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Abstract

This dissertation focuses on increasing the ability to detect space objects and increase

Space Domain Awareness (SDA) with space surveillance sensors through image processing

and optical theory. SDA observations are collected through ground-based radar and optical

systems as well as space based assets. This research focuses on a ground-based optical

telescope system, the Space Surveillance Telescope (SST). By increasing the number of

detectable Resident Space Objects (RSOs) through image processing, SDA capabilities can

be expanded. This is accomplished through addressing two main degrading factors present

in typical SDA sensors; spatial undersampling in the collected data and noise models and

assumptions used in current algorithms. The assigned cost and a priori probabilities of

a Bayes Multiple Hypothesis Test (MHT) are investigated in this dissertation to address

the spatial undersampling. New algorithms are developed and tested, and demonstrated

improved detection capabilities at operationally realistic false alarm rates. Additionally, a

new noise model is developed which more accurately represents the received noise present

in data collected with surveillance telescopes under certain atmospheric conditions. These

algorithm have demonstrated probability of detection improvement of up to 80 percent in

collected SST data over the currently employed detection techniques.
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OPTICAL THEORY IMPROVEMENTS TO SPACE DOMAIN AWARENESS

I. Introduction

1.1 Motivation

The motivation for this research is to increase Space Domain Awareness (SDA)

capabilities by proposing a new detection algorithm that improves the ability to detect space

objects. SDA is a large field that encompasses several components including the detection,

tracking, and characterization of space objects. These objects include satellites, orbital

debris, and Near-Earth Asteroids (NEA). SDA is currently achieved through multiple

methods including ground and space-based optical systems and ground-based radars. This

research effort focuses on ground-based observation telescopes, specifically the Space

Surveillance Telescope (SST). The SST is a telescope built by MIT Lincoln Labs under

the direction of the Defense Advanced Research Projects Agency (DARPA). The mission

of the SST program is “to enable ground-based, broad-area search, detection and tracking

of small objects in deep space for purposes such as space mission assurance and asteroid

detection [1].” The SST is a large field-of-view telescope with the ability to quickly scan the

night sky and detect and track objects in the Earth’s orbit, as well as deep space asteroids.

There are multiple stakeholders in SDA data collection. They include the Department

of Defense (DoD) and other US and foreign government agencies. These agencies have

published space policies that include improving SDA data collection as a priority for

their organization [2–4]. It is important that space objects in orbit are cataloged in order

to mitigate their potential to cause severe damage to space assets through collisions or

malicious actions. Avoiding space objects is critical to maintaining functional space assets

and retaining a tactical edge in the space domain. Information collected by the SST and

1



other SDA telescopes is used for achieving the goals outlined in US space policies and for

maintaining a robust and accurate SDA picture. Any improvements in the ability of the

SST to detect objects in orbit will help in satisfying this goal of improved detection and

characterization of space objects. Figure 1.1 is a visual representation of objects located

in Earth’s orbit. It provides a graphical example of the orbital areas that contain the most

congestion and concern. 95 percent of the objects displayed in Figure 1.1 are orbital debris

[5].

Figure 1.1: NASA visual representation of objects in Earth’s orbit [5].

In addition to the detection of objects in orbit, detecting NEAs is another part of the

SST’s mission. National Aeronautics and Space Administration (NASA) has been tasked

with detecting 90 percent of the NEAs that pose a severe threat to humankind by 2020 [6].

These objects are defined as asteroids larger than 140m in diameter that have a perihelion

distance of less than 1.3 Astronomical Units from the sun. In a 2010 National Research

Council (NRC) report on the progress towards this goal, it was determined that the NEA

survey is not on track to be completed by 2020 [7]. One major challenge identified is
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the lack of necessary funding. These conclusions were further detailed in a 2014 NASA

Inspector General report [8]. Due to a lack of necessary funding, as stated in these reports,

there is a significant benefit to utilizing existing telescope systems to improve SDA data

collection efforts. Improving the ability of the SST to detect dimmer and smaller objects

will improve the progression towards the mandated goal, with little or no additional cost

or hardware. At the time of this report, NASA believes they have currently surveyed 10

percent of the 90 percent goal, with many of those surveyed objects being larger than 1km.

Multiple studies have investigated the environmental and population risk factors

caused by NEAs. In [9], Chapman demonstrates that impacts from objects as small as 1km,

many of which are still not cataloged as stated previously, have the potential to destabilize

the global ecosystem threatening human civilization. Other studies explore other potential

asteroid impact factors, including an ocean impact study by Morrison et. al. [10], and bias

corrected impact prediction data by Stuart and Binzel [11].

1.2 System Description

This dissertation focuses mainly on the SST. To investigate the research questions

proposed, both simulated and captured SST data is processed with the newly developed

detection algorithms. The SST system is a Mersenne-Schmidt design and is currently

located at the White Sands Missile Range (WSMR) in New Mexico at approximately

8,000ft elevation [12]. The weather and altitude provide generally favorable conditions

for data collections on most nights. Table 1.1 shows additional key system parameters of

the SST. Figure 1.2 shows an optical diagram of SST as well as a model of the complete

telescope system.

The SST is currently anticipated to be moved to Exmouth, Australia. This will

improve the global coverage compared to the currently implemented Ground-based

Electro-Optical Deep Space Surveillance (GEODSS) network. In addition, a second
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Table 1.1: SST System Parameters. [13]

Parameter Value

Focal Length 3.5m

Primary Mirror / Obscuration 3.5m / 1.75m

CCD Pixels Size 15µm x 15µm

Total Number Pixels 6144x4096

Center Wavelength 500nm

telescope may be installed at the WSMR to replace the original. Any new algorithms can

potentially be implemented in the original telescope, or updated to the new data processing

pipeline.

Figure 1.2: Model and optical diagram of the Mersenne-Schmidt design for the SST. [13]
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1.3 Research Goal and Objectives

The goal of this research is to improve the detection capability of current ground-

based SDA optical telescopes with new detection algorithms by addressing two main

degrading factors: spatial undersampling and the received noise assumptions. This

dissertation addresses this research goal with the following research questions. These

research questions led to the three main topics covered in this dissertation.

1. Will a new realistic cost function improve the detection performance of a Bayes

Criterion MHT?

2. Do the assignments of a priori probabilities in a MHT improve the detection

performance?

3. Can using a more realistic noise model for detection algorithms increase the ability

to detect space objects?

Research questions 1 and 2 address the spatial undersampling, and research question

3 addresses the received noise assumptions.

1.4 Document Organization

This document is organized into 6 chapters that cover the relevant background, as

well as each research question addressed in section 1.3. Chapter 2 is a review of relevant

background and publications in this research area. The background includes detection

theory and a review of current and newly proposed algorithms. In addition, a review of

atmospheric theory and methods for correcting for the atmospheric effects present in SDA

data collections is presented.

Chapter 3 explores the development of a new detection algorithm. This algorithm

is based on an unequal-cost MHT, expanding on previously developed matched filter and

equal cost MHT algorithms.
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Chapter 4 examines the segmentation of a single pixel into the decision space for a

MHT. This segmentation is used as a basis for the prior probabilities used in a MHT.

Simulated and collected telescope data are both analyzed.

Chapter 5 investigates the underlying statistics of the received data. The goal with this

portion of the research is to expand upon the Gaussian distribution of noise assumed in the

Chapter 3. The atmosphere and random photon arrival times are investigated to create an

accurate joint model. Chapter 6 covers the future work that can be investigated after this

dissertation.
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II. Background & Literature Review

This chapter outlines background research and discoveries that relate to the research

topics discussed in this dissertation, with two main topic areas. The first topic area

is background on space object detection, focusing on both the history and current

methodology used. The second topic area is an investigation of the properties and effects

of the atmosphere, and the methods of dealing with its impact on imaging systems.

2.1 Background on Space Object Detection

The SST is one of the latest systems to collect data on space objects, including NEA

detection. Before the use of Charge-Coupled Device (CCD) technology, searches for NEAs

were conducted by two main methods. The first method involved the human eye and

using memory or note-taking to capture object locations. Through these observations,

astronomers could determine differences in object position over time in order to locate

asteroids. When photograph technology became available, the comparison of film images

allowed for detailed comparison over time. Film comparison is more exact, but still

requires manual analysis, limiting the quantity of information that can be processed and

the complexity of the algorithms that can be used.

Figure 2.1 is a plot of the number of NEA objects detected by year. It demonstrates

that the vast majority of these objects have been found and cataloged in the past 20 years.

In addition, a small percentage of the cataloged objects are what NASA classifies as large

NEAs.

As Figure 2.1 shows, large advancements in the discovery of asteroids have occurred

over the last 20 years. These discoveries can be tied to the use of digital detection

techniques. The Spacewatch program began developing digital detection techniques in

the early 1980s [14]. This program involves capturing images with CCDs, and processing
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Figure 2.1: Number of total NEO and large NEA discoveries as of 15 July 2014 [8].

the data with moving object detection algorithms. As awareness and understanding of the

threats posed by NEAs and space debris detection rose, additional programs and research

efforts were created to address these issues. Figure 2.2 demonstrates the diameters of

discovered NEA objects. As the diameter of the space object increases it becomes more

easily detectable with ground-based telescopes, and a larger percentage of the objects are

discoverable. Larger objects occur less frequently than smaller objects, so there are less to

be discovered.

Another program of note is the Lincoln Near Earth Asteroid Research (LINEAR)

program. Details about the LINEAR program are given by Stokes et al. in [15]. LINEAR

uses a GEODSS telescope to capture images together with a Binary Hypothesis Test (BHT)

point detector to detect NEAs. As described by Viggh et al., a point detector is used to

generate a binary map of ones and zeros signifying where objects are present [16]. The

SST currently uses a similar point detection algorithm to LINEAR. A binary map is

generated in a similar method to LINEAR, and then detections are monitored over three
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Figure 2.2: Diameter of currently discovered and cataloged NEAs [8].

consecutive frames to make a final detection decision. If three consecutive detections are

observed, there is considered to be an object present. This method of detection works well

if the majority of the object’s intensity is in a single pixel. A point detector yields the

largest possible Signal to Noise Ratio (SNR) for that pixel, and the greatest chance for

detection. A point detector can be implemented with relative simplicity and does not have

large computational requirements. A major drawback of this method is that the intensity

from an object can be spread over multiple pixels, reducing the peak intensity of any single

pixel. Figure 2.3 is a block diagram depicting the entire detection process used by LINEAR

[16].

The detection process contains three important elements: data capture and pre-

processing, the detection algorithm, and post-processing and output. When discussing

detection algorithms, the middle two blocks are the processes being referenced. The pre-

and post-processing portions can remain the same regardless of the detection theory used

to generate a binary map.
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Figure 2.3: LINEAR system detection block diagram based on [16]. The SST system

utilizes a similar approach to detection.

Recently more emphasis has been put on the characterization, modeling, and resolved

imaging of space objects. Gathering this information can provide additional detail on the

object, but each collection technique presents its own technical challenges. This research

does not address this aspect of SDA. The detections and tracks generated from the search

telescopes, including the SST studied in this research, will lead to follow-up investigations

by other sensors to gather additional information. The follow-up sensors may collect the

necessary characterization data. Additionally, the detection algorithms and techniques

developed in this dissertation can be applied to other research areas. One example is star

tracking for communications or navigation. The space objects and stars both appear as

point sources, and can be processed similarly. Increasing the number of detected stars in

an image by using advanced detection techniques can potentially increase the pointing or

navigation accuracy of star trackers.

There are three key factors that impact the types of detection algorithms that are

developed, and their effectiveness in detecting space objects. It is important to understand

the conditions under which the data is collected. The following assumptions are made

about the data:
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• All objects observed through the optics are unresolved point sources. The apparent

size of space objects on the detector are not necessarily limited to one pixel due

to intensity spreading effects including optical aberrations or atmospheric effects.

Since the objects are unresolved, there is no need for image reconstruction algorithms

which can be computationally costly.

• The decisions about an object being present or not are made only by the data

available in a single frame or captured image. The persistence of Resident Space

Objects (RSOs) may be noted frame to frame to reduce false alarms, as is the case

with the SST. There are algorithms that can take advantage of multiple frames to

increase detection performance, but these are not investigated in this dissertation.

• In Chapters 3 and 4, the frames are collected with long exposure imaging. According

to Goodman, long exposure images are captured with an integration period of greater

than 10ms [17]. Additionally, the integration time is not long enough to cause objects

moving at sidereal rate to streak.

Noting these assumptions, more specific detection algorithms can be developed that

take advantage of the known data collection methods. With the increase in computer

memory and processing speed, increasingly advanced detection algorithms have become

possible. Methods that do more than compare single pixels against a threshold provide

greater detection ability at the cost of processing complexity. Using the expected image of

an object viewed as a point source, or Point Spread Function (PSF), to search and make

detection decisions is known as a matched filter technique. This method allows more than

a single pixel to be used in the detection decision. Matched filtering effectively averages

the noise over all the pixels used. One current standard for a matched filter algorithm used

in multiple NEA programs is SExtractor, proposed by Bertin in [18]. This is a software

package that processes astronomical images and performs detection and classification of
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objects. The portion of SExtractor that relates to this paper is the detection, or thresholding,

step. The authors propose a method of convolution between the received data and the

PSF for faint unresolved objects, the type of objects investigated in this paper. Additional

methods by Bertin applying SExtractor and improving the algorithm can be found in

[19, 20], these improvements utilize the traditional matched filter technique.

Matched filter space object detectors can be separated into two categories: spatial only,

and spatial and temporal. In a spatial only target detection, only the spatial characteristics

of the object being investigated are utilized in the detection process, which can include

the shape and intensity distribution. This type of algorithm is used when the object does

not move significantly during the integration time of the image. Matched filter algorithms

accounting for both space and time are also utilized for detection of space objects. In these

algorithms by Gural et. al and Pohlig, the spatial and temporal characteristics are both

used to make detection decisions [21, 22]. These detection algorithms are not investigated

further in this paper because they do not match the data collection methods used in the SST,

where the integration time does not allow for significant orbital motion.

In spatial matched filtering, it is important to have an accurate model or prediction of

what the object is expected to look like in the imaging system. In [23], O’Dell shows that

the spatial sampling of the CCD pixels impacts the resulting image. The author investigates

the effects of sampling at both Rayleigh and Nyquist rates, and demonstrates the impact on

detection performance of a matched filter in undersampled systems.

In [24], Zingarelli demonstrates a method for increasing the detection performance

over a traditional matched filter techniquei in undersampled systems. Recognizing that

where the object is formed within a CCD pixel will change the distribution of the image,

the author creates multiple potential PSFs for comparison. This leads to a MHT, where

multiple sub-pixel locations of objects are used to create modeled PSFs to compare

potential objects against. A key factor in the development of the MHT is assigning the costs
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and prior probabilities of the hypotheses, which represent two of the research questions

and are investigated in Chapters 3 and 4 respectively. Figure 2.4 shows the structure

of the relevant detection algorithms described in this section. As shown in Figure 2.4,

the detection algorithms considered to this point can be described in a hierarchy. This

dissertation focuses on the matched filter MHT, and the choices for assigning costs and

prior probabilities.

Detection 
Algorithms 

Single Frame 

Point 
Detector 

Matched 
Filter 

Binary 

Hypothesis Test (BHT) 

Multiple 

Hypothesis Test (MHT) 

Multiple 
Frame 

Figure 2.4: Hierarchy of space object detection techniques considered in this research.

This visualization demonstrates how the point detection, matched filter, BHT, and MHT

algorithms are related.

In addition, the choice for the received noise can be applied to any of the detection

algorithms shown in Figure 2.4, potentially changing the performance of the algorithms.

One key factor in building a detector is accurately modeling the distribution of the expected

received data. In Chapters 3 and 4, it is assumed that the received data is Gaussian, but a
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method is presented for implementing non-Gaussian received data tests with different costs

and prior probability assumptions. In Chapter 5, a new model for noise in the PSF is

developed, and a detection algorithm based on the model is used.

The MHT proposed in this research is based on a Bayes risk described by Van Trees

[25]. In Bayes risk there are two important variables that can be assigned that change

the form and effectiveness of the test. They are the costs associated with selecting each

hypothesis and the prior probabilities, or the probability of each hypothesis occurring.

While multiple hypothesis detection based on Bayes risk is a relatively new research area

in SDA, it has applications in several other areas. One of these is the detection and

classification of reflecting objects in radar imagery investigated by Ertin [26]. The authors

present an unequal cost MHT, by penalizing misclassification of objects differently than

missed detections or false alarms. A key difference is that the choice for the cost of a

misclassification still requires the algorithm to make a classification decision, which is not

done in Chapter 3. Another example of unequal cost MHT is the removal of symbols

with errors in a frequency-hop communication system investigated by Baum and Pursley

[27]. Again, different choices for costs and received data assumptions lead to different

algorithms.

Unequal prior probability has use in other research areas outside of SDA and space

object detection. Often in cases where the input conditions might change, and adapting

the assumptions or inputs to the algorithm may provide additional performance gains.

These input conditions are the prior probabilities. Cognitive radar [28], neural networks

[29] and adaptive algorithms [30, 31], Bayes estimators [32], and quantization of prior

probabilities [33] are research areas that have investigated this effect. In some cases the

focus is comparing equal vs. unequal prior probabilities only, but some research has also

been done on a non-constant assignment of priors. In the case of the SST and SDA, the

priors may change between collections or frames due to changing atmospheric conditions.

14



Decisions about how often the priors need to be updated, or the optimal feedback for the

priors are not covered in this research. In the next section, the relevant background for the

optical model is discussed.

2.2 Optical Modeling Overview

A key element in this research is choosing an accurate optical model. The optical

model developed here is used for several purposes throughout this research, including

simulating data and creating the PSFs for the matched filter algorithms. This section

provides a brief overview of the model and details where the model is described further.

Depending on the research area, different aspects of the optical model are used. The

main components of an optical model can be described by the following four factors: the

propagation model, the model for aberrations, atmospheric model, and the received noise

model. In this dissertation, the light captured by the telescopes is generally incoherent.

This is because the source of the light from RSOs in orbit is reflected incoherent sunlight.

Additional complications and considerations are required for coherent light, but these

topics are not considered in this research.

The first step in creating an accurate optical model is recreating the electromagnetic

field as it propagates from one point in space to another. Rayleigh-Sommerfeld propagation

is derived from Maxwell’s equation and describes an electromagnetic field as the result

of a wave traveling from one plane to another. Although it is the most accurate way to

completely describe a field after a propagation, it is also the most computationally complex

method for propagating a field. For the large CCD arrays considered in this research, it is

not feasible. Rayleigh-Sommerfeld propagation can be reduced by making an assumption

about the distance from the source to the receiver plane, along with the relative size of

source and receiver planes [34]. These factors determine which method can be accurately

implemented.
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z3 �
π

4λ

[
(x − ξ)2 + (y − η)2

]2

max
(2.1)

z is propagation distance between the source and received plane, λ is the wavelength

being considered, x, y are receiver plane coordinates and ξ, η are source plane coordinates.

If equation (2.1) is true, a Fresnel propagation can be implemented. A Fresnel propagation

is less computationally complex than the Rayleigh-Sommerfeld propagation. The Fresnel

approximation can be further reduced to a Fraunhofer propagation. Fraunhofer can be

thought of as the far field effect of a propagation, or in the case where a focusing optic is

employed. It is accurate when the following condition is met:

z �
k(ξ2 + η2)max

2
(2.2)

where k is the wave number 2π
λ

. If this condition is met, it can be considered valid to

utilize a Fraunhofer propagation. The benefit of using a Fraunhofer propagation is that it

can be implemented with a two-dimensional Fourier Transform.

U(x, y) =
e jkze j k

2z (x2+y2)

jλz

∞"
−∞

U(ξ, η) exp
[
− j

2π
λz

(xξ + yη)
]

dξdη (2.3)

U(ξ, η) is the field at the source plane, and U(x, y) is the resulting field at the receiver

plane. Throughout this dissertation, Fraunhofer propagation is used. To generate the PSF,

the source field is assumed to be a single point source located at a significant distance from

the aperture. The result of this first long propagation is a plane wave normal to the optic

axis of the telescope system. The second propagation needed is from the telescope aperture

to the CCD received plane. This is where the Fraunhofer propagation is computed. The

propagation from aperture to receiver needs to take into account other factors, including

the telescope aberrations and atmosphere, which are discussed next.

An imaging system can be considered diffraction limited “if a diverging spherical

wave, emanating from a point-source object, is converted by the system into a new wave,
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again perfectly spherical, that converges toward an ideal point in the image plane [34].” In

other words, a diffraction limited system is an ideal system that contains no imperfection

on the lenses or mirrors. The diffraction limited system has the largest spatial frequency

content allowed by the aperture dimensions. Any aberrations added to a diffraction limited

system limit the maximum allowable frequency.

In a non-diffraction limited system, the defects in the optics used, or aberrations, affect

the formation of the image and generally need to be accounted for to create an accurate

model. In Chapters 3 and 4, these aberrations are included in the model and described.

In Chapter 5 aberrations are not included. This is because the focus of the research is on

the temporal changes in the PSF caused by the atmosphere, and the lens aberrations are

assumed to not change temporally over the integration period of the system.

The effect of the atmosphere on the optical model is captured in two different methods

in this dissertation. These methods are dependent on the length of integration time used in

the data collection. The two methods are a long exposure atmosphere and a short exposure

atmosphere model. More details on the model for the atmosphere are discussed in section

2.4.

2.3 Sampling Theory

The primary motivation for using a MHT is to overcome the effects of undersampling

by the CCD pixels. If a telescope system is spatially undersampled, a small shift of where

an object is formed within a single pixel can result in a different shape or distribution of

intensity. Instead of shifting and retaining the spatial information, an aliased PSF loses

spatial information and can have a different shape completely. This presents a problem in

matched filter-based detection algorithms, where the goal is to match objects in the data

to the hypothesized PSFs. Figure 2.5 shows four examples of an undersamped PSF model

generated with a small sub-pixel shifts.
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Figure 2.5: Example of four simulated PSFs impacted by spatial undersampling caused by

CCD pixels. Each PSF is shifted, but also changed in the shape and intensity distribution.

As shown in Figure 2.5, the intensity and distribution of the PSF changes as the RSO

is moved within a pixel. If the RSO is properly sampled, the PSFs would have the same

shape, and only be shifted slightly in position. A common method of determining the

sampling required is using angular resolution found through a Rayleigh criterion. In [23],

O’Dell shows that in a matched filter detection algorithm, Rayleigh always undersamples

when compared to the required Nyquist sampling. The required Nyquist sampling is found

by combining the maximum frequency present in a diffraction limited system with the

Nyquist theorem on minimum required sampling. This gives the following required spatial

sampling, ∆s, described by Goodman [34]:

∆s ≤
λ̄ f
2d

(2.4)

where λ̄ is the center wavelength observed, f is focal length of the system, and d is the

diameter of the pupil. Looking at the variables of equation (2.4), it is evident that there is

a limited amount of user control in the required Nyquist sampling. The center wavelength
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is a property of the observed light. The main method of selecting the desired sampling

rate is the ratio of f
d , but these parameters are essential to other portions of system design.

These design components include the Field of View (FoV) of the telescope and the physical

dimensions of the system.

Substituting the SST parameters into equation (2.4), a center wavelength of 500nm

with a focal length and pupil diameter of 3.5m, gives a required sampling size of 0.25µm.

The SST pixels are 15µm square, but are grouped 2x2 in these data collections. The

binned pixels give an actual sampling size of 30µm. The difference between required

and actual sampling in this case is 120 times. If the system is not diffraction limited, the

actual undersampling factor will be much less. This is due to the pupil diameter d being

limited by the effective seeing parameter, ro. Seeing parameter values change depending

on atmospheric conditions, but are typically smaller than 10cm at the Socorro, NM site.

2.4 Developing an Accurate Model for Scintillation Noise Present in a PSF

The noise present in an image captured through a telescope can have several potential

sources including read out noise, dark current, photon counting noise, and noise caused

by the atmosphere. Traditionally, SDA detection algorithms have utilized a Central Limit

Theorem justification to assume that the combination of all of the noise sources present

in the system result in an overall Gaussian distribution of noise within the received data.

Multiple research efforts have looked at detection algorithms based on the noise in the

received data not being Gaussian. In multiple research efforts it is assumed that the

noise is dominated by Poisson noise, and other sources do not contribute significantly

[22, 35]. In these cases, a more complicated relationship is found to be necessary in order to

implement the algorithm. One example of building a detector optimized for Poisson noise

is investigated by Pohlig [22]. In this case, the dominant source of noise in the received data

is the random arrival time of photons. The author states this can be achieved through a very
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low noise CCD in low intensity collection. In [35], Peterson assumes that the distribution

of the received data is Poisson, and the author achieves similar results.

The goal in this portion of research is to account for the two phenomenon present,

and combine them into a single model. These phenomenon are the atmosphere and photon

counting noise. It is well understood that noise due to random photon arrival times follows

a Poisson distribution [17]. The impact of the atmosphere, and the fluctuations it causes

in received intensity is less understood. This section outlines atmospheric theory that has

been developed, as well as current methods for overcoming its effects.

2.4.1 Overview of Atmosphere Theory.

The atmosphere causes random wavefront errors to any field that propagates through

it, and these wavefront errors are due to changes in temperature and wind at different

points in the propagation path that affect the index of refraction [36]. The degradation

in image quality due to the atmosphere presents significant challenges across several types

of imaging systems. Both coherent and incoherent optical systems, from laser systems

and communication to ground based telescope imaging account for the effects of the

atmosphere.

These systems utilize different techniques to improve the performance of the optical

system. Given the fact that the atmosphere behaves as a random process, it is impossible to

completely describe its behavior with a deterministic set of equations. Instead, many efforts

have looked at determining the statistics of the atmosphere. Assuming the atmosphere

is statistically homogeneous and isotropic, the covariance can be used to give a Power

Spectral Density (PSD) as detailed by Andrews and Phillips [36]. The PSD is a function

of the strength of turbulence in the atmosphere, C2
N . In horizontal propagation, C2

N , is often

assumed to be constant. In vertical or slant imaging, as in stellar observations, C2
N is often

modeled as a function of elevation, h. Figure 2.6 shows an example plot of a popular model

for C2
N , the Hufnagel-Valley.
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Figure 2.6: Hufnagel-Valley C2
N as a function of elevation in meters. C2

N represent the

strength of the turbulence in the atmosphere.

The Hufnagel-Valley profile depends on the value of turbulence on the ground, A.

This value affects the profile up to approximately 3000m. The value A = 1.7x10−14 is

selected for the commonly used H-V 5
7

model. Combining the statistical description of the

atmosphere with known wave propagation equations, theoretical derivations can be made

for the received fields, intensity, and intensity fluctuations. These are related to the first,

second, and fourth order moments respectively.

The random phase errors in light propagated through the atmosphere cause changes

in the shape, brightness, and location of the image formed at the focal length or CCD

of an imaging system. These changes manifest as intensity fluctuations in the received

image. These fluctuations are known as scintillation. Scintillation can present as a

temporal fluctuation, such as a star twinkling over time, or as a spatial fluctuation, known

as speckle [36]. Characterizing how scintillation can impact the PSF will result in an
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improved statistical description of noise in the received data. Knowledge of noise statistics

could potentially contribute to improving detection algorithm performance. A thorough

summary of the progress towards understanding and correcting for the earth’s atmosphere

is described by Roddier in [37].

Accounting for the effect of the atmosphere on the PSF is dependent on the exposure

time, Ts, used. In the short exposure atmosphere, the intensity has less spread, but contains

more variance in shape, intensity, and location. The long exposure atmosphere averages

the random phase effects, and as a result deceases the fluctuations, causing a larger spatial

spread in the PSF. For exposure times much greater than 10ms, atmospheric effects are

effectively averaged, and a long exposure atmosphere model can be accurately used. In the

long exposure atmosphere model, the received data is assumed to be constant in time, and

is a function of seeing, wavelength, focal length, and position. This is due to the fact that

the intensity variance over time, σ2
I , effectively goes to zero. For Ts much less than 10ms,

the effects of the atmosphere are “frozen [17].” This leads to a large variance, σ2
I . Figure

2.7 demonstrates two simulated images captured with a short exposure and long exposure

time.

(A) (B)

Figure 2.7: Simulated star captured with both (A) short and (B) long exposure time, Ts.
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In (A), the short exposure image has two factors impacting its appearance. The first

is that since a small exposure time is used, the captured intensity is quite low. As a result,

it is more difficult to separate the object from background noise. In addition, the object

may contain spatial variations due to the atmosphere. If a second short exposure image

is shown, the effect of temporal scintillation could also be demonstrated by the change in

intensity between the two images. In (B), the long integration time has allowed for more

intensity, distinguishing the object more clearly from the background. In addition, the

spatial dimensions of the object have increased due to the averaging of the atmosphere.

An example of a system operating in the short exposure model is found in the laser

communication area. Characterizing intensity fluctuations are essential to the field of laser

communications. The atmospheric degradation effect on laser beams causes a loss of

intensity and the spreading of the laser spot. Due to the high data rates typically used,

these systems operate in the short exposure regime. A key factor in a laser communication

system is signal reliability, which is related to the PDF of the intensity according to

Al-Habash et. al. [38]. For this reason, several research efforts have investigated the

fundamental distribution of noise in the propagation of light through the atmosphere.

Alternatively, a telescope imaging distant objects would need a large time period to collect

a sufficient number of photons from the dim object. Identifying the characteristics of

different atmospheric effects is important, and can help to determine appropriate methods

for correcting them. Removing atmospheric spread provides an estimate of the original

object, increasing clarity and resolution. More information about these efforts is included

in the next section.

2.4.2 Methods for correcting atmospheric effects.

There are several ways to mitigate atmospheric effects. Adaptive Optics (AO) and

image restoration are two popular methods. They can be used individually or together to

achieve increased performance. In AO, the wavefront errors are estimated, and a control
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system is used to actuate deformable mirrors to correct for these errors before the image is

formed at the CCD. Adaptive optics are implemented during the design phase of system

development. Using AO, a portion of the wavefront errors are corrected before the image

is digitally captured. This provides resolution benefits without post-processing of the data.

The additional performance comes at a cost in hardware, sensing and control, and cost.

Depending on the desired application and the benefits provided, these additional costs are

not always justifiable. In AO corrected systems, there are often residual phase errors that

are not corrected for. To correct for remaining errors, additional methods such as image

restoration can still be used. In [39, 40], the issue of image processing in AO corrected

images is investigated by Racine et. al. and Fusco et. al.

Adaptive optics systems are not investigated further in this research for two primary

reasons. One of these reasons is that the SST system, which is the focus of this research,

does not utilize an AO system. AO is not utilized in SST mainly due to the large FoV

[41]. AO operates on the assumption that all portions of the received wave propagate

through the same atmosphere or one that is highly correlated. In a large FoV collection,

this assumption is not valid. Current research efforts have demonstrated AO correction

over a 2 arcmin FoV— [42], a small percentage of the FoV of SST. The second reason AO

are not investigated further is that the techniques developed here can still be utilized in an

adaptive optics system. Figure 2.8 shows an example block diagram of an adaptive optics

telescope system.

A second method often utilized is correcting for the atmospheric effects with image

processing. In this case, no additional hardware is needed. The image formed at the

CCD still contains the effects of the atmosphere, and post-processing is used to obtain

the original image or to account for the atmosphere. Within the field of image processing,

there are two important cases that lead to different approaches. These cases are resolved

and unresolved imaging. In a resolved image, separate portions of an imaged object are
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Figure 2.8: Block diagram of an AO telescope system [43].

able to be differentiated from each other. In an unresolved image, the object may occupy a

single or small number of pixels, and much if not all spatial information about the object

is lost. The ability to resolve an object is a function of several factors, including CCD

sampling, lenses, wavelength, and the distance and size of the target. In resolved imaging,

it is often desirable to use signal processing to remove the effects of the atmosphere. These

systems are typically trying to capture physical characteristics of the object being imaged,

and the blurring caused by the atmosphere degrades and limits this capability.

There are several proposed techniques for image restoration in resolved imaging. One

common practice is to use deconvolution [44, 45]. In deconvolution, an estimate of the

truth image is computed through the reversal of the process of image formation. From

optical theory, an image is formed through the convolution of the truth object with the PSF

of the optical system [34]. Using knowledge about the possible and likely PSF, an estimate

can be formed of the truth object. Additionally, there are methods for estimating both the

PSF and the original object, known as blind deconvolution.

In an unresolved imaging system, the spatial information of the object may not be as

important. As a result, it is not necessary to implement costly image restoration algorithms.
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One example of where this type of imaging may occur is in space imaging of distant or

small objects, as is the case in this research. Although there may be instances of image

restoration in space imaging, including attempting to resolve binary star systems, this effort

does not use these techniques.

In an optical system built for detection of space objects, the algorithm used to detect

the objects is key. In this situation, the objective is to create a binary map of object

locations from an image. A detection algorithm is used to determine if each pixel is one

or zero depending on if an object is considered to be in that pixel or not. This map of the

detected object is then used for further image processing techniques to determine additional

information for cataloging objects. Such information may include orbit determination,

size, and comparison against already known objects. As described earlier, these algorithms

depend on knowledge of the distribution of the noise in the image. In these situations,

the noise caused by the atmosphere can be accounted for by understanding the statistical

fluctuations it causes.

This type of direct detection system can be useful in a situation where large amounts

of data need to be processed. The image restoration methods described previously can

be computationally expensive. In a large survey telescope like the SST, the required

processing times are not feasible. In addition, the spreading caused by the atmosphere

helps create distinct PSF shapes that can be used for match filter detection algorithms,

which are discussed in Chapter 3. This research focuses on the analysis of the distribution

of the received data to directly perform detection algorithms without AO or the image

restoration techniques described above. There are several approaches for obtaining a noise

distribution. These methods are described in the next section.

2.4.3 Statistical models for scintillation.

There are three practical methods for developing a statistical model for the noise in

the PSF. These methods are a theoretical based approach, simulation, and analysis of
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measured data. Each of these methods present benefits and challenges. If the results derived

from these methods agree, it increases confidence in the achieved result from any of the

individual methods.

Determining a statistical model from theory is the most robust method for identifying

the true distribution. This approach is independent of the telescope or imaging system

used, and is therefore applicable in any optical system. One drawback is that due to

its complicated nature, it may not be realistic to develop a closed form solution to this

problem. Starting from the first principles of atmospheric theory is the most accurate

way to build an improved detector. Several research efforts have attempted to determine

distributions of received intensity through the atmosphere. These efforts have focused on

both characterizing the statistics of the atmosphere [46–48] and the resulting PSF formed

from an optical system viewing through the atmosphere [49, 50]. One generally accepted

model of the intensity fluctuations due to the atmosphere is log-normal distribution. The

log-normal is derived from theory developed by Tatarskii in [51, 52], and is experimentally

verified in multiple physical experiments [53, 54]. The drawback to these methods is that

they assume that the noise caused by the atmosphere is the only significant source, and

therefore is the dominant source of noise in the image. This may be the case for certain

intensity objects, atmospheric conditions, or exposure times. However, this assumption is

not made in this research.

A second method for determining a statistical model is to collect and analyze a large

amount of data to develop a model. This approach does not depend on deriving the

fundamental properties of the atmosphere, but attempts to characterize it through its impact

on measured data. The drawback of this method is that the results are dependent on a large

number of data collections, and the analysis of those collections. There are several relevant

examples of published research using this method. This observational method is used by

Jee et. al. in [55], but the authors characterize spatial fluctuations in the PSF rather than
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temporal. Additionally, this work focuses on the Advanced Camera for Surveys (ACS)

which is installed on the Hubble Space Telescope (HST). This is a key difference between

this research effort and [55]. Since HST is outside of the Earth’s atmosphere, the PSF

fluctuations are not caused by the atmosphere, but by other factors.

Another research effort that investigates the statistical and temporal properties of

scintillation is completed by Dravins et. al. in [56]. In this paper, two statistical aspects of

intensity fluctuations are investigated. The first uses a photon counter to determine a density

function for the number of received photons. The second statistical aspect investigated is

the autocorrelation. The autocorrelation provides insight into the behavior of the intensity

fluctuations over time. Due to the nature of the data collection method described in this

paper, the authors investigate short exposure times, in the sub-millisecond regime. It is

shown that over a specified time separation, the correlation drops to a negligible amount.

At this time separation, it can be assumed that the two images are independent. This fact

could be used to characterize longer exposure times that might be utilized by the SST. To

match the collected data to potential distribution fits, two methods may be used. The first

method is to fit histograms of the received data to PDF and utilize an error metric like Root

Mean Squared Error (RMSE). The second method is to investigate the statistical moments

of the received data. With this method, the authors experimentally determine that a beta

distribution of the second kind provides the closest match to the statistical moments under

their assumptions. The authors have no physical motivation for choosing this distribution,

only stating that it provides the closest match to the third and fourth order moments of the

distributions tested.

A third approach to characterize the noise present is to utilize a simulation. The benefit

of a simulation is that a large amount of data can be easily generated for little to no cost.

This can solve some of the problems presented by the measured data method. A drawback

to this method is that several limiting assumptions are made to make the simulation feasible.

28



In addition, both measured data and simulation depend on utilizing specific telescope

parameters for several properties, including lens aberrations and telescope diameter to

atmospheric seeing ratio. Performing a simulation relies on modeling two key components

of the system: the atmosphere and the optical system. Building an optical model is

straightforward and well understood. Only a few assumptions such as a Fraunhofer

propagation can be used. Simulating light propagating through the atmosphere presents

several challenges. The first is whether to represent the atmosphere as a single or multiple

phase screen. Depending on assumptions of the viewing angle, either can be justifiable.

In this research, a single random phase screen is used, and its details are developed

in Chapter 5. In addition, there are several proposed methods for creating random phase

screens. They are a Fourier Transform-based phase screen described by Schmidt [57] and

a Zernike polynomial based phase screen developed by Cain and Richmond [58]. Both of

these methods use the underlying statistics developed in Kolmogorov theory [59, 60], but

implement these statistics in different ways. In [61], Roddier et. al. show that the wavefront

errors due to the atmosphere can be accurately represented with Zernike polynomials.

Using the models described above, the simulated intensity can be observed as a function of

both exposure time and seeing conditions. From this data, a statistical fit can be made to

determine which distribution most closely matches the simulated results.

This dissertation will first theoretically derives the solution for the distribution of

intensity fluctuations in a received PSF. To provide a validation of the theory, simulated

space object data will be analyzed. They will provide solutions in the case where an analytic

solution is not feasible. Chapter 3 will outline the development of an improved Multiple

Hypothesis detection algorithm based on a Gaussian assumption of noise in the collected

image.
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III. Improved Multiple Hypothesis Test through an Unequal Cost Assumption

In this Chapter a new detection algorithm that could be utilized in SDA telescopes

is proposed. Section 3.1 presents an optical model for the SST system that is used in the

algorithm. Section 3.2 describes the theory involved in developing the detection algorithm.

Section 3.3 discusses the experimental setup used to collect data for this Chapter. Section

3.4 outlines results and data analysis. Section 3.5 discusses a method for full frame

implementation of the detection algorithm. Section 3.6 discusses the conclusions made

based on the presented results and potential future work.

3.1 SST Optical Model

The image created by an optical system viewing a point source or spatial impulse

is known as the PSF. The algorithm developed for this chapter requires a model for the

expected PSF of the objects being investigated. The SST views space objects that are either

relatively small and located in earth orbit, or very distant objects like stars and asteroids.

Using geometric optics, the ratio of pixel size to focal length can be compared to the size

of the object and distance from the SST. Using this relation, it is evident that all of these

potential objects are effectively point sources to the telescope.

As described in Chapter 2, if the conditions are met, a Fourier Transform can be used

to perform a field propagation. Goodman demonstrated that the PSF of an optical system,

hopt(x, y), can be found by the following relation [34]:

hopt(x, y) = |F {P(m, n)}|2 (3.1)

where x, y are spatial distance pixel coordinates in the detector plane, and m, n are pixel

coordinates in the pupil plane. P(m, n) is a pupil function that mathematically describes the

effect of the pupil on incoming light, and F is a two-dimensional Fourier transform. This
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relation holds for a flat focal plane array, which the SST does not have. It is assumed that

the SST does not have a focal plane array in this research effort. This implies there may be

small errors in PSFs created off the optic axis. The creation of optimal PSF is not the focus

of the research, and all algorithms tested use the same flat focal plane array assumption.

In a diffraction limited optical system consisting of a perfect lens or mirror, the pupil

function consists of only the geometry of the pupil, P(m, n) = A(m, n), and contains no

other phase distortions. A(m, n) is an amplitude function that is one or zero, depending on

if light is able to pass through the pupil at the m, n pixel location. In this optical model,

the SST is assumed to have a 3.5m primary mirror and a 1.75m obscuration. The physical

telescope has secondary mirror arms and other minor obstructions, but these objects do not

have a significant impact on the produced image.

In a non-ideal imaging system, imperfections in the lenses or mirrors cause phase

distortions to any light passing through the optics. These distortions are modeled as phase

fluctuations to the pupil function [34]:

P(m, n) = A(m, n) exp
[
jθo(m, n)

]
(3.2)

The phase aberrations θo(m, n), are expressed as the sum of a set of orthonormal

Zernike polynomials, with each polynomial representing a type of phase distortion [62].

θo(m, n) =
∑

k

akZk(m, n) (3.3)

The weighting coefficients ak represent the amount of the kth Zernike polynomial

Zk(m, n) present in the optics. These coefficients are unique to the imaging system being

used. To create an accurate model of the PSF, the aberrations present in the telescope

need to be experimentally measured. Finding the values for these coefficients can be

difficult, especially in a three-mirror optical system, but Woods has described a method

for obtaining the Zernike coefficients values [63]. Using this method, the SST program can
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experimentally estimate the first 11 coefficients. These values can change over time, but

average values are used in this research to simulate the aberrations in the system. Only

the first 11 coefficients are used in this model for two reasons. The first reason is that a

large portion of the power in the aberrations is contained in the lowest order polynomials.

Secondly, the SST system is undersampled, and any high frequency distortions will not be

observable in th sampled images. Table 3.1 shows the measured coefficients for the first 11

polynomials.

Table 3.1: Average measured optical aberration Zernike coefficients, a j for the SST.

Coefficient Value (Waves) Coefficient Value (Waves)

a1 2.09 a7 0.28

a2 -5.95 a8 -0.73

a3 -5.30 a9 0.36

a4 6.89 a10 -0.48

a5 1.26 a11 -0.16

a6 -0.28

The next important effect to model is the atmosphere. The atmosphere is well modeled

as a random process to any light that travels through it. This results in a propagation path

for the light that has varying indices of refraction in space and time. The difference in path

lengths results in phase front distortions and the image is not formed correctly at the image

plane. A telescope collects photons over a specified period of time known as the integration

time, T . The random atmosphere acts differently as a function of the integration time used.

It has been shown that over long integration times, T � 100ms, the telescope effectively

averages the random atmosphere [17]. An expression for this average random atmosphere
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or long exposure Optical Transfer Function (OTF), HL, is derived in [17]. The OTF is the

Fourier transform of the PSF, and represents the frequency response of the system to an

impulse.

HL( fx, fy) = exp

−3.44


λ̄z

√
f 2
x + f 2

y

r0


5
3
 (3.4)

fx and fy are spatial frequency variables at the image plane, λ̄ is the center wavelength

of the telescope, z is the focal length, and r0 is the seeing parameter. The seeing parameter

is a variable that characterizes the intensity of fluctuations in the atmosphere. A smaller

r0 indicates stronger fluctuations, implying the atmosphere will have a larger effect on the

telescope. Typical observed ranges for r0 at the SST site in the White Sands Missile Range

are 5-15cm. Next, the Fourier Transform of the optical PSF and long exposure OTF are

multiplied in the frequency domain to obtain the combined OTF. Then the inverse Fourier

is performed to obtain the new PSF model, h(x, y):

h(x, y) = F −1
(
F

[
hopt(x, y)

]
HL( fx, fy)

)
(3.5)

The model described up to this point is accurate, if the image presented to the detector

is sampled completely. In order to sample completely, the system must sample the image

greater than the Nyquist frequency, fs. The Nyquist frequency is twice the cutoff frequency,

fc, of the system, and is the rate at which a system needs to be sampled to prevent any

aliasing. The maximum frequency content possible, or the cutoff frequency, in an optical

system is [34]:

fc =
d
λ̄z

(3.6)
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where z is the focal length of the system and d is the diameter of the aperture. Using the

inverse relationship between sampling frequency and sample spacing, the necessary sample

spacing ∆s is found by:

∆s =
1

2 fc
⇒ ∆s ≤

λ̄z
2d

(3.7)

If an optical system is not properly sampled, aliasing occurs and data is lost. A value

of 500nm is used for λ̄ in this model because it is close to the center of the visible range

and produces an integer ratio between actual pixel size and Nyquist sampling. Solving

equation (3.7) with the system parameters of the SST, the required pixel spacing needed to

accurately sample the intensity at the CCD array is ∆s = 0.25µm. For most data collections

by the SST, the 15µm pixels are grouped into 2x2 data bins, giving an effective pixel size

of ∆t = 30µm. Since ∆t > ∆s, the SST is not sampled at Nyquist. This implies that a

shift in where the image is formed at the CCD can potentially cause differently shaped

PSFs. To be able to simulate this effect, shifting is performed at this point in the model,

prior to adjustment for the aliasing caused by sampling. The effect of shifting before or

after modeling the sampling effect is well-documented in [24]. The author demonstrates

that shifting after sampling does not adequately represent the effects of sub-pixel location

object changes. To shift the PSF, h(x, y), two variables are introduced; a distance shift in

the x direction, α, and y direction, ω. Since the PSF is created in a large zero padded matrix,

utilizing a circular shift introduces no edge effects.

hs(x, y) = h(x + α, y + ω) (3.8)

After the shift is implemented, the difference between required and actual sampling is

modeled with a blurring function. Assuming square CCD sensors, this blurring function

is expressed as rectangles in the x and y dimensions with a width of β, the ratio of system
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sampling vs. required Nyquist sampling. This more accurate model for the PSF, hd(x, y), is

produced by convolving the optical PSF from equation (3.8) with the following equation:

hd(x, y) =

Nx∑
x1=1

Ny∑
y1=1

hs(x1, y1)rect
(
βx − x1

β

)
rect

(
βy − y1

β

)
(3.9)

x1 and y1 are convolution variables and Nx and Ny are the total number of pixels in the

x and y direction respectively, while hd(x, y) represents the convolved and downsampling

effects on the PSF of sampling at a frequency greater than Nyquist.

This PSF model is used for this simulation because it combines the lens aberrations

with the actual sampling size for the system, further increasing the fidelity of the SST

model. Finally, the new PSF is normalized to sum to one. This allows the PSF to be scaled

to match a specified object intensity.

hn(x, y) =
hd(x, y)

Nx∑
x=1

Ny∑
x=1

hd(x, y)
(3.10)

hn(x, y) is the final modeled PSF used in this chapter. Depending on the α and ω shifts

used, the values and distribution of hn(x, y) will change. Next, the theory and motivations

for the detection algorithm being developed is described.

3.2 Theory Development

In this section, an algorithm is developed for a Multiple Hypothesis Test (MHT).

There are several benefits to using a MHT, along with a strong physical motivation. Using

a MHT algorithm presents unique computations, which are addressed in this section.

3.2.1 Motivation and Selection of Alternate Hypotheses.

In a MHT, M different potential hypotheses are considered. Each hypothesis

corresponds to a particular set of input conditions. In this case, each input condition

represents a modeled PSF viewed through the SST system. As described in section 3.1,

sub-pixel shifts of an object’s location on the CCD array will change not just the position,
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but the shape of the resulting image. This effect due to aliasing will cause the PSF to have

different shapes depending on the location of the object at the CCD [24]. The goal of

using a MHT is to utilize several different potential PSF distributions to achieve a higher

probability of detection for an object that may be located in one of the sub-pixel locations.

Table 3.2 shows a list of potential hypotheses used in this model.

Table 3.2: List of hypotheses considered and a description of object location at the CCD.

Hypothesis Description

H0 No Object Present

H1 α1, ω1 Shifts

H2 α2, ω2 Shifts

· · · · · ·

HM−1 αM−1, ωM−1Shifts

By picking α and ω to be specific sets of spatial shifts in x and y, a model for objects

located in the corners, center, and sides of a pixel can be developed. Choosing the number

of hypotheses and their position location is an important decision. As described in Chapter

2, only two hypotheses are currently used by the SST program. These two hypotheses

are that the object is present or not present. Through a Likelihood Ratio Test (LRT),

the test is reduced to examining individual pixels and determining their SNR. If a space

object is located in the corner of a pixel, photons may spread into adjacent pixels, and

the peak intensity of the pixel of interest is lowered. This effect lowers the SNR value of

the pixel being tested, decreasing the probability of detecting that object. To mitigate this

effect, correlation algorithms are proposed to compare not just a single pixel, but the entire

expected PSF [35]. This concept is expanded to include multiple alternative hypotheses

36



consisting of shifted aliased PSFs that are used as potential alternative hypotheses [24].

Figure 3.1 shows a graphical representation of an object formed on a single pixel with

three different M values, along with the true object location. The small dot indicates the

true location of the object, and the lines indicate the separation of the pixel into its decision

space areas.

(A) (C) (B) 

1H

2H 3H

4H

5H

1H

1H

Figure 3.1: A graphical example of the division of a pixel into sub-pixel location for varying

M where the star in each figure represents the modeled location of the object and the dot is

the true location. (A) Simple Binary test, M = 2 (B) Multiple hypothesis test with M = 6,

with sub-pixel hypotheses at the four corners and center of the pixel (C) A highly sampled

pixel space with M = 121 hypotheses.

A BHT is illustrated in (A). In this case, the object is assumed to be in the center

of the pixel. Given that the object is actually located in the bottom left corner, the point

detector or correlation BHT might not adequately capture the resulting PSF. This can

manifest as a lower probability of detection. In (B), a MHT where M = 6 hypotheses is

illustrated. In this case, a PSF is created that would model an object in the bottom corner
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adequately. This algorithm would likely have a greater probability of detection due to

the strong correlation between the modeled and observed PSF. Finally in (C), a densely

sampled pixel is illustrated. Similarly to (B), this choice of M would produce a PSF that

would likely correlate well with the observed PSF. The small change in sub-pixel locations

used in (B) and (C) would not present a noticeable change in the PSF.

At a certain point, the addition of an increasing number of hypotheses introduces

error into the decision criteria. Since the PSFs are created through simulation, many

resulting shapes and intensity distributions can be created. For a large number of M,

the alternate hypotheses may have a higher chance of resembling random noise present

in the system. This effect can potentially increase the false alarm rate of the detector,

demonstrating the trade-off between the number of hypotheses and the detection capability.

In addition, the creation and hypothesis testing of the additional hypotheses presents

additional computation cost.

Theoretically, M can be increased to infinity, creating a continuously sampled space.

This result would lead to an estimation instead of a detection approach. Following this

logic, an alternative approach to the MHT presented in this section could be implemented.

In this method, an estimate is found for the sub-pixel location of a potential object at every

pixel. Then a model of the PSF due to an object at that location is created, and a BHT

is performed based on that estimate. This BHT could resemble the currently used SST

algorithm. This method would result in performing an additional estimation algorithm at

every pixel location in addition to the detection algorithm, which is a significant drawback.

Another drawback with an estimation of the location approach is that the user might

not be interested in the sub-pixel location, and only want to use that information to increase

the detection performance. In an estimation problem, the sub-pixel location would be

considered a nuisance parameter. There are methods of performing estimation without

estimating nuisance parameters, described by Kay [64], but they are utilized when the end
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goal of the problem is to estimate information about a signal. The space object detection

algorithm described here could utilize estimation for nuisance parameters, but is still a

detection problem at the core, meaning the end goal of the user is to determine if an object

is present or not.

An additional reason that this problem is framed as a MHT is that it allows for a very

specific set of choices for sub-pixel locations. This set is selected as the most likely to

occur, and will have the largest impact on the intensity and shape of the resulting PSF.

The MHT can be tailored to a specific optical system and mission requirements. In the next

section, the theory involved with creating and implementing a MHT algorithm is described.

3.2.2 Detection Algorithm Based on Bayes Risk.

In this algorithm, M different sub-pixel locations are considered. In both [25, 65] a

Bayes criterion is shown for a multiple hypothesis test, including methods for reducing the

test to a usable form. A Bayes risk hypothesis test details how to select the hypothesis that

results in the minimal risk, R, on average. The hypothesis that results in the smallest risk

is the most likely to match the true hypothesis.

R =

M−1∑
i=0

M−1∑
k=0

πkCik

∫
Zi

p(D|Hk)dD (3.11)

In the risk expression, πk is the a priori probability for the kth hypothesis, or how

likely it is to occur. Cik is the cost associated with choosing the ith hypothesis when the kth

hypothesis has occurred. The cost is a number between zero and one that indicates how

big of an error is made, with zero being no error and one being the most significant type

of error. The conditional PDF of the received data given Hk occurred is p(D|Hk). Zk is

observation space for the kth hypothesis.

To reduce this expression into a form that can be implemented, the null hypothesis

space Z0 is separated into its non-overlapping regions Z0 = Z − Z1 − . . . − ZM−1. Next,
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noting that integrals over the entire decision space Z equal one, and grouping similar terms

of Zk gives the following relation:

R =

M−1∑
k

πkCkk +

M−1∑
i

∫
Zi

M−1∑
k=0
k,i

πk (Cik −Ckk) p(D|Hk)dD. (3.12)

The first summation term in equation (3.12) is a constant risk, implying that it is

independent of the choice of region i, and can be excluded from the decision criteria. The

cost for selecting a correct hypothesis, Ckk, is assumed to have no associated risk and is

defined to be zero. The minimum Bayes risk is then found by choosing the region i that

results in the smallest risk R. The i that results in the minimum risk is the hypothesis Hi

which minimizes Bayes risk. Determining this region i is implemented by selecting the

integrand over Zi with the smallest value. This results in the following decision criteria:

Hi = min
i∈0:M−1


M−1∑
k=0
k,i

πkCik p(D|Hk)

 (3.13)

By using equation (3.13) directly, a detection algorithm can be implemented. If H0

produces the minimum risk value, then the algorithm says no object is present. On the

other hand, if any other hypothesis produces the minimum risk, it is decided that an object

is present at the sub-pixel location hypothesis providing the minimum risk value. This

MHT can be reduced further through specific choices for costs and priors, or implemented

directly. If it is implemented directly, the MHT is flexible, because any combination of

distributions for p(D|Hk), costs, or priors can be used without changing the basic structure

of the algorithm. A drawback of this method is that finding the smallest hypothesis requires

non-linear functions and is computationally complex. In this research effort, both a direct

implementation and a reduced algorithm based on specific choices are investigated. To

further reduce the MHT from equation (3.13), a few additional details are needed, including
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a model for the conditional probabilities p(D|Hk), and a structure for the prior probabilities

πk and costs Cik. These factors are investigated in the next sections.

3.2.3 Model for Received Data Given Hypothesis Hk.

An important component for a hypothesis test is having a model for the received data.

It is well-known that photon arrival times of light is a Poisson process [17]. Photon arrival

times are not the only source of noise present in the SST system. The CCD can introduce

several different sources of error, including dark current and spatial non-uniformity across

pixels [58, 66]. Under the H0 hypothesis, when no object is present, the measured data

contains only low intensity background light and noise from the CCD. Since the received

data is dominated by CCD noise, it is assumed to be Gaussian. In the other M-1 hypotheses,

there is considered to be an object present, and therefore Poisson noise will contribute more

significantly towards the overall noise level. Despite the additional Poisson noise, it is

assumed that the Gaussian noise sources still dominate in these alternate hypotheses. As

a result, the received data given these hypotheses is also considered to be Gaussian. As

described in Chapter 2, several research efforts have investigated potential alternate PDFs

for these hypotheses [22, 35]. Making these stated assumptions, the conditional PDF for a

single pixel of received data given Hk is expressed as:

P(D|Hk) =
1
√

2πσ
exp

(
−

(D − I)2

2σ2

)
(3.14)

I is the expected mean of the received data. If no object is present, H0, the expected

mean is only the background photons observed, I = B. In the other hypotheses, I is the

object intensity θ plus the constant background, I = θ + B. In both cases, σ is the standard

deviation of the received data. Assuming each pixel in the image is independent, the joint

conditional probability of received image data D given the kth hypothesis is:

P(D|Hk) =
(
2πσ2

)− NxNy
2 exp

− Nx∑
x=1

Ny∑
y=1

(D(x, y) − I(x, y))2

2σ2

 (3.15)
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In this case, I(x, y) = B for H0 and I(x, y) = θhk
n(x, y) + B for Hk. Additionally, hk

n(x, y)

is the normalized model for the PSF of the kth hypothesis.

3.2.4 Selecting a Cost Structure.

To implement the MHT, it is necessary to choose values for the costs, Cik, and

priors, πk. Often if there is not strong evidence otherwise, an equal cost and uniform

prior probability scheme is chosen. This cost scheme, a Equal-Cost Equal-Prior (ECEP)

assignment, weighs all errors with the same amount of cost. For example, a false alarm has

the same cost as an error in sub-pixel detection and a missed detection. It also assumes that

all hypotheses occur with the same probability.

Cik =


0, i = k

1, i , k
, πk =

1
M

(3.16)

In certain situations, this cost structure accurately represents the true state of the

system. In a SDA environment, it is much more probable that there is no object present,

H0, than having an object present, Hk∈1:M-1 due to the relatively small number of detectable

objects in a large search volume. As described in Chapter 2, a detection algorithm utilizing

uniform priors and equal costs is implemented [24]. One reason for its use is its ability to

reduce the algorithm to a sufficient statistic or SNR test. Using SNR is a common practice

in other SDA efforts [21]. This approach gives the author the ability to directly compare

detection algorithm performance to the point detector used by the SST. Using these equal

cost and prior assumptions equation (3.13) reduces to the following LRT comparison:

Le = max
k∈1:M−1


Nx∑
x=1

Ny∑
y=1

D(x, y) − B̂
σ

(
hk

n(x, y)
σk

)
︸                                ︷︷                                ︸

SNRk


Le

Hk

≷
H0

ΓM-ary (3.17)
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B̂ is the estimated background intensity and is found by determining the median value

of all the pixels in the 15x15 window. σ is the standard deviation of the received data. To

calculate σ, the standard deviation of the 15x15 window is found. Next, the outliers with

intensity more than 3 standard deviations above the estimated background are removed.

A new σ is calculated with these outliers removed. More details about this process are

described in Section 3.4. σk is a normalizing factor that is included to ensure that Le

has the same standard deviation as the original point detector. The value for σk is found

by summing the squared PSF of the kth hypothesis. The SNR for each hypothesis k is

computed, and the maximum SNR is compared to a threshold ΓM-ary.

Alternatively, this model implements a cost scheme with Unequal-Cost Equal-Prior

(UCEP) assumptions, where errors of different types are weighted differently. A third type

of error besides false alarm and missed detection is introduced. This third error occurs

when an object is detected, but is misclassified as having the incorrect sub-pixel location.

There is no cost associated with this “mixed-detection” event. This cost is useful in a

situation where the detection of the object is more highly valued than a precise location, as

is the situation for the SST. For example, in the SST program, the detection results feed

into other data processing steps that perform clustering and locating. Missed detections and

false alarms are still considered to have a cost of one. To compare to previous algorithms,

an equal prior probability for πk assumption is made for this MHT.

Cik =


0, i = k

0, i , k ∩ (i ∩ k , 0)

1, i , k ∩ (i ∪ k = 0)

, πk =
1
M

(3.18)

Implementing the costs from equation (3.18) into the Bayes risk from equation (3.13)

and reducing gives the following detection criteria:
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Lu = log

M−1∑
k=1

p (D|Hk)
p (D|H0)

 H1

≷
H0

0 (3.19)

Using the assumed Gaussian distributions described in equation (3.15) for p(D|Hk), the

ratio of conditional densities can be reduced. Combining the exponentials and canceling

like terms gives the following relation for Lu:

Lu = log

M−1∑
k=1

exp

− Nx∑
x=1

Ny∑
y=1

θkhk
n(x, y)
σ2 ×

(
B̂ − D(x, y) +

θkhk
n(x, y)
2

)
 H1

≷
H0

Γu (3.20)

Unlike an equal cost approach, this MHT does not simplify to a SNR calculation

due to the summation of all of the potential alternate hypotheses which are exponentials.

This demonstrates both how additional information is being used to make the detection

decision, and how the cost structure reduces the test to a decision between only H1 and H0.

This implies that no sub-pixel information is inferred from this test. Another distinguishing

factor between an equal and unequal cost approach is that the intensity of the object θk is

now needed to determine Lu. The intensity θk is the object intensity used in the current

MHT method presented in [24]. There are different intensities for each hypothesis because

the shifting results in more or less spreading of the PSF, causing intensity changes. In the

previous equal cost MHT algorithm, θ is not defined directly, but is chosen by the selection

of a threshold ΓM-ary since θ is included in the threshold.

θk = 2ΓM-ary

√
Nx∑
x=1

Ny∑
y=1

hk
n(x, y)2

Nx∑
x=1

Ny∑
y=1

hk
n(x, y)2

(3.21)

The algorithm presented in equation (3.20) is a reduced form of the decision criteria

shown in equation (3.13), but is specific to a set of costs. To evaluate the performance of

equal and unequal costs in the detection of objects, the non-reduced equal cost approach

presented in (3.13) is compared to the reduced unequal cost algorithm derived in (3.20).
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There are benefits and drawbacks to using both the ECEP and UCEP algorithms.

Using the previously developed equal cost algorithm shown in equation (3.17) gives both

detection capability and sub-pixel location information. The largest hypothesis SNR is

compared to the threshold, and if an object exceeds that threshold it is considered to be

in that sub-pixel location. The additional position information can be useful in improving

object tracking. A drawback of this algorithm is that each SNR calculation is only based

on one PSF model. Each of the M hypotheses are correlated against the received data, D,

and are used to choose the maximum. This equal cost method of detection is a series of

binary hypothesis tests fused together. The alternative ECEP algorithm presented with this

research is a direct implementation of equation (3.13), resulting in similar benefits to the

previously developed approach. The benefit to the new implementation is that it is flexible

in its ability to change the prior probabilities or costs if desired.

In contrast to the ECEP, the UCEP algorithm consists of a combination of all potential

hypotheses for the selection of k. This implies the data from each hypothesis is combined to

make a single decision. A drawback of the unequal cost detection algorithm from equation

(3.20) is that it is unable to be reduced to a sufficient statistic such as SNR. As a result, there

are additional computation complexities which may limit performance or implementation

operationally.

A significant difference with this new approach is the space in which decisions are

made. Previous work has reduced the hypothesis test to a sufficient statistic, namely SNR.

Using the SNR, it is more straightforward to determine the probability of detection. On the

other hand, using an UCEP algorithm (3.20) gives a complicated relationship between M

hypotheses in risk space. As part of this effort, a method to determine Pd, P f , and create

ROC curves in risk space is developed. These derivations are included in section 3.4. Next,

the experiment used to collect data is described.
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3.3 Experiment Description

To measure the performance of the detection algorithms, data collected from the

SST system is analyzed. In operational use, the telescope will observe varying intensity

objects. To demonstrate that a new detection algorithm performs better than the currently

implemented BHT, objects of high, intermediate, and low intensity need to be investigated.

An improvement in detection of any of these types of objects will enhance the overall

capabilities of the SST system.

One approach to test the MHT would be to find a variety of known and cataloged

space objects of varying intensity, and image these objects with the SST. It may be difficult

to find enough objects of particular intensity without a large search. It could also require

a long period of search, or multiple nights to capture these objects. During that time,

important parameters may change, including the seeing r0 or optical aberrations in the

telescope. Instead, this research uses a data set of the SST observing the Geosynchronous

Earth Orbit (GEO) communications satellite ANIK-F1 as it enters into an eclipse. The SST

is programmed to track the orbital elements of the satellite as it enters an eclipse caused

by the earth. Collecting images in this manner causes the satellite to change intensity

as a function of time, transitioning from bright to dim. Collecting images of this event

reduces the requirement of searching several areas of sky and locating objects of specific

magnitudes.

The data set described here was originally collected to observe the performance of

another detection algorithm presented in [24]. The result of this observation is a set of data

including a space object that transitions from easily detectable to very difficult to detect

over the course of a few minutes, or a few hundred images. This experiment was conducted

during the vernal equinox in 2012 and was repeated over several nights from 28 Feb 2012

to 23 Mar 2012.
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3.3.1 Locating and Selecting False Alarm Data.

To completely compare a set of algorithms, the detection performance should be noted

for different false alarm rates. P f is the probability that when the algorithm is presented

with data containing no object, it indicates that an object is present. To find a value for P f ,

captured data containing no object is needed. There are two potential methods to create

data with no object present.

One method is to generate independent Poisson random variables at each pixel with

a mean of the background intensity. This simulated data would give an approximation of

actual data that might be observed by the SST when no object is present. Alternatively, this

research uses collected SST data to be as realistic as possible. Due to the potential for dim

objects at any point, it can be difficult to determine if there is truly an object such as a star

in any subset of data. There may be an object present, but barely above the noise floor and

not noticeable to the human eye. To ensure a set of data is used with no object, a patch

of sky is collected and averaged over multiple frames. Since the SST system is tracking a

satellite in GEO, most of the objects not in GEO will move at the sidereal rate. This rate

translates to 8 pixels of motion per frame or greater.

To generate a set of false alarm data, a 15x15 pixel patch of observed sky is tracked

through 60 consecutive frames. The 60 frames are then averaged to give a longer effective

integration time. If there were a dim celestial object consistently present in this portion of

sky, it would become more intense as the noise is reduced through the averaging process.

Through several trials, a portion of sky is found and documented with no pixel outside of 3

standard deviations of the mean in this averaged data set. This implies that there is a high

likelihood that all of the fluctuations are due to noise, and no object is present in the data

set. This data set is then used to calculate an upper bound of the false alarm rates used in

the results.
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3.4 Results and Analysis

Each image collected by SST consists of 6144x4096 pixels that are 2x2 binned. To

perform the detection algorithm in a tractable amount of time, a small subset of the image

around the satellite of 15x15 pixels is extracted from each frame. This allows for the

algorithm to quickly process a MHT on the center pixel, but still includes enough pixels to

capture the entire PSF and a sufficient amount of background pixels to calculate accurate

background statistics. In operational use, this 15x15 window surrounding the pixel of

interest would slide through the image as each new pixel is tested. For this analysis, the

window surrounding the center pixel of ANIK-F1’s PSF is investigated in each frame.

Another important factor of the data analysis is outlier removal. Within each 15x15

window there may be objects in addition to the object of interest. These “nuisance objects”

are detrimental to the test being performed on the center pixel. When the background, B̂, is

estimated by finding the median, the nuisance objects inflate the value of the background

statistics, making the object of interest seem more dim relative to the background. This

effect causes a decrease in detection performance.

These objects are removed in a two-step process similar to the method described in

[24]. First, the background and variance is estimated for the entire 15x15 window. Next,

the individual pixels are compared against the estimated background. Any pixels that are 3

standard deviations or greater than the background are removed. This does not include the

PSF of the object of interest. Finally, the standard deviation is calculated.

3.4.1 Detection and False Alarm Computations.

As mentioned in section 3.2.4, a unique method of computing Pd and P f is proposed

in this section. Looking at equation (3.13), there are two important cases in determining

detections and false alarms. These cases are the value of the algorithm when H0 is chosen,

η, and the minimum value of the rest of the M-1 other hypothesis, φ. To give a similar

comparison to the UCEP algorithm, the logarithm is taken of both cases to move the
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variables into a log space. The data being processed, D, is contained in the exponential

function. As a result it is common in detection and estimation to make decisions in log

space. The expression for these random variables are defined by the two expressions below:

ηg = log

M−1∑
k=1

πkC0k p (D|Hk)

 . (3.22)

φp = log

 min
i∈1:M−1


M−1∑
k=0
k,i

πkCik p(D|Hk)


 (3.23)

The subscript p signifies which case the variables were generated under. These random

variables are generated by two different conditions. The first condition p = 1 is when an

object is present in the data. In this case, D equals the 15x15 frame of data surrounding

ANIK-F1. This data is used to generate the probability of detection. The sub-pixel location

can also be determined by noting which i provides the minimum from equation (3.23). The

accuracy or benefits of using this estimate for the sub-pixel location of the object is not

investigated in this research. The second condition, p = 0, is when image data containing

no objects, as described in section 3.3.1, is used for D. Processing this data gives the false

alarm rate of the test. To create a single frame detection from this MHT, the two variables

can be compared with the following relation:

ηp

H1

≷
H0

φp + τ (3.24)

If φp is less than ηp, an object is considered to be present; if the opposite is true, no

object is present. The threshold τ can be changed to allow the user to achieve a desired P f .

Implementing equation (3.24) would yield one instance of a detection decision for a single

frame. This value may not be representative of how often that outcome occurs. Instead,

a sequence of frames are used to generate a probability of detection, Pd, at that particular
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intensity. Finding the probability of detection relies on knowledge of the distribution of the

variables φp and ηp.

As described in section 3.2.3, the conditional probabilities p (D|Hk) are assumed to be

Gaussian. Investigating the values of the variables over the collected data shows that the

random variables appear to follow a Gaussian distribution. To verify this, a sliding window

of 15 frames is used to compute the statistics for η and φ. An interesting trade-off exists

due to the object continuously losing intensity. Ideally, to ensure the best fit for statistics,

a large window would be used. This would allow high confidence in both the Gaussian

distribution assumption and the calculated mean and standard deviations of the data. A

drawback of using too large of a window is that the intensity of the satellite decreases

too much between the beginning and the end of window. This results in data that appears

Gaussian, but has a non-constant mean. In this case, the mean value of ηp and φp is a

function of the frame number, or object intensity. To avoid this, a sliding window of 15

frames is used. This window was large enough to generate accurate statistics, but not long

enough to cause the intensity of ANIK-F1 to change significantly. Making this assumption,

the mean and variance statistics can describe the behavior of both ηp and φp. Figure 3.2

shows a plot of ηp and φp values when p = 1 over a 15 frame window.

For the case shown in Figure 3.2, the value for φ1 is always less than the value of η1.

If a single point detection decision is used, a detection would be made at every point,

assuming a threshold value of τ = 1. Designating a value of 1 for a detection or 0

for no detection at each frame could give one instance of the detection capability of the

algorithm. Using a single point approach as described may not represent the typical or

average detection performance given slightly different noise or other fluctuations. Instead,

the means µφ and µη, and standard deviations σφ and ση are used to determine how probable

a detection is in general. To generalize the decision rule in equation (3.24) to more than

one instance, the probability of detection or false alarm Pe is created. Pe represents the
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Figure 3.2: Equal cost algorithm variables with an object present, η1 and φ1. These

variables are observed over a 15-frame window, and the means and standard deviations

are used to determine Pd at frame 800. This data was collected on 13 Mar 2012.

probability that the random variable φp is less than the random variable ηp. In general, the

probability that one random variable is greater than another is not directly computable, so

instead an intermediate conditional probability for a given ηp is calculated.

Pe(ηp) = pφ(φp < ηp|ηp) =

ηp∫
−∞

pφ(φp)dφp ≡ Fφ(ηp) (3.25)

The conditional probability pφ(φp < ηp|ηp) causes the overall probabilityPe to become

a function of ηk. The probability that a random variable is any value below a threshold is

defined as a Cumulative Distribution Function (CDF). The CDF Fφ(ηp) is calculated by

integrating the PDF for φ, p(φp), from −∞ to the threshold ηp. Evaluating Fφ(ηp) gives the

probability of detection or false alarm for a single given value of ηp. To determine Pe not

as a function of ηp, Bayes Theorem is utilized, and the distribution is integrated over all

possible values of ηp.
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Pe =

∞∫
−∞

pφ(φp < ηp|ηp)pη(ηp)dηp =

∞∫
−∞


ηp∫
−∞

pφ(φp)dφp

︸             ︷︷             ︸
Fφ(ηp)

pη(ηp)dηp (3.26)

pη(ηp) is the PDF for the random variable η evaluated at ηp. At this point an analytical

solution for Pe is not easily determined. To calculate Pe, the integral over ηp is solved

numerically using a Riemann sum.

Pe =
∑
ηp

Fφ(ηp)pη(ηp)∆ηp (3.27)

To analytically solve the integral, a finite range of ηp values are needed. ηp is varied

from -200 to 200 with ∆ηp = 1. The range of ηp is selected to be large enough to cover

potential function values. A similar approach is used to determine Pd and P f for the unequal

costs algorithm Lu in equation (3.20). One significant difference is that there are no longer

two random variables to compare. Instead there is one random variable and a constant

threshold. As a result, the probabilities Pu can be calculated by comparing Lu to a fixed

threshold Γu. Figure 3.3 is a plot of the value of Lu calculated as a function of frame

number. The value for Lu for this window is always above the threshold, assuming Γ = 0.

The statistics of a sliding 15 frame window are calculated for the mean µL and standard

deviation σL. Pu is then found. The probability of false alarm or detection is defined as the

probability that the random variable Lu is greater than the threshold Γu.

Pu =pLu (Lu > Γu) =

∞∫
Γu

pLu(Lu)dLu

Pu = 1 − FLu(Γu) (3.28)

Utilizing the fact that the PDF integrates to one over its entire probability space, the

probability Pu can be found by subtracting the CDF of Lu from one. Up until this point,
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Figure 3.3: Unequal algorithm Lu for a 15 frame window centered at 800 for 13 Mar 2012.

The mean and standard deviation are calculated to give the probability of detection or false

alarm Pu.

the probabilities Pe and Pu have been left generalized. The benefit is that the calculations

for Pd and P f are very similar and only the input conditions are varied. Since Pd is the

probability of choosing φ when φ is true, and P f is the probability of choosing φ when

η is true, the expression for Pe and Pu can be used for both detection and false alarm

probabilities. By varying p, or whether an object is present or not, both probabilities can

be calculated.

Pe,u =


Pd, p = 1

P f , p = 0
(3.29)

Using equations (3.27) and (3.28), values of Pd and P f based on the algorithms

described in section 3.2.4 are calculated from the collected data. The first result investigated

is the probability of detection at the false alarm rate currently used by the SST system. The

first step is to verify the results against previous methods. After this has been verified,
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conclusions can be made about any changes or improvements. This comparison is between

an equal cost MHT approach originally presented in [24], an unequal cost MHT, and

the currently used binary point detector. Using an equal cost MHT but calculating Pd

differently and achieving similar results for a given false alarm rate with the same collected

data would verify this new method.
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Figure 3.4: Pd curves for ANIK-F1 as it enters eclipse on 3 consecutive nights (A) 13 Mar

2012 (B) 14 Mar 2012 (C) 15 Mar 2012. The solid black line is the UCEP algorithm, the

blue dashed line is the ECEP algorithm, the red dotted and dashed line is a binary matched

filter, and the brown dotted line is a point detector. These detection curves are generated

with P f = 4.56e − 10 and M = 10.

Figure 3.4 shows the probability of detection curves for data collected from the SST

on three consecutive nights. The first night (A) was collected 13 Mar 2012. The UCEP

algorithm outperforms the ECEP algorithm across all of the frames, with a difference

range of 10-60 percent depending on the frame number. The UCEP algorithm also shows

increases of 40-90 percent over the currently implemented point detector. Both the ECEP

and UCEP algorithms start close to Pd = 1, decrease quickly as the satellite enters the

54



eclipse, but the UCEP algorithm only drops to approximately 30 percent detection over

the same period of the eclipse. From [24], the ECEP MHT crosses 50 percent detection at

approximately frame 840, while the new equal cost MHT developed crosses at frame 825.

The point detector crosses at approximately frame 780 and the UCEP algorithm does not

cross 50 percent until frame 875. Similar trends are present in the other nights, with UCEP

MHT Pd improvements between 5-65 percent in (B) and 5-70 percent in (C) over the ECEP

MHT and 10-90 percent in (B) and 10-95 percent in (C) over the point detector.

In all three days processed, the object goes from easily detectable to low Pd across

approximately 100 frames. In [24] the transition happens across approximately 85 frames.

The new ECEP MHT seems to match Le from equation (3.17), the method and results

presented in [24] with a small number of differences. One of these differences is that

the preprocessing of the data before implementation into the algorithm may be different.

Another contributing factor is whether stars in close proximity to ANIK-F1 are removed

or not. Stars entering the small frame being processed can negatively impact the detection

performance by driving up the noise statistics for the window. Another difference is that

the data is processed with different methods. In this new method, a SNR statistic is not

used and the data is processed in risk space. As a result, the random numbers are combined

in a different and non-linear method, giving a slightly different performance.

Another difference is the method of computing P f . Actual collected data selected

to have no object present is used instead of simulating a false alarm rate. Using the

collected false alarm data described in section 3.3.1 with the algorithm to generate false

alarm probability as opposed to estimating P f from the threshold gives a more accurate

measure of the true false alarm rate of the tests. P f is calculated to be 7.3e-4 for the equal

cost algorithm using the estimated θi based on the threshold of ΓM-ary = 6.22 from [24].

The false alarm rates generated by running the ECEP and UCEP MHT are not equal. The

calculated P f for the unequal MHT is found to be 2.8e-8. To give an even comparison
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of detection across frames, a threshold τ value of -27.5 is used in the UCEP algorithm,

to match the false alarm rates between the two algorithms. Once the algorithms have the

same P f , the three consecutive frame rule is taken into effect. As mentioned previously, the

SST requires the current BHT point detector to observe a detection over three consecutive

frames to consider an object present. This helps reduce the false alarm rate due to single

image noise spikes or other non-constant sources. The measured P f and Pd rates are cubed

to account for this effect.

To quantify the percent improvement in detection performance with an additional

metric, the apparent magnitude between algorithms is calculated. By noting ANIK-F1’s

intensity at Pd = 0.5 for each algorithm, the apparent magnitude, ∆M, between them can

be determined.

∆M = −2.5 log10

(
I − B̂
Iref − B̂

)
(3.30)

I is the total intensity in the pixel containing ANIK-F1 when either the equal or

unequal cost algorithm crosses the 50 percent detection threshold, and Iref is the total

intensity when the current BHT crosses 50 percent. A larger positive ∆M indicates a

dimmer object in comparison to the reference object.

Table 3.3: Apparent magnitude improvement of Equal and Unequal MHT over the current

BHT at 50 percent detection threshold.

13 March 14 March 15 March

ECEP MHT 1.67 0.46 1.06

UCEP MHT 2.40 0.87 1.44
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On all three nights both of the MHT algorithms used saw an increase in ∆M over the

BHT. In addition, there is an improvement of 0.73, 0.41, and 0.38 in apparent magnitude

when the UCEP algorithm is used.

The detection performance at the current SST program specified P f is important, but

does not completely compare the detection performance against a range of false alarm rates.

To investigate Pd performance across varying levels of P f , ROC curves are generated at

multiple intensity intensity levels.

3.4.2 Receiver Operating Characteristic.

A ROC curve is a method to demonstrate Pd and P f as a function of the selected

threshold levels. To generate a ROC curve, sets of Pd and P f data pairs are calculated

for a specific threshold level τ. The threshold is varied until a full range of detection and

false alarm probabilities between 0 and 1 are calculated. The ROC curve for the equal cost

method is calculated with the following relation.

Pe(τ) =
∑
ηp

Fφ(ηp + τ)pη(ηp)∆ηp (3.31)

The threshold can be combined with ηp in various ways, but addition is chosen because

it allows for an easy way to determine τ values needed, and it works even if the value for

ηp is zero. Values for the threshold τ are chosen to ensure two key factors. The first is that

all possible values of P f and Pd are obtained. The second is that there are enough points on

the sampling grid to generate a smooth curve. The unequal cost ROC curve is found with

the following equation.

Pu(τ) =

Γu+τ∫
−∞

p(Lu)dLu = FLu(Γu + τ) (3.32)

Due to the large quantity of pixels being tested, a low P f is required to give a

manageable number of false alarms across each image. Due to the importance of low
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P f values, the ROC curve is plotted as a semi-log plot. Taking the log of P f provides better

insight into algorithm performance across a larger set of values.

Figure 3.5 includes ROC curves for both the ECEP and UCEP MHT algorithms. The

ROC curves are produced with 15 frame windows centered at three different frames from

the data collection on 13 Mar 2012.
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Figure 3.5: ROC curves centered at frames (A) 800 (B) 850 (C) 900 from 13 March 2012

using a 15 frame window with M = 10.

In (A), the window is centered at frame 800. At this point in the collection, the

satellite is still very visible. The ECEP and UCEP algorithms both achieve a greater than

80 percent Pd at up to 10e-10 P f . The ECEP algorithm drops off more quickly than the

UCEP algorithm, giving up to an 80 percent increase when P f = 10e − 25. In (B), frame

850 is used as the center frame. The satellite is more difficult to detect in this window.

The UCEP algorithm performs much better for a large variety of P f values, including up

to a 100 percent difference at 10e-12. In (C), a window around frame 900 is utilized. The

satellite is very difficult to detect at this low intensity. Looking at an image at this point, it

would be hard to determine if an object is present or not, as shown in Figure 3.6. Figure
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3.6 shows ANIK-F1 at three points as it enters eclipse on 13 March. Both algorithms have

a lower probability of detection for the same probability of false alarm when compared

to earlier frames. At the realistic P f values that might be used in the SST system, both

algorithms are below 10 percent detection.

(A) (B) (C)

Figure 3.6: ANIK-F1 at 3 points during the eclipse, captured with the SST. The frames

used are (A) 800, (B) 850, and (C) 900 on 13 March. ANIK-F1 loses intensity as it enters

the eclipse and more close resembles the background.

The next factor investigated is the number of hypotheses, M, used in the test. As

described in section 3.2.1, the number of hypotheses used may impact the detection

performance of the algorithm. To compare M, the UCEP structure, Lu, is used. The

data collected on 13 Mar 2012 is analyzed in this chapter with other nights demonstrating

similar performance. Figure 3.7 shows ROC curves for M values of 2, 6, and 10, for

varying satellite intensities. For M = 6 four corner sub-pixel locations are used along with

the center of the pixel. To generate these corner locations, both α and ω shifts of ±30µm

are used. For M = 10, top, bottom, and side locations are added. These locations use a

shift of ±30µm in either α or ω, and no shift in the other dimension.
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Figure 3.7: ROC curve using UCEP MHT, Lu, at frame (A) 800 (B) 850 and (C) 900 from

13 March 2012 using a 15 frame window. Three values of M are compared: 2, 6, and 10.

Several interesting trends are apparent as the value of M changes. One important

observation is that the number of hypotheses used has an impact on the performance of the

algorithm. This effect is more noticeable for higher intensity objects. In (A), the satellite

is still intense, and the M = 2 ROC curve is lower than both the 6 and 10 hypotheses

case. The performance difference is an up to 60 percent lower detection rate for the same

false alarm rate, implying that the MHT performs better than the BHT. As the object

loses intensity and enters the eclipse, the separation between the MHT and the BHT is

decreased. In (B), at frame 850 the max detection separation is approximately 20 percent,

and in (C) at frame 900 the separation is approximately 15 percent. Another interesting

result is that the difference between the number of hypotheses beyond the binary case is

less significant. Using M = 6, the detection performance is never below the M = 10 case.

The improvement ranges from 0-5 percent depending on the night being processed and the

false alarm rate. This result demonstrates that there is a trade-off between increasing the

number of sub-pixel locations to capture potential aliased PSF and creating additional false

alarms. The choice of M = 6 is due to the fact that it is the first multiple hypothesis case
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that will symmetrically cover potential sub-pixel locations. This is done by choosing the

four corners and the center.

One important thing to note is that the M = 2 case shown in Figure 3.7 is a BHT, but is

not the point detector currently used by SST. There are two differences between this binary

correlation and a point detector. The first difference is that in the correlation, a 15x15 pixel

window is used to make the decision between H0 and H1, and only a single pixel is used in

the point detector . Secondly, the correlation uses outlier removal as described in section

3.4.

In addition to the performance increase, using M = 6 also reduces the required

computations to calculate Lu. By using six hypotheses, only five alternate hypothesis

terms need to be calculated, compared to nine when M = 10, reducing computation cost

by approximately 45 percent, assuming the processing times for each hypothesis are equal.

The selection of M gives a way to control the computational time required for the unequal

cost method, but in general this method is more costly than the currently implemented

point detector. Due to the fact that Lu is not linear, processing techniques like Fourier

transforms cannot be used to increase processing speed. Currently the point detector in the

SST system runs in real time, and can create detections as quickly as images are captured.

Using the new proposed UCEP MHT, the same processing technique will not be possible.

This allows the user a choose between processing speed and detection performance.

3.5 Full Frame Implementation

The UCEP algorithm presented in this research is more computationally complex than

previously proposed methods. To implement the algorithms into the current SST data

processing pipeline, it is important to investigate the feasibility of achieving real time or

near real time analysis. Looking at the final detection algorithm for the unequal cost method

gives insight into possible methods for processing the data more quickly.
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Lu =

M−1∑
k=1

exp

 Nx∑
x=1

Ny∑
y=1

θkhk(x, y)
σ2

(
D(x, y) − B̂ −

θkhk(x, y)
2

) (3.33)

The most computationally expensive portion of the algorithm is performing operations

on the large matrices. As mentioned previously, the full frame data, 2x2 binned, contains

6144x4096 pixels. The first step to increase the processing speed is to separate the

argument of the exponential function in Lu into data dependent and non-data dependent

calculations.

Nx∑
x=1

Ny∑
y=1

hk(x, y)D(x, y) −
B̂θk

σ2

Nx∑
x=1

Ny∑
y=1

hk(x, y) −
θ2

k

2σ2

Nx∑
x=1

Ny∑
y=1

hk(x, y)2

︸                                                  ︷︷                                                  ︸
ψ

(3.34)

ψ represents the non-data dependent portion of the equation. Both B̂ and σ are

background data statistics that need to be computed in each frame, and are needed for

both ECEP and UCEP algorithms. The only variable changing from frame to frame is the

data, D(x, y). The significant difference is the correlation between the data and the kth PSF.

The UCEP algorithm has two additional data processing steps; the exponential function

and a sum of the M − 1 total hypotheses.

Allowing the window of Nx and Ny to go to the entire frame allows for simultaneous

processing of an entire data frame. A small window no longer needs to be used to cycle

through the image, decreasing the processing time. MATLAB has a function that allows

data processing on the graphics card. Using this function, the correlation can be passed to

a compatible graphics card. The correlation function can be computed more quickly with

this method, allowing for a faster overall processing time.

The full frame data is processed with a HP Z820 workstation. The processor in the

workstation is a Intel Xeon CPU E5-2650 at 2.6GHz with 64 GB of RAM. The software

used is Windows 7 and MATLAB R2015b. The graphics processor used is a NVIDIA

Quadro K6000. Defining TECUP and TECEP as the time it takes the computer described to
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process the respective algorithms, the average and maximum processing times are shown

below.

Table 3.4: Processing times for equal- and unequal-cost algorithms processed on graphics

card.

TECEP TECUP ∆T

Mean 187 ms 237 ms 26.7%

Maximum 408 ms 568 ms 39.2%

∆T represents the additional processing time required by the ECUP algorithm as

a percentage. As Table 3.4 demonstrates, there is a definite jump in processing time

required by the UCEP algorithm. The 26.7 percent additional time may or may not impact

real time operation of the processing depending on the required time for other processes.

These processes include loading the data frames, clustering, orbit determination, and other

post detection processing. These processes are common to both the ECEP and UCEP

algorithms.

3.6 Conclusions

This chapter presents a method of increasing the detection capability of the SST over

the current BHT algorithm. Due to the spatial aliasing caused by the pixel size, a MHT

is used to account for potential different sub-pixel shifts resulting in changes to the shape

and distribution of the PSF. These PSFs are used to correlate with received data to detect

objects. It is demonstrated that the probability of detection is increased by using an UCEP

MHT detection algorithm when compared to an ECEP algorithm. Pd gains of up to 80

percent are observed for the same P f rate. The number of hypotheses used within the MHT

is also investigated. It is found that there is a relationship between the number of hypotheses
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used and detection performance. The results show that a MHT clearly outperforms a BHT,

and that using 6 hypotheses slightly outperformed 10, with the additional benefit of reduced

computational time. With the M=6 hypothesis assumption, the aliased PSFs proposed more

accurately match the observed PSF in the data without raising the probability of false alarm

by introducing additional hypotheses.

The key contributions of this research are a new reduced algorithm for implementing

an UCEP MHT based on received data with a Gaussian distribution, and a method for

determining average Pd and P f based on a general cost structure. This chapter investigates

the limiting cases of cost selections. The first being that all errors have the same cost,

resulting in a large emphasis being placed on correctly identifying the correct sub-pixel

location. The second limiting case is the UCEP algorithm. The UCEPdoes not put any

cost on errors in sub-pixel location, and instead uses that data in essence as a nuisance

parameter. The ability to generate ROC curves for any intermediate case can be useful in

determining the best cost structure for a specific application.

There are several areas of future research that could improve or add to the results

presented. This research focuses on received data that is assumed to be Gaussian.

Through this research, a method for implementing a different model for received data is

developed that can be used on any potential distribution of received data. The limiting

cases of costs are considered in this chapter. There are many additional cost structures

in between the two presented here. For specific applications these cases may give better

detection performance. The drawback is that they will not reduce as well as the equal

or unequal cost schemes presented here. Additionally, the unequal cost method here is

more computationally complex than the currently implemented algorithms. Simplification

and efficient implementation are not a focus of this research. To use this algorithm

operationally, these factors will need to be investigated further.

64



In the next chapter a Bayes risk MHT is further investigated by developing a detection

algorithm with unequal prior probability.
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IV. Investigating Multiple Hypothesis Test Prior Probabilities

4.1 Introduction

The main goal in this chapter of the dissertation is to create a detection algorithm

that uses an unequal prior probability assignment to improve detection capabilities. This

chapter addresses the research question: Do the assignments of a priori probabilities in a

MHT improve the detection performance?

The distribution of space objects on the CCD of a ground-based telescope, and how

that sub-pixel position translates to several potential aliased PSFs is key in answering this

research question. Due to the large number of potential space objects, their arbitrary

location relative to the observation point, and physical properties of the optics, it is

acceptable to assume that a RSO has a uniform probability of occurring anywhere within

a single pixel. The question to be answered in this chapter is: assuming a uniform

distribution across a single CCD pixel, what are the resulting prior probabilities, πk, in

a MHT? Additionally, if a detection algorithm is derived using these probabilities, is it able

to outperform previously proposed hypothesis tests?

As described in Chapter 2, due to aliasing present in many telescopes, the sub-pixel

position can affect both the shape and location of the resulting PSF. This chapter covers

several different topics relating to the investigation of the prior probabilities. These aspects

include: background and motivation for this type of MHT, a decision space analysis for

assigning prior probabilities, optical modeling theory, and the development of the detection

algorithm. The algorithm is tested against both simulated space objects and data collected

from the SST.
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4.2 Theory

To implement an unequal-prior detection algorithm, there are two important factors.

One factor is the ability of the algorithm to reduce to a calculable statistic. Also pertinent

is how well the algorithm detections objects, and realistic and representative values for the

prior probabilities πk. This section covers the theory on both of these topics.

4.2.1 Optical Model.

To mitigate the effects of aliasing, candidate PSFs are needed for the MHT to compare

against. There are two approaches to producing these. The first is to capture representative

PSFs from the collected data. The drawback to this method is that the PSF is specific to

the conditions of the night captured, including the seeing, ro, and the sub-pixel location of

the object. A large sampling of objects would potentially need to be investigated in order

to obtain complete models for the M alternate hypotheses.

Alternatively, this research uses an optical model to create representative PSF based

on the input conditions. A more detailed derivation is described in section 3.1. The

final PSFs hk(x, y), shown in equation (3.10), are created through a combination of four

important factors: the optical PSF including lens aberrations and telescope parameters, a

long exposure atmosphere model [17], any shift from the center of the CCD, and the spatial

aliasing effect modeled as a blurring function.

The modeled PSFs hk(x, y) are used for several purposes in this chapter. It is used to

evaluate the decision space and determine prior probabilities, for data creation, and is a key

factor in the detection algorithm. Next, the decision space for the hypotheses in this test is

investigated to determine the prior probability.

4.2.2 Bayes Cost and Priors Discussion.

To make a decision if an object is present, a Bayes Criterion is used [25]. This equation

provides a method of choosing the hypothesis that results in less risk R on average.
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R =

M−1∑
i=0

M−1∑
k=0

πkCik

∫
Zi

p(D|Hk)dD (4.1)

M is the total number of hypotheses considered. The cost, Cik, represents the impact of

choosing hypothesis i when hypothesis k has occurred. The value of Cik ranges from zero

to one, with one giving the largest cost penalty to a decision. The prior probabilities, πk,

represent how likely each potential hypothesis is to occur. The priors range between zero

and one, and must sum to a total of one. When using a Bayes Criterion-based MHT, there

are several variables that impact the algorithm that results from the hypothesis test. The

two discussed in this paper are the costs, Cik and the a priori probabilities, πk. D is a matrix

containing one single frame of data. Hk is the kth hypothesis. H0 is the null hypothesis,

where it is assumed that no space object is present. H1 through HM−1 are the alternate

hypotheses. These correspond to instances where the space object is considered present,

and each hypothesis signifies a different sub-pixel position. These sub-pixel positions are

described in Table 4.1.

Different cost and a priori probability approaches have been researched, and there are

several differences between the approaches. The first area of difference is the assignment

of cost. An Equal-Cost Equal-Prior (ECEP) test, originally proposed in [24], penalizes the

algorithm for incorrectly deciding between two alternate hypotheses. This emphasis on

determining the correct sub-pixel position can lead to more accurate sub-pixel position

estimates, potentially at the cost of the detection of space objects. Alternatively, an

Unequal-Cost Equal-Prior (UCEP) assumption will not penalize for selecting the wrong

alternate hypothesis, as long as an object is correctly detected [67]. Unequal-cost

algorithms are more computationally complex and do not reduce to a SNR sufficient

statistic. Unequal-cost algorithms are not discussed further in this chapter.

The other variables where different assumptions can be made in a Bayes Risk MHT

are the a priori probabilities. In this chapter, two different a priori probability approaches
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are investigated. They are an Equal-Cost Equal-Prior (ECEP) and an Equal-Cost Unequal-

Prior (ECUP). ECEP assumes the following cost and probability assignment:

Cik =


0, i = k

1, i , k
, πk =

1
M
. (4.2)

The ECUP algorithm assumes the same cost assignment, but the prior probabilities,

πk, for each hypothesis k are not necessarily the same or 1
M . The prior probabilities are

typically assumed to be equal if there is no prior knowledge of the system or method of

determining accurate values for πk. This chapter considers several methods for finding

accurate prior probability values, and determines if more binary detections can be found

with the resulting algorithm.

4.2.3 Decision Space Analysis.

A key element to creating an algorithm that takes into account an unequal prior

probability assumption is determining accurate prior probabilities for each sub-pixel

hypothesis, Hk. Without a method of accurately determining these values, the actual

benefit of an ECUP test may not be realized. The assignment of priors reflects how point

sources present in different locations within a CCD translate into potential PSFs. This paper

investigates three potential methods for segmenting the pixel into a decision space. These

methods are: a distance-based metric, a correlation metric, and an empirical method. Each

method is described and analyzed in the following paragraphs.

A critical assumption common with all of these methods is that a space object is

equally likely at any position within a pixel. This sub-pixel position, (α, ω), is the physical

distance in µm within a 2x2 binned pixel. This assumption implies a uniform probability

across the entire pixel. To segment the decision space, a sub-pixel map is created. In the

map, each position tested has the same probability of occurrence. To ensure a fine enough

coverage of the entire pixel, sub-pixel positions are tested every 1µm in both α and ω. This

results in 31 positions in each dimension and 961 positions total.
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In this chapter, M = 10 hypotheses are used in the test. These hypotheses are PSFs

generated through the optical model where a space object is assigned to be in a defined

location within a pixel. As previously mentioned, the hypotheses positions are defined by

α and ω, the position within a 30x30µm pixel, with the origin being the center of the pixel.

The locations within a pixel are the corners where α = ±15 and ω = ±15, sides where

α = 0 and ω = ±15, top and bottom where α = ±15 and ω = 0, and the center of each

pixel.
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Figure 4.1: Decision space within a single CCD showing all sub-pixel locations, along with

the locations of the nine alternate hypotheses.

There are multiple reasons for using these positions. First, they give an even

representation of the potential resulting PSFs based on the coverage of the entire pixel.

Additionally, they can reduce computational complexity and reduce the number of tests,

due to sharing the corners and sides hypotheses between adjacent pixels. In this case,
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rather than testing all nine alternate hypotheses, only five are needed for each pixel. This

approach was first proposed in [24]. An alternate layout of hypothesis positions with M = 6

is proposed in chapter 3, but is not investigated in this chapter. M = 10 hypotheses are used

in this research to compare against the previously proposed M = 10 ECEP algorithm.

The first method considered is the correlation metric. Both the ECEP and ECUP

algorithms are based on a matched filter, or correlation test. By determining which

hypothesis correlates most closely with each sub-pixel position tested, an assignment

matrix can be formed by noting the most closely correlated hypothesis at each sub-pixel

position α, ω. This is done with the following equation:

Hc(α, ω) = argmax
k

 Nx∑
x=1

Ny∑
y=1

Tα,ω(x, y)hk(x, y)
σk

 . (4.3)

σk is a normalization term based on the kth hypothesis present in the ECEP algorithm,

σk =

√
Nx∑
x=1

Ny∑
y=1

h2
k(x, y). Hc(α, ω) is an entry in the hypothesis assignment matrix Hc.

Each coordinate represents a sub-pixel position and contains the closest hypothesis match.

Tα,ω(x, y) is a 16x16 pixel modeled PSF based on a space object at the sub-pixel location

(α, ω). An important note is that the PSFs for Tα,ω(x, y) and hk(x, y) are generated by

performing the appropriate shift on the highly sampled model PSFs and downsampled as

described in equation (3.9).

The second proposed method for assigning a sub-pixel position to a hypothesis being

considered is a distance-based metric. The distance vector in this case is between the kth

hypothesis position and the proposed α, β sub-pixel position. There are several methods

for measuring the distance, or size of a vector. In this research, a 2-norm is used to find

the “closest point” between the sub-pixel position being tested and the locations of the

hypotheses.

Hd(α, ω) = argmin
k

(
||~Vk||

)
(4.4)
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~Vk is a vector between each hypothesis k located at (αk, ωk), and the sub-pixel position,

(α, ω), being tested. Hd(α, ω) is the hypothesis assignment matrix for the distance-based

metric. At each sub-pixel position, nine vectors are created and the smallest 2-norm is

selected as the hypothesis that best represents the sub-pixel position being tested.

Figure 4.2 shows the decision space analysis for a single CCD pixel resulting from

the correlation and distance-based metrics. The plots demonstrate the physical layout of

the decision space and the boundaries between each hypothesis. Each sub-pixel position is

assigned a corresponding hypothesis and is grouped into a section with similarly assigned

hypotheses.
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Figure 4.2: Decision space analysis for a single SST CCD pixel. The hypothesis

assignment matrix for (A) the correlation metric, Hc, and (B) distance metric,Hd. Each

color shade corresponds to a similar hypothesis. Sub-pixel positions are tested every 1µm.

Looking at the distribution of hypothesis assignments in Figure 4.2, there are

similarities between the correlation and distance-based metrics. Both segment the decision

space into rectangles based on the location of the hypotheses. The correlation metric has

sub-pixel positions between H5 and H8, as well as H4 and H7, that do not directly create
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perfect rectangular boundaries. These are due to optical effects not included in the distance

metric, such as lens or mirror aberrations and atmospheric effects.

The final method being considered to determine prior probabilities is an empirical

method. The empirical method uses detection made on collected SST data to determine

how often each hypothesis is observed. This method depends on implementing the ECEP

algorithm and noting the selected hypothesis. One drawback is that the empirical method

only analyzes objects that it detects. The inherent assumption when using this method is

that non-detectable objects will have the same spatial distribution as detectable objects.

Using the ECEP algorithm, the following SNR equation can be used to assign sub-pixel

positions [24]:

SNRk =

Nx∑
x=1

Ny∑
y=1

(Dxo,yo(x, y) − B)
σ

hk(x, y)
σk

. (4.5)

Dxo,yo(x, y) is a data window that is Nx by Ny pixels centered at xo,yo.

He(xo, yo) = argmax
k

[SNRk] (4.6)

The three methods described to this point all have an associated hypothesis assignment

matrix, H. This matrix gives each sub-pixel position the hypothesis that it most closely

resembles. The prior probability values calculated from all three methods are included in

section 4.4. One distinction between the methods is that Hc and Hd represent a single CCD

pixel, while He represents an entire frame of SST data. Therefore, He does not provide

insight into how the decision space inside the pixel is physically distributed as shown in

Figure 4.2, only the prior probability of each hypothesis occurring.

4.2.4 Hypothesis Test Derivation.

The next step is to implement the potential πk values discussed in the previous

section into a detection algorithm and determine how the change in assumptions affects

the detection performance of the algorithm. As mentioned previously, with an unequal-

73



prior approach there are two choices for costs: Equal-Cost Unequal-Prior (ECUP) and

Unequal-Cost Unequal-Prior (UCUP). When implementing an equal-cost assumption, the

Bayes criterion [25] can be reduced to the following relation:

max
k

[
πk

π0

p(D|Hk)
p(D|H0)

]
Hk

≷
H0

1 (4.7)

where p(D|Hk) is the conditional PDF of the data, given that hypothesis k is true. D is a

matrix that represents a received image. The hypothesis test will select the max ratio of

probabilities and conditional PDFs and compare the resulting ratio against one. Based on

the result of the comparison, a decision on which hypothesis is selected can be made. If the

ratio is less than one, it is assumed that no object is present. If the ratio is greater than one,

an object is assumed present and the largest hypothesis k is selected. A varying selection

of costs will result in a different ratio test. Alternate cost assumptions are not investigated

in this chapter.

To reduce equation (4.7), a model for what the received data D contains is needed.

This model is described in equation (4.8).

I(x, y) =


θhk(x, y) + B Hk, k ∈ [1, 9]

B H0

(4.8)

θ is the modeled RSO intensity. hk(x, y) is the PSF based on the kth hypothesis

described in section 4.2.1 and B is the background photo count. I(x, y) represents the

average expected value, but there will be noise present in the data. As a result, a noise

model is needed to completely represent the conditional PDF. In this case, the model

assumes Poisson counting as the dominant noise source. In previous research efforts, both

Poisson and Gaussian noise assumptions have been made. One reason for this is that it

has been shown that for a flat background, as is the case in this situation, both Gaussian

and Poisson assumptions lead to the same algorithm [22, 35]. Multiple sources of noise

tend to give an overall Gaussian distribution to the noise present in the system. Alternative
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noise assumptions are investigated further in Chapter 5 [68]. Assuming an independent

joint Gaussian noise distribution, the PDF ratio in equation (4.7) results in the following

relation:

p(D|Hk) =
(
2πσ2

)− NxNy
2 exp

− Nx∑
x=1

Ny∑
y=1

(D(x, y) − I(x, y))2

2σ2

 . (4.9)

Nx and Ny are the number of pixels in the x and y direction. σ is the measured standard

deviation of the received data D(x, y). Combining equations (4.7) and (4.8), combining

exponentials, and expanding gives the following equation:

exp

 Nx∑
x=1

Ny∑
y=1

−
1

2σ2

(
θ2h2(x, y) − 2θh(x, y)(D(x, y) − B)

) Hk

≷
H0

π0

πk
. (4.10)

This equation can be further reduced by taking the natural log, removing the

exponential function.

Nx∑
x=1

Ny∑
y=1

−
1

2σ2

(
θ2h2(x, y) − 2θh(x, y)(D(x, y) − B)

) Hk

≷
H0

ln
(
π0

πk

)
(4.11)

It is obvious that for an equal-prior assumption, the natural log of prior probabilities

goes to zero. This assumption gives one less term on the threshold side of the equation to

be concerned with. Continuing to reduce the left side of the equation gives:

Nx∑
x=1

Ny∑
y=1

(
−θ2h2(x, y) + 2θh(x, y)(D(x, y) − B)

) Hk

≷
H0

ln
(
π0

πk

)
2σ2

Nx∑
x=1

Ny∑
y=1

2θh(x, y)(D(x, y) − B)
Hk

≷
H0

ln
(
π0

πk

)
2σ2 + θ2

Nx∑
x=1

Ny∑
y=1

h2(x, y)

Nx∑
x=1

Ny∑
y=1

(D(x, y) − B)h(x, y)
Hk

≷
H0

ln
(
π0

πk

)
σ2

θ
+

θ
Nx∑
x=1

Ny∑
y=1

h2(x, y)

2
. (4.12)
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The left side of equation (4.12) now resembles a SNR, but without the standard

deviation of the data. To give a true SNR, both sides are divided by σ to give the following:

Nx∑
x=1

Ny∑
y=1

(D(x, y) − B)
σ

h(x, y)
Hk

≷
H0

ln
(
π0

πk

)
σ

θ
+

θ
Nx∑
x=1

Ny∑
y=1

h2(x, y)

2σ
(4.13)

The left side of equation (4.13) contains a correlation of the received data D(x, y) and

the kth PSF. This implies that the algorithm is looking for how similar the received data and

the expected PSF are. Introducing a normalization factor to ensure that the SNR statistic is

unit variance [24] gives the following equation:

Nx∑
x=1

Ny∑
y=1

(D(x, y) − B)
σ

h(x, y)
σk︸                              ︷︷                              ︸

SNRk

Hk

≷
H0

σln
(
π0
πk

)
θ

√
Nx∑
x=1

Ny∑
y=1

h2(x, y)︸                ︷︷                ︸
Wk

+
θ
∑

x
∑

y h2(x, y)

2σ

√
Nx∑
x=1

Ny∑
y=1

h2(x, y)︸                   ︷︷                   ︸
Γ

(4.14)

where σk is a normalization factor to keep the SNR a zero mean unit variance random

variable [24]. Investigating the threshold gives insight into the effect on the threshold of

unequal prior probability.

Combining equations (4.7) and (4.20) and grouping terms dependent on K gives this

reduced equation:

max
k

[SNRk −Wk] = SNRWk

Hk

≷
H0

Γk. (4.15)

where Wk is a weighting factor based on the non-equal prior probabilities. If π0 = πk, then

the weighting term will reduce to zero and equal the threshold in the equal prior probability

case. The ratio of π0 to πk can increase or decrease the weighting factor, changing the

probability of false alarm and detection. Increasing the probability of any hypothesis other

than the null hypothesis will lower the effective threshold value.
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Modifying the SNR by the weighting factor changes the mean, and therefore the

algorithm does not have exactly the same P f as [24]. In this research the P f is determined

through applying the algorithm to simulated data containing no RSO. Due to this factor,

a false alarm analysis is also included, leading to ROC curves that directly compare

performance across a large range of P f values.

It is important to note that the threshold Γ is a function of k. This implies that there is

a different threshold for each of the hypotheses. The hypothesis dependent threshold from

equation (4.15) is used for the analysis of the simulated data. In the next section, the Bayes

risk is derived in a different method, creating an hypothesis independent threshold.

4.2.5 Hypothesis Independent Threshold.

Beginning with equation (4.20), the goal in this section is to derive a detection

algorithm that is independent of k in the threshold. This was originally proposed to help

prove that the prior probability of the null hypothesis does not affect detection performance.

The proof of the null hypothesis prior probability is covered in section 4.2.6.2.

Nx∑
x=1

Ny∑
y=1

(D(x, y) − B)
σ

hk(x, y)
Hk

≷
H0

ln
(
π0

πk

)
σ

θ
+

θ
Nx∑
x=1

Ny∑
y=1

h2(x, y)

2σ
. (4.16)

Separating equation (4.16)

SNRk =

Nx∑
x=1

Ny∑
y=1

(D(x, y) − B)
σ

hk(x, y) (4.17)

Wk =
σln

(
π0
πk

)
θ

+

θ
Nx∑
x=1

Ny∑
y=1

h2(x, y)

2σ
(4.18)

Wk is effectively a weighting term that modifies the SNR value based on the likelihood

of the hypothesis occurring. A weighting term is needed for each hypothesis k, and it can

be precomputed for each set of priors and PSF hypotheses used. The computation of these

terms does not add significant processing time compared to an ECEP test. The second
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term in the weighting factor is what is traditionally defined as the threshold term Γ. Γ is

generally the threshold value that sets the false alarm rate for the hypothesis test. This is

set to 6 for the currently implemented SST BHT, but it is modified to 6.2212 to keep a

constant false alarm rate in the ECEP MHT presented in [24]. More discussion regarding

setting the desired P f rates is covered in section 4.3.3.

In the new MHT algorithm, both SNR and Wk have a dependence on k, and are moved

to the left side of the equation. Selecting the hypothesis that gives the largest value indicates

which hypothesis is most likely to have occurred. This hypothesis is then compared against

the null hypothesis to make a final detection decision.

max
k

[SNRk −Wk]
Hk

≷
H0

0 + τ (4.19)

The algorithm is theoretically compared against a threshold of zero, but a threshold

adjustment term, τ, is added to achieve different P f values. Selecting a specific τ value

allows for the algorithm to operate at the desired false alarm rate. Comparing against the

proposed ECEP test as shown below, from [24], the similarities can be quickly observed.

max
k

[SNR]
Hk

≷
H0

Γ (4.20)

One noticeable benefit is that the equal cost portion of the algorithm still preserves the

ability to select a hypothesis k. In [67], improved detection performance was observed, but

the algorithm could only make a binary decision between a space object being present or

not. The sub-pixel position information available from the ECEP and ECUP algorithms is

shown to be useful in increasing tracking accuracy by Sligar [69]. Another difference is

the additional calculation required for the weighting terms. As mentioned previously, Wk

does not depend on the full frame data, and can be computed once per frame to get accurate

background standard deviation and updated priors if desired.
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As shown, the derived ECUP algorithm is able to be reduced to a sufficient statistic,

and is not too computationally complex. These factors are all positive indicators for a

successful algorithm. Next, the three methods for determining realistic and accurate prior

probabilities are investigated.

4.2.6 Investigating Null Hypothesis Probability.

Two methods are used to investigate the potential values for the null hypothesis. It

is theorized that the value selected for the null hypothesis value does not change the

capabilities of the detection algorithm. If this is shown to be the case, there is no need

to determine an accurate estimate for π0.

The first method used is to perform the detection algorithm on simulated data with

several different potential π0 values. If Pd does not change significantly across the tested

values, it can be assumed that the value for π0 has no impact. Alternatively, an analytic

approach is used based on the hypothesis independent MHT proposed in equation (4.19).

These approaches are covered in the next two sections.

4.2.6.1 Simulation.

After assigning alternate hypotheses prior probabilities, the probability for null

hypothesis H0 needs to be determined. Accurately determining this probability empirically

from the collected data is difficult. This is due to the large number of stars, satellites, debris,

and other space objects, and their spatial distribution. Instead of attempting to estimate

a value for π0, this paper shows that its value does not significantly change detection

performance. The probability of an RSO being present in any pixel being tested is π0.

Figure 4.3 shows the effect that implementing the detection algorithm from equation (4.20)

with π0 values ranging from 0.05 to 0.95 has on computed Pd. Each π0 test computed

over 100 Monte Carlo iterations to determine its statistics. Each iteration consists of 100

independent RSOs to determine the Pd value at the specified P f of 1e − 10.
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Figure 4.3: Analysis of Pd for varying π0 prior probabilities for P f = 1e − 10.

Figure 4.3 shows that there is no significant change in Pd for a wide variety of π0

values. In addition, investigating the means and standard deviations shows that all π0 is

well within one standard deviation. As a result, it can be assumed that the impact of

changing the null hypothesis prior probability π0 is negligible. In simulation, the value

for π0 is chosen to be 0.10 to match the prior probability in the ECEP algorithm, which

assigned all priors to be 1
M . The remaining 1 − π0 probability is assigned to the alternate

hypotheses with the proportions described in Table 4.1.

4.2.6.2 Analytic.

All the methods for determining prior probabilities for the null hypotheses described

in section 4.2.3 divide 100 percent of the decision space between the M hypothesis. This

forces the sum of π1 to πM to be one. This does not account for the fact that the total

probability of all the hypotheses must sum to one, including π0. To accomplish this, the

calculated πk are adjusted with the following equation:
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π′k = (1 − π0)πk. (4.21)

If there is no analytical or empirical method of selecting a value for π0, there are three

potential alternate solutions. One would be to use the same assignment as ECEP, π0 = 0.10,

since it is the method being compared against. Another option is to investigate the actual

value of π0, but as mentioned earlier, this may not be possible. Alternatively, this section

demonstrates analytically that the effect of changing the null hypothesis prior probability

does not alter detection performance. To confirm this theory, a constant C is introduced. C

acts multiplicatively with π0, to adjust the null hypothesis value.

π′0 = Cπ0

π′k = (1 −Cπ0)πk (4.22)

Proposing different values for π0 can be accomplished by choosing two distinct

constants, C1 and C2. Computing the difference in weighting, ∆Wk, gives insight into the

impact of changing π0.

∆Wk = Wk(C2) −Wk(C1) (4.23)

Wk(C) is the weighting term from equation (4.18) substituted with updated priors from

equation (4.22). Combining and reducing with constants C1 and C2 gives an expression for

the change in the kth weighting term due to a change in the null hypothesis prior probability.

∆Wk =
σ

θ
ln

(
C2π0

(1 −C2π0)πk

)
−
σ

θ
ln

(
C1π0

(1 −C1π0)πk

)
(4.24)

∆Wk =
σ

θ
ln

(
C2(1 −C1π0)
C1(1 −C2π0)

)
(4.25)

81



Looking at equation (4.25), ∆Wk is only a function of the constants and the original

π0. This signifies that ∆Wk is independent of k, and it can be moved and grouped into

the threshold τ. The constant adjustment to the threshold will change the probability of

false alarm. The false alarm probability can then be adjusted to match the P f rate of the

algorithm being compared against. This analysis demonstrates that the assignment for the

value of π0 does not change the detection performance of the algorithm.

Combining the simulation study on π0 sensitivity along with the analytic derivation

above provides good evidence that the choice of null hypothesis prior probability does not

impact the detection capabilities of the algorithm.

4.3 Experiment Descriptions

In this section, the simulations and experiments used to test the algorithms developed

in section 4.2.4 and 4.2.5 are described.

4.3.1 Simulation Description.

To test the newly developed detection algorithm, simulated RSOs are analyzed. The

primary reason simulated data is used is because a large number of space objects uniformly

distributed across the pixels being tested are needed to test the algorithm. It is difficult to

assess algorithm performance by analyzing collected telescope data of a single RSO. It

is possible that the object is located in a specific sub-pixel position on the CCD and does

not move throughout the collection period. In this case, the object may not represent how

other randomly located PSFs appear in the data. Alternatively, another potential method

is to analyze a large image of the sky, including stars, to gather a variety of locations and

intensity levels. A drawback to this method is that many of the bright objects will be easily

detectable to both algorithms, therefore it is necessary to define a range of intensities where

the algorithms perform differently.

In this simulation, it is assumed that the RSOs occur with the prior probability that is

present in an actual data collection. The ECUP algorithm has the maximum performance
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advantage compared to ECEP if the true priors exactly match the priors determined through

the correlation method. The priors may differ in an actual data collection if the assumption

of a uniform distribution of objects does not hold, or other factors not included in the

analysis affect the probability. In this analysis, the ideal performance, which does not

include those factors, is tested. To give the simulated data the desired prior probabilities,

a function is created to randomly select one of the hypotheses from the nine alternate

hypotheses with the assigned weighting probabilities πk. The optical model described in

section 4.2.1, h(x, y), is used to create the 9 candidate PSFs. As mentioned, this model

includes several optical effects including a long exposure atmosphere model [34], optical

aberrations, and spatial aliasing of the CCD pixels. The data model in equation (4.8) is

used to combine the PSF with the background and noise model.

Two types of simulated data are needed, one with a RSO present and one without

a RSO. Both data sets are needed to create the ROC curves in section 4.4.2. For this

simulation, an object photocount of θ = 300 and background level of B = 400 are

used. In the case where no object is present, B is still 200, but θ is set to zero. To add

noise, the PSF and background is set to the mean of a Poisson random variable. Using a

Poisson noise assumption implies that the signal is dominated by photon counting noise.

Other factors, including dark current and read noise, are not significant contributors. The

detection algorithm assumes that the received noise is Gaussian, as described in section

4.2.4. Figure 4.4 shows a flow diagram of the steps used to generate simulated data with

and without an RSO present.

4.3.2 Collected telescope data.

The second experimental method used is collected SST data. This experiment uses

the same data set described in Chapter 3, but focuses on a different portion of the data

present in the images. This data was originally collected as an experiment to test how faint

of an object can be detected by different detection algorithms. The SST is programmed to
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Figure 4.4: Flow diagram of process to (A) simulate data with an RSO present and (B)

simulate data with no RSO present. Both data sets are needed to generate ROC curves.

track a communication satellite, ANIK-F1, as it enters eclipse. The resulting intensity loss

causes the object to go from easily detectable to difficult to detect. This is used to test the

performance of the UCEP algorithm.

In addition to the satellite of interest in each image, there are thousands of other

objects, including stars and potentially RSOs. These stars and other space objects give

a large quantity of varying intensity objects to test algorithms against. By processing a

large portion of an image and totaling the number of detections, a metric of performance

can be determined for each algorithm. Comparing the total number of detections with each

algorithm for the same false alarm rate gives one method to compare the algorithms. All

types of objects are treated similarly in this experiment, since both stars and RSOs appear

as unresolved point source objects to the SST.

Each frame of collected SST data consists of 6144x4096 pixels, where each pixel

contains 2x2 binned 15µm square pixels. The data analyzed in this paper was collected on

three nights 13-15 March 2012, referred to as night 073-075 respectively in the following

discussions. As mentioned in the optical model description, each image is a long exposure

collection. This implies that a long exposure atmosphere is present in the data.
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Within each image there are areas where CCD arrays are aligned, and other areas

of imperfection. To remove these edge effects, a subset of each frame is analyzed. An

area consisting of 1024x1024 pixels is selected from each image. The same pixels are

consistently used from each frame as the data is processed by the algorithm. Testing on

each pixel is done by including a 16x16 window around the pixel being tested. Including

the window gives enough samples to calculate accurate background statistics as well as

enough pixels to capture both the PSF model and any potential space objects. In the next

section, the false alarm probabilities are investigated.

4.3.3 Setting False Alarm Probability for Collected Data.

It is important to ensure that both the ECEP and ECUP algorithms have the same

probability of false alarm, P f . The weighting term, Wk, is effectively changing the threshold

and therefore the false alarm probability. Since the weighting term can be different for each

hypothesis, the false alarm probability for the entire test needs to account for all potential

hypotheses.

To accurately calculate P f , two assumptions are made. The first is that SNR statistics

calculated with equation (4.17) are Gaussian, which follows logically from the assumption

that the received noise is Gaussian. The second assumption is that the probabilities of

false alarm for each hypothesis are independent, and can be calculated separately. This

assumption is applied to both the ECEP and ECUP algorithms. This assumption may

overestimate the expected P f if there is any dependence between hypotheses, but will do

so for both the ECEP and ECUP algorithms. For the ECEP test, a base threshold of γ = 6

is used to match previous algorithms and the SST program’s threshold. The threshold for

ECUP is then adjusted to match the P f produced by the threshold of γ = 6.

To mathematically describe the method of calculating P f , the term N(µ, σ) is defined

to represent a Gaussian distribution with mean µ and standard deviation σ. As described

previously, the SNR in the ECEP algorithm is normalized to be a zero mean unit variance
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Gaussian random variable. Since the ECUP algorithm is not normalized by σk, SNRk is no

longer zero mean unit variance Gaussian. SNRk has a mean of Wk and standard deviation

of σk for each hypothesis.

ECEP: X ∼ N(0, 1)

ECUP: Xk ∼ N(Wk, σk)

Assuming independence between the hypothesis tests, the total false alarm can be

calculated by summing the false alarm probability from each alternate hypothesis.

P f =

M∑
k=1

1 − p(X ≤ τ) (4.26)

p(X ≤ τ) is the Cumulative Distribution Function (CDF), and X is a random instance

drawn from the Gaussian distribution described by either the ECUP or ECEP test. For the

ECEP test, a value of 6 is used for τ. To ensure the tests have the same probability of

false alarm, a τ needs to be found that gives equal P f between the tests. Next, the results

for the calculated prior probabilities and the number of binary detections are presented and

analyzed.

4.4 Results

This section will investigate the results from both the simulated experiment and the

data collected from the SST.

4.4.1 Decision Space Results.

The first important result is the calculated values for the prior probabilities πk. To

calculate these probabilities, the total number of each hypothesis present in the hypothesis

assignment matrix H is divided by the total number of sub-pixel positions tested. It is

helpful to define the mathematical notation of an Iverson Bracket [70], where [·] gives
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a value of 1 is true or zero if false the following equation gives the value for the prior

probabilities:

πk =

Nα∑
α=1

Nω∑
ω=1

[
H(α, ω) = Hk

]
NαNω

. (4.27)

Nα and Nω are the size of the window being investigated in α and ω. Equation (4.27)

is applied to each hypothesis assignment matrix. The three methods calculating the prior

probabilities are shown in Figure 4.5.
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Figure 4.5: Comparison of three proposed methods: distance, correlation, and empirical

based methods of assigning sub-pixel positions.
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Figure 4.5 shows the prior probabilities for the three methods of segmenting the

decision space. The first detail to note is that all three methods give similar prior probability

values, with a maximum difference of approximately 10 percent. The general agreement

between the priors gives a good indication that the methods accurately represent the true

probabilities. The hypothesis at the center of the pixel, H5, has the largest probability of

occurring in all methods. The prior value ranges between 25 to 30 percent. Using a BHT,

only one hypothesis is considered, and it is that the object is located directly in the center of

a pixel. This analysis shows that using a BHT would only match well with 25 to 30 percent

of potential objects, decreasing the ability to detect space objects.

The methods vary slightly in how they assign probability between the sides and

corners. Distance and correlation metrics give higher probability to the sides, while the

empirical method favors the corners. The empirical priors for the sides and corners are

closer, while the other methods have a larger separation between them. These differences

can be due to things not accounted for in the model that occur in measured data, such as

non-uniform response across the CCD detector areas within pixel. In the empirical method,

there is noise present in the data which is not present with the other methods.

Considering the three methods and their resulting priors, the empirical method of

determining πk values is used for analyzing collected data. This is because it is the

closest match to how the ECUP detection algorithm actually operates. Additionally, it

includes noise and other details that are not present in the other methods. The distance and

correlation metrics also provide confidence that the empirical method is an accurate way to

define prior probability since they generally agree. Table 4.1 summarizes important details

about the physical locations of the hypotheses within a 30x30 pixel, prior probabilities with

the empirical metric, and the resulting weighting values.

As Table 4.1 shows, probability is lower in the corners and sides, with the additional

probability shifted to H5, or the center pixel hypothesis. This implies that it is more likely
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Table 4.1: The sub-pixel locations of the M hypotheses (µm) along with the calculated

priors πk and weighting values Wk based on the empirical method.

H1 H2 H3 H4 H5 H6 H7 H8 H9

α, ω -15,-15 -15,0 -15,15 0,-15 0,0 0,15 15,-15 15,0 15,15

πk 0.10 0.08 0.10 0.09 0.26 0.09 0.10 0.08 0.10

Wk 1.78 2.57 1.78 2.56 3.75 2.56 1.78 2.56 1.78

for captured data to closely match the PSF generated, assuming the object is in the center

of the pixel. Based on the empirical method, H5 hypothesis has approximately a 26 percent

chance of occurring. The weighting values, Wk, from equation (4.18) which are calculated

based on πk, also provide interesting results. All of the weighting values are positive, and

Wk is subtracted from the computed SNR. The newly computed SNR compared against the

threshold will be lower than the ECEP test. This is counteracted by the new threshold τ

computed to ensure equal P f rates. Although the weighting term is a linear effect on the

SNR, calculating τ is not linear. Considering these two competing effects, it is difficult

to analyze how this will increase or decrease the number of RSOs detected. This is why

collected telescope data detection performance is analyzed.

4.4.2 Processing Simulated Data with MHT Algorithms.

In this section, the detection algorithm is applied to simulated RSO data. As has

been done in previous chapters, using a ROC curve gives insight to the detection behavior

over a large range of potential P f values. For the simulated data, the prior probabilities

determined through the correlation metric were used. This is because the empirical method

is not realistic, because there is no collected data to process. The following equation is used

to generate ROC curves:
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max
k

[SNRk −Wk]
Hk

≷
H0

Γ + τ. (4.28)

τ is varied to give Pd and P f pairs. The ability to correctly identify the sub-pixel

hypothesis is not reported. If data containing a RSO is processed and any of the alternate

hypotheses is selected, it is counted as a correct detection. Figure 4.6 shows an instance

of ROC curves for both the ECEP and ECUP algorithms. To generate these ROC curves,

100 independent simulated images are analyzed. For every image, the SNR value and

weighting factor wk is calculated for all hypotheses. The maximum SNR value is selected

and compared against the threshold Γ.
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Figure 4.6: A single instance of a ROC curve for both the ECEP and ECUP algorithms.

Simulated RSO and data with no objects present are needed to generate probability of

detection and false alarm.
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The ROC curves in figure 4.6 show up to approximately 10 percent of ECUP

over ECEP. The algorithms perform similarly for relatively high and low false alarm

probabilities. A typical detection algorithm would not operate in these regimes. The two

curves in figure 4.6 represent a single instance of a simulation. To ensure that the ECUP

algorithm detects more objects than the ECEP generally, the statistics of the ROC curve are

investigated.

Defining ∆Pd (P f ) as the difference between Pd for the ECUP and ECEP algorithms

gives the detection difference for the same false alarm probability.

∆Pd (P f ) = ECUP − ECEP (4.29)

Figure 4.7 shows a statistical comparison of detection performance between ECEP

and ECUP algorithms. The Pd values in this figure were calculated with P f = 1e − 10.

As figure 4.7 shows, there is a small but statistically significant difference in detection,

∆Pd , between the ECEP and ECUP algorithms. The red dashed line indicates the mean

difference across 100 Monte Carlo simulations. The improvement in this simulation

is approximately 5 percent. There are instances where ∆Pd is negative, or the ECEP

outperforms the ECUP algorithm, but on average this is not the case. A 5 percent

improvement across a large number of RSO could still be a significant number of objects.

In the next section, the algorithm is used to process collected SST data.

4.4.3 Processing SST Data with MHT Algorithms.

After assigning priors, the ECUP algorithm can be implemented on collected data.

To accomplish this, the data described in section 4.3.2 is analyzed. This data contains

many objects of different intensity levels, including many much greater than the current

threshold. These objects will be easily detectable with both the ECEP and ECUP algorithm.

The difference in detection is the RSOs that are close to the detection threshold. Objects
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Figure 4.7: Statistical comparison of ECEP and ECUP algorithms over 100 monte carlo

iterations. Pd values for both algorithms are found for a false alarm probability of

P f = 1e − 10.

much brighter than these will easily be detected with both algorithms. Space objects much

dimmer than the threshold will not be detected by either algorithm.

There are several potential methods for reporting the change in detection performance.

Using a probability of detection, Pd, at a specified false alarm rate P f is a commonly used

metric. Another method is reporting Pd across a large range of potential P f values, also

known as a ROC curve, typically provides insight. In this chapter, the number of additional

binary detections at a specified false alarm is reported. The difference in the number of

detected objects between ECEP and ECUP is defined as ∆o:
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∆o = ECUP − ECEP. (4.30)

The total number of binary detections includes all alternate hypotheses where an object

is considered present, H1 through H9. Using the calculated P f value of 8.5e-09, and τ = 6

for ECEP and τ = 0.98 for ECUP, the SST data is analyzed. Figure 4.8 demonstrates a

small subset of a frame of data processed with both the ECEP and ECUP algorithms. In

the example shown, one additional binary detection is observed.

(A) (B)

(A) (B)

Figure 4.8: A sample subset of SST data processed with (A) the ECEP algorithm and (B)

the ECUP algorithm. In this example, one additional detection is observed.

Figure 4.9 demonstrates the difference in the number of binary detections between

ECUP and ECEP.

∆o ranges from 61 additional binary detection to 4 less detections on the days and

frames processed. Across all three nights processed there were, on average, more detections

with ECUP. For each frame, the total number of detections changes as objects enter and exit

93



0 10 20 30
−10

0

10

20

30

40

50

60

70

Frame
A

d
d

iti
o

n
a

l B
in

a
ry

 D
e

te
ct

io
n

s 
 (

 ∆
o
)

(B)

0 10 20 30
−10

0

10

20

30

40

50

60

70

Frame

A
d

d
iti

o
n

a
l B

in
a

ry
 D

e
te

ct
io

n
s 

 (
 ∆

o
)

(C)

0 10 20 30
−10

0

10

20

30

40

50

60

70

Frame

A
d

d
iti

o
n

a
l B

in
a

ry
 D

e
te

ct
io

n
s 

 (
 ∆

o
)

(A)

Figure 4.9: Difference in number of binary detections, ∆O, over 32 sample frames from

data collected on nights (A) 073, (B) 074, and (C) 075.

the frame, noise spikes occur, and space objects change intensity. ∆o stays fairly consistent

throughout these changes.

There is an obvious increase in binary detections present in the sample data analyzed,

but it is important to ensure that this instance is not a random occurrence. One method

is to perform a significance analysis on the mean. Looking at a paired T statistic test can

indicate if there is truly a difference in means, and which is greater [71]. Night 073 has a

paired T test statistic value of 9.07. This signifies it is highly likely that ECUP is detecting

more objects on average than ECEP. Large T statistic values also occur on nights 074 and

075, 15.62 and 9.49 respectively.

Additional information can be gleaned from investigating the distribution of ∆o data.

Figure 4.10 shows a histogram for ∆o across all three nights of the SST data processed.

The distribution of the additional number of detections appears Gaussian. Across all

of the processed data, ∆o has a mean of 22.73 and a standard deviation of 12.65. Table 4.2
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Figure 4.10: Combined histogram for ∆o, the number of additional binary detections with

ECUP algorithm. All three nights analyzed 073-075 are included.

shows the average number of additional detections and the standard deviation of the ECUP

algorithm for individual nights.

Table 4.2: Average number of additional binary detections by ECUP, ∆̄o, and standard

deviation, σ∆o , for three nights 13-15 March 2012.

Night 073 Night 074 Night 075

∆̄o 26.13 22.97 19.10

σ∆o 16.30 8.32 11.38
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One noticeable result from Table 4.2 is that the largest ∆o occurred on night 073.

This was the night used to generate the priors with the empirical method. This signifies

two interesting details. The first is that the empirical priors do not necessarily need to be

recomputed frequently. The empirical priors are able to achieve an improvement for three

consecutive nights without adjustment. The values do decrease slightly between nights.

Several factors including atmospheric conditions may cause the priors to change slightly

between collections. There may be an optimal update rate for priors that takes these factors

into account, but this is not further investigated in this paper.

The subset of frames analyzed for this chapter are not the full image frames. Increasing

the number of pixels being tested would also increase ∆o. A total of 24 of the 1024x1024

frames are in the full frame data. Applying the averages determined in the small frame

would give approximately 458-627 additional binary detections on average.

4.5 Full Frame Implementation

An important consideration for implementing an algorithm is how long it takes to

process each frame of data. If the algorithm can not be completed in real time, or the time

between when each image is captured, the output of the algorithm would be constantly

falling behind the captured data. Some catch up can be accomplished when data collections

are not being performed. This limits the ability to adjust collections based on observations

during collection.

In section 3.5, a full frame implementation of the UCEP algorithm is discussed.

Similar methods can be used with the UCEP algorithm. The main difference between

full frame implementation of UCEP and ECUP algorithms is exponential function. Unlike

the UCEP algorithm, which is not a linear algorithm, the ECUP algorithm is able to be

reduced to SNR calculation, with an additional weighting term. This weighting term, Wk,

can be precomputed based on the background statistics, PSF being considered fk(x, y), and

the assigned priors. These terms do not add a significant processing requirement.
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4.6 Conclusions

In this chapter, the assignments of a priori probabilities in a MHT are investigated.

This is achieved through developing an algorithm and testing it against simulated and

collected SST data.

To analyze the simulated data, a correlation metric between the simulated RSO data

D(x, y) and the modeled sub-pixel positions Tα,ω(x, y), is used to assign prior probabilities

for the M hypotheses. It is shown with a sensitivity analysis that the null hypothesis

does not significantly impact the detection ability, and a value of 0.10 is used to match

previously developed algorithms. These prior probabilities are implemented in an ECUP

MHT. The derived algorithm is used to analyze simulated RSOs. The algorithm used for

this research contains a hypothesis dependent threshold. ROC curve analysis shows that the

ECUP algorithm has a greater Pd than the ECEP algorithm for a large range of P f values.

At a relevant false alarm level of P f = 10−10, ECUP shows an average improvement of

approximately 5 percent when tested over 100 monte carlo simulations.

When tested against collected SST data, this research demonstrates that for certain

applications it may be beneficial to use an ECUP MHT algorithm. It is shown that

with high statistical confidence the ECUP algorithm on average has more detections than

an ECEP algorithm performed on the SST data. For the small subset of the frames

analyzed approximately 19-26 additional detections, which translates to 458-627 additional

detections on average for full frame data. These detections are most likely threshold

objects that are difficult for currently proposed detection algorithms to detect. Finding these

threshold objects will provide additional information for tracking and characterization, in

turn increasing SDA capabilities with the optical system.

In addition, a method of using empirical observations of representative data is

developed to form a model for a priori probabilities. Distance and correlation metrics were

also considered and result in similar distribution of prior probabilities.
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The ECUP algorithm assumes Gaussian received noise in this paper. In the future,

removing the Gaussian assumption may detect additional space objects, if the received

noise is not truly Gaussian. Additional methods may also be combined to potentially

improve detection performance even further. For example, using a unequal-cost and an

unequal-prior probability approach may improve over a unequal-cost equal-prior test.

In the ECEP MHTs, the threshold is considered constant for each hypothesis. As a

result, the modeled intensity is effectively different for each hypothesis, and is dependent

on the distribution of the PSF. This assumption is changed in this paper for the ECUP

algorithm. This assumption can be removed in a future ECEP test, and may provide

interesting research opportunities and advancements.

Another consideration is how including unequal-priors may effect the ability to

translate the detected objects into accurate tracking and orbit determination. The ECUP

algorithm takes into account the probability of the alternate hypotheses, each of which

corresponds to a sub-pixel position. The sub-pixel information gathered from performing

a ECUP test may lead to improved sub-pixel position, and in turn more accurate tracking

of detected RSOs.
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V. Characterizing Point Spread Function fluctuations to improve Resident Space

Object detection

In the previous chapters, this dissertation examines Bayes Risk algorithms based on

the assumption that the received data contains Gaussian noise. This chapter focuses on

developing an accurate combined noise statistics model for noise present in a collected

telescope image. The specific goal of this chapter is to determine a more accurate model

for the observed noise in a PSF. By using this new model and the corresponding detection

algorithms, there will be improved detection performance in the optical systems being

considered. As mentioned previously, the PSF is of interest due to the fact that all objects

of interest can be considered point source objects.

Building a detection algorithm based on a more accurate or complete model of noise

statistics in a PSF should theoretically result in an increase in the ability to detect space

objects with that optical system. The number of additionally detected objects and the

complexity of the resulting algorithm are important factors in determining the feasibility of

any newly proposed detection algorithm.

This chapter is organized into four main sections. In section 5.1, relevant background

and methodology in optical modeling, detection theory, atmospheric effects, and relevant

Probability Density Functions (PDFs) are detailed. Section 5.2 describes the simulation

experiment used to analyze the distributions and detection performance. Section 5.3

discusses the results and analysis, and section 5.4 presents the conclusions on the results

reached.

5.1 Methodology

All objects of interest in this research, due to their relative size and distance from the

observation plane, appear as point sources to the telescope. The PSF of an optical system
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is the response of the system to an impulse, or point source. In the case of RSO detection,

each object is an observed PSF.

The noise present in an image captured through a telescope is a combination of several

potential noise sources. Traditionally, SDA detection algorithms have assumed a Central

Limit Theorem justification and used a Gaussian PDF to describe the distribution of the

received data. This implies that the combination of all of the noise sources present in the

system result in an overall Gaussian PDF within the received data. Multiple research efforts

have looked at creating detection algorithms based on the noise in the received data not

being Gaussian [22, 35]. In these cases it is assumed that the received noise is dominated

by Poisson noise, and other sources do not contribute significantly.

One example of building a detector based on Poisson noise is when the dominant

source of noise in the received data is assumed to be the random arrival time of photons

[22]. The author states this can be achieved through a very low noise CCD in a low

intensity collection environment. It is found that this assumption reduces similarly to

Gaussian if there is a flat background. In other words, if the detection algorithm does

not have a known star map for use by the detection algorithm, the Poisson and Gaussian

approaches perform similarly. Similar results, also assuming a Poisson distribution, have

been demonstrated to perform comparably in collected telescope data at the Air Force

Institute of Technology (AFIT) [35].

Unlike to these two non-Gaussian methods, this chapter will account for two of the

main phenomena present in data collection, and combine them into a single noise model.

These phenomena are atmospheric effects and photon counting noise. It is well understood

that noise due to random photon arrival times follows a Poisson distribution [17]. The

impact of the atmosphere and the fluctuations it causes in received intensity are not as

clearly defined.
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5.1.1 Optical Model.

As in Chapter 3, an optical model of the telescope is needed to generate the PSFs

used in the detection algorithm. There are two main differences in the optical model

presented here: one is the method for simulating the atmospheric effects and the second

is the exclusion of lens aberrations. This implies that the optical system being modeled

is either diffraction limited or that the lens aberrations do not change significantly over

the time scale of interest. The PSF of an optical system, hopt(x, y), can be found by the

following relation [34]:

hopt(x, y) = |F {P(m, n)}|2 (5.1)

where x, y are spatial distance pixel coordinates in the detector plane, and m, n are pixel

coordinates in the pupil plane. P(m, n) is a pupil function that mathematically describes the

effect of the pupil on incoming light and F is a two-dimensional Fourier transform. In a

diffraction limited optical system consisting of a perfect lens or mirror, the pupil function

consists of only the geometry of the pupil, P(m, n) = A(m, n), and contains no other phase

distortions. A(m, n) is an amplitude function that is one or zero, depending on if light is

able to pass through the pupil at a specific m, n pixel location.

In a non-ideal imaging system, imperfections in the lenses or mirrors cause phase

distortions to any light passing through the optics. These distortions are modeled as phase

fluctuations to the amplitude function [34].

P(m, n) = A(m, n) exp
[
jθo(m, n)

]
(5.2)

For this simulation, it is assumed that the imaging system is ideal. This assumption

implies that the phase function is a constant function of spatial coordinates m and n. This

is justifiable due to the fact that the phase distortions caused by the optics are generally

constant in time and these distortions will not impact the peak intensity as a function of
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time. The lens aberrations change the shape, distribution, and intensity of the PSF, but do

not generally change significantly over the observation time.

At this point, the optical model represents a field entering the pupil of an optical

system, but has not accounted for the effects of propagation through the atmosphere. To

randomly generate a phase screen with statistics that accurately represent the atmosphere,

a Zernike method is used [58]. Although there are other accepted models for generating

random phase screens, including the frequently used Fourier Transform approach [57], they

are not addressed in this chapter.

One benefit to using the Zernike method is that the Zernike polynomials can be used

to simulate mirror aberrations. Using Zernike coefficients for multiple functions also helps

to reduce processing time. The Zernike method has a less difficult time reproducing the low

frequency effects of the atmosphere, such as tilt, than the Fourier Transform method. The

Zernike method does not have the same low frequency issues. The low frequency effects

have the most power, and are a dominant source of error in most telescopes. Additionally,

high frequency aberrations do not have a large impact on the PSF in undersampled systems,

such as the telescopes discussed in this dissertation. High frequency changes will be filtered

by the relatively large CCD pixels. In this chapter, a total of 15 Zernike polynomials are

used to represent the random aberrations present in the atmosphere. Including a higher

number of Zernikes is not found to have a significant impact on the PSF, and as a result,

the determined noise model.

The atmosphere acts like a random process to any light that travels through it. The

result is a propagation path for the light that has varying indices of refraction in space and

time, n(x, y, z). This random process causes distortion in the wavefront, θa(x, y), and can be

represented as a sum of a set of orthonormal Zernike polynomials, Z j(x, y).

θa(m, n) =
∑

j

b jZ j(m, n) (5.3)

102



where b j are the weighting coefficients for the jth polynomial. In this case, b j are random

variables that represent the amount of each type of distortion present in the atmosphere

that the light is propagated through. The coefficients are zero mean random variables,

implying that there is no tendency for any of the coefficients or aberrations to be skewed

in one direction or another. The variance of the Zernikes due to a Kolmogorov spectrum,

as described in chapter 2, are derived in [62]. These variances form a covariance matrix,

C. To utilize this covariance matrix to generate coefficients with the correct statistics, a

Cholesky factorization is performed on the covariance matrix C = ΦΦT . Defining ~n as a

Gaussian random vector with zero mean and unit variance, another vector ~b = ~nΦ based on

the Cholesky factorization of the covariance is formed. This vector ~b accurately represents

the Kolmogorov statistics present in the atmosphere. This can be shown with the following

mean and variance equations:

E
[
~b
]

= E
[
~nΦ

]
= ΦE

[
~n
]

= 0 (5.4)

E
[
~b~bT

]
= E

[
Φ~n~nΦT

]
= ΦE

[
~n~n

]
ΦT = C. (5.5)

The vector ~b is zero mean and has covariance of C. ~b is then used as the weighting

coefficients for the Zernike polynomials described in equation (5.3). These atmospheric

aberrations are then included in the pupil function, along with the aperture and lens

aberrations.

It is important to note that the phase screen, θa(m, n), is one instance of atmosphere

experienced by the object. As mentioned previously, the phase screen representing lens

aberrations θo(m, n) is constant over m and n. To create images representing a non-

instantaneous integration time, additional phase screens and their resulting PSFs need to

be generated. This process is described in section 5.2.1.
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5.1.2 Detection Theory.

One commonly used detection algorithm is a Log-Likelihood Ratio (LLR). Assuming

an Equal-Cost Equal-Prior (ECEP) model, a Bayes risk criterion for a BHT can be

described with the following LLR [25]:

LLR = log
(

p(D|H1)
p(D|H0)

)
H1

≷
H0

τ (5.6)

H1 is the hypothesis that a RSO is present in the image and H0 is the hypothesis that

there is no RSO present. τ is the threshold that sets the acceptable false alarm rate. D is

the received data, which can be either the photon count in a single pixel or across multiple

pixels, D(x, y), depending on if a point detector or matched filter detector is being used.

Algorithms for the detection of space objects have been developed for both point detectors

[16] and matched filter-based detectors [22, 24] under different received noise distribution

assumptions. The conditional probabilities p(D|H0) and p(D|H1) are the probability of the

received data given that the specified hypothesis is true. The received data is modeled with

the following equation:

D(x, y) = θhn(x, y) + B (5.7)

D(x, y) is the received intensity at the CCD before photon counting noise is included.

The normalized PSF hn(x, y) is the optical PSF, hopt(x, y), normalized to sum to one. The

variable θ is the intensity of the object being investigated. In the case where an object is

considered present, H1, θ can be any positive non-zero integer. Under the hypothesis where

no object is present, θ, is zero and the model reduces to a constant background level B.

The conditional probability of data given H1, p(D|H1), is the distribution of interest to this

research. The distribution fit theory is described in section 5.1.3 and analyzed in section

5.3. The probability of the data given H0, p(D|H0), is considered to be Poisson, due to the
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fact that the dominant noise source present under this hypothesis is photon counting noise

[17]. The Poisson conditional probability can be expressed with the following equation:

p(DB|H0) =
BDBe−B

DB!
. (5.8)

DB is the number of background photons received, and B is the expected number of

background photons.

5.1.3 Received Noise Distributions.

As mentioned previously, detection algorithms in electro-optical telescopes focus

primarily on two types of PDF for noise statistics, Gaussian [24, 56] and Poisson [16, 35].

To justify these distributions, limiting assumptions are made. The assumptions made

can degrade or limit the performance of the detection algorithm and the capabilities of

the telescope system. Often these noise assumptions demonstrate a trade-off between

computational complexity and increased performance. For example, one benefit of a

Gaussian noise assumption is that it allows for easier computation of the SNR. This may

potentially result in reduced performance, if the received data is not truly Gaussian.

The model proposed in this chapter combines two important effects into a mixed

distribution to attempt to achieve a closer match to the true measured noise distribution. In

previous research efforts [36, 56], a Gamma distribution is investigated, both theoretically

and analytically, to describe the statistics of intensity fluctuations in the atmosphere. There

have been other proposed distributions, including Log-normal and Beta [56], but these are

not explored in this chapter.

The derivation of the mixed PDF models begins with the assumption that the

underlying intensity fluctuations are Gamma distributed. Once the perturbed field from the

space object reaches the CCD and is captured, the photons experience Poisson counting

noise. Mathematically this combination of distributions is achieved by combining the
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continuous Gamma function with the discrete photon counting noise present, leading to

a negative binomial distribution for p(D|H1) [72]:

p(Ds|H1) =
Γ(M + Ds)
Γ(M)Γ(Ds)

(
1 +

S
M

)−M (
1 +

M
S

)−Ds

(5.9)

Γ is the Gamma function and M is the number of degrees of freedom. M represents the

amount of scintillation present in the received data. A value of one for M gives the largest

scintillation effect. Alternatively, larger M values decrease the amount of scintillation

present in the received data. S is the intensity of the RSO of interest, and Ds is the number

of photons received from the target object.

The scintillated received data described to this point does not include the total number

of photons captured. In addition to photons for the object being observed, background

photons from ambient light sources will also be captured in the data. The total number

of photons received by the CCD, D, is a combination of the number of photons from the

object and the number of photons from the background: D = Ds + DB. Assuming that

background and scintillated light from RSO are statistically independent, the two sources

can be combined into a joint Probability Mass Function (PMF). To achieve a marginal

PMF, the joint PMF is summed over the number of photons received from the object Ds

under the H1 hypothesis:

p(D|H1) =
e−BBD

Γ(M)

(
1 +

S
M

)−M D∑
Ds=0

Γ(M + Ds)
Γ(Ds)

(
1 +

M
S

)−Ds B−DS

(D − Ds)!
(5.10)

There are two main challenges presented by the mixed PMF shown in 5.10. The

first is that the conditional probability given H1 is not easily reduced to a simple PDF.

Additionally, when combined to get a LLR, the new method does not reduce to a sufficient

statistic similar to Gaussian and Poisson. Instead of a simple sufficient statistic such as

SNR found through a correlation of the data and expected PSF, the probability needs to

be calculated directly. Secondly, the distribution relies on two parameters that are not
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immediately apparent from the received data: the coherence parameter M and the true

object intensity S . These parameters need to be estimated from the data. Methods of

determining these parameters are described in section 5.3.1.

5.2 Simulation Description

In this section, a simulation is developed to generate realistic data that would model the

received data from a telescope observing a RSO. The model accounts for both scintillation

from the atmosphere and photon counting noise effects. The simulated data serves two

purposes in this research. The first is to analyze the intensity fluctuations present in the

PSF, and determine which PMF is the best fit. After the most appropriate distribution fit

has been determined, the RSO data is processed with the detection algorithm developed

in the previous section to evaluate the performance against traditionally used detection

algorithms.

5.2.1 Evolving Phase Screen Over Time.

The weighting vector coefficients, ~b, developed in the previous section accurately

represent the statistics of the atmosphere at one instant in time. To simulate any non-

instantaneous and measurable period of exposure time, the behavior of the atmosphere

over time is essential. It has been shown that unless there are very strong winds, or a long

time between observations, the statistics of the atmosphere are correlated over time [58].

This implies that over a short period of time, the optical system is likely to see correlated

phase errors, θa(m, n) across the pupil. It is important to account for this effect in order to

properly simulate the behavior over time. To account for the correlated atmosphere, each

of the j Zernikes modeled have a corresponding correlation term, R j. Taylor’s frozen flow

hypothesis is used to create this model of correlation. In Taylor’s Frozen Flow, a constant

wind blows a frozen atmosphere across the pupil [48]. This correlation for the jth Zernike

is a function of the separation between two points in time along with wind velocities and

seeing parameter ro.
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R j(∆t) = E[b j(t1)b j(t2)] (5.11)

Examining the expected value of the coefficient at these two times shows how

correlated each new Zernike at time t2, b j(t2), will be to the previous at time t1, b j(t1).

The correlation for a specific time separation, ∆t = t2 − t1, is found numerically through

the structure function of the atmosphere. As screens evolve over time, the weighting

coefficients are no longer zero mean, and have a variance of σ2
a j

. A new mean is calculated

based on the previous values of each coefficient b j, and the correlation R j(∆t).

µ̂ j = b j
R j (∆t)
σ2

j

(5.12)

The variance of the next instance of Zernike coefficients is also a conditional variance.

The variance is based on the unconditioned variance of the Zernike and the correlation for

the specified time separation of ∆t.

σ̂ j =

(
σ2

j

)2
− R2

j(∆t)

σ2
j

(5.13)

A new vector of coefficients, c j, is formed from the conditional mean and variance

in equations (5.12) and (5.13). These coefficients are also Gaussian distributed random

variables, but with a mean µ̂ j and variance σ̂ j.

c j ∼ N
(
µ̂ j, σ̂ j

)
(5.14)

The variance in the fluctuations is related to the ratio between the diameter of the

aperture of the telescope, d and Fried’s Atmosphere coherence diameter, ro [17]. This

ratio, d/ro, determines the amount of each type of phase error present.

5.2.2 Final System Model and Implementation.

To finalize the model for the simulation, the telescope and random phase screen

simulations are combined. There are different approaches to simulating propagation
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through the atmosphere and placement of the phase screen. Figure 5.1 demonstrates two

distinct methods of simulation.

(A) 

(B) 

Figure 5.1: Diagram of two potential different atmosphere propagations. In (A) a multiple

step propagation is demonstrated, in (B) a single phase screen directly against the pupil is

demonstrated.

In (A), the field is propagated through multiple phase screens placed along the

propagation path. Each screen may contain different statistics that represent the section

of atmosphere around that location. This method allows for more complicated interactions

between the field after each new simulated section of atmosphere. In (B), the phase screen,

θa(x, y), is simulated to be a thin phase screen placed directly against the pupil of the

telescope. Generally this method may not accurately represent the atmospheric effects,

unless an isoplanatic assumption is valid. The isoplanatic assumption implies that light

from any part of an object of interest experiences the same section of atmosphere. To

ensure this is a valid assumption, a model for the atmosphere is needed.
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One popular model of refractive-index structure constant C2
n is Hufnagal-Valley5/7.

This structure constant is a measure of the strength of fluctuations in the refractive index.

Under normal vertical viewing conditions, it gives an isoplanatic angle of 7µrad [36]. The

isoplanatic angle is an angle over which the isoplanatic assumption can be considered valid.

Most SDA search telescopes have a large field of view, much much larger than 7µrad, so

an isoplanatic assumption is not valid when simulating an entire field of view. However,

since only a single point object is being simulated and investigated to generate a PSF,

an isoplanatic assumption can be accurately made. For example, a 150m object in GEO

would still only represent an angle of 4.2 µrad, which is less than the isoplanatic angle in

the Hufnagal-Valley model. Now that there is a model for the phase screens, θa(m, n), these

simulated phase errors created from equation (5.14) are added to the pupil function from

equation (5.2) to give an updated pupil function, Pa(m, n), that is used to generate the PSF.

Pa(m, n) = A(m, n) exp
[
jθo(m, n)

]
exp

[
jθa(m, n)

]
(5.15)

This model now accounts for the first phenomenon being considered, the scintillation

due to the atmosphere. The next step is to add in the background light as shown in equation

(5.7). Finally, photon counting Poisson noise is added on top of the expected image D(x, y)

to give the final received data.

The optical model, random phase screens, and data analysis are processed in

MATLAB. All phase screens are generated with a separation of ∆t = 1ms. To simulate

a desired exposure time, 1/∆t correlated phase screens are used and each is put through

the combined model. Since a non-instantaneous exposure time is desired, it is necessary

to evolve the Zernike polynomials coefficients to generate each subsequent phase screen,

as described in section 5.2.1. In each new Monte Carlo simulation, an independent phase

screen is generated. Next, the remaining (1/∆t - 1) phase screens are generated based on

the statistics of the first screen and the correlation of Zernike polynomials. Each of these
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screens are then placed in the optical model to create PSFs. The resulting PSF images are

averaged and normalized to create a single simulated PSF. This PSF is the result of the

desired exposure time, optical system, and atmospheric conditions.

5.3 Results and Analysis

To demonstrate that the received data more accurately matches the newly developed

mixed PDF than traditional assumption, the mixed PDF is compared against both Gaussian

and Poisson distributions. An error metric is used to determine the best fit between the

simulated received data and the potential distributions for various atmospheric conditions.

5.3.1 Distribution Matching.

The first step in analyzing the distribution fits is to create a histogram that represents

the PDF of the received data. This PDF can then be compared against the theoretical

PDF of the potential distributions. The center pixel intensity values in the PSF are noted

across 1000 independent Monte Carlo iterations and then normalized. An important aspect

in fitting the distributions is determining the correct parameters for each PDF based on

the received intensities. The Gaussian is found by investigating the mean and standard

deviation of the received data. The Poisson is described completely by the mean. The

mixed PDF depends on four parameters: M, S , B, and D. The value of D is the simulated

data of the pixel being investigated. The value of M is found by providing the true values

for S and B, then selecting the M that provides the best fit. The value of M is a function of

atmospheric conditions and the integration time Ts. Once the fit for M is found, the values

for S and B are estimated from the data.

Each PDF is evaluated against the received PDF at the histogram bin locations. The

difference between PDFs is considered the error between simulated data and the candidate

PDF. Each vector of errors is then combined into a total RMSE, ERMS:
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ERMS =

√√
Nb∑
l=1

(p(l) − D(l))2

Nb
(5.16)

where Nb is the number of buckets, or places in the histogram that the PDFs are being

compared against. l is the bin locations, p(l) is the value of the PDF being investigated at

bin l, and D(l) is the simulated data value evaluated at the histogram bin l. Figure 5.2 shows

the ERMS values for the three candidate PDFs considered versus the seeing parameter, ro.
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Figure 5.2: Error between candidate PDFs and received intensity fluctuations. ERMS is

calculated for a variety of seeing values, ro

The error between the mixed distribution and the simulated data is smallest for ro

values less than 6 cm. After 6cm, the Gaussian PDF more closely matches the received

data. Physically this means that during conditions of increased turbulence, or lower ro, the
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temporal scintillation will be more prominent. There are several locations where survey

telescopes are located that routinely experience ro values of less than 6cm, indicating that it

is not unrealistic to expect these conditions. It is found that the distribution match is largely

a factor of the seeing parameter, ro, used. Additional factors including the integration

time, wind speed, and number of Zernikes used demonstrate a negligible impact on the

distribution fit. Although the Poisson does not have the lowest error for the data analyzed,

it can not be universally stated that Gaussian is better than Poisson. This data set was

generated making assumption about the noise sources present. Not all possible noise

sources are considered.

These findings indicate that for certain conditions, the mixed PDF results in the closest

distribution match to the simulated PSF fluctuations. An important note is that the analysis

performed is based on the statistics of a single pixel, the center pixel of the PSF. To

generalize this analysis to include the entire PSF, it is assumed that each pixel in the

PSF is independent. Moving from a point detection strategy to a matched filter, or entire

PSF strategy, allows for more advanced detection algorithms. In reality, there may be a

correlation in the temporal scintillation of adjoining pixels that propagate through similar

portions of the atmosphere. This effect is not analyzed in this research effort. In the next

section, the mixed distribution is implemented in a LLR test to determine the performance

of the newly developed algorithm. The algorithms are compared on their ability to find

potential RSOs.

5.3.2 Receiver Operating Characteristic Curves.

A Receiver Operating Characteristic (ROC) curve is a method of comparing the

detection performance across the entire range of false alarm values. It is generated by

sliding the threshold τ from equation (5.6), and noting Pd and P f value pairs at that

threshold. To demonstrate the maximum performance achievable with this detection

algorithm, simulated data is created with the mixed PDF developed in section 5.1.3.
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Figure 5.3 shows two instances of simulated PSFs created with (A) a long exposure

atmosphere, and (B) an atmosphere scintillated with the mixed negative binomial and

Poisson distribution.

(A) (B)

Figure 5.3: A demonstration of a simulated received PSF under two different conditions.

In (A) a long exposure atmosphere model is used, and in (B) a PSF generated with the

negative binomial and Poisson model or the ideal mixed PDF.

Using a Monte Carlo simulation of the PSFs, the detection performance of the two

algorithms that most closely match the PSF fluctuations are investigated. These two

distributions are the mixed and Gaussian PDFs. To produce a ROC curve, two types of

data are needed. These two data sets are images with and without a RSO. Performing

the detection algorithm on data with an object present gives the probability of detection,

while performing the detection algorithm on data with no object present determines the

probability of false alarm. Images without an RSO are generated by creating a flat

background with a value of B, and adding Poisson photon counting noise.

One method of determining Pd and P f is to compute the LLR and compare it against

a threshold and assign either a one for a detection or a zero for no detection. This can be
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done over a large number of independent Monte Carlo iterations. The ratio of detection

or false alarms to the number of Monte Carlo iterations gives a value for Pd and P f . This

direct computational method requires significant data processing at each threshold value.

In addition, the ROC curve is limited in false alarm range by the number of iterations

performed. To achieve false alarm rates of 10−5, on average 105 iterations would be needed

to generate a single false alarm.

Instead, a Monte Carlo simulation is performed with a large number of iterations,

N = 1000, and the LLR statistics are analyzed. By investigating the statistics of the LLR,

values for Pd and P f can be calculated with a CDF. Figure 5.4 shows N = 100 instances of

LLR generated under two conditions (A) where the Gaussian detector is implemented and

(B) where the mixed PDF detector is implemented.
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Figure 5.4: LLR observations over 100 Monte Carlo iterations. The LLR is generated for

both the (A) Gaussian algorithm and the (B) mixed PDF algorithm.

The LLR values in the case where no RSO is present, shown as the dashed line in

Figure 5.4, for both Gaussian and mixed PDF algorithms, closely follows a Gaussian

distribution. Due to this fact, the LLR statistics can be summarized by their mean and

115



standard deviation. The LLR values with an RSO present utilizing the Gaussian detection

algorithm is also Gaussian. The exceptions are the LLR values with an object present in the

mixed PDF algorithm. Analyzing the data shows that it more closely follows an exponential

distribution. This can be seen in Figure 5.4 (B), as the data tends to skew upwards of the

mean instead of symmetrically around the mean.

In Figure 5.4, Pd is found by computing the CDF of the solid line using the statistics of

the LLR and a sliding threshold value τ. Alternatively, P f is found by computing the CDF

using the statistics of the dashed line and the threshold τ. To ensure that the entire range

of Pd and P f values are investigated, it is necessary to use a threshold that spans from the

most negative to the most positive potential LLR values. Using this method, ROC curves

are found for both algorithms, and are shown in Figure 5.5.

For high P f values, the algorithms perform similarly, but the mixed PDF algorithm

shows Pd improvement as the acceptable P f rate is decreased. The new algorithm

demonstrates detection improvements of up to 35 percent for sufficiently low false alarm

rates. The mixed PDF algorithm appears to begin at approximately P f = 0.01, but actually

has a Pd value of one and is difficult to distinguish from the plot border. Low P f rates are

typically where SDA systems operate, and as a result this algorithm can potentially have a

benefit over the Gaussian.

For telescope systems with CCDs containing a large number of pixels, a low P f is

desirable. For example, a 512x512 array utilizing a false alarm rate of 10−5 would still

average approximately 2.6 false alarms per image. Depending on the program objectives

and process timing requirements, this may or may not be an acceptable number of

incorrectly identified RSOs. The performance achieved in this ROC curve is the theoretical

maximum improvement. Factors including the independence of adjacent pixels and how

closely the atmospheric conditions match the simulated parameters will determine the

realizable detection increase of the new algorithm, including how many more RSOs can
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Figure 5.5: ROC curves comparing the new mixed PDF (solid line) against the traditional

Gaussian detection algorithm (dashed line). These curves were generated with simulated

RSO and background data.

be found. The better the seeing parameter ro experienced, the less effective the new mixed

PDF algorithm would perform. The equal performance point occurs at approximately 6cm,

and the Gaussian algorithm has a larger Pd for larger ro values.

Additionally, factors including spatial aliasing and integration time have a large impact

on the effectiveness of this mixed PDF model. Spatial averaging due to aliasing can hide

the intensity fluctuations that give this new algorithm its benefits. In the case of long

integration times, the phase screen model is less accurate, and a long exposure atmosphere

more accurately represents the received data.

117



5.4 Conclusions

This research demonstrates that under certain atmospheric conditions, a mixed PDF

model combining negative binomial scintillation and Poisson background light can more

accurately represent the received noise statistics of the atmosphere present in an observed

PSF than a Gaussian assumption. For seeing values of less than 6cm, this new PDF is found

to more accurately match received intensity fluctuations. Using this model under ideal

assumptions, the mixed PDF model shows improvements of up to 35 percent detection for

realistic P f values typically used in SDA telescopes. Accounting for the scintillation that

is present in the RSO data, but not the background data helps distinguish objects from the

background. In this way, the additional atmospheric noise improves detection performance

in this model.

There are a few areas related to the research presented in this chapter where additional

future work could be performed. This work could be expanded in the future by applying the

algorithm to collected telescope data. Only simulated data is investigated in this chapter,

and to enable future implementation it is important to test the algorithms on collected

telescope data. There are other methods of hypothesis testing besides LLR. Using an

alternative detection algorithm along with the noise model described in this chapter may

show additional benefits over a LLR.

This research did not investigate the optimal methods of estimating object signal

strength S and the background B. There may be benefit to optimizing the estimation

techniques for these parameters. In addition, it is assumed that the pixels in the data are

statistically independent as well as the background and photons from the object of interest.

The model could be expanded further by investigating the impacts of these assumptions

being incorrect.

The next chapter discusses the conclusions and results from throughout this

dissertation, as well as combining areas of future research. The contributions of this

118



research effort as well as a broad overview of how research fits into the field is also

discussed.
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VI. Summary and Future Work

This chapter will summarize results and contributions of this dissertation as well as

present potential topics for additional future work.

6.1 Work Completed

In chapter 1, a research goal and three associated research questions are presented.

Throughout this dissertation and research, each of these questions is addressed and

answered. In the following list, a summary of the research results that answer each question

is included.

1. Will a new realistic cost function improve the detection performance of a Bayes

Criterion MHT?

In chapter 3, it is shown that a new cost function in a MHT improves detection

performance over traditional point detection approaches, BHT algorithms like Source

Extractor, and ECEP MHT algorithms. It is demonstrated that the probability of

detection is increased by using an UCEP MHT detection algorithm when compared

to an ECEP algorithm. Pd gains of up to 80 percent are observed for the same P f

rate. The number of hypotheses used within the MHT is also investigated. It is found

that there is a relationship between the number of hypotheses used and detection

performance. The results show that a MHT clearly detects more objects than a BHT,

and that using 6 hypotheses slightly outperforms the algorithm when 10 hypotheses

are used, with the additional benefit of reduced computational time.

2. Do the assignments of a priori probabilities in a MHT improve the detection

performance?

Chapter 4 addresses this research question. It is shown that increased performance

is achievable, in both simulated and collected SST data. When tested with simulated
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data, ROC curve analysis shows that the ECUP algorithm has a greater Pd than the

ECEP algorithm for a large range of P f values. At a relevant false alarm level of

P f = 10−10, ECUP shows an average improvement of approximately 5 percent when

tested over 100 Monte Carlo iterations.

When tested against collected SST data, this research demonstrates that for certain

applications it may be beneficial to use an ECUP MHT algorithm. It is shown with

high statistical confidence that the ECUP algorithm on average has more detections

than an ECEP algorithm when performed on the SST data. For the small subset

of frames analyzed, approximately 19-26 additional detections are found, which

translates to 458-627 additional detections on average for full frame data. These

objects are most likely threshold objects that are difficult for currently proposed

detection algorithms to detect. Finding these threshold objects will provide additional

information for tracking and characterization, in turn increasing SDA capabilities

with the optical system.

3. Can using a more realistic noise model for detection algorithms increase the ability

to detect space objects?

In chapter 5 it is shown that under certain atmospheric conditions, a mixed PDF

model combining negative binomial scintillation and Poisson background light can

more accurately represent the received noise statistics of the atmosphere present in an

observed PSF than a Gaussian assumption. For seeing values of less than 6cm, this

new PDF is found to more accurately match received intensity fluctuations. Using

this model under ideal assumptions, the mixed PDF model shows improvements of

up to 35 percent detection for realistic P f values typically used in SDA telescopes.

Accounting for the scintillation that is present in the RSO data, but not the

background data, helps distinguish objects from the background. In this way, the

additional atmospheric noise improves detection performance in this model.
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6.2 Algorithm Comparison

Throughout this dissertation, several algorithms are presented that addresses the issues

of spatial undersampling in CCD arrays, as well as the assumed noise distribution. In this

section, the performances of the algorithms developed are compared and contrasted.

In a MHT, there are two key variables: the cost and prior probabilities. Table 6.1

shows how the chapters of this dissertation, as well as a previous research effort, relate to

choices for costs and priors.

Table 6.1: Description of MHT algorithms including the assignment of costs and prior

probabilities and where they are developed.

Equal-Cost Unequal-Cost

Equal-Prior Zingarelli et. al. [24] Chapter 3: UCEP

Unequal-Prior Chapter 4: ECUP N/A

Table 6.1 shows research into four different assumptions that can be used in a

hypothesis test. In this case, the research relates to improvements in SDA detection

techniques. Figure 6.1 is a diagram of the general relationship between computational

complexity and Pd for SDA algorithms from other sources, as well as newly developed

algorithms proposed in this dissertation.

Moving along the y-axis in figure 6.1 from bottom to the top increases the probability

of detection. The algorithms above the x-axis all utilize multiple pixels to decide if an

object is present. The point detector on the other hand uses only a single pixel to make

decisions. Moving along the x-axis from left to right increases the complexity of the

algorithm. Algorithms to the right of the y-axis use a MHT, while the matched filter and

point detection techniques use a BHT.
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Figure 6.1: Pd versus computational complexity diagram for several SDA algorithms.

Processing time for a full frame of SST data is also included.

The ECUP algorithm developed in Chapter 4 provides an improvement in Pd, and

is slightly more complex due to the calculation of the weighting term Wk. The UCEP

algorithm detects even more objects, but is more computationally complex.

6.3 Future Research Items

There are several opportunities for continued research based on the work presented

in this dissertation. In each chapter ideas are included for potential future research. This

section compiles and describes these future research items.
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Chapter 3 future work:

This research focuses on received data that is assumed to be Gaussian. Through this

research, a method for implementing a different model for received data is developed

that can be used on any potential distribution of received data. The limiting cases of

costs are considered in this chapter. There are many additional cost structures in between

the two presented here. For specific applications, these cases may give better detection

performance. The drawback is that they will not reduce as well as the equal- or unequal-

cost algorithms described in this dissertation. Additionally, the unequal cost method here is

more computationally complex than the currently implemented algorithms. Simplification

and efficient implementation are not a focus of this research. To use this algorithm

operationally, these factors will need to be investigated further.

Chapter 4 future work:

The ECUP algorithm developed assumed Gaussian received noise in this chapter. In the

future, removing the Gaussian assumption may detect additional space objects. Additional

methods can be combined to potentially improve detection performance even further. For

example, using a Unequal-Cost Unequal-Prior (UCUP) algorithm may improve detection

performance when compared to an ECUP algorithm.

In the ECEP MHTs, the threshold is considered constant for each hypothesis. As a

result, the modeled intensity is effectively different for each hypothesis, dependent on the

distribution of the PSF. This assumption is changed in this paper for the ECUP algorithm.

This assumption can be removed in a future ECEP test, and may provide interesting

research opportunities and advancements.

Another consideration is how including unequal-priors may affect the ability to

translate the detected objects into accurate tracking and orbit determination. The ECUP
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algorithm takes into account the probability of the alternate hypotheses, each of which

correspond to a sub-pixel position. The sub-pixel information gathered from performing a

ECUP test may lead to improved sub-pixel position, and in turn, more accurate tracking of

detected RSOs.

Chapter 5 future work:

There are a few areas related to the research presented in this chapter where additional

future work could be performed. This work could be expanded in the future by applying

the algorithm to collected telescope data. Only simulated data was investigated in this

chapter. To enable future implementation, it is important to test the algorithms on collected

telescope data. There are other methods of hypothesis testing besides LLR. Using an

alternative detection algorithm along with the noise model described in this chapter may

yield additional benefits over a LLR.

This research did not investigate the optimal methods of estimating object signal

strength S and the background B. There may be benefits to optimizing the estimation

techniques for these parameters. In addition, it is assumed that the pixels in the data are

statistically independent, as well as the background and photons from the object of interest.

The model could be expanded further by investigating the impacts of these assumptions

being incorrect.

One final area that may be beneficial to address in the future is an Unequal-Cost

Unequal-Prior (UCUP) algorithm. This algorithm is not discussed in this dissertation, but

could improve detection performance above what was demonstrated with UCEP. It would

be the most computationally complex, and would not provide sub-pixel information, as is

the case with the UCEP algorithm.

125



6.4 Publications

To ensure this work is novel and well received by the community, several portions

of this dissertation have been submitted for conference and journal papers. In total, two

journal articles and two conference papers have been written and submitted.

Journals:

• Based on Chapter 3:

T. Hardy, S. Cain, J. Jeon, and T. Blake. “Improving space domain awareness

through unequal-cost multiple hypothesis testing in the space surveillance telescope.”

Applied Optics 54.17 (2015): 5481-5494.

• Based on Chapter 4:

T. Hardy, S. Cain, and T. Blake. “Unequal A Priori Probability Multiple Hypothesis

Testing in Space Domain Awareness with the Space Surveillance Telescope.” Applied

Optics. Accepted April 2016

Conference Papers and Presentations:

• Based on Chapter 5:

T. Hardy and S. Cain. “Characterizing point spread function (PSF) fluctuations

to improve resident space object detection (RSO),” in SPIE Defense+ Security,

International Society for Optics and Photonics, 2015.

• Based on Chapter 4:

T. Hardy and S. Cain. “Investigating prior probabilities in a multiple hypothesis

test for use in space domain awareness,” in SPIE Defense+ Security, International

Society for Optics and Photonics, 2016.
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