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Abstract 

The tension-tension fatigue behavior of a newly developed unitized composite 

material system was investigated. The unitized composite consisted of a polymer matrix 

composite (PMC) co-cured with a ceramic matrix composite (CMC). The PMC portion 

consisted of an NRPE high-temperature polyimide matrix reinforced with carbon fibers 

woven in an eight harness satin weave (8HSW). The CMC layer is a singly-ply non-

crimp 3D orthogonal weave composite consisting of a ceramic matrix reinforced with 

glass fibers. In order to assess the performance and suitability of this composite for use in 

aerospace components designed to contain high-temperature environments, mechanical 

tests were performed under temperature conditions simulating the actual operating 

conditions. In all elevated temperature tests the CMC side of the test specimen was at 

329°C while the PMC side was exposed to ambient laboratory air. The tensile properties 

were measured at elevated temperature for both on-axis [0/90] and off-axis [±45] fiber 

orientations. Tension-tension fatigue tests were conducted at elevated temperature at a 

frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R= 0.05. 

Fatigue run-out for this effort was defined as 2×105 cycles. Both strain accumulation and 

modulus evolution during cycling were analyzed for each fatigue test. Specimens which 

achieved fatigue run-out were subjected to tensile tests to failure in order to characterize 

the retained tensile properties. Microstructural investigation of tested specimens revealed 

different degrees of delamination in the material system depending on the fiber 

orientation and fatigue stress levels.  

 



v 

Acknowledgments 

First and foremost, I would like to thank Allah. I would also like to gratefully 

thank my advisor, Dr. Marina Ruggles-Wrenn, for her guidance and countless hours of 

support and guidance. In addition, I would also like to thank Dr. Thomas Eason 

(AFRL/RQHF) and Dr. Sheena Winder (AFRL/RXAN) for their time and support. I 

would also like to thank the AFIT/ENY laboratory technicians Mr. Barry Page, Mr. Jamie 

Smith, and Joshua Dewitt for their consistent support with lab equipment from training to 

maintaining. Thanks to my AFIT colleagues for making these two years, away from 

home, a wonderful and unforgettable experience. 

Last but not the least, Thanks to Mrs. Annette Robb for always being there for her 

international officers, the work you do and the endless support are not forgotten.  

 

 

 
        



vi 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................... ix 

List of Tables .....................................................................................................................xv 

Nomenclature .................................................................................................................. xvii 

List of Acronyms ............................................................................................................ xvii 

I.  Introduction .....................................................................................................................1 

II. Background .....................................................................................................................4 

2.1 Composite Materials ...............................................................................................4 

2.2 Polymer Matrix Composites ...................................................................................5 

2.3 Ceramic Matrix Composites ...................................................................................5 

2.4 2D vs 3D Reinforcement ........................................................................................6 

2.5 Previous Research on Unitized PMC/CMC Composites .......................................7 

III. Material and Test Specimen .........................................................................................11 

3.1 Unitized PMC/CMC Composite Material System ...............................................11 

3.2 Specimen Geometry .............................................................................................13 

3.3 Specimen Preparation ...........................................................................................13 

IV Experimental Setup and Test Procedures .....................................................................16 

4.1 Mechanical Testing Equipment ............................................................................16 

4.2 Temperature Calibration .......................................................................................17 

4.3 Mechanical Test Procedures .................................................................................19 

4.3.1 Room Temperature Elastic Modulus Measurements. .......................................19 

4.3.2 Monotonic Tensile Tests. ..................................................................................20 



vii 

4.3.3 Fatigue Tests. .....................................................................................................20 

4.4 Optical Microscopy ..............................................................................................21 

V. Results and Discussions ................................................................................................22 

5.1 Assessment of Specimen-to-Specimen Variability ..............................................22 

5.2 Thermal Expansion ...............................................................................................24 

5.3 Monotonic Tensile Tests at Elevated Temperature ..............................................26 

5.3.1 Experimental Results. ........................................................................................26 

5.3.2 Comparison of Tensile Properties Obtained for the 2D PMC/3D CMC with the 

Tensile Properties Obtained for the 2D PMC and the 2D PMC/2D CMC at Elevated 

Temperature. ...............................................................................................................30 

5.4 Tension-Tension Fatigue at Elevated Temperature ..............................................33 

5.4.1 Fatigue Performance of Material System 4 (2D PMC/3D CMC). ....................33 

5.4.2 Comparison of Fatigue Performance of MS4 to MS2 and MS3 Composites. ..41 

5.5 Post-Fatigue Retained Tensile Properties .............................................................45 

5.6 Optical Microscopy Examination .........................................................................48 

5.6.1 Examination of the MS4 specimens with 0/90 fiber orientation. ......................49 

5.6.2 Examination of the MS4 specimens with ±45 fiber orientation. .......................52 

VI. Conclusion and Recommendations..............................................................................55 

6.1 Concluding Remarks ............................................................................................55 

6.2 Recommendations ................................................................................................56 

Appendix A: Description of the compared material systems ............................................57 

A.1 Material System 2: 2D Weave PMC ...................................................................57 

A.2 Material System 3: 2D Weave Unitized Composite ............................................57 

Appendix B: Additional Fatigue plots ...............................................................................58 



viii 

Appendix C: Additional Optical images ............................................................................65 

Bibliography ......................................................................................................................67 

 



ix 

List of Figures 

Page 

Figure 1. Use of different materials in aircraft structures over time. [1] ............................ 1 

Figure 2. Laminated Composite Materials [7] .................................................................... 4 

Figure 3. Comparison of general characteristics of thermosets and thermoplastics. 

Reproduced from [8] .................................................................................................... 5 

Figure 4. Schematic of a non-crimp 3D orthogonal weave [12]. ........................................ 7 

Figure 5: Tension-tension specimen geometry, all dimensions in inches ........................ 13 

Figure 6. Unitized composite specimen with fiberglass tabs ............................................ 15 

Figure 7. Testing facility. .................................................................................................. 17 

Figure 8: Temperature calibration specimen. ................................................................... 18 

Figure 9. Furnace insulation setup: a) Back insert in place b) Specimen gripped   c) 

Specimen ready for testing ......................................................................................... 18 

Figure 10. Zeiss optical microscope. ................................................................................ 21 

Figure 11. Distribution of room-temperature modulus values obtained for the unitized 2D 

PMC/3D CMC material system ................................................................................. 23 

Figure 12. Thermal strain vs. time. ................................................................................... 24 

Figure 13. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with 0/90 fiber 

orientation at elevated temperature. ........................................................................... 28 

Figure 14. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with ±45° fiber 

orientation at elevated temperature. ........................................................................... 29 

Figure 15. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with 0/90° and 

±45° fiber orientations at elevated temperature. ........................................................ 29 



x 

Figure 16. Tensile stress-strain curves obtained for the MS2, MS3, and MS4 with 0/90° 

fiber orientation at elevated temperature. MS2 and MS3 results from Wilkinson [3].

 .................................................................................................................................... 31 

Figure 17. Tensile stress-strain curves obtained for the MS2, MS3, and MS4 with ±45° 

fiber orientation at elevated temperature. MS2 and MS3 results from Wilkinson [3].

 .................................................................................................................................... 32 

Figure 18. S -N curves for the MS4 at elevated temperature. Arrow indicates specimen 

achieved fatigue run-out. ............................................................................................ 35 

Figure 19. S -N curves for the MS4 with ±45° fiber orientation at elevated temperature. 

Arrow indicates specimen achieved fatigue run-out. ................................................. 35 

Figure 20. S -N curves for the MS4 at elevated temperature. Maximum stress is shown as 

% UTS. Arrow indicates specimen achieved fatigue run-out. ................................... 36 

Figure 21. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-1 of the MS4 with 0/90° fiber orientation at elevated temperature. ..................... 37 

Figure 22. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-9 of the MS4 with 0/90° fiber orientation at elevated temperature. ..................... 37 

Figure 23. Normalized modulus vs. fatigue cycles for the MS4 with 0/90° fiber 

orientation at elevated temperature. ........................................................................... 38 

Figure 24. Maximum and minimum strains vs. fatigue cycles for the MS4 with 0/90° 

fiber orientation at elevated temperature. ................................................................... 39 

Figure 25. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-15 of the MS4 with ±45° fiber orientation at elevated temperature. .................... 40 



xi 

Figure 26. Normalized modulus vs. fatigue cycles for the MS4 with ±45° fiber orientation 

at elevated temperature. ............................................................................................. 40 

Figure 27. Maximum and minimum strains vs. fatigue cycles for the MS4 with ±45° fiber 

orientation at elevated temperature. ........................................................................... 41 

Figure 28. S-N curves for the MS4, MS3, and MS2 with 0/90° fiber orientation at 

elevated temperature. Arrow indicates specimen achieved fatigue run-out. MS2 and 

MS3 data from Wilkinson [3]. ................................................................................... 42 

Figure 29. S-N curves for the MS4 and MS2 with 0/90° fiber orientation at elevated 

temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. Maximum stress is shown as % UTS. MS2 and MS3 data 

from Wilkinson [3]. .................................................................................................... 42 

Figure 30. S-N curves for the MS4 and MS3 with 0/90° fiber orientation at elevated 

temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. Maximum stress is shown as % UTS. MS2 and MS3 data 

from Wilkinson [3]. .................................................................................................... 43 

Figure 31. S-N curves for the MS4, MS3, and MS2 with ±45° fiber orientation at elevated 

temperature. Arrow indicates specimen achieved fatigue run-out. MS2 and MS3 data 

from Wilkinson [3]. .................................................................................................... 44 

Figure 32. S-N curves for the MS4 and MS2 with ±45° fiber orientation at elevated 

temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. ............................................................................................ 44 



xii 

Figure 33. S-N curves for the MS4 and MS3 with ±45° fiber orientation at elevated 

temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. ............................................................................................ 45 

Figure 34. Retention of (a) stiffness and (b) tensile strength of the MS4 specimens 

subjected to prior fatigue at Tright= 329°C in laboratory air ....................................... 46 

Figure 35. Stress vs. strain for the MS4 with 0/90° fiber orientation subjected to prior 

fatigue at elevated temperature. Stress-strain curves for the as-processed material are 

shown for comparison. ............................................................................................... 47 

Figure 36. Stress vs. strain for the MS4 with ±45° fiber orientation subjected to prior 

fatigue at elevated temperature. Stress-strain curves for the as-processed material are 

shown for comparison. ............................................................................................... 47 

Figure 37. Optical micrographs of as-processed MS4 specimen with 0/90° fiber 

orientation (T7-2): (a)-(b) side views, (c) PMC face, (d) CMC face. ........................ 49 

Figure 38. Stitched optical micrographs of the MS4 0/90° specimens T7-8 and T7-1 after   

failure in tension at elevated temperature. ................................................................. 50 

Figure 39. Stitched optical micrographs of MS3 0/90° specimen T5-2 following failure in 

tension at room temperature and load removal. From Wilkinson [3] ........................ 51 

Figure 40.  Schematic of non-homogeneous deformation during tension-tension cyclic 

loading. Individual plies are not shown. [17] ............................................................. 51 

Figure 41. Stitched optical micrograph of the MS4 0/90˚ specimen T7-4 after failure 

under tension-tension fatigue at 430 MPa: (a) Front, (b) back, (c) left, (d) right. ..... 52 

Figure 42. Optical micrograph of specimen T7-4 viewed from an angle after failure under 

tension-tension fatigue at 430 MPa. ........................................................................... 52 



xiii 

Figure 43. Optical micrographs of as-processed MS4 specimen with ±45° fiber 

orientation (T8-7): (a)-(b) side views, (c) PMC face, (d) CMC face. ........................ 53 

Figure 44. Stitched optical micrographs of the MS4 ±45° specimens T8-6 and T8-10 after   

failure in tension at elevated temperature. ................................................................. 53 

Figure 45. Optical micrograph of the MS4 ±45˚ specimen T8-1 after failure in tension-

tension fatigue at 76 MPa: (a)-(b) side views, (c) PMC face, (d) CMC face. ............ 54 

Figure 46. Optical micrograph of specimen T8-1 viewed from an angle after failure in 

tension-tension fatigue at 76 MPa. ............................................................................. 54 

Figure 47. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-17 of the MS4 with 0/90° fiber orientation at elevated temperature. ................... 58 

Figure 48. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-19 of the MS4 with 0/90° fiber orientation at elevated temperature. ................... 58 

Figure 49. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-14 of the MS4 with 0/90° fiber orientation at elevated temperature. ................... 59 

Figure 50. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-7 of the MS4 with 0/90° fiber orientation at elevated temperature. ..................... 59 

Figure 51. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T7-12 of the MS4 with 0/90° fiber orientation at elevated temperature. ................... 60 

Figure 52. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-14 of the MS4 with ±45° fiber orientation at elevated temperature. .................... 60 

Figure 53. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-9 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 61 



xiv 

Figure 54. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-7 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 61 

Figure 55. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-2 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 62 

Figure 56. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-1 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 62 

Figure 57. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-3 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 63 

Figure 58. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-12 of the MS4 with ±45° fiber orientation at elevated temperature. .................... 63 

Figure 59. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-8 of the MS4 with ±45° fiber orientation at elevated temperature. ...................... 64 

Figure 60. Evolution of stress-strain hysteresis response with fatigue cycles for specimen 

T8-11 of the MS4 with ±45° fiber orientation at elevated temperature. .................... 64 

Figure 61. Stitched optical micrograph of the MS4 0/90˚ specimen T7-12 after failure 

under tension-tension fatigue at 450 MPa: (a) Front, (b) back, (c) left, (d) right. ..... 65 

Figure 62. Stitched optical micrograph of the MS4 0/90˚ specimen T7-20 after failure 

under tension-tension fatigue at 420 MPa: (a) Front, (b) back, (c) left, (d) right. ..... 65 

Figure 63. Optical micrograph of the MS4 ±45˚ specimen T8-2 after failure under 

tension-tension fatigue at 72 MPa: (a) Front, (b) back, (c) left, (d) right. ................. 66 

Figure 64. Optical micrograph of the MS4 ±45˚ specimen T8-13 after failure under 

tension-tension fatigue at 62 MPa: (a) Front, (b) back, (c) left, (d) right. ................. 66 

  



xv 

List of Tables 

 Page 

Table 1. Summary of tensile properties obtained for 2D PMC/CMC at room temperature 

and elevated temperature (Tright = 329°C). Data from Wilkinson [3]. ......................... 8 

Table 2. Summary of tensile properties for 2D PMC at room temperature and elevated 

temperature (Tright = 329°C). Data from Wilkinson [3]. .............................................. 9 

Table 3. Tension-tension fatigue results for 2D PMC/CMC at elevated temperature (Tright 

= 329°C). Data from Wilkinson [3]. ............................................................................ 9 

Table 4. Tension-tension fatigue results for 2D PMC at elevated temperature (Tright = 

329°C). Data from Wilkinson [3]. .............................................................................. 10 

Table 5. Details of the three-dimensional fabric design. Data provided by Performance 

Polymer Solutions Inc. (P2SI/PROOF Research, Moraine, OH, USA). .................... 12 

Table 6. Specimen labeling scheme .................................................................................. 14 

Table 7. Average tension-tension specimen dimensions. ................................................. 14 

Table 8. Furnace set point temperature for elevated temperature tests ............................. 19 

Table 9. Room-temperature elastic modulus. ................................................................... 22 

Table 10. Thermal strain data obtained for 0/90 specimens ............................................. 25 

Table 11. Thermal strain data obtained for ±45° specimens ............................................ 25 

Table 12. Thermal strain data obtained for 2D PMC/2D CMC. Data from Wilkinson [3].

 .................................................................................................................................... 26 

Table 13. Summary of tensile properties for the 2D PMC/3D CMC with 0/90 fiber 

orientation at elevated temperature (Tright = 329°C) ................................................ 27 



xvi 

Table 14. Summary of tensile properties for the 2D PMC/3D CMC with ±45 fiber 

orientation at elevated temperature (Tright = 329°C) .................................................. 27 

Table 15. Summary of tensile properties for the 2D PMC (MS2) and the 2D PMC/2D 

CMC (MS3) at elevated temperature (Tright = 329°C) ............................................... 30 

Table 16. Tension-tension fatigue results for MS4 with 0/90° fiber orientation at        

Tright = 329°C in laboratory air ................................................................................ 34 

Table 17. Tension-tension fatigue results for MS4 with ±45° fiber orientation at          

Tright = 329°C in laboratory air ................................................................................... 34 

Table 18. Retained tensile properties of the MS4 specimens subjected to prior fatigue at      

Tright= 329°C in laboratory air .................................................................................... 46 

Table 19. Retained properties of the MS4 specimens subjected to prior fatigue at      

Tright= 329°C in laboratory air .................................................................................... 48 

 

  



xvii 

Nomenclature  

σ   Stress 

E   Young’s modulus (GPa) 

 

List of Acronyms 

2D  Two Dimensional  

3D  Three Dimensional 

AFIT  Air Force Institute of Technology 

AFRL  Air Force Laboratory 

CMC   Ceramic Matrix Composite 

HTPMC High Temperature Polymer Matrix Composite 

MS  Material System 

MTS  Material System Test 

PMC  Polymer Matrix Composite 

SiC  Silicon Carbide 

UTS  Ultimate Tensile Stress 

 

 



1 

MECHANICAL PROPERTIES AND FATIGUE BEHAVIOR OF  

UNITIZED COMPOSITE AIRFRAME STRUCTURES  

AT ELEVATED TEMPERATURE 

 
 

  
I.  Introduction 

The use of composite materials in the aerospace industry has greatly increased in 

the recent decades. These material systems offer light weight combined with improved 

fatigue performance, excellent thermal resistance and damage tolerance. In existing and 

future Air Force systems, different airframe structures and components that operate at 

elevated temperatures utilize composite materials. Figure 1 shows the growing use of 

composite materials in aircraft structures.  

 

Figure 1. Use of different materials in aircraft structures over time. [1] 

 

Polymer matrix composites (PMCs) and ceramic matrix composites (CMCs) are 

two types of composites used in aircraft structures intended to operate at high 



2 

temperatures. The PMR-15 resin is widely used as matrix material for high temperature 

polymer matrix composites (HTPMCs) in the aerospace industry. However, research 

efforts to develop replacement polyimide resins are ongoing, mainly due to carcinogenic 

elements in PMR-15 [2]. Recently, the Performance Polymer Solutions Inc. (P2SI®) of 

Moraine, Ohio developed a polyimide NRPE resin as a possible replacement for PMR-

15. This newly developed NRPE resin was used as a matrix material in the unitized 

composite material system studied in this work.   

In aircraft application, HTPMCs are being considered for use in structural 

components that must operate in the “hot zone”. Frequently, temperatures in the “hot 

zone” exceed the maximum operating temperatures of the HTPMCs. Thermal protection 

systems (TPS) are being developed specifically to shield the HTPMC components from 

excessive temperatures. The unitized PMC/CMC composite studied in this work was 

designed specifically to operate as a thermal protection system where a CMC layer serves 

as a thermal barrier for the PMC. For successful application of the unitized PMC/CMC 

composite material system in advanced aerospace systems, it is critical that mechanical 

properties and mechanical behavior of this material be thoroughly understood.  

The objective of this work was to assess the performance and suitability of the 

unitized PMC/CMC composite for use in aerospace components subjected to contain 

high-temperature environments. In order to simulate actual operating conditions, 

mechanical tests were performed with the CMC of the specimen subjected to a 

temperature of 329°C while the PMC side was open to ambient laboratory air. Monotonic 

tensile tests to failure conducted in order to measure the baseline tensile properties. 

Fatigue performance was assessed in tension-tension fatigue tests. The experimental 
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program targets both fiber-dominated and matrix-dominated mechanical properties and 

behavior. 

The following tasks were performed to achieve the research objectives: 

1. Elastic modulus of each specimen was determined at room temperature in order to 

assess specimen-to-specimen variability. 

2. Monotonic tensile tests to failure were performed in order to assess tensile stress-

strain behavior and to determine tensile properties for both 0/90 and ±45 fiber 

orientations at elevated temperature. 

3. Tension-tension fatigue tests were performed to evaluate fatigue behavior for both 

0/90 and±45 fiber orientations at elevated temperature. Based on experimental data 

fatigue S-N curves were constructed and fatigue limits corresponding to the run-out 

condition of 2×105 cycles were determined. 

4. Tested specimens were examined under optical microscope in order to elucidate 

damage and failure mechanisms.  
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II. Background 

2.1 Composite Materials 

A composite is a material consisting of two or more materials. Composites are 

designed to exhibit properties and/or performance superior to those of the constituent 

materials. Composites are typically comprised of a matrix and a dispersed phase called 

reinforcement.  The reinforcement phase can be particulates, whiskers, or fibers. Its main 

purpose is to bear the load and to provide the strength and the stiffness.  

The matrix phase is continuous and can be made from polymers, metals, or 

ceramics. Matrix keeps the fibers in the proper architecture and protects them from 

abrasion. Furthermore, in the case of polymer and metal matrix composites which exhibit 

a strong bond between the fiber and the matrix, the matrix transmits shear loading at the 

fiber/matrix interface [5]. Fibers (unidirectional or as a woven fabric) and matrix 

arranged in one layer form a lamina or ply. A laminate consists of multiple plies 

organized together. Individual plies may have different fibers orientations. Figure 2 

shows a schematic of a laminated composite material. One of the failure modes 

encountered in laminated composites is inter-laminar separation, also known also as 

delamination. This failure mode may interact with transverse cracking during the failure 

process [6]. 

 

Figure 2. Laminated Composite Materials [7] 
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2.2 Polymer Matrix Composites  

Matrix materials used in PMCs can be divided into two categories: thermoplastic 

and thermoset. The thermoplastic resins include polyesters, poly-etherimide, polyamide 

imide, polyphenylene sulfide, polyether-etherketone (PEEK), and liquid crystal polymers. 

Thermoplastic resins are melted to a viscous liquid at high processing temperature, 

formed into desired shape, then cooled. The manufacturing process is reversible; the 

thermoplastic can be reshaped by simply reheating. In contrast, thermoset resins that 

include polyesters, vinyl-esters, epoxies, and polyamides are produced by an irreversible 

curing process. This process relies on chemical reactions that crosslink the polymer 

chains into a three dimensional network. Figure 3 shows a comparison of general 

characteristics of thermoset and thermoplastic matrix materials [8]. 

 

Figure 3. Comparison of general characteristics of thermosets and thermoplastics. 
Reproduced from [8] 

 

The reinforcement phase provides strength and stiffness of the composite. Glass, 

carbon, silicon carbide (SiC), and aramid are typically used as reinforcement materials in 

PMCs [9].  

2.3 Ceramic Matrix Composites 

  Ceramic matrix composites consist of ceramic fibers embedded in a ceramic 

matrix. Ceramic matrix composites can be divided into two separate categories:  
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oxide/oxide CMCs such as Al2O3/Al2O3 and non-oxide CMCs, such as C/C, C/SiC, or 

SiC/SiC [10]. Ceramics combine high stiffness with low density while operating over a 

wide range of temperatures. However, monolithic ceramics are brittle, exhibit low 

toughness and are prone to catastrophic failure. Ceramic matrix composites, which 

exhibit improved damage tolerance and graceful failure, were developed specifically to 

combat the low toughness and propensity for catastrophic failure of the monolithic 

ceramics [5]. In the case of PMCs, a strong bond between the fibers and the matrix is 

needed to transmit load from the matrix to the fibers through shear loading at the 

interface. In contrast, in the case of the CMC, a weak fiber/matrix interface is needed to 

increase toughness and damage tolerance [5].  

2.4 2D vs 3D Reinforcement  

 A common technique employed to produce the reinforcement for composite 

materials is a 2D weaving process. This process utilizes two mutually orthogonal sets of 

yarns called weft in the transverse direction and warp in the longitudinal direction of the 

fabric. Recently a further improvement was achieved by implementing a 3D weaving 

process that includes mutually orthogonal sets of wefts arranged with a set of warps. This 

process was introduced to increase the strength in the through-thickness direction of the 

composite and to improve delamination resistance. However, the 3D weaving process can 

introduce additional internal defects and lower the in-plane properties such as the strength 

and stiffness [11]. A schematic of a non-crimp 3D orthogonal weave is shown in Figure 

4.  
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Figure 4. Schematic of a non-crimp 3D orthogonal weave [12]. 

2.5 Previous Research on Unitized PMC/CMC Composites 

The co-cured unitized composite is a novel material system that is yet to be 

thoroughly investigated. However, similar material systems have been researched. 

Consider, for example, fiber metal Laminates (FMLs) consisting of a self-reinforced 

polypropylene (SRPP) composite and an aluminum alloy. The FMLs are designed to 

combine the energy absorbing characteristics of thermoplastic matrix composites with the 

strength and stiffness of metals [13].  Recently at AFIT, Wilkinson [3] evaluated tensile 

properties and studied tension-tension fatigue behavior of a 2D PMC/CMC unitized 

composite comprised of constituents similar to those of the unitized composite studied in 

this work. A brief description of the 2D PMC/CMC unitized composite studied by 

Wilkinson is provided in the Appendix A. Results obtained by Wilkinson in tension-to-

failure tests are summarized in Tables 1 and 2. Wilkinson observed that the addition of 

the CMC layer did not offer an improvement in strength or in stiffness at room or at 

elevated temperature. Wilkinson reported that the 2D PMC (which had the same 

constituent materials and the same fiber architecture as the PMC portion of the 2D 
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PMC/3D CMC) exhibited greater strength than the 2D PMC/CMC unitized composite for 

both 0/90 and ±45 fiber orientations. The ±45 modulus of the 2D PMC was greater than 

that of the 2D PMC/CMC unitized composite, while the 0/90 modulus of the two material 

systems was roughly the same. Results obtained by Wilkinson in tension-tension fatigue 

tests are summarized in Tables 3 and 4. Wilkinson demonstrated that the 2D PMC 

offered an overall better fatigue performance than the unitized 2D PMC/CMC, especially 

at higher cyclic stress levels. 

 Note that the unitized composite studied in this work has the same matrix and 

reinforcement materials as the 2D PMC and the 2D PMC/CMC studied by Wilkinson. 

Hence, the results obtained in this work are compared to the results reported by 

Wilkinson in order to determine whether the unitized 2D-PMC/3D-CMC material system 

offers an improved mechanical performance.  

 

Table 1. Summary of tensile properties obtained for 2D PMC/CMC at room 
temperature and elevated temperature (Tright = 329°C). Data from Wilkinson [3]. 
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Table 2. Summary of tensile properties for 2D PMC at room temperature and 
elevated temperature (Tright = 329°C). Data from Wilkinson [3]. 

 

 

Table 3. Tension-tension fatigue results for 2D PMC/CMC at elevated temperature 
(Tright = 329°C). Data from Wilkinson [3]. 
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Table 4. Tension-tension fatigue results for 2D PMC at elevated temperature (Tright 
= 329°C). Data from Wilkinson [3]. 
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III. Material and Test Specimen  

This section discusses the material system investigated in this research effort, test 

specimen geometry, and test specimen preparation. 

3.1 Unitized PMC/CMC Composite Material System 

The unitized composite material system consists of a 2D PMC and a 3D CMC co-

cured together. The purpose of combining these two types of composites together is to 

create a unitized material with a CMC layer that acts as a thermal barrier for the PMC. 

The 2D PMC part consists of a P2SI® NRPE matrix reinforced with 12 plies of de-sized 

Cytec T650-35 carbon fibers woven in an eight harness satin weave (8HSW). The P2SI® 

NRPE matrix material, developed by Performance Polymer Solutions Inc. (P2SI/PROOF 

Research, Moraine, OH, USA) is a high-temperature structural thermosetting polyimide 

resin. The P2SI® NRPE resin exhibits low-melt viscosity compared to PMR-15 and is 

expected to maintain its structural integrity after continuous exposures at temperatures up 

to 343 °C [14].  

The 3D CMC portion consists of a ceramic matrix reinforced with AGY S-2 glass 

fibers in a non-crimp 3D orthogonal weave. A schematic of a non-crimp 3D orthogonal 

weave is shown in Figure 6.The ceramic matrix was produced using StarPCSTM SMP-

730 pre-ceramic resin. StarPCSTM SMP-730 is a polycarbosilane precursor to thermally 

stable silicon carbide. SMP-730 polymer can be used as a thermoplastic resin at low 

temperatures. Upon heating to higher temperatures the polymer cures to a thermoset 

solid. The cured polymer can then be fired to form a high temperature, oxidation 

resistant, amorphous silicon carbide material [15]. The S-2 fiber manufactured by AGY® 
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is based on magnesium aluminosilicate glasses. The S-2 fiber exhibits high strength, 

modulus, and stability under extreme temperature and corrosive environments [16]. The 

use of 3D reinforcement is expected to improve delamination resistance of the CMC part. 

Details of the 3D glass fiber fabric are summarized in Table 5.   

Table 5. Details of the three-dimensional fabric design. Data provided by 
Performance Polymer Solutions Inc. (P2SI/PROOF Research, Moraine, OH, USA). 

No. Warp 

Layers 
dpi1 

No. 

Fills 
ppi2 

Warps 

(%) 

Fills 

(%) 

Z 

(%)  

h 

(mm) 

Vf 

(%) 

2 8.0 3 4.4 40.3 39.9 19.8 1.7-2.0 47.9 

1 dents per inch (dent – space between the wires of a reed on a loom through which the 
warp yarns pass) 
2 picks per inch (pick – single fiber yarn pulled through a weave) 

 

The co-curing process used to fabricate the unitized PMC/CMC composite is 

proprietary. Because the unitized PMC/CMC consists of two dissimilar materials, 

physical properties of PMC/CMC panels such as constituent content percentages could 

not be readily measured. The overall thickness of the PMC/CMC specimens was 

approximately 5.5 mm. The average thickness of the PMC part was approximately 4.5 

mm, while the average thickness of the CMC part was approximately 1 mm. Hence, the 

plane of PMC/CMC co-curing is not located at the mid-plane of the unitized PMC/CMC 

composite panel. 
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3.2 Specimen Geometry 

To ensure that failure occurred within the gage section of the test specimen 

standard dog bone-shaped specimens were used for all monotonic tension tests and 

tension-tension fatigue tests. The specimen geometry is presented in Figure 5.   

 

Figure 5: Tension-tension specimen geometry, all dimensions in inches 

 

3.3 Specimen Preparation 

The AFIT Model and Fabrication shop used diamond-grinding to machine test 

specimens from composite panels. The first panel of the material system was cut into 

specimens with 0/90 fiber orientation. The second panel was cut into specimens with ±45 

fiber orientation for characterization of the off-axis material performance. Then each 

specimen was labeled. The specimen labels refer to specimen geometry, material system 

and fiber orientation. For example, T7-1 refers to tensile specimen number 1 with 0/90 

fiber orientation cut from a panel of the 2D PMC/ 3D CMC (panel MS4-1). Specimen 

labels corresponding to the material system and fiber orientations can be seen in Table 6. 

 

 



14 

Table 6. Specimen labeling scheme 

Material 
System 

Material Type 
& 

Fiber Weave 
Panel ID 

Fiber 
Orientation 

Label 
Example 
Specimen 
Labels 

Number of 
Specimens 

MS4 
2D PMC/        
3D CMC 

MS4‐1  [0/90]  T7  T7‐1  20 

MS4‐2  [±45]  T8  T8‐5  15 

 

The gage section width and thickness were measured using a Mitutoyo Absolute 

Solar Digimatic Caliper, Model N0. CD-S6”CT. A slight variation in dimensions was 

noticed and documented upon measurement of specimens. Table 7 below gives the 

average test specimen dimensions. 

Table 7. Average tension-tension specimen dimensions.  

Material System  Panel 
Fiber 

Orientation 

Average 
Width 
(mm) 

Average 
Thickness 
(mm) 

Avg Cross‐Sect.  
Area (mm2) 

MS4 
1 
2 

[0/90 ]° 
[±45]° 

7.61  6.43  48.91 

7.62  6.26  47.73 

 
In order to remove contaminants from the machining process the specimens were 

cleaned with a solution of soap and water and rinsed with distilled water. Then, they were 

dried in an Isotemp Model 282A vacuum oven set to 105°C and approximately 2 in. Hg 

pressure. After drying, the specimens were stored at room temperature in a desiccator. 

 
Prior to testing two dimples were created in the side of the specimen to ensure 

continuous contact between the specimen and the extension rods of the axial 

extensometer. Note that the dimples were positioned in the PMC portion and were kept to 

a minimal depth to avoid fracture initiation. In addition, fiberglass tabs of 1/16’’ 

thickness were attached to the top and bottom surfaces of the specimen in order to 
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prevent the wedge surface from damaging the specimen and to transfer the load. The tabs 

were bonded to the specimen using the M-bond 200 adhesive. Figure 6 shows a test 

specimen with fiberglass tabs bonded to the specimen gripping sections.  

.  

 

 

Figure 6. Unitized composite specimen with fiberglass tabs 
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IV Experimental Setup and Test Procedures 

This section provides a description of the equipment and test setup, temperature 

calibration procedure and mechanical test procedures used in this research.  

4.1 Mechanical Testing Equipment  

The 810 MTS servo-hydraulic testing machine with a 100 kN (22 kip) model 

647.10A load cell and MTS model 647.10 water-cooled hydraulic wedge grips was used 

in all tests performed in this work. The grip pressure was set to 10 MPa. The strain 

measurement was performed using an MTS model 632.53E-14 axial extensometer with a 

12.7-mm gage section. The elevated temperature tests employed a single zone MTS 653 

furnace equipped with an MTS 409.83 temperature controller. Figure 7 shows the testing 

machine, furnace, and extensometer. Flex Test 40 digital controller was used for data 

acquisition and input signal generation. The MTS station builder release 5.2B was used to 

create a configuration file while operations were controlled using the station manager 

interface. The testing procedures were developed to run each desired test and to collect 

data. Typically the following data were collected: force, force command, displacement, 

strain, test temperature, and time.  
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Figure 7. Testing facility. 

4.2 Temperature Calibration 

 The CMC side of the unitized composite faced the furnace in all tests performed 

at elevated temperature. Therefore, a temperature calibration was performed to maintain a 

temperature of 329°C in the gage section on the CMC side of the specimen. Two K type 

thermocouples were attached to the specimen gage section with Kapton tape, one on the 

CMC side, and one on the PMC side (see Figure 8). The thermocouples were then 

connected to a hand-held Omega HH501DK temperature sensor for temperature read-out. 
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Figure 8: Temperature calibration specimen. 

Furnace insulation inserts were shaped to fit the specimen geometry so as to direct 

the furnace heat to the CMC side and keep the PMC side of specimen open to ambient 

air. The insulation setup is shown in Figure 9. 

 

Figure 9. Furnace insulation setup: a) Back insert in place b) Specimen gripped   c) 
Specimen ready for testing 

 A temperature calibration procedure was developed using MTS software; the 

temperature was ramped to an initial temperature at a rate of 10°C/min. Once initial 

temperature was reached the furnace temperature controller was adjusted manually until 

the temperature of the CMC side (right side) reached the desired test temperature of 

a) b) c)
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329°C.  The temperature controller was then kept at this set temperature for 3 hours to 

ensure that temperature of 329±5 °C could be consistently maintained. Temperature 

calibration procedure was performed separately for the 0/90 and ±45 specimens. Results 

revealed that the same temperature set point was required for testing specimens with both 

fiber orientations. The furnace temperature controller set points are shown in Table 8. 

Note that two set points are given. In the course of this work one of the insulation inserts 

had to be replaced. Then temperature calibration procedure was accomplished with a new 

insert. 

Table 8. Furnace set point temperature for elevated temperature tests 

Specimen 
Type 

Furnace 
Set‐point       

°C 

MS4  605 / 535 

4.3 Mechanical Test Procedures 

4.3.1 Room Temperature Elastic Modulus Measurements. 

The room temperature elastic modulus of each specimen was measured in order to 

assess specimen to specimen variability. The modulus measurement tests were performed 

in a stress control mode with a rate of 1 MPa/s. Each specimen was subjected to three 

cycles between zero stress and 20 MPa and the strain data were collected using the 

extensometer. For each loading and unloading segment, the modulus was determined as a 

slope of a best fit line on a stress-strain curve. Average modulus was obtained by 

considering modulus values determined from all segments. 
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4.3.2 Monotonic Tensile Tests. 

The monotonic tension-to-failure tests were conducted with the CMC side of the 

specimen (right side) at an elevated temperature of 329°C and the PMC side exposed to 

ambient air. Two specimens of each fiber orientation were tested to determine the as-

processed tensile properties and to assess the tensile stress-strain behavior.  

The MTS software was used to develop the test procedures. The furnace 

temperature was first raised to the required set point at a rate of 10°C/min, and then kept 

constant for 45 min before the specimen was loaded in displacement control to failure. 

Displacement rate was 0.025 mm/s.  Failure was considered to occur when the load 

supported by the specimen dropped dramatically. The following data were collected: 

force, displacement, displacement command, strain, temperature command, temperature, 

and time. The strain data collected during the temperature ramp up and dwell periods is 

considered the thermal strain.  

4.3.3 Fatigue Tests. 

The tension-tension fatigue tests were carried out at an elevated temperature, Tright 

of 329°C, stress ratio of R = 0.05, and frequency of 1 Hz. Fatigue performance of each 

fiber orientation was investigated at different maximum stress levels. The specimens that 

achieved the fatigue run-out condition of 2×105 cycles were subjected to tension-to-

failure test in displacement control at a rate of 0.025 mm/s at elevated temperature in 

order to characterize the retained tensile properties.  

The fatigue test procedure was developed using the MTS software. The 

temperature was initially ramped at a rate of 10°C/min to the set point obtained during 



21 

temperature calibration and kept constant for 45 min prior to loading. Then the specimen 

was subjected to cyclic loading with a sine waveform in force control until specimen 

failure or run-out were achieved. A specimen that achieved run-out of 2x105 cycles was 

loaded in tension-to-failure to assess the retained tensile proprieties. The test procedure 

and data acquisition scheme used in this research were similar to those employed by 

Wilkinson [3] in prior work. 

4.4 Optical Microscopy  

In order to elucidate typical failure mechanisms, all tested specimens were 

examined with a Zeiss Discovery V12 stereoscopic optical microscope equipped with a 

Zeiss AxioCam HRc digital camera (see Figure 10). 

 

 

               Figure 10. Zeiss optical microscope. 
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V. Results and Discussions  

5.1 Assessment of Specimen-to-Specimen Variability  

In this work, one panel of the unitized composite system was cut into 0/90 

specimens while the other panel was cut into ±45° specimens. Notably, slight surface 

defects and thickness variations were observed among the specimens cut from the same 

panel. The surface defects and thickness variations are attributed to the composite 

manufacturing process. Results of the room-temperature modulus tests were used to 

assess specimen-to-specimen variability. The average room-temperature modulus values 

are presented in Table 9. 

 

Table 9. Room-temperature elastic modulus.  

  Specimen Type 
Average 
Modulus 

(GPa) 

Standard 
Deviation 

(GPa) 

Coeff. Of    
Variation 

MS4-1 
MS4-2 

T7: [0/90]  44.1139  5.3809  0.1219 

T8: [±45]  13.2958  1.0447  0.0785 

 

As expected, the modulus of the 0/90 specimens was greater than that of the ±45° 

specimens. However, 0/90 modulus values also exhibited greater variability. Distribution 

of 0/90 and ±45 modulus values is shown in Figure 11. We note that the 0/90 specimens 

had considerably more observable surface defects and greater thickness variations than 

the ±45 specimens. The presence of numerous surface defects and variations in thickness 

are likely behind the variations in room-temperature modulus values obtained for the 0/90 

specimens.  
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Figure 11. Distribution of room-temperature modulus values obtained for the 
unitized 2D PMC/3D CMC material system 

 

The stresses obtained in tension-to-failure and tension-tension fatigue tests were 

normalized in order to facilitate comparison between data obtained for different 

specimens and for more consistent and relevant illustrations. Normalized stress was 

calculated using the following equation: 

௡௢௥௠௔௟௜௭௘ௗߪ ൌ ௔௖௧௨௔௟ߪ	
ாೌೡ೒

ாೞ೛೐೎೔೘೐೙
                                    (5.1) 

Where ߪ௡௢௥௠௔௟௜௭௘ௗ  is the normalized stress value,	ߪ௔௖௧௨௔௟ is the actual stress value, ܧ௔௩௚    

is the average modulus obtained for a given fiber orientation, and	ܧ௦௣௘௖௜௠௘௡ is the 

modulus of the individual specimen. The 
ாೌೡ೒

ாೞ೛೐೎೔೘೐೙
  is the normalization ratio for a given 

specimen. A specimen was considered to be stiffer (higher modulus) when the 

normalization ratio was less than one.  
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5.2 Thermal Expansion  

 All elevated temperature tests were performed with the right (CMC) side of the 

specimen at 329°C. The temperature was ramped to a set point at a rate of 10°C/min and 

then held constant for 45 min at zero load. The thermal strain was recorded during the 

temperature ramp up and dwell periods. A representative plot of the thermal stain is 

shown in Figure 12.  

 

 

Figure 12. Thermal strain vs. time. 

 

Variation in the Tleft values noted in the course of this effort is attributed to 

variations in the laboratory ambient temperature. The thermal strains values obtained in 

this work are listed in Tables 10 and 11 for 0/90 and ±45 specimens, respectively.  
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Table 10. Thermal strain data obtained for 0/90 specimens 

Fiber 
Orientation 

Specimen  
# 

Tleft   
(°C) 

Tright   

(°C) 

Thermal 
Strain 

(%) 

[0/90] 

T7-1 65  329  0.037 
T7-2 67  329  0.037 
T7-4 64  329  0.038 

T7-6 65  329  0.043 

T7-7 68  329  0.012 

T7-8 70  329  0.020 

T7-9 67  329  0.023 

T7-10 74  329  0.028 

T7-12 64  329  0.021 

T7-13 67  329  0.040 

T7-14 72  329  0.008 

T7-15 68  329  0.019 

T7-17 70  329  0.034 

T7-19 69  329  0.046 

T7-20 67  329  0.008 

Average: 67.8  329  0.028 

Table 11. Thermal strain data obtained for ±45° specimens 

Fiber 
Orientation 

Specimen  
# 

Tleft   
(°C) 

Tright  
(°C) 

Thermal 
Strain 

(%) 

[±45] 

T8-1 64  329  0.003 
T8-2 67  329  0.071 
T8-3 64  329  0.000 

T8-4 65  329  0.015 

T8-5 64  329  0.010 

T8-6 67  329  0.004 

T8-7 68  329  0.021 

T8-8 70  329  0.027 

T8-9 67  329  0.184 

T8-10 71  329  0.002 

T8-11 64  329  0.002 

T8-12 67  329  0.009 

T8-13 69  329  0.013 

T8-14 66  329  0.003 

T7-15 70  329  0.001 

Average: 66.8  329  0.024 
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It is instructive to compare the thermal strain values obtained in this work for the 

unitized 2D PMC/3D CMC material to those reported by Wilkinson [3] for the 2D 

PMC/2D CMC material system.  We note that for each fiber orientation, the unitized 2D 

PMC/3D CMC material system produced smaller thermal strains than the 2D PMC/2D 

CMC material. The difference is particularly pronounced in the case of the ±45 

specimens. It is likely that the 3D architecture offers more thermal protection in the case 

of the ±45 fiber orientation.    

Table 12. Thermal strain data obtained for 2D PMC/2D CMC. Data from Wilkinson 
[3].  

Material 
Fiber 

Orientation 

Thermal 
Strain 

(%) 

 MS3 
[0/90] 0.026 

[±45] 0.043 

5.3 Monotonic Tensile Tests at Elevated Temperature 

5.3.1 Experimental Results. 

Due to a limited number of test specimens investigating material properties and 

behavior under conditions simulating the intended operating conditions was deemed a 

priority. Hence the tensile-to-failure tests were conducted only at elevated temperature 

(Tright = 329°C). The test results are summarized in Tables 13 and 14. The failure was 

taken to occur when a dramatic instantaneous drop in stress took place. 
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Table 13. Summary of tensile properties for the 2D PMC/3D CMC with 0/90 fiber 
orientation at elevated temperature (Tright = 329°C) 

   Fiber 
Orientation 

Specimen   
# 

Temperature  
Left/Right  

(°C) 

Elastic 
Modulus 

(GPa) 

Normalized 
Modulus 

(GPa) 

UTS 
(MPa) 

Normalized 
UTS  

(MPa) 

Failure 
Strain 
(%) 

[0/90] 
T7-10 74/329  41.80 41.04  479.19  470.50  0.992 

T7-15 68/329  38.17 37.30  513.15  501.73  1.726 

Average: 71/329  39.98  39.17  496.17  486.11  1.359 

 

Table 14. Summary of tensile properties for the 2D PMC/3D CMC with ±45 fiber 
orientation at elevated temperature (Tright = 329°C) 

Fiber 
Orientation 

Specimen   
# 

Temperature 
Left/Right     

(°C) 

Elastic 
Modulus 

(GPa) 

Normalized 
Modulus 

(GPa) 

UTS 
(MPa) 

Normalized 
UTS  

(MPa) 

Failure 
Strain 
(%) 

[±45] 
T8-5 64/329  8.08 8.00  93.82  92.69  5.402 

T8-6 67/329  9.62 9.38  96.96  94.45  4.608 

Average: 55.5/329  8.85  8.69  95.39  93.57  5.005 

 

For the 0/90° fiber orientation two specimens were tested in tension to failure at 

elevated temperature. Results in Table 13 reveal that the temperature of the left side of 

the specimen (i. e. the side open to ambient air) was fluctuating from test to test. The 

average ultimate tensile strength (UTS) was 496.17 MPa, the average modulus was 39.98 

GPa, and the average failure strain was 1.36%. Figure 13 shows the tensile stress-strain 

curves for the 0/90° fiber orientation.  
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Figure 13. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with 0/90 
fiber orientation at elevated temperature. 

 

 

Likewise, two specimens with ±45° fiber orientation were tested in tension to 

failure at elevated temperature. Figure 14 shows the corresponding stress-strain curves. 

The average UTS was 95.39 MPa, the average modulus was 8.85 GPa, and the average 

failure strain was ~5.0%. The tensile stress-strain curves obtained for the 0/90° and ±45° 

fiber orientations are plotted together in the Figure 15. It is seen that the ±45 tensile 

strength is much lower than the 0/90 tensile strength. In fact, the ±45° UTS was only 19% 

of the 0/90° UTS. This result was expected since the matrix material bears the majority of 

the load for off-axis specimens. Furthermore, a complete failure of the ±45 specimens did 

not occur when the stress reached the UTS value. Actually, the strain continuous to 

accumulate with some fibers were still resisting the load. 
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Figure 14. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with ±45° 
fiber orientation at elevated temperature. 

 

 

Figure 15. Tensile stress-strain curves obtained for the 2D PMC/3D CMC with 0/90° 
and ±45° fiber orientations at elevated temperature. 
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5.3.2 Comparison of Tensile Properties Obtained for the 2D PMC/3D CMC with the 

Tensile Properties Obtained for the 2D PMC and the 2D PMC/2D CMC at Elevated 

Temperature. 

The stress-strain response obtained in monotonic tension for the 2D PMC/3D 

CMC (MS4) is compared with the stress-strain results obtained for the 2D PMC (MS2) 

and the 2D PMC/2D CMC (MS3) by Wilkinson [3]. The results are summarized in Table 

15. Figure 16 contrasts the tensile stress-strain curves obtained for the 2D PMC/3D CMC 

(MS4), 2D PMC (MS2), and 2D PMC/2D CMC (MS3) with 0/90° fiber orientation. In 

contrary to both material systems previously evaluated which showed similar average 

stiffness and similar average failure strains, the MS4 presented much lower UTS and 

higher failure strain. There is a decrease in elasticity modulus. It is most likely that 

additional loads interacted due to the complex nature of material that it is formed by 

different components and caused the loss in strength.  

Table 15. Summary of tensile properties for the 2D PMC (MS2) and the 2D 
PMC/2D CMC (MS3) at elevated temperature (Tright = 329°C). Data from Wilkinson 

[3]. 

Material 
Fiber 

Orientation 

Normalized 
Modulus 

(GPa) 

Normalized 
UTS   

(GPa) 

Failure 
Strain 

(%) 

MS2 
[0/90] 59.95 821.5 1.281 

[±45] 13.48 128.3 12.955 

 MS3 
[0/90] 57.85 664.2 1.200 

[±45] 9.22 56.35 2.539 

Failure strain is based on 50% load drop.  
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Figure 16. Tensile stress-strain curves obtained for the MS2, MS3, and MS4 with 
0/90° fiber orientation at elevated temperature. MS2 and MS3 results from 

Wilkinson [3]. 

 

In a similar manner, Figure 17 contrasts the tensile stress-strain curves obtained 

for the three material systems with ±45° fiber orientation. Although the MS2 (2D PMC) 

with ±45 fiber orientation exhibited higher strength, stiffness, and failure strain than the 

MS4 with the ±45° fiber orientation at elevated temperature, the MS4 showed better 

tensile properties than the MS3 (2D PMC/2DCMC) with higher UTS and failure strain, 

and only slightly lower modulus. 
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Figure 17. Tensile stress-strain curves obtained for the MS2, MS3, and MS4 with 
±45° fiber orientation at elevated temperature. MS2 and MS3 results from 

Wilkinson [3]. 

 

In summary, the comparison of tensile behavior and properties produced by 

different material systems at elevated temperature demonstrated that the MS4 (2D 

PMC/3D CMC) exhibited lower UTS and lower modulus than both the MS2 (2D PMC) 

and the MS3 (2D PMC/2D CMC) with the 0/90° fiber orientation. The failure strain was 

nearly the same for the three composites. For the ±45° fiber orientation, the MS2 

exhibited higher strength and stiffness, and a significantly greater failure strain than both 

unitized composites.  Conversely, the MS4 showed higher UTS, slightly lower modulus 

and greater failure strain than the MS3. 
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5.4 Tension-Tension Fatigue at Elevated Temperature 

All fatigue tests were conducted at an elevated temperature, Tright, of 329°C with a 

minimum to maximum stress ratio of R = 0.05 at a frequency of 1 Hz. Fatigue run-out 

was set to 2x105 cycles. This section will discuss the fatigue results for the MS4 and 

compare it to fatigue performance of the MS2, and the MS3.   

5.4.1 Fatigue Performance of Material System 4 (2D PMC/3D CMC). 

Fatigue results for the MS4 specimens are summarized in Tables 16 and 17. A 

significant variability was seen in the number of cycles sustained in tests performed with 

some of the lower and intermediate stress levels. For example, T7-13 tested with max of 

82%UTS sustained 542 cycles, whereas specimen T7-1 tested with max of 83%UTS 

achieved a run-out. The early failures are attributed to severe ply delamination observed 

for these specimens.   

 The maximum stress vs. cycles to failure (S-N) curve for the 0/90° orientation is 

shown in the Figure 18.  The S-N curve for the ±45° fiber orientation is presented in 

Figure 19. Note that the S-N curve obtained for the 0/90 fiber orientation is nearly flat. 

Furthermore, in case of the 0/90 fiber orientation the fatigue limit is at 85% UTS. 

Contrastingly, in the case of the ±45 fiber orientation, the fatigue limit is only at 45% 

UTS.  
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Table 16. Tension-tension fatigue results for MS4 with 0/90° fiber orientation at 
Tright = 329°C in laboratory air. 

Fiber 
Orientation 

Specimen 
# 

Maximum 
Stress 
(MPa) 

Maximum 
Stress 
(% UTS) 

Normalized 
Max Stress 
(MPa) 

Normalized 
Max Stress     

(% Norm UTS) 

Cycles to 
Failure 
(N) 

Failure 
Strain 
(%) 

[0/90] 

T7‐7  300  60  331  62  200,000a  1.811a 

T7‐14  370  75  417  78  200,000a  2.549a 

T7‐1  410  83  313  58  200,000a  5.984a 

T7‐8  420  85  402  75  200,000a  ‐‐‐ 

T7‐19  400  81  492  92  84,203  4.075 

T7‐20  420  85  458  86  56,566  1.861 

T7‐17  400  81  426  80  33,208  1.524 

T7‐6  435  88  442  82  32,893  3.872 

T7‐4  430  87  335  63  10,326  2.165 

T7‐13  405  82  476  89  542  2.353 

T7‐2  450  91  502  94  317  2.364 

T7‐9  430  87  424  79  308  2.231 

T7‐12  450  91  462  86  32  1.474 
a Run-out; defined as 2x105 cycles. Failure of specimen did not occur when the test was terminated. 

Table 17. Tension-tension fatigue results for MS4 with ±45° fiber orientation at          
Tright = 329°C in laboratory air 

Fiber 
Orientation 

Specimen 
# 

Maximum 
Stress 
(MPa) 

Maximum 
Stress 
(% UTS) 

Normalized 
Max Stress 
(MPa) 

Normalized 
Max Stress   

(% Norm UTS) 

Cycles to 
Failure 
(N) 

Failure 
Strain 
(%) 

[±45] 

T8‐9  38  40  40  41  200,000a  0.903a 

T8‐10  43  45  44  46  200,000a  0.475a 

T8‐14  52  55  56  58  99,013  3.768 

T8‐11  48  50  49  50  48,384  4.014 

T8‐15  57  60  59  61  45,035  ‐‐‐ 

T8‐8  48  50  49  51  44,533  1.951 

T8‐7  57  60  62  64  39,061  2.151 

T8‐13  62  65  54  56  16,890  ‐‐‐ 

T8‐2  72  75  61  64  4,756  1.985 

T8‐12  67  70  62  64  2,155  5.899 

T8‐1  76  80  75  77  1,070  6.558 

T8‐3  67  70  72  75  298  2.535 

T8‐4  67  70  75  78  276  2.703 
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Figure 18. S -N curves for the MS4 at elevated temperature. Arrow indicates 
specimen achieved fatigue run-out. 

 

 

 

Figure 19. S -N curves for the MS4 with ±45° fiber orientation at elevated 
temperature. Arrow indicates specimen achieved fatigue run-out. 
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Figure 20. S -N curves for the MS4 at elevated temperature. Maximum stress is 
shown as % UTS. Arrow indicates specimen achieved fatigue run-out. 

 

Figure 21 displays the evolution of stress-strain hysteresis response with fatigue 

cycles of an MS4 specimen with 0/90° fiber orientation that achieved run-out for a 

maximum fatigue stress of 410 MPa (83% UTS). During the first cycle, the response is 

almost linear elastic. As the test progresses, the strain starts to accumulate with more 

damage occurring, and the hysteresis stress-strain loops begin to open up and acquire a 

slight “S” shape. The slope of the stress-strain loop first decreases and then increases. 

This phenomenon can be attributed to the extensive delamination occurring in the 

specimen gage section. Additionally, it is recognized that the unitized composite that 

consists of two dissimilar materials co-cured together will exhibit non-homogeneous 

deformation in the specimen gage section.  

The stress-strain plot obtained for T7-9 specimen is shown in Figure 22. This 

specimen was fatigued with a maximum stress of 430 MPa (87%UTS). Ply delamination 
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was observed early in this test. As the cycling continues, the stiffness decreases and 

appreciable strain is accumulated.    

 

Figure 21. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-1 of the MS4 with 0/90° fiber orientation at elevated temperature. 

 

 

Figure 22. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-9 of the MS4 with 0/90° fiber orientation at elevated temperature. 
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Reduction in stiffness (hysteresis modulus determined from the maximum and 

minimum stress-strain data points during a load cycle) during cycling for the MS4 

specimens with 0/90° fiber orientation can be seen in Figure 23. Considering the initial 

severe delamination and appreciable strain accumulated during the first cycle, the 

modulus was normalized to the modulus of the second cycle rather than to the modulus of 

the first cycle. Early in the fatigue test the modulus remains nearly constant then starts to 

decrease steadily until failure. The amount of modulus loss varied between 20% and 

75%. The specimens that achieved run-out produced the highest modulus loss. This was 

expected since the damage in the material was accumulating consistently as the cycling 

progressed.   

 

Figure 23. Normalized modulus vs. fatigue cycles for the MS4 with 0/90° fiber 
orientation at elevated temperature. 
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Maximum and minimum strains vs. fatigue cycles for the 0/90° specimens are 

shown in Figure 24. The minimum strain which is the strain accumulated during cycling 

ranged from 0.2% to 0.5%.  

 

 

Figure 24. Maximum and minimum strains vs. fatigue cycles for the MS4 with 0/90° 
fiber orientation at elevated temperature. 

 

The evolution of stress-strain hysteresis response with fatigue cycles obtained for 

an MS4 specimen with ±45 fiber orientation tested with fatigue stress of 57 MPa (60% 

UTS) can be seen in Figure 25. The stress-strain response reveals the viscoelastic 

behavior of the material as the loops are not linear. Note that the hysteresis modulus 

decreases as the specimen approaches failure.  

Normalized hysteresis modulus vs. fatigue cycles is presented in Figure 26. In 

tests performed with lower fatigue stresses the modulus initially increases slightly then 

decreased as the cycling continues. This initial increase in modulus is attributed to the 

fibers realigning in the direction of applied load (fiber tow “scissoring”). In tests 
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performed with intermediate and higher fatigue stresses the modulus decreases steadily 

and drops dramatically as the specimen approaches failure. The amount of modulus loss 

ranged from 2% to 70%. 

 

 

Figure 25. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-15 of the MS4 with ±45° fiber orientation at elevated temperature. 

 

Figure 26. Normalized modulus vs. fatigue cycles for the MS4 with ±45° fiber 
orientation at elevated temperature. 
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Maximum and minimum strains vs. fatigue cycles for the ±45° specimens are 

seen in Figure 27. Note significant strain ratcheting. Strains accumulated during cycling 

from 0.054% to 1.306%.  

 

Figure 27. Maximum and minimum strains vs. fatigue cycles for the MS4 with ±45° 
fiber orientation at elevated temperature. 

5.4.2 Comparison of Fatigue Performance of MS4 to MS2 and MS3 Composites. 

The fatigue performance of the MS4 with 0/90° fiber orientation is compared to 

the fatigue performance of the MS2 (2D PMC) and MS3 (2D PMC/2D CMC) in Figure 

28. The S-N curves for the MS3 and MS2 occur at greater stress levels than the S-N 

curve for the MS4. Notably the MS4 produced the lowest fatigue limit. The MS4 fatigue 

limit is 73% of the MS2 fatigue limit and 89% of the MS3 fatigue limit.  

Fatigue S-N results obtained for the three composites with 0/90 fiber orientation 

are also compared in Figures 29 and 30 where stress is shown in % UTS. It is seen that 

MS4 fatigue limit lies at greater percentage of the corresponding UTS than the MS2 and 

MS3 fatigue limits. 
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Figure 28. S-N curves for the MS4, MS3, and MS2 with 0/90° fiber orientation at 
elevated temperature. Arrow indicates specimen achieved fatigue run-out. MS2 and 

MS3 data from Wilkinson [3]. 

 

 

Figure 29. S-N curves for the MS4 and MS2 with 0/90° fiber orientation at elevated 
temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. Maximum stress is shown as % UTS. MS2 and MS3 data 
from Wilkinson [3]. 
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Figure 30. S-N curves for the MS4 and MS3 with 0/90° fiber orientation at elevated 
temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. Maximum stress is shown as % UTS. MS2 and MS3 data 
from Wilkinson [3]. 

 

Fatigue performance of the three material systems with ±45° fiber orientation is 

compared in Figure 31. It is seen that the MS2 offers better tension-tension fatigue than 

the unitized composites. The fatigue limit obtained for the MS2 is some 38% higher than 

that obtained for the MS4. Conversely, when we examine S-N curves in Figures 32 and 

33 where maximum stress is shown as %UTS, the three material systems display 

relatively similar fatigue performance.  
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Figure 31. S-N curves for the MS4, MS3, and MS2 with ±45° fiber orientation at 
elevated temperature. Arrow indicates specimen achieved fatigue run-out. MS2 and 

MS3 data from Wilkinson [3]. 

 

 

Figure 32. S-N curves for the MS4 and MS2 with ±45° fiber orientation at elevated 
temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. 
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Figure 33. S-N curves for the MS4 and MS3 with ±45° fiber orientation at elevated 
temperature. Maximum stress is shown as % UTS. Arrow indicates specimen 

achieved fatigue run-out. 

5.5 Post-Fatigue Retained Tensile Properties  

All specimens that achieved fatigue run-out were subjected to tension-to-failure 

test at elevated temperature (Tright =329°C) in order to measure the retained tensile 

properties. The retained tensile properties are summarized in Table 18 and Figure 34.  

The retained tensile stress-strain curve for the MS4 with 0/90° fiber orientation  

is shown in Figure 35 along with the stress-strain curve for the as-processed material. 

It is clearly seen that prior fatigue especially with high fatigue stress levels causes 

significant loss in stiffness. The average stiffness loss was 37.5%. Conversely, the loss of 

tensile strength was minimal. On the average, the 0/90 specimens retained 93% of their 

tensile strength.  
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Table 18. Retained tensile properties of the MS4 specimens subjected to prior 
fatigue at      Tright= 329°C in laboratory air 

Fiber 
Orientation 

Specimen 
# 

Fatigue 
Stress 
(MPa) 

Retained 
Modulus 

(GPa) 

Modulus 
Retention 

(%) 

Retained 
Strength 

(MPa) 

Strength 
Retention 

(%) 

Failure 
Strain 
(%) 

[0/90] 

T7-07 
T7-14 

300 
370 

33.34 
14.85 

83.6 
37.1 

480.0 
426.3 

96.7 
85.9 

2.888 
3.261 

T7-01 410 16.19  40.5 490.6  98.8  3.645 

T7-08 420 35.38 88.5 448.0 90.3 --- 

[±45] 
T8-09 38 7.72 87.1 71.66 75.1 6.411 

T8-10 43 9.84 111.1 92.48 96.9 4.123 

 

Figure 34. Retention of (a) stiffness and (b) tensile strength of the MS4 specimens 
subjected to prior fatigue at Tright= 329°C in laboratory air 

(a) 

(b) 
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Figure 35. Stress vs. strain for the MS4 with 0/90° fiber orientation subjected to 
prior fatigue at elevated temperature. Stress-strain curves for the as-processed 

material are shown for comparison. 

The tensile stress-strain curves obtained for the MS4 ±45° specimens subjected to 

prior fatigue are plotted in Figure 36 together with the stress-strain curves for the as-

processed material. For the specimen pre-fatigued at 43 MPa, the stiffness increased by 

11% and the strength dropped by 3%. For the specimen subjected to prior fatigue at 38 

MPa, the modulus and strength decreased by 13% and 25%, respectively.  

 

Figure 36. Stress vs. strain for the MS4 with ±45° fiber orientation subjected to 
prior fatigue at elevated temperature. Stress-strain curves for the as-processed 

material are shown for comparison. 
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Additionally, for each specimen that achieved fatigue run-out the retained 

modulus can be compared to the elastic modulus obtained during the 1st cycle of the 

fatigue test. The purpose of such comparison is to evaluate the effect of the loading rate 

on the modulus. Recall that the tension-to-failure test is performed at a displacement rate 

of 0.025 mm/s, while in the fatigue cycle the increase from minimum to maximum load 

occurs in 0.5 s. Results are given in the Table 19. No significant differences are noted 

between the retention modulus percentages calculated using as-processed tension-to-

failure moduli and those calculated using the first cycle load-up modulus. This 

observation holds for both fiber orientations. We conclude that the loading rate has little 

to no effect on the modulus. 

Table 19. Retained properties of the MS4 specimens subjected to prior fatigue at      
Tright= 329°C in laboratory air 

Fiber 
Orientation 

Specimen 
# 

Fatigue 
Stress 
(MPa) 

Retained 
Modulus 

(GPa) 

1st Cycle 
Modulus 

(GPa) 

1st Cycle 
Modulus 
Retention 

(%) 

[0/90] 

T7-07 
T7-14 

300 
370 

33.34 
14.85 

41.12 
46.58 

81.0 
31.8 

T7-01 410 16.19  47.52  34.0 

T7-08 420 35.38 37.80 93.5 

[±45] 
T8-09 38 7.72 9.54 80.9 
T8-10 43 9.84 11.08 88.8 

5.6 Optical Microscopy Examination 

 As-processed specimens, one for each fiber orientation, as well as specimens 

tested in either tension-to-failure or tension-tension fatigue were examined under the 

Zeiss optical microscope. The optical micrographs were used to study the damage and 

failure mechanism in the unitized composite MS4.   
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5.6.1 Examination of the MS4 specimens with 0/90 fiber orientation. 

 Figure 37 shows different views of the gage section of as-processed MS4 

specimen with 0/90˚ fiber orientation. The optical micrographs reveal the rugged texture 

of the CMC portion. Notably, specimen thickness was uneven. Additionally, numerous 

matrix voids and pits were observed in the PMC portion. 

 

Figure 37. Optical micrographs of as-processed MS4 specimen with 0/90° fiber 
orientation (T7-2): (a)-(b) side views, (c) PMC face, (d) CMC face. 

 

Figure 38 shows stitched optical micrographs of two 0/90° specimens that 

achieved fatigue run-out and were subsequently failed in tension test. Specimen T7-8 was 

tested in fatigue with the maximum stress of 420 MPa, while specimen T7-1 was tested in 

fatigue with maximum stress of 410 MPa. These specimens were intentionally not broken 

in two parts after failure in order to image the non-homogeneous deformation in the gage 

section. Delamination is evident as is slight bowing out of the composite plies. Because 

the unitized composite consists of two dissimilar materials co-cured together, 
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deformation in the specimen gage section is non-homogeneous. It is likely that this non-

homogeneous deformation causes bending stresses in addition to the applied tensile 

stress. Also note the cracks propagating through the PMC part that often extend from the 

gage section into the gripping sections of the specimen.  

Similar non-homogeneous deformation and bowing out of composite plies were 

reported for the MS3 (2D PMC/2D CMC) 0/90 specimens subjected to tensile loads (see 

Figure 39). Note that the bowing out of plies is much more pronounced in the case of 

MS3 than for MS4. Recall that the CMC portion of MS3 consists of three 2D plies and 

shows severe delamination. In contrast, the CMC portion of MS4 consists of a single 3D 

ply which resists delamination. Hence bowing out of the 3D CMC ply is minimal. 

Notably the non-homogeneous deformation and bowing out of plies were also 

observed during tension-tension fatigue cycling. The plies bow out during loading and 

return to original shape during unloading (see schematic in Figure 40). 

 

Figure 38. Stitched optical micrographs of the MS4 0/90° specimens T7-8 and T7-1 
after   failure in tension at elevated temperature.  
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Figure 39. Stitched optical micrographs of MS3 0/90° specimen T5-2 following 
failure in tension at room temperature and load removal. From Wilkinson [3] 

 

Figure 40.  Schematic of non-homogeneous deformation during tension-tension 
cyclic loading. Individual plies are not shown. [17] 

 

Figures 41 and 42 show MS4 0/90 specimen that failed in tension-tension fatigue 

test with σmax of 430 MPa. Note that the specimen broke in two parts upon failure. 

Delamination of PMC plies is clearly visible as is the separation of the CMC and PMC 
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parts in the vicinity of the fracture location. Matrix cracks in the PMC part often extend 

from the gage section into the gripping sections of the specimen.  

 

Figure 41. Stitched optical micrograph of the MS4 0/90˚ specimen T7-4 after failure 
under tension-tension fatigue at 430 MPa: (a) Front, (b) back, (c) left, (d) right. 

 

Figure 42. Optical micrograph of specimen T7-4 viewed from an angle after failure 
under tension-tension fatigue at 430 MPa. 

5.6.2 Examination of the MS4 specimens with ±45 fiber orientation. 

 Figure 43 shows the gage section of as-processed MS4 specimen T8-7 with ±45˚ 

fiber orientation. Matrix voids are seen, but not as many as in the 0/90° specimens. In 

fact, the panel cut into ±45 specimens was slightly smoother than the panel cut into 0/90°. 

It also showed fewer major flaws.  
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Figure 43. Optical micrographs of as-processed MS4 specimen with ±45° fiber 
orientation (T8-7): (a)-(b) side views, (c) PMC face, (d) CMC face. 

 

Figure 44 shows stitched optical micrographs of the specimen T8-6 subjected to 

tension-to-failure test and specimen T8-10 failed in tension test after surviving 2x105 

fatigue cycles with maximum stress of 43 MPa. Failures of the two specimens have 

similar appearance and both are localized in the specimen gage section. 

 

Figure 44. Stitched optical micrographs of the MS4 ±45° specimens T8-6 and T8-10 
after   failure in tension at elevated temperature. 
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Figures 45 and 46 show the stitched micrographs of the ±45 specimen tested in 

tension-tension fatigue at 76 MPa. Note the “scissoring” effect - fibers detach from the 

matrix material and align in the direction of the applied load. Delamination of the PMC 

part is evident. However, ply delamination and severe damage were confined to the 

specimen gage section. Additional optical micrographs are provided in the Appendix C.  

 

Figure 45. Optical micrograph of the MS4 ±45˚ specimen T8-1 after failure in 
tension-tension fatigue at 76 MPa: (a)-(b) side views, (c) PMC face, (d) CMC face. 

 

Figure 46. Optical micrograph of specimen T8-1 viewed from an angle after failure 
in tension-tension fatigue at 76 MPa. 



55 

VI. Conclusion and Recommendations  

6.1 Concluding Remarks 

This research effort examined the tensile stress-strain behavior and tensile 

properties of the unitized composite MS4 (2D PMC/ 3D CMC) for both 0/90˚ and ±45° 

fiber orientations at elevated temperature. As expected, the 0/90˚ specimens presented 

significantly higher UTS and modulus values than the ±45° specimens. The tensile 

properties obtained for MS4 were also compared to the results reported by Wilkinson [3] 

for other similar material systems - the MS2 (2D PMC) and the MS3 (2D PMC/2D 

CMC). For the 0/90° fiber orientation, the MS4 exhibited lower UTS and modulus than 

the MS2 or the MS3 composites. The failure strain was nearly the same for the three 

material systems. For the ±45° fiber orientation, the MS2 exhibited higher strength and 

stiffness, and significantly greater failure strain than the MS4 unitized composite. 

Conversely, the MS4 showed higher UTS, slightly lower modulus and greater failure 

strain than the MS3. Apparently the use of the 3D fiber architecture in the CMC part 

served to improve the tensile strength of the unitized composite. 

  
The tension-tension fatigue performance of the unitized 2D PCM/3D CMC 

material system was investigated at elevated temperature for both fiber orientations. As 

expected, the ±45° specimens showed a limited fatigue performance and load bearing 

capability compared to the 0/90° specimens. Furthermore, it is noted that the fatigue 

performance of the MS2 was significantly better than that of the MS4 for both fiber 

orientations. Likewise, fatigue performance of the MS3 with 0/90 fiber orientation was 

considerably better than the fatigue performance of the MS4 with 0/90 fiber orientation. 
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However, the MS4 presented better fatigue performance than the MS3 for the ±45° fiber 

orientation.  

The use of 3D fiber architecture improves delamination resistance of the CMC of 

MS4. However, the MS4 specimens exhibit extensive delamination of the PMC plies 

during tensile tests and tension-tension fatigue test. We conclude that the MS4 material 

systems offer only marginal improvement in the overall delamination resistance. 

Furthermore, the MS4 exhibits lower tensile strength and stiffness and offers reduced 

fatigue performance compared to the previously studied MS2 and MS3 material systems.  

6.2 Recommendations 

 For future work, it is recommended to conduct additional tests to better 

understand the mechanical behavior of the MS4 unitized composite. The following 

aspects of material behavior can be investigated: 

- Effect of frequency on tension-tension fatigue. 

- Failure initiation and progression during tension-tension fatigue loading.  

- Mechanical behavior under complex operating environments including higher 

temperature and moisture. 

- Compressive properties and tension-compression fatigue performance. 

Finally, it may be beneficial to extend the 3D weave architecture to the PMC portion of 

the unitized composite. 
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Appendix A: Description of the compared material systems 

The description of material systems is as written by Wilkinson and as provided by the 

manufacturer.  

A.1 Material System 2: 2D Weave PMC 

This material system consists of the NRPE matrix reinforced with 15 plies of 2D 

carbon de-sized Cytec T650-35 fibers woven in an 8 harness satin weave. The method of 

fabrication was prepreg [3].  

A.2 Material System 3: 2D Weave Unitized Composite 

This material system is a unitized composite consisting of a PMC and a thin CMC 

layer. Both the PMC and the CMC are reinforced with a 2D fabric with an 8 harness satin 

weave. However, the matrix and reinforcement materials differ. The PMC side utilizes 

the same material and fiber fabric pattern as MS2, but has only 12 plies; whereas the 

CMC portion has 3 plies of 2D fabric, made of 1059 HT sized JPS Astroquartzr III 4581. 

The ceramic matrix, C5 developed by P2SI®, was produced by blending KDT HTT-1800 

polysilazane-based pre-ceramic resin with yttria-stabilized zirconia and silica additives. 

The method of fabrication was prepreg [3]. 
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Appendix B: Additional Fatigue plots 

Stress-strain hysteresis responses for the remaining MS4 specimens are given in 

the following Figures. 

 

Figure 47. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-17 of the MS4 with 0/90° fiber orientation at elevated temperature. 

 

 

Figure 48. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-19 of the MS4 with 0/90° fiber orientation at elevated temperature. 
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Figure 49. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-14 of the MS4 with 0/90° fiber orientation at elevated temperature. 

 

 

Figure 50. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-7 of the MS4 with 0/90° fiber orientation at elevated temperature. 
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Figure 51. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T7-12 of the MS4 with 0/90° fiber orientation at elevated temperature. 

 

 

Figure 52. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-14 of the MS4 with ±45° fiber orientation at elevated temperature. 
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Figure 53. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-9 of the MS4 with ±45° fiber orientation at elevated temperature. 

 

 

Figure 54. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-7 of the MS4 with ±45° fiber orientation at elevated temperature. 



62 

 

Figure 55. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-2 of the MS4 with ±45° fiber orientation at elevated temperature. 

 

 

Figure 56. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-1 of the MS4 with ±45° fiber orientation at elevated temperature. 
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Figure 57. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-3 of the MS4 with ±45° fiber orientation at elevated temperature. 

 

 

Figure 58. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-12 of the MS4 with ±45° fiber orientation at elevated temperature. 
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Figure 59. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-8 of the MS4 with ±45° fiber orientation at elevated temperature. 

 

 

Figure 60. Evolution of stress-strain hysteresis response with fatigue cycles for 
specimen T8-11 of the MS4 with ±45° fiber orientation at elevated temperature. 
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Appendix C: Additional Optical images 

More typical optical micrographs for the MS4 specimens are given in the current 

Appendix.   

 

Figure 61. Stitched optical micrograph of the MS4 0/90˚ specimen T7-12 after 
failure under tension-tension fatigue at 450 MPa: (a) Front, (b) back, (c) left, (d) 

right. 

 
 

Figure 62. Stitched optical micrograph of the MS4 0/90˚ specimen T7-20 after 
failure under tension-tension fatigue at 420 MPa: (a) Front, (b) back, (c) left, (d) 

right. 



66 

 

 
 

Figure 63. Optical micrograph of the MS4 ±45˚ specimen T8-2 after failure under 
tension-tension fatigue at 72 MPa: (a) Front, (b) back, (c) left, (d) right. 

 

 

 
 

Figure 64. Optical micrograph of the MS4 ±45˚ specimen T8-13 after failure under 
tension-tension fatigue at 62 MPa: (a) Front, (b) back, (c) left, (d) right. 
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