ure f is defined as the reference field, equivalent to a full reflection

from a PEC planar surface, and us is the outward-directed scattered field from the cavities.

ure f (x, y) =


−uinc(x,−y) in R2

+,

0 in Ω.
(3.4)

Note that, by definition, ∀x ∈ R, ure f (x, 0) + uinc(x, 0) = 0.

us =


u − uinc − ure f in R2

+,

uΓ on Γ,

0 in Ω\Γ.

(3.5)

It is assumed that the outgoing scattered field satisfies the radiation condition as in [36]

lim
r→∞

√
r
(
∂

∂r
+
∂

∂t

)
us = 0 in R2

+,

with r = |~r | =
√

x2 + y2.

Interior fields are similarly defined as

ui =


0 in R2

+

⋃
j,i Ω j

⋃
j,i Γ j,

uΓ on Γi,

u in Ωi,

(3.6)

Finally, the fields along the ground plane are subject to continuity requirements and are

represented as

uΓ =


0 in R2

+ ∪ ΓC,

u = us = ui on Γi, i = 1, 2, ..., k,

0 in Ω.

(3.7)

With functions thus defined, it can be seen that u ∈ H1(R2
+ ∪Ω ∪ Γ) can be summarized by

u = uinc + ure f + us − uΓ +

k∑
i=i

ui.
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Therefore, the problem is stated as follows: Given an incident TMz field, uinc, we are

seeking the full-field solution u at time t = T > 0 satisfying:

−∆u + εr
∂2

∂t2 u = 0 in R2
+ ∪Ω ∪ Γ,

u = 0 on Γc ∪ S ,

lim
y→0+

∂

∂y
u(x, y) = lim

y→0−

∂

∂y
u(x, y) for all x : (x, 0) ∈ Γ,

√
r
(
∂

∂r
+
∂

∂t

)
us → 0 as r → ∞.

(3.8)

3.2 Newmark Method

In order to address the time-varying nature of the transient scattering problem, we

apply Newmark’s method as the computational time-stepping scheme. The Newmark

method was initially proposed for solving problems in structural dynamics in 1959 [28]

and is preferred to central difference discretization routines due to its unconditional

stability [23]. The Newmark method, as used in [7, 36], has the beneficial properties

of being unconditionally stable with correctable linear growth in error [8, 14], as well

computationally lean compared to Kirchhoff-type methods which require storage of

solutions at all previous time steps. Using a fixed time step length h, the total number of

time steps needed to approximate the fields at final time T is N = T/h. Assuming that initial

data are provided either in the form of an incident plane wave or some other functional form

for the upper half-plane, we apply the Newmark method to make temporal approximations

for these functions at each discrete time tn = nh for n = 1, 2, ...,N. The notation, un(x, y)

and u̇n(x, y) are used to denote the approximations of u(x, y, tn) and ut(x, y, tn), respectively.

The generating equations for the Newmark method are:

u(t + h) = u(t) + hut(t) +

(
1
2
− β

)
h2utt(t) + βh2utt(t + h) (3.9)

ut(t + h) = ut(t) + (1 − γ)hutt(t) + γhutt(t + h), (3.10)
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with β and γ being free parameters for controlling stability and accuracy. For the TMz case,

including the discretized wave equation from equation (3.8), this can be written as
un+1 = un + hu̇n +

(
1
2 − β

)
h2ün + βh2ün+1 0 ≤ n < N,

u̇n+1 = u̇n + (1 − γ)hün + γhün+1 0 ≤ n < N,

∆un+1 − εrün+1 = 0 0 ≤ n < N.

(3.11)

This method generally requires that 0 ≤ γ ≤ 1 and 0 ≤ β ≤ 1/2, however to gain

unconditional stability, the following conditions must hold [37]:

γ ≥
1
2
, and β ≥

1
4

(
1
2

+ γ

)2

.

When γ = 0.5, this is known as the Newmark-β method [23]. Assuming that β > 0, the

Newmark method is implicit. In order to implement this implicit method, a prediction-

correction scheme is used.

Let ũ be the prediction based on current time, tn, data

ũn+1 = un + hu̇n +

(
1
2
− β

)
h2ün, (3.12)

then from (3.11),

un+1 − βh2ün+1 = ũn+1. (3.13)

Substituting ∆u = εrü and α2 = (βh2)−1, into equation (3.13) gives

− ∆un+1 + α2εrun+1 = α2εrũn+1, (3.14)

which is of similar form to the time-harmonic wave equation with a source term. Solving

equation (3.14) for un+1 is possible using numerical methods. Once a solution is obtained,

the Newmark correction will be applied as

ün+1 = α2(un+1 − ũn+1),

u̇n+1 = u̇n + (1 − γ)hün + γhün+1.
(3.15)
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In practice, the computational domain for the FEM will be restricted to the interior of

each cavity. The intereior fields will be solved for as a series of coupled equations using

FEM with a Dirichlet-to-Neumann (DtN) boundary condition at the apertures. The exterior

fields will then be determined analytically from the solution for the interior fields.

3.3 Exterior Solution

Given that uinc is known for all time, then by applying image theory, ure f is also known.

That leaves us as the only unknown in the total exterior field u in R2
+. Following the method

of [36], we seek to solve for the scattered field which satisfies (3.14), (3.2), and (3.5):
−∆us,n+1 + α2εrus,n+1 = α2εrũs,n+1 in R2

+,

us,n+1 = g on Γ,

us,n+1 = 0 on ΓC.

(3.16)

Let g0 be the zero extension of g, defined as

g0 =


g on Γ,

0 on ΓC,
(3.17)

so that un+1|y=0 = us,n+1|y=0 = g0 is defined for the entire ground plane. If uinc ∈ H1(R2
+) and

g0 ∈ H1/2(R) are known, then the exterior problem (3.16) can be solved analytically using

the half-space Green’s function, Ge
α(~r, ~r′), as in [23, 36]. Note that Ge

α(~r, ~r′) is required to

satisfy the homogeneous differential equation everywhere except ~r = ~r′, where it operates

as a Dirac delta. 
−∆Ge

α(~r, ~r′) + α2Ge
α(~r, ~r′) = δ(~r, ~r′) in R2

+

Ge
α(~r, ~r′) = 0 on Γ1 ∪ Γ2 ∪ ΓC√
|~r|

(
∂

∂~r
+
∂

∂t

)
Ge
α(~r, ~r′)→ 0 as |~r| → ∞.

(3.18)

Multiplying (3.16) by Ge
α and integrating, also substituting εr = 1 because the upper half

plane is free space, gives∫
R2

+

Ge
α(−∆us,n+1 + α2us,n+1) d~r′ =

∫
R2

+

Ge
αα

2ũs,n+1 d~r′. (3.19)
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Green’s second scalar theorem, as presented in [35], gives∫
R2

+

Ge
α∆us,n+1 d~r′ =

∫
R2

+

us,n+1∆Ge
α d~r′ +

∫
∂R2

+

n̂ · (Ge
α∇us,n+1 − us,n+1∇Ge

α) dS . (3.20)

Substituting (3.20) into (3.19) and rearranging yields∫
R2

+

us,n+1(−∆Ge
α + α2Ge

α) d~r′ =

∫
∂R2

+

n̂ · (Ge
α∇us,n+1 − us,n+1∇Ge

α) dS +

∫
R2

+

Ge
αα

2ũs,n+1 d~r′.

(3.21)

Applying the delta function property in (3.18) to the left hand side of (3.21) gives

us,n+1(~r) =

∫
∂R2

+

n̂ · (Ge
α∇us,n+1 − us,n+1∇Ge

α) dS +

∫
R2

+

Ge
αα

2ũs,n+1 d~r′. (3.22)

Examining the contour integral in (3.22) and defining n̂ · ∇ f = ∂
∂n f allows the following

simplifications:∫
∂R2

+

n̂ · (Ge
α∇us,n+1 − us,n+1∇Ge

α) dS =

∫
∂R2

+

n̂ ·Ge
α∇us,n+1 − n̂ · us,n+1∇Ge

α dS

=

∫
∂R2

+

Ge
αn̂ · ∇us,n+1 − us,n+1n̂ · ∇Ge

α dS

=

∫
∂R2

+

Ge
α

∂

∂n
us,n+1 − us,n+1 ∂

∂n
Ge
α dS .

us,n+1(~r) =

∫
∂R2

+

Ge
α

∂

∂n
us,n+1 − us,n+1 ∂

∂n
Ge
α dS +

∫
R2

+

Ge
αα

2ũs,n+1 d~r′. (3.23)

By definition, Ge
α(~r, ~r′) = 0 on ∂R2

+, so (3.23) becomes,

us,n+1(~r) = −

∫
∂R2

+

us,n+1 ∂

∂n
Ge
α dS +

∫
R2

+

Ge
αα

2ũs,n+1 d~r′. (3.24)

The radiation condition, limr→∞ us = 0, and the boundary condition, us = 0 on ΓC, are

appied to reduce the countour integral to∫
∂R2

+

us,n+1 ∂

∂n
Ge
α dS =

∫
Γ

us,n+1 ∂

∂n
Ge
α dx′.

Thus (3.24) is simplified to the following result for the scattered field which is very similar

to the form in [36].

us,n+1(~r) =

∫
R2

+

Ge
αα

2ũs,n+1 d~r′ −
∫

Γ

us,n+1 ∂

∂n
Ge
α dx′, (3.25)
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where Γ represents the multiple disjoint apertures. Then, the total exterior field, discretized

from (3.3) with t = h(n + 1) can be expressed as

utot(~r, t) ≈ uinc(~r, t) + ure f (~r, t) + us,n+1(~r), ~r ∈ R2
+

or, using the image of ~r = (x, y), ~ri = (x,−y),

utot(~r, t) ≈ uinc(~r, t) − uinc(~ri, t) +

∫
R2

+

Ge
αα

2ũs,n+1 d~r′ −
∫

Γ

g
∂

∂n
Ge
α dx′. (3.26)

Therefore, in summary, the exterior solution for us,n+1 can be written in terms of the

precalculated estimate ũs,n+1 and the aperture fields given by g1 = us,n+1|Γ . Because it

is problematic to solve for us in terms of g defined by us, we note that g can also be

described by the interior function un+1 ∈ H1(Ω), as g = un+1|Γ. This relationship lays the

basic foundation for how the numerical method will is developed.

3.3.1 Green’s Function.

The Green’s function is a crucial peice of the FE-BI method. With the appropriately

defined Green’s function, the exterior fields may be expressed as a sum of known values

and integrals as in (3.26). In development of the Green’s function, the following Fourier

transform convention is used:

F[g(x)] = ĝ(ξ) =
1
√

2π

∫ ∞

−∞

g(x)e−ixξdx

F−1[ĝ(ξ)] = g(x) =
1
√

2π

∫ ∞

−∞

ĝ(ξ)eixξdξ.

Following the method used in [7], the Fourier transform is applied to construct the Green’s

function which satisfies the requirements of (3.18). Taking the Fourier transform with

respect to the x direction gives,

F[G] = Ĝ(ξ, y) =
1
√

2π

∫ ∞

−∞

G(~r, ~r′)e−iξxdx.
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Note that the Green’s function satisfies the radiation condition at infinity, so the second

derivative may be “transferred” onto the transform operator.

F
[
∂2

∂x2 G
]

=
∂2

∂x2 Ĝ(ξ, y) =
1
√

2π

∫ ∞

−∞

(
∂2

∂x2 G(~r, ~r′)
)

e−iξxdx

=
1
√

2π

[
e−iξx ∂

∂x
G(~r, ~r′)

∣∣∣∣∣∞
−∞

−

∫ ∞

−∞

∂

∂x
G(~r, ~r′)

∂

∂x
e−iξxdx

]
=

1
√

2π

[
−G(~r, ~r′)

∂

∂x
e−iξx

∣∣∣∣∣∞
−∞

+

∫ ∞

−∞

G(~r, ~r′)
∂2

∂x2 e−iξxdx
]

= −ξ2 1
√

2π

∫ ∞

−∞

G(~r, ~r′)e−iξxdx = −ξ2Ĝ(ξ, y).

Considering that the homogeneous solution is independent of the fixed horizontal source

point, without loss of generality let x′ = 0. Taking the Fourier transform of the delta

function gives

F[δ(~r, ~r′)] = F[δ(x − 0)δ(y − y′)] =
1
√

2π

∫ ∞

−∞

δ(x − 0)δ(y − y′)e−iξxdx

= δ(y − y′)
1
√

2π

∫ ∞

−∞

δ(x − 0)e−iξxdx

= δ(y − y′)
1
√

2π
.

Thus, the Fourier transform of the differential equation (3.18) can be written as
−
∂2

∂y2 Ĝe
α(ξ, y) + (ξ2 + α2)Ĝe

α(ξ, y) = δ(y − y′)
1
√

2π
in R2

+

Ĝe
α(ξ, y) = 0 on Γ ∪ ΓC.

(3.27)

Additionally, the half-space Green’s function must satisfy (3.27) at values for y other than y′

and satisfy the continuity and jump conditions at y = y′. Observing that radiation conditions

must still be satisfied, this differential equation has solutions of the form

Φ(ξ, y) =


C1e−

√
ξ2+α2y for y > y′

C2e
√
ξ2+α2y for y < y′

(3.28)

Matching constants for continuity at y = y′ gives

C1e−
√
ξ2+α2y′ = C2e

√
ξ2+α2y′

C1e−2
√
ξ2+α2y′ = C2.
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Examining the first derivative in y to ensure jump condition at y = y′ as stated in [35] gives

lim
y→y′+

∂

∂y
Φ(ξ, y) − lim

y→y′−

∂

∂y
Φ(ξ, y) = −1

−C1

√
ξ2 + α2e−

√
ξ2+α2y′ −C2

√
ξ2 + α2e

√
ξ2+α2y′ = −1

−C1

√
ξ2 + α2e−

√
ξ2+α2y′ −C1

√
ξ2 + α2e−2

√
ξ2+α2y′e

√
ξ2+α2y′ = −1

−C1

√
ξ2 + α2e−

√
ξ2+α2y′ −C1

√
ξ2 + α2e−

√
ξ2+α2y′ = −1

−2C1

√
ξ2 + α2e−

√
ξ2+α2y′ = −1.

Thus solving for the constant coefficients,

C1 =
e
√
ξ2+α2y′

2
√
ξ2 + α2

(3.29)

C2 =
e
√
ξ2+α2y′

2
√
ξ2 + α2

e−2
√
ξ2+α2y′ =

e−
√
ξ2+α2y′

2
√
ξ2 + α2

. (3.30)

Inserting these constants into equation (3.28) gives

Φ(ξ, y) =


e−
√
ξ2+α2(y−y′)

2
√
ξ2 + α2

for y > y′

e−
√
ξ2+α2(y′−y)

2
√
ξ2 + α2

for y < y′,

(3.31)

which can be simplified as

Φ(ξ, y) =
e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

. (3.32)

Additionally, the PEC boundary requires that the Green’s function yield a value of zero

along y = 0. This condition may be enforced by adding an additional term to the general

25



solution.

Φp(ξ, 0) =
e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

+ C3e−
√
ξ2+α2y = 0

Φp(ξ, 0) =
e−
√
ξ2+α2y′

2
√
ξ2 + α2

+ C3 = 0

C3 = −
e−
√
ξ2+α2y′

2
√
ξ2 + α2

Φp(ξ, y) =
e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

−
e−
√
ξ2+α2y′

2
√
ξ2 + α2

e−
√
ξ2+α2y.

Simplifying Φp(ξ, y) gives the following form:

Φp(ξ, y) =
e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

−
e−
√
ξ2+α2(y′+y)

2
√
ξ2 + α2

. (3.33)

Note that (3.33) is scaled to operate as the Dirac delta function, whereas (3.27) has a

constant coefficient of
1
√

2π
. This indicates that the full representation for Ĝe

α(ξ, y) should

be

Ĝe
α(ξ, y) =

1
√

2π
Φp(ξ, y),

which has the expanded form

Ĝe
α(ξ, y) =

1
√

2π

e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

−
e−
√
ξ2+α2(y′+y)

2
√
ξ2 + α2

 . (3.34)

Taking the inverse Fourier transform of Ĝe
α(ξ, y), considering the variation in the x direction,

will return the functional form of Ge
α(x, y).

F−1[Ĝe
α(ξ, y)] = Ge

α(x, y) =
1
√

2π

∫ ∞

−∞

Ĝe
α(ξ, y)ei(x−x′)ξdξ

=
1

2π

∫ ∞

−∞

e−
√
ξ2+α2 |y−y′ |

2
√
ξ2 + α2

−
e−
√
ξ2+α2(y′+y)

2
√
ξ2 + α2

 ei(x−x′)ξdξ

Thus the Green’s function may be written as

Ge
α(x, y) =

1
4π

∫ ∞

−∞

e−
√
ξ2+α2 |y−y′ |√
ξ2 + α2

ei(x−x′)ξdξ −
1

4π

∫ ∞

−∞

e−
√
ξ2+α2(y′+y)√
ξ2 + α2

ei(x−x′)ξdξ (3.35)
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The integral representation of (3.35) may be simplified by following the example in [10].

Substituting r cos φ = x − x′ and r sin φ = y − y′, with r ≥ 0, and −π ≤ φ < π, allows the

transformation

1
4π

∫ ∞

−∞

e−
√
ξ2+α2 |y−y′ |√
ξ2 + α2

ei(x−x′)ξdξ =
i

4π

∫
C(φ)

ei(iα)r cos βdβ,

with C(φ) defined by

C(φ) =


x = −|φ| y from i∞ to 0,

y = 0 x from − |φ| to π − |φ|,

x = π − |φ| y from 0 to − i∞.

Referring to [15], this functional form is equivalent to
(

i
4π

)
πH1

0(iαr). Similarly,

substituting ri cos φ = x − x′ and ri sin φ = −y − y′, with r ≥ 0, and −π ≤ φ < π, gives

1
4π

∫ ∞

−∞

e−
√
ξ2+α2(y+y′)√
ξ2 + α2

ei(x−x′)ξdξ =
i

4π

∫
C(φ)

ei(iα)ri cos βdβ =

(
i

4π

)
πH1

0(iαri)

Thus, (3.35) can be restated as

Ge
α(x, y, x′, y′) =

i
4

(H1
0(iαr) − H1

0(iαri)) (3.36)

Two forms of the 2-D Green’s function are presented in the literature:

From [23]: G1(~r, ~r′) =
1
4 j

[
H2

0(α|~r − ~r′|) − H2
0(α|~r − ~r′i |)

]
. (3.37)

From [36]: G2(~r, ~r′) =
1

2π

[
K0(α|~r − ~r′|) − K0(α|~r − ~r′i |)

]
. (3.38)

With ~r = (x, y) and its image ~ri = (x,−y). Equation (3.37) is used for time-harmonic 2-D

problems and equation (3.38) is seen in time-variant applications. Below, it is shown that

(3.36) is equivalent to (3.38), thus the latter representation may be used.

It is noted in [7] that:

K0(kR) =
πi
2

H1
0(ikR).
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This is adapted from Abramowitz and Stegun [1], item 9.6.4, which states

Kν(z) =
1
2
πie

1
2 νπiH1

ν (ze
1
2πi) −π < arg z ≤

π

2
,

Kν(z) = −
1
2
πie−

1
2 νπiH2

ν (ze−
1
2πi) −

π

2
< arg z ≤ π.

Note that α|~r − ~r′| and α|~r − ~r′i | are both real and non-negative, implying arg z = 0, gives,

from (3.38),

G2(~r, ~r′) =
i
4

[
H1

0(iα|~r − ~r′|) − H1
0(iα|~r − ~r′i |)

]
.

Therefore, the derived Green’s function in (3.36) is consistent with (3.38) from the

literature, as in [36], and will be used as the principal Green’s function in this work.

Ge
α(~r, ~r′) =

1
2π

[
K0(α|~r − ~r′|) − K0(α|~r − ~r′i |)

]
. (3.39)

Key properties of the modified Bessel function of the second kind, Kν, as found in [1],

are:

1. K0(z) ≈ − ln z as z→ 0 .

2. lim
|z|→∞

Kν(z) = 0.

3. Kν(z) is real and positive for ν > −1 and z > 0.

4. K−ν(z) = Kν(z).

5.
∂Kν(z)
∂z

= −
1
2

(Kν−1(z) + Kν+1(z)). [40]

These properties are useful for derivations required later in this text and presented here for

familiarization.

3.4 Interior Solution

In this section, the exterior solution for us is used to construct a Neumann boundary

condition for the interior problem. Then we construct the variational formulation for the

interior problem, which will be used to solve for interior and aperture fields. Finally, the

variational formulation is shown to be well-posed.
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3.4.1 Transparent Boundary Condition.

From the discretized problem presented in section 3.2, we seek to find the interior field

un+1 ∈ H1(Ω) which satisfies (3.14), (3.2), and (3.5), summarized by
−∆un+1 + α2εrun+1 = α2εrũn+1 in Ω,

∂

∂y
utot,n+1

∣∣∣∣∣
Γ+

=
∂

∂y
un+1

∣∣∣∣∣
Γ−

on Γ,

un+1 = 0 on S .

(3.40)

Note that the continuity condition (1.8) is used as the Neumann boundary condtion. The

partial derivative of the external field with respect to y must be evaluated in order to apply

this boundary condition. By definition,
k∑

i=1

un+1
i = un+1. Furthermore, let un+1

i ∈ H1(Ωi)

represent the solution to (3.40) restricted to Ωi such that for i = 1, 2, ..., k,
−∆un+1

i + α2εrun+1
i = α2εrũn+1 in Ωi,

∂

∂y
utot,n+1

∣∣∣∣∣
Γ+

i

=
∂

∂y
un+1

i

∣∣∣∣∣
Γ−i

on Γi,

un+1
i = 0 on S i.

(3.41)

To simplify the Neumann boundary condition, the normal derivative of the scattered field

(3.25) is evaluated as y → 0. Note that for the exterior problem, n̂ = −ŷ. The time step

superscript is omitted, since this problem is solved at each time step.

∂

∂y
us(x, y)

∣∣∣∣∣
y=0

= lim
y→0

[
∂

∂y

∫
R2

+

α2Ge
α(~r, ~r′)ũs(~r′) d~r′ −

∂

∂y

∫
Γ

g(x′)
∂

∂(−y′)
Ge
α(~r, ~r′) dx′

]
= α2

∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′) + Ge

α((x, 0), ~r′)
∂ũs

∂y
(~r′) d~r′

−

∫
Γ

∂g
∂y

(x′)
∂Ge

α

∂(−y′)
((x, 0), ~r′) + g(x′)

∂

∂y
∂

∂(−y′)
Ge
α((x, 0), ~r′) dx′,

= α2
∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′) d~r′ −

∫
Γ

g(x′)
∂

∂y
∂

∂(−y′)
Ge
α((x, 0), (x′, 0)) dx′.

For y′ = 0,
∂

∂y′
K0(α|~r − ~r′|) = −

∂

∂y′
K0(α|~r − ~r′i |).
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Thus, evaluating one partial derivative of the Green’s function (3.39) gives

∂Ge
α

∂(−y′)
(~r, ~r′) =

1
2π

∂

∂(−y′)

[
K0(α|~r − ~r′|) − K0(α|~r − ~r′i |)

]
,

= −
1

2π

[
∂

∂(y′)
K0(α|~r − ~r′|) −

∂

∂(y′)
K0(α|~r − ~r′i |)

]
.

Therefore, along Γi,∫
Γi

g(x′)
∂

∂y
∂

∂(−y′)
Ge
α((x, 0), (x′, 0)) dx′ = −

1
π

∫
Γi

g(x′)
∂

∂y
∂

∂(y′)
K0(α|x − x′|) dx′.

Finally, noting the symmetry of the modified Bessel function,

∂

∂y
K0(α|~r − ~r′|) = −

∂

∂y′
K0(α|~r − ~r′|).

Thus, the normal derivative of the scattered field at the ground plane may be simplified to

∂

∂y
us(x, y)

∣∣∣∣∣
y=0

= α2
∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′) d~r′ −

1
π

∫
Γ

g(x′)
∂2K0

∂y2 (α|x − x′|) dx′. (3.42)

For the two-cavity case, letting g1 = g|Γ1 and g2 = g|Γ2 , (3.42) can be piecewise defined as

∂

∂y
us(x, y)

∣∣∣∣∣
y=0

=



α2
∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′) d~r′ −

1
π

∫
Γ1

g1(x′)
∂2K0

∂y2 (α|x − x′|) dx′

−
1
π

∫
Γ2

g2(x′)
∂2K0

∂y2 (α|x − x′|) dx′ (x, 0) ∈ Γ1,

α2
∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′) d~r′ −

1
π

∫
Γ1

g1(x′)
∂2K0

∂y2 (α|x − x′|) dx′

−
1
π

∫
Γ2

g2(x′)
∂2K0

∂y2 (α|x − x′|) dx′ (x, 0) ∈ Γ2,

0 (x, 0) ∈ ΓC.

Specifically, note that this boundary condition is dependent on the aperture fields from

all of the cavities, indicating dependence, or cross-talk, between the fields in each cavity.

Additionally, in the upper half plane, K0(α|~r − ~r′|) satisfies the modified 2-D wave equation

(3.18), allowing the substitution

∂2K0

∂y2 (α|x − x′|) =

[
α2 −

∂2

∂x2

]
K0(α|x − x′|).
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And thus, the normal derivative of the scattered field at the cavity apertures may be written

as
∂

∂y
us,n+1(x, y)

∣∣∣∣∣
Γ

= H̃n+1(x) + [Tαg](x), (x, 0) ∈ Γ, (3.43)

with H̃ : H1(R2
+)→ H1/2(Γ) and Tα : H1/2(Γ)→ H−1/2(Γ) defined by:

H̃n+1(x) = α2
∫
R2

+

∂Ge
α

∂y
((x, 0), ~r′)ũs(~r′)d~r′, (3.44)

[Tαg](x) =
1
π

∫
Γ

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g(x′)dx′. (3.45)

Note that the direct coupling between cavities is embedded within the definition of [Tαg]

and the time-delayed influence between cavities is captured by H̃n+1.

For the two-cavity case, (3.45) can be expanded as

[Tαg](x) =
1
π

∫
Γ1

[
∂2

∂x2 − α
2
]

K0(α|x−x′|)g1(x′)dx′+
1
π

∫
Γ2

[
∂2

∂x2 − α
2
]

K0(α|x−x′|)g2(x′)dx′.

Finally, for the total field, referring to (3.3) gives

∂

∂y
utot =

∂

∂y
uinc +

∂

∂y
ure f +

∂

∂y
us.

Thus, along the ground plane simplifies to the following Neumann boundary condition

similar to that found in [36], with the exception that in this case, Tα is a coupled boundary

operator over multiple cavities.

∂

∂y
utot(x, y, tn+1)

∣∣∣∣∣
(x,0)∈(Γ)

= 2
∂uinc

∂y
(x, 0, tn+1) + H̃n+1(x) + [Tαg](x). (3.46)

Therefore, equation (3.41) can be restated as
−∆un+1

i + α2εrun+1
i = α2εrũn+1 in Ωi,

∂

∂y
un+1

i

∣∣∣∣∣
Γ−i

= 2
∂uinc

∂y
(x, 0, tn+1) + H̃n+1(x) + [Tαg](x) on Γi,

un+1
i = 0 on S i.

(3.47)

In order to numerically approximate solutions at each time step, we develop a variational

formulation of (3.47) to be implemented wtih the FEM routine.
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3.4.2 Linear Sum of Solutions.

At this point, it is important to clarify that the solution, u, to the multiple-cavity

problem from (3.47) is not equivalent to the linear sum of single-cavity solutions less the

duplicated incident and reflected fields present in each solution. Let wi represent the zero

extension to the multiple-cavity domain Ω of the solution to the problem solved in [36]

where only a single cavity is present in a PEC ground plane. For consistency, ui represents

the interior solution for cavity i of the multiple-cavity problem in (3.47).

Theorem 1. Non-trivial solution u to the multiple-cavity problem is not equal to a linear

sum of single-cavity solutions less the duplicated incident and reflected fields.

u , −(k − 1)(uinc + ure f ) +

k∑
i=1

wi.

Proof. By contradiction, assume that

u = −(k − 1)(uinc + ure f ) +

k∑
i=1

wi.

Then, for each i, wi satisfies scalar wave equation (3.1) with boundary conditions
wi = 0 on ΓC

⋃
S i

⋃
j,i

Γ j,

lim
y→0+

∂

∂y
wi(x, y) = lim

y→0−

∂

∂y
wi(x, y) (x, 0) ∈ Γi.

(3.48)

The multiple-cavity solution u satisfies the scalar wave equation (3.1) with boundary

conditions stated in (3.2).

Without loss of generality, let k = 2. Then w1 and w2 are each non-trivial solutions to the

wave equation (3.1) satisfying (3.48), and u = w1 + w2 − uinc − ure f satisfies (3.1) and (3.2).

Define

ws
2 = w2 − uinc − ure f .

Then, on Γ1, w1 fully satisfies the Neumann boundary condition. This implies that

lim
y→0+

∂

∂y
ws

2 = 0.
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ws
2 is defined in [36] as

ws
2(~r) = α2

∫ ∞

0

∫ ∞

−∞

Ge
α(~r, ~r′)w̃s

2(~r′) d~r′ +
1
π

∫
Γ2

∂

∂y
K0(α|~r − x′ x̂|)g2(x′) dx′.

Computing the normal derivative for x in Γ1 gives

lim
y→0+

∂

∂y
ws

2(x, y) = α2
∫ ∞

0

∫ ∞

−∞

∂Ge
α

∂y
((x, 0), ~r′w̃s

2(~r′) d~r′+
1
π

∫
Γ2

(
−α2 +

∂2

∂x2

)
K0(α|~r−x′ x̂|)g2(x′) dx′.

The first integral corresponds to H̃, and is only zero when w̃s
2 = 0, which implies that fields

on Γ2 were zero at previous time steps. The second integral corresponds to Tα(g2), which

implies that fields on Γ2 are zero at the current time step. These conditions together would

require that ws
2 = 0 for all timesteps, thus contradicting the assumption that u is non-trivial

in that for ws
2 , 0,

lim
y→0+

∂

∂y
ws

2 , 0.

Therefore, for k > 1, and for all i = 1, 2, ..., k, wi , 0, the multiple cavity solution is not

equal to a linear sum of single-cavity solutions less the duplicated incident and reflected

fields.

u , −(k − 1)(uinc + ure f ) +

k∑
i=1

wi.

�

3.4.3 Variational Formulation.

Using the Neumann boundary condition given in (3.46), the interior fields in each

of the cavities may be computed as a coupled set of equations at each time step. This

formulation follows the development described in [36], but expanded to capture the

multiple-cavity interaction.

For each of the k cavities, we define the space of real-valued test functions.

Vi = {v ∈ H1(Ωi) : v = 0 on S i}, (3.49)

V = V1 + V2 + ... + Vk. (3.50)
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Note thatV ⊂ H1(Ω), so integration and multiplication follow the the definitions (1.11) and

(1.12), respectively. Let v be a test function in V. Multiplying (3.14) by v and integrating

over Ω, gives ∫
Ω

(
−∆un+1 + α2εrun+1

)
v d~r =

∫
Ω

α2εrũn+1v d~r,

which for k cavities, is expanded as

k∑
i=1

∫
Ωi

(
−∆un+1 + α2εrun+1

)
vi d~r =

k∑
i=1

∫
Ωi

α2εrũn+1vi d~r.

Applying Green’s theorem on vi∆un+1, gives∫
Ωi

∇un+1 · ∇vi + α2εrun+1vi d~r −
∫
∂Ωi

vi
∂un+1

∂n
dS =

∫
Ωi

α2εrũn+1vi d~r.

By definition, vi = 0 on S i, so the boundary integral can be reduced to the aperture Γi.∫
∂Ωi

vi
∂un+1

∂n
=

∫
Γi

vi

(
2
∂uinc,n+1

∂y
(x, 0) + H̃n+1(x) + [Tαg](x)

)
dx.

Gathering terms dependent on un+1 and g on the left yields the equation

k∑
i=1

(∫
Ωi

∇un+1 · ∇vi d~r +

∫
Ωi

α2εrun+1vi d~r −
∫

Γi

[Tαg](x)vi dx
)

=

k∑
i=1

(∫
Ωi

α2εrũn+1vi d~r + 2
∫

Γi

∂uinc,n+1

∂y
vi dx +

∫
Γi

H̃n+1vi dx
)
.

(3.51)

For the case where k = 2, the expansion of the integral in (3.51) containing the operator Tα

using (3.45) becomes

2∑
i=1

∫
Γi

[Tαg](x)vi(x) dx =

∫
Γ1

v1(x)
1
π

∫
Γ1

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g1(x′) dx′ dx

+

∫
Γ1

v1(x)
1
π

∫
Γ2

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g2(x′) dx′ dx

+

∫
Γ2

v2(x)
1
π

∫
Γ1

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g1(x′) dx′ dx

+

∫
Γ2

v2(x)
1
π

∫
Γ2

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g2(x′) dx′ dx.
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This expansion more clearly illustrates the nature of the coupling between the cavities.

Next, we define the following inner products for functions f and g in H1(Ω):

(∇ f ,∇g)Ω =

k∑
i=1

∫
Ωi

∇ fi · ∇gi d~r,

〈 f , g〉Ω =

k∑
i=1

∫
Ωi

figi d~r,

〈 f , g〉Γ =

k∑
i=1

∫
Γi

figi dx.

Then, assuming real-valued v, the complex conjugate notation is dropped. Thus, (3.51) can

be written as the variational formulation

a(un+1, v) = bn+1(v), (3.52)

where

a(u, v) = (∇u,∇v)Ω + α2〈εru, v〉Ω − 〈[Tαg], v〉Γ,

bn+1(v) = α2〈εrũn+1, v〉Ω + 2〈
∂uinc,n+1

∂y
, v〉Γ + 〈H̃n+1, v〉Γ.

For k = 2, (3.52) may be expanded further to

a(u, v) = (∇u1,∇v1)Ω1 + (∇u2,∇v2)Ω2 + α2〈εru1, v1〉Ω1 + α2〈εru2, v2〉Ω2

− 〈[Tαg1], v1〉Γ1 − 〈[Tαg2], v1〉Γ1 − 〈[Tαg1], v2〉Γ2 − 〈[Tαg2], v2〉Γ2 ,

bn+1(v) = α2〈εrũn+1, v1〉Ω1 + α2〈εrũn+1, v2〉Ω2 + 2〈
∂uinc,n+1

∂y
, v1〉Γ1 + 2〈

∂uinc,n+1

∂y
, v2〉Γ2

+ 〈H̃n+1, v1〉Γ1 + 〈H̃n+1, v2〉Γ2 .

The solution to this variational formulation, un+1, is based on a known value for uinc and

computed values for ũn+1, ũs,n+1. By evaluating un+1 at the apertures, g is found, from which

us,n+1 can be determined using the Green’s function. Additionally, in the Newmark method,

the solution at time step n + 1 is used to correct the approximations made based upon time

step n data, and make approximations for the next step forward in time. In this fashion,
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the Newmark method provides a computational method for numerically approximating

utot(x, y, tn) for each time step.

3.5 Well-posedness of Single-Cavity Problem

The well-posedness of the single-cavity problem was proved in [36]. The principle

theorem upon which the multiple-cavity proof will be based is:

Theorem 2. Let V ⊂ L2(Ω) be defined as

V = {u ∈ H1(Ω) : u = 0 on S }

then the variational problem, (3.52) has a unique solution in V when k = 1.

Additionally, the boundedness of the Dirichlet-to-Neumann operator T e
α for a single

cavity is fundamental to the multiple-cavity proof, and thus presented here for convenience.

Proposition 1. The operator T e
α defined by

T e
αg(x) :=

1
π

∫
Γ

(
−α2 +

∂2

∂x2

)
K0(α|x − x′|)g(x′) dx′, (3.53)

is a pseudodifferential operator of order 1 and T e
α : H1/2(Γ) → H−1/2(Γ) is bounded.

Moreover 〈T e
αg, g〉Γ is nonpositive for any g ∈ H1/2(Γ).

3.6 Well-posedness of Two-Cavity Problem

Theorem 3. LetV be defined as in (3.49) - (3.50), then the variational formulation (3.51)

has a unique solution inV when k = 2.

In order to prove theorem 3, we first prove the following lemmas which will satisfy

the Lax-Milgram theorem.

Lemma 1. The operator Tα : H1/2(Γ1 ∪ Γ2)→ H−1/2(Γ1 ∪ Γ2) is bounded.

Proof. For any g ∈ H1/2(Γ1 ∪ Γ2),

Tαg(x) =
1
π

∫
Γ1∪Γ2

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g(x′)dx′.
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Consider the piecewise sum

Tαg(x) =


T1,1(x) + T1,2(x) x ∈ Γ1,

T2,1(x) + T2,2(x) x ∈ Γ2,

with Ti, j is defined by,

Ti, j(x) =
1
π

∫
Γ j

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g(x′)dx′, x ∈ Γi.

T1,1 and T2,2 are the single-cavity operators, (3.53), shown to be bounded in [36]. Therefore,

‖T1,1‖H−1/2(Γ1) ≤ c1‖g‖H1/2(Γ1), (3.54)

‖T2,2‖H−1/2(Γ2) ≤ c2‖g‖H1/2(Γ2). (3.55)

For x , x′, [
∂2

∂x2 − α
2
]

K0(α|x − x′|) =
α

|x − x′|
K1(α|x − x′|),

which is strictly positive and decreasing as the distance, |x − x′|, increases. Let

d(Γ1,Γ2) := min
x1∈Γ1
x2∈Γ2

(|x1 − x2|).

Then, it is clear that

‖T1,2‖H−1/2(Γ1) ≤ c3‖g‖H1/2(Γ2), (3.56)

‖T2,1‖H−1/2(Γ2) ≤ c3‖g‖H1/2(Γ1), (3.57)

where,

c3 =
αK1(αd(Γ1,Γ2))
πd(Γ1,Γ2)

.
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Therefore,

‖Tαg‖2H−1/2(Γ1∪Γ2) = ‖Tαg‖2H−1/2(Γ1) + ‖Tαg‖2H−1/2(Γ2)

= ‖T1,1 + T1,2‖
2
H−1/2(Γ1) + ‖T2,1 + T2,2‖

2
H−1/2(Γ2)

≤ ‖T1,1‖
2
H−1/2(Γ1) + ‖T1,2‖

2
H−1/2(Γ1)

+ 2‖T1,1‖H−1/2(Γ1)‖T1,2‖H−1/2(Γ1)

+ ‖T2,1‖
2
H−1/2(Γ2) + ‖T2,2‖

2
H−1/2(Γ2)

+ 2‖T2,1‖H−1/2(Γ2)‖T2,2‖H−1/2(Γ2).

Applying inequalities (3.54 - 3.57) to the above yields

‖Tαg‖2H−1/2(Γ1∪Γ2) ≤ c2
1‖g‖

2
H1/2(Γ1) + c2

3‖g‖
2
H1/2(Γ2)

+ 2c1c3‖g‖H1/2(Γ1)‖g‖H1/2(Γ2)

+ c2
3‖g‖

2
H1/2(Γ1) + c2

2‖g‖
2
H1/2(Γ2)

+ 2c2c3‖g‖H1/2(Γ1)‖g‖H1/2(Γ2).

Thus

‖Tαg‖2H−1/2(Γ1∪Γ2) ≤ (c2
1 + c2

3)‖g‖2H1/2(Γ1) + (c2
2 + c2

3)‖g‖2H1/2(Γ2)

+ (c1c3 + c2c3)‖g‖2H1/2(Γ1∪Γ2)

≤ C‖g‖2H1/2(Γ1∪Γ2).

Therefore, Tα : H1/2(Γ1 ∪ Γ2)→ H−1/2(Γ1 ∪ Γ2) is bounded. �

Lemma 2. The inner product 〈Tαg, g〉Γ1∪Γ2 is non-positive for all g ∈ H1/2(Γ1 ∪ Γ2).

Proof. Let g0 ∈ H1/2(R) defined by

g0(x) =


g(x) x ∈ Γ1 ∪ Γ2,

0 otherwise,
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such that 〈Tαg, g〉Γ1∪Γ2 = 〈Tαg0, g0〉R. Then

〈Tαg0, g0〉R =

∫
R

[Tαg0](x)g0(x) dx,

=

∫
R

1
π

∫
R

g0(x′)
∂2K0

∂2x
(α|x − x′|) dx′g0(x) dx (3.58)

−

∫
R

α2

π

∫
R

g0(x′)K0(α|x − x′|) dx′g0(x) dx.

Note that g0(x) has compact support in R, and that

∂

∂x
K0(α|x − x′|) = −

∂

∂x′
K0(α|x − x′|).

Integration by parts is applied twice to the first double integral in (3.58), giving

1
π

∫
R

∫
R

g0(x)
∂2K0

∂x2 (α|x − x′|)g0(x′) dx′ dx

= −
1
π

∫
R

∫
R

∂g0

∂x
(x)

∂K0

∂x
(α|x − x′|)g0(x′) dx′ dx

=
1
π

∫
R

∫
R

∂g0

∂x
(x)

∂K0

∂x′
(α|x − x′|)g0(x′) dx′ dx

= −
1
π

∫
R

∫
R

K0(α|x − x′|)g′0(x)g′0(x′) dx′ dx.

Thus, using Γ = Γ1 ∪ Γ2 for brevity,

〈Tαg0, g0〉R = 〈Tαg, g〉Γ = I1 + I2, (3.59)

with

I1 = −
α2

π

∫
Γ

∫
Γ

K0(α|x − x′|)g0(x)g0(x′) dx′ dx,

I2 = −
1
π

∫
Γ

∫
Γ

K0(α|x − x′|)g′0(x)g′0(x′) dx′ dx.

The method used in [36] is applied, included here for completeness, to show that I1 and

I2 from (3.65) are both non-positive. Define Γ̃ to be a smooth closed curve such that

{Γ1 ∪ Γ2} ⊂ Γ̃ and g̃ ∈ H1/2(Γ̃). Also, define the function

w(x) =

∫
Γ̃

K0(α|x − x′|)g̃(x′) dx′ x ∈ R2.
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Note that w(x) is a solution the 2-D wave equation for x < Γ̃,

−∆w + α2w = 0 for x ∈ R2\Γ̃.

Additionally, if g̃ is regarded as a current on the contour Γ̃, with w(x) being an integral

form solution to the wave equation with an electric source current, then it is clear that the

following boundary condition holds:

n̂ × ( ~H1 − ~H2) = ~J,

with n̂ the unit normal to the surface pointing into region 1 and ~J the current present on the

boundary. Then, defining exterior and interior limit functions

we(x) = lim
p→x

w(p) p exterior to Γ̃,

wi(x) = lim
q→x

w(q) q interior to Γ̃.

Thus, the boundary condition is expressed as

∂we

∂n
−
∂wi

∂n
= g̃ for x ∈ Γ̃.

Similarly, there is no magnetic source present, so we − wi = 0 for x ∈ Γ̃, indicating that

we = wi = w for x ∈ Γ̃.

Evaluating the normal derivative gives

∂w
∂n

(x) =
∂

∂n

∫
Γ̃

K0(α|x − x′|)g̃(x′) dx′

=

∫
Γ̃

∂

∂n
K0(α|x − x′|)g̃(x′).

Applying Green’s theorem gives, with A ⊂ R2 used to denote the region enclosed by Γ̃,

∂w
∂n

(x) =

∫
A

2∇K0(α|x − x′|) · ∇g̃(x′) + ∆K0(α|x − x′|)g̃(x′) + K0(α|x − x′|)∆g̃(x′)dA.

Furthermore, it is clear that the following inequality is true:

0 ≤
∫
R2
|∇w|2 + α2|w|2dx

=

∫
R2
∇w · ∇w + α2wwdx.
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Define Dext and Dint to be the exterior and interior regions with respect to Γ̃. Then, applying

Green’s theorem gives

0 ≤
∫

Dext

∇w · ∇w + α2wwdx +

∫
Dint

∇w · ∇w + α2wwdx

=

∫
Dext

−w∆w + α2wwdx +

∫
Dint

−w∆w + α2wwdx

+

∫
Γ̃

w
∂

∂n
(we − wi)dx

=

∫
R2

w
(
−∆w + α2w

)
dx +

∫
Γ̃

wg̃dx

=

∫
Γ̃

wg̃dx

=

∫
Γ̃

g̃
∫

Γ̃

K0(α|x − x′|)g̃(x′) dx′dx. (3.60)

Thus, if we define the function g̃ ∈ H1/2(Γ̃) to be the extension of g onto Γ̃,

g̃(x) =


g(x) x ∈ Γ

0 x ∈ Γ̃ \Γ,

the following inequalities follow from (3.60):

0 ≤
∫

Γ

g(x)
∫

Γ

K0(α|x − x′|)g(x′) dx′dx,

0 ≥ −
α2

π

∫
Γ

g(x)
∫

Γ

K0(α|x − x′|)g(x′) dx′dx

= I1.

Thus, I1 is non-positive. By similar argument, if we define the function g̃ to be the extension

of g′ onto Γ̃, as

g̃(x) =


g′ x ∈ Γ

0 x ∈ Γ̃ \Γ,
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it becomes clear from (3.60) that

0 ≤
∫

Γ

g′(x)
∫

Γ

K0(α|x − x′|)g′(x′) dx′dx,

0 ≥ −
1
π

∫
Γ

g′(x)
∫

Γ

K0(α|x − x′|)g′(x′) dx′dx

= I2.

Thus, I2 is non-positive.

To summarize,

0 ≥ I1,

0 ≥ I2.

Therefore, 〈Tαg, g〉Γ1∪Γ2 is non-positive for all g ∈ H1/2(Γ1 ∪ Γ2). �

The following lemma proves coercivity of a(·, ·)

Lemma 3. There exist positive constants c and C both in R such that a(u, u) ≥

c‖u‖2H1(Ω) ∀u ∈ H1(Ω) and |a(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω).

Proof.

a(u, u) = 〈∇u,∇u〉Ω + α2〈εru, u〉Ω − 〈Tαu, u〉Γ.

≥ 〈∇u,∇u〉Ω + α2〈εru, u〉Ω

≥ min
~r∈Ω

[1, α2εr(~r)] (〈∇u,∇u〉Ω + 〈u, u〉Ω)

≥ c
(
‖u‖2H1(Ω1) + ‖u‖2H1(Ω2)

)
= c‖u‖2H1(Ω),

with

c = min
~r∈Ω1∪Ω2

[1, α2εr(~r)].

Therefore, a(u, u) ≥ c‖u‖2H1(Ω) ∀u ∈ H1(Ω).
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For any u, v ∈ H1(Ω) such that ui, vi refer to the restrictions of u and v to cavity domain

Ωi, the operator a can be expanded as

|a(u, v)| = |〈∇u1,∇v1〉Ω1 + 〈∇u2,∇v2〉Ω2 + α2〈εru1, v1〉Ω1 + α2〈εru2, v2〉Ω2

− 〈[Tαu1], v1〉Γ1 − 〈[Tαu2], v1〉Γ1 − 〈[Tαu1], v2〉Γ2 − 〈[Tαu2], v2〉Γ2 |,

≤ |〈∇u1,∇v1〉Ω1 + 〈∇u2,∇v2〉Ω2 + α2〈εru1, v1〉Ω1 + α2〈εru2, v2〉Ω2 |

+ | − 〈[Tαu1], v1〉Γ1 − 〈[Tαu2], v1〉Γ1 − 〈[Tαu1], v2〉Γ2 − 〈[Tαu2], v2〉Γ2 |.

Applying the triangle inequality, gives

|a(u, v)| ≤ |〈∇u1,∇v1〉Ω1 | + |α
2〈εru1, v1〉Ω1 |

+ |〈∇u2,∇v2〉Ω2 | + α2|〈εru2, v2〉Ω2 |

+ | − 〈[Tαu1], v1〉Γ1 | + | − 〈[Tαu1], v2〉Γ2 |

+ | − 〈[Tαu2], v1〉Γ1 | + | − 〈[Tαu2], v2〉Γ2 |.

The Cauchy-Schwarz inequality gives, for i = 1, 2,

|〈∇ui,∇vi〉Ωi | ≤ ‖∇ui‖L2(Ωi)‖∇vi‖L2(Ωi),

≤ ‖ui‖H1(Ωi)‖vi‖H1(Ωi).

|α2〈εrui, vi〉Ωi | ≤ α
2‖εrui‖L2(Ωi)‖vi‖L2(Ωi),

≤ c1‖ui‖L2(Ωi)‖ vi‖L2(Ωi),

≤ c1‖ui‖H1(Ωi)‖vi‖H1(Ωi).

Applying Lemma 1 and the Trace theorem, the aperture inner products satisfy the following

inequalities for i = 1, 2 and j = 1, 2:

〈[Tαui], v j〉Γ j ≤ 〈c‖ui‖H1/2(Γi), v j〉Γ j ,

≤ c2‖ui‖H1/2(Γi)〈1, v j〉Γ j ,

≤ c2‖ui‖H1/2(Γi)‖v j‖H1/2(Γ j),

≤ c3‖ui‖H1(Ωi)‖v j‖H1(Ω j).
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Thus,

|a(u, v)| ≤ c4

2∑
i=1

‖ui‖H1(Ωi)‖vi‖H1(Ωi)

+ c5

2∑
i=1

2∑
j=1

‖ui‖H1(Ωi)‖v j‖H1(Ω j),

≤ C‖u‖H1(Ω1)‖v‖H1(Ω1).

Therefore, |a(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω), which concludes the proof. �

Proof of Theorem 3. By Lemmas 1 - 3 we have that the operator a(·, ·) is coercive and

bounded. Therefore, the Lax-Milgram theorem gives that there exists a unique solution

un+1 ∈ V ⊂ H1(Ω) to the variational problem in (3.51) when k = 2. This proves the

theorem. �

3.7 Well-posedness of Multiple-Cavity Problem

In this section, the well-posedness of the variational formulation for k > 2 is

established. The development and formulation closely follows the method for k = 2 in

section 3.6.

Theorem 4. LetV be defined as in (3.49) - (3.50), then the variational formulation (3.51)

has a unique solution inV when k > 2.

In order to prove theorem 4, we first prove the following lemmas which will satisfy

the Lax-Milgram theorem as in the previous section.

Lemma 4. The operator Tα : H1/2(Γ)→ H−1/2(Γ) is bounded.

Proof. For any g ∈ H1/2(Γ),

Tαg(x) =
1
π

∫
Γ

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g(x′)dx′.

Holding fixed g, define Ti, j as,

Ti, j(x) =
1
π

∫
Γ j

[
∂2

∂x2 − α
2
]

K0(α|x − x′|)g(x′)dx′, x ∈ Γi.
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Note that Ti,i is exactly the single-cavity operator, (3.53), shown to be bounded in [36].

Therefore, for each i = 1, 2, ..., k, there exists a cii < ∞ such that

‖Ti,i‖H−1/2(Γi) ≤ cii‖g‖H1/2(Γi). (3.61)

We may rewrite Tαg(x) as the piecewise sum:

Tαg(x) =

k∑
j=1

Ti, j(x), x ∈ Γi.

For x , x′, [
∂2

∂x2 − α
2
]

K0(α|x − x′|) =
α

|x − x′|
K1(α|x − x′|),

which is strictly positive and decreasing as the distance, |x − x′|, increases. Let d(Γi,Γ j)

represent the smallest distance between apertures Γi and Γ j. Formally,

d(Γi,Γ j) := min
x1∈Γi
x2∈Γ j

(|x1 − x2|),

It is clear that for i , j,

‖Ti, j‖H−1/2(Γi) ≤ ci j‖g‖H1/2(Γ j), (3.62)

where

ci j =
αK1(αd(Γi,Γ j))
πd(Γi,Γ j)

.

Therefore,

‖Tαg‖2H−1/2(Γ) =

k∑
i=1

‖Tαg‖2H−1/2(Γi)

=

k∑
i=1

∥∥∥∥∥∥∥
k∑

j=1

Ti, j

∥∥∥∥∥∥∥
2

H−1/2(Γi)

≤

k∑
i=1

k∑
m=1

k∑
n=1

‖Ti,m‖H−1/2(Γi)‖Ti,n‖H−1/2(Γi)
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Applying inequalities (3.61 - 3.62) to the above yields

‖Tαg‖2H−1/2(Γ) ≤

k∑
i=1

k∑
m=1

k∑
n=1

cimcin‖g‖H1/2(Γm)‖g‖H1/2(Γn). (3.63)

Noting that for each i,

‖gi‖H1/2(Γi) ≤ ‖g‖H1/2(Γ),

Then, as (3.63) is composed of a finite sum of constant coefficients multiplied by ‖gi‖H1/2(Γi),

it is clear that there exists a C < ∞ that satisfies

‖Tαg‖2H−1/2(Γ) ≤ C‖g‖2H1/2(Γ).

Therefore, Tα : H1/2(Γ)→ H−1/2(Γ) is bounded. �

Lemma 5. The inner product 〈Tαg, g〉Γ is non-positive for all g ∈ H1/2(Γ).

Proof. Let g0 ∈ H1/2(R) defined by

g0(x) =


g(x) x ∈ Γ,

0 otherwise,

such that 〈Tαg, g〉Γ = 〈Tαg0, g0〉R. Then,

〈Tαg0, g0〉R =

∫
R

[Tαg0](x)g0(x) dx,

=

∫
R

1
π

∫
R

g0(x′)
∂2K0

∂2x
(α|x − x′|) dx′g0(x) dx (3.64)

−

∫
R

α2

π

∫
R

g0(x′)K0(α|x − x′|) dx′g0(x) dx.

Note that g0(x) has compact support in R, and that

∂

∂x
K0(α|x − x′|) = −

∂

∂x′
K0(α|x − x′|).
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Integration by parts is applied twice to the first double integral in (3.64), giving

1
π

∫
R

∫
R

g0(x)
∂2K0

∂x2 (α|x − x′|)g0(x′) dx′ dx

= −
1
π

∫
R

∫
R

g′0(x)
∂K0

∂x
(α|x − x′|)g0(x′) dx′ dx

=
1
π

∫
R

∫
R

g′0(x)
∂K0

∂x′
(α|x − x′|)g0(x′) dx′ dx

= −
1
π

∫
R

∫
R

K0(α|x − x′|)g′0(x)g′0(x′) dx′ dx.

Thus,

〈Tαg0, g0〉R = 〈Tαg, g〉Γ = I1 + I2, (3.65)

with,

I1 = −
α2

π

∫
Γ

∫
Γ

K0(α|x − x′|)g0(x)g0(x′) dx′ dx,

I2 = −
1
π

∫
Γ

∫
Γ

K0(α|x − x′|)g′0(x)g′0(x′) dx′ dx.

The method used in [36] is applied, as in section 3.6, to show that I1 and I2 are both non-

positive.

I1 ≤ 0,

I2 ≤ 0.

Therefore, 〈Tαg, g〉Γ = I1 + I2 is non-positive for all g ∈ H1/2(Γ). �

The following lemma proves coercivity of a(·, ·)

Lemma 6. There exist positive constants c and C both in R such that a(u, u) ≥

c‖u‖2H1(Ω) ∀u ∈ H1(Ω) and |a(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω).
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Proof.

a(u, u) = 〈∇u,∇u〉Ω + α2〈εru, u〉Ω − 〈Tαu, u〉Γ.

≥ 〈∇u,∇u〉Ω + α2〈εru, u〉Ω

≥ min
~r∈Ω

[1, α2εr(~r)] (〈∇u,∇u〉Ω + 〈u, u〉Ω)

≥ c

 k∑
i=1

‖u‖2H1(Ωi)


= c‖u‖2H1(Ω),

with

c = min
~r∈Ω

[1, α2εr(~r)].

Therefore, a(u, u) ≥ c‖u‖2H1(Ω) ∀u ∈ H1(Ω).

For any u, v ∈ H1(Ω) such that ui, vi refer to the restrictions of u and v to cavity domain

Ωi, the operator a can be expanded as

|a(u, v)| =

∣∣∣∣∣∣∣
k∑

i=1

〈∇ui,∇vi〉Ωi + α2〈εrui, vi〉Ωi − 〈[Tαu], vi〉Γi

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣
k∑

i=1

〈∇ui,∇vi〉Ωi + α2〈εrui, vi〉Ωi

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣−
k∑

i=1

k∑
j=1

〈[Tαu j], vi〉Γi

∣∣∣∣∣∣∣ .
Applying the triangle inequality, gives

|a(u, v)| ≤
k∑

i=1

(
|〈∇ui,∇vi〉Ωi | + |α

2〈εru1, v1〉Ω1 |
)

+

k∑
i=1

k∑
j=1

| − 〈[Tαu j], vi〉Γi |.
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The Cauchy-Schwarz inequality gives, for i = 1, 2, ..., k,

|〈∇ui,∇vi〉Ωi ≤ ‖∇ui‖L2(Ωi)‖∇vi‖L2(Ωi),

≤ ‖ui‖H1(Ωi)‖vi‖H1(Ωi).

|α2〈εrui, vi〉Ωi | ≤ α
2‖εrui‖L2(Ωi)‖vi‖L2(Ωi),

≤ ci‖ui‖L2(Ωi)‖ vi‖L2(Ωi),

≤ ci‖ui‖H1(Ωi)‖vi‖H1(Ωi).

Applying lemma 4 and the Trace theorem, the aperture inner products satisfy the following

inequalities for i = 1, 2, ..., k and j = 1, 2, ..., k:

〈[Tαui], v j〉Γ j ≤ 〈c2‖ui‖H1/2(Γi), v j〉Γ j ,

≤ c2‖ui‖H1/2(Γi)〈1, v j〉Γ j ,

≤ c2‖ui‖H1/2(Γi)‖v j‖H1/2(Γ j),

≤ c3‖ui‖H1(Ωi)‖v j‖H1(Ω j).

Thus,

|a(u, v)| ≤ c4

k∑
i=1

‖ui‖H1(Ωi)‖vi‖H1(Ωi)

+ c5

k∑
i=1

k∑
j=1

‖ui‖H1(Ωi)‖v j‖H1(Ω j),

≤ C‖u‖H1(Ω)‖v‖H1(Ω).

Therefore, |a(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω), which concludes the proof. �

Proof of Theorem 4. By Lemmas 4 - 6 we have that the operator a(·, ·) is coercive and

bounded. Therefore, the Lax Milgram theorem gives that there exists a unique solution

un+1 ∈ V ⊂ H1(Ω) to the variational problem in (3.51). This proves the theorem. �
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IV. Numerical Simulation and Analysis

In this chapter, the time-discretization and implementation of the numerical model using

the FE-BI method are described.

4.1 Finite Element Approximation

Define the space

H1
S (Ω) = { f ∈ H1(Ω) : f = 0 on S }.

Let T be the subspace of linear functions in H1
S (Ω) defined by a set of R nodes {pk}

R
k=1 and

N basis functions {φi}
N
i=1 such that any function f in T may be represented by

f =

N∑
i=1

ciφi.

The problem we seek to solve is: given un, find un+1 ∈ T which solves the variational

formulation (3.51). Following the method in [36], the variational formulation (3.51) is

discretized to the matrix equation,

[K + M + P]Un+1 = Fn+1, (4.1)

where, Un+1 is the coefficient vector defined by

un+1 =

N∑
j=1

Un+1
j φ j.

4.1.1 Left-hand Side.

The entries of matrices K, M, and P are determined for basis elements φ in the

following manner:

Ki j =

∫
Ω

∆φi · ∆φ jdA

Mi j = α2
∫

Ω

εrφiφ jdA

Pi j = −

∫
Γ

φi

(
Tαφ j

)
dS . (4.2)

50



Matrix P is mostly zeros with entries only in positions corresponding to aperture

nodes. For clarity, we denote Λi as the aperture segment from xi to xi+1. Noting the compact

support for φi, we apply integration by parts to (3.45) to yield

Pi j =
α2

π

∫
Λi

φi(x)
∫

Λ j

K0(α|x − x′|)φ j(x′)dx′dx

+
1
π

∫
Λi

∂φi

∂x
(x)

∫
Λ j

K0(α|x − x′|)
∂φ j

∂x′
(x′)dx′dx.

When i , j, both integrals in Pi j may be approximated by standard quadrature methods, as

was shown in [36]. The midpoint approximation gives

Pi j ≈

(
4 + α2|Λi||Λ j|

4π

)
K0(α|ξi − ξ j|), (4.3)

where ξi = xi+xi+1
2 . However, when i = j, the integrals in Pi j are singular and are

approximated as

Pi j ≈

(
4 + α2|Λi|

2απ

) ∫ α|Λi |
2

0
K0(τ)dτ. (4.4)

As was done in [36], referring to [1], the integral in (4.4) may be numerically evaluated by∫ y

0
K0(τ) dτ =

− (
γ0 + ln

y
2

)
y
∞∑

k=0

(y/2)2k

(k!)2(2k + 1)

+y
∞∑

k=0

(y/2)2k

(k!)2(2k + 1)2 + y
∞∑

k=1

(y/2)2k

(k!)2(2k + 1)

 k∑
m=1

1
m

 ,
where y =

α|Λi|

2
and γ0 is Euler’s constant. The sums in this expansion converge rapidly

for small values of y, i.e. y < 2. Thus, (4.3) and (4.4) provide a method for approximating

the aperture integral in (4.2).

4.1.2 Right-hand Side.

The right-hand side of (4.1) is dependent only on known or pre-computed values.

Fn+1
j = bn+1(φ j)

= α2
∫

Ω

εrũn+1φ jdA +

∫
Γ

φ j

(
2
∂uinc

∂y
+ H̃n+1

)
dS . (4.5)
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Matrix Fn+1 in (4.5) is computed at every timestep and is dependent on ũn+1. Below, we

detail the method used to construct this matrix.

Assuming that in Ω,

ũn+1 ≈

N∑
j=1

Ũn+1
j φ j,

the interior integral of (4.5) may be approximated by

α2
∫

Ω

εrũn+1φ jdA ≈ [MŨn+1] j.

The aperture integral of (4.5) is approximated in much the same fashion as was done for P

in (4.3) and (4.4). Using the midpoint approximation gives∫
Γ

φ j

(
2
∂uinc

∂y
+ H̃n+1

)
dS ≈

|Λ j|

2

(
2
∂uinc

∂y
(ξ j, 0) + H̃n+1(ξ j)

)
.

The incident field and its derivative are known from initial information. Next, we describe

how H̃ is approximated. An alternative numerical algorithm to approximate hypersingular

integrals for electromagetic cavity applications is presented in [41] which reduces error to

O(h2). The method detailed below follows the steps outlined in [36]. Evaluating the partial

derivative of (3.39) and substituting into (3.44) gives

H̃n+1(ξ j) =
α3

π

∫
R2

+

y′

|(ξ j, 0) − ~r′|
K1(α|(ξ j, 0) − ~r′|)ũs,n+1(~r′)d~r′.

The integrand in H̃ exhibits exponential decay as |~r′| increases and hypersingularity as

~r′ → (ξ j, 0). In light of these attributes, we establish a numerical integration over a

truncated region which does not require evaluation at ~r′ = (ξ j, 0).

Let the region of integration be rectangular, defined by x′ ∈ [−X, X], y′ ∈ (0,Y], where

X and Y are suitably large constants.

H̃n+1(ξ j) ≈
α3

π

∫ X

−X

∫ Y

0

y′

|(ξ j, 0) − ~r′|
K1(α|(ξ j, 0) − ~r′|)ũs,n+1(x′, y′)dy′dx′.

As was done in [36], the exterior integral may be approximated by partitioning [−X, X] into

L intervals donoted Xl and [0,Y] into M intervals denoted Ym each with lengths |Xl|, |Ym|,
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respectively. Letting Rlm = Xl × Ym, |Rlm| = |Xl||Ym| denoting the area of the rectangle Rlm,

and letting λlm denote the midpoint of Rlm, gives

H̃n+1(ξ j) ≈
α3

π

L∑
l=1

M∑
m=1

|Rlm|
λlm · ŷ
|ξ j x̂ − λlm|

K1(α|ξ j x̂ − λlm|)ũs,n+1(λlm). (4.6)

In order to use this method, the midpoint values of ũs,n+1(λlm) should be computed in

addition to the nodal values of us,n+1(x, y).

4.1.3 Matrix Construction.

When filled, the non-zero elements of the matrix [K + M + P] exhibits the banded

diagonal feature common to the finite element method with additional non-zero elements

to capture the coupling between aperture elements induced by the operator Tα. For the

case with c cavities, this matrix may be viewed as a collection of smaller matrices. Let

[K + M]i represent the parts of K and M which are non-zero in Ωi. Also let [P]a,b represent

the members Pi, j where Λi ⊆ Γa, and Λ j ⊆ Γb. When combined, the matrix [K + M] will be

arranged in the following manner:

[K + M]1 [0] . . . [0] [0]

[0] [K + M]2
. . . [0] [0]

...
. . .

. . .
. . .

...

[0] [0] . . . [K + M]c−1 [0]

[0] [0] . . . [0] [K + M]c


Commonly, the submatrices, [K + M]i, will be banded diagonal and symmetric. This, of

course, depends on the choice of basis functions. In the case of linear nodal basis functions

on triangular elements, the resulting matrices [K + M]i are banded tridiagonal and positive

definite. The [P] matrix is different in form to [K + M], but still maintains useful properties.
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The layout of [P] is: 

[P]1,1 [P]1,2 [P]1,3 . . . [P]1,c

[P]2,1 [P]2,2 [P]2,3 . . . [P]2,c

...
...

...
. . .

...

[P]c,1 [P]c,2 [P]c,3 . . . [P]c,c


As defined, an element of [P]a,b will only be non-zero if the corresponding nodes are found

on the apertures Γa and Γb. Additionally, each [P]a,b is symmetric and [P]a,b = [P]b,a.

Therefore [P] is also symmetric.

Figure 4.1: Non-zero entries of finite element matrix illustrating coupling

For the two-cavity case, the non-zero elements of the matrix [K + M + P] illustrated

in Figure 4.1, for equally-sized cavities, show the banded diagonal feature common to the
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finite element method. The additional non-zero elements indicate the coupling between

aperture elements induced by the operator Tα.

4.2 Scattered Field Approximation

A critical step in the computational process is the approximation of the scattered field

us in the exterior region. Not only is the solution of us at some time T the intended output of

this numerical simulation, but the scattered field at each time step is an important factor in

the boundary condition, as seen in the approximation of H̃n+1 in (4.6). Given us,n data, ũs,n+1

is computed directly with (3.12). After solving the interior problem for un+1, enforcing the

condition un+1(x, 0) = us,n+1(x, 0), (x, 0) ∈ Γ, provides the required data for the second

integral in (3.25).

The computational challenge then is in computing the integral form of the scattered

field, which requires computing the Green’s function for the truncated computational

area. This is accomplished efficiently by approximating the integration as a matrix

multiplication. Define the exterior computational region by

Dext = {(x, y) ∈ R2 : |x| ≤ X, 0 ≤ y ≤ Y}.

Let Xl, Ym, and λlm, l = 1, 2, ..., L, m = 1, 2, ..., M, as used in (4.6), describe LM grid

squares coveringDext. Then there are (L + 1)(M + 1) corner points and LM center points at

which the values of us,n+1 are to be approximated. Assuming equal spacing in x with length

s, we have NΓ =

k∑
i=1

|Γi|

s
aperture segments Λi with midpoints (ξ j, 0), j = 1, 2, ..., NΓ. Then
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for each center point, ~r = λlm, the scattered field integrals can be discretized as

us,n+1(λlm) =

∫
R2

+

Ge
α(λlm, ~r′)α2ũs,n+1(~r′) d~r′ −

∫
Γ

us,n+1(~r′)
∂Ge

α

∂n
(λlm, ~r′) dx′,

=

L∑
i=1

M∑
j=1

∫
Xi

∫
Y j

Ge
α(λlm, ~r′)α2ũs,n+1(~r′) d~r′ −

NΓ∑
k=1

∫
Λk

g(x′)
∂Ge

α

∂n
(λlm, (x′, 0)) dx′,

≈

L∑
i=1

M∑
j=1

|Xi||Y j|Ge
α(λlm, λi j)α2ũs,n+1(λi j) −

NΓ∑
k=1

|Λk|g(ξk)
∂Ge

α

∂n
(λlm, (ξk, 0)).

By appropriately re-indexing the input values of ũs,n+1 into an LM × 1 vector [Ũ s], and g

into an NΓ × 1 vector [g], this integration becomes a matrix multiplication. Define matrix

[G] as an LM × LM matrix with entries

[G]Ni j,Nlm = |Xi||Y j|α
2Ge

α(λlm, λi j).

Also, define [Gn] as an NΓ × LM matrix with entries

[Gn]k,Nlm = |Λk|
∂Ge

α

∂n
(λlm, (ξk, 0)).

Thus, us,n+1 is approximated by [G][Ũ s] − [Gn][g]. The same general method is used

to approximate the scattered field at the corner points, adjusting for increased count and

partial grid squares around the edges.

4.3 Algorithm Overview

Below is an overview of the computational algorithm used.

1. Input initial conditions. This is the initialization step where the incident field, step

size, computational domain, etc. are defined. Assume that initial fields inside cavities

are equal to zero.

2. Build Matrices: K = 〈∇φi,∇φ j〉Ω, M = α2〈εrφi, φ j〉Ω, P = −〈Tφi, φ j〉Γ. These

matrices are fixed and do not change with each time step. Additionally, in this step,

the integration matrices [G] and [Gn] are constructed.
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3. Loop for each time step:

(a) Calculate predictions ũ for interior and exterior regions.

(b) Compute right-hand side vector Fn+1.

(c) Solve (K + M + P)un+1 = Fn+1 for intereior and aperture fields un+1.

(d) Compute solution for exterior field us,n+1 .

(e) Correct time derivatives for interior and exterior regions.

(f) Record required data from interior, exterior, or aperture fields.

4. Conduct post-processing and analysis; generate plots and save collected data.
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V. Numerical Results

In this section we present examples of numerical tests conducted for one, two, and

three rectangular cavities embedded in the ground plane. The first set of examples use a

continuous incident wave and the second set use a Gaussian wave as the incident field.

All tests are conducted at normal incidence. The time scale, consistent with [36], is

light-meters, i.e. the time it takes light to travel 1 meter in free space, which is 1
c sec

or 3.336 × 10−9 sec. A uniform triangular mesh with node spacing, r = 0.05 m is

used. For the Newmark method the time increment, h = 0.05 light-meters, γ = 0.9,

and β = 0.25(0.5 + γ)2. Polarization of the incident fields is TMz, indicating that wave

propagation and the magnetic field will be fully described in the xy-plane plane, and the

electric field will be entirely z-directed, but described as a function of x and y. The area

above the ground plane will be considered free space R2
+ = {x, y ∈ R2 : y > 0} with

homogeneous parameters ε0, µ0 denoting the permittivity and permeability of free space.

A simple example is illustrated in Figure 5.1.

For all tests, aperture fields were recorded for each time step and for some tests,

exterior fields along a semi-circle with radius 3 m centered at the origin were collected

as well. For each test, cavities were 1 m wide with depth of either 0.25 m or 5 m. Cavities

were either unfilled (εr = 1), or filled with non-magnetic (µr = µ0), dielectric material with

εr = 2 or εr = 4. Figure 5.2 shows the computational grid, exterior field capture points,

and field values at t = 6.75 LM from a three-cavity test using depth = (0.25, 5, 0.25) and

εr = (2, 2, 2).

Throughout the discussion of results, we will refer to influence of additional cavities

when refering to aperture fields. Specifically, we define this as the difference between the
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Figure 5.1: Three cavity environment

computed solution when only one cavity is present in the ground plane and the computed

solution when multiple cavities present, with respect to the same point in time and space.

5.1 Continuous Wave

For the continuous wave example, the incident electric field has a wavelength of 1 m.

Using scaled time units, the incident field is described by

uinc(x, y, t) = Re
{
ei2π(t−y)

}
.

The first test conducted was a validation test with single rectangular cavity, width =

1 m, depth = 0.25 m. These results are shown in figure 5.3 and compared with published

results from [36] as seen in figure 5.4. It is noted that some differences exist between

our computed solutions and the reference solutions. However, the principle shape and
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Figure 5.2: Example of computational domain

period are consistent. Additionally, the late-time stability of the numerical routine was

investigated by allowing the simulation to run for 120 LM. The results shown in figure 5.5

demonstrate that this routine is stable, not demonstrating the late-time linear growth often

associated with the Newmark method [8]. In the same plots, note that a stable periodic

state is acheived more quickly in the unfilled cavity (approx. 5 LM) than in the filled

cavity (approx. 20LM). This is related to the speed of propagation through the medium and
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(a) Single-cavity solution with εr = 1. (b) Single-cavity solution with εr = 4.

Figure 5.3: Computed single-cavity results, continuous incident wave.

(a) Single-cavity solution with εr = 1. (b) Single-cavity solution with εr = 4.

Figure 5.4: Solutions published in [36].

the depth of the cavity. Because the computational model initializes with fields inside the

cavities set to zero, it is expected that a relatively small number of cycles will be required

before acheiving the periodic solution.

After demonstrating that single-cavity solutions are stable for the applied numerical

method, we next conducted tests with two cavities. Combining the two single-cavity tests

into one, we use two identical cavities, width = 1 m, depth = 0.25 m, separated by 1 m,

with cavity 1 unfilled and cavity 2 filled with dielectric having εr = 4. To denote multiple
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(a) Single-cavity solution with εr = 1.

(b) Single-cavity solution with εr = 4.

Figure 5.5: Aperture fields at (0,0), continuous incident wave.

cavity parameters, we adopt the convention

parameter = (cavity 1, cavity 2, ..., cavity k),

where parameters are listed from left to right by cavity. For example, in this case:

εr = (1, 4), width = (1m, 1m), depth = (0.25m, 0.25m).
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In figure 5.6, one cycle of the periodic response is shown alongside a single-time step

cross section of the fields. Note that the two-cavity solutions strongly resemble the single-

cavity solutions. This indicates that the effect of the coupling, or cross-talk, between the

cavities is relatively weak at this distance.

(a) Aperture electric field over one cycle. (b) Aperture electric field at t=21.8.

Figure 5.6: Aperture electric field, continuous incident field.

In order to identify the effects of coupling between cavities, the computed single-

cavity solutions were subtracted from the multi-cavity solutions. The difference between

solutions is attributed to the existence of additional cavities. Figure 5.7 shows the difference

in aperture fields found in two tests, the first conducted with a separation of 0.1 m,

the second with a separation of 1 m. Note that at 0.1 m, the maximum influence is

approximately 4 × 10−2 and at 1 m, the maximum influence is approximately 1 × 10−3.

Additional tests were run at a variety of distances to determine the effect of separation

distance on the strength of coupling. We use maximum absolute value of influence as

a metric for describing strength of interaction as a function of distance. Figure 5.8

summarizes the influence between an unfilled cavity (cavity 1), and one filled with material

have εr = 4 (cavity 2). Figure 5.9 shows results from tests run with identical cavities, both
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(a) Difference from coupling at 10 cm. (b) Difference from coupling at 1 m.

Figure 5.7: Calculated effects of coupling on solutions at two different distances.

filled with material having εr = 2. Both figures demonstrate that coupling between cavities,

as measured by aperture fields exponentially diminishes as distance increases.

Figure 5.8: Interaction between cavities, ε1 = ε0, ε2 = 4ε0.
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Figure 5.9: Interaction between identical cavities εr = 2.

In an attempt to scale the influence factor based on the strength of the second cavity,

we propose the following method. Define E1
εr

as the reference response for one cavity

filled with material having permittivity of εr, and E2
εr

(d, M) be the two-cavity response as

a function of d, the distance to the second cavity, and M, the maximum absolute value of

the reference response of the second cavity. Then, we examine the scaled influence factor

Cεr (d, M) =
maxx∈Γ1, t∈[20,T ]

(∣∣∣E2
εr

(d, M) − E1
εr

∣∣∣)
M

.

In figure 5.10, the scaled influence factor, Cεr (d, M) is plotted for d ∈ [.05, .5, 1] and

using the same geometry and parameters as in figure 5.6. Additionally, multiples of e−4d

are plotted for comparison. In looking at influence in this way, it is clear that the effect

diminishes exponentially as a function of distance between cavities. The scale factor

does not bring the influence plots directly together, but does reduce the observed distance

between them.
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Figure 5.10: Scaled maximum influence of second cavity.

Figure 5.12 shows the response from three rectangular cavities separated by only 0.05

m. In this example, the outer cavities are 1 m × 5 m, filled with material having εr = 4,

and the center cavity is 1 m × 0.25 m, and unfilled. When compared to figure 5.13, which

had greater separation between the cavities, figure 5.12 demonstrates a slight skewing of

the aperture fields due to the interaction between the cavities.
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Figure 5.11: Periodic aperture fields for three close cavities.

Figure 5.12: Cross section of aperture fields for three close cavities.
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Figure 5.13: Aperture fields for three cavities separated by 1 m.
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5.2 Gaussian Pulse

For the Gaussian wave example, the incident electric field is described by

uinc(x, y, t) = A
4

T
√
π

e−τ
2
,

with

τ =
4(t − t0 + x cos θinc + y sin θinc)

T
, θinc ∈ [π/2, π].

The parameter T in the defining equation of the Gaussian is used to control the width of

the pulse. For example, 5.14 demonstrates the different waves generated for T = 1, 2, and

4. t0 defines the time at which the wave will reach its maximum at the origin, and θinc is the

angle of incidence.

Figure 5.14: Gaussian wave for different T values.

For the following numerical examples, parameters for the incident field are as follows:

T = 2, A = 1, θinc = π
2 , and t0 = 3. These parameters are chosen to be the same as were

used in [36].
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Figure 5.15: Gaussian pulse at cavity aperture.

(a) TM solution for aperture 1, εr = 1. (b) TM solution for aperture 2, εr = 2.

Figure 5.16: Field values at midpoints of apertures.

For the following two-cavity numerical examples, cavity 1 is unfilled, εr = 1, and

cavity 2 is filled with non-magnetic dielectric material having εr = 2.

Figure 5.16 illustrates that the rates of decay are consistent with reference plots found

in [36]. Additionally, figure 5.17(a) shows the spectral content of the incident pulse as well

as responses from a single 1 m × 0.25 m cavity given different dielectric fillings. In the
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(a) Normalized fast Fourier transform of aperture

fields sampled at midpoint.

(b) Normalized fast Fourier transform of coupled

aperture fields sampled at midpoint.

(c) Normalized fast Fourier transform of influence from 2nd cavity.

Figure 5.17: Spectral content of one cavity and two cavity solutions.

filled cavities, there is a visible spike in the plot; this corresponds to the primary resconant

frequency. Note the peak at 1/LM for εr = 2, this is consistent with the observed resonance

with time between peaks of approximately 1 light-meter. This response is expected, as it
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takes the primary peak 1 light meter to propagate 0.25 m down and 0.25 m back in a

medium of this type. The plotting tools and interpretation of the FFT were greatly informed

by discussions with Mr. Hirsch Chizever.

Figure 5.17(b) shows the response from the same cavity as in 5.17(a), but with the

influence of a second cavity with separation of only 0.05 m. Even at this proximity, the

effect of the coupling is dominated by the primary effects of the scattering from the cavity.

However, when the single-cavity response is subtracted from the two-cavity response, the

influence of the second cavity may be analyzed separately. The spectral content of the

influence is shown in figure 5.17(c).

Figure 5.18 shows the field strength at the aperture midpoint for a deep cavity (5m). In

this experiment, all three cavities were filled with non-magnetic dielectric material having

permittivity εr = 2ε0. Cavities 1 and 3 were shallow, having depth of 0.25 m and the

center cavity, cavity 2 was deep, having depth of 5 m. Notice that influence from the

cross-talk is graphically imperceptible as would be expected due to the relative strength of

the interaction compared to the strength of the primary response. To better visualize the

influence of the additional cavities and the dependence of influence strength on distance

between cavities, the one-cavity solution was subtracted from the three cavity solutions as

shown in figure 5.19.

Additionally, exterior fields along the semi-circle of radius 3 m were sampled for

different cavity spacings. Figures 5.20 and 5.21 show the observed field strength for angles

of π/2 and π/4, respectively. The strength of the observed fields depends primarily on

proximity of the cavity aperture to the sampling point.

To further examine the interaction between cavities, exterior fields were computed for

one cavity at a time, and the three-cavity problem. We use us to refer to the multiple-cavity
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Figure 5.18: Aperture fields at midpoint of deep (5m) cavity.

Figure 5.19: Difference in aperture fields for deep (5m) cavity.
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Figure 5.20: Exterior fields at θ = π/2.

solution for the scattered field and us
Ωi

to denote the scattered field computed for just one

cavity defined by Ωi embedded in the ground plane. The linear construction of the solution

is:

ûs = us
Ω1

+ us
Ω2

+ us
Ω3
.

We consider the question, how well does ûs approximate us? Figure 5.22 shows how closely

the fields might be approximated by using a linear sum of single-cavity solutions. As

expected, primary effects were nearly additive, because the magnitude of the interaction is

small compared to the cavity response. However, late time fields are not well approximated.

Figure 5.23 illustrates the difference between the linear sum and the three cavity solution

which captures interactions between cavities. Note that from 6 sec to 11 sec, the difference

is a small proportion (approx. 3%) of the solution. However, at later times, the interaction

between cavities accounts for a growing proportion of the observed fields. For example,
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Figure 5.21: Exterior fields at θ = π/4.

at time = 14.65 LM, the error in the linear sum is approximately 10% and at time = 19.35

LM, the error grows to nearly 120%.
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Figure 5.22: Comparison of exterior fields at θ = π/2.

Figure 5.23: Difference in exterior fields at θ = π/2.
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VI. Conclusions and Future Work

In this work, we have shown that the discretized multiple-cavity TMz problem has a

well-posed variational formulation at each time step, constructed a stable numerical

model, and compared results from different number, spacing, and depth of cavities.

The well-posedness of the variational formulation was demonstrated by proving that the

requirements for the Lax-Milgram theorem were satisfied, therefore guaranteeing a unique

solution in the chosen solution space. The numerical model utilized the FE-BI method to

solve for interior and exterior fields at each discretized time step. The implicit Newmark

method was applied to step through time to ensure stability of solutions. Finally, various

numerical tests were conducted to compare the influence of coupling between cavities. In

doing these tests, multiple-cavity solutions were compared to single-cavity solutions and

linear constructions thereof to demonstrate the relative strength of the cross-talk and its

effect on the full-field solution.

The scope of this work was limited to TMz polarization and a PEC ground plane.

Future work should broaden applications to include impedence ground planes, and expand

solutions to TEz polarity. Furthermore, additional methods should be developed to enhance

the numerical efficiency of the computational routine, as well as apply the model to shapes

other than rectangles.

6.1 Conclusions

In conclusion, I have presented a well-posed numerical method for simulating the

scattered field from a TMz incident field on a cavity embedded in a PEC ground plane. The

problem was first discretized with the Newmark method, which transformed the transient

wave equation into a forced 2-D Helmholtz equation at each time step.
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After discretizing the problem, I developed the boundary integral method and Green’s

function for analytically describing the exterior scattered field as a function of the aperture

fields and prior time step data. The Green’s function and boundary integrals were consistent

with previously published results, with expected differences due to their application to

multiple scatterers.

Next, the boundary integral form of the scattered field was used to develop aperture

boundary conditions for the multiple-cavity interior problem. The partial derivative of the

scattered field normal to the apertures was used to enforce continuity conditions across the

transparent boundary on the aperture. Thus, I developed the DtN operator to couple the

exterior and interior solutions. This DtN operator was similar in form to existing examples,

but different in that it captured directly the coupling between apertures and enforced this

coupling on the interior field solutions.

Once the aperture boundary condition was defined, at each time step, the interior

problem was posed as a forced Helmholtz equation with boundary data. This boundary

value problem was transformed into a variational formulation in order to solve using the

FEM. The principle contribution in this work is to show that this multiple-cavity variational

formulation is well-posed. This proof utilized the Lax-Milgram theorem and was presented

for the two-cavity case as well as the multiple (k > 2) cavity case.

Having proved that the variational formulation is well-posed, focus then shifted to

the development and implementation of the numerical model. The Newmark method

when applied to discretize the problem, generated the forcing data for the Helmholtz

problem. For each step in time, the boundary integral was approximated to compute

exterior field data. The DtN operator was approximated as a matrix multiplication to

accelerate computation of the boundary data. Finally, FEM was used at each time step

to solve for interior and aperture fields. Aperture fields were then used an inputs for
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the boundary integral to generate exterior fields, and in this way the computational model

stepped through time.

Numerical tests were conducted using a continuous incident field. These tests were

useful for validating computed results and characterizing the maximum difference between

single-cavity and multiple-cavity solutons. The difference, described as influence between

the cavities, was shown to be very sensitive to the distance separating the cavities from

one another. This information is valuable, because for sufficiently distant cavities, one

may justify simply adding together scattered fields found from single-cavity solvers, as

the influence between distant cavities may be negligible in the overall solution. Thus,

this analysis provides a basis for determining criteria for when simplifying assumptions of

additivity can be made.

Additionally, numerical tests were conducted using a Gaussian incident wave. These

tests are the primary application for which the transient solver for multiple cavities was

designed. Existing time-harmonic solvers are insufficient for modeling Gaussing waves,

since they must be run at a discrete set of frequencies, generally selected from the Fourier

transform of the Gaussian wave. By using this method, multiple frequencies are modeled at

the same time, providing a more complete picture of the scattering from multiple cavities.

For the Gaussian tests, I examined differences between single-cavity and multiple-

cavilty solutions on aperture fields. As with continuous tests, the magnitude of the

influence was shown to be dependent on distance separating the cavities. Additionally,

the transient nature of the solutions was shown in the additional time-lag of the difference

fields caused by increased distance between cavities. Furthermore, exterior fields were

modeled along a semi-circle of radius 3 m centered at the origin. These data were compared

to explicitly demonstrate the breakdown in simply adding together single-cavity solutions

to approximate the mutliple-cavity response. Specifically, the influence of the cross-talk
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dominated the later-time scattered fields, where single-cavity fields had already diminished

below the strength of the echoes from coupled cavities.

6.2 Future Work

Future work should continue to improve the numerical efficiency of the method,

broaden applications to include impedence ground planes, and expand solutions to TEz

polarity.

One way to improve numerical efficience of the FE-BI solver applied to a multiple-

cavity finite element matrix would be to apply specific matrix methods to reduce the

computational cost of solving the multiple-cavity matrix which grows in a block-like

manner as additional cavities are added. For large problems, iterative solvers may

be applied to decrease the overall complexity of inverting the FEM matrix. Another

improvement would be to use an adaptive mesh to improve accuracy of solutions without

requiring a vastly greater number of nodes.

Improvements to numerical accuracy may also be made by using higher-order

polynomial basis functions which will reduce the overall error from projecting the solution

into the function space spanned by finite-element basis functions. Additional tests may

be conducted to determine the optimal selection of parameters β and γ for the Newmark

discretization.

In terms of broadening applications, the first step might be to extend results to the

TEz polarity. This will provide a method for modeling scattering returns from a far greater

set of incident fields, because in free-space, all incident fields may be decomposed into a

linear combination of TEz and TMz components. By modelling full-fields, more complex

media may be used to fill cavities and their effects on the total scattered field could be better

understood.

Additionally, three-dimensional cavities may be modeled using similar methods.

These models would allow for even greater flexibility in cavity geometry and filler media.
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The FE-BI method was applied to transient scattering from a cavity in an impedence

ground plane in [7]. This method may be adapted to the multiple cavity problem to provide

greater flexibility in modeling real-world scattering problems which do not have true-PEC

materials.

In all, there is no shortage of potential applications for modeling multiple cavities.

Each variation is sufficiently complex that it would be a worthwile endeavor and would

contribute to the quickly growing body of research in the field of CEM.
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Appendix A: Finite Element Matrix Construction

Using a triangular mesh and finite elements defined on each triangle, the variational

formulation (3.52) can be discretized to compute a solution. Define a finite element space

T N with basis functions {φi}
N
i=1 such that for any f ∈ T N , f =

∑N
1 ciφi. Define the

projection operator PT N such that

PT N (g) = v ⇐⇒ ‖g − v‖H1(Ω) = min
w∈T N

‖g − w‖H1(Ω).

Let the solution u ∈ H1(Ω) be projected onto our finite element space TN by projection

operator PT N giving

un(x, y) = PT N [u(x, y, tn)].

Similarly,

u(x, y, tn) = un(x, y) + ε(x, y), ε ∈ [T N]⊥.

Then our the variational formulation a(u, v) = b(v) can be discretized in the following way.

Let v =
∑N

i=1 φi and un =
∑N

i=1 ciφi .

(∇un,∇v)Ω1 =

∫
Ω1

∇ N∑
i=1

ciφi

 ·
∇ N∑

j=1

φ j

 d~r,

=

N∑
i=1

ci

∫
Ω1

(∇φi) ·

∇ N∑
j=1

φ j

 d~r,

=

N∑
i=1

ci

N∑
j=1

∫
Ω1

∇φi · ∇φ j d~r.

〈un, v〉Ω1 =

∫
Ω1

 N∑
i=1

ciφi


 N∑

j=1

φ j

 d~r,

=

N∑
i=1

ci

∫
Ω1

φi

 N∑
j=1

φ j

 d~r,

=

N∑
i=1

ci

N∑
j=1

∫
Ω1

φiφ j d~r.
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For the aperture elements, a subset of the basis functions are non-zero. These functions

will be denoted {φΓ
i }

NΓ

i=1.

g =

NΓ1∑
i=1

ciφ
Γ1
i +

NΓ2∑
m=1

cmφ
Γ2
m

〈g, v〉Γ1∪Γ2 =

∫
Γ1


NΓ1∑
i=1

ciφ
Γ1
i




NΓ1∑
j=1

φΓ1
j

 dx +

∫
Γ2


NΓ2∑
n=1

cnφ
Γ2
n




NΓ2∑
m=1

φΓ2
m

 dx,

Using this aperture inner product, we replace g with Tαg to see the form of the final term

in the bilinear operator a(u, v) in (3.51).

In this implementation, linear nodal basis functions are defined over the triangulations

in Ω1 and Ω2. Assuming node map of the form:

[Tri] =



p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

...
...

...

pNTri,1 pNTri,2 pNTri,3


,

the ith row contains the global node references for the three vertices of the ith triangular

element, Trii, arranged in a counter-clockwise manner. The basis functions for a given

triangular element Trie will be defined such that

φe(x, y) =

3∑
j=1

ψe
j,

This common basis set is well-described in [13, 23].

ψe
i (x, y) =


1

2∆e (ae
i + be

i x + ce
i y) (x, y) ∈ Trie,

0 otherwise.
, i = 1, 2, 3

Coefficients are given by the following equations:

ae
1 = xe

2ye
3 − xe

3ye
2 be

1 = ye
2 − ye

3 ce
1 = xe

3 − xe
2

ae
2 = xe

3ye
1 − xe

1ye
3 be

2 = ye
3 − ye

1 ce
2 = xe

1 − xe
3

ae
3 = xe

1ye
2 − xe

2ye
1 be

3 = ye
1 − ye

2 ce
3 = xe

2 − xe
1

.
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∆e represents the triangular area of the eth element given by

∆e =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 xe

1 ye
1

1 xe
2 ye

2

1 xe
3 ye

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
2

(be
1ce

2 − be
2ce

1).

Using these basis elements, the inner product (∇u,∇v)Ω can be written as a summation of

the form

∑
e

3∑
i=1

3∑
j=1

ui

∫
Trie
∇ψe

i · ∇ψ
e
j dA =

∑
e

3∑
i=1

3∑
j=1

ue
i

1
4∆e (be

i b
e
j + ce

i c
e
j).

This has an equivalent matrix representation of [K∆][u∆] where, [K∆] is a 3NTRI × 3NTRI

matrix and [u∆] is a 3NTRI × 1 matrix with components

K∆
[3(e−1)+i, 3(e−1)+ j] =

1
4∆e (be

i b
e
j + ce

i c
e
j), u∆

[3(e−1)+i] = ue
i = u(xe

i , y
e
i ).

Similarly, the inner product (u, v)Ω can be written as

∑
e

3∑
i=1

3∑
j=1

ui

∫
Trie

ψe
iψ

e
j dA =

∑
e

3∑
i=1

3∑
j=1

ue
i
∆e

12
(1 + δi j),

where δi j represents the Kronecker delta. This also can be written as a matrix multiplication

of the form [D∆][u∆] with [M∆], a 3NTRI × 3NTRI matrix, and [u] as before.

M∆
[3(e−1)+i, 3(e−1)+ j] =

∆e

12
(1 + δi j).

The aperture functions may also be approximated with linear basis functions. We define

linear elements of Γ, Γe, such that Γ =
⋃

e

Γe, and associated basis functions,

φΓe
(x) =

2∑
j=1

ψΓe

j (x).

ψΓe

1 =


xΓe

2 − x

xΓe
2 − xΓe

1

x ∈ Γe

0 otherwise.

ψΓe

2 =


x − xΓe

1

xΓe
2 − xΓe

1

x ∈ Γe

0 otherwise.
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Then the aperture inner product, 〈u, v〉Γ, may be seen as the discrete sum∑
Γe

2∑
i=1

2∑
j=1

uΓe
i

∫
Γe
ψΓe

i ψ
Γe
j dx =

∑
Γe

2∑
i=1

2∑
j=1

uΓe
i

xΓe
2 − xΓe

1

6
(1 + δi j)

Using triangular elements, the entire surface Γ will be covered by those elements which

have two nodes on the aperture. Thus, by appropriately matching node and element indices,

this inner product may be written as a sparse matrix [G∆], with dimensions matching those

of [K∆] and [M∆]. The matrices [K∆], [M∆], and [G∆] are all 3NTRI × 3NTRI in dimension,

which is much larger than the actual number of points in the grid. Finally, by enforcing

continuity requirements at the matching grid points, these matrices may be reduced to the

number of individual points where we aim to know the function value. For example, a nine-

point grid with x points [−1, 0, 1] and y points [−2,−1, 0] would generate eight triangular

elements as shown in Figure A.1, with nodes shown in Table A.1.

Figure A.1: Delaunay Triangulation

Building matrices in the manner described above to generate [K∆], [M∆], and [G∆],

would yield dimension 24 × 24 matrices. An example matrix is shown below for [M∆].

Note the duplication of u values in [u∆].

85



Table A.1: Example Triangulation

e (x, y)e
1 (x, y)e

2 (x, y)e
3

1 (-1, -2) (0, -2) (-1, -1)

2 (0, -2) (0, -1) (-1, -1)

3 (-1, -1) (0, -1) (-1, 0)

4 (0, -1) (1, -1) (0, 0)

5 (-1, 0) (0, -1) (0, 0)

6 (0, -2) (1, -2) (0, -1)

7 (0, 0) (1, -1) (1, 0)

8 (0, -1) (1, -2) (1, -1)

[M∆][u∆] =



∆1

6
∆1

12
∆1

12 0 0 0 · · · 0 0 0

∆1

12
∆1

6
∆1

12 0 0 0 · · · 0 0 0

∆1

12
∆1

12
∆1

6 0 0 0 · · · 0 0 0

0 0 0 ∆2

6
∆2

12
∆2

12 · · · 0 0 0

0 0 0 ∆2

12
∆2

6
∆2

12 · · · 0 0 0

0 0 0 ∆2

12
∆2

12
∆2

6 · · · 0 0 0
...

...
. . .

...

0 0 0 0 0 0 · · · ∆8

6
∆8

12
∆8

12

0 0 0 0 0 0 · · · ∆8

12
∆8

6
∆8

12

0 0 0 0 0 0 · · · ∆8

12
∆8

12
∆8

6





u(−1,−2)

u(0,−2)

u(−1,−1)

u(0,−2)

u(0,−1)

u(−1,−1)
...

u(0,−1)

u(1,−2)

u(1,−1)
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However, by enforcing the continuity requirements and noting that in this case, the

areas, ∆e of each triangle are equal, this is reduced to

[M][u] =



∆
6

∆
12 0 ∆

12 0 0 0 0 0

∆
12

∆
2

∆
12

∆
6

∆
6 0 0 0 0

0 ∆
12

∆
3 0 ∆

6
∆
12 0 0 0

∆
12

∆
6 0 ∆

2
∆
6 0 ∆

12 0 0

0 ∆
6

∆
6

∆
6 ∆ ∆

6
∆
6

∆
6 0

0 0 ∆
12 0 ∆

6
∆
2 0 ∆

6
∆
12

0 0 0 ∆
12

∆
6 0 ∆

3
∆
12 0

0 0 0 0 ∆
6

∆
6

∆
12

∆
2

∆
12

0 0 0 0 0 ∆
12 0 ∆

12
∆
6





u(−1,−2)

u(−1,−1)

u(−1, 0)

u(0,−2)

u(0,−1)

u(0, 0)

u(1,−2)

u(1,−1)

u(1, 0)


Where now, [M] is a 9 × 9 and [u] is a 9 × 1 matrix. The same reduction method may be

applied to [K∆] and [G∆] to create the right-sized matrices constrained by continuity at the

nodes.
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Appendix B: MATLAB Code

This appendix includes the primary MATLAB script used to run the three-cavity

simulations, as well as a representative sample of subroutines used within the main script.

B.1 Three Cavity Main Script

This is the primary script used to run the simulations.

%function ThreeCav(w1, w2, w3, d1, d2, d3, sep1, sep2, onoff, EPS)

%ThreeCav is an extension of the MultiScat function for 3 cavities.

%plane waves scaled to lambda = 1 meter

%time scaled to unit = light-meter in free space

w1 = 1; w2 = 1; w3 = 1; d1 = .25; d2 = .25; d3= .25; sep1 = .05; sep2 = .05;

onoff = [ 1, 1, 1 ]; % 1 is on, 0 is off, [ cav1, cav2, cav3 ]

EPS = [4, 1, 4];

%% Step one - Define the geometry

isgauss =1 %either 1 for gaussian impulse or 0 for continuous wave.

r = 1/20; %grid spacing

h = r; %time step

%computational domain limits in x

x = -(w1+w2+w3+sep1+sep2+2)/2:r:(w1+w2+w3+sep1+sep2+2)/2;

y = 0:r:3.2; %computational domain limit in +y

Tfinal = 20 % end time

%% Define points for geometry.

a1 = -w2/2-sep1-w1; %left(x) of cav 1

b1 = -w2/2-sep1; %right(x) of cav 1

a2 = -w2/2; %left(x) of cav 2
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b2 = w2/2; %right(x) of cav 2

a3 = w2/2+sep1; %left(x) of cav 3

b3 = w2/2+sep1+w3; %right(x) of cav 3

y1L = -d1; %bottom(y) of cav 1

y2L = -d2; %bottom(y) of cav 2

y3L = -d3; %bottom(y) of cav 3

y1 = 0:-r:y1L; %y values in cav 1

y2 = 0:-r:y2L; %y values in cav 2

y3 = 0:-r:y3L; %y values in cav 3

%in case grid spacing doesn't perfectly match end points:

[~,x1]=min(abs(a1 - x)); %index in x of left side of cav1

[~,x2]=min(abs(b1 - x)); %index in x of right side of cav1

[~,x3]=min(abs(a2 - x)); %index in x of left side of cav2

[~,x4]=min(abs(b2 - x)); %index in x of right side of cav2

[~,x5]=min(abs(a3 - x)); %index in x of left side of cav3

[~,x6]=min(abs(b3 - x)); %index in x of right side of cav3

[~,ymin1]=min(abs(y1L - y1)); %id for lowest y in cav1.

[~,ymin2]=min(abs(y2L - y2)); %id for lowest y in cav2.

[~,ymin3]=min(abs(y3L - y3)); %id for lowest y in cav3.

%define cavity meshes

[xin1,yin1] = meshgrid( x(x1:x2), y1);

[xin2,yin2] = meshgrid( x(x3:x4), y2);

[xin3,yin3] = meshgrid( x(x5:x6), y3);

[xout,yout] = meshgrid(x,y);

[LY,LX] = size(xout);

Ny1 = length(yin1(:,1));

Ny2 = length(yin2(:,1));

Ny3 = length(yin3(:,1));

89



%% establish test points for exterior scattered fields

D = 1.5; % parameter for ellipse distance from cavities

%rad = max(abs([a1,b2]))+D; %general sizing

rad = 3;

%rady = D; %general sizing

rady = 1.5;

angle = pi/180*(0:180);

extpoints= zeros(181,4);

%ellipse

extpoints2(:,:)=[rad*cos(angle)', rady*sin(angle)',angle',...

sqrt((rad*cos(angle)').ˆ2 +(rady*sin(angle)').ˆ2) ];

%circle

extpoints(:,:)=[rad*cos(angle)', rad*sin(angle)',angle',rad*ones(181,1) ];

extpoints2(end,2)= 0; %hard code for error correction;

extpoints(end,2)= 0; %hard code for error correction;

%% build triangulations

Tri1 = delaunay(xin1,yin1);

Tri2 = delaunay(xin2, yin2);

Tri3 = delaunay(xin3, yin3);

% Get length of Tri vector (#of triangles)

[L1,~] = size(Tri1);

[L2, ~] = size(Tri2);

[L3, ~] = size(Tri3);

%% Set Fill Material Permittivity

% matrix setup allows for inhomogeneous dielectric filling

epsr1T =( epsr1(Tri1(:,1))+epsr1(Tri1(:,2))+epsr1(Tri1(:,3)))/3;

epsr1 = (EPS(1))*ones(size(xin1));

epsr2 = (EPS(2)) * ones(size(xin2));

epsr2T =( epsr2(Tri2(:,1))+epsr2(Tri2(:,2))+epsr2(Tri2(:,3)))/3;

epsr3 = (EPS(3)) * ones(size(xin3));
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epsr3T =( epsr3(Tri3(:,1))+epsr3(Tri3(:,2))+epsr3(Tri3(:,3)))/3;

%% Establish linear basis vectors

%Refer to Jin, 2014, page 83-84

%phi has form 1/(2*area) (a+bx+cy)

aele1 = [xin1(Tri1(:,2)).*yin1(Tri1(:,3))-xin1(Tri1(:,3)).*yin1(Tri1(:,2)),...

xin1(Tri1(:,3)).*yin1(Tri1(:,1))-xin1(Tri1(:,1)).*yin1(Tri1(:,3)),...

xin1(Tri1(:,1)).*yin1(Tri1(:,2))-xin1(Tri1(:,2)).*yin1(Tri1(:,1))];

bele1 = [yin1(Tri1(:,2))-yin1(Tri1(:,3)),...

yin1(Tri1(:,3))-yin1(Tri1(:,1)),...

yin1(Tri1(:,1))-yin1(Tri1(:,2))];

cele1 = [xin1(Tri1(:,3))-xin1(Tri1(:,2)),...

xin1(Tri1(:,1))-xin1(Tri1(:,3)),...

xin1(Tri1(:,2))-xin1(Tri1(:,1))];

area1 = 1/2*(bele1(:,1).*cele1(:,2)-bele1(:,2).*cele1(:,1));

center1 = [(xin1(Tri1(:,1))+xin1(Tri1(:,2))+xin1(Tri1(:,3)))/3,...

(yin1(Tri1(:,1))+yin1(Tri1(:,2))+yin1(Tri1(:,3)))/3];

%phi has form a+bx+cy

aele2 = [xin2(Tri2(:,2)).*yin2(Tri2(:,3))-xin2(Tri2(:,3)).*yin2(Tri2(:,2)),...

xin2(Tri2(:,3)).*yin2(Tri2(:,1))-xin2(Tri2(:,1)).*yin2(Tri2(:,3)),...

xin2(Tri2(:,1)).*yin2(Tri2(:,2))-xin2(Tri2(:,2)).*yin2(Tri2(:,1))];

bele2 = [yin2(Tri2(:,2))-yin2(Tri2(:,3)),...

yin2(Tri2(:,3))-yin2(Tri2(:,1)),...

yin2(Tri2(:,1))-yin2(Tri2(:,2))];

cele2 = [xin2(Tri2(:,3))-xin2(Tri2(:,2)),...

xin2(Tri2(:,1))-xin2(Tri2(:,3)),...
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xin2(Tri2(:,2))-xin2(Tri2(:,1))];

area2 = 1/2*(bele2(:,1).*cele2(:,2)-bele2(:,2).*cele2(:,1));

center2 = [(xin2(Tri2(:,1))+xin2(Tri2(:,2))+xin2(Tri2(:,3)))/3,...

(yin2(Tri2(:,1))+yin2(Tri2(:,2))+yin2(Tri2(:,3)))/3];

%phi has form a+bx+cy

aele3 = [xin3(Tri3(:,2)).*yin3(Tri3(:,3))-xin3(Tri3(:,3)).*yin3(Tri3(:,2)),...

xin3(Tri3(:,3)).*yin3(Tri3(:,1))-xin3(Tri3(:,1)).*yin3(Tri3(:,3)),...

xin3(Tri3(:,1)).*yin3(Tri3(:,2))-xin3(Tri3(:,2)).*yin3(Tri3(:,1))];

bele3 = [yin3(Tri3(:,2))-yin3(Tri3(:,3)),...

yin3(Tri3(:,3))-yin3(Tri3(:,1)),...

yin3(Tri3(:,1))-yin3(Tri3(:,2))];

cele3 = [xin3(Tri3(:,3))-xin3(Tri3(:,2)),...

xin3(Tri3(:,1))-xin3(Tri3(:,3)),...

xin3(Tri3(:,2))-xin3(Tri3(:,1))];

area3 = 1/2*(bele3(:,1).*cele3(:,2)-bele3(:,2).*cele3(:,1));

center3 = [(xin3(Tri3(:,1))+xin3(Tri3(:,2))+xin3(Tri3(:,3)))/3,...

(yin3(Tri3(:,1))+yin3(Tri3(:,2))+yin3(Tri3(:,3)))/3];

[row,col]=size(xin1);

Nnode1 = row*col; %Gives total number of nodes in Cav1

[row,col]=size(xin2);

Nnode2 = row*col; %Gives total number of nodes in Cav2

[row,col]=size(xin3);

Nnode3 = row*col; %Gives total number of nodes in Cav3

clear row col
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%% Find edges for PEC Condition

S1L = find(xin1==x(x1));

S1R = find(xin1==x(x2));

S1B = find(yin1==yin1(ymin1));

S2L = find(xin2==x(x3));

S2R = find(xin2==x(x4));

S2B = find(yin2==yin2(ymin2));

S3L = find(xin3==x(x5));

S3R = find(xin3==x(x6));

S3B = find(yin3==yin3(ymin3));

S1= [S1L; S1B; S1R];

S2= [S2L; S2B; S2R];

S3= [S3L; S3B; S3R];

%%%%% cut off one cavity or another by making PEC condition at aperture.

%%%%

if onoff(1) ==0

S1AP = find(yin1 == 0);

S1= [S1L; S1B; S1R; S1AP];

end

if onoff(2) == 0

S2AP = find(yin2 == 0);

S2= [S2L; S2B; S2R; S2AP];

end

if onoff(3) == 0

S3AP = find(yin3 == 0);

S3= [S3L; S3B; S3R; S3AP];

end

%% Input initial conditions
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% Establish NEWMARK constants beta and gamma.

% gamma = sqrt(2)-.5; %Original Parameter

% beta= .25*(.5+gamma)ˆ2;

gamma = .9;

beta= .49;

alpha = sqrt(1/(beta*hˆ2));

% theta is incidence angle from ground plane

theta=pi/2;

t0=0; %parameter for starting time.

if isgauss == 0

k = (2*pi);

else

k = 1;

end

%%identify aperture segments

Seg1=zeros(L1,5);

Seg2=zeros(L2,5);

Seg3=zeros(L3,5);

for n = 1:L1

temp = find(yin1(Tri1(n,:)) == 0);

if length(temp)>1;

Seg1(n,1:5) = [Tri1(n,temp),n,temp];

end

end

%segs on 2.

for n = 1:L2

temp = find(yin2(Tri2(n,:)) == 0);

if length(temp)>1;

Seg2(n,1:5) = [Tri2(n,temp),n,temp];

end
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end

%segs on 3.

for n = 1:L3

temp = find(yin3(Tri3(n,:)) == 0);

if length(temp)>1;

Seg3(n,1:5) = [Tri3(n,temp),n,temp];

end

end

if isgauss ==0

u0 = planewave(theta,k, xout,yout,t0,1);

uref0=-planewave(theta,k, xout,-yout,t0,1);

U0=u0+uref0;

%timestep 1, t = h

t = h;

ut = planewave(theta,k, xout,yout,t,1);

dyUt = -2*k*1i*sin(theta).*ut; %@aperture

else

%parameters for gausswave

T=2;

T0 = 3;

u0 = gausswave(t0,T0,T,xout,yout,theta);

uref0= -gausswave(t0,T0,T,xout,-yout,theta);

U0=u0+uref0;

%timestep 1, t = h

t = h;

ut = gausswave(t,T0,T,xout,yout,theta);

%ureft= -gausswave(t,T0,T,xout,-yout,theta);

%Ut = ut+ureft;

dyUt = k*(-16)*sin(theta)*4*(t-T0+xout(1,:)*cos(theta)...
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+yout(1,:)*sin(theta))/Tˆ2.*ut(1,:); %

end

%calculate T matrix values

%using algorithm as in Van2002

Tfunc= -(ThreeCavT(xin1(1,:),xin2(1,:),xin3(1,:),alpha));

%% Build K

beta1=epsr1T*alphaˆ2;

beta2=epsr2T*alphaˆ2;

beta3=epsr3T*alphaˆ2;

% K will hold < grad phi, grad phi > + alphaˆ2 * <epsr * phi, phi> - T.

K = zeros(Nnode1+Nnode2+Nnode3);

%Kphiphi is just the <phi, phi> part of K.

Kphiphi = zeros(size(K));

%Kgamma is <phi gamma, phi gamma>

Kgamma = zeros(size(K));

%Kphiphi is <epsr dot phi, phi> part of K.

Keps = zeros(size(K));

%Input basic components K, Kphiphi, Kgamma.

%Cav1

for n =1:L1;

if Seg1(n,3)>0

for i = 1:2

for j = 1:2

if i == j

del = 1;

else

del = 0;

end

Kgamma(Tri1(n,Seg1(n,3+i)),Tri1(n,Seg1(n,3+j)))=...

r/6*(1+del)...

+Kgamma(Tri1(n,Seg1(n,3+i)),Tri1(n,Seg1(n,3+j)));
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end

end

end

for i = 1:3

for j = 1:3

if i == j

del = 1;

else

del = 0;

end

%fill in K

K(Tri1(n,i),Tri1(n,j)) = K(Tri1(n,i),Tri1(n,j))+...

1/(4*area1(n))*(bele1(n, i)*bele1(n,j)+cele1(n, i)*cele1(n,j))+...

area1(n)/12*beta1(n)*(1+del);

Keps(Tri1(n,i),Tri1(n,j)) = Keps(Tri1(n,i),Tri1(n,j))+...

area1(n)/12*beta1(n)*(1+del);

Kphiphi(Tri1(n,i),Tri1(n,j))=Kphiphi(Tri1(n,i),Tri1(n,j))+...

area1(n)/12*(1+del);

end

end

end

%Cav2

for n =1:L2;

if Seg2(n,3)>0

for i = 1:2

for j = 1:2

if i == j

del = 1;

else
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del = 0;

end

Kgamma(Nnode1+Tri2(n,Seg2(n,3+i)),Nnode1+Tri2(n,Seg2(n,3+j)))=...

r/6*(1+del)...

+Kgamma(Nnode1+Tri2(n,Seg2(n,3+i)),Nnode1+Tri2(n,Seg2(n,3+j)));

end

end

end

for i = 1:3

for j = 1:3

if i == j

del = 1;

else

del = 0;

end

%fill in K

K(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j)) =...

K(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j))+...

1/(4*area2(n))*(bele2(n, i)*bele2(n,j)+cele2(n, i)*cele2(n,j))+...

area2(n)/12*beta2(n)*(1+del);

Keps(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j)) =...

Keps(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j))+...

area2(n)/12*beta2(n)*(1+del);

Kphiphi(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j)) =...

Kphiphi(Nnode1+Tri2(n,i),Nnode1+Tri2(n,j))+...

area2(n)/12*(1+del);

end

end

end

%Cav3

for n =1:L3;
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if Seg3(n,3)>0

for i = 1:2

for j = 1:2

if i == j

del = 1;

else

del = 0;

end

Kgamma(Nnode1+Nnode2+Tri3(n,Seg3(n,3+i)),...

Nnode1+Nnode2+Tri3(n,Seg3(n,3+j)))=...

r/6*(1+del)+Kgamma(Nnode1+Nnode2+...

Tri3(n,Seg3(n,3+i)),Nnode1+Nnode2+Tri3(n,Seg3(n,3+j)));

end

end

end

for i = 1:3

for j = 1:3

if i == j

del = 1;

else

del = 0;

end

%fill in K

K(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j)) =...

K(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j))+...

1/(4*area3(n))*(bele3(n, i)*bele3(n,j)+cele3(n, i)*cele3(n,j))+...

area3(n)/12*beta3(n)*(1+del);

Keps(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j)) =...

Keps(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j))+...

area3(n)/12*beta3(n)*(1+del);
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Kphiphi(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j)) =...

Kphiphi(Nnode1+Nnode2+Tri3(n,i),Nnode1+Nnode2+Tri3(n,j))+...

area3(n)/12*(1+del);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% add coupling from Tfunc.

M=zeros(size(K));

for n =1:x2-x1

for m = 1:x2-x1

for i = 1:2

for j = 1:2

if i == j

del = 1;

else

%del = 1;

del = 1;

end

%fill in K Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

M(Ny1*(n+i-2)+1,Ny1*(m+j-2)+1) =M(Ny1*(n+i-2)+1,Ny1*(m+j-2)+1)+...

Tfunc(n,m)/(2*del);

end

end

end

end

%Ap 2 to Ap 2

for n =1:x4-x3

for m = 1:x4-x3
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for i = 1:2

for j = 1:2

if i == j

del = 1;

else

del = 1;

end

M(Nnode1+Ny2*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1) =...

M(Nnode1+Ny2*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1)+...

Tfunc(x2-x1+n,x2-x1+m)/(2*del);

end

end

end

end

%Ap 3 to Ap 3

for n =1:x6-x5

for m = 1:x6-x5

for i = 1:2

for j = 1:2

if i == j

del = 1;

else

del = 1;

end

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1) =...

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1)+...

Tfunc(x2-x1+x4-x3+n,x2-x1+x4-x3+m)/(2*del);

end

end

end

end
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%Ap 1 affects others...

for n =1:x2-x1

%Ap 1 to Ap 2

for m = 1:x4-x3

for i = 1:2

for j = 1:2

M(Ny1*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1) =...

M(Ny1*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1)+...

Tfunc(n,x2-x1+m)/2;

end

end

end

%Ap 1 to Ap 3

for m = 1:x6-x5

for i = 1:2

for j = 1:2

M(Ny1*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1) =...

M(Ny1*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1)+...

Tfunc(n,x2-x1+x4-x3+m)/2;

end

end

end

end

%Ap2 affects others

for n =1:x4-x3

%Ap 2 to Ap 1

for m = 1:x2-x1

for i = 1:2

for j = 1:2

% Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

M(Nnode1+Ny2*(n+i-2)+1,Ny1*(m+j-2)+1) =...
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M(Nnode1+Ny2*(n+i-2)+1,Ny1*(m+j-2)+1) + ...

Tfunc(x2-x1+n,m)/2;

end

end

end

%Ap 2 to Ap 3

for m = 1:x6-x5

for i = 1:2

for j = 1:2

% Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

M(Nnode1+Ny2*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1) =...

M(Nnode1+Ny2*(n+i-2)+1,Nnode1+Nnode2+Ny3*(m+j-2)+1) + ...

Tfunc(x2-x1+n,x2-x1+x4-x3+m)/2;

end

end

end

end

%Ap3 affects others

for n =1:x6-x5

%Ap 3 to Ap 1

for m = 1:x2-x1

for i = 1:2

for j = 1:2

% Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Ny1*(m+j-2)+1) =...

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Ny1*(m+j-2)+1) + ...

Tfunc(x2-x1+x4-x3+n,m)/2;
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end

end

end

%Ap 3 to Ap 2

for m = 1:x4-x3

for i = 1:2

for j = 1:2

% Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1) =...

M(Nnode1+Nnode2+Ny3*(n+i-2)+1,Nnode1+Ny2*(m+j-2)+1) + ...

Tfunc(x2-x1+x4-x3+n,x2-x1+m)/2;

end

end

end

end

K = K + M;

clear M

%

%% clear and fill b

%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dy1=(dyUt(1,x1:x2-1)+dyUt(1,x1+1:x2))/2; %H is zero at this point

dy2=(dyUt(1,x3:x4-1)+dyUt(1,x3+1:x4))/2; %H is zero at this point

dy3=(dyUt(1,x5:x6-1)+dyUt(1,x5+1:x6))/2; %H is zero at this point

b=zeros(Nnode1+Nnode2+Nnode3,1);

%Ap 1

for n =1:x2-x1

for i = 1:2
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%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Ny1*(n+i-2)+1) =b(Ny1*(n+i-2)+1)+ dy1(n)*r/2;

end

%b(Ny1*(n+i-2)+1) =b(Ny1*(n+i-2)+1)+ (dyUt(1,x1+n-1)+H1mid(n))*r;

%this is not very different for normal incidence.

end

%Ap 2

for n =1:x4-x3

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Ny2*(n+i-2)+1) = b(Nnode1+Ny2*(n+i-2)+1)+dy2(n)*r/2;

end

end

%Ap 3

for n =1:x6-x5

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Nnode2+Ny3*(n+i-2)+1) =...

b(Nnode1+Nnode2+Ny3*(n+i-2)+1)+dy3(n)*r/2;

end

end

B2=b;

%% Input PEC conditions

for n = 1:length(S1)

K(S1(n),S1(n))=10ˆ100; %forcing u to zero.

end

for n = 1:length(S2)
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K(Nnode1+S2(n),Nnode1+S2(n))=10ˆ100;

end

for n = 1:length(S3)

K(Nnode1+Nnode2+S3(n),Nnode1+Nnode2+S3(n))=10ˆ100;

end

%% build Utilde(1)

Utilde1 = zeros(size(B2)); %starting with all zeros in cavity.

%Uin1tilde and Uin2tilde are sized to match the mesh grid.

Uin1tilde = zeros(size(xin1));

Uin1tilde(:)=Utilde1(1:Nnode1); %time 1

Uin2tilde = zeros(size(xin2));

Uin2tilde(:)=Utilde1(Nnode1+1:Nnode1+Nnode2); %time 1

Uin3tilde = zeros(size(xin3));

Uin3tilde(:) = Utilde1(Nnode1+Nnode2+1:Nnode1+Nnode2+Nnode3); %time 1

UinCavtilde1 = zeros(3*(L1+L2+L3),1);

UinCavtilde1(Tri1(:)) = Uin1tilde(Tri1(:)); %Resizing to fit fele

UinCavtilde1(Tri2(:)+3*L1) = Uin2tilde(Tri2(:)); %Resizing to fit fele

UinCavtilde1(Tri3(:)+3*(L1+L2)) = Uin3tilde(Tri3(:)); %Resizing to fit fele

Uin1=zeros(size(xin1)); %container for U in cavity 1 sized like mesh

Uin1ddot = zeros(size(xin1)); %container for Uddot in cavity 1 sized like mesh

Uin1dot = gamma*h*Uin1ddot;

Uin2=zeros(size(xin2)); %container for U in cavity 2 sized like mesh

Uin2ddot = zeros(size(xin2)); %container for Uddot in cavity 2 sized like mesh

Uin2dot = gamma*h*Uin2ddot;

Uin3=zeros(size(xin3)); %container for U in cavity 2 sized like mesh

Uin3ddot = zeros(size(xin3)); %container for Uddot in cavity 2 sized like mesh

Uin3dot = gamma*h*Uin3ddot;
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%% f is defined by element as epsr * alphaˆ2 *utilde

% put in the zero conditions:

B2(S1) = 0;

B2(Nnode1+S2) = 0;

B2(Nnode1+Nnode2+S3) = 0;

%%

id = 'MATLAB:nearlySingularMatrix';

warning('off',id); %every matrix division generates warning that :

% Warning: Matrix is close to singular or badly scaled.

% Results may be inaccurate. RCOND = 1.231004e-100.

%Solving for u @ time h.

%A = real(K\B2);

A = K\B2;

A1 = zeros(size(xin1)); %A1, A2 sized like grid

A1(:)=A(1:Nnode1); %time 1

A2 = zeros(size(xin2));

A2(:)=A(Nnode1+1:Nnode1+Nnode2); %time 1

A3 = zeros(size(xin3));

A3(:)= A(Nnode1+Nnode2+1:Nnode1+Nnode2+Nnode3); %time 1

save1=zeros(round(Tfinal/h,0),length(A1(1,:)));

save2=zeros(round(Tfinal/h,0),length(A2(1,:)));

save3=zeros(round(Tfinal/h,0),length(A3(1,:)));

time=zeros(round(Tfinal/h,0),1);

save1(1,:) = A1(1,:);

save2(1,:) = A2(1,:);

save3(1,:) = A3(1,:);
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time(1) = h;

%%

% calculate the time derivative approximations for time 1

uddotnin1 = alphaˆ2*(A1-Uin1tilde) ;

uddotnin2 = alphaˆ2*(A2-Uin2tilde) ;

uddotnin3 = alphaˆ2*(A3-Uin3tilde) ;

udotnin1 = Uin1dot+(1-gamma)*h*Uin1ddot+gamma*h*uddotnin1;

udotnin2 = Uin2dot+(1-gamma)*h*Uin2ddot+gamma*h*uddotnin2;

udotnin3 = Uin3dot+(1-gamma)*h*Uin3ddot+gamma*h*uddotnin3;

utildenplus1in1=A1+h*udotnin1+(1/2-beta)*hˆ2*uddotnin1;

utildenplus1in2=A2+h*udotnin2+(1/2-beta)*hˆ2*uddotnin2;

utildenplus1in3=A3+h*udotnin3+(1/2-beta)*hˆ2*uddotnin3;

%%

%Calculate Scattered Field uscat1 and uscattilde1

ApFields = [A1(1,1:end),A2(1,1:end),A3(1,1:end)];

ApFieldsTilde = [Uin1tilde(1,1:end),Uin2tilde(1,1:end),Uin3tilde(1,1:end)];

uscat = zeros(size(xout));

uscattilde = zeros(size(xout));

uscat =uscat+ scatfield3(ApFields,1:length(ApFields),x(x1:x2),...

x(x3:x4),x(x5:x6),xout,yout,alpha);

%%%%%%%%%%%%%%%%%%%%%%%%%%%% adding midpoint evaluations %%%%%%%%%%%%

midx = (xout(1,1:end-1)+xout(1, 2:end))/2;

midy = (yout(1:end-1,1)+yout( 2:end,1))/2;

[mx,my] = meshgrid(midx,midy);

uscatmid = scatfield3mid(ApFields,1:length(ApFields),x(x1:x2),...

x(x3:x4), x(x5:x6),mx,my,alpha);

uscattildemid = zeros(size(uscatmid));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

uscattilde(1,x1:x2)= ApFieldsTilde(1:x2-x1+1);
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uscattilde(1,x3:x4) = ApFieldsTilde(x2-x1+2:(x2-x1+1)+(x4-x3+1));

uscattilde(1,x5:x6) = ApFieldsTilde((x2-x1+1)+(x4-x3+1)+1:end);

uscatddot = alphaˆ2*(uscat-uscattilde) ;

uscatdot = gamma*h*uscatddot;

%\tilde u ˆ{s, n+1} outside

uscattildenplus1 = uscat + h* uscatdot + (1/2 - beta) * hˆ2 * uscatddot;

% First scattered field does not sum over utilde*green's function -- future

% ones will.

%%

%%%%%%%%%%%%% midpoint evaluations %%%%%%%%%%%%%%%%

uscatddotmid = alphaˆ2*(uscatmid-uscattildemid) ;

uscatdotmid = gamma*h*uscatddotmid;

uscattildenplus1mid = uscatmid + h* uscatdotmid +...

(1/2 - beta) * hˆ2 * uscatddotmid;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Approximate H

utildevec = zeros(LX*LY,1);

utildevec(:)=uscattildenplus1(:);

%%%%%%%%%%%%% midpoint evaluations %%%%%%%%%%%%%%%%

utildevecmid = zeros((LX-1)*(LY-1),1);

utildevecmid(:)=uscattildenplus1mid(:);

Hmid = MakeHmid(mx,my,[x1:x2,x3:x4,x5:x6],alpha,r);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

H1mid = (Hmid(1:x2-x1,:)*utildevecmid).';

H2mid = (Hmid(x2-x1+2:(x2-x1+1)+(x4-x3+1)-1,:)*utildevecmid).';

H3mid = (Hmid((x2-x1+1)+(x4-x3+1)+1:end-1,:)*utildevecmid).';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear str

str(1,:)=[A1(1,:),A2(1,:),A3(1,:)];
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%% test points

Nsteps = round(Tfinal/h,0);

EXT = zeros(181,Nsteps);

EXT2 = zeros(181,Nsteps);

Gsemi = MakeGsemi(xout, yout, extpoints(:,1:2),alpha, r);

Gsemi2 = MakeGsemi(xout, yout, extpoints2(:,1:2),alpha, r);

Gimgsemi = MakeGimgsemi(xout, yout, extpoints(:,1:2),alpha, r);

Gimgsemi2 = MakeGimgsemi(xout, yout, extpoints2(:,1:2),alpha, r);

test = scatfield3semi(ApFields,1:length(ApFields),x(x1:x2),x(x3:x4),...

x(x5:x6),extpoints(:,1),extpoints(:,2),alpha);

test = test + (Gsemi+Gimgsemi)*utildevec;

test2 = scatfield3semi(ApFields,1:length(ApFields),x(x1:x2),x(x3:x4),...

x(x5:x6),extpoints2(:,1),extpoints2(:,2),alpha);

test2 = test2 + (Gsemi2+Gimgsemi2)*utildevec;

EXT(:,1) = test;

EXT2(:,1) = test2;

plot(extpoints(:,3),test, extpoints2(:,3),test2)

%%

% Construct dy n+1 where n = 1

if isgauss ==0

ut = planewave(theta,k, xout,yout,t,1);

ut2 = planewave(theta,k, xout,yout,t+h,1);

ureft=-planewave(theta,k,xout,-yout,t,1);

Ut=ut+ureft;

dyUt = -2*k*1i*sin(theta)*ut2; %@aperture

else

ut = gausswave(t,T0,T,xout,yout,theta);

ut2=gausswave(t+h,T0,T,xout,yout,theta);

ureft= -gausswave(t,T0,T,xout,-yout,theta);

Ut=ut+ureft;

%du/dy = -2tau*u*dtau/dy = -2*4*sin(theta)*tau*u
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%dyUt = 2(du inc/dy) = -16*sin(theta)*tau *u.

dyUt = k*(-16)*sin(theta)*4*(t+h-T0+xout(1,:)*cos(theta)...

+yout(1,:)*sin(theta))/Tˆ2.*ut2(1,:);

end

%define dy on segments as linear average.

%PDE calls for 2dyU + H, but dyU already has the factor of two included.

%%%%%%%%%%%%%%%% APPLY MIDPOINT FOR H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dy1=(dyUt(1,x1:x2-1)+dyUt(1,x1+1:x2))/2 +H1mid;

dy2=(dyUt(1,x3:x4-1)+dyUt(1,x3+1:x4))/2+H2mid;

dy3=(dyUt(1,x5:x6-1)+dyUt(1,x5+1:x6))/2+H3mid;

b=zeros(Nnode1+Nnode2+Nnode3,1);

%Ap 1

for n =1:x2-x1

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Ny1*(n+i-2)+1) =b(Ny1*(n+i-2)+1)+ dy1(n)*r/2;

end

%b(Ny1*(n+i-2)+1) =b(Ny1*(n+i-2)+1)+ (dyUt(1,x1+n-1)+H1mid(n))*r;

%this is not very different for normal incidence.

end

%Ap 2

for n =1:x4-x3

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Ny2*(n+i-2)+1) = b(Nnode1+Ny2*(n+i-2)+1)+dy2(n)*r/2;

end

end

%Ap 3
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for n =1:x6-x5

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Nnode2+Ny3*(n+i-2)+1) =...

b(Nnode1+Nnode2+Ny3*(n+i-2)+1)+dy3(n)*r/2;

end

end

B2=b;

%% FU is defined by element as <epsr * alphaˆ2 *utilde,v.

%averaged for element by using midpoint values

FU=[reshape(utildenplus1in1,Nnode1,1);...

reshape(utildenplus1in2,Nnode2,1);...

reshape(utildenplus1in3,Nnode3,1)];

B2 = B2 + Keps*FU;

% put in the zero conditions:

B2(S1) = 0;

B2(Nnode1+S2) = 0;

B2(Nnode1+Nnode2+S3) = 0;

%calculate the new fields

%Solving for u @ time 2h.

A = (K\B2);

A1(:)=A(1:Nnode1); %time 1

A2(:)=A(Nnode1+1:Nnode1+Nnode2); %time 1

A3(:)= A(Nnode1+Nnode2+1:Nnode1+Nnode2+Nnode3); %time 1

%% compute G

fprintf('Building G matrix ... ')

G = MakeG(xout,yout, alpha, r);

Gmid = MakeGmid(mx,my,alpha,r);
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fprintf('Building Gimg matrix ... ')

G =G- MakeGimg(xout,yout, alpha, r);

Gmid = Gmid - MakeGimgmid(mx,my,alpha,r);

G = alphaˆ2* G;

Gmid = alphaˆ2*Gmid;

%pause(.2) %pause allows plots to render

save1(2,:) = A1(1,:);

save2(2,:) = A2(1,:);

save3(2,:) = A3(1,:);

time(2) = 2*h;

fprintf('Entering timestep routine.')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN TIME STEPPING HERE %%%%%%%%%%%%%

for t = 2*h:h:Tfinal-h

% calculate the time derivative approximations for time n

temp1 = uddotnin1;

temp2 = uddotnin2;

temp3 = uddotnin3;

uddotnin1 = alphaˆ2*(A1-utildenplus1in1) ;

uddotnin2 = alphaˆ2*(A2-utildenplus1in2) ;

uddotnin3 = alphaˆ2*(A3-utildenplus1in3) ;

udotnin1 = udotnin1+(1-gamma)*h*temp1+gamma*h*uddotnin1;

udotnin2 = udotnin2+(1-gamma)*h*temp2+gamma*h*uddotnin2;

udotnin3 = udotnin3+(1-gamma)*h*temp3+gamma*h*uddotnin3;

utildenplus1in1=(A1+h*udotnin1+(1/2-beta)*hˆ2*uddotnin1);

utildenplus1in2=(A2+h*udotnin2+(1/2-beta)*hˆ2*uddotnin2);

utildenplus1in3=(A3+h*udotnin3+(1/2-beta)*hˆ2*uddotnin3);
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%Calculate Scattered Field uscat1 and uscattilde1

ApFields = [A1(1,1:end),A2(1,1:end),A3(1,1:end)];

ApFieldsTilde = [Uin1tilde(1,1:end),Uin2tilde(1,1:end),Uin3tilde(1,1:end)];

uscat =scatfield3(ApFields,1:length(ApFields),x(x1:x2),...

x(x3:x4),x(x5:x6),xout,yout,alpha);

utildevec(:)=uscattildenplus1(:);

uscatR2 = G*utildevec;

uscat(:) = uscat(:) + uscatR2(:);

uscat(1,:)= [zeros(1,x1-1), ApFields(1:x2-x1+1), zeros(1,x3-x2-1),...

ApFields(x2-x1+2:(x2-x1+1)+(x4-x3+1)), zeros(1,x5-x4-1),...

ApFields((x2-x1+1)+(x4-x3+1)+1:end),zeros(1,LX-x6)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%% adding midpoint evaluations %%%%%%%%%%%%

uscatmid = scatfield3mid(ApFields,1:length(ApFields),...

x(x1:x2),x(x3:x4),x(x5:x6),mx,my,alpha);

uscatR2mid = Gmid*utildevecmid;

uscatmid(:) = uscatmid(:)+uscatR2mid(:);

temp4=uscatddot;

% scattered time derivative time 1

uscatddot = alphaˆ2*(uscat-uscattildenplus1);

%scattered time derivative time 1

uscatdot = uscatdot + (1-gamma)*h*temp4+gamma*h*uscatddot;

%tilde for time 2

uscattildenplus1 = uscat+h*uscatdot+(1/2-beta)*hˆ2*uscatddot;

%Approximate H

%%%%%%%%%%%%% midpoint evaluations %%%%%%%%%%%%%%%%

tempmid = uscatddotmid;

uscatddotmid = alphaˆ2*(uscatmid-uscattildenplus1mid) ;

uscatdotmid = uscatdotmid + (1-gamma)*h*tempmid+gamma*h*uscatddotmid;
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uscattildenplus1mid = uscatmid + h* uscatdotmid + (1/2 - beta)...

* hˆ2 * uscatddotmid;

utildevecmid(:)=uscattildenplus1mid(:);

%%%%%%%%%%%%% midpoint evaluations %%%%%%%%%%%%%%%%

H1mid = (Hmid(1:x2-x1,:)*utildevecmid).';

H2mid = (Hmid(x2-x1+2:(x2-x1+1)+(x4-x3+1)-1,:)*utildevecmid).';

H3mid = (Hmid((x2-x1+1)+(x4-x3+1)+1:end-1,:)*utildevecmid).';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

test = scatfield3semi(ApFields,1:length(ApFields),...

x(x1:x2),x(x3:x4), x(x5:x6),extpoints(:,1),extpoints(:,2),alpha);

test = test + (Gsemi+Gimgsemi)*utildevec;

test2 = scatfield3semi(ApFields,1:length(ApFields),...

x(x1:x2),x(x3:x4),x(x5:x6),extpoints2(:,1),extpoints2(:,2),alpha);

test2 = test2 + (Gsemi2+Gimgsemi2)*utildevec;

EXT(:,round(t/h,0)) = test;

EXT2(:,round(t/h,0)) = test2;

%plot(extpoints(:,3),test, extpoints2(:,3),test2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

% Construct dy

if isgauss ==0

ut = planewave(theta,k, xout,yout,t+h,1);

ureft=-planewave(theta,k,xout,-yout,t+h,1);

Ut=ut+ureft;

dyUt = -2*k*1i*sin(theta)*ut; %@aperture

else

ut = gausswave(t,T0,T,xout,yout,theta);

ureft= -gausswave(t,T0,T,xout,-yout,theta);

ut2 = gausswave(t+h,T0,T,xout,yout,theta);

Ut=ut+ureft;

dyUt = k*(-16)*sin(theta)*4*(t-T0+h+xout(1,:)*cos(theta)...
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+yout(1,:)*sin(theta)).*ut2(1,:)/Tˆ2;%

end

%%%%%%%%%%%%%%%% APPLY MIDPOINT FOR H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dy1=(dyUt(1,x1:x2-1)+dyUt(1,x1+1:x2))/2 +H1mid;

dy2=(dyUt(1,x3:x4-1)+dyUt(1,x3+1:x4))/2+H2mid;

dy3=(dyUt(1,x5:x6-1)+dyUt(1,x5+1:x6))/2+H3mid;

b=zeros(Nnode1+Nnode2+Nnode3,1);

%Ap 1

for n =1:x2-x1

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Ny1*(n+i-2)+1) =b(Ny1*(n+i-2)+1)+ dy1(n)*r/2;

end

end

%Ap 2

for n =1:x4-x3

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Ny2*(n+i-2)+1) = b(Nnode1+Ny2*(n+i-2)+1)+dy2(n)*r/2;

end

end

%Ap 3

for n =1:x6-x5

for i = 1:2

%fill in b Ny1*(n+i-2)+1 is the node number of the i'th node

%on the n'th segment along the aperture.

b(Nnode1+Nnode2+Ny3*(n+i-2)+1) = ...
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b(Nnode1+Nnode2+Ny3*(n+i-2)+1)+dy3(n)*r/2;

end

end

B2=b;

%% FU is defined by element as <epsr * alphaˆ2 *utilde,v.

% averaged for element by using midpoint values

FU=[reshape(utildenplus1in1,Nnode1,1);reshape(utildenplus1in2,Nnode2,1);...

reshape(utildenplus1in3,Nnode3,1)];

B2 = B2 + Keps*FU;

% put in the zero conditions:

B2(S1) = 0;

B2(Nnode1+S2) = 0;

B2(Nnode1+Nnode2+S3) = 0;

%calculate the new fields

%Solving for u @ time 2h.

A = K\B2;

A1(:)=A(1:Nnode1); %time 1

A2(:)=A(Nnode1+1:Nnode1+Nnode2); %time 1

A3(:)= A(Nnode1+Nnode2+1:Nnode1+Nnode2+Nnode3); %time 1

save1(round(t/h)+1,:) = A1(1,:);

save2(round(t/h)+1,:) = A2(1,:);

save3(round(t/h)+1,:) = A3(1,:);

time(round(t/h)+1) = t+h;

end

temp = num2str(xin1(1,round((x2-x1+1)/2,0)));

head = [ 'Scattered field intensity at (' temp ', 0)'];

figure()

plot(time',real(save1(:,round((x2-x1+1)/2,0))));

117



axis([0 Tfinal min(min(real([save1,save2,save3])))...

max(max(real([save1,save2,save3])))])

grid on

title(head)

xlabel('Time (LM)')

ylabel('Intensity')

temp = num2str(xin2(1,round((x4-x3+1)/2,0)));

head = [ 'Scattered field intensity at (' temp ', 0)'];

figure()

plot(time',real(save2(:,round((x4-x3+1)/2,0))));

axis([0 Tfinal min(min(real([save1,save2,save3])))...

max(max(real([save1,save2,save3])))])

grid on

title(head)

xlabel('Time (LM)')

ylabel('Intensity')

hold off

temp = num2str(xin3(1,round((x6-x5+1)/2,0)));

head = [ 'Scattered field intensity at (' temp ', 0)'];

figure()

plot(time',real(save3(:,round((x6-x5+1)/2,0))));

axis([0 Tfinal min(min(real([save1,save2,save3])))...

max(max(real([save1,save2,save3])))])

grid on

title(head)

xlabel('Time (LM)')

ylabel('Intensity')

hold off

B = max(EXT,[],2);
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figure()

polar(extpoints(:,3),10*log10(real(B)+ones(size(B))))

%output to save file

temp = ['sep' num2str(100*sep1) num2str(100*sep2) 'onoff' num2str(onoff(1)) ...

num2str(onoff(2)) num2str(onoff(3)) 'depth' num2str(100*d1) num2str(100*d2) ...

num2str(100*d3) 'epsr' num2str(EPS(1)) num2str(EPS(2)) num2str(EPS(3))];

file = [ 'I:\My Documents\TestRuns 3cavDeep\Test NEW' temp '.xlsx'];

filename = file;

sheet = 1;

xlswrite(filename, save1, sheet)

sheet = 2;

xlswrite(filename, save2, sheet)

sheet = 3;

xlswrite(filename, save3, sheet)

sheet = 4;

xlswrite(filename, EXT, sheet)

sheet = 5;

xlswrite(filename, extpoints, sheet)

B.2 Construct Matrix G

The matrix G is used for computing the approximated scattered fields.

function G = MakeG(xx,yy, alpha, r)

%returns matrix G to multiply utilde by for integral approximation

%this function creates a distance matrix vector Nx times Ny X 1.

npts = ceil(20/alpha/r);

[ L1, L2 ] = size(xx); % remove ground plane nodes -- their value is zero.

xvec = zeros( L1*L2, 1) ;

yvec = xvec;

xvec(:) = xx(:); yvec(:) = yy(:);
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G = zeros (L1*L2);

g0=1/2/pi*gridK(r,alpha,0,2500)/2;

%/2 for evaluation over half grid square

% every L1+1st term is y = 0.

RectA = zeros(size(xx));

LongA = zeros( (2*L2-1)*L1, 1) ;

for i = 1: L1 %for points in y from zero to max y

% Partial Green's function relative to first x point and y(i,1).

A = rˆ2*1/2/pi*besselk(0,alpha*(sqrt((xvec-xvec(1)).ˆ2 +...

(yvec-yvec(i)).ˆ2)));

if i == 1

%halve the grid near the ground plane

A(1:L1:L1*L2) = 1/2*A(1:L1:L1*L2);

A(i) = g0;

A(npts*L1+1:end) = 0; %%added 2/4

%A(i+1) =A(i+1)+1/4* g0;

else

% if i == L1

A(i) = 2*g0;

end

RectA(:) = A(:);

RevA = fliplr(RectA); %creates mirror image of A.

LongA(:) = [RevA(:); A(L1+1:end)]';

for j = 1:L2

G( (j-1)*L1+i,:) = LongA(L1*(L2-j)+1:L1*(L2-j)+L1*L2);

end

end
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% To replace the diagonal with another value, use A(1:L1*L2+1:end) = value %%

% To apply a function to the matrix, GREEN = 1/pi( besselk(0,A) ) ...%%

B.3 Compute Scattered Field

This function directly computes the aperture integral portion of the scattered field

equation for the exterior computatoinal region.

function A = scatfield3(U,Apnode,x1,x2,x3,xout,yout,alpha)

%This function will calculate the scattered field from internal cavity

%field U with Aperture nodes in Apnode, to outer mesh xout, yout.

N1=length(x1)-1;

N2=length(x2)-1;

N3=length(x3)-1;

L1 = abs(x1(2:end)-x1(1:end-1));

L2 = abs(x2(2:end)-x2(1:end-1));

L3 = abs(x3(2:end)-x3(1:end-1));

A = zeros(size(xout));

for i = 1:N1

A(2:end, :) =A(2:end, :)+L1(i)*alpha/2/pi *(U(Apnode(i))*yout(2:end,:)./...

(( (x1(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5)).*...

besselk(1,alpha*( (x1(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5))...

+U(Apnode(i+1))*yout(2:end,:)./(( (x1(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)).*besselk(1,alpha*( (x1(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)));

end

for i = 1:N2

A(2:end, :) =A(2:end, :)+L2(i)*alpha/2/pi*( U(Apnode(N1+1+i)).*...
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yout(2:end,:)./(( (x2(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5)).*...

besselk(1,alpha*( (x2(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5))...

+U(Apnode(N1+i+2)).*yout(2:end,:)./(( (x2(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)).*besselk(1,alpha*( (x2(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)));

end

for i = 1:N3

A(2:end, :) =A(2:end, :)+L3(i)*alpha/2/pi*( U(Apnode(N1+N2+2+i)).*...

yout(2:end,:)./(( (x3(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5)).*...

besselk(1,alpha*( (x3(i)-xout(2:end,:)).ˆ2+yout(2:end,:).ˆ2).ˆ(.5))...

+U(Apnode(N1+N2+i+3)).*yout(2:end,:)./(( (x3(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)).*besselk(1,alpha*( (x3(i+1)-xout(2:end,:)).ˆ2...

+yout(2:end,:).ˆ2).ˆ(.5)));

end

end

B.4 Compute Matrix T

The operator T was a critical component used to enforce the coupling between cavities.

The output from this function is used in the matrix P.

function T = ThreeCavT(x1,x2,x3,alpha)

%this function will return one matrix T for a given set of points

%x1, x2 and x3 and scale factor alpha.

N1=length(x1)-1;

N2=length(x2)-1;

N3=length(x3)-1;

L1 = abs(x1(2:end)-x1(1:end-1));

L2 = abs(x2(2:end)-x2(1:end-1));
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L3 = abs(x3(2:end)-x3(1:end-1));

Xi1 = .5*(x1(2:end)+x1(1:end-1));

Xi2 = .5*(x2(2:end)+x2(1:end-1));

Xi3 = .5*(x3(2:end)+x3(1:end-1));

T = zeros(N1+N2+N3,N1+N2+N3);

for i = 1:N1

for j = 1:N1

if i == j

T(i,j) = (-4- alphaˆ2*L1(i))/...

(2*alpha*pi)*besselsing(alpha*L1(i)/2);

else

T(i,j)=(-4 - alphaˆ2*L1(j)*L1(i))/...

(4*pi)*besselk(0,alpha*abs(Xi1(i)-Xi1(j)));

end

end

for k = 1:N2 %k points in cav 2, i points in cav 1. sign = +1

T(i,N1+k)=(-4 - alphaˆ2*L2(k)*L1(i))/...

(4*pi)*besselk(0,alpha*abs(Xi1(i)-Xi2(k)));

end

for k = 1:N3 %k points in cav 3, i points in cav 1. sign = +1

T(i,N1+N2+k)=(-4 - alphaˆ2*L3(k)*L1(i))/...

(4*pi)*besselk(0,alpha*abs(Xi1(i)-Xi3(k)));

end

end

for i = 1:N2

for j = 1:N2

if i == j

T(i+N1,j+N1) = (-4- alphaˆ2*L2(i))/...

(2*alpha*pi)*besselsing(alpha*L2(i)/2);

else
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T(N1+i,N1+j)= (-4 - alphaˆ2*L2(j)*L2(i))/...

(4*pi)*besselk(0,alpha*abs(Xi2(i)-Xi2(j)));

end

end

for k = 1:N1 % k points in cav 1, i points in cav 2. sign = -1

T(i+N1,k)=(-4 - alphaˆ2*L1(k)*L2(i))/...

(4*pi)*besselk(0,alpha*abs(Xi2(i)-Xi1(k)));

end

for k = 1:N3 % k points in cav 3, i points in cav 2. sign = -1

T(i+N1,N1+N2+k)=(-4 - alphaˆ2*L3(k)*L2(i))/...

(4*pi)*besselk(0,alpha*abs(Xi2(i)-Xi3(k)));

end

end

for i = 1:N3

for j = 1:N3

if i == j

T(i+N1+N2,j+N1+N2) = (-4- alphaˆ2*L3(i))/...

(2*alpha*pi)*besselsing(alpha*L3(i)/2);

else

T(N1+N2+i,N1+N2+j)= (-4 - alphaˆ2*L3(j)*L3(i))/...

(4*pi)*besselk(0,alpha*abs(Xi3(i)-Xi3(j)));

end

end

for k = 1:N1 % k points in cav 1, i points in cav 3. sign = -1

T(i+N1+N2,k)=(-4 - alphaˆ2*L1(k)*L3(i))/...

(4*pi)*besselk(0,alpha*abs(Xi3(i)-Xi1(k)));

end

for k = 1:N2 % k points in cav 2, i points in cav 3. sign = -1

T(i+N1+N2,N1+k)=(-4 - alphaˆ2*L2(k)*L3(i))/...

(4*pi)*besselk(0,alpha*abs(Xi3(i)-Xi2(k)));

end
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end

end

B.4.1 Singular Bessel Integral.

function A=besselsing(x)

%this function returns the approximation of the besselK function integral

%from zero to x -- Error good to about x = 5 or so

gam = 0.5772156649;

lim = 20 ;

T1 =0;

T2 =0;

T3 =0;

part = 0;

k = 0;

T1 = T1+ (x/2)ˆ(2*k)/(factorial(k)ˆ2*(2*k+1));

T2 = T2+ (x/2)ˆ(2*k)/(factorial(k)ˆ2*(2*k+1)ˆ2);

for k = 1:lim %-1

T1 = T1+ (x/2)ˆ(2*k)/(factorial(k)ˆ2*(2*k+1));

T2 = T2+ (x/2)ˆ(2*k)/(factorial(k)ˆ2*(2*k+1)ˆ2);

part = part + 1/k ;

T3 = T3+ (x/2)ˆ(2*k)/(factorial(k)ˆ2*(2*k+1))*part;

end

A= -(gam +log(x/2))*x*T1+x*T2+x*T3;

% fprintf('Error < %g',A-A1)

end

B.5 Compute Matrix H

The operator H is important in coupling the time-delayed scattered fields from multiple

cavities. The matrix H computed with this function is used to fill vector b.

125



function H = MakeH(xx,yy, apidx, alpha, r)

%returns matrix H to multiply utilde by for integral approximation

%apidx is a reference vector of points on the aperture. This may be

% [x1:x2, x3:x4], and will be related to points in the xout, yout vectors

% by xvec( LY*(apidx(i) - 1)+1 )= xout(1, apidx(i))

[ L1, L2 ] = size(xx);

xvec = zeros( L1*L2, 1) ;

yvec = xvec;

xvec(:) = xx(:); yvec(:) = yy(:);

H = zeros (length(apidx), L1*L2);

f = @(x) besselk(0,alpha*sqrt(x.ˆ2 + (r/2).ˆ2));

f0 = @(x) besselk(0,alpha*sqrt(x.ˆ2 ));

h0 =2* alphaˆ2 / pi *( integral(f0, 0,r/2) -integral(f, 0,r/2));

A = r* alphaˆ2/pi*(besselk(0,alpha*sqrt( (xvec - xvec( 1) ).ˆ2+...

(yvec - r/2).ˆ2 )) - besselk(0,alpha*sqrt( (xvec - xvec( 1 ) ).ˆ2 +...

(yvec + r/2).ˆ2 )));

A( 1 : L1) = r* alphaˆ2/pi*(besselk(0,alpha*sqrt( (r/4 ).ˆ2 +...

(yvec( 1 : L1) - r/2).ˆ2 )) - besselk(0,alpha*sqrt( (r/4).ˆ2 +...

(yvec( 1 : L1) + r/2).ˆ2 )));

A(1:L1:L1*L2) = r*alphaˆ2/pi/2 *(besselk(0,alpha*sqrt(...

(xvec(1:L1:L1*L2)-r/4 - xvec( 1) ).ˆ2 )) -...

besselk(0,alpha*sqrt( (xvec(1:L1:L1*L2)-r/4 - xvec( 1) ).ˆ2 +...

( r/2).ˆ2 ))+besselk(0,alpha*sqrt( (xvec(1:L1:L1*L2)+...

r/4 - xvec( 1) ).ˆ2 )) - besselk(0,alpha*sqrt( (xvec(1:L1:L1*L2)+...

r/4 - xvec( 1) ).ˆ2 + ( r/2).ˆ2 )) );

A(1) = h0;
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RectA = zeros(size(xx));

RectA(:) = A(:);

FlipA = fliplr(RectA);

LongA = zeros(L1*(2*L2-1),1);

LongA(:) = [FlipA(:); A(L1+1:end)]';

for i = 1:length(apidx)

H(i,:) = LongA(L1*L2+1-(L1*(apidx(i))):2*L1*L2-(L1*(apidx(i))));

end
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