
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

12-24-2015

Application of Executable Architectures in Early
Concept Evaluation
Ryan M. Pospisal

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Pospisal, Ryan M., "Application of Executable Architectures in Early Concept Evaluation" (2015). Theses and Dissertations. 238.
https://scholar.afit.edu/etd/238

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/238?utm_source=scholar.afit.edu%2Fetd%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

APPLICATION OF EXECUTABLE ARCHITECTURES IN EARLY CONCEPT
EVALUATION

THESIS

Ryan M. Pospisal, Major, USAF

AFIT-ENV-MS-15-D-027

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-15-D-027

APPLICATION OF EXECUTABLE ARCHITECTURES IN EARLY CONCEPT
EVALUATION

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Ryan M. Pospisal, B.S., Electrical Engineering

Major, USAF

December 2015

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-15-D-027

APPLICATION OF EXECUTABLE ARCHITECTURES IN EARLY CONCEPT
EVALUATION

Ryan M. Pospisal, B.S., Electrical Engineering

Major, USAF

Committee Membership:

Dr. David Jacques
Chair

Dr. John Colombi
Member

Lt Col Thomas Ford, PhD
Member

iv

AFIT-ENV-MS-15-D-027

Abstract

This research explores use of executable architectures to guide design decisions in

the early stages of system development. Decisions made early in the system development

cycle determine a majority of the total lifecycle costs as well as establish a baseline for

long term system performance and thus it is vital to program success to choose favorable

design alternatives. The development of a representative architecture followed the

Architecture Based Evaluation Process as it provides a logical and systematic order of

events to produce an architecture sufficient to document and model operational

performance. In order to demonstrate the value in the application of executable

architectures for trade space decisions, three variants of a fictional unmanned aerial

system were developed and simulated. Four measures of effectiveness (MOEs) were

selected for evaluation. Two parameters of interest were varied at two levels during

simulation to create four test case scenarios against which to evaluate each variant.

Analysis of the resulting simulation demonstrated the ability to obtain a statistically

significant difference in MOE performance for 10 out of 16 possible test case-MOE

combinations. Additionally, for the given scenarios, the research demonstrated the ability

to make a conclusive selection of the superior variant for additional development.

v

Acknowledgments

My sincerest appreciation goes to my advisor, Dr. David Jacques, for his support, advice,

and expertise during completion of this thesis. I would also like to thank Dr. Kristen

Giammarco of the Naval Postgraduate School for advice she provided and helping secure

software licensing, without which my thesis would not have been as successful or as

interesting. Finally, I must thank my wife for her unwavering support and

encouragement throughout this process.

 Ryan M. Pospisal

vi

Table of Contents

Page

Abstract .. iv

List of Figures .. ix

List of Tables ... xi

1 Introduction ..1

1.1 Problem Statement ..3

1.2 Research Objective ..3

1.3 Research Focus ..4

1.4 Methodology ...4

1.5 Assumptions ..4

1.6 Preview ..5

2 Literature Review ...7

2.1 Overview ...7

2.2 Definitions ...7

2.3 DoDAF Background ...8

2.4 Simulation Techniques ..11

2.5 Generalized Architecture Development ..25

2.6 Literature Review Summary ...27

3 Methodology ..28

3.1 Process ...28

3.2 Assumptions ..28

3.3 Operational Concept ..29

3.4 Measures of Effectiveness ...30

vii

3.5 Architecture Scope ..31

3.6 Required Architecture Views ..32

3.7 Development of Architecture Views ...32

3.8 Development of Architecture Simulation ...33

3.9 Evaluation for Model Completeness ...42

3.10 Test Case Selection ..42

3.11 Other Model Parameters ..45

3.12 Simulation Software Comments ..46

3.13 Summary ..48

4 Simulation Analysis and Results ..49

4.1 MOE 1: Average Target Declarations per Mission ...50

4.2 MOE 2: Average Target Confirmations per Mission ..52

4.3 MOE 3: Average False Alarms per Mission ...53

4.4 MOE 4: Average Missed Targets per Mission ..57

4.5 Other Observations ..60

4.6 Results ...62

5 Conclusions and Recommendations ...64

5.1 Recommendations for Future Research ..66

Appendix A: CONOPS ..68

Document Overview ...68

Intended Users ..68

Document Organization..68

System Introduction..68

System Purpose ..68

viii

Functional Requirements ..69

Stakeholders ...70

System Physical Description ..71

Appendix B: AV-1 ..76

Architectural Description Identification ...76

Scope ..77

Purpose and Perspective ...79

Context ...79

Status ..81

Tools and File Formats ...81

Appendix C: OV-1: High level Operational Concept Graphic ..82

Appendix D: OV-2: Operational Resource Flow Description ...84

Appendix E: OV-5b: Operational Activity Model...87

Appendix F: OV-6a: Operational Rules Model ...90

Appendix G: Example JavaScript ..96

Acronyms ...108

Bibliography ..109

ix

List of Figures

Page

Figure 1: Flow Between Computational Models (Nakhla & Wheaton, 2014) 14

Figure 2: CPN Example (Jensen, Kristesen, & Wells, 2007) ... 16

Figure 3: Translation Concept from DoDAF to HCPN (Feng et al., 2010)...................... 19

Figure 4: ESSE Development Process (Cancro, Turner, Kahn, & Williams, 2011) 21

Figure 5: Translation of the fUML Subset (Object Management Group, 2013) 23

Figure 6: Variant 1, Partial OV-5b ... 35

Figure 7: Variant 2, Partial OV-5b ... 39

Figure 8: Variant 3, Partial OV-5b ... 41

Figure 9: Average Target Declarations per Mission ... 50

Figure 10: Average Target Confirmations per Mission .. 53

Figure 11: Average False Alarm Declarations per Mission.. 54

Figure 12: Average False Alarm Confirmations per Mission ... 56

Figure 13: Average False Alarms per Mission at System Output 57

Figure 14: Average Missed Target Declarations per Mission .. 58

Figure 15: Average Missed Confirmations per Mission ... 59

Figure 16: Total Average Missed Targets per Mission .. 60

Figure 17: Average Evaluation Rates per Mission ... 61

Figure 18: Variant 1 and Variant 2 OV-1 ... 82

Figure 19: Variant 3 OV-1 .. 83

Figure 20: Variant 1 OV-2 .. 84

Figure 21: Variant 2 OV-2 .. 85

x

Figure 22: Variant 3 OV-2 .. 86

Figure 23: Variant 1 OV-5b .. 87

Figure 24: Variant 2 OV-5b .. 88

Figure 25: Variant 3 OV-5b .. 89

xi

List of Tables

Page

Table 1: Confusion Matrix Format (with example threshold values) 37

Table 2: Confusion Matrix Logic Example .. 37

Table 3: Test Case Matrix ... 43

Table 4: Sensor Low Target Detection Threshold Confusion Matrix 44

Table 5: Sensor High Target Detection Threshold Confusion Matrix 44

Table 6: Ground Control Station Confusion Matrix ... 45

Table 7: Other Model Parameters ... 46

Table 8: Evaluation Results Summary .. 62

Table 9: Variant 3 JavaScript Summary ... 96

1

APPLICATION OF EXECUTABLE ARCHITECTURES IN EARLY CONCEPT
EVALUATION

1 Introduction

 Procurement of state-of-the-art systems is becoming increasingly intricate and

costly as technology advancements facilitate customer requirements for increased

capabilities and extended product lifecycles. Decisions made early in system

development have an enormous impact on lifecycle costs as well as determining the

system’s performance in future use case scenarios. The use of an executable architecture

can help document, manage and guide sound decision making early in the system

development process.

Due to the increases in complexity, there is benefit to the systems engineering

(SE) community with development of executable architectures that can be used to

influence program decisions as early as possible in the acquisition lifecycle to maximize

long-term flexibility, adaptability, robustness and related “-ilities,” to ensure favorable

system and system-of-systems (SoS) performance under future uncertain applications.

The need for this toolset is further exacerbated in large SoS as total replacement becomes

cost prohibitive, thus individual systems and those comprising SoS may remain in service

for several decades and beyond.

Systems engineers and program managers must temper performance goals against

total lifecycle costs. It is estimated that conceptual and preliminary design decisions lock

in 50-75% of lifecycle costs and according to the U.S. Department of Energy, total

lifecycle cost obligation is 95% decided by the end of R&D activities (Blanchard &

Fabrycky, 2011; Makepeace, 1997). While incorporation of explicit lifecycle cost

2

estimates is beyond the scope of this thesis, it is none-the-less a practical influence that is

always under consideration.

Early trade space decisions in the acquisition process, specifically during the

Solution Analysis Phase, do not explicitly consider possible future use cases of the

system under procurement. The current version of the Defense Acquisition University's

Generic Acquisition Process, dated 17 December 2014, prescribes an Analysis of

Alternatives (AoA), but does not call for explicit consideration of future system

requirements (Defense Acquisition University, 2014). Additionally, several Department

of Defense Architecture Framework (DoDAF), Version 2.0 products, such as the

Capability Taxonomy (CV-2) and the Services Evolution Description (SvcV-8), are

mandated to address future capabilities yet the document provides little direction or

guidance on how to accomplish this requirement (DoD Deputy Chief Information

Officer, 2009).

For a given system, a deliberate decision making process that feeds into an

engineered solution accounting for other possible use cases, while minimizing resource

consumption, such as time and funding, is highly desirable. One approach to this

decision making process is to perform parametric based modeling early in program

development to indicate how a design choice affects future system performance. This

thesis explores application of an executable architecture, early in an acquisition program,

to model system performance in potential future operational scenarios and demonstrates,

via simulation, how variations of selected parameters may be used to influence system

design.

3

1.1 Problem Statement

Systems engineers and program management offices need a way of evaluating

design concepts that do not require comprehensive preliminary designs of component

systems but rather do include a number of parameters of interest across those component

systems. This evaluation supports the decision making process by informing trade

decisions during early systems acquisition. Throughout the modeling process, the

balance of time, effort, and cost inputs with the quality of model output is essential.

1.2 Research Objective

The objective of this thesis is to explore the current state of modeling methods

and tools in the SE community and implement a modest, yet representative, architecture

in an executable model using a selected toolset, with the ultimate goal of demonstrating

potential value in use of executable architectures in early concept development. To meet

these objectives, this thesis will consider the following questions:

Research Question 1: What is the capability of current architecture modeling

tools to execute simulations directly from a system architecture?

Research Question 2: What type of information can be provided from use of an

executable architecture in support of trade space decisions during early concept

development?

Research Question 3: How detailed of an executable model is required to

effectively evaluate trade space decisions in early concept modeling?

4

1.3 Research Focus

This thesis was completed under study at the Air Force’s Institute of Technology

and therefore has a Department of Defense (DoD) focus. More specifically, the research

focuses in the domain of tactical Intelligence, Surveillance, and Reconnaissance (ISR)

system development in an effort to provide a basis for application in future ISR SoS

development.

1.4 Methodology

In order to accomplish the objective, this thesis will first examine existing and

proposed methods for creating and simulating executable architectures. The author will

then comment on several commercially available architecture modeling tools to

determine their suitability for creating executable architectures and then choose a tool to

model and simulate a representative system while determining and modifying selected

model parameters to demonstrate potential value in executable architectures. Finally, an

example use of the results to guide the decision making process will be demonstrated.

1.5 Assumptions

 Several broad level assumptions were identified during the research and modeling

portions of this thesis. Those assumptions are as follows:

• The concepts explored within this thesis are scalable to include more complex

individual systems and SoS.

• A commercial tool currently exists, and is accessible to the author, to document a

subset of a DoDAF V2.0 compliant system architecture and includes an

executable modeling capability to meet the fidelity requirements for this thesis.

5

• The selected sets of parameters under study are adequate to determine future

system performance.

1.6 Preview

The research and parametric modeling methods covered in this thesis are focused on DoD

centric problems however the core concepts are intended for wide application among

various commercial and governmental program management offices. Specific parameters

of interest will vary based on the system under development but the application of an

executable architecture and subsequent methods of future scenario evaluation will apply

across a range of systems.

A preview of the work by chapter is as follows:

• Chapter 1 provides an overview of the problem statement and introduction of

methodology.

• Chapter 2 is a literature review to provide a background on executable

architecture methodologies and a study of executable architecture application.

This chapter also briefly summarizes software packages featuring the various

methodologies when literature is available.

• Chapter 3 is a detailed description of application methods.

• Chapter 4 contains results and analysis of the developed executable architecture

simulations.

• Chapter 5 concludes the thesis with interpretation of the model outputs. Critical

information is the identification of parameters having the largest impact on future

6

system performance. Finally, a discussion of recommendations for future study

closes the chapter.

7

2 Literature Review

2.1 Overview

 The purpose of this chapter is to provide the reader with an introduction to

executable architectures. The chapter begins by providing a baseline understanding of

architectures, architecture frameworks and their respective purposes. Following

definition, the chapter contains a review of simulation architecture techniques, discussion

of associated implementation(s), and a critique of available methods and tools.

2.2 Definitions

An executable architecture (EA) can be defined as "executable dynamic

simulations that are automatically or semi-automatically generated from architecture

models or products" (Hu, Huang, Cao, & Chang, 2014). An important characteristic of

EA over more conventional modeling and simulation (M&S) efforts is the ability to

simulate directly from existing architecture products, with minimal additional system

definition or manipulation. Use of EA in early stages of system development is helpful to

indicate system characteristics such as interoperability, capability, flexibility, and/or

maintainability and therefore to inform trade space decisions.

The Institute of Electrical and Electronics Engineers (IEEE) provides definitions

for system, design, and functional architectures. For the purposes of this thesis, the

definition of a functional architecture is the most useful and is defined as "an

arrangement of functions and their sub-functions and interfaces (internal and external)

that defines the execution sequencing, conditions for control or data flow, and the

performance requirements to satisfy the requirements baseline" (IEEE Standard 1220-

8

2005, 2007). Outputs of the functional architecture simulations are then potentially used

to influence the design architecture and thus overall system architecture.

In order to increase standardization in the system development process, the

concept of an architecture framework was created. An architectural framework serves as

a guide for constructing the various architecture products or models to thoroughly

describe and document a system. The Department of Defense (DoD) created the DoD

Architecture Framework (DoDAF) to provide a consistent modeling platform for military

system architects and engineers to describe the system under development. The DoD

describes DoDAF as:

The overarching, comprehensive framework and conceptual model enabling the

development of architectures to facilitate the ability of Department of Defense

(DoD) managers at all levels to make key decisions more effectively through

organized information sharing across the Department, Joint Capability Areas

(JCAs), Mission, Component, and Program boundaries (DoD Deputy Chief

Information Officer, 2009).

2.3 DoDAF Background

 The DoD formally mandated use of an architecture framework after introduction

of the Command, Control, Communications, Computer, Intelligence, Surveillance and

Reconnaissance (C4ISR) Framework v2.0 in 1997, establishing an architecture composed

of three views; Operational, Systems and Technical. This framework was created for

information technology systems in mind and provided the system operators with an

overview of capabilities the system possessed. For the acquisition community, the

9

C4ISR framework provided a basis for determining system-of-system interoperability,

under the assumptions that the architecture accurately represented the system under study

and that none of the systems changed (Levis & Wagenhals, 2000).

In an effort to facilitate architecture use within the defense acquisition

community, the DoD introduced the DoDAF in 2003, with the intent for all system

acquisition offices to document system parameters, interactions, and dependencies via a

formal method. DoDAF differed from the previous incarnation of C4ISR by expanding

existing view definitions, introducing the All View (AV) and placed an emphasis on net-

centric concepts (Department of Defense, 2007a).

The DoD further updated the framework to DoDAF v2.0 in 2009. This new

release provided more documentation regarding information each model (formerly

referred to as products) should contain. DoD also introduced the DoDAF Meta Model

(DM2). DM2 explicitly places more emphasis on data-centric modeling. Features that

DM2 contribute to DoDAF are a constrained vocabulary, specific semantics and format,

increased discovery and understandability and finally, widely adopted integration and

analysis (DoD Deputy Chief Information Officer, 2009). Several papers cite the

ambiguous definition of terms as a significant challenge with development of executable

architectures (Ge, Hipel, Li, & Chen, 2012; Li, Dou, Ge, Yang, & Chen, 2012;

Wagenhals, Liles, & Levis, 2009). To complete the release of this updated version of the

framework, the DoDAF office provided an extensive data dictionary and mapping

resource for explicitly defining terms and mapping those terms to sub models and

products. Inclusion of this dictionary greatly improves consistency of use of terms while

developing architecture models.

10

The structure of DM2 is a data repository making it difficult to directly analyze

without first translating the data into a graphical or structured textual format (Li et al.,

2012). Under the current construct, to form an executable architecture, the data must be

extracted, comprehended, possibly modeled, and translated again into another executable

form. This not only leaves room for error but also consumes resources in the form of

money, time, and personnel.

 DoDAF has proven a valuable tool in development of system architectures but it

currently only supports representation of static systems. DoDAF v1.5 identified the need

for and provided suggested methods to accomplish dynamic modeling, but those have

since been removed in newer versions of DoDAF (Department of Defense, 2007b). As

the DoD deploys more complex systems and integrates previously stand-alone systems

into SoS, the result is a continued need for dynamic representation of systems and SoS.

Successful use of an executable architecture promises to allow inclusion of

features to ensure maximum flexibility while meeting current system performance

requirements at minimum lifecycle costs. An ability to simulate possible future system

requirements and configurations plays a key role in early systems development and

selection of alternatives. By modeling foreseeable scenarios, both likely and unlikely,

and selecting system attributes based on parametric modeling, the acquisition community

can reduce lifecycle costs while increasing system flexibility, adaptability, robustness,

etc. for the user. The DoD benefits from the ability to evaluate system variations not just

in the near and mid-term, less than 5 years after system deployment, but to evaluate the

capabilities and cost for the long term, perhaps upwards of 20 years, and throughout the

product lifecycle.

11

2.4 Simulation Techniques

The modern concept of an executable architecture and application to the DoD was

first documented in a series of three companion white papers from George Mason

University in the year 2000. These techniques outlined development of a design process,

structured analysis and an object-oriented approach for the then current C4ISR

Framework (Bienvenu, Shin, & Levis, 2000; Levis & Wagenhals, 2000; Wagenhals,

Shin, Kim, & Levis, 2000). Development of executable architectures has continued to

evolve since initially conceived with realization of the efficiencies gained through direct

simulation from the architecture and increased interest from the systems engineering

community. There are still however limited mature, standardized, and user-friendly

toolsets available for creating simulations directly from an existing architecture. Along

with limited toolsets, there is no clearly preferred method for simulation of executable

architectures based on the variety of simulation techniques described in this section of the

thesis.

For the purposes of this thesis, DoDAF is considered the architecture standard of

interest, and thus defines the information required for each view. It is important to note

that while UML and SysML products are commonly used to present relevant DoDAF

views, UML and SySML do not natively include executable semantics at this time and

thus are not suitable for executable architectures (Griendling & Mavris, 2011). It is

desirable that system architecture software supports generation of all DoDAF models to

ensure concordance in addition to allowing simulations directly from those models.

Various implementations of executable architectures have been suggested and/or enacted

by academia and commercial software companies. The remainder of this chapter

12

contains a brief review of methods and various implementations proposed for EA

simulation.

2.4.1 Discrete Event Simulation

 Discrete Event Simulation (DES) is a broad modeling concept without a formal

graphical notation standard. As the name implies, the simulation method divides events

into discrete periods of time to execute activities, events or processes within the model

(Griendling & Mavris, 2011). This method presents time and outputs as a step function

in the simulation rather than a linear time progression that continuous modeling

techniques offer (Matloff, 2008). DES are well suited for analyzing linear processes and

modeling discrete system changes with statistical significance (Özgün & Barlas, 2009).

Software toolkits using DES are perhaps the most commonly available and user-

friendly packages for performing system modeling and simulation with many variants

available from open source, academic and commercial producers. Examples of some of

the well-established commercial DES software packages, many including more than

exclusively DES capabilities, include Imagine That!'s Extendsim, Mathworks' SimEvent

and Rockwell Automation's Arena (Imagine That!, 2015; Mathworks, 2015; Rockwell

Automation, 2015). Unfortunately, few DES software packages, commercial or

otherwise, are purpose built for use and integration with system architectures and often

do not natively support generation of all DoDAF models. Several applications of DES

are summarized below.

13

2.4.1.1 Innoslate

 SPEC Innovations has built a powerful online architecture tool called Innoslate.

This software supports generation for most of the 50 models identified in DoDAF v2.0

and allows simulation directly from some architecture models using a DES (SPEC

Innovations, 2015). Developer documentation and the author's experience were the only

sources of relevant information available for this thesis.

Benefits of the Innoslate software are many. World-wide access is provided via

the Innoslate website, allowing for platform independent architecture creation and

simulation. The built-in DES features a wide array of built-in probabilistic functions for

realistic activity durations during model execution. The software accounts for allocation

of resources and allows consumption of assigned resources throughout the simulation. In

addition to creation of the architecture models, where details can be obscured through

abstraction, the entity relationships and actions can be enhanced for simulation with

formalization through Simulation Scripts, written in simple JavaScript (SPEC

Innovations, 2015). Innoslate also includes predefined formats for many DoDAF views.

2.4.1.2 Canadian Department of National Defence

In 2014, members of the Canadian Department of National Defence's Canadian

Forces Warfare Center published a paper on a new method for creation of executable

architectures using a combination of Microsoft (MS) Visio to produce architecture

models and use of SimEvents to execute automatic simulations (Nakhla & Wheaton,

2014). Once a model is created, their method uses Visio's built-in XML generator to

export an XML file. They then process for model consistency and transform to a

SimEvents compatible file. The execution can then be run within SimEvents and updates

14

to change model behavior can be made and finally translated back to a Visio compatible

file. A diagram of the model to simulation translation process is shown in Figure 1.

Figure 1: Flow Between Computational Models (Nakhla & Wheaton, 2014)

Nakhla & Weaton's method has several points of merit. First, while both software

packages require licenses, they are widely available and each has an existing user base

outside of system architecting, fostering broad understanding and possibilities for

international cooperation. Second, their method allows for bi-directional translation

between the models and the simulation; updates made during simulation can be

automatically translated back to an architecture compliant model (Nakhla & Wheaton,

2014).

2.4.1.3 COREsim

 Vitech's popular architecting tool, CORE, has an add-on called CORESim.

CORESim provides the ability to simulate system architecture from CORE produced

Functional Flow Block Diagrams (FFBD) and Enhanced Functional Flow Block

15

Diagrams (EFFBD) (Vitech Corporation, 2000). The simulator uses a DES and has a

comprehensive built-in library of probabilistic distributions available for use.

2.4.1.4 Enterprise Architect

 Sparx Systems offers a comprehensive system architecting tool with built-in

simulation capabilities. The simulator uses the native UML constructs from the

architecture under simulation (Sparx Systems, 2015). The integrated simulator is useful

for discovering logical errors within the architecture but is script based and doesn't

currently allow for the addition of probabilistic variables or decision making within the

simulation. Intercax has developed a plug-in for the Enterprise Architect software to

allow execution of SysML parametric models allowing evaluation of cost, performance

and automated trade studies (Intercax, 2015b). According to the developer's published

information, the plug-in allows use of MATLAB/Simulink and Mathematica in model

development as well as export of results data for further analysis. The performance of the

plug-in was not evaluated in the completion of this thesis.

2.4.2 Colored Petri Nets

 Formal notation and simulation of executable architectures though Colored Petri

Nets (CPNs) is an area of active research and is the preferred formalism for many authors

proposing executable architecture methods (Ge, Hipel, Yang, & Chen, 2014; Xia, Wu,

Liu, & Xu, 2013). CPNs are an extension of standard Petri Nets where the tokens contain

information rather than the binary token nature of standard Petri Nets. The information

contained in the tokens factor into the activation of a transition activity and thus makes it

reasonable for modeling complicated systems. CPNs retain the graphical notation of

16

Petri Nets while including consideration for data types and parameter analysis featured in

Standard Modeling Language (SML) for discrete event models (Jensen, Kristensen, &

Wells, 2007). A primary advantage of CPNs is the ability to view the model via a high

level graphic, facilitating understanding. CPNs allow transfer of attributes between

modules and sub modules, suggesting the systems can be decomposed to encourage

module reuse and improve comprehension.

A simple CPN graphic is displayed in Figure 2. Like standard Petri Nets, CPNs

contain places, transitions, and arcs, respectively represented by circles or ellipses,

rectangles and the lines connecting them. Additionally, all the above can include

annotations called inscriptions to provide detailed information. Places may contain one

or more unique inscriptions called tokens. The data at any given place is described via

these tokens.

Figure 2: CPN Example (Jensen, Kristesen, & Wells, 2007)

17

CPNs are viable for modeling executable architectures due to the ability to

include time based events. Dynamic modeling is achieved with inclusion of temporal

allocations for discrete events. Since the modules are based on discrete events,

simulations can run automatically or under direction of the architect, allowing dissection

of time and promoting a thorough understanding of system interactions (Jensen et al.,

2007).

A matter of practical interest is the complexity faced with automatic conversion of

existing architecture products or data to a CPN format through a user friendly translator.

Wagenhals et al. demonstrated a proof of concept where they developed model mapping

functions to translate widely used DoDAF product instances into an executable instance

(Wagenhals & Levis, 2009). These models would make use of existing architecture

information and products to generate an XML file capable of being read into a CPN

toolset such as CPNTools. While demonstrating the possibility of modeling this way,

Wagenhals et al. acknowledged the immaturity of this method. One problem is any

errors in the architectural instance will translate to the executable architecture and may

only be found by means of thorough examination during simulation. Once discovered,

the error must then be corrected in the initial architecture instance and translated again

into an executable form. A separate but related difficulty associated with this method is

that in some cases, the model may require double translation; once from the data to a

static model and then again from the static model to the executable model, creating

additional sources for errors (Ge et al., 2014).

Ge et al. propose a direct translation method that does not require an initial static

architecture product from which to convert to the executable model (Ge et al., 2014).

18

Their approach uses the well-defined dictionary associated with DM2 to ensure

concordance and translate directly to XML products, again to be read by a CPN toolset.

This method may reduce translation error by working through a direct translation but

rather is complicated through dependence on the rigidly defined DM2 data dictionary.

Like other methods, incorrectly entered data is not exposed until after the architecture is

simulated.

2.4.3 Hierarchical Colored Petri Nets

 Hierarchical Colored Petri Nets (HCPNs) are an additional extension of Petri Nets

to an executable architecture. HCPN is an enhancement of CPNs with the introduction of

hierarchical pages to allow for varied levels of abstraction. The developers of this

application, Feng et al., propose a 4-dimensioned translation of DoDAF architecture

models into a HCPN compatible model (Feng, Ming-Zhe, Cui-Rong, & Zhi-Gang, 2010).

A mapping from DoDAF models to an HCPN is shown in Figure 3. Unfortunately, the

authors haven't published a case study, implying that a practical application to EA is still

in its infancy. Additionally, the most recent academic paper studying HCPN application

to executable architectures is from 2010, so presumably this effort has been abandoned

for reasons unknown.

19

Figure 3: Translation Concept from DoDAF to HCPN (Feng et al., 2010)

The overall use of CPNs or HCPNs to perform executable architectures appears to

currently be at the academic level of interest and maturity. The author of this thesis was

unable to find any formal architecture software using CPN for simulation. Several papers

suggested use of CPNs for simulation via software such as CPN Tools, but alas that

software package is not intended to be a systems architecting software and thus not

considered as a practical implementation for executable architectures (Janczura, 2009;

Jensen et al., 2007; Staines, 2008; Xia et al., 2013).

2.4.4 Executable Specification-based Systems Engineering

Cancro et al. describe a method for developing an executable system engineering

tool called Executable Specification-based Systems Engineering (ESSE) (Cancro, Turner,

Kahn, & Williams, 2011). The authors don't explicitly refer to this as an executable

20

architecture tool but the goals of their product, "directly executing the specification," are

consistent with the definition of an executable architecture. They propose a three level

hierarchical graphical language that specifically includes external system interaction

modeling. At the system context level, their method describes system level interactions

and is further decomposed at the second level as a Functional Block Diagram. The

implementation of functional block diagrams is especially useful in dynamic simulations

with the inclusion of flags for differentiation of clock versus interrupt driven functions

and enable flags to determine system performance in the absence of particular functions.

The third level of decomposition, termed the functional description contains highly

detailed communications interfaces (Cancro et al., 2011). A top level depiction of this

model is shown in Figure 4.

21

Figure 4: ESSE Development Process (Cancro, Turner, Kahn, & Williams, 2011)

The ESSE model has several desirable attributes. First, this hierarchical based model is

similar to existing UML and FFBD modeling methods, therefore familiar to System

Engineers and is a more likely candidate for adoption, compared to other textual

implementations of an executable architecture. Second, the varying layers provide built-

in abstract views for presentation to managers and decision makers, while also containing

the requisite level of formalism at the lower levels to support robust systems engineering.

Third, with the integrated nature of ESSE developers claim to eliminate modeling lag,

which is the time between architecture creation and a simulation output, allowing

thoughtful decisions at any process in the system development. Finally, there is an

22

apparent high level of reusability built in, a critical feature when developing a SoS.

Additionally, the developers have created a prototype development environment,

implying that it’s not ready for mass implementation (Cancro et al., 2011).

Unfortunately, the most recent publication covering this modeling concept was in 2011,

leading to an assumption that this project was abandoned for reasons unknown.

2.4.5 fUML

 The Unified Modeling Language (UML) was established in 1994 as a

combination of the Booch and OMT methods of object-oriented analysis and design and

was formally released as UML 1.0 in 1997 (Larman, 2011). It has served the software

and systems engineering community well by providing a formalized language used to

develop and describe systems. One drawback of UML, current and all previous versions,

is the lack of native executable semantics to dynamically evaluate system interactions and

behaviors.

 The Object Management Group (OMG), a technology standards consortium with

considerable input on the evolution of UML, recognized this gap and began developing

the Foundational UML (fUML). fUML is an intermediary step in the translation of

standard UML models into a platform language, such as Java. The fUML is based from

three key tenets: compactness, ease of translation and action functionality (The Object

Management Group, 2012). The fUML applies standardized language and syntax to the

translation process. A depiction of fUML’s role in translating from UML to platform

language is shown in Figure 5

23

Figure 5: Translation of the fUML Subset (Object Management Group, 2013)

Several papers exist detailing the translation and implementation of UML to

fUML and then on to platform specific languages. Wang et al. offer one reasonable

theory for implementation by adding to the current fUML standard (Wang, He, & Wang,

2014). They present a case defining explicit meta models, providing a well defined

syntax and semantics, and establishing precise rules for execution. They chose graphic

representation of an SoS via swimlanes where each system is in one and only one UML

swimlane and modeling data transfer using connectors between various activities in each

of the swimlanes.

 A potential drawback with fUML is that the executable portion of the

specification moves away from graphical models used in Surface UML subset to a

platform language such as Java. Development of a universal executable generator from

standardized UML notation would encourage adoption by a broad user base.

Unfortunately, even the authors of the fUML specification acknowledge that ease of

translation and compactness are in conflict with one another, complicating the practicality

of a "general fUML-to-platform translator" (The Object Management Group, 2012).

24

Additionally, UML is an abstract modeling language and thus by defninition has poor

formalization, further comlicating direct model translation to fUML (Wang et al., 2014).

2.4.5.1 Magic Draw

 Some architecture software vendors are beginning to incorporate fUML into their

execution packages. One of those examples is No Magic's MagicDraw Cameo

Simulation Toolkit which is the industry's first implementation of the fUML and State

Chart XML standards (No Magic, 2015). One criticism of this implementation is that it

lacks a global view, preventing the system engineer from viewing the complete system

and thus missing portions of the system interaction (Hu et al., 2014). No further literature

is available to outline benefits or weaknesses for this product. Similarly to Enterprise

Architect, Intercax has created a third party plug-in for Magic Draw called ParaMagic

allowing use of Mathematica, PlayerPro, OpenModelica and MATLAB for further

simulation and model analysis (Intercax, 2015a). The performance of ParaMagic was not

evaluated in the completion of this thesis.

2.4.6 Monterey Phoenix

 Monterey Phoenix (MP) was initially developed for software development

applications, however similarities between software and systems acquisition provide a

favorable application to systems architecture. According to the developer, MP model

outputs are suitable for incorporation to DoDAF models however current software doesn't

support integrated architecture model generating capabilities. The benefit of MP in this

application is the ability to simulate interactions (Auguston, 2014).

25

MP defines an event as an “abstraction of activity” and is otherwise centered on

two basic premises to provide system behavior analysis; the concept of dependency in a

precedence relationship and a hierarchical relationship of inclusion (Auguston, 2014).

Auguston has formalized the executable modeling language through a syntax library.

 Benefits of this model are that it provides a high level of abstraction. For

instance, an early concept evaluation isn’t dependent on strict interface control

documents and simply modeling the bulk communications between component systems

may be adequate. Another benefit is that the model simulates resource limitations and

sharing (Auguston, 2014). Like some other executable architecture programs, MP

requires unique programming and doesn't provide tailored model generation to a standard

architecture such as DoDAF. Current integrated output files and diagrams are limited to

sequence diagrams and swimlane diagrams.

2.5 Generalized Architecture Development

In addition to exploring methods of simulation, a generalized architecture

development process is appropriate for review. Dietrichs, et al. developed a set of steps

used to develop and evaluate system architectures called the Architecture Based

Evaluation Process (ABEP) (Dietrichs, Griffin, Schuettke, & Slocum, 2006). The ABEP

process identifies a logical sequence of operations for evaluation of system performance

based on simulations based on developed architecture and is not specific to development

and evaluation of an executable architecture.

Architecture Based Evaluation Process (ABEP)

ABEP ASSUMPTIONS:
a. Some meaningful analysis is required to evaluate system

26

b. Integrated architectures provide the most complete system/concept
definition to ensure the evaluation is meaningful and accurate.

c. The architecture, when done correctly, provides the necessary traceability
to tie the evaluated concept of interest to the analysis used to validate the
concept.

ABEP STEPS

1. Design Operations Concept of system to be evaluated.
Ops concept provides the system description which the architecture will
model, and the models will simulate/evaluate.

2. Identify MOE’s relevant to the decision/evaluation
Identify the metrics that represent the effectiveness of the system.

3. Identify required level of abstraction for architecture to show
traceability to MOE’s
Analyze the Ops Concept to determine if MOE’s are measured at the
output of the system, within the system (requiring ‘drilling’ into the
system activities), or at the output of activities external to the system
(requiring external systems diagram)

4. Identify architecture views necessary to capture
structure/relationships

a. Structure (OV-1, OV-2, OV-5) In order to first develop the
structure of the analysis, nearly all evaluations will require the OV-
1 (High Level Operations Concept), OV-2 (Operational Node
Connectivity Description), and OV-5 Operational Activity Model
views. The level of abstraction (A-1, A-0, AO etc.) of the OV-5 is
initially identified in the previous step.

b. Decision Logic (OV-6a) To capture the logic of the system, nearly
all evaluations will require the OV-6a Rules Model, developed to
match the level of abstraction used for the OV-5’s.

c. As Required: SV-2, SV-4, SV-7,OV-6b, OV-6c Depending on the
complexity, consideration for time and dependency on internal
performance inputs, some or all of the listed views may be
required.

5. Develop architecture views
Develop architecture views IAW DoDAF to include all relevant activities
and entities. If an integrated architecture already exists, then acquire the
required architecture views.

6. Develop Modeling Simulation to replicate architecture
a. Select Modeling tool best suited to meet evaluation requirements

(i.e. Excel spreadsheet vs. discrete model simulation program)
b. Model structure to match architecture (OV-2, OV-5)
c. Model decision logic to match OV-6a.
d. Calculate MOE’s at output of activities as functions of design

parameters
7. Evaluate Model Completeness

27

Does model consider all relevant aspects (processes, assumptions, input
variables, and outputs, MOE’s) of the system/concept?

a. IF so, continue to step 8.
b. IF model not complete, return to step 3 with the following

considerations.
i. Determine additional architecture view and/or level of

abstraction required to achieve traceability between system and
the missing aspect.

ii. Develop required additional architecture
iii. Modify model to include additional architecture view.
iv. Re-evaluate Step 7 until model captures all relevant aspects of

the concept.
8. Evaluate model for MOE results, requirements and key parameters

a. Once the model is complete, evaluate the system’s ability to meet
target metrics.

b. Vary design parameters and perform sensitivity analysis to identify
key parameters.

c. Compare sensitivity analysis to target MOE’s to establish
requirements and KPPs.

d. Identify critical performance parameters in the SV-7 Systems
Performance Parameters Matrix.

e. Vary system design and design parameters to evaluate the system’s
robustness and its rate of degradation.

2.6 Literature Review Summary

Based on quantity of literature related to executable architectures, it is clear there

is great interest in the ability to perform architecture based verification and validation of

systems (and SoS). Conversely, there are very few examples where the above

methodologies are successfully integrated with system architecture software. The large

amount of interest and the simultaneous broad lack of comprehensive executable

architecture software suites indicate the systems engineering community faces a non-

trivial problem and further study is required.

28

3 Methodology

The purpose of this chapter is to provide a detailed description for the creation of

a representative executable architecture. The motivations for this thesis stem from a

combined AFIT and NPS interest in application of an EA to a SoS, such as tactical ISR

UAS platforms. The intent is to synthesize individual vehicle models to simulate a set of

UASs that may operate as a SoS. The case will be based on a homogeneous UAS model

set but is very relevant to a heterogeneous scenario with alterations to capabilities of one

or more of the UASs. This chapter will define the various system properties and

parameters within constraints of the physical solution of a UAS.

3.1 Process

The ABEP covered in section 2.5 will form the basis for the development and

evaluation of this architecture. Use of an executable architecture results in combination

of steps 5 and 6, although some additional fidelity built into the architecture views is

required to achieve representative simulation.

3.2 Assumptions

As previously indicated, the development of a UAS architecture has already been

selected as the vehicle’s form factor, although physical and functional decompositions

along with specific requirements and capabilities remain undefined. Throughout the

development of this system architecture, the following broad assumptions will be adhered

to:

29

• Technologies of the representative system are currently attainable or at a level

where it is reasonable that they will be mature enough for implementation by

the year 2025.

• Vulnerabilities to attack, in the physical or cyber domains, are not explicitly

considered or modeled.

• SoS systems are homogeneous

Additionally, the software package used for the development is Innoslate. The software

developers provided the author with a temporary professional license for the purposes of

this thesis. An academic license is normally available to academic students at no cost,

but contains 2000 entry and simulation event limitations. The simulation limitations

were quickly eclipsed when developing and testing all but the most basic models.

3.3 Operational Concept

The concept under consideration is that of a small UAS completing a basic ISR

mission. The major functional operations include launch and ingress to a mission area,

performance of the mission, and then egress and recovery to the base location. While

performing the mission, an integrated sensor scans the area of interest, uses an ATR

system to declare objects as targets or non-targets, and returns the declared and/or

confirmed target data to the ground control station. A more detailed concept of

operations is included in Appendix A; however the most relevant portions are

summarized below.

Conceptually, the system is at an early development stage and an appropriately

detailed CONOPs is available. True to the intent of this thesis, an early trade space

30

decision is to be evaluated. To provide inputs for a trade space decision, several variant

concepts were generated, from which the most desirable performer will be chosen for

further development. For the purposes of this research, the number of UAS

simultaneously performing the mission is limited to two. The three variants consist of:

Variant 1: An architecture in which each system operates independently and

returns target declarations to the ground control station (GCS).

Variant 2: An architecture in which each system operates independently from

one another but sends additional sensor information to the GCS such that the GCS

can perform an additional confirmatory analysis to increase confidence and

reduce false alarm rates.

Variant 3: An architecture in which each system operates cooperatively with one

another and requests the other UAS to provide an additional confirmatory analysis

to increase confidence and reduce false alarm rates.

3.4 Measures of Effectiveness

Measures of effectiveness (MOEs) will provide a basis for selection of one variant

over another and therefore must be thoughtfully selected. In this case, the system is

charged with detecting targets, transmitting data to the ground control station and in the

case of Variant 3, providing additional confidence to the ground station through an

independent confirmation. With those goals in mind, the MOEs selected for this

architecture, along with short descriptions, are listed below.

MOE1: Average Correct Target Declarations per Mission

31

This is the number of objects declared as targets during the initial object

evaluation step of each variant. A higher value is desirable.

MOE2: Average Correct Target Confirmations per Mission

This is the number of objects confirmed as targets during the secondary

object evaluation step of Variants 2 and 3. Variant 1 does not include a

confirmation step in the process. A higher value is desirable.

MOE3: Average False Alarms per Mission

This is the number of non-target objects, both declared and confirmed,

incorrectly as valid targets. A lower value is desirable.

MOE4: Average Missed Targets per Mission

This is the number of valid target objects, both declared and confirmed,

incorrectly as non-targets. A lower value is desirable.

3.5 Architecture Scope

Following definition of MOEs, it is appropriate to perform an evaluation to

determine the level of abstraction required. In the case of an early concept executable

architecture, achieving the correct balance of abstraction versus formalization is doubly

important. An overly detailed architecture wastes valuable time as many of the minute

interface details, subsystem operations, and component performance are unknown and

irrelevant for most general trade space decisions. However, due to the executable nature,

the architecture must achieve a level of formalization sufficient to properly scope the

architecture. In the case of the architecture under development, modeling will be limited

32

to relevant subsystems and their primary functions. Other assumptions are documented

as required or relevant.

3.6 Required Architecture Views

 Once the appropriate level of abstraction is selected, determination of appropriate

architecture views is required. Given the early concept nature of the architecture under

development, architecture views will be limited to operational views primarily. The

operational views constructed are OV-1, OV-2, OV-5b, and OV-6a. Additionally, an

AV-1 was developed to provide sufficient background information and purpose for any

future work that may build off this architecture.

3.7 Development of Architecture Views

Architecture views, with the exception of the AV-1 and the OV-6a, were

completed within the Innoslate program's DoDAF Dashboard which provides general

templates for most current DoDAF models. Innoslate doesn't have a template for an OV-

6a, even though this logic is embedded in the OV-5b. For this reason, the OV-5b and

OV-6a were developed concurrently, with documentation of the OV-6a occurring outside

of Innoslate. The AV-1 was drafted before the selection of Innoslate as the architecting

software and thus it was completed in Microsoft Word, following headings outlined in

the most recent version of DoDAF. As part of the DoDAF Dashboard, Innoslate includes

a robust template for the AV-1. All architecture views produced for this thesis are

available in Appendices B through F.

 As described in the operational concept section, three variants were considered

under this thesis. Due to the differences in the actions of the variants, the resulting views

33

differ slightly even though the components and nodes remain the same. The expectation

is that these subtle differences will produce discernible differences in performance as

evaluated by the MOEs.

3.8 Development of Architecture Simulation

Translation of an architecture for simulation typically involves conversion of the

architecture to a separate application suited exclusively for simulation. This can be time

consuming, prone to human error, and potential more costly as another software license is

likely required. Thus, a separation of the architecture models and data from the

simulation product is undesirable.

A driving interest in executable architectures is the ability to perform simulations

autonomously or semi autonomously, using existing architecture information. As noted

in the literature review, many of the methods proposed for creating executable

architectures are either immature or deficient in this feature and/or provide little attention

to the creation of an integrated executable architecture solution.

Innoslate was the chosen architecting software for this thesis due to the

availability of DoDAF view generation for most views and its ability to simulate directly

from the architecture, specifically the OV-5b. Furthermore, behavior of individual

activities can be easily tailored with JavaScript to monitor resources, update variables,

include conditional logic, and incorporate probabilistic functions. This flexibility allows

the architect the ability to balance between appropriate levels of abstraction for ease of

interpretation while incorporating the nuances required to model specific behavior. The

34

following several sections briefly summarize the common activities and unique activities

for each variant.

3.8.1 Common Activities

For purposes of illustration, approximately one-half of the OV-5b for Variant 1 is

shown in Figure 6 and represents a complete system. It will be used to describe common

activities among all variants. The entire Variant 1, OV-5b is shown in Figure 24.

In order for the system to provide a response during simulations, the OV-5b must

include an external stimulus, in this case, modeled as an object that emits a signature in

the Object #1 swim lane. The object is modeled as a loop function that starts when the

UAS starts performing its ISR mission and stops when the UAS enters recovery mode.

The start and stop timing is an artifact of the simulation and selected to reduce simulation

computation time. The rate at which a signature is generated is based on a Poisson

distribution with an assignable lambda value. This distribution was chosen due to its

common application in cueing theory, which is analogous to this representation.

Next, the probability at which activity O.1.2.2 emits a target signature is

determined through an internal JavaScript in which a uniform random variable is

generated for each cycle and compared to a threshold. In the event the generated number

is below the selected target threshold, the object emits a target signature and thus

provides a trigger to the sensor subsystem. Conversely, a random number above the

selected threshold dictates a non-target signature and similarly triggers the evaluation

process.

35

Figure 6: Variant 1, Partial OV-5b

36

Upon simulated emission of a signature, the simulation makes an internal

determination as to whether or not the object is "seen." This is intended to mimic how a

real sensor will not be able to evaluate all signatures due to the sensor's inability to

differentiate all object signatures from the background. The input parameter represents

the portion of the objects ability to be detected and is adjustable between a 0% and 100%

chance of seeing an emitted signature. Modification of this parameter allows

representative simulation of various environments, targets, and sensor capabilities. The

remaining sensor subsystem operations are particular to the variant under inspection and

therefore will be discussed individually.

The navigation and propulsion subsystem swim lanes are common among all

variants. Fuel is tracked as a resource and consumed at a uniform rate during the mission

and therefore can be correlated to duration of any propulsion activities. A value,

determined by a defined triangular distribution, is generated to provide launch/ingress

activity duration. This same value is used for egress as an approximation of fuel used to

return to base. After subtracting the fuel required for launch and recovery, the remaining

amount of fuel determines the duration of the ISR portion of the mission. Upon

consumption of the fuel to the amount required to perform egress and recovery, the

mission enters recovery mode and all new sensor and object operations are ceased.

3.8.2 Variant 1 Operation

The performance of the combined sensor and ATR systems were simulated

through use of a confusion matrix. Following successful receipt of a signature, the

evaluation activity generates a uniform random number associated with that particular

37

evaluation activity. This number is compared with the input signature type and

respective confusion matrix threshold value and the system declares the object as a target

or non-target based on the comparison. The general structure of the confusion matrix is

shown in Table 1 along with examples of potential evaluation results shown in Table 2.

Table 1: Confusion Matrix Format (with example threshold values)

Condition
Positive
(Target)

Condition
Negative

(Non-target)
Predicted
Condition
Positive
(Target)

True
Positive
Value
(0.80)

False
Positive
Value
(0.10)

Predicted
Condition
Negative

(Non-target)

False
Negative

Value
(0.20)

True
Negative

Value
(0.90)

Table 2: Confusion Matrix Logic Example

 Inputs Representative
Values of System

Performance

Output

Example
Emitted

Object Type

Generated
Random
Number

Confusion Matrix
"True" Threshold

Values Declaration Result

1 "Target" 0.50 0.80 Target (True
Positive)

2 "Target" 0.85 0.80 Non-Target (False
Negative)

3 "Non-Target" 0.40 0.90 Non-Target (True
Negative)

4 "Non-Target" 0.95 0.90 Target (False
Positive)

38

If a "target" declaration is made, the model generates a trigger simulating data

transfer to a ground control station for potential action, specifics of which are outside the

scope of this effort. After completing either a simulated data transfer or a "non-target"

declaration, the simulation checks for a mission status of "recovery" and selects to either

resume search or end sensor operations if recovery is set to true.

3.8.3 Variation 2 Operation

The partial OV-5b of Variant 2, as shown in Figure 7, is very similar to Variant 1

with the exception that each UAS has a dedicated GCS node. The duration of the sensor

data transfer is now represented as a triangular distribution rather than an assumed

constant time interval, as in Variant 1. Simulation of the sensor performance is the same

as described in Variant 1.

The additional process where the ground station simulates evaluation of the data

that is received is also depicted in the OV-5b. This operation is modeled in the same

manner as the sensor's evaluation step described in Variant 1, although new confusion

matrix values may be used, under the premise that a human analyst will be confirming or

rejecting targets under differing criteria compared to the onboard sensor. Once the object

data is evaluated and the ground station then either confirms or rejects the target, the GCS

waits for another data set to be transferred.

39

 Figure 7: Variant 2, Partial OV-5b

40

3.8.4 Variant 3 Operation

Variant 3, shown in Figure 8, operates in a cooperative manner to provide a

confirmatory step. The addition of a "Sensor Mode" decision checks for a valid request

from a cooperative UAS to determine if it will begin standard search operations or

perform a target confirmation action. In the condition of no confirmation requests

present, the system awaits an object signature and performs an evaluation as previously

described. In the event an object is declared a target, the UAS requests confirmation

otherwise it returns to check for a confirmation request and begins the cycle over.

If there is a confirmation request, a triangular distribution sets a transit time to and

from the requesting UAS. After the transit time is simulated, the sensor simulates an

evaluation and either confirms or rejects the target. If confirmed, the UAS simulates a

basic data transfer to the ground station and both UAS resume search operations, with the

confirming UAS allowing for time to transit back to its original mission area. If during

return transit, the UAS in search mode requests an additional confirmation, the transiting

UAS returns to confirm as before, assuming the same transit duration as executing during

its return transit to that point.

41

Figure 8: Variant 3, Partial OV-5b

42

3.9 Evaluation for Model Completeness

Since the architecture was the basis for the simulation model, the simulation order

of events and decision points must inherently match the architecture. This characteristic

is a clear advantage of development of an architecture on a platform that facilitates direct

simulation. However, since there is a level of abstraction used in the architecture, there

may be operational parameters and/or assumptions that are not explicitly defined within

standard architecture views, yet are required for a representative simulation. A brief

discussion of these parameters was shown previously in the variant operations.

Additionally, as previously discussed, simulation of external stimuli that are beyond the

scope of a system's architecture definition may be required for the EA to simulate

properly. Evaluation of MOE results, requirements, and key parameters are the final step

of the ABEP and are discussed in chapter 4.

3.10 Test Case Selection

With the core architecture and simulation details defined, relevant test cases were

selected. The desire was to present what were deemed reasonable scenarios in order to

indicate system performance and aid in selection of a variant for continued development.

While many more parameters were available for manipulation, parameters that were

varied for this thesis were limited to Target Density and Sensor Target Detection

Threshold. Each parameter was varied at two levels, providing 12 unique test cases

across all three variants. A test case summary matrix is shown in Table 3.

43

Table 3: Test Case Matrix

Test Case Target to Non-
Target Density

Sensor Target Detection
Threshold

1 1:2 Low
2 1:2 High
3 1:20 Low
4 1:20 High

Target density was modeled by adjusting the rate at which the object activity

generated targets versus the rate of non-target generation. In this case, target to non-

target ratios of 1:2 and 1:20 were selected to represent a target rich environment and a

sparse target environment, respectively. For the target rich environment, a generated

value of less than the value of 1/3 equated to a target emission, where as a value greater

than 1/3 resulted in emission of a non-target emission, and similarly, the sparse target

environment was assigned a threshold of 1/21.

The confusion matrices for the UAS sensor considered for this thesis are shown

below in Table 4 and Table 5. The intent is to represent the same sensor with differing

target detection threshold values. A sensor of the same capabilities was chosen because it

is assumed that a sensor with increased capabilities across all areas will therefore perform

better under all scenarios. The terms low- and high-target detection threshold represent a

value of confidence at which a target declaration is made. A higher target detection

threshold represents a lower false positive rate but a higher missed target rate and the

opposite is true for a low target detection threshold. This notion is not intuitive when

looking solely at the respective rates for true positives and true negatives, i.e. the low

44

target detection threshold confusion matrix contains more stringent requirements for a

true positive declaration.

Table 4: Sensor Low Target Detection Threshold Confusion Matrix

Condition
Positive
(Target)

Condition
Negative

(Non-target)
Predicted
Condition
Positive
(Target)

0.80 0.10

Predicted
Condition
Negative

(Non-target)

0.20 0.90

Table 5: Sensor High Target Detection Threshold Confusion Matrix

Condition
Positive
(Target)

Condition
Negative

(Non-target)
Predicted
Condition
Positive
(Target)

0.75 0.05

Predicted
Condition
Negative

(Non-target)

0.25 0.95

In the case of Variant 2, the GCS was deemed to possess a better capability to

evaluate objects and thus was assigned a more accurate confusion matrix, as shown in

Table 6. The GCS confusion matrix was not varied between test cases.

45

Table 6: Ground Control Station Confusion Matrix

Condition
Positive
(Target)

Condition
Negative

(Non-target)
Predicted
Condition
Positive
(Target)

0.85 0.05

Predicted
Condition
Negative

(Non-target)

0.15 0.95

3.11 Other Model Parameters

 The models were built with multiple other fixed parameters, presented in Table 7.

The other model parameters were not changed within the data collection for this thesis

they are available for modification in any future exploration into this architecture. All

additional parameters were selected based on values deemed reasonable for the intended

use of the UAS.

46

Table 7: Other Model Parameters

Parameter Description Value
Object Arrival Rate Rate at which the object

activity generates signatures
Poisson Distribution
 λ=30 Seconds

Percentage of Seen
Objects

Simulated obscuration such
that the sensor cannot detect
all objects

85%

Ingress and Egress
Duration

Duration from take-off to
the beginning of ISR
operations and from the end
of ISR operation to landing.
Ingress and Egress
durations are assumed to be
equal on a per mission
basis.

Triangular Distribution
Min=1 Minute
Max=15 Minutes
Mode= 5 Minutes
1 Minute Increments

Total Mission Length The duration of time from
simulated wheels-up to
touch down

60 Minutes

Mission Time (derived) Duration of active ISR
mission time

30 to 58 Minutes

Variants 1 and 3: Data
Transmission Time

Duration for basic data
transfer to the GCS

10 Seconds per occurrence

Variant 2: Data
Transmission Time

Duration for complex data
transfer to the GCS

Triangular Distribution
Min=1 Minute
Max=3Minutes
Mode=2 Minutes
Floating Point Increments

Variant 3: Transit Time
for Confirmation

Amount of travel time from
assigned mission space to
cooperative UAS's mission
space

Triangular Distribution
Min=1 Minute
Max=6 Minutes
Mode = 2 Minutes
30 Second Increments

3.12 Simulation Software Comments

 As previously acknowledged, Innoslate was the chosen architecting software used

for this thesis. Monterey Phoenix, Enterprise Architect, Core, as well as development of

custom MATLAB models were considered for this thesis. Innoslate was chosen over

47

these programs due to the availability of licensing, preservation of concordance within

the architecture, integrated simulations, and overall ease of use. That said the software

had some shortfalls. First, the cloud version of Innoslate used for this thesis is not able to

perform Monte Carlo simulations currently. The developers have a beta version of their

cloud Monte Carlo simulation available but it did not successfully execute the models

developed for this thesis. Furthermore, information on Monte Carlo default settings or

the ability to adjust the number of trials was available for the simulations. Second, output

of simulation results to a file was not natively available and thus results were manually

transferred to a program, in this case MS Excel, for analysis. The simulation runs on a

JavaScript platform, which is user-friendly for model generation but inherently does not

allow file generation on a client machine. The inability to capture output data in separate

files severely limits the scaling capabilities of the program. Finally, triggers must be

dealt with care and deliberation within the simulations. In a static activity diagram,

triggers should occur wherever completion if an activity permits activation of another

activity. This became a problem during simulation, specifically for loops. In cases

where triggers were used to activate looping activities, the completion and exit of the

loop stimulus activity caused the simulation to fail to execute since the looping activity

was still waiting for a trigger. The failure to complete simulation can be avoided but

creates extra steps and/or activities not pertinent at the level of abstraction used for the

activity diagram.

48

3.13 Summary

This chapter detailed the application of the ABEP process to the architecture

under development with exception of step 8 which will be completed and commented

upon in chapter 4.

49

4 Simulation Analysis and Results

 This chapter will provide analysis of the data collected during simulation of the

architecture described in previous chapters. The goal of this section is to demonstrate

how the execution of the architecture can be used to indicate a favorable variant for

continued development. The evaluation and analysis will focus on performance of each

variant versus the previously defined MOEs and subsequently review any other data

points of interest. This chapter will conclude with a summary of relative MOE

performance.

 The sample used for analysis was based on ten trials for each variant and test case

and then the relevant outputs were recorded. This was a less than desirable number of

runs due to feasibility discussed in chapter 3 but it was a sufficient number of trials to

illustrate significant differences and relative trends. In most cases, histograms of the trial

data formed a normal distribution and due to the small sample size, a student-t

distribution was deemed appropriate for analysis. Error bars were then calculated at a

confidence interval of 95%. Lower and upper bounds were calculated as follows:

1/2/1 −−= nStXL α (1)

1/2/2 −+= nStXL α (2)

Where:

X bar = Sampled mean
S = Standard deviation of the sampled population
n = 10 samples

2/αt = 2.262

50

4.1 MOE 1: Average Target Declarations per Mission

This MOE provides a relative indication of search efficiency across all variants.

Since a common sensor was modeled across all variants, the more time spent actively

searching for a target is presumed directly proportional to the mean number of

declarations made. Figure 9 contains a comparison of valid target declarations per

mission for each variant, grouped by test case. For reference, the sampled average

number of targets emitted per mission for the high target density and low target density

was 60.43 and 8.6, respectively.

Figure 9: Average Target Declarations per Mission

0

5

10

15

20

25

30

35

40

45

50

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average Target Declarations Per Mission

Variant 1

Variant 2

Variant 3

51

In the cases of high target density, all variants demonstrated a statistically

significant difference in detections per mission at the 95% confidence interval. The

respective lower declaration rates of Variants 2 and 3 when compared to Variant 1 are

presumed to be a result of evaluating fewer total objects. In these cases, Variants 2 and 3

are sending sensor data or transiting to confirm an object, respectively, instead of

evaluating additional objects. Conversely, Variant 1 spends much more time actively

evaluating objects and thus generally has higher overall declaration rates. An interesting

observation is noted when comparing individual variant declaration performance in the

high target density cases. While the declaration rate for Variant 1 trends downward as

the target density is reduced and target detection thresholds is raised, this trend is not

apparent for Variants 2 and 3. A possible explanation is that in these cases, valid targets

are relatively prevalent; leading to frequent data transmission and transit delays, thus

resulting in a small impact from the change in target detection threshold.

In the cases of low target density, only Variants 1 and 3 displayed a statistical

difference at a low target detection threshold while both Variants 1 and 2 were

statistically better than Variant 3 for the high target detection threshold. When

comparing the relative effect of target density to declaration performance of all cases,

Variants 2 and 3 in a low target density scenario are, on a percentage basis, much closer

to that of Variant 1 than that same comparison in the high target density cases. This

indicates that the declaration performance of Variant 1 declines faster than that of

Variants 2 and 3 as the target density reduces.

52

4.2 MOE 2: Average Target Confirmations per Mission

 As described in chapter 3, Variants 2 and 3 perform an additional confirmation

step with the primary objective of reducing false alarm rates. This MOE provides an

indication of which variant produces more confirmations per mission. Reviewing Figure

10 reveals a significant performance advantage, at a 95 % confidence, for Variant 2 in all

high target density scenarios but the significance is lost in low target density scenarios.

Given that the quantity of object signature inputs to the confirmation process are a

direct result of the number of declarations, the result of fewer variant 3 declarations is in

line with expectations although the statistical difference is lost for the high target

detection, low target density case. Additionally, the lack of statistical difference from test

case to test case for Variant 3 within the same target density group indicates that the

target density is much more influential in these cases than the target detection threshold.

Given the declaration rates shown in Figure 9, Variant 2 should not show a statistical

difference as the confirmation step occurs in the GCS and therefore always uses the same

target detection thresholds.

53

Figure 10: Average Target Confirmations per Mission

4.3 MOE 3: Average False Alarms per Mission

 This MOE will consider average false alarms rates per mission for both

declarations and confirmations. Under the previously described CONOPs, the Variant 2

and 3 false alarm rate for declarations is not in and of its self an important number under

the premise they will be reduced during the confirmation step, but a comparison has been

included to provide relative differences between detection operations of all UAS variants.

As shown in Figure 11 and consistent with previous observations, overall rates

per mission generally trend lower for Variants 2 and 3 compared to Variant 1 due to time

consumed by transmitting data or transiting. Of note, the false alarm rates trend up as the

target density decreases. This is due to each UAS evaluating approximately the same

0

5

10

15

20

25

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average Target Confirmations Per Mission

Variant 2

Variant 3

54

number of objects with fewer valid targets in that group and therefore an increased

opportunity to declare more false alarms exists.

 In this data set, there is never a statistically significant performance difference

between Variants 1 and 2 although there is a consistent trend of higher average false

alarms per mission for Variant 1. Variant 3 performed statistically better than Variants 1

and 2 in all cases except the low target threshold, high target density case.

Figure 11: Average False Alarm Declarations per Mission

0

2

4

6

8

10

12

14

16

18

20

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average Declared False Alarms Per Mission

Variant 1

Variant 2

Variant 3

55

Figure 12 contains false alarms that make it through both declaration and

confirmation evaluations. Note that Variant 2 confirmed zero false alarms for the high

detection threshold, high target density case and thus a confidence interval based on a

normal distribution was not appropriate. In this case a "Rule of 3" confidence interval

was deemed an appropriate method for approximating a confidence interval.

With respect to the Variant 2 high target threshold and high target density test

case, there are two reasons why a value of zero is not unreasonable. First, as shown in

Figure 13, a relatively small number of false positives were flagged for a confirmatory

look, reducing overall probability that one or more false alarms are confirmed. Second,

and as mentioned previously, the GCS confusion matrix used represents a highly accurate

evaluation. These traits combined lead to a very low probability of a false alarm

confirmation.

The data for false alarm confirmations frequently contains zero confirmations per

mission, creating a dataset skewed towards zero. Given the small sample size, this

appeared to cause larger than reasonable confidence intervals using normal distribution

confidence interval methods. Non-parametric methods were evaluated for determining

appropriate confidence intervals however none indicated a statistically significant

performance difference among any test case.

56

Figure 12: Average False Alarm Confirmations per Mission

Of particular interest is the false alarm output at the system level. As shown in

Figure 13, the average false alarm per mission value for Variant 1 far eclipses the same

numbers for Variants 2 and 3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average False Alarm Confirmations Per
Mission

Variant 2

Variant 3

57

Figure 13: Average False Alarms per Mission at System Output

4.4 MOE 4: Average Missed Targets per Mission

 This purpose of this MOE is to compare missed target opportunities. As shown in

Figure 14, the high target threshold scenarios have higher missed target values than the

respective low target threshold counterpart at a given target density, although it is

infrequently a statistical difference with only the Variant 2 high target density cases as an

exception. The overall trend of higher missed target rates being correlated to higher

target detection thresholds is to be expected as the requirements for declaring a target are

more stringent and, thus valid targets are missed more frequently. Additionally, the

0

2

4

6

8

10

12

14

16

18

20

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average False Alarms Per Mission at System
Output

Variant 1

Variant 2

Variant 3

58

observation of fewer missed targets in lower target density environments is an artifact of

the existence of fewer targets to miss.

Figure 14: Average Missed Target Declarations per Mission

Figure 15 shows the average post-confirmation missed targets per mission values. This

dataset only represents objects that have successfully passed a declaration evaluation as a

true positive or a false positive and therefore have no relation to the missed targets

identified in Figure 14.

0

2

4

6

8

10

12

14

16

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average Missed Target Declarations Per
Mission

Variant 1

Variant 2

Variant 3

59

Figure 15: Average Missed Confirmations per Mission

As noted in MOE 3, the system results are of greater interest than the intermediate steps

for evaluating system performance. Figure 16 shows the combined results of missed

targets for all variants. For Variant 1, this is simply the missed targets from the

declaration evaluation. For Variants 2 and 3, this is additive from both the initial

declaration evaluation in addition to the targets missed during the confirmation

evaluation. This is one of the trade-offs of the confirmation step as it provides another

0

1

2

3

4

5

6

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
re

nc
e

/
M

is
si

on

Average Missed Targets Confirmed per
Mission

Variant 2

Variant 3

60

opportunity to miss or discard valid targets. While none of the results represent a

statistically significant difference, it is unexpected to see that the sample mean of Variant

2 is larger than that of Variant 1 for the low target density thresholds, especially given the

more accurate confusion matrix used to simulate the GCS confirmation.

Figure 16: Total Average Missed Targets per Mission

4.5 Other Observations

For Variant 1, object evaluation rates are generally around 85%, which was the

selected rate at which obscuration prevents detection of an object. However, Variants' 2

and 3 object evaluation rates trend upward as target density is reduced and target

0

2

4

6

8

10

12

14

16

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

Av
er

ag
e

O
cc

ur
rr

en
ce

 /
 M

is
si

on

Total Average Missed Targets per Mission

Vatiant 1

Variant 2

Variant 3

61

detection threshold values are increased. Since confirmation steps are only performed on

declared targets, a sparse target environment or a higher rejection of false alarms leads to

a relative increase in mission time spent on evaluation and thus an increase in evaluation

rates.

Figure 17 illustrates that concept in action but also provides trend indications on

rates of change. Target detection threshold does not significantly affect evaluation rates

in an already dense target population however in both the cases of Variants 2 and 3, it is a

significant factor in low target threshold scenarios.

Figure 17: Average Evaluation Rates per Mission

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Low Target
Detection

Threshold, High
Target Density

High Target
Detection

Threshold, High
Target Density

Low Target
Detection

Threshold, Low
Target Density

High Target
Detection

Threshold, Low
Target Density

O
bj

ec
ts

 E
va

lu
at

ed
/O

bj
ec

ts
 E

m
itt

ed

Average Evaluation Rates Per Mission

Variant 1

Variant 2

Variant 3

62

4.6 Results

 Based on performance against all MOEs, variants were compared against one

another to determine a preferred variant for further development. A summary of results

is shown in Table 8. Note, for MOEs 3 and 4, ratings were performed at the system level.

The relative scoring repeats itself in each of the high and low target density scenarios

with exception of Variant 2, MOE 1 in the low target density, high target detection

threshold case. While there are different absolute levels of performance, the relative

performance is duplicated for both the high and low target detection threshold. This

indicates that, at least in the current model and test cases, target detection threshold does

not significantly affect relative performance and perhaps another variable should be

selected for future study.

Table 8: Evaluation Results Summary

 High Target Density Low Target Density
 High Target

Detection
Threshold

Low Target
Detection
Threshold

High Target
Detection
Threshold

Low Target
Detection
Threshold

M
O

E
 1

M
O

E
 2

M
O

E
 3

M
O

E
 4

M
O

E
 1

M
O

E
 2

M
O

E
 3

M
O

E
 4

M
O

E
 1

M
O

E
 2

M
O

E
 3

M
O

E
 4

M
O

E
 1

M
O

E
 2

M
O

E
 3

M
O

E
 4

V1 - - - -
V2 - - - - - - -
V3 - - - - - -

Legend
 Statistically Significant High Performer
 Statistically Significant Mid-Range Performer
 Statistically Significant Low Performer
 No Data Set

- Not Able to Rate Due to No Statistical Difference Found

63

In an actual down select process, evaluation criteria need to be rigorously selected

along with weighting factors, the process of which is beyond the scope of this thesis.

However, assuming all MOEs are equally weighted, the relative results of the executable

architecture used for this thesis suggest that Variant 2 is the best overall choice to

continue with for further refinement.

64

5 Conclusions and Recommendations

The purpose of this thesis was to demonstrate how an executable architecture may

be applied to an early concept and use the results to make a decision on how to proceed

with system development. The provided mission was an ISR UAS tasked with detecting

valid targets. A CONOPs and three partially representative architectures were built in a

program capable of performing executable architecture functions. These architectures

were simulated and the results analyzed for statistical differences that were used to

indicate a preference of variants for further development.

 At the onset of this thesis, three questions were posed by the author. Those

questions and answers are as follows:

Research Question 1: What is the capability of current architecture modeling

tools to execute simulations directly from a system architecture?

As discovered and commented on during the literature review portion of

this thesis, there is apparent interest in executable architectures from the broad

Systems Engineering Community, but very few integrated software packages

capable of producing valid DoDAF products and executing models with

sufficient fidelity to be useful for decision making. The tool used in this thesis,

Innoslate, appears to be one of the only integrated tools; however the simulation is

not currently capable of Monte Carlo simulations nor does the output lend its self

well to quantitative analysis.

65

Research Question 2: What type of information can be provided from use of an

executable architecture in support of trade space decisions during early concept

development?

The answer to this question is dependent on the fidelity of model and the

ability to access the data to determine statistically significant differences in

operation. The effort undertaken in this thesis produced a basic model with only

four MOEs, three variants and two varied parameters. With only 10 trial runs per

test case and variant, the result was a relative difference in performance could be

demonstrated at a significant level in many cases. If performance predictions are

desired, a more detailed and complete model must be built. Additionally, more

trial runs are required along with a rigorous assessment of parameters varied and

scenarios to ensure the simulation represents an accurate environment.

Research Question 3: How detailed of an executable model is required to

effectively evaluate trade space decisions in early concept modeling?

 As demonstrated in chapter 4, the model created for this thesis was

sufficient to indicate a preferred solution based on the information entered into the

architecture model. A basic yet representative model was created in a commercial

modeling program and provided sound data output based on the conditions and

the inputs. Moreover, through data analysis, the limiting factors of the modeled

system become apparent. For instance, Variant 3 appears to be an efficient

solution on paper. The model consistently demonstrated poor performance

compared to the competing variants; however, the data indicated that transit times

66

were severely lowering available time to perform new object evaluations.

Conversely, Variant 1 had relatively high evaluation efficiency but suffered from

higher system level false alarms. When deciding how to proceed, consideration

should be given to the cost, schedule and performance risk of a faster Variant 3

UAS, thereby reducing transit time; a more accurate Variant 2 sensor, reducing

false alarms and missed targets or a change in CONOPS for one or both variants.

5.1 Recommendations for Future Research

5.1.1 Larger SoS Development

Recommend that future work expand SoS modeling to include heterogeneous

vehicles and a larger quantity of systems such that effects of emerging behavior may be

modeled and studied. An addition of a larger task set and additional logic in the system

would help model a more realistic environment and is more representative of a state of

the art system.

5.1.2 Improve Existing Simulation Assumptions

Model object signature emissions in a spatial distribution rather than the arrival

rate method used in this thesis. This will require significant advancements in the existing

executable architecture programs but will provide a more realistic scenario.

5.1.3 Include More External Factors

External costs weren't explicitly considered in this thesis. For instance, from a UAS

MOE perspective, Variant 2 appeared to be the highest performer however in practice, it

67

will require significantly more bandwidth and additional analyst personnel that were not

considered in the selection process.

68

Appendix A: CONOPS

Document Overview

This document describes a concept of operations (CONOPS) for a fictitious small

unmanned aerial system (UAS).

Intended Users

This document is intended for stakeholders and reviewers in the architecture

development process for the system under design.

Document Organization

• Section 1 describes the document format and intended users.

• Section 2 describes the purpose of the UAS system, functional requirements,

stakeholders, and their relationships.

• Section 3 provides a physical description of the UAS.

• Section 4 describes and operational description of the UAS.

• Section 5 provides an acronym list

System Introduction

This section will describe the purpose of the UAS system, functional

requirements, stakeholders, and their relationships.

System Purpose

The Combatant Commander (COCOM), with responsibility over a given area, has

a requirement to discover, to the maximum practical extent, all valid targets for the

69

purposes of further surveillance and/or subsequent engagement and is in need of a system

to help meet this requirement. Therefore, the purpose of this UAS system is to detect

objects in a given mission area and determine if those objects are valid targets to the

greatest extent possible. The target location and validation information will be used by

the COCOM to cue additional platforms for long term surveillance and/or engagement.

Functional Requirements

This section describes some of the tasks the system must perform from a

functional perspective to achieve mission success.

Target Detection

The system must be able to accurately detect targets in a varied and unpredictable

physical environment.

Communications

The system must transfer sufficient quantities of information to a ground control

station (GCS) or other assets to identify target location and in some cases, raw data for

confirmatory analysis.

Mobility

The system must move freely throughout the area of interest in order to detect the

maximum possible number of valid targets and in the case of Variant 3, provide target

confirmation.

70

Duration

The system must provide sufficient on-station duration capabilities to complete

the system’s ISR mission and in some cases, allow confirmatory assessments of the target

and to increase overall mission efficiency.

Geo-location accuracy

The system must track field of view location for accurate record of target location

and to prevent excessive overlap of data collection throughout the mission.

Launch and Recovery

The system must navigate to and from the mission area to ensure system re-use.

Stakeholders

Intelligence Community

Data from this UAS will be used for Intelligence Preparation of the Battlespace

(IPB). Information from the platform must be timely and accurate. Data from the UAS

must be provided in a common, recognizable format. Data from the UAS degrades with

time and must be provided as soon as possible to be of the greatest value.

Other ISR Platforms

Other sources may be used for target confirmation. The location of the target

must be accurate to ensure confirmatory information is valid.

71

Airborne Strike Operators and Ground Forces

The UAS must provide accurate target information and not interfere with any

engagement techniques.

Acquisition Corps

A method of system performance feedback must be enabled. This information

will help further system improvements and updates affect increased performance and

reliability.

System Physical Description

The system will consist of 3 major components: Ground Control Station, data

link, and the air vehicle.

Ground Control Station (GCS)

This component of the system is tactical in nature and therefore must be mobile

throughout an area of operations. The GCS contains a networked data storage server in

addition to analyst and mission planning terminals. It has a self-contained HVAC system

and inputs for generator or commercial power. The system also has connections for

external network access.

Data link

This component of the system is consists of a ground based transmitter/receiver

dish, airborne transmitter/receiver dish and interface, communications processing server

72

and all associated connections to the GCS. The transmitter/receiver dishes are capable of

being trailer mounted or mounted on the ground near the trailer within close proximity.

Air Vehicle

This component of the system consists of a small conventional design air vehicle.

The vehicle houses navigation, propulsion, sensor, and communications systems. The

navigation system consists of a GPS sensor, inertial navigation system, mission storage

components, and interfaces to all other subsystems. The propulsion system consists of a

hydrocarbon fueled engine, integrated fuel storage, control system and interface to the

navigation system. The sensor system consists of the physical sensor, autonomous target

recognition hardware, storage system for the target library and interface to the navigation

system. The communications system is the airborne portion of the data link described

previously.

System Operational Description

This section will provide a chronological description of system operations and

requirements for a typical mission. The total flight durations are a set, standard length.

Logistics

The system will be deployed, likely to remote locations by cargo aircraft and/or

ground transportation. Multiple systems may be deployed in the same location and use

the same logistics resources. A spares package will be part of the standard deployment

along with technicians trained to perform pre-flight checks, uploading of mission plans

73

and troubleshoot and repair all foreseeable issues. Fuel is also to be located at the

deployed environment and refueling operations must be performed prior to the

commencement of all missions.

Launch and Ingress

Following successful preparations for flight, the engine is started and the vehicle

prepared for launch and ingress to the mission area. The system is highly automated so

once the ground control station communicates a proceed command, the air vehicle

launches, reaching the pre-programmed operational envelope and proceeds to the mission

area.

Mission Operations

This section will describe standard mission operations for several architecture

variants under consideration.

Variant 1

This variant of the system operates in an autonomous, independent mode. The

system searches for objects using the onboard sensor. Once the sensor identifies an

object, the collected data are run through an autonomous target recognition (ATR)

system. The ATR system processes the data and determines a level of object match to an

existing set of target data. When the matching coefficient is higher than the threshold

value, the coefficient information is then transferred to the ground station for further

action by external entities or stored for later use. At no time under this scenario is the

target confirmed by another source or human analyst.

74

Variant 2

This variant of the system operates in an autonomous mode with human analyst

confirmation. The system searches for objects using the onboard sensor. Once the sensor

identifies an object, the collected data are run through an ATR system. The ATR system

processes the data and determines a level of object match to an existing set of target data.

When the matching coefficient is higher than the threshold value, the coefficient

information, and native sensor data is transferred to the ground station where the data is

analyzed for confirmation by a human analyst.

Variant 3

This variant of the system operates in an autonomous, cooperative mode. The

system searches for objects using the onboard sensor. Once the sensor identifies an

object, the collected data are run through an ATR system. The ATR system processes the

data and determines a level of object match to an existing set of target data. When the

matching coefficient is higher than the threshold value, a request with current location is

then transferred to the nearest cooperative UAS for confirmation. During the time when

the secondary UAS is en route, the primary UAS will continue to track the object. Upon

arrival the secondary UAS observes the object and determines an independent target

coefficient. If the object is determined to be a target, relevant coefficients and locations

are transmitted to the GCS. Upon transfer completion, the primary UAS resumes search

and the secondary UAS returns to its previous search pattern to proceed to search. If the

primary UAS requests another confirmation during transit, the secondary UAS has the

ability to quit transit and return to assist the primary UAS.

75

Egress and Recovery

Once time or fuel for mission operations has expired, all UAS will exit the area of

interest and autonomously navigate to the launch site for recovery. After landing is

accomplished, any recorded data will be downloaded and stored for future reference.

Completion of this step finishes the UAS mission.

76

Appendix B: AV-1

Architectural Description Identification

The architecture under design is the Small Intelligence Surveillance and

Reconnaissance (ISR) Unmanned Aerial System (UAS). The primary purpose of this

system is to support a tactical mission of identifying and providing cueing information

for further tracking or engagement of targets of interest. The system under development

is fictitious but intended to represent a SoS of up to two realistic small UAS that may be

deployed as cooperative or independent systems with varying Ground Control Station

(GCS) reach back capabilities.

This architecture framework will focus on designating parameters of interest to

model future UAS. This framework will be used to represent development decisions in

order to weigh “-ilities” versus cost. The goal is to achieve a high level of system

flexibility, adaptability, and/or robustness while maintaining a predictable life cycle cost

and efficient use of tax payer money.

The architecture is being developed as a thesis project for the Air Force Institute of

Technology (AFIT) in order to demonstrate the use of executable architectures (EA) in

early trade space decision analysis. The architect is Maj Ryan Pospisal, under

advisement and approval of Dr. David Jacques, AFIT faculty. The expected completion

date is December 2015. The anticipated level of effort is 150-200 man-hours.

Assumptions and constraints are as follows:

77

• A commercial tool currently exists, and is accessible to the author, to document a

subset of a DoDAF V2.0 compliant system architecture and includes an

executable modeling capability to meet the fidelity requirements for this thesis.

• Technologies of the representative system are currently attainable or at a level

where it is reasonable that they will be mature enough for implementation by

2025.

• Vulnerabilities to attack, in the physical and cyber domains, are not explicitly

considered or modeled.

• The architecture will be limited in scope due to time constraints and the fictitious

nature of the system.

Scope

The architecture will consist of three distinct variants of the UAS and focus primarily on

identification and development of the operational functionality of the system. Current or

near future technologies are under consideration with an expected 5-10 year horizon.

The architecture development process will closely follow the methods presented

by Dietrichs, et al. that the authors named the Architecture Based Evaluation Process

(ABEP) (Dietrichs et al., 2006). This architecture will focus on the operational aspects of

the system and thus will have limited or no detail on internal system and sub-system

interactions. As such, the preponderance of architecture views will be operational in

nature.

The views created will be limited to those necessary for completing the primary

goals of the project and as such, views will be added, removed, and/or refined as needed

78

to document the necessary system parameters under examination. This architecture will

provide a high-level parametric model, sufficiently detailed to complete early trade space

analysis. Below is a list of anticipated DoDAF viewpoints required for this architecture,

their titles and rationale for their inclusion:

AV-1: Overview and Summary Information

This view is useful for providing an executive level summary of the architecture.

OV-1: High Level Operational Concept Graphic

The OV-1 provides a linkage between physical assets that interact with the system

under development. It provides an abstract depiction of the primary mission activity.

This view provides the reader with an introduction to the CONOP.

OV-2: Operational Resource Flow Description

The OV-2 provides a diagram to show the exchange of resources such as

information, personnel, material, or funding. The OV-2 isn't intended to show

communication links, however in the case of this architecture, the exchange of

information will mimic a communication link.

OV-5b: Operational Activity Model

The OV-5b shows all the high-level activities and chronological linkages between

them. The OV-5b will be the core of this architecture as it lends itself well to simulation

and thus reinforce the concept of an executable architecture.

79

OV-6a: Operational Rules Model

The OV-6a provides rules in a structured English format. These rules form the

basis for how the OV-5b is executed and various decision paths are taken.

Purpose and Perspective

The purpose for this architecture is to produce three system variants and

parametrically model key characteristics of the platforms and their interactions. Once the

variant models are created, they will be formalized to a sufficient level to provide direct

simulation, in the form of an executable architecture. Selected model input parameters

will be varied during the simulations of the resulting EA and the outputs documented

over the course of several iterations of the architecture. Mission specific Measures of

Effectiveness (MOEs) will be developed and used to evaluate the system variants for

selection of the most successful design.

Context

The primary activities of the UAS are launch, perform ingress to the mission area,

perform the ISR mission, egress out of the mission area, and recover to the launch area.

The goals of the CISR platform are to identify and track targets of interest. It will

perform the identification with use of an on-board sensor and Autonomous Target

Recognition (ATR) software. The specifics of sensor type, capabilities, and operation of

the ATR are beyond the scope of this architecture however they will be represented in the

simulation as a uniform random variable processed through a confusion matrix.

Use cases will be developed along with a Concept of Operations (CONOPs) to

assist with generation of the architecture framework. The completed architectures will

80

executed in an architecting software program such as Innoslate to determine parameters

showing greatest impact on “-ilities” of interest. All scenarios and technologies

described in the development of this architecture are either generic or fictitious but are

intended to represent a reasonable application to a UAS ISR mission.

The variants were chosen to provide representative architecture differences to

perform the basic mission of identifying targets and their locations. The intent is that

these differences will produce varied outcomes when executed and facilitate system

design and effective CONOP creation early in a systems' development. Basic

descriptions of the variants are listed as follows:

Variant 1: Automated Independent

This variant of the UAS is an independent system that identifies targets, returns a

matching coefficient and location to the ground control station, and immediately

continues searching for more targets.

Variant 2: Ground Station Assisted

Variant 3 operates similarly to Variant 2, with the exception of confirmation via a

ground control station rather than a cooperative UAS. Confirmation by the ground

station is performed via analysis of sensor data collected by the UAS, sent via a

communications data link. Once object data is collected, the system continues to track

the object until confirmation of a valid target is confirmed by the ground station,

preventing stacking of data sets in the UAS communications cache.

81

Variant 3: Automated Cooperative

This variant searches as described in Variant 1, but upon discovery of a target,

calls a cooperative system to confirm the target as valid. While awaiting arrival of the

cooperative UAS, the primary target continues to "track" the object. Upon target

confirmation, the target description, matching coefficient, and location data are returned

to the ground control station. Both UAS then resume searching for new targets in their

respective original mission areas.

Status

All planned architecture views are complete and capable of being executed within

the Innoslate program.

Tools and File Formats

All written documentation is Microsoft Office compatible. The architecture and

executable portions are based in Innoslate and the model is exportable to an Innoslate

XML file.

82

Appendix C: OV-1: High level Operational Concept Graphic

Figure 18: Variant 1 and Variant 2 OV-1

83

Figure 19: Variant 3 OV-1

84

Appendix D: OV-2: Operational Resource Flow Description

Figure 20: Variant 1 OV-2

85

Figure 21: Variant 2 OV-2

86

Figure 22: Variant 3 OV-2

87

Appendix E: OV-5b: Operational Activity Model

Figure 23: Variant 1 OV-5b

88

Figure 24: Variant 2 OV-5b

89

Figure 25: Variant 3 OV-5b

90

Appendix F: OV-6a: Operational Rules Model

Due to the similarities of the systems, this OV-6a is divided into four sections:

Common Behavior, Variant 1 Specific Rules, Variant 2 Specific Rules; Variant 3

Specific Rules. Additionally, this architecture is built around a homogeneous two-ship

scenario thus to reduce duplication, only one system is described.

Common Behavior

Assumptions:

 Fuel is burned at a steady rate such that duration can be equivocated to amount of

fuel used or required.

Mission plans are loaded prior to UAS launch and all navigation is autonomous.

Imperative Rules

Monitor Fuel Level

Fuel required to return from the assigned mission space to the base shall be

approximated by the amount used to ingress to the mission space. The fuel level

available shall be checked routinely and automatically throughout the mission.

Initialize Mission Parameters

Load mission plans and for purposes of the simulation, sets input parameters and

establishes required variables.

Emits trigger for mission start

Engine Start

Receives mission start trigger to simulate beginning of the propulsion and navigation

subsystem.

91

Boot Sensor

 Represents time required for internal sensor checks and when complete, places

sensor in a low power mode until operations is required

Arrive at Mission Location

 After completion of Launch and Ingress Propulsion, activates wake sensor

trigger

Start Sensor Ops

 Upon receipt of wake sensor trigger, begins sensor operations

Conditional Rules

Launch and Ingress Propulsion

 Known: Initial fuel amount, fuel required for launch and mission

If fuel remaining is greater than initial amount minus amount required for

recovery and mission operations,

then continue Launch and Ingress Propulsion.

Else begin Mission Propulsion

Mission Propulsion

Known: Fuel required for mission and recovery operations

If fuel remaining is greater than fuel required for recovery,

then continue Mission Propulsion

else begin Egress and Recovery Propulsion

Egress and Recovery Propulsion

Known: Fuel required for recovery operations

If fuel available is greater than zero,

92

then continue Recovery Propulsion

else End

Variant 1 Specific Rules

Sensor Loop

If recovery propulsion is not active,

then continue to Search and Evaluate Objects

else End

Search and Evaluate Objects

 Wait for object signature trigger and evaluate object

If object is declared a target,

then activate target information trigger and transmit basic target information to

Ground Control Station

else return to Sensor Loop

Receive Target Information

Wait for target information trigger

If recovery propulsion is not active,

then continue Receive Target Information

else End

Variant 2 Specific Rules

Conditional Rules

Sensor Loop

93

If recovery propulsion is not active,

then continue to Search and Evaluate Objects

else End

Search and Evaluate Objects

 Wait for object signature trigger and evaluate object

If object is declared a target,

then activate object data trigger and transmit detailed object information to

Ground Control Station

else return to Sensor Loop

Receive Data

Wait for target information trigger

If recovery propulsion is not active,

then continue Evaluate Data

else End

Evaluate Data

 If data evaluation determines object is a target,

then confirm target and return to Receive Data

else reject target and return to Receive Data

Variant 3 Specific Rules

Search Loop

If recovery propulsion is not active,

then continue to Sensor Mode

94

 else End

Sensor Mode

 If sensor confirmation request is true

 then continue to Secondary Evaluation

 else continue to Primary Evaluation

Primary Evaluation

 If evaluation results in a target declaration,

 then proceed to Declared Target/Request Target Confirmation

 else declare non target and return to Sensor Loop

Declared Target/Request Target Confirmation

Send location information to cooperative UAS and continue to Confirmation

Complete

Confirmation Complete

Await evaluation complete trigger and return to Sensor Loop

Secondary Evaluation

If evaluation results in target declaration,

then activate target information trigger and evaluation complete trigger

else activate evaluation complete trigger

return to Sensor Loop

Receive Target Information

Wait for target information trigger

If recovery propulsion is not active,

then continue Receive Target Information

95

else End

96

Appendix G: Example JavaScript

This appendix contains JavaScript used for one half of the Variant 3 OV-5b. Duplicating

the below code and updating variable numbers allows recreation of the entire SoS. Many

activities did not contain additional formalization through JavaScript and thus were

omitted in the table below.

Table 9: Variant 3 JavaScript Summary

Activity JavaScript
O.1.2 function onEnd()

{
 // loops until recovery
 if((globals.get("missionstatus_1")) == "recovery")
 {
 return false;
 }
 else
 {
 return true;
 }
}

O.1.2.2 function onEnd()
{
 var totalobjectcount = globals.get("totalobjects_1");
 totalobjectcount++;
 globals.put("totalobjects_1",totalobjectcount);

 var emit_signature_1 = Math.random();

 //Determines if object is target or nontarget
 if (emit_signature_1 < (globals.get("target_percentage")))
 {
 var localtargetcount=globals.get("totaltargets_1");
 localtargetcount++;
 globals.put("totaltargets_1",localtargetcount);
 globals.put("signature_1","target");
 return "Target";
 }
 else
 {
 var localobjectcount=globals.get("totalnontargets_1");

97

 localobjectcount++;
 globals.put("totalnontargets_1",localobjectcount);
 globals.put("signature_1","nontarget");
 return "Non-Target";
 }
}

UAS.NP.1.2 function onStart()
{
 //Sets mission status to launch
 globals.put("missionstatus_1", "launch");

 //Establish Fuel variable and record initial amount
 var fuel = resource.get('Fuel_1')[0];
 var InitialFuel = fuel.getAmount();
 globals.put("initialfuel_1",InitialFuel);

}
 function onEnd()
{
 var fuel = resource.get('Fuel_1')[0];
 var initial = globals.get("initialfuel_1");
 var launch = globals.get("launchfuel_1");

 //when fuel is greater than initial-launchfuel, continue looping
 if(fuel.getAmount() > (initial - launch))
 {
 return true;

 }
 //Updates mission status upon exit
 globals.put("missionstatus_1", "mission");
 return false;
}

UAS.NP.1.3 function onStart()
{
 globals.put("missionstatus_1", "mission");
}

UAS.NP.1.4 function onEnd()
{
 //sets fuel quantity
 var fuel = resource.get('Fuel_1')[0];
 //retrieves fuel used during launch, which approximates amount required
for recovery
 var required = globals.get("launchfuel_1");

98

 // compares fuel remaining to fuel needed for recovery
 if(fuel.getAmount()>required)
 {
 //globals.put("missionstatus_1", "mission");
 return true;

 }
 else
 {
 //outputs usage stats
 //print ('Remaining after mission ' + fuel.getAmount());
 globals.put("missionstatus_1", "recovery");
 return false;
 }
}

UAS.NP.1.5 function onStart()
{
 globals.put("missionstatus_1", "recovery");
}

function onEnd()
{
 var fuel = resource.get('Fuel_1')[0];

 if(fuel.getAmount()>0)
 {
 return true;

 }
 else
 {
 //print('Fuel remaining at mission complete: ' + fuel.getAmount());
 return false;

 }
}

UAS.SS.1.3 function onEnd()
{
 // only loops while navigation is in misson mode
 if((globals.get("missionstatus_1")) == "recovery")
 {
 return false;
 }
 else
 {
 return true;

99

 }
}

UAS.SS.1.4 function onEnd()
{
 if (globals.get("uas_2_confirmation_request")=="true")
 {
 return "Confirm";
 }
 else
 {
 return "Search";
 }
}

UAS.SS.1.4.1.1 function onEnd()
{
 //Retrieve object type
 var signature_type_1 = globals.get("signature_1");

 //Aborts if UAS2 is awaiting confirmation
 if (globals.get("uas_2_confirmation_request")=="true")
 {
 if (signature_type_1 == "target")
 {
 var missedtarget_pri_1 = globals.get("missedtarget_1");
 missedtarget_pri_1++;
 globals.put("missedtarget_1", missedtarget_pri_1);
 }
 else
 {
 var missedobject_pri_1 = globals.get("missedobject_1");
 missedobject_pri_1++;
 globals.put("missedobject_1", missedobject_pri_1);
 }
 return "Object Not Seen";
 }

 //initializes variable to determine if object is seen by the sensor
 var objectseen_1 = Math.random();

 var detection = globals.get("detection_percentage");

 //proceeds if object is "seen"
 if (objectseen_1 < detection)
 {
 //initialize variable for confusion matrix path

100

 var search_confusion_1 = Math.random();

 var truepositive = globals.get("truepositive");

 var truenegative = globals.get("truenegative");

 if(signature_type_1=="target")
 {
 if (search_confusion_1 < truepositive)
 {
 //counts truepositives
 var tpcount_pri_1 = globals.get("truepositive_1");
 tpcount_pri_1++;
 globals.put("truepositive_1",tpcount_pri_1);
 //Stores object type so not over written for human eval
 globals.put("uaseval_1", signature_type_1);
 globals.put("uas_1_confirmation_request", "true");
 return "Target";
 }
 else
 {
 //counts falsenegatives
 var fncount_pri_1 = globals.get("falsenegative_1");
 fncount_pri_1++;
 globals.put("falsenegative_1",fncount_pri_1);
 return "Non-target";
 }
 }
 else
 {
 if (search_confusion_1 < truenegative)
 {
 //counts truenegatives
 var tncount_pri_1 = globals.get("truenegative_1");
 tncount_pri_1++;
 globals.put("truenegative_1",tncount_pri_1);
 return "Non-target";
 }
 else
 {
 //counts falsepositives
 var fpcount_pri_1 = globals.get("falsepositive_1");
 fpcount_pri_1++;
 globals.put("falsepositive_1",fpcount_pri_1);
 //Stores object type so not over written for human eval

101

 globals.put("uaseval_1", signature_type_1);
 globals.put("uas_1_confirmation_request", "true");
 return "Target";
 }
 }

 }
 else
 // branch for object not seen by sensor with counter
 {
 if (signature_type_1 == "target")
 {
 var missedtarget_pri_1 = globals.get("missedtarget_1");
 missedtarget_pri_1++;
 globals.put("missedtarget_1", missedtarget_pri_1);
 }
 else
 {
 var missedobject_pri_1 = globals.get("missedobject_1");
 missedobject_pri_1++;
 globals.put("missedobject_1", missedobject_pri_1);
 }
 return "Object Not Seen";
 }
}

UAS.SS.1.4.1.5 function onEnd()
{
 globals.put("uas_1_confirmation_request", "false");
}

UAS.1.4.2.0 function onStart()
{
 if(globals.get("uas_1_follow_up")!="true")
 {
 //Calculation of a triangular distribution for transit to confirm
 //Interval is 30 Seconds (min time = one minute or 2 * 30 seconds)
 var result;
 var min = 2;
 var max = 12;
 var peak = 4;
 var p = Math.random();
 var q = 1.0 - p;
 if (p <= (peak - min) / (max - min))
 {
 result = Math.round(min + Math.sqrt((max - min) * (peak - min) * p));

102

 }
 else
 {
 result = Math.round(max - Math.sqrt((max - min) * (max - peak) * q));
 }
 globals.put("transit_1", result);
 globals.put("transit_1_save", result);

 }
 globals.put("transit_1_count",0);
}

function onEnd()
{
 var transit_1_req = globals.get("transit_1");
 var transit_1_count = globals.get("transit_1_count");
 transit_1_count++;
 globals.put("transit_1_count", transit_1_count);

 if(transit_1_count >= transit_1_req)
 {
 globals.put("transit_1_count",0);
 globals.put("uas_1_follow_up", "false")
 return false;
 }
 else
 {
 return true;
 }

}

UAS.1.4.2.1 function onEnd()
{

 //Retrieve object type
 var eval_type_1 = globals.get("uaseval_2");

 //initialize variable for confusion matrix path
 var eval_confusion_1 = Math.random();
 var truepositive = globals.get("truepositive");
 var truenegative = globals.get("truenegative");

 //Case of Target
 if(eval_type_1=="target")

103

 {
 if (eval_confusion_1 < truepositive)
 {

 //counts truepositives
 var tpcount_sec_1 = globals.get("uas_tp_1");
 tpcount_sec_1++;
 globals.put("uas_tp_1",tpcount_sec_1);
 return "Target Confirmed";
 }
 else
 {
 //counts falsenegatives
 var fncount_sec_1 = globals.get("uas_fn_1");
 fncount_sec_1++;
 globals.put("uas_fn_1",fncount_sec_1);
 return "Target Rejected";
 }
 }
 else
 {
 if (eval_confusion_1 < truenegative)
 {

 //counts truenegatives
 var tncount_sec_1 = globals.get("uas_tn_1");
 tncount_sec_1++;
 globals.put("uas_tn_1",tncount_sec_1);
 return "Target Rejected";
 }
 else
 {

 //counts falsepositives
 var fpcount_sec_1 = globals.get("uas_fp_1");
 fpcount_sec_1++;
 globals.put("uas_fp_1",fpcount_sec_1);
 return "Target Confirmed";
 }
 }
}

UAS.SS.1.4.3 function onEnd()
{
 var transit_1_req = globals.get("transit_1_save");
 var transit_1_count = globals.get("transit_1_count");

104

 transit_1_count++;
 globals.put("transit_1_count", transit_1_count);

 if(globals.get("uas_2_confirmation_request")=="true")
 {
 globals.put("uas_1_follow_up", "true");
 globals.put("transit_1", transit_1_count);
 return false;

 }

 if(transit_1_count >= transit_1_req)
 {
 return false;
 }
 else
 {
 return true;
 }

}

MC.0 function onStart()
{
 //intialize global mission status
 globals.put("missionstatus",0);

 //initialize launch duration value for UAS
 //Calculation of a triangular distribution for mission length
 var result;
 var min = 1;
 var max = 15;
 var peak = 5;
 var p = Math.random();
 var q = 1.0 - p;
 if (p <= (peak - min) / (max - min))
 {
 result = Math.round(min + Math.sqrt((max - min) * (peak - min) * p));
 }
 else
 {
 result = Math.round(max - Math.sqrt((max - min) * (max - peak) * q));
 }
 globals.put("launchfuel_1",result);
 globals.put("launchfuel_2",result);

105

 // initialize confusion matrix values
 //True positive + false negative and false positive + true negative
 // must equal one
 globals.put("truepositive",0.75);
 globals.put("truenegative",0.95);

 //Establishes counters for object evaluation results
 globals.put("truepositive_1",0);
 globals.put("falsepositive_1",0);
 globals.put("falsenegative_1",0);
 globals.put("truenegative_1",0);

 globals.put("truepositive_2",0);
 globals.put("falsepositive_2",0);
 globals.put("falsenegative_2",0);
 globals.put("truenegative_2",0);

 globals.put("uas_tp_1", 0);
 globals.put("uas_fp_1", 0);
 globals.put("uas_fn_1", 0);
 globals.put("uas_tn_1", 0);

 globals.put("uas_tp_2", 0);
 globals.put("uas_fp_2", 0);
 globals.put("uas_fn_2", 0);
 globals.put("uas_tn_2", 0);

 globals.put("missedobject_1", 0);
 globals.put("missedtarget_1", 0);
 globals.put("missedobject_2", 0);
 globals.put("missedtarget_2", 0);

 globals.put("totalobjects_1",0);
 globals.put("totaltargets_1",0);
 globals.put("totalnontargets_1",0);

 globals.put("totalobjects_2",0);
 globals.put("totaltargets_2",0);
 globals.put("totalnontargets_2",0);

 // Set percentage of objects that are targets
 globals.put("target_percentage", 1/21);

106

 // Set percentage of objects that are seen by the sensor
 globals.put("detection_percentage", 0.85);

 globals.put("uas_1_confirmation_request", 0);
 globals.put("uas_2_confirmation_request", 0);

}

MC.1 function onEnd()
{
// Mission control loop only exits upon mission status set to
// recovery
if(globals.get("missionstatus_1") == "recovery" ||
globals.get("missionstatus_2") == "recovery")
 {
 return false;
 }
 else
 {
 return true;
 }

}

D.1 function onEnd()
{
 print('1 Total Objects Emitted: ' + globals.get("totalobjects_1"));
 print('1 Total Targets Emitted: ' + globals.get("totaltargets_1"));
 print('1 Total Non-Targets Emitted: ' + globals.get("totalnontargets_1"));

 print('2 Total Objects Emitted: ' + globals.get("totalobjects_2"));
 print('2 Total Targets Emitted: ' + globals.get("totaltargets_2"));
 print('2 Total Non-Targets Emitted: ' + globals.get("totalnontargets_2"));

 print('1 Detected True Positives: ' + globals.get("truepositive_1"));
 print('1 Detected False Positives: ' + globals.get("falsepositive_1"));
 print('1 Detected True Negatives: ' + globals.get("truenegative_1"));
 print('1 Detected False Negatives: ' + globals.get("falsenegative_1"));
 print('1 Total Eligible Missed Non-targets: ' +
globals.get("missedobject_1"));
 print('1 Total Eligible Missed Targets: ' + globals.get("missedtarget_1"));

 print('2 Detected True Positives: ' + globals.get("truepositive_2"));
 print('2 Detected False Positives: ' + globals.get("falsepositive_2"));
 print('2 Detected True Negatives: ' + globals.get("truenegative_2"));

107

 print('2 Detected False Negatives: ' + globals.get("falsenegative_2"));
 print('2 Total Eligible Missed Non-targets: ' +
globals.get("missedobject_2"));
 print('2 Total Eligible Missed Targets: ' + globals.get("missedtarget_2"));

 print('1 Confirmed True Positives: ' + globals.get("uas_tp_1"));
 print('1 Confirmed False Positives: ' + globals.get("uas_fp_1"));
 print('1 Confirmed True Negatives: ' + globals.get("uas_tn_1"));
 print('1 Confirmed False Negatives: ' + globals.get("uas_fn_1"));

 print('2 Confirmed True Positives: ' + globals.get("uas_tp_2"));
 print('2 Confirmed False Positives: ' + globals.get("uas_fp_2"));
 print('2 Confirmed True Negatives: ' + globals.get("uas_tn_2"));
 print('2 Confirmed False Negatives: ' + globals.get("uas_fn_2"));

 var launchduration = globals.get("launchfuel_1");
 var missionduration = 60 - 2*launchduration;
 print('Total Mission Duration in Minutes: ' +missionduration);

}

108

Acronyms

ABEP Architecture Based Evaluation Process

AoA Analysis of Alternatives

ATR Autonomous Target Recognition

COCOM Combatant Commander

CONOPS Concept of Operations

CPN Colored Petri-Net

DES Discrete Event Simulation

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

EA Executable Architecture

EFFBD Enhanced Function Flow Block Diagram

FFBD Function Flow Block Diagram

GCS Ground Control Station

HCPN Hierarchical Colored Petri-Net

ISR Intelligence, Surveillance and Reconnaissance

MOE Measure of Effectiveness

MP Monterey Phoenix

SE Systems Engineering

SoS System of Systems

SysML Systems Modeling Language

UAS Unmanned Aerial System

UML Unified Modeling Language

109

Bibliography

Auguston, M. (2014). Behavior Models for Software Architecture. Retrieved from

http://www.dtic.mil/dtic/tr/fulltext/u2/a611836.pdf

Bienvenu, M. P., Shin, I., & Levis, A. H. (2000). C4ISR architectures: III. An object-

oriented approach for architecture design. Systems Engineering, 3(4), 288–312.

http://doi.org/10.1002/1520-6858(2000)3:4<288::AID-SYS6>3.0.CO;2-F

Cancro, G., Turner, R., Kahn, E., & Williams, S. (2011, January). Executable

specification-based system engineering. Aerospace Conference, 2011 IEEE.

Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5747626&contentTy

pe=Conference+Publications

Defense Acquisition University. (2014). Generic Acquisition Process (Pre-Tailoring),

5000. Retrieved from https://dap.dau.mil/aphome/Documents/Defense Acquisition

Waterfall Chart with color enhancements 17 Dec final (3).pdf

Department of Defense. (2007a). DoD Architecture Framework Volume I : Definitions

and Guidelines. Architecture, I(April 2007), 1–46.

Department of Defense. (2007b). DoD Architecture Framework Volume II : Product

Descriptions. Architecture, II(April 2007), 284.

110

Dietrichs, T., Griffin, R., Schuettke, A., & Slocum, M. (2006). INTEGRATED

ARCHITECTURE STUDY FOR WEAPON BORNE BATTLE DAMAGE

ASSESSMENT SYSTEM EVALUATION. Air Force Institute of Technology, Air

University.

DoD Deputy Chief Information Officer. (2009). The DoDAF Architecture Framework

Version 2.0. U.S. Department of Defense. Retrieved from http://cio-

nii.defense.gov/sites/dodaf20/index.html

Feng, N., Ming-Zhe, W., Cui-Rong, Y., & Zhi-Gang, T. (2010, January). Executable

architecture modeling and validation. Computer and Automation Engineering

(ICCAE), 2010 The 2nd International Conference on. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5452010&contentTy

pe=Conference+Publications

Ge, B., Hipel, K. W., Li, L., & Chen, Y. (2012, January). A data-centric executable

modeling approach for system-of-systems architecture. System of Systems

Engineering (SoSE), 2012 7th International Conference on.

Ge, B., Hipel, K. W., Yang, K., & Chen, Y. (2014, January). A Novel Executable

Modeling Approach for System-of-Systems Architecture. Systems Journal, IEEE.

Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6565359&contentTy

pe=Journals+&+Magazines

111

Griendling, K., & Mavris, D. N. (2011, January). Development of a dodaf-based

executable architecting approach to analyze system-of-systems alternatives.

Aerospace Conference, 2011 IEEE. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5747654&contentTy

pe=Conference+Publications

Hu, J., Huang, L., Cao, B., & Chang, X. (2014). SPDML: Graphical modeling language

for executable architecture of systems. 6th International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery, CyberC 2014, 248–255.

http://doi.org/10.1109/CyberC.2014.52

IEEE Standard 1220-2005. (2007). IEEE Standard for Application and Management of

the Systems Engineering Process.

Imagine That! (2015). ExtendSim Simulation Software. Retrieved September 9, 2015,

from https://www.extendsim.com/

Intercax. (2015a). ParaMagic® plugin for MagicDraw - Intercax. Retrieved December 9,

2015, from http://intercax.com/products/paramagic/

Intercax. (2015b). SolveaTM - SysML Parametric Solver - Intercax. Retrieved December

9, 2015, from http://intercax.com/products/solvea/

Janczura, C. (2009). Evaluation of Defence Architectures in Support of System

Integration. Journal of Battlefield Technology, 12(3), 9 – 13. Retrieved from

112

http://ezproxy.library.capella.edu/login?url=http://search.ebscohost.com.library.cape

lla.edu/login.aspx?direct=true&db=tsh&AN=44639406&site=ehost-live&scope=site

Jensen, K., Kristensen, L., & Wells, L. (2007, January). Coloured Petri Nets and CPN

Tools for modelling and validation of concurrent systems. International Journal on

Software Tools for Technology Transfer. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=25234751&site=

ehost-live

Larman, C. (2011). Applying UML and Patterns. (D. O’Hagan, J. Fuller, & J. Nahil,

Eds.) (14th ed.). Upper Saddle River, NJ: Prentice Hall.

Levis, A. H., & Wagenhals, L. W. (2000). C4ISR architectures: I. Developing a process

for C4ISR architecture design. Systems Engineering, 3(4), 225–247.

http://doi.org/10.1002/1520-6858(2000)3:4<225::AID-SYS4>3.0.CO;2-#

Li, L., Dou, Y., Ge, B., Yang, K., & Chen, Y. (2012). Executable System-of-Systems

architecting based on DoDAF meta-model. System of Systems Engineering (SoSE),

2012 7th International Conference on, 362–367.

http://doi.org/10.1109/SYSoSE.2012.6384204

Mathworks. (2015). Discrete Event Simulation Software - SimEvents. Retrieved

September 9, 2015, from http://www.mathworks.com/products/simevents/

113

Matloff, N. S. (2008). Introduction to discrete-event simulation and the simpy language.

Davis, CA. Dept of Computer Science. University, 1–33. Retrieved from

http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf

Nakhla, N. M., & Wheaton, K. (2014). An executable architecture tool for the modeling

and simulation of operational process models. 8th Annual IEEE International

Systems Conference, SysCon 2014 - Proceedings, 489–496.

http://doi.org/10.1109/SysCon.2014.6819301

No Magic. (2015). Cameo Simulation Toolkt.

Özgün, O., & Barlas, Y. (2009). Discrete vs . Continuous Simulation : When Does It

Matter ? 27th International Conference of The System Dynamics Society, (06), 1–22.

Rockwell Automation. (2015). Arena Discrete Event Simulation Software. Retrieved

September 9, 2015, from https://www.arenasimulation.com/

Sparx Systems. (2015). How it Works [Enterprise Architect User Guide]. Retrieved

January 1, 2015, from

http://www.sparxsystems.com/enterprise_architect_user_guide/9.2/model_simulatio

n/how_it_works2.html

SPEC Innovations. (2015). DoDAF Software Tools | Innoslate. Retrieved January 1,

2015, from https://www.innoslate.com/dodaf/

114

Staines, T. S. (2008, January). Intuitive Mapping of UML 2 Activity Diagrams into

Fundamental Modeling Concept Petri Net Diagrams and Colored Petri Nets.

Engineering of Computer Based Systems, 2008.ECBS 2008.15th Annual IEEE

International Conference and Workshop on the. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4492400&contentTy

pe=Conference+Publications

The Object Management Group. (2012). Semantics of a Foundational Subset for

Executable UML Models (fUML), (October), 441. Retrieved from

http://www.omg.org/spec/FUML/

Vitech Corporation. (2000). COREsim User Guide 3.0.

Wagenhals, L. W., & Levis, A. H. (2009, January). Service Oriented Architectures, the

DoD Architecture Framework 1.5, and Executable Architectures. SYSTEMS

ENGINEERING. Retrieved from

http://gateway.webofknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcA

uth=SerialsSolutions&SrcApp=360&DestLinkType=FullRecord&DestApp=WOS&

KeyUT=WOS:000271966700003

Wagenhals, L. W., Liles, S. W., & Levis, A. H. (2009, January). Toward executable

architectures to support evaluation. Collaborative Technologies and Systems,

2009.CTS ’09.International Symposium on. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5067520&contentTy

pe=Conference+Publications

115

Wagenhals, L. W., Shin, I., Kim, D., & Levis, A. H. (2000). C4ISR Architectures: II. A

Structured Analysis Approach for Architecture Design. Systems Engineering, 3(4),

248–287.

Wang, Z., He, H., & Wang, Q. (2014). Executable Architecture Modeling and Simulation

Based on fUML. In 19th International Command and Control Research and

Technology Symposium (pp. 1–17). Alexandria, VA.

Xia, X., Wu, J., Liu, C., & Xu, L. (2013). A Model-Driven Approach for Evaluating

System of Systems. Engineering of Complex Computer Systems (ICECCS), 2013

18th International Conference on. Retrieved from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6601805&contentTy

pe=Conference+Publications

116

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-12-2015
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

October 2014 – December 2015

TITLE AND SUBTITLE

Application of Executable Architectures in Early Concept
Evaluation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Pospisal, Ryan M., Major, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-15-D-027

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DoD Systems Engineering Research Center
Scott Lucero, Deputy Director, Strategic Initiatives, ODASD(SE)
1 Castle Point Terrace
Hoboken, NJ 07030
don.s.lucero.civ@mail.mil (703) 681-6654

10. SPONSOR/MONITOR’S
ACRONYM(S)

ODASD(SE)
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.
14. ABSTRACT
This research explores use of executable architectures to guide design decisions in the early stages of system
development. Decisions made early in the system development cycle determine a majority of the total
lifecycle costs as well as establish a baseline for long term system performance and thus it is vital to program
success to choose favorable design alternatives. The development of a representative architecture followed
the Architecture Based Evaluation Process as it provides a logical and systematic order of events to produce
an architecture sufficient to document and model operational performance. In order to demonstrate the value
in the application of executable architectures for trade space decisions, three variants of a fictional unmanned
aerial system were developed and simulated. Four measures of effectiveness (MOEs) were selected for
evaluation. Two parameters of interest were varied at two levels during simulation to create four test case
scenarios against which to evaluate each variant. Analysis of the resulting simulation demonstrated the ability
to obtain a statistically significant difference in MOE performance for 10 out of 16 possible test case-MOE
combinations. Additionally, for the given scenarios, the research demonstrated the ability to make a
conclusive selection of the superior variant for additional development.
15. SUBJECT TERMS
 Executable Architecture, DoDAF, Analysis of Alternatives, AoA, System of Systems, SoS
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

129

19a. NAME OF RESPONSIBLE PERSON
Dr. David Jacques, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3355, ext 3329
(david.jacques@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

mailto:don.s.lucero.civ@mail.mil

	Air Force Institute of Technology
	AFIT Scholar
	12-24-2015

	Application of Executable Architectures in Early Concept Evaluation
	Ryan M. Pospisal
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Research Focus
	1.4 Methodology
	1.5 Assumptions
	1.6 Preview

	2 Literature Review
	2
	2.1 Overview
	2.2 Definitions
	2.3 DoDAF Background
	2.4 Simulation Techniques
	2.4.1 Discrete Event Simulation
	2.4.1.1 Innoslate
	2.4.1.2 Canadian Department of National Defence
	2.4.1.3 COREsim
	2.4.1.4 Enterprise Architect

	2.4.2 Colored Petri Nets
	2.4.3 Hierarchical Colored Petri Nets
	2.4.4 Executable Specification-based Systems Engineering
	2.4.5 fUML
	2.4.5.1 Magic Draw

	2.4.6 Monterey Phoenix

	2.5 Generalized Architecture Development
	2.6 Literature Review Summary

	3 Methodology
	2
	3
	2
	3
	4
	3.1 Process
	3.2 Assumptions
	3.3 Operational Concept
	3.4 Measures of Effectiveness
	3.5 Architecture Scope
	3.6 Required Architecture Views
	3.7 Development of Architecture Views
	3.8 Development of Architecture Simulation
	3.8.1 Common Activities
	3.8.2 Variant 1 Operation
	3.8.3 Variation 2 Operation
	3.8.4 Variant 3 Operation

	3.9 Evaluation for Model Completeness
	3.10 Test Case Selection
	3.11 Other Model Parameters
	3.12 Simulation Software Comments
	3.13 Summary

	4 Simulation Analysis and Results
	4
	4.1 MOE 1: Average Target Declarations per Mission
	4.2 MOE 2: Average Target Confirmations per Mission
	4.3 MOE 3: Average False Alarms per Mission
	4.4 MOE 4: Average Missed Targets per Mission
	4.5 Other Observations
	4.6 Results

	5 Conclusions and Recommendations
	5
	5.1 Recommendations for Future Research
	5.1.1 Larger SoS Development
	5.1.2 Improve Existing Simulation Assumptions
	5.1.3 Include More External Factors

	Appendix A: CONOPS
	Document Overview
	Intended Users
	Document Organization
	System Introduction
	System Purpose
	Functional Requirements
	Target Detection
	Communications
	Mobility
	Duration
	Geo-location accuracy
	Launch and Recovery

	Stakeholders
	Intelligence Community
	Other ISR Platforms
	Airborne Strike Operators and Ground Forces
	Acquisition Corps

	System Physical Description
	Ground Control Station (GCS)
	Data link
	Air Vehicle
	System Operational Description
	Logistics
	Launch and Ingress
	Mission Operations
	Variant 1
	Variant 2
	Variant 3

	Egress and Recovery

	Appendix B: AV-1
	Architectural Description Identification
	Scope
	AV-1: Overview and Summary Information
	OV-1: High Level Operational Concept Graphic
	OV-2: Operational Resource Flow Description
	OV-5b: Operational Activity Model
	OV-6a: Operational Rules Model

	Purpose and Perspective
	Context
	Variant 1: Automated Independent
	Variant 2: Ground Station Assisted
	Variant 3: Automated Cooperative

	Status
	Tools and File Formats

	Appendix C: OV-1: High level Operational Concept Graphic
	Appendix D: OV-2: Operational Resource Flow Description
	Appendix E: OV-5b: Operational Activity Model
	Appendix F: OV-6a: Operational Rules Model
	Common Behavior
	Imperative Rules
	Conditional Rules

	Variant 1 Specific Rules
	Variant 2 Specific Rules
	Conditional Rules

	Variant 3 Specific Rules

	Appendix G: Example JavaScript
	Acronyms

