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Abstract 

This research explores use of executable architectures to guide design decisions in 

the early stages of system development.  Decisions made early in the system development 

cycle determine a majority of the total lifecycle costs as well as establish a baseline for 

long term system performance and thus it is vital to program success to choose favorable 

design alternatives.  The development of a representative architecture followed the 

Architecture Based Evaluation Process as it provides a logical and systematic order of 

events to produce an architecture sufficient to document and model operational 

performance.  In order to demonstrate the value in the application of executable 

architectures for trade space decisions, three variants of a fictional unmanned aerial 

system were developed and simulated.  Four measures of effectiveness (MOEs) were 

selected for evaluation.  Two parameters of interest were varied at two levels during 

simulation to create four test case scenarios against which to evaluate each variant.  

Analysis of the resulting simulation demonstrated the ability to obtain a statistically 

significant difference in MOE performance for 10 out of 16 possible test case-MOE 

combinations.  Additionally, for the given scenarios, the research demonstrated the ability 

to make a conclusive selection of the superior variant for additional development. 
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APPLICATION OF EXECUTABLE ARCHITECTURES IN EARLY CONCEPT 
EVALUATION 

 
1 Introduction 

 Procurement of state-of-the-art systems is becoming increasingly intricate and 

costly as technology advancements facilitate customer requirements for increased 

capabilities and extended product lifecycles.  Decisions made early in system 

development have an enormous impact on lifecycle costs as well as determining the 

system’s performance in future use case scenarios.  The use of an executable architecture 

can help document, manage and guide sound decision making early in the system 

development process.   

Due to the increases in complexity, there is benefit to the systems engineering 

(SE) community with development of executable architectures that can be used to 

influence program decisions as early as possible in the acquisition lifecycle to maximize 

long-term flexibility, adaptability, robustness and related “-ilities,” to ensure favorable 

system and system-of-systems (SoS) performance under future uncertain applications.  

The need for this toolset is further exacerbated in large SoS as total replacement becomes 

cost prohibitive, thus individual systems and those comprising SoS may remain in service 

for several decades and beyond. 

Systems engineers and program managers must temper performance goals against 

total lifecycle costs.  It is estimated that conceptual and preliminary design decisions lock 

in 50-75% of lifecycle costs and according to the U.S. Department of Energy, total 

lifecycle cost obligation is 95% decided by the end of R&D activities (Blanchard & 

Fabrycky, 2011; Makepeace, 1997).  While incorporation of explicit lifecycle cost 
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estimates is beyond the scope of this thesis, it is none-the-less a practical influence that is 

always under consideration. 

Early trade space decisions in the acquisition process, specifically during the 

Solution Analysis Phase, do not explicitly consider possible future use cases of the 

system under procurement.  The current version of the Defense Acquisition University's 

Generic Acquisition Process, dated 17 December 2014, prescribes an Analysis of 

Alternatives (AoA), but does not call for explicit consideration of future system 

requirements (Defense Acquisition University, 2014).  Additionally, several Department 

of Defense Architecture Framework (DoDAF), Version 2.0 products, such as the 

Capability Taxonomy (CV-2) and the Services Evolution Description (SvcV-8), are 

mandated to address future capabilities yet the document provides little direction or 

guidance on how to accomplish this requirement (DoD Deputy Chief Information 

Officer, 2009). 

For a given system, a deliberate decision making process that feeds into an 

engineered solution accounting for other possible use cases, while minimizing resource 

consumption, such as time and funding, is highly desirable.  One approach to this 

decision making process is to perform parametric based modeling early in program 

development to indicate how a design choice affects future system performance.  This 

thesis explores application of an executable architecture, early in an acquisition program, 

to model system performance in potential future operational scenarios and demonstrates, 

via simulation, how variations of selected parameters may be used to influence system 

design.  
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1.1 Problem Statement 

Systems engineers and program management offices need a way of evaluating 

design concepts that do not require comprehensive preliminary designs of component 

systems but rather do include a number of parameters of interest across those component 

systems.  This evaluation supports the decision making process by informing trade 

decisions during early systems acquisition.  Throughout the modeling process, the 

balance of time, effort, and cost inputs with the quality of model output is essential. 

1.2 Research Objective 

The objective of this thesis is to explore the current state of modeling methods 

and tools in the SE community and implement a modest, yet representative, architecture 

in an executable model using a selected toolset, with the ultimate goal of demonstrating 

potential value in use of executable architectures in early concept development.  To meet 

these objectives, this thesis will consider the following questions: 

Research Question 1:  What is the capability of current architecture modeling 

tools to execute simulations directly from a system architecture? 

Research Question 2:  What type of information can be provided from use of an 

executable architecture in support of trade space decisions during early concept 

development? 

Research Question 3:  How detailed of an executable model is required to 

effectively evaluate trade space decisions in early concept modeling?  
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1.3 Research Focus 

This thesis was completed under study at the Air Force’s Institute of Technology 

and therefore has a Department of Defense (DoD) focus.  More specifically, the research 

focuses in the domain of tactical Intelligence, Surveillance, and Reconnaissance (ISR) 

system development in an effort to provide a basis for application in future ISR SoS 

development. 

1.4 Methodology  

In order to accomplish the objective, this thesis will first examine existing and 

proposed methods for creating and simulating executable architectures.  The author will 

then comment on several commercially available architecture modeling tools to 

determine their suitability for creating executable architectures and then choose a tool to 

model and simulate a representative system while determining and modifying selected 

model parameters to demonstrate potential value in executable architectures.  Finally, an 

example use of the results to guide the decision making process will be demonstrated. 

1.5 Assumptions 

 Several broad level assumptions were identified during the research and modeling 

portions of this thesis.  Those assumptions are as follows: 

• The concepts explored within this thesis are scalable to include more complex 

individual systems and SoS. 

• A commercial tool currently exists, and is accessible to the author, to document a 

subset of a DoDAF V2.0 compliant system architecture and includes an 

executable modeling capability to meet the fidelity requirements for this thesis. 
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• The selected sets of parameters under study are adequate to determine future 

system performance. 

1.6 Preview 

The research and parametric modeling methods covered in this thesis are focused on DoD 

centric problems however the core concepts are intended for wide application among 

various commercial and governmental program management offices.  Specific parameters 

of interest will vary based on the system under development but the application of an 

executable architecture and subsequent methods of future scenario evaluation will apply 

across a range of systems. 

A preview of the work by chapter is as follows: 

• Chapter 1 provides an overview of the problem statement and introduction of 

methodology. 

• Chapter 2 is a literature review to provide a background on executable 

architecture methodologies and a study of executable architecture application.  

This chapter also briefly summarizes software packages featuring the various 

methodologies when literature is available.  

• Chapter 3 is a detailed description of application methods. 

• Chapter 4 contains results and analysis of the developed executable architecture 

simulations.   

• Chapter 5 concludes the thesis with interpretation of the model outputs.  Critical 

information is the identification of parameters having the largest impact on future 
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system performance.  Finally, a discussion of recommendations for future study 

closes the chapter. 
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2 Literature Review 

2.1 Overview 

 The purpose of this chapter is to provide the reader with an introduction to 

executable architectures.  The chapter begins by providing a baseline understanding of 

architectures, architecture frameworks and their respective purposes.  Following 

definition, the chapter contains a review of simulation architecture techniques, discussion 

of associated implementation(s), and a critique of available methods and tools. 

2.2 Definitions 

An executable architecture (EA) can be defined as "executable dynamic 

simulations that are automatically or semi-automatically generated from architecture 

models or products" (Hu, Huang, Cao, & Chang, 2014).  An important characteristic of 

EA over more conventional modeling and simulation (M&S) efforts is the ability to 

simulate directly from existing architecture products, with minimal additional system 

definition or manipulation.  Use of EA in early stages of system development is helpful to 

indicate system characteristics such as interoperability, capability, flexibility, and/or 

maintainability and therefore to inform trade space decisions. 

The Institute of Electrical and Electronics Engineers (IEEE) provides definitions 

for system, design, and functional architectures.  For the purposes of this thesis, the 

definition of a functional architecture is the most useful and is defined as "an 

arrangement of functions and their sub-functions and interfaces (internal and external) 

that defines the execution sequencing, conditions for control or data flow, and the 

performance requirements to satisfy the requirements baseline" (IEEE Standard 1220-
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2005, 2007).  Outputs of the functional architecture simulations are then potentially used 

to influence the design architecture and thus overall system architecture. 

In order to increase standardization in the system development process, the 

concept of an architecture framework was created.  An architectural framework serves as 

a guide for constructing the various architecture products or models to thoroughly 

describe and document a system.  The Department of Defense (DoD) created the DoD 

Architecture Framework (DoDAF) to provide a consistent modeling platform for military 

system architects and engineers to describe the system under development.  The DoD 

describes DoDAF as: 

The overarching, comprehensive framework and conceptual model enabling the 

development of architectures to facilitate the ability of Department of Defense 

(DoD) managers at all levels to make key decisions more effectively through 

organized information sharing across the Department, Joint Capability Areas 

(JCAs), Mission, Component, and Program boundaries  (DoD Deputy Chief 

Information Officer, 2009). 

2.3 DoDAF Background 

 The DoD formally mandated use of an architecture framework after introduction 

of the Command, Control, Communications, Computer, Intelligence, Surveillance and 

Reconnaissance (C4ISR) Framework v2.0 in 1997, establishing an architecture composed 

of three views; Operational, Systems and Technical.  This framework was created for 

information technology systems in mind and provided the system operators with an 

overview of capabilities the system possessed.  For the acquisition community, the 
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C4ISR framework provided a basis for determining system-of-system interoperability, 

under the assumptions that the architecture accurately represented the system under study 

and that none of the systems changed (Levis & Wagenhals, 2000).  

In an effort to facilitate architecture use within the defense acquisition 

community, the DoD introduced the DoDAF in 2003, with the intent for all system 

acquisition offices to document system parameters, interactions, and dependencies via a 

formal method.  DoDAF differed from the previous incarnation of C4ISR by expanding 

existing view definitions, introducing the All View (AV) and placed an emphasis on net-

centric concepts (Department of Defense, 2007a). 

The DoD further updated the framework to DoDAF v2.0 in 2009.  This new 

release provided more documentation regarding information each model (formerly 

referred to as products) should contain.  DoD also introduced the DoDAF Meta Model 

(DM2).  DM2 explicitly places more emphasis on data-centric modeling.  Features that 

DM2 contribute to DoDAF are a constrained vocabulary, specific semantics and format, 

increased discovery and understandability and finally, widely adopted integration and 

analysis (DoD Deputy Chief Information Officer, 2009).  Several papers cite the 

ambiguous definition of terms as a significant challenge with development of executable 

architectures (Ge, Hipel, Li, & Chen, 2012; Li, Dou, Ge, Yang, & Chen, 2012; 

Wagenhals, Liles, & Levis, 2009).  To complete the release of this updated version of the 

framework, the DoDAF office provided an extensive data dictionary and mapping 

resource for explicitly defining terms and mapping those terms to sub models and 

products.  Inclusion of this dictionary greatly improves consistency of use of terms while 

developing architecture models. 
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The structure of DM2 is a data repository making it difficult to directly analyze 

without first translating the data into a graphical or structured textual format (Li et al., 

2012).  Under the current construct, to form an executable architecture, the data must be 

extracted, comprehended, possibly modeled, and translated again into another executable 

form.  This not only leaves room for error but also consumes resources in the form of 

money, time, and personnel. 

 DoDAF has proven a valuable tool in development of system architectures but it 

currently only supports representation of static systems.  DoDAF v1.5 identified the need 

for and provided suggested methods to accomplish dynamic modeling, but those have 

since been removed in newer versions of DoDAF (Department of Defense, 2007b).  As 

the DoD deploys more complex systems and integrates previously stand-alone systems 

into SoS, the result is a continued need for dynamic representation of systems and SoS.  

Successful use of an executable architecture promises to allow inclusion of 

features to ensure maximum flexibility while meeting current system performance 

requirements at minimum lifecycle costs.  An ability to simulate possible future system 

requirements and configurations plays a key role in early systems development and 

selection of alternatives.  By modeling foreseeable scenarios, both likely and unlikely, 

and selecting system attributes based on parametric modeling, the acquisition community 

can reduce lifecycle costs while increasing system flexibility, adaptability, robustness, 

etc. for the user.  The DoD benefits from the ability to evaluate system variations not just 

in the near and mid-term, less than 5 years after system deployment, but to evaluate the 

capabilities and cost for the long term, perhaps upwards of 20 years, and throughout the 

product lifecycle. 
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2.4 Simulation Techniques 

The modern concept of an executable architecture and application to the DoD was 

first documented in a series of three companion white papers from George Mason 

University in the year 2000.  These techniques outlined development of a design process, 

structured analysis and an object-oriented approach for the then current C4ISR 

Framework (Bienvenu, Shin, & Levis, 2000; Levis & Wagenhals, 2000; Wagenhals, 

Shin, Kim, & Levis, 2000).  Development of executable architectures has continued to 

evolve since initially conceived with realization of the efficiencies gained through direct 

simulation from the architecture and increased interest from the systems engineering 

community.  There are still however limited mature, standardized, and user-friendly 

toolsets available for creating simulations directly from an existing architecture.  Along 

with limited toolsets, there is no clearly preferred method for simulation of executable 

architectures based on the variety of simulation techniques described in this section of the 

thesis.  

For the purposes of this thesis, DoDAF is considered the architecture standard of 

interest, and thus defines the information required for each view.  It is important to note 

that while UML and SysML products are commonly used to present relevant DoDAF 

views, UML and SySML do not natively include executable semantics at this time and 

thus are not suitable for executable architectures (Griendling & Mavris, 2011).  It is 

desirable that system architecture software supports generation of all DoDAF models to 

ensure concordance in addition to allowing simulations directly from those models.  

Various implementations of executable architectures have been suggested and/or enacted 

by academia and commercial software companies.  The remainder of this chapter 
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contains a brief review of methods and various implementations proposed for EA 

simulation.   

2.4.1 Discrete Event Simulation 

 Discrete Event Simulation (DES) is a broad modeling concept without a formal 

graphical notation standard.  As the name implies, the simulation method divides events 

into discrete periods of time to execute activities, events or processes within the model 

(Griendling & Mavris, 2011).  This method presents time and outputs as a step function 

in the simulation rather than a linear time progression that continuous modeling 

techniques offer (Matloff, 2008).  DES are well suited for analyzing linear processes and 

modeling discrete system changes with statistical significance (Özgün & Barlas, 2009).  

Software toolkits using DES are perhaps the most commonly available and user-

friendly packages for performing system modeling and simulation with many variants 

available from open source, academic and commercial producers.  Examples of some of 

the well-established commercial DES software packages, many including more than 

exclusively DES capabilities, include Imagine That!'s Extendsim, Mathworks' SimEvent 

and Rockwell Automation's Arena (Imagine That!, 2015; Mathworks, 2015; Rockwell 

Automation, 2015).  Unfortunately, few DES software packages, commercial or 

otherwise, are purpose built for use and integration with system architectures and often 

do not natively support generation of all DoDAF models.  Several applications of DES 

are summarized below. 
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2.4.1.1 Innoslate 

  SPEC Innovations has built a powerful online architecture tool called Innoslate.  

This software supports generation for most of the 50 models identified in DoDAF v2.0 

and allows simulation directly from some architecture models using a DES (SPEC 

Innovations, 2015).  Developer documentation and the author's experience were the only 

sources of relevant information available for this thesis.   

Benefits of the Innoslate software are many.  World-wide access is provided via 

the Innoslate website, allowing for platform independent architecture creation and 

simulation.  The built-in DES features a wide array of built-in probabilistic functions for 

realistic activity durations during model execution.  The software accounts for allocation 

of resources and allows consumption of assigned resources throughout the simulation.  In 

addition to creation of the architecture models, where details can be obscured through 

abstraction, the entity relationships and actions can be enhanced for simulation with 

formalization through Simulation Scripts, written in simple JavaScript (SPEC 

Innovations, 2015).  Innoslate also includes predefined formats for many DoDAF views. 

2.4.1.2 Canadian Department of National Defence 

In 2014, members of the Canadian Department of National Defence's Canadian 

Forces Warfare Center published a paper on a new method for creation of executable 

architectures using a combination of Microsoft (MS) Visio to produce architecture 

models and use of SimEvents to execute automatic simulations (Nakhla & Wheaton, 

2014).  Once a model is created, their method uses Visio's built-in XML generator to 

export an XML file.  They then process for model consistency and transform to a 

SimEvents compatible file.  The execution can then be run within SimEvents and updates 
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to change model behavior can be made and finally translated back to a Visio compatible 

file.  A diagram of the model to simulation translation process is shown in Figure 1. 

 

Figure 1: Flow Between Computational Models (Nakhla & Wheaton, 2014) 

Nakhla & Weaton's method has several points of merit.  First, while both software 

packages require licenses, they are widely available and each has an existing user base 

outside of system architecting, fostering broad understanding and possibilities for 

international cooperation.  Second, their method allows for bi-directional translation 

between the models and the simulation; updates made during simulation can be 

automatically translated back to an architecture compliant model (Nakhla & Wheaton, 

2014).   

2.4.1.3 COREsim 

 Vitech's popular architecting tool, CORE, has an add-on called CORESim. 

CORESim provides the ability to simulate system architecture from CORE produced 

Functional Flow Block Diagrams (FFBD) and Enhanced Functional Flow Block 
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Diagrams (EFFBD) (Vitech Corporation, 2000).  The simulator uses a DES and has a 

comprehensive built-in library of probabilistic distributions available for use. 

2.4.1.4 Enterprise Architect 

 Sparx Systems offers a comprehensive system architecting tool with built-in 

simulation capabilities.  The simulator uses the native UML constructs from the 

architecture under simulation (Sparx Systems, 2015).  The integrated simulator is useful 

for discovering logical errors within the architecture but is script based and doesn't 

currently allow for the addition of probabilistic variables or decision making within the 

simulation.  Intercax has developed a plug-in for the Enterprise Architect software to 

allow execution of SysML parametric models allowing evaluation of cost, performance 

and automated trade studies (Intercax, 2015b).  According to the developer's published 

information, the plug-in allows use of MATLAB/Simulink and Mathematica in model 

development as well as export of results data for further analysis.  The performance of the 

plug-in was not evaluated in the completion of this thesis. 

2.4.2 Colored Petri Nets 

 Formal notation and simulation of executable architectures though Colored Petri 

Nets (CPNs) is an area of active research and is the preferred formalism for many authors 

proposing executable architecture methods (Ge, Hipel, Yang, & Chen, 2014; Xia, Wu, 

Liu, & Xu, 2013).  CPNs are an extension of standard Petri Nets where the tokens contain 

information rather than the binary token nature of standard Petri Nets.  The information 

contained in the tokens factor into the activation of a transition activity and thus makes it 

reasonable for modeling complicated systems.  CPNs retain the graphical notation of 
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Petri Nets while including consideration for data types and parameter analysis featured in 

Standard Modeling Language (SML) for discrete event models (Jensen, Kristensen, & 

Wells, 2007).  A primary advantage of CPNs is the ability to view the model via a high 

level graphic, facilitating understanding.  CPNs allow transfer of attributes between 

modules and sub modules, suggesting the systems can be decomposed to encourage 

module reuse and improve comprehension. 

A simple CPN graphic is displayed in Figure 2.  Like standard Petri Nets, CPNs 

contain places, transitions, and arcs, respectively represented by circles or ellipses, 

rectangles and the lines connecting them.  Additionally, all the above can include 

annotations called inscriptions to provide detailed information.  Places may contain one 

or more unique inscriptions called tokens.  The data at any given place is described via 

these tokens. 

 

Figure 2: CPN Example (Jensen, Kristesen, & Wells, 2007) 
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CPNs are viable for modeling executable architectures due to the ability to 

include time based events.  Dynamic modeling is achieved with inclusion of temporal 

allocations for discrete events.  Since the modules are based on discrete events, 

simulations can run automatically or under direction of the architect, allowing dissection 

of time and promoting a thorough understanding of system interactions (Jensen et al., 

2007). 

A matter of practical interest is the complexity faced with automatic conversion of 

existing architecture products or data to a CPN format through a user friendly translator.  

Wagenhals et al. demonstrated a proof of concept where they developed model mapping 

functions to translate widely used DoDAF product instances into an executable instance 

(Wagenhals & Levis, 2009).  These models would make use of existing architecture 

information and products to generate an XML file capable of being read into a CPN 

toolset such as CPNTools.  While demonstrating the possibility of modeling this way, 

Wagenhals et al. acknowledged the immaturity of this method.  One problem is any 

errors in the architectural instance will translate to the executable architecture and may 

only be found by means of thorough examination during simulation.  Once discovered, 

the error must then be corrected in the initial architecture instance and translated again 

into an executable form.  A separate but related difficulty associated with this method is 

that in some cases, the model may require double translation; once from the data to a 

static model and then again from the static model to the executable model, creating 

additional sources for errors (Ge et al., 2014). 

Ge et al. propose a direct translation method that does not require an initial static 

architecture product from which to convert to the executable model (Ge et al., 2014).  
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Their approach uses the well-defined dictionary associated with DM2 to ensure 

concordance and translate directly to XML products, again to be read by a CPN toolset.  

This method may reduce translation error by working through a direct translation but 

rather is complicated through dependence on the rigidly defined DM2 data dictionary.  

Like other methods, incorrectly entered data is not exposed until after the architecture is 

simulated. 

2.4.3 Hierarchical Colored Petri Nets 

 Hierarchical Colored Petri Nets (HCPNs) are an additional extension of Petri Nets 

to an executable architecture.  HCPN is an enhancement of CPNs with the introduction of 

hierarchical pages to allow for varied levels of abstraction.  The developers of this 

application, Feng et al., propose a 4-dimensioned translation of DoDAF architecture 

models into a HCPN compatible model (Feng, Ming-Zhe, Cui-Rong, & Zhi-Gang, 2010).  

A mapping from DoDAF models to an HCPN is shown in Figure 3.  Unfortunately, the 

authors haven't published a case study, implying that a practical application to EA is still 

in its infancy.  Additionally, the most recent academic paper studying HCPN application 

to executable architectures is from 2010, so presumably this effort has been abandoned 

for reasons unknown. 
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Figure 3: Translation Concept from DoDAF to HCPN (Feng et al., 2010) 

The overall use of CPNs or HCPNs to perform executable architectures appears to 

currently be at the academic level of interest and maturity.  The author of this thesis was 

unable to find any formal architecture software using CPN for simulation.  Several papers 

suggested use of CPNs for simulation via software such as CPN Tools, but alas that 

software package is not intended to be a systems architecting software and thus not 

considered as a practical implementation for executable architectures (Janczura, 2009; 

Jensen et al., 2007; Staines, 2008; Xia et al., 2013).   

2.4.4 Executable Specification-based Systems Engineering 

Cancro et al. describe a method for developing an executable system engineering 

tool called Executable Specification-based Systems Engineering (ESSE) (Cancro, Turner, 

Kahn, & Williams, 2011).  The authors don't explicitly refer to this as an executable 
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architecture tool but the goals of their product, "directly executing the specification," are 

consistent with the definition of an executable architecture.  They propose a three level 

hierarchical graphical language that specifically includes external system interaction 

modeling.  At the system context level, their method describes system level interactions 

and is further decomposed at the second level as a Functional Block Diagram.  The 

implementation of functional block diagrams is especially useful in dynamic simulations 

with the inclusion of flags for differentiation of clock versus interrupt driven functions 

and enable flags to determine system performance in the absence of particular functions.  

The third level of decomposition, termed the functional description contains highly 

detailed communications interfaces (Cancro et al., 2011).  A top level depiction of this 

model is shown in Figure 4. 
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Figure 4: ESSE Development Process (Cancro, Turner, Kahn, & Williams, 2011) 

The ESSE model has several desirable attributes.  First, this hierarchical based model is 

similar to existing UML and FFBD modeling methods, therefore familiar to System 

Engineers and is a more likely candidate for adoption, compared to other textual 

implementations of an executable architecture.  Second, the varying layers provide built-

in abstract views for presentation to managers and decision makers, while also containing 

the requisite level of formalism at the lower levels to support robust systems engineering.  

Third, with the integrated nature of ESSE developers claim to eliminate modeling lag, 

which is the time between architecture creation and a simulation output, allowing 

thoughtful decisions at any process in the system development.  Finally, there is an 
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apparent high level of reusability built in, a critical feature when developing a SoS.  

Additionally, the developers have created a prototype development environment, 

implying that it’s not ready for mass implementation (Cancro et al., 2011).  

Unfortunately, the most recent publication covering this modeling concept was in 2011, 

leading to an assumption that this project was abandoned for reasons unknown. 

2.4.5 fUML 

 The Unified Modeling Language (UML) was established in 1994 as a 

combination of the Booch and OMT methods of object-oriented analysis and design and 

was formally released as UML 1.0 in 1997 (Larman, 2011).  It has served the software 

and systems engineering community well by providing a formalized language used to 

develop and describe systems.  One drawback of UML, current and all previous versions, 

is the lack of native executable semantics to dynamically evaluate system interactions and 

behaviors. 

 The Object Management Group (OMG), a technology standards consortium with 

considerable input on the evolution of UML, recognized this gap and began developing 

the Foundational UML (fUML).  fUML is an intermediary step in the translation of 

standard UML models into a platform language, such as Java.  The fUML is based from 

three key tenets: compactness, ease of translation and action functionality (The Object 

Management Group, 2012).  The fUML applies standardized language and syntax to the 

translation process.  A depiction of fUML’s role in translating from UML to platform 

language is shown in Figure 5 
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Figure 5: Translation of the fUML Subset (Object Management Group, 2013) 

Several papers exist detailing the translation and implementation of UML to 

fUML and then on to platform specific languages.  Wang et al. offer one reasonable 

theory for implementation by adding to the current fUML standard (Wang, He, & Wang, 

2014). They present a case defining explicit meta models, providing a well defined 

syntax and semantics, and establishing precise rules for execution. They chose graphic 

representation of an SoS via swimlanes where each system is in one and only one UML 

swimlane and modeling data transfer using connectors between various activities in each 

of the swimlanes. 

 A potential drawback with fUML is that the executable portion of the 

specification moves away from graphical models used in Surface UML subset to a 

platform language such as Java.  Development of a universal executable generator from 

standardized UML notation would encourage adoption by a broad user base.  

Unfortunately, even the authors of the fUML specification acknowledge that ease of 

translation and compactness are in conflict with one another, complicating the practicality 

of a "general fUML-to-platform translator" (The Object Management Group, 2012).  
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Additionally, UML is an abstract modeling language and thus by defninition has poor 

formalization, further comlicating direct model translation to fUML (Wang et al., 2014). 

2.4.5.1 Magic Draw 

 Some architecture software vendors are beginning to incorporate fUML into their 

execution packages.  One of those examples is No Magic's MagicDraw Cameo 

Simulation Toolkit which is the industry's first implementation of the fUML and State 

Chart XML standards (No Magic, 2015).  One criticism of this implementation is that it 

lacks a global view, preventing the system engineer from viewing the complete system 

and thus missing portions of the system interaction (Hu et al., 2014).  No further literature 

is available to outline benefits or weaknesses for this product.  Similarly to Enterprise 

Architect, Intercax has created a third party plug-in for Magic Draw called ParaMagic 

allowing use of Mathematica, PlayerPro, OpenModelica and MATLAB for further 

simulation and model analysis (Intercax, 2015a).  The performance of ParaMagic was not 

evaluated in the completion of this thesis. 

2.4.6 Monterey Phoenix 

 Monterey Phoenix (MP) was initially developed for software development 

applications, however similarities between software and systems acquisition provide a 

favorable application to systems architecture.  According to the developer, MP model 

outputs are suitable for incorporation to DoDAF models however current software doesn't 

support integrated architecture model generating capabilities.  The benefit of MP in this 

application is the ability to simulate interactions (Auguston, 2014). 
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MP defines an event as an “abstraction of activity” and is otherwise centered on 

two basic premises to provide system behavior analysis; the concept of dependency in a 

precedence relationship and a hierarchical relationship of inclusion (Auguston, 2014).  

Auguston has formalized the executable modeling language through a syntax library. 

 Benefits of this model are that it provides a high level of abstraction.  For 

instance, an early concept evaluation isn’t dependent on strict interface control 

documents and simply modeling the bulk communications between component systems 

may be adequate.  Another benefit is that the model simulates resource limitations and 

sharing (Auguston, 2014).  Like some other executable architecture programs, MP 

requires unique programming and doesn't provide tailored model generation to a standard 

architecture such as DoDAF.  Current integrated output files and diagrams are limited to 

sequence diagrams and swimlane diagrams. 

2.5 Generalized Architecture Development 

In addition to exploring methods of simulation, a generalized architecture 

development process is appropriate for review.  Dietrichs, et al. developed a set of steps 

used to develop and evaluate system architectures called the Architecture Based 

Evaluation Process (ABEP) (Dietrichs, Griffin, Schuettke, & Slocum, 2006).  The ABEP 

process identifies a logical sequence of operations for evaluation of system performance 

based on simulations based on developed architecture and is not specific to development 

and evaluation of an executable architecture.   

Architecture Based Evaluation Process (ABEP) 

ABEP ASSUMPTIONS: 
a. Some meaningful analysis is required to evaluate system 
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b. Integrated architectures provide the most complete system/concept 
definition to ensure the evaluation is meaningful and accurate. 

c. The architecture, when done correctly, provides the necessary traceability 
to tie the evaluated concept of interest to the analysis used to validate the 
concept. 

 
ABEP STEPS 

1. Design Operations Concept of system to be evaluated. 
Ops concept provides the system description which the architecture will 
model, and the models will simulate/evaluate. 

2. Identify MOE’s relevant to the decision/evaluation 
Identify the metrics that represent the effectiveness of the system. 

3. Identify required level of abstraction for architecture to show 
traceability to MOE’s 
Analyze the Ops Concept to determine if MOE’s are measured at the 
output of the system, within the system (requiring ‘drilling’ into the 
system activities), or at the output of activities external to the system 
(requiring external systems diagram) 

4. Identify architecture views necessary to capture 
structure/relationships 

a. Structure (OV-1, OV-2, OV-5) In order to first develop the 
structure of the analysis, nearly all evaluations will require the OV-
1 (High Level Operations Concept), OV-2 (Operational Node 
Connectivity Description), and OV-5 Operational Activity Model 
views.  The level of abstraction (A-1, A-0, AO etc.) of the OV-5 is 
initially identified in the previous step. 

b. Decision Logic (OV-6a) To capture the logic of the system, nearly 
all evaluations will require the OV-6a Rules Model, developed to 
match the level of abstraction used for the OV-5’s. 

c. As Required: SV-2, SV-4, SV-7,OV-6b, OV-6c Depending on the 
complexity, consideration for time and dependency on internal  
performance inputs, some or all of the listed views may be 
required. 

5. Develop architecture views 
Develop architecture views IAW DoDAF to include all relevant activities 
and entities.  If an integrated architecture already exists, then acquire the 
required architecture views. 

6. Develop Modeling Simulation to replicate architecture 
a. Select Modeling tool best suited to meet evaluation requirements 

(i.e. Excel spreadsheet vs. discrete model simulation program) 
b. Model structure to match architecture (OV-2, OV-5) 
c. Model decision logic to match OV-6a. 
d. Calculate MOE’s at output of activities as functions of design 

parameters 
7. Evaluate Model Completeness 
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Does model consider all relevant aspects (processes, assumptions, input 
variables, and outputs, MOE’s) of the system/concept? 

a. IF so, continue to step 8. 
b. IF model not complete, return to step 3 with the following 

considerations. 
i. Determine additional architecture view and/or level of 

abstraction required to achieve traceability between system and 
the missing aspect. 

ii. Develop required additional architecture 
iii. Modify model to include additional architecture view. 
iv. Re-evaluate Step 7 until model captures all relevant aspects of 

the concept. 
8. Evaluate model for MOE results, requirements and key parameters 

a. Once the model is complete, evaluate the system’s ability to meet 
target metrics. 

b. Vary design parameters and perform sensitivity analysis to identify 
key parameters. 

c. Compare sensitivity analysis to target MOE’s to establish 
requirements and KPPs. 

d. Identify critical performance parameters in the SV-7 Systems 
Performance Parameters Matrix. 

e. Vary system design and design parameters to evaluate the system’s 
robustness and its rate of degradation. 

2.6 Literature Review Summary 

Based on quantity of literature related to executable architectures, it is clear there 

is great interest in the ability to perform architecture based verification and validation of 

systems (and SoS).  Conversely, there are very few examples where the above 

methodologies are successfully integrated with system architecture software.  The large 

amount of interest and the simultaneous broad lack of comprehensive executable 

architecture software suites indicate the systems engineering community faces a non-

trivial problem and further study is required. 
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3 Methodology 

The purpose of this chapter is to provide a detailed description for the creation of 

a representative executable architecture.  The motivations for this thesis stem from a 

combined AFIT and NPS interest in application of an EA to a SoS, such as tactical ISR 

UAS platforms.  The intent is to synthesize individual vehicle models to simulate a set of 

UASs that may operate as a SoS.  The case will be based on a homogeneous UAS model 

set but is very relevant to a heterogeneous scenario with alterations to capabilities of one 

or more of the UASs.  This chapter will define the various system properties and 

parameters within constraints of the physical solution of a UAS. 

3.1 Process 

The ABEP covered in section 2.5 will form the basis for the development and 

evaluation of this architecture.  Use of an executable architecture results in combination 

of steps 5 and 6, although some additional fidelity built into the architecture views is 

required to achieve representative simulation.   

3.2 Assumptions 

As previously indicated, the development of a UAS architecture has already been 

selected as the vehicle’s form factor, although physical and functional decompositions 

along with specific requirements and capabilities remain undefined.  Throughout the 

development of this system architecture, the following broad assumptions will be adhered 

to: 
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• Technologies of the representative system are currently attainable or at a level 

where it is reasonable that they will be mature enough for implementation by 

the year 2025. 

• Vulnerabilities to attack, in the physical or cyber domains, are not explicitly 

considered or modeled. 

• SoS systems are homogeneous 

Additionally, the software package used for the development is Innoslate.  The software 

developers provided the author with a temporary professional license for the purposes of 

this thesis.  An academic license is normally available to academic students at no cost, 

but contains 2000 entry and simulation event limitations.  The simulation limitations 

were quickly eclipsed when developing and testing all but the most basic models. 

3.3 Operational Concept 

The concept under consideration is that of a small UAS completing a basic ISR 

mission.  The major functional operations include launch and ingress to a mission area, 

performance of the mission, and then egress and recovery to the base location.  While 

performing the mission, an integrated sensor scans the area of interest, uses an ATR 

system to declare objects as targets or non-targets, and returns the declared and/or 

confirmed target data to the ground control station.  A more detailed concept of 

operations is included in Appendix A; however the most relevant portions are 

summarized below.  

Conceptually, the system is at an early development stage and an appropriately 

detailed CONOPs is available.  True to the intent of this thesis, an early trade space 
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decision is to be evaluated.  To provide inputs for a trade space decision, several variant 

concepts were generated, from which the most desirable performer will be chosen for 

further development.  For the purposes of this research, the number of UAS 

simultaneously performing the mission is limited to two.  The three variants consist of: 

Variant 1:  An architecture in which each system operates independently and 

returns target declarations to the ground control station (GCS). 

Variant 2:  An architecture in which each system operates independently from 

one another but sends additional sensor information to the GCS such that the GCS 

can perform an additional confirmatory analysis to increase confidence and 

reduce false alarm rates. 

Variant 3:  An architecture in which each system operates cooperatively with one 

another and requests the other UAS to provide an additional confirmatory analysis 

to increase confidence and reduce false alarm rates. 

3.4 Measures of Effectiveness 

Measures of effectiveness (MOEs) will provide a basis for selection of one variant 

over another and therefore must be thoughtfully selected.  In this case, the system is 

charged with detecting targets, transmitting data to the ground control station and in the 

case of Variant 3, providing additional confidence to the ground station through an 

independent confirmation.  With those goals in mind, the MOEs selected for this 

architecture, along with short descriptions, are listed below. 

MOE1:  Average Correct Target Declarations per Mission 
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This is the number of objects declared as targets during the initial object 

evaluation step of each variant.  A higher value is desirable. 

MOE2:  Average Correct Target Confirmations per Mission 

This is the number of objects confirmed as targets during the secondary 

object evaluation step of Variants 2 and 3.  Variant 1 does not include a 

confirmation step in the process.  A higher value is desirable. 

MOE3: Average False Alarms per Mission 

This is the number of non-target objects, both declared and confirmed, 

incorrectly as valid targets.  A lower value is desirable. 

MOE4: Average Missed Targets per Mission 

This is the number of valid target objects, both declared and confirmed, 

incorrectly as non-targets.  A lower value is desirable. 

3.5 Architecture Scope 

Following definition of MOEs, it is appropriate to perform an evaluation to 

determine the level of abstraction required.  In the case of an early concept executable 

architecture, achieving the correct balance of abstraction versus formalization is doubly 

important.  An overly detailed architecture wastes valuable time as many of the minute 

interface details, subsystem operations, and component performance are unknown and 

irrelevant for most general trade space decisions.  However, due to the executable nature, 

the architecture must achieve a level of formalization sufficient to properly scope the 

architecture.  In the case of the architecture under development, modeling will be limited 
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to relevant subsystems and their primary functions.  Other assumptions are documented 

as required or relevant. 

3.6  Required Architecture Views 

 Once the appropriate level of abstraction is selected, determination of appropriate 

architecture views is required.  Given the early concept nature of the architecture under 

development, architecture views will be limited to operational views primarily.  The 

operational views constructed are OV-1, OV-2, OV-5b, and OV-6a.  Additionally, an 

AV-1 was developed to provide sufficient background information and purpose for any 

future work that may build off this architecture.  

3.7 Development of Architecture Views 

Architecture views, with the exception of the AV-1 and the OV-6a, were 

completed within the Innoslate program's DoDAF Dashboard which provides general 

templates for most current DoDAF models.  Innoslate doesn't have a template for an OV-

6a, even though this logic is embedded in the OV-5b.  For this reason, the OV-5b and 

OV-6a were developed concurrently, with documentation of the OV-6a occurring outside 

of Innoslate.  The AV-1 was drafted before the selection of Innoslate as the architecting 

software and thus it was completed in Microsoft Word, following headings outlined in 

the most recent version of DoDAF.  As part of the DoDAF Dashboard, Innoslate includes 

a robust template for the AV-1.  All architecture views produced for this thesis are 

available in Appendices B through F. 

 As described in the operational concept section, three variants were considered 

under this thesis.  Due to the differences in the actions of the variants, the resulting views 



33 

differ slightly even though the components and nodes remain the same.  The expectation 

is that these subtle differences will produce discernible differences in performance as 

evaluated by the MOEs. 

3.8 Development of Architecture Simulation  

Translation of an architecture for simulation typically involves conversion of the 

architecture to a separate application suited exclusively for simulation.  This can be time 

consuming, prone to human error, and potential more costly as another software license is 

likely required.  Thus, a separation of the architecture models and data from the 

simulation product is undesirable. 

A driving interest in executable architectures is the ability to perform simulations 

autonomously or semi autonomously, using existing architecture information.  As noted 

in the literature review, many of the methods proposed for creating executable 

architectures are either immature or deficient in this feature and/or provide little attention 

to the creation of an integrated executable architecture solution. 

Innoslate was the chosen architecting software for this thesis due to the 

availability of DoDAF view generation for most views and its ability to simulate directly 

from the architecture, specifically the OV-5b.  Furthermore, behavior of individual 

activities can be easily tailored with JavaScript to monitor resources, update variables, 

include conditional logic, and incorporate probabilistic functions.  This flexibility allows 

the architect the ability to balance between appropriate levels of abstraction for ease of 

interpretation while incorporating the nuances required to model specific behavior.  The 
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following several sections briefly summarize the common activities and unique activities 

for each variant. 

3.8.1 Common Activities 

For purposes of illustration, approximately one-half of the OV-5b for Variant 1 is 

shown in Figure 6 and represents a complete system.  It will be used to describe common 

activities among all variants.  The entire Variant 1, OV-5b is shown in Figure 24.   

In order for the system to provide a response during simulations, the OV-5b must 

include an external stimulus, in this case, modeled as an object that emits a signature in 

the Object #1 swim lane.  The object is modeled as a loop function that starts when the 

UAS starts performing its ISR mission and stops when the UAS enters recovery mode.  

The start and stop timing is an artifact of the simulation and selected to reduce simulation 

computation time.  The rate at which a signature is generated is based on a Poisson 

distribution with an assignable lambda value.  This distribution was chosen due to its 

common application in cueing theory, which is analogous to this representation. 

Next, the probability at which activity O.1.2.2 emits a target signature is 

determined through an internal JavaScript in which a uniform random variable is 

generated for each cycle and compared to a threshold.  In the event the generated number 

is below the selected target threshold, the object emits a target signature and thus 

provides a trigger to the sensor subsystem.  Conversely, a random number above the 

selected threshold dictates a non-target signature and similarly triggers the evaluation 

process. 
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Figure 6: Variant 1, Partial OV-5b 
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Upon simulated emission of a signature, the simulation makes an internal 

determination as to whether or not the object is "seen."  This is intended to mimic how a 

real sensor will not be able to evaluate all signatures due to the sensor's inability to 

differentiate all object signatures from the background.  The input parameter represents 

the portion of the objects ability to be detected and is adjustable between a 0% and 100% 

chance of seeing an emitted signature.  Modification of this parameter allows 

representative simulation of various environments, targets, and sensor capabilities.  The 

remaining sensor subsystem operations are particular to the variant under inspection and 

therefore will be discussed individually. 

The navigation and propulsion subsystem swim lanes are common among all 

variants.  Fuel is tracked as a resource and consumed at a uniform rate during the mission 

and therefore can be correlated to duration of any propulsion activities.  A value, 

determined by a defined triangular distribution, is generated to provide launch/ingress 

activity duration.  This same value is used for egress as an approximation of fuel used to 

return to base.  After subtracting the fuel required for launch and recovery, the remaining 

amount of fuel determines the duration of the ISR portion of the mission.  Upon 

consumption of the fuel to the amount required to perform egress and recovery, the 

mission enters recovery mode and all new sensor and object operations are ceased.  

3.8.2 Variant 1 Operation 

The performance of the combined sensor and ATR systems were simulated 

through use of a confusion matrix.  Following successful receipt of a signature, the 

evaluation activity generates a uniform random number associated with that particular 
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evaluation activity.  This number is compared with the input signature type and 

respective confusion matrix threshold value and the system declares the object as a target 

or non-target based on the comparison.  The general structure of the confusion matrix is 

shown in Table 1 along with examples of potential evaluation results shown in Table 2. 

Table 1: Confusion Matrix Format (with example threshold values) 

 
Condition 
Positive 
(Target) 

Condition 
Negative 

(Non-target) 
Predicted 
Condition 
Positive 
(Target) 

True 
Positive 
Value 
(0.80) 

False 
Positive 
Value 
(0.10) 

Predicted 
Condition 
Negative 

(Non-target) 

False 
Negative 

Value 
(0.20) 

True 
Negative 

Value 
(0.90) 

 

Table 2: Confusion Matrix Logic Example 

 Inputs Representative 
Values of System 

Performance 

Output 

Example 
Emitted 

Object Type 

Generated 
Random 
Number 

Confusion Matrix 
"True" Threshold 

Values Declaration Result 

1 "Target" 0.50 0.80 Target (True 
Positive) 

2 "Target" 0.85 0.80 Non-Target (False 
Negative) 

3 "Non-Target" 0.40 0.90 Non-Target (True 
Negative) 

4 "Non-Target" 0.95 0.90 Target (False 
Positive) 
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If a "target" declaration is made, the model generates a trigger simulating data 

transfer to a ground control station for potential action, specifics of which are outside the 

scope of this effort.  After completing either a simulated data transfer or a "non-target" 

declaration, the simulation checks for a mission status of "recovery" and selects to either 

resume search or end sensor operations if recovery is set to true.  

3.8.3 Variation 2 Operation 

The partial OV-5b of Variant 2, as shown in Figure 7, is very similar to Variant 1 

with the exception that each UAS has a dedicated GCS node.  The duration of the sensor 

data transfer is now represented as a triangular distribution rather than an assumed 

constant time interval, as in Variant 1.  Simulation of the sensor performance is the same 

as described in Variant 1. 

The additional process where the ground station simulates evaluation of the data 

that is received is also depicted in the OV-5b.  This operation is modeled in the same 

manner as the sensor's evaluation step described in Variant 1, although new confusion 

matrix values may be used, under the premise that a human analyst will be confirming or 

rejecting targets under differing criteria compared to the onboard sensor.  Once the object 

data is evaluated and the ground station then either confirms or rejects the target, the GCS 

waits for another data set to be transferred. 

  



39 

  Figure 7: Variant 2, Partial OV-5b 
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3.8.4 Variant 3 Operation 

Variant 3, shown in Figure 8, operates in a cooperative manner to provide a 

confirmatory step.  The addition of a "Sensor Mode" decision checks for a valid request 

from a cooperative UAS to determine if it will begin standard search operations or 

perform a target confirmation action.  In the condition of no confirmation requests 

present, the system awaits an object signature and performs an evaluation as previously 

described.  In the event an object is declared a target, the UAS requests confirmation 

otherwise it returns to check for a confirmation request and begins the cycle over. 

If there is a confirmation request, a triangular distribution sets a transit time to and 

from the requesting UAS.  After the transit time is simulated, the sensor simulates an 

evaluation and either confirms or rejects the target.  If confirmed, the UAS simulates a 

basic data transfer to the ground station and both UAS resume search operations, with the 

confirming UAS allowing for time to transit back to its original mission area.  If during 

return transit, the UAS in search mode requests an additional confirmation, the transiting 

UAS returns to confirm as before, assuming the same transit duration as executing during 

its return transit to that point. 
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Figure 8: Variant 3, Partial OV-5b  
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3.9 Evaluation for Model Completeness 

Since the architecture was the basis for the simulation model, the simulation order 

of events and decision points must inherently match the architecture.  This characteristic 

is a clear advantage of development of an architecture on a platform that facilitates direct 

simulation.  However, since there is a level of abstraction used in the architecture, there 

may be operational parameters and/or assumptions that are not explicitly defined within 

standard architecture views, yet are required for a representative simulation.  A brief 

discussion of these parameters was shown previously in the variant operations.  

Additionally, as previously discussed, simulation of external stimuli that are beyond the 

scope of a system's architecture definition may be required for the EA to simulate 

properly.  Evaluation of MOE results, requirements, and key parameters are the final step 

of the ABEP and are discussed in chapter 4. 

3.10 Test Case Selection 

With the core architecture and simulation details defined, relevant test cases were 

selected.  The desire was to present what were deemed reasonable scenarios in order to 

indicate system performance and aid in selection of a variant for continued development.  

While many more parameters were available for manipulation, parameters that were 

varied for this thesis were limited to Target Density and Sensor Target Detection 

Threshold.  Each parameter was varied at two levels, providing 12 unique test cases 

across all three variants.  A test case summary matrix is shown in Table 3. 
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Table 3: Test Case Matrix 

Test Case Target to Non-
Target Density 

Sensor Target Detection 
Threshold 

1 1:2 Low 
2 1:2 High 
3 1:20 Low 
4 1:20 High 

 

Target density was modeled by adjusting the rate at which the object activity 

generated targets versus the rate of non-target generation.  In this case, target to non-

target ratios of 1:2 and 1:20 were selected to represent a target rich environment and a 

sparse target environment, respectively.  For the target rich environment, a generated 

value of less than the value of 1/3 equated to a target emission, where as a value greater 

than 1/3 resulted in emission of a non-target emission, and similarly, the sparse target 

environment was assigned a threshold of 1/21. 

The confusion matrices for the UAS sensor considered for this thesis are shown 

below in Table 4 and Table 5.  The intent is to represent the same sensor with differing 

target detection threshold values.  A sensor of the same capabilities was chosen because it 

is assumed that a sensor with increased capabilities across all areas will therefore perform 

better under all scenarios.  The terms low- and high-target detection threshold represent a 

value of confidence at which a target declaration is made.  A higher target detection 

threshold represents a lower false positive rate but a higher missed target rate and the 

opposite is true for a low target detection threshold.  This notion is not intuitive when 

looking solely at the respective rates for true positives and true negatives, i.e. the low 
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target detection threshold confusion matrix contains more stringent requirements for a 

true positive declaration. 

Table 4: Sensor Low Target Detection Threshold Confusion Matrix 

 
Condition 
Positive 
(Target) 

Condition 
Negative 

(Non-target) 
Predicted 
Condition 
Positive 
(Target) 

0.80 0.10 

Predicted 
Condition 
Negative 

(Non-target) 

0.20 0.90 

  

Table 5: Sensor High Target Detection Threshold Confusion Matrix 

 
Condition 
Positive 
(Target) 

Condition 
Negative 

(Non-target) 
Predicted 
Condition 
Positive 
(Target) 

0.75 0.05 

Predicted 
Condition 
Negative 

(Non-target) 

0.25 0.95 

 

In the case of Variant 2, the GCS was deemed to possess a better capability to 

evaluate objects and thus was assigned a more accurate confusion matrix, as shown in 

Table 6.  The GCS confusion matrix was not varied between test cases. 
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Table 6: Ground Control Station Confusion Matrix 

 
Condition 
Positive 
(Target) 

Condition 
Negative 

(Non-target) 
Predicted 
Condition 
Positive 
(Target) 

0.85 0.05 

Predicted 
Condition 
Negative 

(Non-target) 

0.15 0.95 

 

3.11 Other Model Parameters 

 The models were built with multiple other fixed parameters, presented in Table 7.  

The other model parameters were not changed within the data collection for this thesis 

they are available for modification in any future exploration into this architecture.  All 

additional parameters were selected based on values deemed reasonable for the intended 

use of the UAS. 
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Table 7: Other Model Parameters 

Parameter Description Value 
Object Arrival Rate Rate at which the object 

activity generates signatures 
Poisson Distribution 
 λ=30 Seconds 

Percentage of Seen 
Objects 

Simulated obscuration such 
that the sensor cannot detect 
all objects 

85% 

Ingress and Egress 
Duration 

Duration from take-off to 
the beginning of ISR 
operations and from the end 
of ISR operation to landing.  
Ingress and Egress 
durations are assumed to be 
equal on a per mission 
basis. 

Triangular Distribution 
Min=1 Minute 
Max=15 Minutes 
Mode= 5 Minutes 
1 Minute Increments 

Total Mission Length The duration of time from 
simulated wheels-up to 
touch down 

60 Minutes 

Mission Time (derived) Duration of active ISR 
mission time 

30 to 58 Minutes 

Variants 1 and 3: Data 
Transmission Time 

Duration for basic data 
transfer to the GCS 

10 Seconds per occurrence 

Variant 2: Data 
Transmission Time 

Duration for complex data 
transfer to the GCS 

Triangular Distribution 
Min=1 Minute 
Max=3Minutes 
Mode=2 Minutes 
Floating Point Increments 

Variant 3: Transit Time 
for Confirmation 

Amount of travel time from 
assigned mission space to 
cooperative UAS's mission 
space  

Triangular Distribution 
Min=1 Minute 
Max=6 Minutes 
Mode = 2 Minutes 
30 Second Increments 

 

3.12 Simulation Software Comments 

 As previously acknowledged, Innoslate was the chosen architecting software used 

for this thesis.  Monterey Phoenix, Enterprise Architect, Core, as well as development of 

custom MATLAB models were considered for this thesis.  Innoslate was chosen over 
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these programs due to the availability of licensing, preservation of concordance within 

the architecture, integrated simulations, and overall ease of use.  That said the software 

had some shortfalls.  First, the cloud version of Innoslate used for this thesis is not able to 

perform Monte Carlo simulations currently.  The developers have a beta version of their 

cloud Monte Carlo simulation available but it did not successfully execute the models 

developed for this thesis.  Furthermore, information on Monte Carlo default settings or 

the ability to adjust the number of trials was available for the simulations.  Second, output 

of simulation results to a file was not natively available and thus results were manually 

transferred to a program, in this case MS Excel, for analysis.  The simulation runs on a 

JavaScript platform, which is user-friendly for model generation but inherently does not 

allow file generation on a client machine.  The inability to capture output data in separate 

files severely limits the scaling capabilities of the program.  Finally, triggers must be 

dealt with care and deliberation within the simulations.  In a static activity diagram, 

triggers should occur wherever completion if an activity permits activation of another 

activity.  This became a problem during simulation, specifically for loops.  In cases 

where triggers were used to activate looping activities, the completion and exit of the 

loop stimulus activity caused the simulation to fail to execute since the looping activity 

was still waiting for a trigger.  The failure to complete simulation can be avoided but 

creates extra steps and/or activities not pertinent at the level of abstraction used for the 

activity diagram. 
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3.13 Summary 

This chapter detailed the application of the ABEP process to the architecture 

under development with exception of step 8 which will be completed and commented 

upon in chapter 4. 

  



49 

4 Simulation Analysis and Results 

 This chapter will provide analysis of the data collected during simulation of the 

architecture described in previous chapters.  The goal of this section is to demonstrate 

how the execution of the architecture can be used to indicate a favorable variant for 

continued development.  The evaluation and analysis will focus on performance of each 

variant versus the previously defined MOEs and subsequently review any other data 

points of interest.  This chapter will conclude with a summary of relative MOE 

performance. 

 The sample used for analysis was based on ten trials for each variant and test case 

and then the relevant outputs were recorded.  This was a less than desirable number of 

runs due to feasibility discussed in chapter 3 but it was a sufficient number of trials to 

illustrate significant differences and relative trends.  In most cases, histograms of the trial 

data formed a normal distribution and due to the small sample size, a student-t 

distribution was deemed appropriate for analysis.  Error bars were then calculated at a 

confidence interval of 95%.  Lower and upper bounds were calculated as follows: 

1/2/1 −−= nStXL α     (1) 

1/2/2 −+= nStXL α     (2) 

Where: 

X bar = Sampled mean 
S = Standard deviation of the sampled population 
n = 10 samples 

2/αt  = 2.262 
 

   



50 

4.1 MOE 1: Average Target Declarations per Mission 

This MOE provides a relative indication of search efficiency across all variants.  

Since a common sensor was modeled across all variants, the more time spent actively 

searching for a target is presumed directly proportional to the mean number of 

declarations made.  Figure 9 contains a comparison of valid target declarations per 

mission for each variant, grouped by test case.  For reference, the sampled average 

number of targets emitted per mission for the high target density and low target density 

was 60.43 and 8.6, respectively. 

 

Figure 9: Average Target Declarations per Mission 
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In the cases of high target density, all variants demonstrated a statistically 

significant difference in detections per mission at the 95% confidence interval.  The 

respective lower declaration rates of Variants 2 and 3 when compared to Variant 1 are 

presumed to be a result of evaluating fewer total objects.  In these cases, Variants 2 and 3 

are sending sensor data or transiting to confirm an object, respectively, instead of 

evaluating additional objects.  Conversely, Variant 1 spends much more time actively 

evaluating objects and thus generally has higher overall declaration rates.  An interesting 

observation is noted when comparing individual variant declaration performance in the 

high target density cases.  While the declaration rate for Variant 1 trends downward as 

the target density is reduced and target detection thresholds is raised, this trend is not 

apparent for Variants 2 and 3.  A possible explanation is that in these cases, valid targets 

are relatively prevalent; leading to frequent data transmission and transit delays, thus 

resulting in a small impact from the change in target detection threshold. 

In the cases of low target density, only Variants 1 and 3 displayed a statistical 

difference at a low target detection threshold while both Variants 1 and 2 were 

statistically better than Variant 3 for the high target detection threshold.  When 

comparing the relative effect of target density to declaration performance of all cases, 

Variants 2 and 3 in a low target density scenario are, on a percentage basis, much closer 

to that of Variant 1 than that same comparison in the high target density cases.  This 

indicates that the declaration performance of Variant 1 declines faster than that of 

Variants 2 and 3 as the target density reduces. 
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4.2 MOE 2: Average Target Confirmations per Mission 

 As described in chapter 3, Variants 2 and 3 perform an additional confirmation 

step with the primary objective of reducing false alarm rates.  This MOE provides an 

indication of which variant produces more confirmations per mission.  Reviewing Figure 

10 reveals a significant performance advantage, at a 95 % confidence, for Variant 2 in all 

high target density scenarios but the significance is lost in low target density scenarios. 

Given that the quantity of object signature inputs to the confirmation process are a 

direct result of the number of declarations, the result of fewer variant 3 declarations is in 

line with expectations although the statistical difference is lost for the high target 

detection, low target density case.  Additionally, the lack of statistical difference from test 

case to test case for Variant 3 within the same target density group indicates that the 

target density is much more influential in these cases than the target detection threshold.  

Given the declaration rates shown in Figure 9, Variant 2 should not show a statistical 

difference as the confirmation step occurs in the GCS and therefore always uses the same 

target detection thresholds. 
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Figure 10: Average Target Confirmations per Mission 
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number of objects with fewer valid targets in that group and therefore an increased 

opportunity to declare more false alarms exists.   

 In this data set, there is never a statistically significant performance difference 

between Variants 1 and 2 although there is a consistent trend of higher average false 

alarms per mission for Variant 1.  Variant 3 performed statistically better than Variants 1 

and 2 in all cases except the low target threshold, high target density case. 

   

 

Figure 11: Average False Alarm Declarations per Mission 
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Figure 12 contains false alarms that make it through both declaration and 

confirmation evaluations.  Note that Variant 2 confirmed zero false alarms for the high 

detection threshold, high target density case and thus a confidence interval based on a 

normal distribution was not appropriate.  In this case a "Rule of 3" confidence interval 

was deemed an appropriate method for approximating a confidence interval.   

With respect to the Variant 2 high target threshold and high target density test 

case, there are two reasons why a value of zero is not unreasonable.  First, as shown in 

Figure 13, a relatively small number of false positives were flagged for a confirmatory 

look, reducing overall probability that one or more false alarms are confirmed.  Second, 

and as mentioned previously, the GCS confusion matrix used represents a highly accurate 

evaluation.  These traits combined lead to a very low probability of a false alarm 

confirmation.  

The data for false alarm confirmations frequently contains zero confirmations per 

mission, creating a dataset skewed towards zero.  Given the small sample size, this 

appeared to cause larger than reasonable confidence intervals using normal distribution 

confidence interval methods.  Non-parametric methods were evaluated for determining 

appropriate confidence intervals however none indicated a statistically significant 

performance difference among any test case.  
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Figure 12: Average False Alarm Confirmations per Mission 
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Figure 13: Average False Alarms per Mission at System Output 
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observation of fewer missed targets in lower target density environments is an artifact of 

the existence of fewer targets to miss. 

 

Figure 14: Average Missed Target Declarations per Mission 
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Figure 15: Average Missed Confirmations per Mission 
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opportunity to miss or discard valid targets.  While none of the results represent a 

statistically significant difference, it is unexpected to see that the sample mean of Variant 

2 is larger than that of Variant 1 for the low target density thresholds, especially given the 

more accurate confusion matrix used to simulate the GCS confirmation.  

 

Figure 16: Total Average Missed Targets per Mission 
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detection threshold values are increased.  Since confirmation steps are only performed on 

declared targets, a sparse target environment or a higher rejection of false alarms leads to 

a relative increase in mission time spent on evaluation and thus an increase in evaluation 

rates. 

Figure 17 illustrates that concept in action but also provides trend indications on 

rates of change.  Target detection threshold does not significantly affect evaluation rates 

in an already dense target population however in both the cases of Variants 2 and 3, it is a 

significant factor in low target threshold scenarios. 

 
Figure 17: Average Evaluation Rates per Mission 
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4.6 Results 

 Based on performance against all MOEs, variants were compared against one 

another to determine a preferred variant for further development.  A summary of results 

is shown in Table 8.  Note, for MOEs 3 and 4, ratings were performed at the system level.  

The relative scoring repeats itself in each of the high and low target density scenarios 

with exception of Variant 2, MOE 1 in the low target density, high target detection 

threshold case.  While there are different absolute levels of performance, the relative 

performance is duplicated for both the high and low target detection threshold.  This 

indicates that, at least in the current model and test cases, target detection threshold does 

not significantly affect relative performance and perhaps another variable should be 

selected for future study. 

Table 8: Evaluation Results Summary 
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In an actual down select process, evaluation criteria need to be rigorously selected 

along with weighting factors, the process of which is beyond the scope of this thesis.  

However, assuming all MOEs are equally weighted, the relative results of the executable 

architecture used for this thesis suggest that Variant 2 is the best overall choice to 

continue with for further refinement. 
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5 Conclusions and Recommendations 

The purpose of this thesis was to demonstrate how an executable architecture may 

be applied to an early concept and use the results to make a decision on how to proceed 

with system development.  The provided mission was an ISR UAS tasked with detecting 

valid targets.  A CONOPs and three partially representative architectures were built in a 

program capable of performing executable architecture functions.  These architectures 

were simulated and the results analyzed for statistical differences that were used to 

indicate a preference of variants for further development. 

 At the onset of this thesis, three questions were posed by the author.  Those 

questions and answers are as follows: 

Research Question 1:  What is the capability of current architecture modeling 

tools to execute simulations directly from a system architecture? 

As discovered and commented on during the literature review portion of 

this thesis, there is apparent interest in executable architectures from the broad 

Systems Engineering Community, but very few integrated software packages 

capable of producing  valid DoDAF products and executing models with 

sufficient fidelity to be useful for decision making.  The tool used in this thesis, 

Innoslate, appears to be one of the only integrated tools; however the simulation is 

not currently capable of Monte Carlo simulations nor does the output  lend its self 

well to quantitative analysis. 
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Research Question 2:  What type of information can be provided from use of an 

executable architecture in support of trade space decisions during early concept 

development? 

The answer to this question is dependent on the fidelity of model and the 

ability to access the data to determine statistically significant differences in 

operation.  The effort undertaken in this thesis produced a basic model with only 

four MOEs, three variants and two varied parameters.  With only 10 trial runs per 

test case and variant, the result was a relative difference in performance could be 

demonstrated at a significant level in many cases.  If performance predictions are 

desired, a more detailed and complete model must be built.  Additionally, more 

trial runs are required along with a rigorous assessment of parameters varied and 

scenarios to ensure the simulation represents an accurate environment.  

Research Question 3:  How detailed of an executable model is required to 

effectively evaluate trade space decisions in early concept modeling? 

 As demonstrated in chapter 4, the model created for this thesis was 

sufficient to indicate a preferred solution based on the information entered into the 

architecture model.  A basic yet representative model was created in a commercial 

modeling program and provided sound data output based on the conditions and 

the inputs.  Moreover, through data analysis, the limiting factors of the modeled 

system become apparent.  For instance, Variant 3 appears to be an efficient 

solution on paper.  The model consistently demonstrated poor performance 

compared to the competing variants; however, the data indicated that transit times 
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were severely lowering available time to perform new object evaluations.  

Conversely, Variant 1 had relatively high evaluation efficiency but suffered from 

higher system level false alarms.  When deciding how to proceed, consideration 

should be given to the cost, schedule and performance risk of a faster Variant 3 

UAS, thereby reducing transit time; a more accurate Variant 2 sensor, reducing 

false alarms and missed targets or a change in CONOPS for one or both variants. 

5.1 Recommendations for Future Research 

5.1.1 Larger SoS Development 

Recommend that future work expand SoS modeling to include heterogeneous 

vehicles and a larger quantity of systems such that effects of emerging behavior may be 

modeled and studied.  An addition of a larger task set and additional logic in the system 

would help model a more realistic environment and is more representative of a state of 

the art system. 

5.1.2  Improve Existing Simulation Assumptions 

Model object signature emissions in a spatial distribution rather than the arrival 

rate method used in this thesis.  This will require significant advancements in the existing 

executable architecture programs but will provide a more realistic scenario. 

5.1.3 Include More External Factors 

External costs weren't explicitly considered in this thesis.  For instance, from a UAS 

MOE perspective, Variant 2 appeared to be the highest performer however in practice, it 
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will require significantly more bandwidth and additional analyst personnel that were not 

considered in the selection process. 
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Appendix A: CONOPS 

Document Overview 

This document describes a concept of operations (CONOPS) for a fictitious small 

unmanned aerial system (UAS). 

Intended Users 

This document is intended for stakeholders and reviewers in the architecture 

development process for the system under design. 

Document Organization 

• Section 1 describes the document format and intended users. 

• Section 2 describes the purpose of the UAS system, functional requirements, 

stakeholders, and their relationships. 

• Section 3 provides a physical description of the UAS. 

• Section 4 describes and operational description of the UAS. 

• Section 5 provides an acronym list 

System Introduction 

This section will describe the purpose of the UAS system, functional 

requirements, stakeholders, and their relationships. 

System Purpose 

The Combatant Commander (COCOM), with responsibility over a given area, has 

a requirement to discover, to the maximum practical extent, all valid targets for the 
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purposes of further surveillance and/or subsequent engagement and is in need of a system 

to help meet this requirement.  Therefore, the purpose of this UAS system is to detect 

objects in a given mission area and determine if those objects are valid targets to the 

greatest extent possible.  The target location and validation information will be used by 

the COCOM to cue additional platforms for long term surveillance and/or engagement. 

Functional Requirements 

This section describes some of the tasks the system must perform from a 

functional perspective to achieve mission success. 

Target Detection 

The system must be able to accurately detect targets in a varied and unpredictable 

physical environment. 

Communications 

The system must transfer sufficient quantities of information to a ground control 

station (GCS) or other assets to identify target location and in some cases, raw data for 

confirmatory analysis. 

Mobility 

The system must move freely throughout the area of interest in order to detect the 

maximum possible number of valid targets and in the case of Variant 3, provide target 

confirmation. 
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Duration 

The system must provide sufficient on-station duration capabilities to complete 

the system’s ISR mission and in some cases, allow confirmatory assessments of the target 

and to increase overall mission efficiency. 

Geo-location accuracy 

The system must track field of view location for accurate record of target location 

and to prevent excessive overlap of data collection throughout the mission. 

Launch and Recovery 

The system must navigate to and from the mission area to ensure system re-use.  

Stakeholders 

Intelligence Community 

Data from this UAS will be used for Intelligence Preparation of the Battlespace 

(IPB).  Information from the platform must be timely and accurate.  Data from the UAS 

must be provided in a common, recognizable format.  Data from the UAS degrades with 

time and must be provided as soon as possible to be of the greatest value. 

Other ISR Platforms 

Other sources may be used for target confirmation.  The location of the target 

must be accurate to ensure confirmatory information is valid. 
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Airborne Strike Operators and Ground Forces 

The UAS must provide accurate target information and not interfere with any 

engagement techniques. 

Acquisition Corps 

A method of system performance feedback must be enabled.  This information 

will help further system improvements and updates affect increased performance and 

reliability. 

System Physical Description 

The system will consist of 3 major components: Ground Control Station, data 

link, and the air vehicle. 

Ground Control Station (GCS) 

This component of the system is tactical in nature and therefore must be mobile 

throughout an area of operations.  The GCS contains a networked data storage server in 

addition to analyst and mission planning terminals.  It has a self-contained HVAC system 

and inputs for generator or commercial power.  The system also has connections for 

external network access. 

Data link 

This component of the system is consists of a ground based transmitter/receiver 

dish, airborne transmitter/receiver dish and interface, communications processing server 
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and all associated connections to the GCS.  The transmitter/receiver dishes are capable of 

being trailer mounted or mounted on the ground near the trailer within close proximity. 

Air Vehicle 

This component of the system consists of a small conventional design air vehicle.  

The vehicle houses navigation, propulsion, sensor, and communications systems.  The 

navigation system consists of a GPS sensor, inertial navigation system, mission storage 

components, and interfaces to all other subsystems.  The propulsion system consists of a 

hydrocarbon fueled engine, integrated fuel storage, control system and interface to the 

navigation system.  The sensor system consists of the physical sensor, autonomous target 

recognition hardware, storage system for the target library and interface to the navigation 

system.  The communications system is the airborne portion of the data link described 

previously. 

System Operational Description 

This section will provide a chronological description of system operations and 

requirements for a typical mission.  The total flight durations are a set, standard length. 

Logistics  

The system will be deployed, likely to remote locations by cargo aircraft and/or 

ground transportation.  Multiple systems may be deployed in the same location and use 

the same logistics resources.  A spares package will be part of the standard deployment 

along with technicians trained to perform pre-flight checks, uploading of mission plans 
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and troubleshoot and repair all foreseeable issues.  Fuel is also to be located at the 

deployed environment and refueling operations must be performed prior to the 

commencement of all missions. 

Launch and Ingress 

Following successful preparations for flight, the engine is started and the vehicle 

prepared for launch and ingress to the mission area.  The system is highly automated so 

once the ground control station communicates a proceed command, the air vehicle 

launches, reaching the pre-programmed operational envelope and proceeds to the mission 

area.  

Mission Operations 

This section will describe standard mission operations for several architecture 

variants under consideration. 

Variant 1 

This variant of the system operates in an autonomous, independent mode.  The 

system searches for objects using the onboard sensor.  Once the sensor identifies an 

object, the collected data are run through an autonomous target recognition (ATR) 

system.  The ATR system processes the data and determines a level of object match to an 

existing set of target data.  When the matching coefficient is higher than the threshold 

value, the coefficient information is then transferred to the ground station for further 

action by external entities or stored for later use.  At no time under this scenario is the 

target confirmed by another source or human analyst. 
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Variant 2 

This variant of the system operates in an autonomous mode with human analyst 

confirmation.  The system searches for objects using the onboard sensor.  Once the sensor 

identifies an object, the collected data are run through an ATR system.  The ATR system 

processes the data and determines a level of object match to an existing set of target data.  

When the matching coefficient is higher than the threshold value, the coefficient 

information, and native sensor data is transferred to the ground station where the data is 

analyzed for confirmation by a human analyst.  

Variant 3 

This variant of the system operates in an autonomous, cooperative mode.  The 

system searches for objects using the onboard sensor.  Once the sensor identifies an 

object, the collected data are run through an ATR system.  The ATR system processes the 

data and determines a level of object match to an existing set of target data.  When the 

matching coefficient is higher than the threshold value, a request with current location is 

then transferred to the nearest cooperative UAS for confirmation.  During the time when 

the secondary UAS is en route, the primary UAS will continue to track the object.  Upon 

arrival the secondary UAS observes the object and determines an independent target 

coefficient.  If the object is determined to be a target, relevant coefficients and locations 

are transmitted to the GCS.  Upon transfer completion, the primary UAS resumes search 

and the secondary UAS returns to its previous search pattern to proceed to search.  If the 

primary UAS requests another confirmation during transit, the secondary UAS has the 

ability to quit transit and return to assist the primary UAS.  
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Egress and Recovery 

Once time or fuel for mission operations has expired, all UAS will exit the area of 

interest and autonomously navigate to the launch site for recovery.  After landing is 

accomplished, any recorded data will be downloaded and stored for future reference.  

Completion of this step finishes the UAS mission. 
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Appendix B:  AV-1 

Architectural Description Identification 

The architecture under design is the Small Intelligence Surveillance and 

Reconnaissance (ISR) Unmanned Aerial System (UAS).  The primary purpose of this 

system is to support a tactical mission of identifying and providing cueing information 

for further tracking or engagement of targets of interest.  The system under development 

is fictitious but intended to represent a SoS of up to two realistic small UAS that may be 

deployed as cooperative or independent systems with varying Ground Control Station 

(GCS) reach back capabilities. 

This architecture framework will focus on designating parameters of interest to 

model future UAS.  This framework will be used to represent development decisions in 

order to weigh “-ilities” versus cost.  The goal is to achieve a high level of system 

flexibility, adaptability, and/or robustness while maintaining a predictable life cycle cost 

and efficient use of tax payer money.  

The architecture is being developed as a thesis project for the Air Force Institute of 

Technology (AFIT) in order to demonstrate the use of executable architectures (EA) in 

early trade space decision analysis.  The architect is Maj Ryan Pospisal, under 

advisement and approval of Dr. David Jacques, AFIT faculty.  The expected completion 

date is December 2015.  The anticipated level of effort is 150-200 man-hours.  

Assumptions and constraints are as follows: 
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• A commercial tool currently exists, and is accessible to the author, to document a 

subset of a DoDAF V2.0 compliant system architecture and includes an 

executable modeling capability to meet the fidelity requirements for this thesis. 

• Technologies of the representative system are currently attainable or at a level 

where it is reasonable that they will be mature enough for implementation by 

2025. 

• Vulnerabilities to attack, in the physical and cyber domains, are not explicitly 

considered or modeled. 

• The architecture will be limited in scope due to time constraints and the fictitious 

nature of the system. 

Scope 

The architecture will consist of three distinct variants of the UAS and focus primarily on 

identification and development of the operational functionality of the system.  Current or 

near future technologies are under consideration with an expected 5-10 year horizon. 

The architecture development process will closely follow the methods presented 

by Dietrichs, et al. that the authors named the Architecture Based Evaluation Process 

(ABEP) (Dietrichs et al., 2006).  This architecture will focus on the operational aspects of 

the system and thus will have limited or no detail on internal system and sub-system 

interactions.  As such, the preponderance of architecture views will be operational in 

nature.   

The views created will be limited to those necessary for completing the primary 

goals of the project and as such, views will be added, removed, and/or refined as needed 



78 

to document the necessary system parameters under examination.  This architecture will 

provide a high-level parametric model, sufficiently detailed to complete early trade space 

analysis.  Below is a list of anticipated DoDAF viewpoints required for this architecture, 

their titles and rationale for their inclusion: 

AV-1: Overview and Summary Information 

This view is useful for providing an executive level summary of the architecture. 

OV-1: High Level Operational Concept Graphic 

The OV-1 provides a linkage between physical assets that interact with the system 

under development.  It provides an abstract depiction of the primary mission activity.  

This view provides the reader with an introduction to the CONOP. 

OV-2: Operational Resource Flow Description 

The OV-2 provides a diagram to show the exchange of resources such as 

information, personnel, material, or funding.  The OV-2 isn't intended to show 

communication links, however in the case of this architecture, the exchange of 

information will mimic a communication link. 

OV-5b: Operational Activity Model 

The OV-5b shows all the high-level activities and chronological linkages between 

them.  The OV-5b will be the core of this architecture as it lends itself well to simulation 

and thus reinforce the concept of an executable architecture.  
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OV-6a: Operational Rules Model 

The OV-6a provides rules in a structured English format.  These rules form the 

basis for how the OV-5b is executed and various decision paths are taken.  

Purpose and Perspective 

The purpose for this architecture is to produce three system variants and 

parametrically model key characteristics of the platforms and their interactions.  Once the 

variant models are created, they will be formalized to a sufficient level to provide direct 

simulation, in the form of an executable architecture.  Selected model input parameters 

will be varied during the simulations of the resulting EA and the outputs documented 

over the course of several iterations of the architecture.  Mission specific Measures of 

Effectiveness (MOEs) will be developed and used to evaluate the system variants for 

selection of the most successful design. 

Context 

The primary activities of the UAS are launch, perform ingress to the mission area, 

perform the ISR mission, egress out of the mission area, and recover to the launch area.  

The goals of the CISR platform are to identify and track targets of interest.  It will 

perform the identification with use of an on-board sensor and Autonomous Target 

Recognition (ATR) software.  The specifics of sensor type, capabilities, and operation of 

the ATR are beyond the scope of this architecture however they will be represented in the 

simulation as a uniform random variable processed through a confusion matrix. 

Use cases will be developed along with a Concept of Operations (CONOPs) to 

assist with generation of the architecture framework.  The completed architectures will 
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executed in an architecting software program such as Innoslate to determine parameters 

showing greatest impact on “-ilities” of interest.  All scenarios and technologies 

described in the development of this architecture are either generic or fictitious but are 

intended to represent a reasonable application to a UAS ISR mission. 

The variants were chosen to provide representative architecture differences to 

perform the basic mission of identifying targets and their locations.  The intent is that 

these differences will produce varied outcomes when executed and facilitate system 

design and effective CONOP creation early in a systems' development.  Basic 

descriptions of the variants are listed as follows: 

Variant 1:  Automated Independent 

This variant of the UAS is an independent system that identifies targets, returns a 

matching coefficient and location to the ground control station, and immediately 

continues searching for more targets. 

Variant 2:  Ground Station Assisted 

Variant 3 operates similarly to Variant 2, with the exception of confirmation via a 

ground control station rather than a cooperative UAS.  Confirmation by the ground 

station is performed via analysis of sensor data collected by the UAS, sent via a 

communications data link.  Once object data is collected, the system continues to track 

the object until confirmation of a valid target is confirmed by the ground station, 

preventing stacking of data sets in the UAS communications cache. 
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Variant 3: Automated Cooperative 

This variant searches as described in Variant 1, but upon discovery of a target, 

calls a cooperative system to confirm the target as valid.  While awaiting arrival of the 

cooperative UAS, the primary target continues to "track" the object.  Upon target 

confirmation, the target description, matching coefficient, and location data are returned 

to the ground control station.  Both UAS then resume searching for new targets in their 

respective original mission areas. 

Status 

All planned architecture views are complete and capable of being executed within 

the Innoslate program. 

Tools and File Formats 

All written documentation is Microsoft Office compatible.  The architecture and 

executable portions are based in Innoslate and the model is exportable to an Innoslate 

XML file. 
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Appendix C: OV-1: High level Operational Concept Graphic 

 

Figure 18: Variant 1 and Variant 2 OV-1 
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Figure 19: Variant 3 OV-1 
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Appendix D: OV-2: Operational Resource Flow Description 

 

Figure 20: Variant 1 OV-2 
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Figure 21: Variant 2 OV-2 
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Figure 22: Variant 3 OV-2 
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Appendix E: OV-5b: Operational Activity Model 

 

Figure 23: Variant 1 OV-5b 
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Figure 24: Variant 2 OV-5b 
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Figure 25: Variant 3 OV-5b 
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Appendix F: OV-6a: Operational Rules Model 

Due to the similarities of the systems, this OV-6a is divided into four sections: 

Common Behavior, Variant 1 Specific Rules, Variant 2 Specific Rules; Variant 3 

Specific Rules.  Additionally, this architecture is built around a homogeneous two-ship 

scenario thus to reduce duplication, only one system is described.  

Common Behavior 

Assumptions: 

 Fuel is burned at a steady rate such that duration can be equivocated to amount of 

fuel used or required. 

Mission plans are loaded prior to UAS launch and all navigation is autonomous.  

Imperative Rules 

Monitor Fuel Level 

Fuel required to return from the assigned mission space to the base shall be 

approximated by the amount used to ingress to the mission space.  The fuel level 

available shall be checked routinely and automatically throughout the mission. 

Initialize Mission Parameters 

Load mission plans and for purposes of the simulation, sets input parameters and 

establishes required variables. 

Emits trigger for mission start 

Engine Start 

Receives mission start trigger to simulate beginning of the propulsion and navigation 

subsystem. 
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Boot Sensor 

 Represents time required for internal sensor checks and when complete, places 

sensor in a low power mode until operations is required 

Arrive at Mission Location 

 After completion of Launch and Ingress Propulsion, activates wake sensor 

trigger 

Start Sensor Ops 

 Upon receipt of wake sensor trigger, begins sensor operations  

Conditional Rules 

Launch and Ingress Propulsion 

 Known: Initial fuel amount, fuel required for launch and mission 

If fuel remaining is greater than initial amount minus amount required for 

recovery and mission operations, 

then continue Launch and Ingress Propulsion. 

Else begin Mission Propulsion 

Mission Propulsion 

Known: Fuel required for mission and recovery operations 

If fuel remaining is greater than fuel required for recovery, 

then continue Mission Propulsion 

else begin Egress and Recovery Propulsion 

Egress and Recovery Propulsion 

Known: Fuel required for recovery operations 

If fuel available is greater than zero,  
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then continue Recovery Propulsion 

else End 

Variant 1 Specific Rules 

Sensor Loop  

If recovery propulsion is not active, 

then continue to Search and Evaluate Objects 

else End 

Search and Evaluate Objects 

 Wait for object signature trigger and evaluate object  

If object is declared a target, 

then activate target information trigger and transmit basic target information to 

Ground Control Station 

else return to Sensor Loop 

Receive Target Information 

Wait for target information trigger 

If recovery propulsion is not active, 

then continue Receive Target Information 

else End 

Variant 2 Specific Rules 

Conditional Rules 

Sensor Loop 
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If recovery propulsion is not active, 

then continue to Search and Evaluate Objects 

else End 

Search and Evaluate Objects 

 Wait for object signature trigger and evaluate object  

If object is declared a target, 

then activate object data trigger and transmit detailed object information to 

Ground Control Station 

else return to Sensor Loop 

Receive Data 

Wait for target information trigger 

If recovery propulsion is not active, 

then continue Evaluate Data 

else End 

Evaluate Data 

 If data evaluation determines object is a target, 

then confirm target and return to Receive Data 

else reject target and return to Receive Data 

Variant 3 Specific Rules 

Search Loop 

If recovery propulsion is not active, 

then continue to Sensor Mode 
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 else End 

Sensor Mode 

 If sensor confirmation request is true 

 then continue to Secondary Evaluation 

 else continue to Primary Evaluation 

Primary Evaluation 

 If evaluation results in a target declaration, 

 then proceed to Declared Target/Request Target Confirmation 

 else declare non target and return to Sensor Loop 

Declared Target/Request Target Confirmation 

Send location information to cooperative UAS and continue to Confirmation 

Complete 

Confirmation Complete 

Await evaluation complete trigger and return to Sensor Loop 

Secondary Evaluation 

If evaluation results in target declaration,  

then activate target information trigger and evaluation complete trigger 

else activate evaluation complete trigger 

return to Sensor Loop 

Receive Target Information 

Wait for target information trigger 

If recovery propulsion is not active, 

then continue Receive Target Information 



95 

else End 
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Appendix G: Example JavaScript 

This appendix contains JavaScript used for one half of the Variant 3 OV-5b.  Duplicating 

the below code and updating variable numbers allows recreation of the entire SoS.  Many 

activities did not contain additional formalization through JavaScript and thus were 

omitted in the table below.  

Table 9: Variant 3 JavaScript Summary 

Activity JavaScript 
O.1.2 function onEnd() 

{ 
   // loops until recovery    
  if((globals.get("missionstatus_1")) == "recovery") 
  { 
      return false; 
  } 
  else 
   { 
          return true; 
   } 
} 

O.1.2.2 function onEnd() 
{ 
    var totalobjectcount = globals.get("totalobjects_1"); 
    totalobjectcount++; 
    globals.put("totalobjects_1",totalobjectcount); 
   
  var emit_signature_1 = Math.random(); 
   
  //Determines if object is target or nontarget 
  if (emit_signature_1 < (globals.get("target_percentage"))) 
  { 
      var localtargetcount=globals.get("totaltargets_1"); 
      localtargetcount++; 
      globals.put("totaltargets_1",localtargetcount); 
   globals.put("signature_1","target"); 
   return "Target"; 
  } 
  else 
  { 
      var localobjectcount=globals.get("totalnontargets_1"); 
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      localobjectcount++; 
      globals.put("totalnontargets_1",localobjectcount); 
   globals.put("signature_1","nontarget"); 
   return "Non-Target"; 
  } 
} 

UAS.NP.1.2 function onStart() 
{ 
  //Sets mission status to launch 
  globals.put("missionstatus_1", "launch"); 
   
  //Establish Fuel variable and record initial amount 
  var fuel = resource.get('Fuel_1')[0]; 
  var InitialFuel = fuel.getAmount(); 
  globals.put("initialfuel_1",InitialFuel); 
   
} 
 function onEnd() 
{  
    var fuel = resource.get('Fuel_1')[0]; 
    var initial = globals.get("initialfuel_1"); 
    var launch = globals.get("launchfuel_1"); 
     
    //when fuel is greater than initial-launchfuel, continue looping 
    if(fuel.getAmount() > (initial - launch)) 
    { 
        return true; 
         
    } 
    //Updates mission status upon exit 
    globals.put("missionstatus_1", "mission"); 
    return false; 
} 

UAS.NP.1.3 function onStart() 
{ 
    globals.put("missionstatus_1", "mission"); 
} 

UAS.NP.1.4 function onEnd() 
{ 
  //sets fuel quantity  
  var fuel = resource.get('Fuel_1')[0]; 
  //retrieves fuel used during launch, which approximates amount required 
for recovery 
  var required = globals.get("launchfuel_1"); 
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  // compares fuel remaining to fuel needed for recovery    
  if(fuel.getAmount()>required) 
  { 
      //globals.put("missionstatus_1", "mission"); 
      return true; 
       
  } 
  else 
  { 
      //outputs usage stats 
      //print ('Remaining after mission ' + fuel.getAmount()); 
      globals.put("missionstatus_1", "recovery"); 
      return false; 
    } 
} 

UAS.NP.1.5 function onStart() 
{ 
    globals.put("missionstatus_1", "recovery"); 
}     
 
function onEnd() 
{  
  var fuel = resource.get('Fuel_1')[0]; 
   
  if(fuel.getAmount()>0) 
  { 
      return true; 
       
  } 
  else 
  { 
      //print('Fuel remaining at mission complete: ' + fuel.getAmount()); 
      return false; 
       
  } 
} 

UAS.SS.1.3 function onEnd() 
{ 
  // only loops while navigation is in misson mode   
  if((globals.get("missionstatus_1")) == "recovery") 
  { 
      return false; 
  } 
  else 
  { 
      return true; 
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    } 
} 

UAS.SS.1.4 function onEnd() 
{ 
    if (globals.get("uas_2_confirmation_request")=="true") 
    { 
        return "Confirm"; 
    } 
    else 
    { 
        return "Search"; 
    } 
} 

UAS.SS.1.4.1.1 function onEnd() 
{ 
      //Retrieve object type 
      var signature_type_1 = globals.get("signature_1"); 
       
            //Aborts if UAS2 is awaiting confirmation 
      if (globals.get("uas_2_confirmation_request")=="true") 
      { 
         if (signature_type_1 == "target") 
        { 
            var missedtarget_pri_1 = globals.get("missedtarget_1"); 
            missedtarget_pri_1++; 
            globals.put("missedtarget_1", missedtarget_pri_1); 
        } 
        else 
        { 
            var missedobject_pri_1 = globals.get("missedobject_1"); 
            missedobject_pri_1++; 
            globals.put("missedobject_1", missedobject_pri_1); 
        } 
        return "Object Not Seen"; 
      } 
 
      //initializes variable to determine if object is seen by the sensor 
      var objectseen_1 = Math.random(); 
       
      
     var detection = globals.get("detection_percentage"); 
      
      //proceeds if object is "seen" 
      if (objectseen_1 < detection) 
      { 
        //initialize variable for confusion matrix path 
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        var search_confusion_1 = Math.random(); 
       
        var truepositive = globals.get("truepositive"); 
     
        var truenegative = globals.get("truenegative"); 
      
    
        if(signature_type_1=="target") 
        { 
            if (search_confusion_1 < truepositive) 
            { 
                //counts truepositives 
                var tpcount_pri_1 = globals.get("truepositive_1"); 
                tpcount_pri_1++; 
                globals.put("truepositive_1",tpcount_pri_1); 
                //Stores object type so not over written for human eval 
                globals.put("uaseval_1", signature_type_1); 
                globals.put("uas_1_confirmation_request", "true"); 
                return "Target"; 
            } 
            else 
            { 
                //counts falsenegatives 
                var fncount_pri_1 = globals.get("falsenegative_1"); 
                fncount_pri_1++; 
                globals.put("falsenegative_1",fncount_pri_1); 
                return "Non-target";   
            } 
        } 
        else 
        { 
            if (search_confusion_1 < truenegative) 
            { 
            //counts truenegatives 
            var tncount_pri_1 = globals.get("truenegative_1"); 
            tncount_pri_1++; 
            globals.put("truenegative_1",tncount_pri_1); 
            return "Non-target"; 
            } 
            else 
            { 
            //counts falsepositives 
            var fpcount_pri_1 = globals.get("falsepositive_1"); 
            fpcount_pri_1++; 
            globals.put("falsepositive_1",fpcount_pri_1); 
            //Stores object type so not over written for human eval 
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            globals.put("uaseval_1", signature_type_1); 
            globals.put("uas_1_confirmation_request", "true"); 
            return "Target"; 
            } 
        } 
           
        
      } 
      else 
        // branch for object not seen by sensor with counter 
      { 
        if (signature_type_1 == "target") 
        { 
            var missedtarget_pri_1 = globals.get("missedtarget_1"); 
            missedtarget_pri_1++; 
            globals.put("missedtarget_1", missedtarget_pri_1); 
        } 
        else 
        { 
            var missedobject_pri_1 = globals.get("missedobject_1"); 
            missedobject_pri_1++; 
            globals.put("missedobject_1", missedobject_pri_1); 
        } 
        return "Object Not Seen"; 
      } 
} 
 

UAS.SS.1.4.1.5 function onEnd() 
{ 
    globals.put("uas_1_confirmation_request", "false"); 
} 

UAS.1.4.2.0 function onStart() 
{ 
    if(globals.get("uas_1_follow_up")!="true") 
    { 
    //Calculation of a triangular distribution for transit to confirm 
    //Interval is 30 Seconds (min time = one minute or 2 * 30 seconds) 
    var result; 
    var min = 2; 
    var max = 12; 
    var peak = 4; 
    var p = Math.random(); 
    var q = 1.0 - p; 
      if (p <= (peak - min) / (max - min))  
        { 
          result = Math.round(min + Math.sqrt((max - min) * (peak - min) * p)); 
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        } 
      else  
        { 
          result = Math.round(max - Math.sqrt((max - min) * (max - peak) * q)); 
        } 
    globals.put("transit_1", result); 
    globals.put("transit_1_save", result); 
 
    } 
      globals.put("transit_1_count",0); 
} 
 
function onEnd() 
{ 
    var transit_1_req = globals.get("transit_1"); 
    var transit_1_count = globals.get("transit_1_count"); 
    transit_1_count++; 
    globals.put("transit_1_count", transit_1_count); 
 
     
    if(transit_1_count >= transit_1_req) 
    { 
        globals.put("transit_1_count",0); 
        globals.put("uas_1_follow_up", "false") 
        return false; 
    } 
    else  
    { 
        return true; 
    } 
     
} 

UAS.1.4.2.1 function onEnd() 
{ 
 
    //Retrieve object type 
    var eval_type_1 = globals.get("uaseval_2"); 
      
 
    //initialize variable for confusion matrix path 
    var eval_confusion_1 = Math.random(); 
    var truepositive = globals.get("truepositive"); 
    var truenegative = globals.get("truenegative"); 
     
    //Case of Target 
    if(eval_type_1=="target") 
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    { 
        if (eval_confusion_1 < truepositive) 
        { 
             
            //counts truepositives 
            var tpcount_sec_1 = globals.get("uas_tp_1"); 
            tpcount_sec_1++; 
            globals.put("uas_tp_1",tpcount_sec_1); 
            return "Target Confirmed"; 
        } 
        else 
        { 
            //counts falsenegatives 
            var fncount_sec_1 = globals.get("uas_fn_1"); 
            fncount_sec_1++; 
            globals.put("uas_fn_1",fncount_sec_1); 
            return "Target Rejected";   
        } 
    } 
    else 
    { 
        if (eval_confusion_1 < truenegative) 
        { 
        
        //counts truenegatives 
        var tncount_sec_1 = globals.get("uas_tn_1"); 
        tncount_sec_1++; 
        globals.put("uas_tn_1",tncount_sec_1); 
        return "Target Rejected"; 
        } 
        else 
        { 
         
        //counts falsepositives 
        var fpcount_sec_1 = globals.get("uas_fp_1"); 
        fpcount_sec_1++; 
        globals.put("uas_fp_1",fpcount_sec_1); 
        return "Target Confirmed"; 
        } 
    } 
} 
 

UAS.SS.1.4.3 function onEnd() 
{ 
    var transit_1_req = globals.get("transit_1_save"); 
    var transit_1_count = globals.get("transit_1_count"); 
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    transit_1_count++; 
    globals.put("transit_1_count", transit_1_count); 
 
     
    if(globals.get("uas_2_confirmation_request")=="true") 
    { 
        globals.put("uas_1_follow_up", "true"); 
        globals.put("transit_1", transit_1_count); 
        return false; 
         
    } 
     
    if(transit_1_count >= transit_1_req) 
    { 
        return false; 
    } 
    else  
    { 
        return true; 
    } 
     
} 

MC.0 function onStart() 
{ 
    //intialize global mission status 
    globals.put("missionstatus",0); 
 
    //initialize launch duration value for UAS 
    //Calculation of a triangular distribution for mission length 
    var result; 
    var min = 1; 
    var max = 15; 
    var peak = 5; 
    var p = Math.random(); 
    var q = 1.0 - p; 
      if (p <= (peak - min) / (max - min))  
        { 
          result = Math.round(min + Math.sqrt((max - min) * (peak - min) * p)); 
        } 
      else  
        { 
          result = Math.round(max - Math.sqrt((max - min) * (max - peak) * q)); 
        } 
    globals.put("launchfuel_1",result); 
    globals.put("launchfuel_2",result); 
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    // initialize confusion matrix values 
    //True positive + false negative and false positive + true negative 
    // must equal one 
    globals.put("truepositive",0.75); 
    globals.put("truenegative",0.95); 
     
     
    //Establishes counters for object evaluation results 
    globals.put("truepositive_1",0); 
    globals.put("falsepositive_1",0); 
    globals.put("falsenegative_1",0); 
    globals.put("truenegative_1",0); 
     
    globals.put("truepositive_2",0); 
    globals.put("falsepositive_2",0); 
    globals.put("falsenegative_2",0); 
    globals.put("truenegative_2",0); 
     
    globals.put("uas_tp_1", 0); 
    globals.put("uas_fp_1", 0); 
    globals.put("uas_fn_1", 0); 
    globals.put("uas_tn_1", 0); 
     
    globals.put("uas_tp_2", 0); 
    globals.put("uas_fp_2", 0); 
    globals.put("uas_fn_2", 0); 
    globals.put("uas_tn_2", 0); 
     
    globals.put("missedobject_1", 0); 
    globals.put("missedtarget_1", 0); 
    globals.put("missedobject_2", 0); 
    globals.put("missedtarget_2", 0); 
     
    globals.put("totalobjects_1",0); 
    globals.put("totaltargets_1",0); 
    globals.put("totalnontargets_1",0); 
     
    globals.put("totalobjects_2",0); 
    globals.put("totaltargets_2",0); 
    globals.put("totalnontargets_2",0); 
     
     
     
    // Set percentage of objects that are targets 
    globals.put("target_percentage", 1/21); 
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    // Set percentage of objects that are seen by the sensor 
    globals.put("detection_percentage", 0.85); 
 
    globals.put("uas_1_confirmation_request", 0); 
    globals.put("uas_2_confirmation_request", 0); 
 
} 

MC.1 function onEnd() 
{  
// Mission control loop only exits upon mission status set to 
// recovery 
if(globals.get("missionstatus_1") == "recovery" || 
globals.get("missionstatus_2") == "recovery" ) 
  { 
    return false; 
  } 
  else 
  { 
    return true; 
  } 
 
} 

D.1 function onEnd() 
{ 
    print('1 Total Objects Emitted: ' + globals.get("totalobjects_1")); 
    print('1 Total Targets Emitted: ' + globals.get("totaltargets_1")); 
    print('1 Total Non-Targets Emitted: ' + globals.get("totalnontargets_1")); 
     
    print('2 Total Objects Emitted: ' + globals.get("totalobjects_2")); 
    print('2 Total Targets Emitted: ' + globals.get("totaltargets_2")); 
    print('2 Total Non-Targets Emitted: ' + globals.get("totalnontargets_2")); 
     
     
    print('1 Detected True Positives: ' + globals.get("truepositive_1")); 
    print('1 Detected False Positives: ' + globals.get("falsepositive_1")); 
    print('1 Detected True Negatives: ' + globals.get("truenegative_1")); 
    print('1 Detected False Negatives: ' + globals.get("falsenegative_1")); 
    print('1 Total Eligible Missed Non-targets: ' + 
globals.get("missedobject_1")); 
    print('1 Total Eligible Missed Targets: ' + globals.get("missedtarget_1")); 
     
     
    print('2 Detected True Positives: ' + globals.get("truepositive_2")); 
    print('2 Detected False Positives: ' + globals.get("falsepositive_2")); 
    print('2 Detected True Negatives: ' + globals.get("truenegative_2")); 
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    print('2 Detected False Negatives: ' + globals.get("falsenegative_2")); 
    print('2 Total Eligible Missed Non-targets: ' + 
globals.get("missedobject_2")); 
    print('2 Total Eligible Missed Targets: ' + globals.get("missedtarget_2")); 
     
    print('1 Confirmed True Positives: ' + globals.get("uas_tp_1")); 
    print('1 Confirmed False Positives: ' + globals.get("uas_fp_1")); 
    print('1 Confirmed True Negatives: ' + globals.get("uas_tn_1")); 
    print('1 Confirmed False Negatives: ' + globals.get("uas_fn_1")); 
     
    print('2 Confirmed True Positives: ' + globals.get("uas_tp_2")); 
    print('2 Confirmed False Positives: ' + globals.get("uas_fp_2")); 
    print('2 Confirmed True Negatives: ' + globals.get("uas_tn_2")); 
    print('2 Confirmed False Negatives: ' + globals.get("uas_fn_2")); 
     
    var launchduration = globals.get("launchfuel_1"); 
    var missionduration = 60 - 2*launchduration; 
    print('Total Mission Duration in Minutes: ' +missionduration); 
   
} 
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Acronyms 

ABEP  Architecture Based Evaluation Process 

AoA  Analysis of Alternatives 

ATR  Autonomous Target Recognition 

COCOM Combatant Commander 

CONOPS Concept of Operations 

CPN  Colored Petri-Net 

DES  Discrete Event Simulation 

DoD  Department of Defense 

DoDAF Department of Defense Architecture Framework 

EA  Executable Architecture 

EFFBD Enhanced Function Flow Block Diagram 

FFBD  Function Flow Block Diagram 

GCS  Ground Control Station 

HCPN  Hierarchical Colored Petri-Net 

ISR  Intelligence, Surveillance and Reconnaissance 

MOE  Measure of Effectiveness 

MP  Monterey Phoenix 

SE  Systems Engineering 

SoS  System of Systems 

SysML  Systems Modeling Language 

UAS  Unmanned Aerial System 

UML  Unified Modeling Language



109 

Bibliography 

Auguston, M. (2014). Behavior Models for Software Architecture. Retrieved from 

http://www.dtic.mil/dtic/tr/fulltext/u2/a611836.pdf 

Bienvenu, M. P., Shin, I., & Levis, A. H. (2000). C4ISR architectures: III. An object-

oriented approach for architecture design. Systems Engineering, 3(4), 288–312. 

http://doi.org/10.1002/1520-6858(2000)3:4<288::AID-SYS6>3.0.CO;2-F 

Cancro, G., Turner, R., Kahn, E., & Williams, S. (2011, January). Executable 

specification-based system engineering. Aerospace Conference, 2011 IEEE. 

Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5747626&contentTy

pe=Conference+Publications 

Defense Acquisition University. (2014). Generic Acquisition Process (Pre-Tailoring), 

5000. Retrieved from https://dap.dau.mil/aphome/Documents/Defense Acquisition 

Waterfall Chart with color enhancements 17 Dec final (3).pdf 

Department of Defense. (2007a). DoD Architecture Framework Volume I : Definitions 

and Guidelines. Architecture, I(April 2007), 1–46. 

Department of Defense. (2007b). DoD Architecture Framework Volume II : Product 

Descriptions. Architecture, II(April 2007), 284. 



110 

Dietrichs, T., Griffin, R., Schuettke, A., & Slocum, M. (2006). INTEGRATED 

ARCHITECTURE STUDY FOR WEAPON BORNE BATTLE DAMAGE 

ASSESSMENT SYSTEM EVALUATION. Air Force Institute of Technology, Air 

University. 

DoD Deputy Chief Information Officer. (2009). The DoDAF Architecture Framework 

Version 2.0. U.S. Department of Defense. Retrieved from http://cio-

nii.defense.gov/sites/dodaf20/index.html 

Feng, N., Ming-Zhe, W., Cui-Rong, Y., & Zhi-Gang, T. (2010, January). Executable 

architecture modeling and validation. Computer and Automation Engineering 

(ICCAE), 2010 The 2nd International Conference on. Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5452010&contentTy

pe=Conference+Publications 

Ge, B., Hipel, K. W., Li, L., & Chen, Y. (2012, January). A data-centric executable 

modeling approach for system-of-systems architecture. System of Systems 

Engineering (SoSE), 2012 7th International Conference on. 

Ge, B., Hipel, K. W., Yang, K., & Chen, Y. (2014, January). A Novel Executable 

Modeling Approach for System-of-Systems Architecture. Systems Journal, IEEE. 

Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6565359&contentTy

pe=Journals+&+Magazines 



111 

Griendling, K., & Mavris, D. N. (2011, January). Development of a dodaf-based 

executable architecting approach to analyze system-of-systems alternatives. 

Aerospace Conference, 2011 IEEE. Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5747654&contentTy

pe=Conference+Publications 

Hu, J., Huang, L., Cao, B., & Chang, X. (2014). SPDML: Graphical modeling language 

for executable architecture of systems. 6th International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery, CyberC 2014, 248–255. 

http://doi.org/10.1109/CyberC.2014.52 

IEEE Standard 1220-2005. (2007). IEEE Standard for Application and Management of 

the Systems Engineering Process. 

Imagine That! (2015). ExtendSim Simulation Software. Retrieved September 9, 2015, 

from https://www.extendsim.com/ 

Intercax. (2015a). ParaMagic® plugin for MagicDraw - Intercax. Retrieved December 9, 

2015, from http://intercax.com/products/paramagic/ 

Intercax. (2015b). SolveaTM - SysML Parametric Solver - Intercax. Retrieved December 

9, 2015, from http://intercax.com/products/solvea/ 

Janczura, C. (2009). Evaluation of Defence Architectures in Support of System 

Integration. Journal of Battlefield Technology, 12(3), 9 – 13. Retrieved from 



112 

http://ezproxy.library.capella.edu/login?url=http://search.ebscohost.com.library.cape

lla.edu/login.aspx?direct=true&db=tsh&AN=44639406&site=ehost-live&scope=site 

Jensen, K., Kristensen, L., & Wells, L. (2007, January). Coloured Petri Nets and CPN 

Tools for modelling and validation of concurrent systems. International Journal on 

Software Tools for Technology Transfer. Retrieved from 

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=25234751&site=

ehost-live 

Larman, C. (2011). Applying UML and Patterns. (D. O’Hagan, J. Fuller, & J. Nahil, 

Eds.) (14th ed.). Upper Saddle River, NJ: Prentice Hall. 

Levis, A. H., & Wagenhals, L. W. (2000). C4ISR architectures: I. Developing a process 

for C4ISR architecture design. Systems Engineering, 3(4), 225–247. 

http://doi.org/10.1002/1520-6858(2000)3:4<225::AID-SYS4>3.0.CO;2-# 

Li, L., Dou, Y., Ge, B., Yang, K., & Chen, Y. (2012). Executable System-of-Systems 

architecting based on DoDAF meta-model. System of Systems Engineering (SoSE), 

2012 7th International Conference on, 362–367. 

http://doi.org/10.1109/SYSoSE.2012.6384204 

Mathworks. (2015). Discrete Event Simulation Software - SimEvents. Retrieved 

September 9, 2015, from http://www.mathworks.com/products/simevents/ 



113 

Matloff, N. S. (2008). Introduction to discrete-event simulation and the simpy language. 

Davis, CA. Dept of Computer Science. University, 1–33. Retrieved from 

http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf 

Nakhla, N. M., & Wheaton, K. (2014). An executable architecture tool for the modeling 

and simulation of operational process models. 8th Annual IEEE International 

Systems Conference, SysCon 2014 - Proceedings, 489–496. 

http://doi.org/10.1109/SysCon.2014.6819301 

No Magic. (2015). Cameo Simulation Toolkt. 

Özgün, O., & Barlas, Y. (2009). Discrete vs . Continuous Simulation : When Does It 

Matter ? 27th International Conference of The System Dynamics Society, (06), 1–22. 

Rockwell Automation. (2015). Arena Discrete Event Simulation Software. Retrieved 

September 9, 2015, from https://www.arenasimulation.com/ 

Sparx Systems. (2015). How it Works [Enterprise Architect User Guide]. Retrieved 

January 1, 2015, from 

http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/model_simulatio

n/how_it_works2.html 

SPEC Innovations. (2015). DoDAF Software Tools | Innoslate. Retrieved January 1, 

2015, from https://www.innoslate.com/dodaf/ 



114 

Staines, T. S. (2008, January). Intuitive Mapping of UML 2 Activity Diagrams into 

Fundamental Modeling Concept Petri Net Diagrams and Colored Petri Nets. 

Engineering of Computer Based Systems, 2008.ECBS 2008.15th Annual IEEE 

International Conference and Workshop on the. Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4492400&contentTy

pe=Conference+Publications 

The Object Management Group. (2012). Semantics of a Foundational Subset for 

Executable UML Models (fUML), (October), 441. Retrieved from 

http://www.omg.org/spec/FUML/ 

Vitech Corporation. (2000). COREsim User Guide 3.0. 

Wagenhals, L. W., & Levis, A. H. (2009, January). Service Oriented Architectures, the 

DoD Architecture Framework 1.5, and Executable Architectures. SYSTEMS 

ENGINEERING. Retrieved from 

http://gateway.webofknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcA

uth=SerialsSolutions&SrcApp=360&DestLinkType=FullRecord&DestApp=WOS&

KeyUT=WOS:000271966700003 

Wagenhals, L. W., Liles, S. W., & Levis, A. H. (2009, January). Toward executable 

architectures to support evaluation. Collaborative Technologies and Systems, 

2009.CTS ’09.International Symposium on. Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5067520&contentTy

pe=Conference+Publications 



115 

Wagenhals, L. W., Shin, I., Kim, D., & Levis, A. H. (2000). C4ISR Architectures: II. A 

Structured Analysis Approach for Architecture Design. Systems Engineering, 3(4), 

248–287. 

Wang, Z., He, H., & Wang, Q. (2014). Executable Architecture Modeling and Simulation 

Based on fUML. In 19th International Command and Control Research and 

Technology Symposium (pp. 1–17). Alexandria, VA. 

Xia, X., Wu, J., Liu, C., & Xu, L. (2013). A Model-Driven Approach for Evaluating 

System of Systems. Engineering of Complex Computer Systems (ICECCS), 2013 

18th International Conference on. Retrieved from 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6601805&contentTy

pe=Conference+Publications 

  



116 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

24-12-2015 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

October 2014 – December 2015 

TITLE AND SUBTITLE 
 
Application of Executable Architectures in Early Concept 
Evaluation 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Pospisal, Ryan M., Major, USAF 
 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
      AFIT-ENV-MS-15-D-027 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
DoD Systems Engineering Research Center                                   
Scott Lucero, Deputy Director, Strategic Initiatives, ODASD(SE)                          
1 Castle Point Terrace 
Hoboken, NJ 07030 
don.s.lucero.civ@mail.mil   (703) 681-6654 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 
ODASD(SE) 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States. 
14. ABSTRACT  
This research explores use of executable architectures to guide design decisions in the early stages of system 
development.  Decisions made early in the system development cycle determine a majority of the total 
lifecycle costs as well as establish a baseline for long term system performance and thus it is vital to program 
success to choose favorable design alternatives.  The development of a representative architecture followed 
the Architecture Based Evaluation Process as it provides a logical and systematic order of events to produce 
an architecture sufficient to document and model operational performance.  In order to demonstrate the value 
in the application of executable architectures for trade space decisions, three variants of a fictional unmanned 
aerial system were developed and simulated.  Four measures of effectiveness (MOEs) were selected for 
evaluation.  Two parameters of interest were varied at two levels during simulation to create four test case 
scenarios against which to evaluate each variant.  Analysis of the resulting simulation demonstrated the ability 
to obtain a statistically significant difference in MOE performance for 10 out of 16 possible test case-MOE 
combinations.  Additionally, for the given scenarios, the research demonstrated the ability to make a 
conclusive selection of the superior variant for additional development. 
15. SUBJECT TERMS 
       Executable Architecture, DoDAF, Analysis of Alternatives, AoA, System of Systems, SoS 
16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 

UU 

18. 
NUMBER  
OF PAGES 
 

129 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. David Jacques, AFIT/ENV 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3355, ext 3329 
(david.jacques@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

mailto:don.s.lucero.civ@mail.mil

	Air Force Institute of Technology
	AFIT Scholar
	12-24-2015

	Application of Executable Architectures in Early Concept Evaluation
	Ryan M. Pospisal
	Recommended Citation


	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Research Focus
	1.4 Methodology
	1.5 Assumptions
	1.6 Preview

	2  Literature Review
	2
	2.1 Overview
	2.2 Definitions
	2.3 DoDAF Background
	2.4 Simulation Techniques
	2.4.1 Discrete Event Simulation
	2.4.1.1 Innoslate
	2.4.1.2 Canadian Department of National Defence
	2.4.1.3 COREsim
	2.4.1.4 Enterprise Architect

	2.4.2 Colored Petri Nets
	2.4.3 Hierarchical Colored Petri Nets
	2.4.4 Executable Specification-based Systems Engineering
	2.4.5 fUML
	2.4.5.1 Magic Draw

	2.4.6 Monterey Phoenix

	2.5 Generalized Architecture Development
	2.6 Literature Review Summary

	3  Methodology
	2
	3
	2
	3
	4
	3.1 Process
	3.2 Assumptions
	3.3 Operational Concept
	3.4 Measures of Effectiveness
	3.5 Architecture Scope
	3.6  Required Architecture Views
	3.7 Development of Architecture Views
	3.8 Development of Architecture Simulation
	3.8.1 Common Activities
	3.8.2 Variant 1 Operation
	3.8.3 Variation 2 Operation
	3.8.4 Variant 3 Operation

	3.9 Evaluation for Model Completeness
	3.10 Test Case Selection
	3.11 Other Model Parameters
	3.12 Simulation Software Comments
	3.13 Summary

	4 Simulation Analysis and Results
	4
	4.1 MOE 1: Average Target Declarations per Mission
	4.2 MOE 2: Average Target Confirmations per Mission
	4.3 MOE 3: Average False Alarms per Mission
	4.4 MOE 4: Average Missed Targets per Mission
	4.5 Other Observations
	4.6 Results

	5 Conclusions and Recommendations
	5
	5.1 Recommendations for Future Research
	5.1.1 Larger SoS Development
	5.1.2  Improve Existing Simulation Assumptions
	5.1.3 Include More External Factors


	Appendix A: CONOPS
	Document Overview
	Intended Users
	Document Organization
	System Introduction
	System Purpose
	Functional Requirements
	Target Detection
	Communications
	Mobility
	Duration
	Geo-location accuracy
	Launch and Recovery

	Stakeholders
	Intelligence Community
	Other ISR Platforms
	Airborne Strike Operators and Ground Forces
	Acquisition Corps

	System Physical Description
	Ground Control Station (GCS)
	Data link
	Air Vehicle
	System Operational Description
	Logistics
	Launch and Ingress
	Mission Operations
	Variant 1
	Variant 2
	Variant 3

	Egress and Recovery


	Appendix B:  AV-1
	Architectural Description Identification
	Scope
	AV-1: Overview and Summary Information
	OV-1: High Level Operational Concept Graphic
	OV-2: Operational Resource Flow Description
	OV-5b: Operational Activity Model
	OV-6a: Operational Rules Model

	Purpose and Perspective
	Context
	Variant 1:  Automated Independent
	Variant 2:  Ground Station Assisted
	Variant 3: Automated Cooperative

	Status
	Tools and File Formats

	Appendix C: OV-1: High level Operational Concept Graphic
	Appendix D: OV-2: Operational Resource Flow Description
	Appendix E: OV-5b: Operational Activity Model
	Appendix F: OV-6a: Operational Rules Model
	Common Behavior
	Imperative Rules
	Conditional Rules

	Variant 1 Specific Rules
	Variant 2 Specific Rules
	Conditional Rules

	Variant 3 Specific Rules

	Appendix G: Example JavaScript
	Acronyms

