
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

12-24-2015

Demonstration of Inexact Computing
Implemented in the JPEG Compression Algorithm
using Probabilistic Boolean Logic applied to
CMOS Components
Christopher I. Allen

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Allen, Christopher I., "Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic
Boolean Logic applied to CMOS Components" (2015). Theses and Dissertations. 230.
https://scholar.afit.edu/etd/230

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/230?utm_source=scholar.afit.edu%2Fetd%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

DEMONSTRATION OF INEXACT
COMPUTING IMPLEMENTED IN THE

JPEG COMPRESSION ALGORITHM USING
PROBABILISTIC BOOLEAN LOGIC
APPLIED TO CMOS COMPONENTS

DISSERTATION

Christopher I. Allen, Maj, USAF

AFIT-ENG-DS-15-D-001

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-DS-15-D-001

DEMONSTRATION OF INEXACT COMPUTING

IMPLEMENTED IN THE JPEG COMPRESSION ALGORITHM

USING PROBABILISTIC BOOLEAN LOGIC

APPLIED TO CMOS COMPONENTS

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Christopher I. Allen, B.S.E.E., M.S.E.E.

Maj, USAF

24 December 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-DS-15-D-001

DEMONSTRATION OF INEXACT COMPUTING

IMPLEMENTED IN THE JPEG COMPRESSION ALGORITHM

USING PROBABILISTIC BOOLEAN LOGIC

APPLIED TO CMOS COMPONENTS

DISSERTATION

Christopher I. Allen, B.S.E.E., M.S.E.E.
Maj, USAF

Committee Membership:

Maj Derrick Langley, PhD
Chairman

Dr. James C. Petrosky
Member

Dr. James C. Lyke
Member

Dr. Mary Y. Lanzerotti
Member

Abstract

The success of Moore’s Law has conditioned the semiconductor industry to expect

continuing improvements in high performance chips. Limits to the power reduction

that can be realized with traditional digital design provide motivation for study-

ing probabilistic computing and inexact methods that offer potential energy savings,

performance improvements, and area improvement. This dissertation addresses how

much energy and power can be saved if one accepts additional tradeoffs in accuracy

(and thus advantages in power consumption, and decreased heat removal).

This work advances the state of the art of inexact computing by optimizing the

JPEG File Interchange Format (JFIF) compression algorithm for reduced energy,

delay, and area. The dissertation presents a demonstration of inexact computing

implemented in the JPEG algorithm applied to an analysis of uncompressed TIFF

images of a U.S. Air Force F-16 aircraft provided by the University of Southern

California Signal and Image Processing Institute (SIPI) image database. The JPEG

algorithm is selected as a motivational example because it is widely available to the

U.S. Air Force community and is widely used in many areas including the military,

education, business, and users of personal electronics. The JPEG algorithm is also

selected because it is by its nature a lossy compression algorithm, where the existence

of loss indicates the users willingness to accept error.

The approach of this research is to predict the performance of CMOS components

as implemented in solving problems of probabilistic Boolean logic, with a specific focus

on the most advanced silicon CMOS technology currently in high volume manufac-

turing today (the 14 nm FinFET silicon CMOS technology). The main contribution

of this research is a method to quantify the energy savings resulting from the de-

cision to accept a specified percentage of error in some components of a computing

system. The dissertation presents a demonstration of the JPEG algorithm in which

iv

two components of the algorithm (namely the first and third steps, color space trans-

formation and discrete cosine transform) take advantage of the reduced energy and

power that can be achieved when one accepts a certain amount of inexactness in the

result. Detailed studies in energy-accuracy tradeoffs in adders and multipliers are

presented.

We have shown that we could cut energy demand in half with 16-bit Kogge-Stone

adders that deviated from the correct value by an average of 3.0 percent in 14 nm

CMOS FinFET technology, assuming a noise amplitude of 3 × 10−12 V2/Hz. This

was achieved by reducing VDD to 0.6 V instead of its maximum value of 0.8 V. The

energy-delay product (EDP) was reduced by 38 percent.

Adders that got wrong answers with a larger deviation of about 7.5 percent (using

VDD = 0.5 V) were up to 3.7 times more energy-efficient, and the EDP was reduced

by 45 percent.

Adders that got wrong answers with a larger deviation of about 19 percent (using

VDD = 0.3 V) were up to 13 times more energy-efficient, and the EDP was reduced

by 35 percent.

We used inexact adders and inexact multipliers to perform the color space trans-

form, and found that with a 1 percent probability of error at each logic gate, the

letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to 10

pixels tall, are readable in the processed image, where the relative RMS error is 5.4

percent.

We used inexact adders and inexact multipliers to perform the discrete cosine

transform, and found that with a 1 percent probability of error at each logic gate,

the letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to

10 pixels tall, are readable in the processed image, where the relative RMS error is

20 percent.

v

Results presented in this dissertation show that 91.8% of the color space trans-

form can be built from inexact components and that 92.0% of the discrete cosine

transformation can be built from inexact components. The results show that, for the

case in which the probability of correctness is 99%, the color space transformation has

55% energy reduction per pixel of an uncompressed image, and the discrete cosine

transformation step also has a 55% energy reduction per pixel.

vi

Table of Contents

Page

Abstract . iv
Table of Contents . vii
List of Tables . xii

List of Figures . xiii

List of Acronyms . xvi
List of Symbols . xix

I. Introduction . 1

1.1 Strategy for Applying Inexact Methods . 4
1.2 Motivational Link to Air Force Needs and Vision . 9
1.3 Contributions . 14

II. Literature Review . 16

III. Background . 20

3.1 Taxonomy of Inexact Computing . 20
3.1.1 Deterministic . 20
3.1.2 Non-Deterministic . 28

3.2 Adders . 33
3.2.1 1-Bit Full Adder . 34
3.2.2 1-Bit Half Adder . 35
3.2.3 N -bit Ripple-Carry Adder . 35
3.2.4 Propagate/Generate Logic . 36
3.2.5 Ripple-Carry Adder . 37
3.2.6 Carry Lookahead Adder . 37
3.2.7 Kogge-Stone Adder . 39
3.2.8 Ling Adder . 40
3.2.9 Probabilistic Boolean Logic (PBL) . 41
3.2.10 Propagate/Generate Logic with PBL . 41
3.2.11 Kogge-Stone Adder with PBL . 41

3.3 Multipliers . 42
3.4 Probability Distributions . 43

3.4.1 Gaussian Distribution . 44
3.4.2 Laplacian Distribution . 44
3.4.3 Normal Product Distribution . 44
3.4.4 Maximum Likelihood Estimation . 47

3.5 IEEE 754 Floating Point Storage . 48
3.5.1 Floating Point Addition . 49

vii

Page

3.5.2 Floating Point Multiplication . 49
3.6 JPEG Compression Algorithm . 50

3.6.1 Color Space Transformation . 50
3.6.2 Tiling . 51
3.6.3 Discrete Cosine Transformation . 51
3.6.4 Quantization . 53
3.6.5 Zigzagging of Q . 54
3.6.6 Run-Amplitude Encoding . 55
3.6.7 Huffman Encoding . 55
3.6.8 Summary . 55

IV. Methodology . 57

4.1 Circuit Simulations . 57
4.1.1 SpectreTM Simulation . 59

4.2 Probabilistic Boolean Logic Simulations . 63
4.3 Inexact Adders . 64

4.3.1 Ripple-Carry Adder with Inexactness Only on
Less-Significant Bits . 68

4.4 Inexact Multipliers . 69
4.4.1 Shift-and-Add Multiplier with Inexactness Only

on Less-Significant Bits . 70
4.5 Distribution Fitting . 75
4.6 Optimizing the JPEG Algorithm for Inexact Computing 76

4.6.1 Limited Precision . 77
4.6.2 Exact Computation of the Most Significant Bits 80

4.7 JPEG Compression Performance . 80
4.8 Matlab Scripts . 82

4.8.1 Ripple-Carry Adders . 83
4.8.2 Kogge-Stone Adders . 83
4.8.3 Ling Carry-Lookahead Adders . 83
4.8.4 Shift-and-Add Multipliers . 84
4.8.5 Wallace Tree Multipliers . 84
4.8.6 Floating-Point Adders . 84
4.8.7 Floating-Point Multipliers . 85
4.8.8 Matrix Multiplier . 85
4.8.9 Discrete Cosine Transform . 86
4.8.10 JPEG Compression Algorithm . 86

V. Results . 87

5.1 Inexact Adders . 87
5.1.1 Inexact Adders with PBL . 87
5.1.2 Probability Distributions . 88

viii

Page

5.1.3 Comparisons Among Adder Types . 92
5.1.4 SpectreTM Simulation . 95

5.2 Shift-and-Add Multiplier with PBL . 102
5.3 Comparisons Among Multiplier Types . 106
5.4 JPEG Image Compression . 107

5.4.1 Inexact Color Space Transform . 107
5.4.2 Inexact DCT . 112

5.5 Remarks . 115

VI. Discussion . 116

VII. Summary and Conclusions . 120

7.1 Adders . 120
7.2 Multipliers . 121
7.3 JPEG. 122
7.4 Contributions . 123

Appendix A. Inexact Integer Adders . 125

1.1 Ripple-Carry Adder . 125
1.2 Kogge-Stone Adder . 131
1.3 Ling Radix-4 Carry-Lookahead Adder . 134
1.4 Brent-Kung Adder . 138
1.5 Sklansky Adder . 142
1.6 Adder Front-End . 146
1.7 Adder-Subtractor . 149

Appendix B. Inexact Floating-Point Adder . 151

Appendix C. Inexact Integer Multipliers . 176

3.1 Shift-and-Add Multiplier . 176
3.2 Wallace Tree Multiplier . 180

3.2.1 Main Function . 180
3.2.2 1-Bit Adder Subfunction . 182

3.3 Baugh-Wooley Multiplier . 184

Appendix D. Inexact Floating-Point Multiplier . 188

Appendix E. Inexact Matrix Multiplier . 192

Appendix F. Inexact JPEG Compression Algorithm . 195

6.1 Main Program . 195
6.2 Color Space Transformation . 197

6.2.1 Exact Color Space Transformation . 197

ix

Page

6.2.2 Inexact Color Space Transformation . 199
6.3 Tiling Function . 201
6.4 Discrete Cosine Transformation (DCT) . 202

6.4.1 Exact DCT . 202
6.4.2 Inexact DCT . 203

6.5 Quantization . 206
6.6 Zigzag Function . 208
6.7 Run-Amplitude Encoding . 209
6.8 Huffman Encoding . 211
6.9 Stuff Byte . 214
6.10 File Operations . 215

Appendix G. Logical Functions . 219

7.1 Inexact NOT . 219
7.2 Inexact AND . 220
7.3 Inexact OR . 221
7.4 Inexact XOR . 222
7.5 Inexact Multiplexer . 223
7.6 Inexact AND-OR-2-1 . 226
7.7 Inexact AND-OR-AND-OR-2-1-1-1 . 228
7.8 Inexact n-Input AND . 229
7.9 Inexact n-Input OR . 231

Appendix H. Bitwise Functions . 233

8.1 N -Bit One’s Complement (Exact) . 233
8.2 Majority Function (Exact) . 235
8.3 Bitwise Error Generator . 236
8.4 N -Bit One’s Complement (Inexact) . 238
8.5 Inexact Bitwise AND . 240
8.6 Inexact Bitwise OR . 242
8.7 Inexact Bitwise XOR . 244
8.8 Inexact 4-Input Bitwise AND . 246

Appendix I. Advanced Bitwise Functions . 248

9.1 Unsigned to Signed Class Conversion . 248
9.2 Signed to Unsigned Class Conversion . 250
9.3 Clear Upper Bits . 252
9.4 Test if an N -Bit Number is Nonzero (Inexact) . 254
9.5 Inexact Barrel Shifter . 255
9.6 Inexact Comparator . 258

x

Page

Appendix J. IEEE 754 Floating-Point Functions . 260

10.1 Separate Floating-Point Number into its Components 260
10.2 Merge Components into a Floating-Point Number 263

Bibliography . 265

xi

List of Tables

Table Page

1 Truth Table for a 1-Bit Full Adder . 35

2 Truth Table for a 1-Bit Half Adder . 35

3 IEEE 754 Standard Base-2 Formats . 49

4 Complexity of Various DCT Algorithms for an 8 × 8
Input Block . 53

5 Probabilities of Correctness Per Node due to Noise
Sources: 0.6 μm Technology . 60

6 Probabilities of Correctness Per Node due to Noise
Sources: 14 nm Technology . 61

7 16-Bit Shift-and-Add Multipliers Using Exact & Inexact
Bits . 74

8 Error Statistics: 8-Bit Kogge-Stone Adder with PBL 90

9 Error Statistics: Noisy 8-Bit Kogge-Stone Adder, from
SpectreTM Simulation . 97

10 Error Statistics: 16-bit Shift-and-Add Multiplier with
PBL . 106

11 Energy Savings and Errors for Inexact Color Space
Transformation . 112

12 Energy Savings and Errors for Inexact Discrete Cosine
Transformation . 115

xii

List of Figures

Figure Page

1 Inexact design flowchart. 5

2 Block diagram of the JPEG compression algorithm. 10

3 Original uncompressed image of an F-16. 15

4 CMOS inverter schematics with (a) noise at input, and
(b) noise at output. 30

5 Noisy inverter waveform. 30

6 1-bit full adder . 35

7 1-bit half adder . 35

8 N -bit ripple-carry adder . 36

9 Propagate/Generate logic gates. 37

10 16-bit ripple-carry adder schematic. 38

11 16-bit radix 4 carry lookahead adder schematic. 38

12 16-bit Kogge-Stone adder schematic. 39

13 N -bit integer multiplier. 42

14 Probability density functions for Gaussina, Laplacian,
and normal product distributions. 45

15 Elementary 8 × 8 JPEG images, showing the result of a
single DCT. 52

16 Generalized circuit model for simulating an inexact
device for comparison with an exact device. 58

17 Schematics for AND, OR, XOR, and AND-OR-2-1 gates. 64

18 Schematic of a noisy 8-bit ripple-carry adder. 65

19 Schematic of a noisy 8-bit Kogge-Stone adder. 66

20 Addition using a partially inexact 8-bit ripple-carry
adder. 69

xiii

Figure Page

21 Multiplication using a partially inexact 8-bit
shift-and-add multiplier. 72

23 Error histograms showing the PMF of ε̂ for an inexact
8-bit Kogge-Stone adder, from PBL simulation. 89

24 Error spectrum for an inexact 8-bit Kogge-Stone adder,
for all possible values of A and B, with p = 0.90. 90

25 Error histograms for various inexact 32-bit adders, with
p = 0.90, from PBL simulation. 91

26 Error statistics for inexact N -bit ripple-carry adders
with various values of N and p, from PBL simulation. 93

27 Error statistics for various inexact adders, from PBL
simulation. 94

28 Error histograms for inexact 16 and 32-bit
floating-point adders, from PBL simulation. 95

29 Error histogram for an 8-bit Kogge-Stone adder, from
SpectreTM simulation of 0.6 μm CMOS technology. 96

30 Energy reduction as a function of 1 − p, for noisy 8 and
16-bit ripple-carry (RC) and Kogge-Stone (KS) adders
in 0.6 μm CMOS and 14 nm FinFET CMOS
technologies. (SpectreTM simulation results.) . 98

31 EDP reduction as a function of 1 − p, for noisy 8 and
16-bit ripple-carry (RC) and Kogge-Stone (KS) adders
in 0.6 μm CMOS and 14 nm FinFET CMOS
technologies. (SpectreTM simulation results.) . 99

32 Energy reduction as a function of ε̂, for noisy 8 and
16-bit ripple-carry (RC) and Kogge-Stone (KS) adders
in 0.6 μm CMOS and 14 nm FinFET CMOS
technologies. (SpectreTM simulation results.) . 100

33 EDP reduction as a function of ε̂, for noisy 8 and 16-bit
ripple-carry (RC) and Kogge-Stone (KS) adders in 0.6
μm CMOS and 14 nm FinFET CMOS technologies.
(SpectreTM simulation results.) . 101

xiv

Figure Page

34 Error histograms for an inexact 16-bit shift-and-add
multiplier, from PBL simulation. 103

35 Error histograms for an inexact 16-bit Wallace tree
multiplier, from PBL simulation. 104

36 Error statistics for various inexact multipliers, from
PBL simulation. 105

37 Error histograms for an inexact half-precision
floating-point multiplier, from PBL simulation. 108

38 Error histograms for an inexact single-precision
floating-point multiplier, from PBL simulation. 109

39 Block diagram of the JPEG compression algorithm. 110

40 Uncompressed bitmap images computed using an
inexact color space transformation with various values
of p. 111

41 JPEG images computed using an inexact discrete cosine
transformation with various values of p. 114

xv

List of Acronyms

AFRL Air Force Research Laboratory

AFIT Air Force Institute of Technology

AWGN Additive White Gaussian Noise

CST Color Space Transformation

DCT Discrete Cosine Transformation

EDP Energy-Delay Product

EOB End of Block

FA Full Adder

FFT Fast Fourier Transform

HA Half Adder

HVS Human Visual System

IC Integrated Circuit

JFIF JPEG File Interchange Format

JPEG Joint Photographic Experts Group

KS Kogge-Stone

KTA Key Technology Area

LET Linear Energy Transfer

LSB Least Significant Bit

xvi

MLE Maximum Likelihood Estimation

MSB Most Significant Bit

MSE Mean Square Error

NP Normal Product

PBL Probabilistic Boolean Logic

PCA Potential Capability Area

PDF Probability Density Function

PMF Probability Mass Function

PSD Power Spectral Density

RC Ripple-Carry

RCA Ripple-Carry Adder

RF Radio Frequency

RMS Root-Mean-Square

SEU Single Event Upset

SIPI Signal and Image Processing Institute

SNR Signal to Noise Ratio

SPICE Simulation Program with Integrated Circuit Emphasis

TIFF Tagged Image File Format

USC University of Southern California

xvii

WHT Walsh-Hadamard Transform

WPAFB Wright Patterson Air Force Base

xviii

List of Symbols

Symbol Definition

α compression quality factor

ε error

ε̂ normalized error

εmax maximum possible error

A N -bit input to an adder or multiplier

A gain of an analog amplifier

ai the ith bit of A

B N -bit input to an adder or multiplier

B blue component

bi the ith bit of B

b base of a floating-point number

C discrete cosine transformation of X

Cin one-bit carry-in input to an adder

Cout one-bit carry-out output of an adder

Cb chrominance, blue

Cr chrominance, red

ci the ith carry bit within an N -bit adder

E energy dissipated

e exponent of a floating-point number

e0 offset bias of the exponent of a floating-point number

∼ Exponential(λ) is exponentially distributed with rate parameter λ

f frequency

G green component

H entropy

xix

IDD power supply current

m mantissa of a floating-point number

N bit width of the inputs to an adder or multiplier

Nexact number of bits which are computed exactly

Ninexact number of bits which are computed inexactly

Ne bit width of floating-point exponent

Nm bit width of floating-point mantissa

∼ N (μ, σ2) is normally distributed with mean μ and variance σ2

P product of a multiplier

P̃ approximate product

P̆k kth partial product of a multiplier

P(∙) probability

P power dissipated

Pd dynamic power

Ps static power

p probability of correctness

p̆k,i ith bit of P̆k

Q quantized form of C

Q̌ zigzag arrangement of Q

qi,j (i, j)th element of Q

R compression ratio

R red component

S N -bit sum of an adder, excluding the carry-out bit

S+ (N + 1)-bit augmented sum of an adder, including the carry-out bit

T clock period

t time

xx

U unitary discrete cosine transformation matrix

∼ Unif(a, b) is uniformly distributed between a and b

VDD power supply voltage

w vector of all noise sources within an inexact circuit

win noise at the input node of a circuit

wout noise at the output node of a circuit

X 8×8 tile containing image (Y , Cb, or Cr) data

X input vector to a digital logic circuit

Y output of a digital logic circuit

Y luminance

Z quantization factor matrix

zi,j (i, j)th element of Z

Subscripts

d dynamic (as in dynamic power)

i ith bit position

in input

k kth stage of a circuit

l lth state in a sequence

max maximum

min minimum

out output

rms root-mean-square average

s static (as in static power)

Superscripts

xxi

+ augmented (as in the augmented sum of an adder)

Accents

˘ partial (as in partial product)

ˇ zigzag sequence

ˆ normalized

ˉ average (mean)

˜ pertaining to an approximate or inexact computational circuit

xxii

DEMONSTRATION OF INEXACT COMPUTING

IMPLEMENTED IN THE JPEG COMPRESSION ALGORITHM

USING PROBABILISTIC BOOLEAN LOGIC

APPLIED TO CMOS COMPONENTS

I. Introduction

The success of Moore’s law [1, 2, 3] has conditioned the semiconductor industry

to expect continuing improvements in high performance chips. The success has pro-

duced a situation in which circuit designers are designing products around Moore’s

Law. Concerns about the possible end of Moore’s Law are being raised, and re-

searchers are seeking ways to sustain this trend. This trend encroaches on areas such

as probabilistic computing [4, 5, 6, 7, 8, 9] or neuromorphic computing [10, 11, 12, 13].

The general motivation for studying probabilistic computing and inexact methods lies

in three areas of potential energy savings, performance improvement, and area im-

provement (that is, reduced density).

While Moore’s Law has produced an expectation that more transistors can be

packed on a chip, there is a physical limit to classical scaling theory described by

Dennard [14]. At the same time it is difficult to reliably manufacture billions of

transistors that operate without failure on a single chip.

With an insatiable demand for computation, there are limits to the power re-

duction that can be realized with traditional digital design. There is also a need to

build a fault tolerant chip that can “handle failure gracefully” [15]. Because of these

limits, researchers are investigating methods such as probabilistic computing as ways

to extract functionality that is “good enough” while operating with less power.

1

There are two broad approaches to studying inexact methods. First, there are

methods that provide deterministic inexactness (that is, a truth table that is occa-

sionally wrong). It is possible to apply these methods in situations when a system—in

which the logic is contained—does not care about a wrong answer [16]. That is, de-

terministic inexactness can be useful when the system doesn’t care about the wrong

result.

Second, there is the method of nondeterministic inexactness. Nondeterministic

inexactness refers to a circuit design that has a certain probability of error due to

unknown variables including noise, interference, manufacturing defects, or radiation.

Note that not all error is created equal. There is error due to approximation, and

there is random error. There are profoundly different consequences of these types of

error. For example, some error may be tolerable when processing image data or audio

data.

Noise is one of the sources of inexactness, such as when noise corrupts the truth

table. Circuit designers intend to design chips to be very robust. However, when

circuit designers start to push the boundary, and they start by degrading the design

itself, they are taking these steps because they may be able to eliminate some tran-

sistors or (perhaps) use smaller transistors. In such situations, circuit designers start

bending some of the rules of good design practice, because they are trying to achieve

a result that is “good enough”.

Both deterministic and nondeterministic inexactness must be well understood

by the circuit designer. Specifically, the designer needs to understand when and if

inexactness can be applied. Consider the situation in which a designer has prepared

a block diagram of a system. There are circumstances in which designers can inspect

a block diagram and decide which blocks of the design are those in which they can

use inexactness and which blocks are those in which they cannot use inexactness.

2

For example, it is undesirable for a state machine to jump to a random next state.

Therefore circuit designers would assume that that part of the design (that is, the

state machine) should be handled by traditional design methods—that is, by exact

methods. But the designers may identify other parts of the system design in which

one may realistically use inexactness. Here, the fundamental point of this argument

is that circuit designers cannot use inexactness indiscriminately, and inexactness only

works in certain types of circumstances.

The main contribution of this dissertation is a method to quantify the energy

savings resulting from the decision to accept a specified percentage of error in some

components of a computing system. Recall von Neumann’s pursuit to build reliable

systems from unreliable components [17, 18, 19, 20]. Von Neumann struggled with the

idea of how to obtain correct results when the constituent components are unreliable.

This work was performed following the invention of the transistor, and vacuum tubes

were used but failed (with vacuum tubes, the mean time to failure was 10 to 20

minutes, and computing systems contained many vacuum tubes). Designers started

to worry less when transistors provided higher yield, but out of the work by von

Neumann emerged ideas such as triple module redundancy.

In computing applications, data compression is necessary due to memory, disk

space, and network bandwidth constraints. The Joint Photographic Experts Group

(JPEG) File Interchange Format (JFIF) is ubiquitous, and is a very effective method

of image compression. Throughout this document, we refer to the JFIF compression

algorithm, which is used for this research, as the “JPEG compression algorithm”

(not to be confused with JPEG2000). For many imaging applications, energy is at

a premium due to battery life and heat dissipation concerns. For space applications,

the electronic systems are also susceptible to the effects of the natural radiation

environment; for example, solor protons and galactic cosmic rays can cause single

3

event upsets within the circuits, which is another form of hardware unreliability.

The emerging field of inexact computing promises to deliver energy-parsimonious

computation by sacrificing the strict requirement for accuracy in digital logic circuits.

The contribution of this research will be to advance the state of the art of inexact

computing by optimizing the JPEG compression algorithm for reduced energy, delay,

and area.

Inexact computing is ultimately based on information theory. Consider an adder

which computes a sum S+ from inputs A and B. Now consider an approximate

adder with output S̃+, which is an estimator for S+. How much information does S̃+

contain about about the desired sum S+? With inexact computing, it is possible to

save energy, delay, and area, and still obtain information about S+, without obtaining

the exact value of S+.

1.1 Strategy for Applying Inexact Methods

How do we know whether an inexact design is appropriate for a particular ap-

plication? The decision-making process is outlined in the flowchart in Fig. 1. The

flowchart proceeds as follows. First, the designer must consider the algorithm which

the system will execute. If the algorithm is well-understood an has been previously

implemented in hardware using exact methods, then historical data will provide a

baseline for the performance, area, and energy consumption required to implement

the algorithm. If the algorithm is new, and has never previously been built into hard-

ware, then the designer should create an exact design (i.e. schematics or layouts) to

determine the baseline for the algorithm.

From the baseline, the designer can estimate the whole algorithm will occupy an

estimated fraction f of the chip. The fraction f could be a fraction of the total chip

area, gate count, or other such metric. In the “profiling” step, the designer divides

4

Algorithm

Not worthwhile to
examine inexact

solution.
Use exact

methods only.

Choose Precision

Choose Error
Metrics (Statistics)

Relax Design
Rules for Inexact

Computation
(0.5<p<1)

Error Bounds
Met? [21]

Choose Error
Bounds

Yes

(Re-) Profiling of
Algorithm

Submit Design
for Fabrication

No

No

Yes

No

Yes

Reformulate
Algorithm

Revert to Previous
Design in which

Error Bounds
Were Met

Use Probabilistic
Pruning [21] or

Logic Minimization
[26] to Reduce
Energy, Delay,

and Area

Error Bounds
Met? [21]

Use Noisy
Inexactness to
Reduce Energy

and Area
(choose p)

Design
Constraints Satisfied?

(e.g. Delay)

Revert to Previous
Design in which

Design
Constraints Were

Satisfied

Revert to Previous
Design in which

Error Bounds
Were Met

Yes

Yes

No

No

Determine Design
Constraints

STRATEGY
FOR APPLYING

INEXACT
METHODS TO
THE 1st SUB-
ALGORITHM

Evaluate All Parts
of the Algorithm
Together as a

System

Overall Perfor-
mance Meets User

Requirements?

No

Yes

STRATEGY FOR
APPLYING INEXACT

METHODS TO THE kth
SUB-ALGORITHM

STRATEGY
FOR APPLYING

INEXACT
METHODS TO
THE 2nd SUB-
ALGORITHM

STRATEGY
FOR APPLYING

INEXACT
METHODS TO
THE nth SUB-
ALGORITHM

Select Exact or
Inexact Method

Determine Exact
Baseline

Determine Exact
Sub-Algorithm

Baseline

Compare Inexact
Method vs. Exact

Baseline

Compare Inexact
Method vs. Exact

Sub-Algorithm
Baseline

Figure 1. Decision-making flowchart for inexact design.

5

the algorithm into sub-algorithms. If there are n sub-algorithms, then the kth sub-

algorithm occupies an estimated fraction fk of the chip. The total of all fractions fk

add up to f , that is,
n∑

k=1

fk = f. (1)

Each sub-algorithm is designed separately. Types of sub-algorithms include: com-

putation, state machines, encoding, routing, memory storage and retrieval, time syn-

chronization, and random number generation. Some sub-algorithms are potentially

amenable to inexactness, while others are not. Of these categories, we would ar-

gue that computation, memory storage and retrieval, and random number generation

could possibly be done inexactly in a useful way, while the others would not. However,

future research may find useful ways to perform the other sub-algorithms inexactly

also.

Some sub-algorithms have multiple possible formulations. If an inexact design

is being proposed, then the designer should choose the formulation that is most

amenable to inexact methods; for example, a formulation based on addition is likely

more tolerant of inexactness than a formulation based on a decision tree. If, after

considering all possible formulations of the sub-algorithm, there appears to be no

possible benefit to an inexact design, then the designer will choose to design the

sub-algorithm using exact methods only.

If the algorithm is a potentially inexact algorithm, then it can be implemented

in an inexact hardware technology. As device dimensions shrink, it is increasingly

difficult for devices to perform consistently, reliably, and to have good noise margins.

Future hardware technologies may be designed to perform in a probabilistic manner,

that is, it will function “correctly” most of the time, but at each individual node there

is a probability p of correctness, where 0.5 < p < 1, and a probability (1−p) of error.

Errors could be caused by noise, radio frequency (RF) interference, crosstalk between

6

components, threshold voltage variations, cross-chip variations, or cosmic radiation.

In inexact hardware technology, the interconnect between transistors would also be

susceptible to crosstalk, which is a possible error source. Such technology would

include relaxed design rules with tabulated probabilities of correctness which depend

on the area and spacing allocated to each transistor or interconnect.

Based on the exact algorithm baseline and the candidate process technologies,

the designer should determine a baseline for the performance of the sub-algorithm

implemented using exact methods. This is used as a basis for comparison with the

inexact design.

The next step is to choose the number of bits of precision required to process the

data. Information collected from analog sensors is inherently uncertain, and needs

only a limited number of significant figures to express it. This should be reflected in

the computing hardware. For example, if the significant figures of the data can be

expressed in eight bits, then using a 64-bit adder to process it would be a waste of

hardware and energy.

The designer must also determine the constraints which the design must meet.

Constraints may include timing, area, current, and power dissipation.

Next, the designer chooses the metrics by which the system will be evaluated.

These may include the energy consumption, delay, and area of the hardware. Other

metrics will reflect the overall quality of the overall system output. For example, in

image compression, the metrics for system output include root-mean-squared (RMS)

error, Signal to Noise Ratio (SNR), and compression ratio. For human consumption

of images, however, simple metrics do not adequately summarize the quality of an

image, so it is up to the users opinion as to whether the image quality is “good

enough”.

The next step is to choose the error tolerance, or error bounds, for the overall

7

system output. Error metrics could include statistics such as: the maximum possible

error, RMS error, or likelihood of nonzero error. The system design will not be allowed

to exceed the error tolerance.

Probabilistic pruning and probabilistic logic minimization techniques are methods

of simplifying the digital logic hardware while producing an approximate computa-

tional output in a deterministic manner. Probabilistic pruning and probabilistic logic

minimization simultaneously meet the objectives of reducing energy consumption,

delay, and chip area, by sacrificing the accuracy of the output in some cases. These

techniques are used repeatedly until a maximum error tolerance is met [21].

After using deterministic inexact design techniques, the designer considers the

effects of non-deterministic errors due to the inexact nature of the process technology.

The designer can “tune the design to reduce area and energy consumption, until the

effects of non-deterministic errors exceed the pre-determined error bound, or the

design constraints (e.g. delay) are no longer met.

After creating the inexact design for the sub-algorithm, the designer compares the

inexact design with the baseline previously determined. If the inexact design results

in a substantial savings of energy, delay, area, energy-delay product, or other such

metric, without an excessive amount of error, then the designer chooses to use the

inexact design for the sub-algorithm. If, however, there is little apparent benefit to

the inexact design, then the designer chooses to use an exact design instead.

Once hardware has been designed for all sub-algorithms, the parts must be eval-

uated together as a whole system. At this point, the designer makes sure the entire

algorithm works properly, and then compares it to the exact baseline for the whole

algorithm. If the overall performance meets user requirements, then the design is

submitted for fabrication. If not, then the designer must re-profile some or all of the

algorithm, and then re-design some or all of the sub-algorithms until performance is

8

satisfactory.

1.2 Motivational Link to Air Force Needs and Vision

The need in the U.S. Air Force for the capability to create perfect computing

systems out of imperfect components to achieve military and space objectives dates at

least to the construction of the earliest computing systems including those built from

mechanical components, vacuum tubes, and instrumentation in the earliest Apollo

missions. There are some applications of electronic systems that can tolerate inexact

systems, and some applications that cannot tolerate inexactness.

For example, for a life support system, the system should be as reliable as possible,

and inexactness is undesirable. For a satellite system that can operate in low power

mode, inexact computing may be tolerated to achieve trade-offs in size, weight, and

power. To incorporate inexact systems in space applications, there is a need to

quantify trade-offs in size, weight, and power.

This dissertation is concerned with exploring the incorporation of inexactness in

the JPEG algorithm, shown in Fig. 2, which is by its nature a lossy compression

algorithm, where the existence of loss indicates the user’s willingness to accept error.

That will be discussed in this dissertation. As a contribution of this work, we find

that the Color Space Transformation (CST) has 55% energy reduction per pixel of

an uncompressed image, and the discrete cosine transformation step also has a 55%

energy reduction per pixel for the case in which the probability of correctness p =

0.99. These results are promising and indicate that JPEG can be considered a fitting

example for this type of study. Future work will consider the additional components,

which are: tiling, quantization, zigzagging, run-amplitude encoding, and Huffman

encoding. The JPEG algorithm can be implemented in hardware or software. Tiling

and zigzagging are simply routing of data, and in a hardware implementation, it is

9

Tiling
(routing)

Zigzagging
(routing)

Run-Amplitude
Encoding

Huffman
Encoding

Discrete Cosine Transformation

Floating-Point Multipliers:
· Multiplier
· Adder
· Multiplexers
· Bit Shifter
· Sign Logic (XOR)

Floating-Point Adders:
· Comparators
· Adder / Subtractor
· Multiplexers
· Bit Shifters
· Bit Counter

Discrete Cosine Transformation

Bit Shifters

Integer Multipliers Integer Adders

Color Space Transformation

Bit Shifters

Integer Multipliers Integer Adders

Color Space Transformation

Floating-Point
Adders

Floating-Point
Multipliers

Quantization

Floating-Point Multipliers

Quantization

Integer Multipliers

Bit Shifters

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

Figure 2. Block diagram of the JPEG image compression algorithm. In this disserta-
tion, the JPEG algorithm is a motivational example for inexact computing. The shaded
boxes show areas where inexact methods can be considered (for example, in adder cir-
cuits and multiplier circuits). The white boxes show areas where inexact methods
cannot be considered (“keep-out zones”).

possible to implement these two steps via wiring only. In a software implementation,

we would not want errors in the instruction pipeline or memory addressing, so in that

case inexact tiling and zigzagging would not be desirable. In the JPEG algorithm, the

user’s willingness to accept error leads to trade-offs in size, weight, and power within

the color space transformation, discrete cosine transformation, and quantization steps,

as indicated in the pink areas in Fig. 2.

We now consider briefly a historical example of why the Air Force should care

about implementing inexactness in computing systems. In the book entitled Digital

Apollo, the author David Mindell, Dibner Professor of the History of Engineering and

Manufacturing, Professor of Engineering Systems, and Director of the Program in

Science, Technology, and Society at MIT, describes how the Apollo astronauts became

their own “ultimate redundant components” by carrying on board with them extra

copies of the computer hardware so that in case of failure, they could replace the faulty

hardware with one of the backups. Triple module redundancy is one example of a now-

10

common approach to creating more perfect computing systems out of components that

are understood to be imperfect.

In the book, he writes,

“Robert Chilton remembered that Hall and his group paid constant
attention to reliability questions, though NASA wasn’t prepared to give
them a specification. . . .[more specific than] ‘as reliable as a parachute’
. . . with one in a hundred chance the mission would fail, and a one in a
thousand chance the astronauts would not survive.” (page 128, Mindell)

“Hall estimated that his Block I integrated circuit computer would
have a reliability of 0.966, but the spec he had been given required
reliability nearly ten times better. To make up the difference he proposed
[relying] on the skills of the astronauts: they would repair the computer
during flight. . . . Hall proposed that Apollo flights also carry a special
machine, a ‘MicroMonitor,’ a smaller version of the equipment used to
check out the computer on the ground. The device was heavy and took
up space, required its operator to ‘exercise considerable thought,’ and re-
quired the operator to have a mere three to six months of training. . . ‘This
device is known to be effective, Hall wrote, ‘in direct proportion to the
training and native skill of the operator’.” (page 129, Mindell)

“Astronauts had been billed as the ultimate redundant components.
Asking them to improve the reliability of their equipment seemed sensible,
but it proved no simple task.” (page 130, Mindell) [22]

In December 1965, Eldon C. Hall, of the MIT Instrumentation Laboratory in his

report E-1880 entitled, “A Case History of the AGC Integrated Logic Circuits” [23],

Mr. Hall explains in this report that the use of “one single, simple integrated circuit

for all logic functions” was required to achieve the goals of “low weight, volume,

and power coupled with extreme high reliability.” As he describes, the “one single,

simple integrated circuit” was the three input NOR gate (the NOR3 logic gate). He

writes about the following tradeoffs in the selection of the logic element in the Apollo

Guidance Computer,

“The logic element utilized in the Apollo Guidance Computer is the three
input NOR Gate. . . At the time that the decision was made to use in-

11

tegrated circuits, the NOR Gate was the only device available in large
quantities. The simplicity of the circuit allowed several manufacturers to
produce interchangeable devices so that reasonable competition was as-
sured. Because of recent process development in integrated circuits, the
NOR Gate has been able to remain competitive on the basis of speed,
power, and noise immunity. This circuit is used at 3V and 15mW, but is
rated at 8 V and 100 mW. Unpowered temperature rating is 150 degrees
C. The basic simplicity of the three input gate aids an effective screen-
ing process. All transistors and resistors can be tested to insure product
uniformity. The simplicity of the circuit also aids in the quick detection
and diagnosing of insidious failures without extensive probing as required
with more complicated circuits.” (page 4, Hall 1965).

It is recognized from at least the time in this report (1965) that the inherent

reliability gains must be implemented in the design stages of the computer. This

dissertation recognizes that tradeoffs between energy, power, and reliability continue

even with the most advanced silicon CMOS technologies available today. One can

even state that the tradeoffs between energy, power, and reliability are most especially

of concern to the U.S. Force today, because the needs of the silicon CMOS technologies

are predominantly, and increasingly, driven by the consumer marketplace much more

so than the environment in which the Apollo missions found themselves when the DoD

formed a greater portion of the demand for integrated circuits.

Today, however, the “strategic environment that the Air Force faces over the next

two decades is substantially different from that which has dominated throughout most

of its history,” as explained in the document entitled, ‘A Vision for Air Force Science

Technology During 2010-2030” [24]. This document provides an overview of the role

of 110 Key Technology Areas (KTAs) including the KTA of advanced computing

architectures that support the 12 Potential Capability Areas (PCAs) of the U.S. Air

Force.

The document “A Vision for Air Force Science Technology During 2010-2030”

also describes advantages and additional capabilities that reductions in power, per-

formance, and area can provide in electronics in order to enable the U.S. Air Force to

12

achieve superiority in air, space, and cyberspace domains. Specific examples are per-

sistent near-space communications relays (page 63), where power and thermal man-

agement (heat dissipation) challenges exist. Reductions in size, weight, power, and

thermal management requirements will further enable greater integration of complex

systems in advanced fighters, space satellites, and “other tactical platforms.” (page

72).

This dissertation presents a demonstration of inexact computing implemented in

the JPEG compression algorithm using probabilistic Boolean logic applied to CMOS

components, with a specific focus on the most advanced silicon CMOS technology

currently in high volume manufacturing today (namely, the 14nm FinFET silicon

CMOS technology). The JPEG algorithm is selected as a motivational example since

it is widely accessible to the U.S. Air Force community. It is also well known that the

JPEG algorithm is widely known and widely used worldwide, in many areas including

but not limited to the military, education, business, and by people of ages who capture

images on their personal electronics, cameras, and cell phones. This dissertation is

interested in the question about how much energy and power can be saved if one

might be able to accept additional tradeoffs in accuracy (and thus lead to potential

advantages such as lower power consumption, increased battery life, and decreased

need to dissipate heat since the power consumption is reduced).

The goal of this dissertation is to present a demonstration of this JPEG algorithm

in which two components of the algorithm (namely the first step, color space trans-

formation, and the third step, discrete cosine transformation) take advantage of the

reduced energy and power that can be achieved when one accepts a certain amount

of inexactness in the result. Energy-accuracy tradeoffs in adders and multipliers are

explored in detail, and detailed results are presented quantifying the extent to which

the power-delay product can be reduced as a function of probability of correctness.

13

The dissertation applies the inexact JPEG algorithm to an analysis of uncompressed

TIFF images of an F-16 U.S. Air Force plane provided by the University of Southern

California, as shown in Fig. 3. In this dissertation, we only analyze the data from the

intensity (Y) component of the image, so in Chapter V the figures appear in black-

and-white; however, we expect very similar results for the color components (Cb and

Cr) since they are processed in a very similar way. The results quantify tradeoffs

between the probability of correctness, the SNR, and the Root-Mean-Square (RMS)

error. Specifically the results show that as the probability of correctness takes on

a smaller value (decreases), the SNR takes on a smaller value, and the RMS error

increases. Values are quantified for each of the tradeoffs.

1.3 Contributions

We have shown that we could cut energy demand in half with 16-bit Kogge-Stone

adders that deviated from the correct value by an average of 3.0 percent in 14 nm

CMOS FinFET technology, assuming a noise amplitude of 3 × 10−12 V2/Hz (see Fig.

32). This was achieved by reducing VDD to 0.6 V instead of its maximum value of

0.8 V. The energy-delay product (EDP) was reduced by 38 percent (see Fig. 33).

Adders that got wrong answers with a larger deviation of about 7.5 percent (using

VDD = 0.5 V) were up to 3.7 times more energy-efficient, and the EDP was reduced

by 45 percent.

Adders that got wrong answers with a larger deviation of about 19 percent (using

VDD = 0.3 V) were up to 13 times more energy-efficient, and the EDP was reduced

by 35 percent.

We used inexact adders and inexact multipliers to perform the color space trans-

form, and found that with a 1 percent probability of error at each logic gate, the

letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to 10

14

Figure 3. Original uncompressed image of an F-16, file name 4.2.05.tiff, from the USC
SIPI image database [25].

pixels tall, are readable in the processed image, as shown in Fig. 40f, where the

relative RMS error is 5.4 percent.

We used inexact adders and inexact multipliers to perform the discrete cosine

transform, and found that with a 1 percent probability of error at each logic gate,

the letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to

10 pixels tall, are readable in the processed image, as shown in Fig. 41f, where the

relative RMS error is 20 percent.

In the next section, we present a literature review of inexact computing and de-

scribe prior work. This section provides background information regarding the ap-

proach for inexact computing that is used in this dissertation.

15

II. Literature Review

Inexactness has typically been understood to be inherent in analog circuits, but

not in the conventional understanding of digital logic. Previous work in the field of

inexact digital CMOS has focused on two types of inexactness: (1) circuits which

produce an approximate result, but are deterministically erroneous by design, and

(2) circuits which suffer from the effects of random noise. The first type of inexact-

ness is achieved via probabilistic pruning [21] or probabilistic logic minimization [26].

Probabilistic pruning is a bottom-up approach in which components are removed

from the schematic of a circuit, for the purpose of saving energy, delay, and area,

while producing output which is “correct” in the majority of cases. Probabilistic

logic minimization accomplishes the same objective of saving energy, delay, and area

by creating an erroneous, but simpler, design based on a modified truth table which is

“correct” in the majority of cases. Probabilistic pruning and probabilistic logic min-

imization both produce an approximate result, constrained by a desired error bound

[21, 26]. The designer chooses the error bound that meets the needs of the system.

Probabilistic pruning and probabilistic logic minimization enable the designer to re-

duce energy consumption, delay, and chip area by creating a circuit which is simpler

than the conventional (exact) circuit.

From the perspective of this dissertation, inexact computing is contrary to the

notion of error detection and correction. Whereas the primary goal of inexact com-

puting is to reduce energy consumption [27], error detection and correction techniques

contain additional components which increase the energy, delay, and area of the cir-

cuit. These techniques could be used in conjunction with inexact computing, but

only if the overall energy savings outweigh the additional costs. For example, triple

module redundancy could be used if the energy consumption of the inexact circuit is

less than 1/3 the energy consumption of the equivalent exact circuit.

16

The second type of inexactness, which is non-deterministic (noise-susceptible)

inexactness, has been achieved by severely lowering the power supply voltage, thus

reducing the noise margins of the circuit [28, 29, 30]. Great energy savings can be

achieved this way, if the designer is willing to tolerate the error. For example, for an

inverter in 0.25 μm CMOS technology with an RMS noise magnitude of 0.4 V, [27]

reports a 300% energy reduction per switching cycle can be achieved by allowing the

probability of correctness p to drop from 0.99 to 0.95.

Prior work investigated energy and performance with the use of high level C-

based simulations [31, 32, 33]. These papers treat individual logic gates as unreliable,

with an associated probability of correctness p < 1, or equivalently a finite error

probability 1 − p, and present simulation results of complex circuits built out of

unreliable primitive elements. Additional prior work used circuit simulations of a 32-

bit weighted voltage-scaled adder with carry look-ahead capability and demonstrated

a calculation error of 10−6 while reducing the total power consumption by more than

40% in 45 nm CMOS FDSOI technology [34]. This shows a promising approach

to the study of inexact adders, which we have used in our work. Additional prior

work shows a four-fold reduction in energy-delay product using probabilistic pruning

of 64-bit Kogge-Stone adders, at the expense of an 8% average error [35]. In this

dissertation, we use similar metrics to evaluate adders.

In some cases, erroneous bits inside a circuit have no impact on its final output.

Researchers are interested in “don’t care sets” which describe sets of erroneous inputs

that don’t cause errors at the output (“observability don’t care” conditions), or input

vectors that can never occur (“satisfiability don’t care” conditions) [16, 36]. This

dissertation does not take that approach; however, it is clearly relevant to the field

of inexact computing. For example, if a designer is aware of the observability don’t

care conditions of a device, then he could simplify the circuit using probabilistic

17

logic minimization without causing any errors at the output. As another example,

random noise inside a digital circuit could cause errors internal to the circuit without

affecting the output; based on the observability don’t care conditions, the designer

could choose to use unreliable components in those areas of the circuit in which errors

would be unlikely to affect the output. On the other hand, while satisfiability don’t

care conditions may exist for an error-free logic circuit, they may not exist if that

circuit is susceptible to random errors, i.e. random noise may cause unexpected input

conditions.

The approach of this literature review is informed by the goal of this dissertation.

The approach of this work is to investigate the energy reduction and energy-delay

product in a selection of adder and multiplier architectures made using unreliable logic

gates, and then to build an inexact JPEG compression algorithm using these inexact

adders and multipliers. In the interests of high-speed simulation and of collecting

large sample sizes, these simulations were performed with Matlab using a Probabilistic

Boolean Logic (PBL) error model.

The PBL error model is more simplistic than an analog error model. In this

dissertation, we also compute the energy and Energy-Delay Product (EDP) of selected

adder architectures in 14 nm FinFET CMOS technology as a function of error. This

is similar to the approach used in [34]. As an example of the approach presented in

this dissertation, consider a circuit design that exhibits a 20% error rate. The results

in this dissertation show that for the specific circuits considered with an error rate

is 20%, the payback for accepting a 20% error rate is an energy reduction of 90%.

If a circuit designer were willing to tolerate 20% error and gain this energy, one can

then ask the question, ‘what good is this’? For example, one could implement triple

module redundancy in either temporally or spatially: temporally, one could sample

the same data at three different points in time; spatially, one could replicate the

18

circuit design three times, with three copies, knowing that statistically the majority

vote will always be correct. The main point is that when one can improve the accuracy

through the use of redundancy and, at the same time, save so much energy that one

obtains practically a perfect answer, then accepting the error is worth it.

19

III. Background

In this section, we present a taxonomy of inexact computing. We review inte-

ger adder architectures and show how the model of PBL can be applied to adders.

We explain how PBL can be used within a binary or an analog circuit model, and

introduce nomenclature used throughout the dissertation. Next, we review integer

multiplier architectures. We review probability distributions and Maximum Likeli-

hood Estimation (MLE), and explain how they can be used to characterize the error

distributions of inexact adders and multipliers. Finally, we provide a detailed review

of the JPEG compression algorithm.

The following definitions are useful for understanding the framework of inexact

computing:

• Inexact: Probabilistic methodology for determining an answer.

• Imprecision: Small uncertainties about the LSBs of the answer. The maximum

possible error that can occur. Imprecision is inherent in data collected from

analog sensors.

• Probability of Correctness: Determines the dispersion (i.e. standard deviation)

of the errors.

• Erroneous: Failure of the system to compute a useful answer.

3.1 Taxonomy of Inexact Computing

3.1.1 Deterministic.

Many different sources of deterministic error are possible. Error can be measured

in many different ways. The amount of error to tolerate is a design parameter for the

inexact system. Error sources include:

20

• Limited precision of the processor (number of bits)

• Inexact design techniques, such as probabilistic pruning or probabilistic logic

minimization

3.1.1.1 Limited Precision.

Digital computers are inherently inexact, because they have limited precision. For

example, using double-precision (64-bit) floating-point numbers, 1
6

is approximated

as 0.166666666666666660. If we add that approximation to itself six times, the result

is slightly less than 1. For practical purposes, data being analyzed do not require

64 bits of precision. Furthermore, analog data are inherently bounded by a range of

uncertainty, and this uncertainty carries into the digital domain when analog data

are digitized. Data collected from actual experiments do not have infinite precision;

the numbers have a limited number of “significant figures” or bits of information.

Whereas a computer may store a piece of experimental data in a 64-bit register, only

the first eight bits (for example) may contain meaningful information based on the

experiment.

The limits of the information content carry forward from the source data into other

data computed from it. If we have an NA-bit number A which contains NI(A) bits of

information, and an NB-bit number B which contains to NI(B) bits of information,

then the product AB has NA + NB bits, but only NI(P) bits of information, where

NI(P) is the lesser of NI(A) and NI(B). The information content of the sum A + B is

limited by the greater of LSBI(A) and LSBI(B), where LSBI(A) is the least significant

bit of A containing meaningful information, and LSBI(B) is the least significant bit

of B containing meaningful information.

The point of this is that we do not need to build a 64-bit adder if an 8-bit adder can

handle the information content. Obviously, adders and multipliers of 64-bit numbers

21

occupy more area on chip, have longer delay time, and consume more energy than

adders and multipliers of 8-bit numbers (all else being equal). Since the objectives of

inexact computing include savings of energy, delay, and area, eliminating unneeded

precision is consistent with the philosophy of inexact computing. Details about this

technique applied to the JPEG compression algorithm are explained in Section 4.6.

3.1.1.2 Probabilistic Pruning.

Probabilistic pruning is a bottom-up, architecture-level approach to inexact com-

puting [21, 35]. It is accomplished by taking an exact design, and then deleting those

logic gates which are least used and have the least impact on the overall accuracy

of the system. Deleting components from the design, like pruning leaves off a tree,

reduces the delay, area, and power consumption of the system. The result is a com-

puter which is inaccurate by design, but only in a limited number of cases which

occur infrequently. To decide which components to prune, the designer looks at each

element in the circuit and considers: (1) the probability of the element being active

at any given time, and (2) the magnitude of the error that would result from deleting

that circuit element. After pruning a component, the designer then “heals” the float-

ing inputs of the remaining elements that were previously connected to the pruned

element, as described in Section 3.1.1.2.3. The designer continues pruning the circuit

until the error of the pruned circuit exceeds a desired error bound (ε̄max).

3.1.1.2.1 Probability of an Element Being Active.

The probability of a logic element being active depends on the application, and

is determined by analysis, modeling, or simulation. Specifically, the designer must

predict the probability of every possible input vector to the circuit. This depends on

the expected data set. Then the designer can determine the accuracy penalty which

would result from pruning a circuit element.

22

3.1.1.2.2 Quantifying Error.

The designer chooses an error metric depending on the application. Lingamneni

[21] defines three possible metrics: average error, error rate, and relative error mag-

nitude. Additionally, these error metrics can be weighted or uniform (unweighted).

In the unweighted case, all bits have equal weight when calculating error. In the

weighted case, the jth bit of a binary number is assigned a weight factor ηj equal to

2j .

Average error : The average error of a pruned circuit G ′ relative to an exact circuit

G is computed as [21]:

Er(G ′) =
V∑

k=1

pk × |Ỹk − Yk| ≤ ε̄max (2)

where:

V = the number of possible input vectors; or else the number sampled

< Yk,1, Yk,2, . . . Yk,n > = output vector of exact circuit

< Ỹk,1, Ỹk,2, . . . Ỹk,n > = output vector of pruned circuit

n = number of bits

pk = probability of occurrence for each input vector

ε̄max = desired error bound

ηj = 2j = weight factor of the jth bit of Yk and Ỹk,

or ηj = 1 for all j (unweighted error model)

Error rate :

Error Rate =
Number of Erroneous Computations

Total Number of Computations

=
V ′

V
(3)

23

Relative error magnitude :

Relative Error Magnitude =
1

V

V∑

k=1

|Yk − Ỹk|
Yk

(4)

By pruning away circuit elements which are seldom active, or which have little ef-

fect on the final output, the errors from Equations (3)-(4) will be small. To obtain

maximum savings in energy, delay, and area, the designer will continue pruning until

the average error reaches the desired error bound (ε̄max). To predict error rates for

complex circuits it may not be practical to compute the errors across the entire input

space; therefore, a random sample may be chosen.

3.1.1.2.3 Healing.

After pruning away a circuit element, the inputs of some of the remaining circuit

elements will be floating and undefined. The designer can heal each floating input

in one of three ways: (1) connect them to ground, (2) connect them to the supply

voltage VDD, or (3) connect them to one of the inputs of the pruned element. The

best choice is whichever one minimizes the error.

3.1.1.3 Probabilistic Logic Minimization.

Probabilistic logic minimization is a top-down, architecture level approach to in-

exact design [26]. In this method, the designer looks at the truth table of an exact

circuit, and then considers flipping bits in ways that make the logic simpler. This

results in a circuit which is occasionally erroneous, but has less delay, area, and power

consumption than the exact circuit. As in the probabilistic pruning method, the goal

is for the errors to be infrequent and small in magnitude. There is no hardware

overhead to this technique.

As an example, consider the carry-out function of a one-bit full adder. The exact

24

logic is

cout = ab + bc + ac. (5)

The truth table for this function has eight possible outputs. Equation (5) can be

approximated by

cout = ab + c (6)

or

cout = a(b + c) (7)

or

cout = ab + bc + ac + abc. (8)

in each case, the truth table is incorrect in one of the eight positions. However, while

Equations (6)-(7) are simpler than (5), Equation (8) is more complicated. Therefore,

(6)-(7) are favorable bit flips and are good candidates for probabilistic logic minimiza-

tion, while (8) is unfavorable and would not be used. The errors due to probabilistic

logic minimization can be quantified using Equations (2-4).

3.1.1.4 Don’t Care Sets.

Probabilistic pruning and probabilistic logic minimization each create approximate

solutions to digital logic problems. For some input vectors there will be zero error at

the output, and in other cases there will be some error. There is considerable research

[16] regarding the identification of “don’t care” sets of input or output vectors:

• A satisfiability don’t care condition is an input vector that can never occur. For

example, if a digital circuit performs a function f(a, b) on a binary inputs a and

b, and a = b OR c, then (a, b) = (0, 1) is an impossible input vector to f .

• An observability don’t care condition occurs when changes to the input vector

25

do not change the output vector. For a digital vector function f of input vector

X, observability don’t care means ∂f(X)/∂X = 0.

Don’t care analysis could be used to identify all the zero-error conditions resulting

from probabilistic pruning or probabilistic logic minimization. However, inexact com-

puting extends this idea by allowing a nonzero error distribution to be introduced into

the digital system.

3.1.1.5 Mutual Information: The Usefulness of the Estimator.

A skeptic will ask: Given that an inexact signal is wrong, how is it any better

than random noise? Or why not just output zeros all the time? The answer is that

the inexact signal contains more information than a random signal or a zero. Using

a concept called mutual information, we can quantify the usefulness of an inexact

signal relative to an exact signal.

From information theory, we define the entropy H as the average uncertainty of a

random variable [37]. For a discrete random variable X, entropy can be expressed as

the number of binary digits required to quantify any possible outcome of X. Entropy

is calculated as

H(X) = −
∑

all x

p(x) log2 p(x), (9)

where p(x) is the probability mass function of the discrete random variable X. If X

is uniformly distributed over 2N possible values, then H(X) = N bits, and within the

framework of information theory, N is not necessarily an integer.

The joint entropy H(X,Y) of two discrete random variables X and Y is

H(X,Y) = −
∑

all x

∑

all y

p(x, y) log2 p(x, y), (10)

where p(x, y) is the joint Probability Mass Function (PMF) of X and Y . The condi-

26

tional entropy of Y given X is

H(Y |X) = −
∑

all x

p(x)
∑

all y

p(y|x) log2 p(y|x), (11)

where p(y|x) is the conditional PMF of Y given X = x.

The mutual information I of two random variables can be defined as the reduction

in the uncertainty of one variable, given knowledge of the other. For discrete random

variables, I is calculated as

I(X,Y) = H(Y) − H(Y |X) (12)

=
∑

all x

∑

all y

p(x, y) log2

p(x, y)

p(x)p(y)
(13)

where p(y) is the PMF of Y . Now Y provides as much information about X as X

does about Y , so

I(X,Y) = I(Y,X) (14)

= H(X) − H(X|Y). (15)

As an example, suppose X is a random variable drawn from a population of inte-

gers uniformly distributed between 1 and 100. Then the entropy H(X) = log2 100 =

6.644 bits. Now suppose Y is a random variable drawn from a population of integers

such that 0 ≤ (y − x) ≤ 3 for all x = X and all y = Y , and (Y − X) is uniformly

distributed between 0 and 3. Then (y − x) can be any of four possible values. If

we know x, then it takes log2 4 = 2 bits of additional information to determine y, so

the conditional entropy H(Y |X) = 2 bits. It then follows from (12) that the mutual

information I(X,Y) = 6.644 − 2 = 4.644 bits.

We apply the theory of mutual information to the exact output G, given the esti-

27

mator G ′ computed by the inexact circuit. The mutual information I(G,G ′) provides

a useful metric of the quality of G ′ as an estimator. The larger the value of I, the bet-

ter G ′ is as an estimator. Note that the value of I is based on an assumed probability

distribution of G.

3.1.2 Non-Deterministic.

Non-deterministic error means error caused by random variables unknown to the

circuit designer. In conventional circuit design, the goal is to eliminate the uncertain-

ties caused by random errors. However, with inexact computing, non-deterministic

error sources may be tolerated. These sources include:

• Thermal noise

• Shot noise

• Flicker (1/f) noise

• Radio Frequency (RF) interference

• Crosstalk within the chip

• Manufacturing process variations

• Radiation-induced single event upsets

• Ionizing radiation effects

3.1.2.1 Analog Systems.

There is no such thing as an error-free analog circuit. Any analog circuit can

be thought of as a hardware implementation of a mathematical function y = f(x),

where the input vector x and output vector y are both functions of time t. The input

nodes of the circuit are corrupted by a noise function win(t), and the output nodes

are corrupted by noise wout(t). By superposition the analog function becomes

y(t) = f [x(t) + win(t)] + wout(t). (16)

Basic building blocks of analog circuit include:

28

• Amplifier with gain A:

y(t) = A ∙ [x(t) + win(t)] + wout(t)

• Adder (summing junction) with n inputs:

y(t) =
∑n

i=1 [xi(t) + win,i(t)] + wout(t)

• Differentiator:

y(t) = d
dt

[x(t) + win(t)] + wout(t)

• Integrator with start time t0:

y(t) =
∫ t

t0
[x(τ) + win(τ)] dτ + wout(t)

In the case of the integrator, the slightest nonzero bias in win causes error to con-

tinuously accumulate with time. In all the above cases, cascading stages of analog

circuits introduces additional error with each stage.

By contrast, in traditional computer science, digital logic circuits are considered to

be perfectly deterministic, error-free computing machines. Traditional Boolean logic

does not consider the possibility of random errors in the system. Inexact computing

expands the notion of digital logic to allow errors or approximations to be introduced

into the digital system.

3.1.2.2 Binary Logic Affected by Noise.

Schematics for a CMOS inverter with noise at its input and at its output are shown

in Fig. 4. We expect the output of an inverter to simply be the binary complement of

its input. However, when an inverter is degraded by random noise, its output appears

as shown in Fig. 5. This approach can be applied to more complex circuits such as

adders, which is the method used in this dissertation.

29

Input

VDD

Output

AWGN
PSD =

(a) Noise at input.

Input

VDD

Output

AWGN
PSD =

(b) Noise at output.

Figure 4. CMOS inverter with (a) additive white Gaussian noise (AWGN) at the input,
and (b) AWGN at the output.

0 2 4 6 8 10

Y

A

Figure 5. Digitized input waveform A and output waveform Y of a noisy inverter,
showing a clean input and a noisy output. In this example, the noise was input-coupled
as shown in Fig. 4a.

30

3.1.2.3 Probabilistic Boolean Logic.

3.1.2.3.1 Definitions.

Chakrapani defines probabilistic Boolean operators, similar to standard Boolean

operators, except with a certain probability of correctness [38, 28, 27]:

∨p disjunction (OR) with probability p,

∧q conjunction (AND) with probability q, and

¬r negation (NOT) with probability r,

where 1
2
≤ p, q, r ≤ 1.

The probabilistic equality operator is denoted as:

s
= is equal to, with a probability s,

where 1
2
≤ s ≤ 1.

The probabilistic AND, OR, and NOT operations described above are very useful

for analyzing complex circuits such as adders and multipliers, as described in Sections

4.3-4.4.

3.1.2.3.2 Identities.

In standard Boolean logic, there are several identities which can be extended into

probabilistic Boolean logic [38]:

1. Commutativity

2. Double Complementation

3. Operations with 0 and 1

4. Identity

5. Tautology

6. DeMorgan’s identities

31

3.1.2.3.3 Identities which are Not Preserved.

Not all classical Boolean identities can be extended into probabilistic Boolean

logic. For binary variables a, b, and c, and probabilities p1 . . . p5, the following iden-

tities are not preserved [38]:

1. Associativity: (a ∨p1 (b ∨p1 c)) 6≡ ((a ∨p1 b) ∨p1 c).

2. Distributivity: (a ∨p1 (b ∧p2 c)) 6≡ ((a ∨p3 b) ∧p4 (a ∨p5 c)).

3. Absorption: (a ∧p1 (a ∨p2 b)) 6≡ a.

3.1.2.4 Probability of Correctness in the Presence of Random Noise.

Consider a pulsed waveform x which varies with time t. If we add random noise,

then the noisy waveform x̃ can be modeled as

x̃(t) = x(t) + win(t) (17)

where win is Additive White Gaussian Noise (AWGN), expressed as

win (t) = Aw cos (ωw,xt + ψw,x) (18)

where the amplitude Aw,x, frequency ωw,x, and phase ψw,x are constant within the

short sampling window of interest, but otherwise are random variables distributed as

Aw,x ∼ N
(
0, σ2

w

)
(19)

ωw,x ∼ Unif (ωL, ωU) (20)

ψw,x ∼ Unif (0, 2π) , (21)

32

where ωL and ωU are the upper and lower limits of the signal bandwidth, and σw

is the standard deviation of the noise amplitude. In this dissertation, the notation

∼ N (μ, σ2) means “is normally distributed with mean μ and variance σ2”, and ∼

Unif(a, b) means “is uniformly distributed between a and b”. In the case of thermal

noise, the mean thermal energy is

Ex = 1
2
kBT = 1

2
Cx〈w

2
in(t)〉, (22)

where kB is Boltzmann’s constant, T is the absolute temperature, Cx is the capaci-

tance of the circuit node, and 〈w2
in(t)〉 is the mean of the square of the thermal noise

voltage over time [29]. Since win is normally distributed in amplitude, then the av-

erage 〈w2
in(t)〉 is exponentially distributed with mean σ2

w [39], which implies a rate

parameter σ−2
w . This exponential distribution is denoted as

〈w2
in(t)〉 ∼ Exponential

(
σ−2

w

)
. (23)

Noise sources can create errors in digital circuits. These effects can be simulated

using Simulation Program with Integrated Circuit Emphasis (SPICE) or SpectreTM

software tools, as described in Section 4.1.

3.2 Adders

A large part of the JPEG image compression algorithm, as described in Section

3.6, consists of addition and multiplication; and multiplication is built upon addition.

A digital adder computes the sum of two N -bit integers A and B to produce an

N -bit output “sum” S and a carry-out bit Cout. The simplest N -bit adder, the

Ripple-Carry Adder (RCA), is composed of N one-bit adders in parallel, with a carry

signal connecting each bit to the one above it. In many cases, the sum of A and B

33

will require N + 1 bits to store, and therefore S is not always equal to A + B. In this

research, the sum of A and B is called the augmented sum S+, where

S+ = A + B (24)

and

S+ = 2NCout + S. (25)

The ith bits of A, B, and S are each written as ai, bi, and si respectively, where

A =
N−1∑

i=0

2iai, (26)

B =
N−1∑

i=0

2ibi, and (27)

S =
N−1∑

i=0

2isi. (28)

For most applications, the ripple-carry adder is the slowest adder architecture.

There are many adders which are optimized for speed, for example: carry-lookahead,

Brent-Kung, Han-Carlson, and Kogge-Stone adders [40]. Previous work [35] has

applied inexactness to these more sophisticated adders. In this research, we will use

these types of inexact adders in the image compression algorithm.

3.2.1 1-Bit Full Adder.

The one-bit Full Adder (FA) is the basic building block of a digital adder. It takes

three binary inputs a, b, and cin (where cin is known as the carry-in) and produces

binary outputs s (the sum) and cout (the carry-out) according to the truth table in

Table 1. The circuit diagram for a one-bit full adder is shown in Figure 6.

34

Table 1. Truth Table for a
1-Bit Full Adder

a b cin cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 2. Truth Table for a
1-Bit Half Adder

a b cout s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

3.2.2 1-Bit Half Adder.

The one-bit Half Adder (HA) is a simplified version of the full adder. The half

adder is used when there is no carry-in bit—for example, in the lowest-order bit of

an N -bit adder. The truth table for the one-bit half adder is shown in Table 2, and

the circuit diagram is shown in Figure 7.

a
b

cin
s

cout

Figure 6. 1-bit full adder

a
b

s

cout

Figure 7. 1-bit half adder

3.2.3 N-bit Ripple-Carry Adder.

An N -bit ripple-carry adder consists of N one-bit adders in parallel, where the

ith carry-out bit ci becomes the carry-in bit to the (i + 1)th column of the adder.

The schematic for an N -bit ripple-carry adder is shown in Figure 8.

35

1-Bit
Full

Adder

1-Bit
Full

Adder

1-Bit
Full

Adder

1-Bit
Full

Adder

1-Bit
Full

Adder
...

sN-2 sN-3 sN-4sN-1sN

aN-2
bN-2

aN-3
bN-3

aN-4
bN-4

aN-1
bN-1

aN
bN

cN cN-5cN-4cN-3cN-2cN-1

Figure 8. N-bit ripple-carry adder

3.2.4 Propagate/Generate Logic.

A carry lookahead adder contains logic designed to quickly compute the higher-

value carry bits, so the adder does not have to wait for the carry to ripple from the

lowest to the highest bit, as is the case with the ripple-carry adder. This logic is called

propagate and generate logic. A generate condition exists if a column (or group of

columns) generates a carry. A propagate condition exists if column(s) propagate a

carry which was generated by a lower-value column. The propagate condition Pi:j for

the jth stage of the ith column is determined by

Pi:j = Pi:k ∧ Pk−1:j , (29)

where k represents a previous stage, and ∧ is the logical AND operator. The generate

condition Gi:j is determined by

Gi:j = (Pi:k ∧ Gk−1:j) ∨ Gi:k, (30)

36

Figure 9. Propagate/Generate logic gates [40].

where ∨ is the logical OR operator. The schematic symbols for these expressions are

illustrated in Fig. 9.

3.2.5 Ripple-Carry Adder.

A ripple-carry adder is the simplest digital adder, requiring fewer components

and less area than any other adder. It is also the slowest type of adder, because it

computes every column of the sum one at a time. All other adders have additional

components designed to speed up computation by computing the higher-order bits

in parallel with the lower-order bits. The schematic for a 16-bit ripple-carry adder is

shown in Fig. 10.

3.2.6 Carry Lookahead Adder.

A carry lookahead adder splits the addition problem into subgroups of bits, and has

additional hardware, called the carry lookahead logic, which enables fast computation

of the higher-order bits. The number of bits in a subgroup is called the valency or

37

Figure 10. 16-bit ripple-carry adder schematic [40].

Figure 11. 16-bit radix 4 carry lookahead adder schematic [40].

radix of the adder. For a radix 4 carry lookahead adder,

Gi:j = Gi:k + Pi:k (Gk−1:l + Pk−1:l (Gl−1:m + Pl−1:mGm−1:j)) (31)

and

Pi:j = Pi:kPk−1:lPl−1:mPm−1:j , (32)

as represented by the black circles in the bottom left of Fig. 9 and the top of Fig. 11

[40]. The schematic for a 16-bit radix 4 carry lookahead adder is shown in Fig. 11.

38

Figure 12. 16-bit Kogge-Stone adder schematic [40].

3.2.7 Kogge-Stone Adder.

The Kogge-Stone adder is a type of carry lookahead adder. In an N -bit Kogge-

Stone adder, the carry lookahead logic has log2 N stages. The schematic for a 16-bit

Kogge-Stone adder is shown in Fig. 12. The inputs to the first stage, Pi:0 and Gi:0,

are determined by

Pi:0 = ai ⊕ bi (33)

Gi:0 = ai ∧ bi, (34)

where ai and bi are the ith bits of the adder inputs A and B, and ⊕ is the exclusive-OR

operator. The ith sum bit si is determined by

si = Pi:0 ⊕ Gi:log2 N . (35)

39

3.2.8 Ling Adder.

A Ling adder [41] uses pseudogeneate and pseudopropagate signals Hi:j and Ii:j

in place of the regular propagate and generate signals Gi:j and Pi:j in (29)-(30) and

Fig. 9. The Ling adder used in the IBM Power4 microprocessor is a radix 4 carry

lookahead adder [42]. Any adder that uses propagate/generate logic can use the Ling

technique. The only differences are in the precomputation of Hi:0 and Ii:0 at the top

of the schematic, and the computation of the final sum bits at the bottom. The initial

pseudogenerate is computed as [40]

Hi:0 = ai:0bi:0, (36)

and the initial pseudopropagate is

Ii:0 = ai:0 + bi:0. (37)

The advantage of this is that it replaces an exclusive-OR with an OR on the critical

path, which makes the algorithm faster. Then, instead of using (31) to compute the

carry lookahead logic, we use the simpler expression

Hi:j = Hi:k + Hk−1:l + K̄k−1:l

(
Hl−1:m + K̄l−1:mHm−1:j

)
, (38)

where K̄i:j = Ii+1:j+1, and instead of (32) we use

Ii:j = Ii:kIk−1:lIl−1:mIm−1:j . (39)

The final sum bit Si is computed as

Si = Hi−1:0

(
Pi:0 ⊕ K̄i−1:0

)
+ H̄i−1:0Pi:0. (40)

40

3.2.9 Probabilistic Boolean Logic (PBL).

In this research, we use PBL to analyze complex circuits such as adders. The

probabilistic AND, OR, and NOT operations described in Section 3.1.2.3 are very

useful for this purpose, as described in Sections 3.2.10-3.2.11. Although [38] does not

define a probabilistic exclusive-or (XOR), for the purpose of this research we define

it as

a ⊕p b = (a ∧1 ¬1b) ∨p (¬1a ∧1 b) (41)

for binary numbers a and b, where ⊕p is the XOR operation with probability p of

correctness.

3.2.10 Propagate/Generate Logic with PBL.

From the perspective of Probabilistic Boolean Logic, (29)-(30) can be modified as

follows:

P̃i:j = P̃i:k ∧p P̃k−1:j (42)

G̃i:j =
(
P̃i:k ∧1 G̃k−1:j

)
∨p G̃i:k, (43)

where P̃i:j and G̃i:j are noisy approximations for Pi:j and Gi:j . In this analysis, the

AND-OR-21 (AO21) gate in Fig. 9 is regarded as a single entity, and for this reason

the probability p appears only once in (43).

3.2.11 Kogge-Stone Adder with PBL.

PBL can also be applied to the input of the Kogge-Stone adder:

P̃i:0 = ai ⊕p bi (44)

G̃i:0 = ai ∧p bi, (45)

41

*FA FA FA HA...

k,2 k,1 k,0k,N-1

k-1,3

a2

k-1,2

a1

k-1,1

a0

* k-1,N

aN-1

ck,N-1 ck,0ck,1ck,2ck,N-2

k,N

bk bk bk bk

k-1,0

pk

N-bit
Multiplier

Cell

N-bit
Multiplier

Cell

N-bit
Multiplier

Cell

A
1

2

0

3

A

A

b1

b2

b3

p1

p2

p3

N-bit
Multiplier

Cell

N-2

N-1

AbN-1

pN-1

Figure 13. N-bit integer multiplier. (a) The kth stage, not including stage k = 0. *For
stage k = 1, a half adder can be used for the highest-order bit. (b) All (N − 1) stages
cascaded together.

and to the sum bits:

s̃i = P̃i:0 ⊕p G̃i:log2 N , (46)

where s̃i is a noisy approximation for si.

3.3 Multipliers

A multiplier computes the product P of two N -bit integers A and B. For an

integer multiplier, P may require up to 2N bits to store. In a basic multiplier, the

42

product is computed as

P = 2N P̆N−1

N−1∑

k=1

pk, (47)

where P̆k is the kth partial product, and pk is the kth bit of P , and

pk = p̆k−1,0, (48)

where p̆k−1,0 is the zeroth bit of P̆k−1. The zeroth partial product P̆0 is computed as

P̆0 = b0

N−1∑

i=0

2iai, (49)

and the remaining (N − 1) partial products P̆k are computed according to

P̆k =
N−1∑

i=0

(aibk + p̆k−1,i+1) , (50)

where p̆k−1,i+1 is the (i + 1)th bit of P̆k−1, so

P̆k =
N∑

i=0

2i p̆k,i. (51)

By Equation (51), P̆k requires (N + 1) bits, and from (47) it is apparent that the

final product P of an exact integer multiplier requires 2N bits. The schematic for the

integer multiplier is shown in Figure 13.

3.4 Probability Distributions

If we treat the inputs A and B to an inexact adder as random variables, it follows

that S+, S̃+, and ε̂ are also random variables. In this research, we fit the normalized

error ε̂ to various hypothetical probability distributions.

43

3.4.1 Gaussian Distribution.

A Gaussian (normal) distribution is characterized by its Probability Density Func-

tion (PDF)

fX(x) =
e−(x−μ)2/2σ2

√
2πσ

(52)

with respect to some random variable X, where μ is the mean and σ is the standard

deviation. Given a sample of data, the most likely Gaussian distribution to fit the

sample has parameters μ = μ̃ and σ = σ̃, where μ̃ is the sample mean and σ̃ is the

sample standard deviation.

3.4.2 Laplacian Distribution.

A Laplacian (double exponential) distribution has the PDF

fX(x) =
α

2
e−α|x| (53)

with scale parameter α and standard deviation
√

2/α [39]. Given a sample xn of data,

consisting of n observations x1, x2, . . . xn, the most likely Laplacian distribution to fit

the sample has parameter

1

α̃
=

1

n

n∑

j=1

|xj − μ̄|, (54)

where α̃ is an estimate of α, and μ̄ is the sample median [43].

3.4.3 Normal Product Distribution.

A Normal Product (NP) distribution arises from the product u of ψ normally-

distributed random variables X1, X2, . . . Xψ, where ψ is the order of the distribution,

and the product is

u =

ψ∏

j=1

Xj. (55)

44

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

(a) Linear scale.

-40 -20 0 20 40
10

-8

10
-6

10
-4

10
-2

10
0

(b) Semilogarithmic scale.

Figure 14. Probability density functions for Gaussian (with σ = 1), Laplacian (with
α = 1), NP2, NP3, and NP20 (each with σ = 1).

45

We introduce the abbreviation NPψ which means “ψth-order normal product dis-

tribution”. Random variables X1, X2, . . . Xψ have standard deviations σ1, σ2, . . . σψ

respectively, and the product σ = σ1σ2 ∙ ∙ ∙ σψ is the standard deviation of u. A

Gaussian distribution is a special case of a normal product distribution, where ψ = 1.

Nadarajah [44] gives the exact formula for the PDF of a normal product distri-

bution as the more general case of the product of ψ Student’s t distributions, where

νi is the number of degrees of freedom of the ith t distribution, and νi → ∞ for all

i 6= i1, i2, . . . iψ̄:

fU(u) =
2π−ψ/2

uΓ (νi1/2) Γ (νi2/2) ∙ ∙ ∙Γ
(
νiψ̄

/2
)Gψ̄,ψ

ψ,ψ̄

2ψ−ψ̄νi1νi2 ∙ ∙ ∙ νiψ̄

u2

∣
∣
∣
∣
∣
∣
∣

1
2
, 1

2
, . . . 1

2

νi1

2
,

νi2

2
, . . .

νiψ̄

2

 , (56)

for u > 0, where ψ̄ is the total number of non-infinite values of νi, Γ is the gamma

function, and G is the Meijer G-function. In this research, we are interested in the

product of Gaussian distributions, in which case ψ̄ = 0 and (56) simplifies to

fU (u) =
2π−ψ/2

u
G0,ψ

ψ,0

(
2ψ

u2

∣
∣
∣
∣

1
2
, 1

2
, . . . 1

2

)

. (57)

Since the distribution is symmetric about u = 0, we can use |u| in place of u. Applying

the scale factor σ, the generic formula for a normal product distribution is

fU(u) =
2π−ψ/2

|u|
G0,ψ

ψ,0

(
2ψσ2

u2

∣
∣
∣
∣

1
2
, 1

2
, . . . 1

2

)

. (58)

Fig. 14 compares the PDFs of Gaussian, Laplacian, NP2, NP3, and NP20 distri-

butions. All are symmetric about the central peak. PDFs for all NP distributions

with ψ ≥ 2 diverge to infinity as x approaches zero. The order ψ of an NP distri-

46

bution is important, because as ψ increases, so does the kurtosis of the distribution.

Kurtosis can be interpreted as the narrowness of the peak of the PDF, or alternatively

as the heaviness of the tails. This is evident in the NP20 distribution in Fig. 14b, as

compared with the NP2 and NP3 distributions.

3.4.4 Maximum Likelihood Estimation.

In order to determine which probability distribution is the best fit for a sample

xn containing n observations of data, the maximum likelihood estimation method is

used. The likelihood l that a sample represents a distribution with PDF fX is

l(xn|θ) =
n∏

j=1

fX(xj|θ), (59)

where θ are the parameters of the distribution. It is usually more convenient to work

with the log-likelihood L of the distribution, because this allows us to work with sums

instead of products. The log-likelihood is

L(xn|θ) =
n∑

j=1

ln fX(xj|θ). (60)

The parameters θ which maximize l, or equivalently, L, specify the best fit for any

given fX . Furthermore, by the maximum likelihood estimation method it is possible

to compare among different distributions, for example, it can determine whether a

Gaussian, Laplacian, or normal product distribution is the best fit for the sample. To

maximize L, the derivative of L with respect to θ is set to zero:

∂

∂θ
L(xn|θ) = 0, (61)

and the value of θ which satisfies (61) specifies the best fit [39].

47

According to (58), each normal product distribution PDF for continuous-valued

random variables diverges to infinity as U approaches zero. This makes it impossible

to perform a maximum likelihood estimation if the data sample contains zeros. This

problem can be avoided by treating U as a discrete-valued random variable with bin

width dε̂, where

dε̂ =
1

2N+1 − 1
. (62)

Assuming a real discrete-valued U , there is a finite probability that U is equal to

some discrete value u:

PU(U = u) =

∫ u+dε̂/2

u−dε̂/2

fU (ũ) dũ. (63)

Now PU can be used in place of fU in (60) and the maximum likelihood estimation

can be performed.

3.5 IEEE 754 Floating Point Storage

The JPEG compression algorithm requires floating point operations in order to

perform the Discrete Cosine Transformation (DCT). For floating point numbers, the

IEEE 754 standard is the most commonly used method of storage [45]. According to

the standard, numbers can be stored within 16, 32, 64, or 128-bit words, and can be

stored in base b = 2 or b = 10 format. Each floating point number contains three

components: a sign bit s, an exponent e, and a mantissa m, where in this notation

1 ≤ m < 2 . Accordingly, for any floating point number A,

A = (−1)sbe−e0m, (64)

48

Table 3. IEEE 754 Standard Base-2 Formats

Name Common Name b e0 Ne Nm
binary16 Half precision 2 15 5 10+1
binary32 Single precision 2 127 8 23+1
binary64 Double precision 2 1023 11 52+1
binary128 Quadruple precision 2 16383 15 112+1

where e0 is the offset bias of the exponent, in accordance with Table 3. Each format

includes a Ne-bit exponent and a Nm-bit mantissa, where the values for Ne and Nm

are shown in Table 3. For any nonzero binary number, the first digit of m is always

1, and is omitted. Therefore, only (Nm − 1) bits are stored.

3.5.1 Floating Point Addition.

In order to add two numbers in IEEE 754 format, they must first have the same

value for the exponent e. To obtain this, the mantissa of the smaller number is shifted

right, and its exponent incremented, until the exponents of the two numbers match.

Trailing bits of the mantissa are truncated. When the two exponents match, then the

mantissas can be added. The carry-out bit Cout of this addition is then added to the

exponent. To find the sum S of two floating point numbers A and B, where B > A,

mS = mB + (mA >> (eB − eA)) − 2Cout (65)

eS = eB + Cout, (66)

where eA, eB, and eS are the exponents of A, B, and S; mA, mB, and mS are the

mantissas of A, B, and S, and >> denotes bitwise shifting by (eB − eA) bits.

3.5.2 Floating Point Multiplication.

Multiplication of two numbers A and B in IEEE 754 format consists of multiplying

the mantissas mA and mB together, and then adding the exponents. The leading Nm

49

bits of the mantissa are preserved; the rest are truncated. To find the product P ,

mP = mAmB (67)

eP = eA + eB, (68)

where mP is the mantissa of P , and eP is the exponent of P .

3.6 JPEG Compression Algorithm

The Joint Photographic Experts Group (JPEG) compression algorithm, also known

as the JPEG File Interchange Format (JFIF) compression algorithm, consists of the

following steps [46, 47]:

1. Color Space Transformation (CST)

2. Tiling

3. Discrete Cosine Transformation (DCT)

4. Quantization

5. Zigzagging

6. Run-amplitude encoding, and

7. Huffman encoding.

These steps are illustrated in the block diagram in Fig. 2.

3.6.1 Color Space Transformation.

First, the image is converted from RGB format to YCbCr format. The reason for

this is that the Human Visual System (HVS) is more sensitive to intensity than it

50

is to color [48]. By converting to YCbCr format, we can optimize the quality of the

intensity (luminance) Y at the expense of the colors (chrominance) Cb and Cr. The

conversion is as follows [49]:

Y = 0.299R + 0.587G + 0.114B; (69)

Cb = −0.16874R− 0.33126G + 0.5B + 128; (70)

Cr = 0.5R− 0.41869G − 0.08131B + 128. (71)

Each component is processed independently of the other components.

3.6.2 Tiling.

Each component (Y , Cb, and Cr) is then arranged into 8×8 tiles of pixels. Each

tile is processed independently of the other tiles. The color components are typically

sampled at only half the rate of the intensity component in the y direction; that is,

the vertical resolution of the color components is half the resolution of the luminance

component.

3.6.3 Discrete Cosine Transformation.

Next, the two-dimensional DCT transform is performed on each tile:

C = UXUT , (72)

where X is the 8×8 tile of intensity or color data, U is the orthogonal DCT transform

matrix, and C is an 8×8 matrix of frequency components in the horizontal and vertical

directions. The zero-frequency component is in the upper left corner of the matrix,

and is known as the dc component; the others are called the ac components. Assuming

the image is a “smooth” function of x and y, most of the DCT components will be

51

close to zero.

A single 8 × 8 DCT block produces images as shown in Fig. 15. Each subfigure

shows the effect of one of the 64 DCT components being active, with a value of

1023, while all the other components are zero. Not all elements are illustrated in this

figure—there are 64 of them. As we will see in Chapter V, if the processor erroneously

computes a DCT value which is too large, we will see artifacts which look like the

pictures in Fig. 15.

In this research, we simulate probabilistic Boolean logic by randomly flipping

bits inside each adder and each multiplier. Matrix multiplication is built from these

inexact adders and multipliers. The DCT is built from matrix multiplication. Errors

in the DCT result in artifacts like those shown in Fig. 15. Multiple erroneous DCT

artifacts may be superimposed onto each other, as well as onto the desired data. An

example of erroneous DCT data is shown in Fig. 41f.

(a) (1,1) (b) (1,2) (c) (1,3) (d) (1,4) (e) (1,8) (f) (2,1) (g) (6,1)

(h) (2,2) (i) (2,5) (j) (3,3) (k) (6,3) (l) (4,4) (m) (7,6) (n) (8,8)

Figure 15. Elementary 8× 8 JPEG images, showing the result of a single DCT. In each
subfigure, 63 of the 64 values in the DCT matrix are zeros, except for one value which
is 1023. The row and column number of the nonzero element is shown in each caption.

In general, finding the product of three 8 × 8 matrices requires 1,024 multiply

operations and 896 addition operations. However, due to the sparseness of the in-

formation in U , it is possible to simplify the computational complexity of the DCT.

Table 4 shows the complexities of various DCT algorithms. Despite these improve-

ments, computation of the DCT typically takes about 45 percent of the processing

52

Table 4. Complexity of Various DCT Algorithms for an 8 × 8 Input Block [48, 47]

Algorithm Multiplications Additions Reference
Block factors 464 144 [50]

2-D Fast Fourier Transform (FFT) 104 474 [51]
Walsh-Hadamard Transform (WHT) depends on WHT used [52]

1-D Chen 256 416 [53]
1-D Lee 192 464 [54]

1-D Loeffler, Ligtenberg 176 464 [55]
2-D Kamangar, Rao 128 430 [56]

2-D Cho, Lee 96 466 [57]
1-D Winograd 80 464 [58]

time for the JPEG compression.

3.6.4 Quantization.

The DCT matrix C is then converted to an integer matrix Q via quantization.

Matrix C is divided element-wise by a quantization matrix Z and a quantization scale

factor α:

qi,j = round

(
ci,j

α zi,j

)

, (73)

where ci,j , zi,j , and qi,j are the (i,j)th elements of C, Z, and Q respectively. A “quality

factor” q, which is a percentage, is often specified in lieu of α. The scale factor α is

calculated from q as

α =

50%
q

, q < 50%

2 − q
50%

, q ≥ 50%.

(74)

In Equation (73), each qi,j is rounded to the nearest integer. Some information is

lost at this point. The quantization matrices are customizable and are saved within

the JPEG file; however, standard quantization matrices are commonly used. The

intensity (Y) and chrominance (Cb and Cr) components use different quantization

53

matrices. For the intensity component, the standard quantization matrix is

Z =

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(for intensity), (75)

and for the chrominance components, the standard quantization matrix is

Z =

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

(for chrominance). (76)

From Equation (74), a quality factor q = 50% results in a scale factor α = 1, and in

that case the unscaled quantization matrices in Equations (75)-(76) are used.

3.6.5 Zigzagging of Q.

Matrix Q is then arranged into a 64-element sequence Q̌, beginning with the dc

component, and zigzagging diagonally from the upper left to the lower right of Q.

54

3.6.6 Run-Amplitude Encoding.

Run-amplitude encoding is performed on all ac components of Q̌. These are

converted to ordered pairs of integers, where the first number in the pair is the run

length of zeros (that is, the number of consecutive zeros in sequence), and the second

number is the nonzero component that follows. The last nonzero component of Q̌ is

followed by an End of Block (EOB) code.

3.6.7 Huffman Encoding.

Finally, Huffman encoding is performed on the dc component of Q̌ and the run-

amplitude encoded ac components. The Huffman codes vary in bit length. The

value associated with each Huffman code is saved in a table at the beginning of

the JPEG file. Optimally, the most frequently occurring Huffman codes have the

shortest bit lengths. Usually, four separate Huffman tables are used: dc luminance,

ac luminance, dc chrominance, and ac chrominance. These tables are customizable;

however, standard Huffman tables are commonly used. Compression occurs during

the quantization, run-amplitude encoding, and Huffman encoding steps.

3.6.8 Summary.

The CST, DCT, and quantization involve linear operations (addition and multi-

plication) which are promising applications for the energy-parsimonious inexact com-

puting described in literature [27]. Several methods exist for optimizing the computa-

tional efficiency of the discrete cosine transformation [46, 47]—these could be further

improved via inexact computing.

Decoding is accomplished by performing the above seven steps in reverse order.

Since losses occur during quantization, the decoded image will not be exactly the

same as the original. Also, color information is lost due to the chroma subsampling

55

described in Section 3.6.2.

Key to the JPEG compression performance is the run-amplitude encoding (Section

3.6.6), which takes advantage of the fact that natural images vary slowly with respect

to x and y, have few nonzero ac components, and have long sequences of ac com-

ponents which are zero. Inexact computing technology must take this into account.

Nonzero values interjected into the quantized matrix Q will degrade the compression

performance of the system. Single event upsets can also cause this effect.

Since Huffman encoding (Section 3.6.7) and decoding involve variable bit lengths,

any error in the code could corrupt all the data that follow. Therefore, the Huffman

coding is probably not an application for inexact computing. In a radiation environ-

ment, the Huffman codes, like everything else, are susceptible to single event upsets,

and could cause such data corruption. Due to the critical nature of the Huffman

codes, the Huffman coding algorithm is a good application for hardware or software

redundancy, error checking, or radiation hardening.

56

IV. Methodology

Our approach to characterizing inexact adders consists of a binary probabilistic

Boolean logic (PBL) simulation implemented using Matlab. To compute energy and

Energy-Delay Product (EDP), we implement adder circuits in a SpectreTM analog

simulation. We then calculate the errors of the inexact adders, fit them to probability

distributions, and compute summary statistics.

4.1 Circuit Simulations

Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software

via noisy voltage sources, current sources, resistors, or transistors. In the case of

voltage or current sources, noise is specified in terms of its Power Spectral Density

(PSD) σ2, measured in volts squared per hertz (V2/Hz) or amps squared per hertz

(A2/Hz). Thermal noise, shot noise, and flicker noise of resistors and transistors can

also be simulated. In all cases, the user must specify the noise bandwidth for the

simulation. Noise can also be simulated in Matlab by the addition of a normally

distributed random voltage with a mean of zero and a standard deviation σ.

A generalized model for computing the energy consumption, delay, and probability

of correctness of an inexact computational circuit, as compared to a conventional

(exact) circuit, is shown in Figure 16. Using a SPICE or SpectreTM environment,

a Monte Carlo simulation can be performed, using a set X of randomly generated

digital input signals which switch at a specified clock rate. This input vector X varies

with time t, and is common to both the exact and the inexact circuit. The two circuits

are powered by separate voltage sources with magnitude VDD for the exact circuit,

and ṼDD for the inexact circuit, where ṼDD ≤ VDD. When the simulation runs, the

exact output signal Y and inexact output Ỹ can be then observed and compared.

57

DD

VDD

Exact
Device

Inexact
DeviceDD

Digital Input
Vector X

Subtractor

D i g i tal O utp ut Y

Approximate
Digital Output

Y

IDD

Error
+

−

Figure 16. Generalized circuit model for simulating the correctness, delay, and energy
consumption of an inexact device, as compared with an exact device.

The difference between the two outputs is the error ε, which is a function of X:

ε = Ỹ [X(t)] − Y [X(t)] . (77)

If the inexact circuit is noise-susceptible, then Equation 77 becomes

ε = Ỹ [X(t) , w(t)] − Y [X(t)] , (78)

where w represents the vector of all noise sources within the inexact circuit.

The simulation also predicts the power supply currents IDD of the exact circuit

and ĨDD of the inexact circuit. Using this information, the instantaneous power P of

the exact circuit can be computed as

P(t) = VDD IDD(t), (79)

58

and for the inexact circuit the power is

P̃(t) = VDD ĨDD(t). (80)

The energy consumption E of the exact circuit is

E(t) = T P(t), (81)

where T is the clock period, and for the inexact circuit the energy is

Ẽ(t) = T P̃(t). (82)

In digital circuits, the total power P equals the sum of the dynamic power Pd and

static power Ps. Dynamic power depends on the present input state Xl, and also on

the previous state Xl−1. Static power depends only on the present input state, and is

generally much less than dynamic power. In this research, we are only interested in

the average powers Pd and Ps for exact circuits, and average powers P̃d and Ps for

inexact circuits. While Ps and Ps are functions of all possible inputs Xl, Pd and Pd

are functions of all possible Xl paired with all possible Xl−1. For complex circuits,

it is impractical to test the entire input space. For this reason, we choose a random

sequence of inputs and perform a Monte Carlo simulation.

4.1.1 SpectreTM Simulation.

4.1.1.1 0.6 μm Technology.

In order to quantify the energy consumption and delay of the inexact 8-bit Kogge-

Stone adder, a Monte Carlo simulation of the circuit was conducted in the Cadence

Spectre environment, using C5N 0.6 μm technology by ON Semiconductor. Logic

59

Table 5. Probabilities of Correctness Per Node due to Noise Sources:
0.6 μm Technology

Noise #1 Noise #2
VDD[V] 5 × 10−10 V2/Hz 1 × 10−9 V2/Hz

1.5 0.9343 0.8603
2.0 0.9773 0.9216
2.5 0.9942 0.9633
3.0 1.0000 0.9831
3.3 1.0000 0.9899

gates were designed for minimum width, with equal pull-up and pull-down strength,

and a maximum fanout of 4. Random binary signals {a0, . . . aN−1, b0, . . . bN−1} with

a 25% activity factor and a 50 MHz clock rate were used as inputs to the adder.

The performance of the adder was observed for 100 cycles (2 μs). Random errors

were introduced within the system by placing a Gaussian noise voltage source at each

node in the circuit. This effectively simulated the probability p of correctness used

in (42)-(46). The noise sources caused each node to vary from its “correct” voltage

by a random amount. The probability of correctness was the probability that the

noise would not exceed VDD/2 at any given point in time. Noise is specified in terms

of its bandwidth and Power Spectral Density (PSD). The 0 .6 μm simulation used a

500 MHz noise bandwidth and two different PSDs: 5 × 10−10 and 1 × 10−9 V2/Hz,

which produced the per-node probabilities of correctness shown in Table 5. It is

worth noting that the noise voltages in SpectreTM are roughly Gaussian, but were

not seen to produce values beyond ±3.05 standard deviations. It is also worth noting

that, although p = 1 appears twice in Table 5, this is not necessarily an error-free

condition, because the noise could cause additional delay during state transitions, or

accumulations of noise from multiple sources could cause errors.

60

Table 6. Probabilities of Correctness Per Node due to Noise Sources:
14 nm Technology

Noise #1 Noise #2
VDD[V] 1 × 10−11 V2/Hz 2 × 10−11 V2/Hz

0.2 0.6726 0.6241
0.3 0.7488 0.6824
0.4 0.8145 0.7365
0.5 0.8682 0.7854
0.6 0.9101 0.8286
0.7 0.9412 0.8658
0.8 0.9632 0.8970

4.1.1.2 14 nm Technology.

SpectreTM simulations of 8 and 16-bit ripple-carry adders were conducted using

a 14 nm finFET technology. Logic gates were simulated using all minimum-width

transistors with one finger and two fins. Simulations were run with a 500 MHz clock

rate, over a time span of 100 cycles (200 ns). To simulate the noise at each circuit node,

two different noise states were used: 1 × 10−11 and 2× 10−11 V2/Hz, which produced

the per-node probabilities of correctness shown in Table 6. The noise bandwidth in

each case was 5 GHz.

4.1.1.3 Energy Per Cycle.

The instantaneous power consumption P (t) of the adder is found by multiplying

the power supply current IDD(t) by the power supply voltage VDD:

P (t) = VDD IDD(t). (83)

The average power consumed between times t1 and t2 is

Pavg =
1

t2 − t1

∫ t2

t1

P (t)dt, (84)

61

and the average energy per clock cycle is

Eavg = PavgT =
Pavg

f
, (85)

where T is the clock period and f is the clock frequency.

4.1.1.4 Delay and Error.

To measure the normalized error ε̂ of the simulated adder, the exact instantaneous

augmented sum S+(t), as a function of time t, was computed from the input signals

according to (24)-(25), and the inexact instantaneous augmented sum S̃+(t) was

computed from the output signals. The instantaneous error ε is computed as

ε(X,w) = S̃+(X,w) − S+(X), (86)

where X = {A,B} is the input vector for a two-input adder, w is the vector of noise

sources inside the adder, and S̃+ is the approximate augmented sum computed by

the inexact adder. In the analog simulations, each noise source is an additive white

Gaussian noise (AWGN) source. For integer adders, it is helpful to normalize the

error to its maximum possible value. The normalized error is then

ε̂ =
ε

εmax

, (87)

where for an N -bit integer adder the maximum possible error is

εmax =
(
2N − 1

)
+
(
2N − 1

)
= 2N+1 − 2. (88)

The instantaneous error ε̂(t) was computed from (86)-(88), and then interpolated

along a uniform spacing of t. Computing error this way is not simple, however. Even

62

a noise-free adder experiences a time delay δ between the inputs and outputs, and

that delay is variable, depending on which input caused the change at the output. In

an 8-bit Kogge-Stone adder, the shortest delay δmin is from inputs {a0, b0} to output

s0, while the longest delay δmax is along the “critical” path, which could be from any

of the inputs to outputs s5, s6, or s7. This is evident in Fig. 12. In this figure, we can

see that only one gate delay is required to compute s0 = P0:0 = a0 ⊕ b0. To compute

s7, however, one gate delay is required to compute P6:0 = a6 ⊕ b6 and G6:0 = a6b6,

and then four more gate delays to compute s7.

To determine the range of possible delays, a noise-free adder was simulated using

power supply voltages VDD = 1.5, 2.0, 2.5, 3.0, and 3.3 V. For a given VDD, on each

clock pulse, the time span between the minimum and maximum possible delay is

considered an indeterminate state. For the purpose of error calculation, the domain

of ε̂(t) was restricted to exclude the indeterminate states. Statistics of the remaining

observations of ε̂ could then be calculated. Metrics for the inexact adder are: mean

and RMS error, maximum delay δmax, average energy Eavg, and the energy-delay

product, calculated as

EDP = Eavg δmax. (89)

4.2 Probabilistic Boolean Logic Simulations

As described in Section 3.2.9, Chakrapani [38] defines the building blocks of inex-

act digital logic circuits in terms of the probability of correctness p of each individual

logic gate. In a SPICE or SpectreTM environment, a noisy digital logic circuit can

be simulated as described in Section 4.1, and at its output we can observe p as a

function of σ. In Matlab, a binary circuit node with probability p of correctness

can be simulated by comparing p with a uniformly distributed random number, and

flipping the node to the “wrong” state if the random number exceeds p. By this

63

methodology, it is necessary to simulate every node in the circuit. Therefore, when

building a complex circuit, it is necessary to have a schematic of the proposed circuit

in order to correctly simulate the probabilities of correctness of the final outputs. A

basic adder is shown in Figure 8, and a basic multiplier in Figure 13. More complex

adders are commonly used in practice, and will be developed for this research.

4.3 Inexact Adders

a
b

a

a

b

b

ab
ab

(a) Two-input AND gate.

a
b

a

a

b

b

a + b
a + b

(b) Two-input OR gate.

a
b

a

a

aa

a

ab

b

b

b

b

b

a + b

a + b

(c) Two-input XOR gate.

a
b

a

a

c

c

b

b

c ab + c
ab + c

(d) AND-OR-2-1 gate.

Figure 17. Schematics for AND, OR, XOR, and AND-OR-2-1 gates.

Many different types of simulations can be performed in order to evaluate the

performance of inexact adders:

1. Various adder architectures, including ripple-carry, carry lookahead, Kogge-

Stone etc.

2. Various types of inexactness, including probabilistic pruning, probabilistic logic

minimization, probabilistic Boolean logic, and noise.

64

a1
b1

s 1

P 1: 0

G 1: 0

G 0 : 1

G 1: 1

a7
b7

s 7

P 7 : 0

G 7 : 0

G 6 : 1

c o u t

a6
b6

s 6

P 6 : 0

G 6 : 0

G 5 : 1

G 6 : 1

a5
b5

s 5

P 5 : 0

G 5 : 0

G 4 : 1

G 5 : 1

a4
b4

s 4

P 4 : 0

G 4 : 0

G 3 : 1

G 4 : 1

a3
b3

s 3

P 3 : 0

G 3 : 0

G 2 : 1

G 3 : 1

a2
b2

s 2

P 2 : 0

G 2 : 0

G 1: 1

G 2 : 1

a0
b0

s 0

P 0 : 0

G 0 : 0

c i n

G 0 : 1

AWGN
Source

Figure 18. Schematic of a noisy 8-bit ripple-carry adder. Additive white Gaussian
noise (AWGN) sources are shown at the output of each AND, XOR, and AND-OR-2-1
gate.

65

a1
b1

a7
b7

s7

P7:0

G7:0

cout

a6
b6

P6:0

G6:0

a5
b5

a4
b4

a3
b3

a2
b2

a0
b0

AWGN SourceG7:1

G6:1

P5:0

G5:0 G5:1

P5:1

P6:1

P7:1

P4:0

G4:0 G4:1

P4:1

P3:0

G3:0 G3:1

P3:1

P2:0

G2:0 G2:1

P2:1

P1:0

G1:0 G1:1

P0:0

G0:0

G4:2

G7:2

G6:2

G5:2

s6

s5

s4

s3

s2

s1

s0

Figure 19. Schematic of a noisy 8-bit Kogge-Stone adder. Additive white Gaussian
noise (AWGN) sources are shown at the output of each AND, XOR, and AND-OR-2-1
gate.

66

3. Various adder sizes: N = 8, 16, 32, or 64 bits.

4. Integer and floating point adders.

5. Various distributions of the inputs A and B.

6. Varying the power supply voltage VDD.

7. Varying amounts of the noise w at each node within the circuit.

8. Varying the probability p of correctness at each node within the circuit.

9. Applying more energy to the higher-order bits, in order to decrease the error ε.

Circuit simulations were performed with SpectreTM as described in Section 4.1,

and probabilistic Boolean logic simulations were performed with Matlab, as described

in Section 4.2.

Schematics for the AND, OR, XOR, and AND-OR-2-1 gates are shown in Fig.

17. Positive logic (instead of NAND and NOR) is consistent with [[32], Fig. 11]. The

schematic for a noisy 8-bit ripple-carry adder is shown in Fig. 18, and the schematic

for a noisy 8-bit Kogge-Stone adder is shown in Fig. 19. In these figures, a noise

source is at the output of each logic gate.

Adders were evaluated in terms of energy dissipation, delay, chip area, and error,

where the error ε̂ is computed from (86)-(88). In the SpectreTM analog simulation

environment, the noise vector w is a set of additive white Gaussian noise (AWGN)

sources located at each node within the circuit. In the Matlab probabilistic Boolean

logic (PBL) simulations, the noise sources were discrete-valued, binary error sources.

Note that (87)-(88) do not apply to floating-point adders, and it is not practical to

normalize errors relative to the upper limits of IEEE 754 floating-point numbers.

67

4.3.1 Ripple-Carry Adder with Inexactness Only on Less-Significant

Bits.

To limit the error of an inexact adder, it is possible to design it such that the

most-significant bits are computed using exact (reliable) technology, and the less-

significant bits are computed using inexact (unreliable) technology. For an N -bit

ripple-carry adder, which is composed of N one-bit adders, the lower Ninexact bits

would be computed using inexact one-bit adders, and the upper Nexact bits would be

computed using exact one-bit adders, where Nexact + Ninexact = N . The benefit of

this is that for such an adder, εmax is limited to

εmax =
(
2Ninexact − 1

)
+
(
2Ninexact − 1

)
= 2Ninexact+1 − 2, (90)

and the distribution of the error ε̂ is the same as for an Ninexact-bit ripple-carry

adder. The trade-off is that more energy must be dissipated in order to compute

the upper Nexact bits. The operation of a partially inexact 8-bit ripple-carry adder

with Nexact = 3 and Ninexact = 5 is illustrated in Figure 20. In the figure, the five

least significant bits, including the carries which ripple upward, are computed using

inexact one-bit adders. The three most significant bits, and the carry-out bit, are

computed using exact one-bit adders. In this example, it is possible for an erroneous

carry bit to ripple from position 4 into position 5; for this reason, it is still possible

for the uppermost bits to be erroneous. Repeated addition of such data will cause

further accumulation of errors.

68

8 7 6 5 4 3 2 1 0

10001100

+11000110

101010010

Figure 20. Addition using a partially inexact 8-bit ripple-carry adder with Nexact = 3
and Ninexact = 5. Inexact addition is shown in red, and exact addition is shown in green.

4.3.1.1 Energy Savings.

We assume that the energy consumed per cycle by an exact N -bit ripple-carry

adder is proportional to N :

Eadd,ex = NE1bit−add,ex, (91)

where E1bit−add,ex is the energy per cycle consumed by an exact one-bit adder. The

energy consumed by a partially inexact adder is

Eadd,in = NexactE1bit−add,ex + NinexactE1bit−add,in, (92)

where E1bit−add,in is the energy per cycle consumed by an inexact one-bit adder. The

energy savings of the partially inexact adder relative to the exact adder is

Eadd,in

Eadd,ex

=
NexactE1bit−add,ex + NinexactE1bit−add,in

NE1bit−add,ex

. (93)

4.4 Inexact Multipliers

A methodology similar to Section 4.3 was applied to multipliers. For this research,

shift-and-add and Wallace tree architectures were studied. For a multiplier, the error

69

is computed as

ε(X,w) = P̃ (X,w) − P (X), (94)

where P is the exact product and P̃ is the inexact product. For integer multipliers,

the normalized error ε̂ is computed using the maximum possible error εmax, which is

εmax =
(
2N

P − 1
)
∙
(
2N

P − 1
)

= 22NP − 2NP +1 + 1, (95)

where NP is the number of bits of the output product of the multiplier, and

NP = NA + NB, (96)

where NA and NB are the bit widths of the multiplicands A and B respectively.

4.4.1 Shift-and-Add Multiplier with Inexactness Only on Less-Significant

Bits.

To limit the error of the shift-and-add multiplier, exact technology can be used to

compute the most significant bits, with inexact technology used for the less significant

bits. The schematic for a shift-and-add multiplier is shown in Figure 13. In this

work, we simulate an N -bit partially inexact multiplier as follows. We are given

an NA-bit multiplicand A and an NB-bit multiplicand B, where NA + NB ≤ N .

The uppermost Nexact bits are computed exactly, and the remaining Ninexact bits are

computed inexactly, where Nexact +Ninexact = N . The steps involved in shift-and-add

multiplication are:

1. A logical AND is performed between each bit of A and bit 0 (the least significant

bit) of B. The AND operation is inexact for bits 0 through Ninexact − 1; for

higher bits, the AND operation is exact. The resulting value is called P̆0.

70

2. A logical AND is performed between each bit of A and bit 1 of B. The AND

operation is inexact for bits 1 through Ninexact − 1; for higher bits, the AND

operation is exact.

3. The value from step 2 is shifted one place to the left.

4. The value from step 3 is added to the value from step 1. In this work, the

addition is performed by an NA-bit ripple-carry adder with a half-adder on the

LSB. The addition is inexact for bits 1 through Ninexact − 1; for higher bits, the

addition is exact. No operation is required on the LSB of P̆0; it is simply routed

into the bit 0 position of the sum. The result is an (NA + 2)-bit value P̆1.

5. Steps 2 through 4 repeat for each of the bits in B, with the number of shifts

in step 3 incrementing with each iteration. However, inexact AND and inexact

addition are performed only on bit positions Ninexact − 1 and below.

An example of partially inexact multiplication is illustrated in Figure 21. In this

figure, NA = 4, NB = 4, Nexact = 3, and Ninexact = 5. The figure illustrates inexact

computation performed on the lower five bits of the product.

4.4.1.1 Energy Savings.

We now derive the formula for the energy savings of an inexact multiplier. The

energy per cycle consumed by an exact shift-and-add multiplier can be computed as

Emult,ex = NANBEand,ex + NA(NB − 1)E1bit−add,ex, (97)

where Eand,ex is the energy per cycle consumed by an exact AND gate, and E1bit−add,ex

is the energy per cycle consumed by an exact one-bit adder. For this research, Eq.

(97) provides the baseline against which the energy cosumption of inexact multipliers

71

7 6 5 4 3 2 1 0

1101 A

×1111 B

A AND b0 → 1101 P̆0

A AND b1 → +1101↓
4-bit adder → 100111 P̆1

A AND b2 → +1101↓↓
4-bit adder → 1011011 P̆2

A AND b3 → +1101↓↓↓
4-bit adder → 11000011 P̆3

Figure 21. Multiplication using a partially inexact 8-bit shift-and-add multiplier with
Nexact = 3 and Ninexact = 5. Inexact AND and inexact addition are shown in red, and
exact AND and exact addition are shown in green. In this example, the leftmost two
bits (sum and carry-out) of P̆1 are the output of a single inexact one-bit adder. Likewise,
the leftmost two bits of P̆2 and P̆3 are each output from a single exact one-bit adder.

72

is compared. In this research, we let Nmult,ex ≤ NB, where Nmult,ex is the number

of uppermost bits in the final product P which are to be computed exactly. Given

that constraint, from the lower left portion of Fig. 21 we can see that the number of

error-free AND gates is

Nmult,and,ex =

Nmult,ex−1∑

k=1

k =
(Nmult,ex − 1)Nmult,ex

2
, (98)

and the number of exact one-bit adders is also

Nmult,add,ex =

Nmult,ex−1∑

k=1

k =
(Nmult,ex − 1)Nmult,ex

2
(99)

= Nmult,and,ex. (100)

The number of inexact AND gates is

Nmult,and,in = NANB − Nmult,and,ex, (101)

and the number of inexact one-bit adders is

Nmult,add,in = NA(NB − 1) − Nmult,add,ex. (102)

Table 7 shows the values of Nmult,and,ex, Nmult,and,in, Nmult,add,ex, and Nmult,add,in

computed using Equations (98)-(102), for 16-bit adders with values of Nmult,ex ranging

from 0 to 6 bits. For example, if the final output product P is to have its three

most significant bits computed exactly, i.e. Nmult,ex = 3, then among the internal

components of the multiplier, the number of exact AND gates Nmult,and,ex = 3, the

number of inexact AND gates Nmult,and,in = 61, the number of exact one-bit adders

Nmult,add,ex = 3, and the number of inexact one-bit adders Nmult,add,in = 53. The table

73

shows how the total number of exact ANDs and exact additions increase as Nmult,ex

increases, and the total number of inexact ANDs and inexact additions decrease as

Nmult,ex increases; that is, as Nmult,ex increases from 0 to 6, Nmult,and,ex and Nmult,add,ex

each increase from 0 to 15, while Nmult,and,in decreases from 64 to 49 and Nmult,add,ex

decreases from 56 to 41. In this example, where NA = 8 and NB = 8, the table shows

that in every row, Nmult,and,ex + Nmult,and,in = 64 (from Eq. (101)) and Nmult,add,ex +

Nmult,add,in = 56 (from Eq. (102)). Table 7 shows that, based on the model defined

in Equations (98)-(102), a multiplier cannot have a parameter Nmult,ex = 1, since the

two upper bits of the final product are the carry-out and sum bits of a single one-bit

adder, and we have chosen to define a one-bit adder as containing either all exact

components or all inexact components.

Table 7. 16-Bit Shift-and-Add Multipliers Using Exact & Inexact Bits
NA = 8, NB = 8

Nmult,ex Nmult,and,ex Nmult,and,in Nmult,add,ex Nmult,add,in

0 0 64 0 56
1 0 64 0 56
2 1 63 1 55
3 3 61 3 53
4 6 58 6 50
5 10 54 10 46
6 15 49 15 41

Assuming that the energy consumption due to inexact AND is proportional to the

number of bits computed that way, then the energy consumption of AND gates is

Emult,and,in = Nmult,and,inEand,in, (103)

where Eand,in is the per-cycle energy consumption of a single AND gate. Assuming

that the energy consumption due to inexact addition is proportional to the number

74

of bits so computed,

Emult,add,in = Nmult,add,inE1bit−add,in, (104)

where E1bit−add,in is the per-cycle energy consumption of a one-bit adder. The energy

consumption of the partially inexact multiplier relative to the exact multiplier is

Emult,in

Emult,ex

=
Emult,and,in + Emult,add,in

Emult,and,ex + Emult,add,ex

(105)

= (Nmult,and,inEand,in + Nmult,and,exEand,ex + Nmult,add,inE1bit−add,in+

Nmult,add,exE1bit−add,ex)

×
1

(Nmult,and,in + Nmult,and,ex)Eand,ex + (Nmult,add,in + Nmult,add,ex)E1bit−add,ex

(106)

From Eq. (101)-(102) we can assume Nmult,and,in 6� Nmult,add,in. Since a one-bit adder

contains two XOR gates, two AND gates, and one OR gate (as shown in Fig. 6), we

can assume based on this component count that the energy consumption of a one-bit

adder is much greater than that of a single AND gate, that is, E1bit−add,in � Eand,in,

and E1bit−add,ex � Eand,ex. Using these assumptions, Eq. (106) simplifies to

Emult,in

Emult,ex

≈
Nmult,add,inE1bit−add,in + Nmult,add,exE1bit−add,ex

(Nmult,add,in + Nmult,add,ex) E1bit−add,ex

. (107)

4.5 Distribution Fitting

Given n observations of the normalized error ε̂, it is desirable to characterize the

sample in terms of a probability distribution. A Gaussian fit can be obtained by

calculating the sample mean and sample standard deviation. A Laplacian fit can be

obtained using (54). For normal product distributions with small values of ψ, the

PDF (58) and the data sample can be applied to (60) to determine the value of σ̃

75

Figure 3. Original uncompressed image of an F-16, file name 4.2.05.tiff, from the USC
SIPI image database [25]. (repeated from page 15)

which maximizes the log-likelihood, where σ̃ is an estimate of the scale parameter σ.

For higher-order normal product distributions, (58) becomes intractable. However,

it is possible to simulate normally-distributed variables X1, X2, . . . Xψ using a random

number generator, and multiply them together in accordance with (55) to obtain a

random sample of numbers from the desired population. From a random sample, a

histogram can be generated, and from this an empirical PDF can be inferred. The

empirical PDF can then be used with (60) to find the estimated distribution parameter

σ̃. This was accomplished for NP distributions with 4 ≤ ψ ≤ 40 using a sample size

of 108.

4.6 Optimizing the JPEG Algorithm for Inexact Computing

The preceding sections have described our methodology for simulating inexact

adders and multipliers. This section describes our methodology for limiting the pre-

cision of the computations within the JPEG compression algorithm, consistent with

Section 3.1.1.1, and also our choice to use exact computation of on the most significant

76

bits of each addition and multiplication operation. The image compression analysis

in this dissertation was performed using the data set shown in Fig. 3, from the Uni-

versity of Southern California (USC) Signal and Image Processing Institute (SIPI)

image database [25]. The still images in the SIPI database are all uncompressed

tagged image file format (TIFF) files.

4.6.1 Limited Precision.

The inexact computing decision flowchart in Fig. 1 indicates that for purposes

of saving energy, delay, and area, we should not use any more precision than is

necessary to store data. The JPEG compression algorithm is described in Section 3.6

and illustrated in Fig. 2. In (72) we have two 8 × 8 matrix multiplications: U times

Y , and then [UY] times UT . Y is an 8-bit signed integer ranging from −128 to 127.

The values in U range from −0.49 to +0.49. Although these are fractional numbers,

we can use integer multiplication to perform the DCT: we can multiply each element

of U by 2ΔNU , where ΔNU is a positive integer, and for negative elements in U we

use the two’s complement representation. This method is valid as long as we divide

by 2ΔNU after the DCT is complete. In this work, we let ΔNU = 7, so U becomes an

8-bit signed integer (that is, one sign bit followed by a 7-bit significand). Multiplying

one element of U by one element of Y results in a 15-bit signed product (one sign bit

followed by a 7+7=14-bit significand). However, an additional three bits are needed

to accomplish an 8 × 8 matrix multiplication. The (r, c)th element of [UY], denoted

[UY]r,c, is computed by

[UY]r,c =
8∑

k=1

Ur,kYk,c (108)

= Ur,1Y1,c + Ur,2Y2,c + Ur,3Y3,c + Ur,4Y4,c + Ur,5Y5,c + Ur,6Y6,c

+Ur,7Y7,c + Ur,8Y8,c. (109)

77

To understand the need for three additional bits, consider each pair of terms within

Eq. (109), where (Ur,1Y1,c +Ur,2Y2,c) is the first pair, (Ur,3Y3,c +Ur,4Y4,c) is the second

pair etc. Each term consists of a 15-bit signed product. Adding a pair of them

together (with carry-out) produces a 16-bit signed sum, which can be up to twice

as large as a single term. If we group the terms into quadruples (or pairs of pairs),

the sum can be up to twice as large as a pair, requiring another bit. If we view the

eight terms of Eq. (109) as a pair of quadruples, the sum can be up to twice as

large as a quadruple, which requires another bit. So in our example, to perform an

8×8 matrix multiplication it requires four 15-bit additions, two 16-bit additions, and

one 17-bit addition, producing an NUY -bit signed product, where NUY = 18. When

performing the DCT, we then multiply [UY] by UT . This adds another 7 bits due to

the multiplication and another 3 bits due to the addition, for a 28-bit signed product.

To properly scale the final DCT, we shift it 14 places to the right. This leaves an

8×8 matrix of NUY UT -bit signed integers, each of which can store a range of possible

DCT values from −8192 to +8191, where NUY UT = 14.

However, we do not need that much precision and, as explained in Section 3.1.1.1,

precision costs energy, delay, and area. Recall that the original image data contains

only 8 bits of information per pixel. Without much loss of fidelity, after computing

the intermediate product [UY], we can truncate the lower 8 bits, leaving only a 10-bit

signed representation of [UY]. If we drop 8 bits from the intermediate product, then

we only drop 6 bits from the final product.

Furthermore, a DCT range from −8192 to +8191 is not representative of realistic

image data. JPEG is designed for photographs of the natural environment, and that

kind of data usually varies slowly throughout space, resulting in smaller DCT values,

especially in the lower right corner of the DCT matrix. Analysis of the “Mandrill”

(4.2.03.tiff), “Lena” (4.2.04.tiff), “F-16” (4.2.05.tiff), and “San Francisco” (2.2.15.tiff)

78

images from the SIPI database [25] reveals that for each element in [UY], fewer than

10 bits are needed to represent the data, and for the final DCT [UY UT], fewer than

14 bits are needed. This is especially true for the lower right corner of the matrix,

representing high-frequency components which are usually small. Different bit widths

are appropriate for different positions within the DCT matrix. In this research, the

following bit widths were used:

NUY =

9 9 9 9 9 9 9 9

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 7 7 7 8

7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7

7 7 6 7 7 7 6 6

7 7 6 6 7 6 6 6

(110)

NUY UT =

11 11 10 10 9 9 9 9

11 10 10 9 9 9 9 9

10 10 9 9 9 8 9 8

10 9 9 9 9 9 8 8

9 9 9 8 9 8 8 8

9 8 8 8 8 8 8 8

8 8 8 8 8 7 8 7

8 8 8 7 8 7 7 7

. (111)

These numbers are data-dependent. We assume our DCT data can fit into the bit

widths in Eq. (110)-(111). If any DCT data overflow beyond these bit widths, errors

will occur in the affected 8 × 8 blocks. In that case, it would be necessary to modify

79

Eq. (110)-(111) to accommodate the necessary range of DCT values. However, we do

not want to use larger bit widths than necessary, because that consumes more energy,

and when using inexact components, it risks introducing more errors into the DCT

computations.

4.6.2 Exact Computation of the Most Significant Bits.

It is our experience that inexact addition and multiplication of the most significant

bit produce unacceptably large and frequent errors in the CST and DCT stages of the

JPEG algorithm. In the CST, “unacceptable” errors result in pictures with a lot of

“bad” pixels which are either extremely dark or extremely bright. In the DCT, errors

manifest themselves in 8 × 8 blocks, and pictures with “unacceptable” errors have

numerous and intense artifacts as shown in Fig. 15. To limit the errors, we use exact

computation on the three most significant bits of every addition and multiplication

operation, as explained in Sections 4.3.1 and 4.4.1. We also use exact computation

when computing two’s complement, and when computing the sign of a multiplication

operation.

4.7 JPEG Compression Performance

In this research, we divide the JPEG compression algorithm into its sub-algorithms,

as shown in Fig. 2, and then examine each one to determine which sub-algorithms

are candidates for inexact design, as shown in the flowchart in Fig. 1. The color space

transformation, discrete cosine transformation, and quantization sub-algorithms are

computational in nature, and are therefore candidates for inexact design. Tiling and

zigzagging are routing processes, and run-amplitude encoding and Huffman encoding

are encoding processes; these are not candidates for inexact design. The discrete co-

sine transform is the most computationally intensive, and would most likely require

80

the largest chip area and energy consumption of all the sub-algorithms. The choices

of RMS error, signal-to-noise ratio, and compression ratio are examples of choosing

error metrics as shown in the flowchart.

This research views JPEG compression performance in terms of image distortion

and compression ratio. Image distortion is a subjective concept which depends on

the opinion of a human observer. Without resorting to psychovisual experiments, the

most commonly used measures of distortion are the Mean Square Error (MSE) and

SNR of the JPEG image which has been encoded and decoded, as compared to the

original source image [59]. Mean Square Error is computed as

MSE =
1

Npix,xNpix,y

Npix,y∑

j=1

Npix,x∑

i=1

(
Y ′

i,j − Yi,j

)2
, (112)

where Yi,j is the original (i, j)th pixel value, Y ′
i,j is the decoded pixel value from the

JPEG file, Npix,x is the number of pixel columns, and Npix,y is the number of pixel

rows. The RMS error is the square root of the MSE, and the SNR is

SNR = 10 log
max

(
Y1,1 . . . YNpix,x,Npix,y

)
− min

(
Y1,1 . . . YNpix,x,Npix,y

)

RMS error
[dB].

(113)

In (113), the difference between the maximum and minimum pixel values is usually

close to 255. Since the pixel intensity has a range of 256 possible values, the relative

RMS error is simply the RMS error normalized to 256:

Relative RMS Error =
RMS Error

256
. (114)

Compression ratio is the ratio between the original file size (in bits) to the size of

the encoded file (in bits). For a grayscale image, each pixel of the original image is

81

represented by 8 bits, and the compression ratio R is

R =
8Npix,xNpix,y [bits]

compressed file size [bits]
[bits per bit]. (115)

For a three-component color image, the compression ratio is

R =
24Npix,xNpix,y [bits]

compressed file size [bits]
[bits per bit]. (116)

This metric can also be expressed in terms of bits per pixel; that is, 8/R bits per pixel

for a grayscale image, and 24/R bits per pixel for a color image. The compression

ratio is heavily dependent on the amount of quantization performed, which in turn

depends on the quality factor α described in Section 3.6.4. Given a quality factor

α = 0.25, a typical compression ratio R = 22 with RMS error equal to 4.8 [46].

4.8 Matlab Scripts

Monte Carlo simulations of adders and multipliers using PBL-based error models

can run very fast in Matlab, enabling data collection with large sample sizes. For

example, using a desktop computer, Matlab can simulate a 16-bit Kogge-Stone adder

106 times within a few seconds. More realistic simulations of adders and multipliers

can be performed using SpectreTM as described in Section 4.1; however, the Matlab

PBL simulations can process much more data within a short period of time.

This section presents the function calls to the Matlab-based circuit simulations.

These functions were designed to run using Matlab version 2015a. They correspond to

the results shown in Chapter V. The complete functions are given in the appendices.

82

4.8.1 Ripple-Carry Adders.

The function call to the inexact ripple-carry adder simulation, described in Section

3.2.5, is

[S, Cout , S0] = Adder_RCA_inexact(n, A, B, Cin , p)

where the input n is the bit length of the inputs A and B, Cin is the carry-in bit,

and p is the probability of correctness of each binary computation within the adder;

the output S is the sum S, Cout is the carry-out bit, and S0 is the augmented sum

S+ defined in Eq. (25). The code for this function is given in Appendix A.1.1 on

page 125. The results of this simulation are presented in Section 5.1.1.

4.8.2 Kogge-Stone Adders.

The function call to the inexact Kogge-Stone adder simulation, described in Sec-

tion 3.2.7, is

[S, Cout , S0] = kogge_stone_inexact_PBL(n, A, B, Cin , p)

where the input and output parameters are the same as in Section 4.8.1. The code for

this function is given in Appendix A.1.2 on page 131. The results of this simulation

are presented in Section 5.1.1.

4.8.3 Ling Carry-Lookahead Adders.

The function call to the inexact Ling radix-4 carry-lookahead adder simulation,

described in Section 3.2.6 is

[S, Cout , S0] = ling_adder_inexact_PBL(n, A, B, Cin , p)

where the input and output parameters are the same as in Section 4.8.1. The code for

this function is given in Appendix A.1.3 on page 134. The results of this simulation

are presented in Section 5.1.1.

83

4.8.4 Shift-and-Add Multipliers.

The function call to the inexact shift-and-add multiplier simulation, described in

Section 3.3, is

P = Multiplier_basic_inexact(A, B, na, nb, p)

where na and nb are the bit lengths of the inputs A and B, and p is the probability

of correctness of each binary operation within the multiplier; the output P is the

product. The code for this function is given in Appendix C.3.1 on page 166. The

results of this simulation are presented in Section 5.2.

4.8.5 Wallace Tree Multipliers.

The function call to the inexact Wallace tree multiplier simulation, described in

Section 3.3, is

P = multiplier_wallace_tree_inexact_PBL(A, B, p)

where A and B are the inputs to the multiplier and p is the probability of correctness

of each binary operation within the multiplier; the output P is the product. The

code for this function is given in Appendix C.3.2 on page 170. The results of this

simulation are presented in Section 5.2.

4.8.6 Floating-Point Adders.

The function call to the inexact floating-point adder simulation, described in Sec-

tion 3.5.1, is

[Ss,Es,Ms] = Adder_floating_inexact(Sa,Ea,Ma,Sb,Eb,Mb,fmt,p)

where the inputs Sa, Ea, and Ma are the sign, exponent, and mantissa of the first

addend A as shown in Eq. (64); Sb, Eb, and Mb are the sign, exponent, and mantissa of

84

the second addend B; fmt is a string equal to ’BINARY16’, ’BINARY32’, ’BINARY64’,

or ’BINARY128’ specifying the precision of the adder; and p is the probability of

correctness of each binary operation within the adder. The outputs Ss, Es, and Ms

are the sign, exponent, and mantissa of the sum S. The code for this function is given

in Appendix B on page 151. The results of this simulation are presented in Section

5.1.3.

4.8.7 Floating-Point Multipliers.

The function call to the inexact floating-point adder simulation, described in Sec-

tion 3.5.2, is

[Sp,Ep,Mp] = Multiplier_floating_inexact(Sa,Ea,Ma,Sb,Eb,Mb

,fmt ,p)

where the inputs Sa, Ea, and Ma are the sign, exponent, and mantissa of the first multi-

plicand A as shown in Eq. (64); Sb, Eb, and Mb are the sign, exponent, and mantissa

of the second multiplicand B; fmt is a string equal to ’BINARY16’, ’BINARY32’,

’BINARY64’, or ’BINARY128’ specifying the precision of the multiplier; and p is the

probability of correctness of each binary operation within the multiplier. The outputs

Ss, Es, and Ms are the sign, exponent, and mantissa of the product P . The code for

this function is given in Appendix D on page 178. The results of this simulation are

presented in Section 5.3.

4.8.8 Matrix Multiplier.

Matrix multiplication is at the core of the discrete cosine transform, given in Eq.

(72) and illustrated in Fig. 2. The function call to the inexact matrix multiplier

simulation is

85

[C, nc] = mtimes_inexact_PBL(A, B, na, nb, p, bit)

where the inputs A and B are matrices, na and nb are the bit lengths of each element

in A and B, and p is the probability of correctness of each binary operation within

the multiplier. The input bit is the highest-order bit which can be inexact; all the

lower-order bits up to and including bit are computed inexactly, while the higher-

order bits are computed exactly. The output C is the matrix product, and nc is the

bit length of each element in C. The code for this function is given in Appendix E on

page 182.

4.8.9 Discrete Cosine Transform.

The discrete cosine transform is a key part of the JPEG compression algorithm,

as shown in Fig. 2. The function call to the inexact discrete cosine transform is

B = DCT_inexact_PBL(A, nbits , p)

where the input A is the 8 × 8 matrix of image data, nbits is the number of bits of

precision allocated to Ur,cAUc,r where U is the DCT matrix, and p is the probability of

correctness of each binary operation performed during the DCT. For this dissertation,

nbits is always 22. The output B is the discrete cosine transform of the input A. The

code for this function is given in Appendix F.6.4.2 on page 193. The JPEG simulation

results are presented in Section 5.4.2.

4.8.10 JPEG Compression Algorithm.

The inexact JPEG compression algorithm, shown in Fig. 2, is performed by the

main program given in Appendix F.6.1 on page 185. This program uses the inexact

DCT described in Section 4.8.9. The JPEG simulation results are presented in Section

5.4.

86

V. Results

We now present the results of our inexact adder, multiplier, and JPEG simula-

tions described in Chapter IV. These simulations were performed using Matlab using

a probabilistic Boolean logic (PBL) error model. These results illustrate how the

likelihood and distribution of errors in the simulations vary with the probability of

correctness p. This chapter also includes the results of the SpectreTM analog simula-

tions which show how output error, energy consumption, and energy-delay product

(EDP) vary with p.

5.1 Inexact Adders

In this section, we present the results of the Matlab PBL simulations of 8, 16, and

32-bit ripple-carry, Kogge-Stone, and Ling carry lookahead adders. These results show

how the distribution of output errors varies with p. Also in this section we present

the results of the SpectreTM simulations of 8 and 16-bit ripple-carry and Kogge-Stone

adders in 14 nm FinFET CMOS technology, and 8-bit Kogge-Stone adders in 0.6 μm

CMOS technology. These results show how the probability of correctness, output

error, energy, and EDP vary with power supply voltage and noise power spectral

density.

5.1.1 Inexact Adders with PBL.

An 8-bit noisy Kogge-Stone adder was simulated using probabilistic Boolean logic,

as described in Section 4.2, for various values of p. The inputs A and B were randomly

drawn from a uniform distribution between 0 and 2N − 1; in each simulation, the

sample size was 106. For each simulation, the noisy augmented sum S̃+ (defined in

(24)-(25)) and the normalized error ε̂ (defined in (86)-(88)) were observed. Error

87

histograms for p = 0.90, 0.95, and 0.99 are shown in Fig. 23. The figure shows

that as p increases, ε̂ is more tightly dispersed around 0. Each histogram has a

primary mode at ε̂ = 0 and multiple other modes at powers of 1
2
. The modes are at

powers of 1
2

because the most frequent errors involve only a single binary digit within

the adder. For p ≥ 0.99 the distribution of ε̂ is highly kurtotic—so much so that

a semilogarithmic scale is necessary to display the tails of the distribution. In this

case, a high-order normal product distribution is the best fit to the sample, which is

characterized by an extremely tall, narrow peak at ε̂ = 0, and extremely infrequent,

but widely dispersed, nonzero values of ε̂.

Error statistics for various values of p are summarized in Table 8. The table shows

that as p approaches 1, the error standard deviation approaches 0 and the kurtosis

increases. An error spectrum plot for p = 0.90 is shown in Fig 24. This plot shows

the sample mean of 100 observations of ε̂ at every possible value of A and B. The

expected error appears roughly to be a linear function of A + B, with the smallest

error magnitude along the line B = 255−A. Closer inspection reveals discontinuities

along the lines A = 64, A = 128, A = 192, B = 64, B = 128, and B = 192.

5.1.2 Probability Distributions.

For each 2, 4, and 8-bit inexact adder, a maximum likelihood estimation was per-

formed on the distribution of the normalized error ε̂. MLE was also performed on

a 6-bit ripple-carry adder, and a 16-bit Ling carry lookahead adder. Three different

types of distributions were considered: Gaussian, Laplacian, and normal product dis-

tributions with order 2 ≤ ψ ≤ 40. The results for the ripple-carry adder are shown in

Fig. 26. The Gaussian distribution seemed to be the best fit for values of p ≤ 0.85,

and for higher values of p, a normal product distribution was usually the best fit. The

exception was the 2-bit ripple-carry adder, for which the Laplacian distribution was

88

-1 -0.5 0 0.5 1
10

-8

10
-6

10
-4

10
-2

10
0

(a) p = 0.90. Gaussian fit with σ̃ = 0.31.

-1 -0.5 0 0.5 1
10

-8

10
-6

10
-4

10
-2

10
0

(b) p = 0.95. NP3 fit with σ̃ = 0.37.

-1 -0.5 0 0.5 1
10

-8

10
-6

10
-4

10
-2

10
0

(c) p = 0.99. NP20 fit with σ̃ = 0.13.

Figure 23. Error histograms showing the probability mass function (PMF) of ε̂ for an
inexact 8-bit Kogge-Stone adder, with inputs A and B uniformly distributed from 0 to
2N − 1, for various values of p. Results are from Matlab PBL simulation. The red line
in (a) is a Gaussian fit to the PMF, and in (b)-(c) the red lines are normal product
(NP) curve fits based on maximum likelihood estimation. The slight asymmetry in
the figures is due to the fact that the data are from Monte Carlo simulations based on
random number generation.

89

Table 8. Error Statistics: 8-Bit Kogge-Stone Adder with PBL

p P(ε̂ = 0) Mean Std Dev Skewness Kurtosis
0.8000 0.0056 0.0207 0.3468 -0.0424 2.46
0.8500 0.0109 0.0233 0.3366 -0.0406 2.54
0.9000 0.0319 0.0217 0.3125 -0.0193 2.78
0.9500 0.1473 0.0143 0.2573 0.0402 3.65
0.9600 0.2116 0.0125 0.2382 0.0716 4.12
0.9700 0.3061 0.0098 0.2130 0.1061 4.95
0.9800 0.4484 0.0068 0.1805 0.1634 6.59
0.9900 0.6668 0.0036 0.1323 0.2809 11.6
0.9950 0.8150 0.0018 0.0957 0.4194 21.6
0.9960 0.8493 0.0013 0.0857 0.4571 26.8
0.9970 0.8843 0.0011 0.0748 0.5682 34.9
0.9980 0.9209 0.0008 0.0609 0.7184 52.2
0.9990 0.9596 0.0004 0.0434 1.0618 102
0.9995 0.9797 0.0002 0.0310 1.5608 202
0.9996 0.9837 0.0002 0.0277 2.0177 250
0.9997 0.9876 0.0001 0.0243 1.9396 328
0.9998 0.9919 0.0001 0.0196 1.8764 496
0.9999 0.9959 0.0001 0.0138 3.9838 1007

Figure 24. Error spectrum for an inexact 8-bit Kogge-Stone adder, for all possible
values of the inputs A and B, and probability p = 0.90 of correctness at each node. Each
point on the plot is the sample mean of 100 observations of ε̂.

90

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) Kogge-Stone adder. Histogram peak value
is 0.0099.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Ripple-Carry adder. Histogram peak value
is 0.0457.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(c) Ling adder. Histogram peak value is
0.0810.

Figure 25. Error histograms for various inexact 32-bit adders, with p = 0.90, and with
inputs A and B uniformly distributed from 0 to 2N − 1. Results are from Matlab PBL
simulation. The modes are at powers of 1

2 because the most frequent errors involve
only a single binary digit within the adder.

91

usually the most likely fit. From Fig. 26a it is apparent that ψ̃ decreases monotoni-

cally with (1−p), for smaller values of p. The other adder architectures displayed this

relationship as well. In each case, ψ̃ seems to increase as p increases, until ψ̃ reaches

40, after which its behavior becomes erratic. This erratic behavior may be due to the

fact that we only attempted to fit NP distributions with ψ̃ ≤ 40, and may indicate

that the fits obtained were suboptimal. The monotonic relationship is indicated by

the bold lines connecting the points in Fig. 26a, and also the associated values of σ̃

in Fig. 26b.

Fig. 26c shows the estimated order ψ̃ as a function of the adder bit width N .

Looking again at only the non-erratic points mentioned above, Fig. 26c indicates

that for N ≤ 8, ψ̃ is roughly a linear function of N , with slope that increases with p.

Fig. 26d illustrates the sample kurtosis of ε̂ as a function of (1−p). It is apparent

that the kurtosis is almost independent of N . Also, the log of the kurtosis is nearly a

linear function of log(1− p). As p increases, so does kurtosis, which is also associated

with an increase in the order ψ̃, as we would expect in accordance with Fig. 26a.

5.1.3 Comparisons Among Adder Types.

Figs. 25 and 27 compare the performances of the ripple-carry, Kogge-Stone and

Ling carry lookahead architectures. Fig. 25 shows histograms for each type of 32-bit

adder for a value of p = 0.90. It is apparent that each histogram has a primary

mode at ε̂ = 0 and other modes at powers of 1
2
. Fig. 27 provides summary statistics

for 8, 16, and 32-bit ripple-carry, Kogge-Stone, and Ling adders for various values

of p between 0.8000 and 0.9999. Fig. 27a shows that the probability of zero error

(ε̂ = 0) increases with p and decreases with N . Fig. 27b shows that the standard

deviation of ε̂ decreases with p, and is smaller for the ripple-carry and Ling adders

than for the Kogge-Stone adder. Interestingly, the 32-bit version of the Ling adder

92

10
-4

10
-3

10
-2

10
-1

10
0

0

10

20

30

40

(a) Normal product order ψ̃ as a function of
(1 − p).

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

(b) Normal product scale parameter σ̃ as a
function of (1 − p).

0 2 4 6 8
0

5

10

15

20

25

30

35

40

(c) Normal product order ψ̃ as a function of N .

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

(d) Sample kurtosis as a function of (1 − p).

Figure 26. Error statistics for inexact N-bit ripple-carry adders with various values of
N and p, and with inputs A and B uniformly distributed from 0 to 2N − 1. Results are
from Matlab PBL simulation. (a,b,c) Most likely normal product distribution to fit
each sample of ε̂. Due to resource constraints, distribution fits with ψ̃ > 40 were not
attempted, resulting in some suboptimal values of ψ̃; these are the points not joined
by lines. (d) Sample kurtosis of ε̂.

93

has a smaller dispersion of ε̂ than the 8 and 16-bit versions. Fig. 27c shows very very

little skewness, except when p is large. Fig. 27 shows that the distribution of ε̂ is

exceedingly kurtotic for large values of p.

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

(a) Probability that ε̂ = 0

0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

(b) Standard deviation of ε̂

0.8 0.85 0.9 0.95 1
-2

0

2

4

6

8

(c) Skewness of ε̂

0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

10
4

(d) Kurtosis of ε̂

Figure 27. Error statistics for various inexact adders, with inputs A and B uniformly
distributed from 0 to 2N − 1. Results are from Matlab PBL simulation.

We considered using IEEE 754 standard floating-point adders and multipliers for

use in the JPEG compression algorithm. Initial results were not promising for this

purpose, due to large errors occurring frequently, and we were able to implement the

JPEG algorithm using integer arithmetic. The results are included here for complete-

ness.

94

Error histograms for various floating-point adders are shown in Fig. 28. The

modes of the distribution are at powers of 2.

-10 -5 0 5 10
10-6

10-4

10-2

100

(a) Half-precision adder with p = 0.9999.

-10 -5 0 5 10
10-6

10-4

10-2

100

(b) Single-precision adder with p = 0.99999.

Figure 28. Error histograms for inexact 16 and 32-bit floating-point adders, with inputs
A and B uniformly distributed from −100 to +100, for various values of p. Results are
from Matlab PBL simulation.

5.1.4 SpectreTM Simulation.

The SpectreTM simulation of the noisy 0.6 μm Kogge-Stone adder, described in

Section 4.1.1, produced the results shown in Table 9. These results show that in-

creased energy consumption is necessary to reduce error, and the relationship is non-

linear. For example, when the noise PSD is 5×10−10 V2/Hz, VDD = 1.5 V, Eavg = 2.32

pJ per cycle, and the normalized error standard deviation is 0.1827; when VDD = 3.3

V, Eavg increases to 12.70 pJ, and the error standard deviation decreases to 0.0584.

As expected, increasing energy consumption also reduces delay. For example, Table

9 shows that under noise-free conditions, when VDD = 1.5 V the energy consumption

is 1.41 pJ per cycle and the delay is 12.28 ns, and when VDD = 3.3 V the energy con-

sumption increases to 9.55 pJ and the delay decreases to 2.89 ns. An error histogram

is shown in Fig. 29. The errors in Table 9 are smaller than the Matlab PBL simula-

95

tion errors shown in Table 8. The SpectreTM simulation errors in Fig. 29 also appear

to be smaller than the PBL errors in Fig. 23a. The reason the binary error model

produces greater output errors than the analog model is that with the binary model,

the error at each is either 0% or 100%, whereas the analog model allows a continuum

of errors at each node. With the analog model, an error voltage may slightly exceed

the VDD/2 threshold for a brief amount of time, but may not have sufficient energy

to propagate throughout the circuit.

Plots of energy savings (i.e. percent reduction in Eavg) and Energy-Delay Product

(EDP) savings as functions of the error ε̂ are shown in Fig. 32-33. Fig. 32 shows

that energy savings drop sharply as ε̂ approaches zero. Scaling the supply voltage

increases delay. In spite of this trade-off, Fig. 33 shows that there is still a benefit in

terms of EDP.

-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

Figure 29. Error histogram for an 8-bit Kogge-Stone adder, with inputs A and B
uniformly distributed from 0 to 2N −1. Power supply VDD = 1.5 V; noise PSD is 1×10−9

V2/Hz. Result is from a SpectreTM simulation of 0.6 μm CMOS technology.

Fig. 30 shows one main result of this research. This figure shows the energy

reduction (percentage) as a function of the percentage error rate (1 −p) for two adder

architectures. Results are shown for six values of the noise power spectral density

(a)-(f). The figure shows the energy reduction as a function of error rate for an 8-bit

96

Table 9. Error Statistics: Noisy 8-Bit Kogge-Stone Adder
SpectreTM Simulation

Noise-Free
VDD [V] δmax [ns] Eavg [pJ]

1.5 12.28 1.41
2.0 6.39 3.49
2.5 4.73 5.73
3.0 3.32 8.27
3.3 2.89 9.55

Noise #1: 5 × 10−10 V2/Hz
VDD Eavg

[V] [pJ] Mean Std Dev Skewness Kurtosis
1.5 2.32 0.0080 0.1827 -0.0183 6.09
2.0 4.42 -0.0031 0.1085 -1.0517 22.5
2.5 7.03 -0.0011 0.0536 -0.4252 44.4
3.0 10.42 -0.0019 0.0582 -0.2743 48.3
3.3 12.70 -0.0013 0.0584 -0.2544 50.9

Noise #2: 1 × 10−9 V2/Hz
VDD Eavg

[V] [pJ] Mean Std Dev Skewness Kurtosis
1.5 3.53 -0.0219 0.2327 -0.1222 3.93
2.0 7.09 -0.0270 0.1746 -0.7496 7.33
2.5 11.51 -0.0151 0.1319 -1.0512 11.1
3.0 16.46 -0.0150 0.1056 -1.8386 17.2
3.3 19.46 -0.0098 0.0945 -2.2123 22.7

97

ripple carry adder and a 16-bit ripple carry adder, both in 14 nm FinFET CMOS

technology. The figure also shows the energy reduction as a function of error rate for

an 8-bit Kogge Stone adder in a 16-bit Kogge Stone adder, both in 14 nm FinFET

CMOS technology. The figure also shows the energy reduction for an 8-bit Kogge

Stone adder in a 0.6 μm CMOS technology.

10
-4

10
-3

10
-2

10
-1

10
0

0

20

40

60

80

100

a be f c d

Figure 30. Percent reduction in energy Eavg per switching cycle, as a function of 1− p,
for the noisy 8 and 16-bit ripple-carry (RC) and Kogge-Stone (KS) adders in 0.6 μm
CMOS and 14 nm FinFET CMOS technologies. 1− p is the probability of error at each
node within the adder circuit. Curves (a) through (f) represent the noise conditions
specified by their power spectral densities: (a) 3 × 10−12 V2/Hz, (b) 5 × 10−12 V2/Hz,
(c) 1 × 10−11 V2/Hz, (d) 2 × 10−11 V2/Hz, (e) 5 × 10−10 V2/Hz, and (f) 1 × 10−9 V2/Hz.
Results are from SpectreTM simulation.

The results for these adders in Fig. 30 show that the error reduction tends to

increase as the error rate increases, for each technology. The results show that the

error reduction takes on the largest value of over 90% when the error rate exceeds 0.1.

For example, for the case in which the noise power spectral density takes on a value

of 3×10−12 V2/Hz (see ‘a’ curves in the figure), the results in the figure show that an

energy reduction of approximately 92% can be achieved with an error rate of 0.1 for

the 8-bit ripple carry adder, 16-bit ripple carry adder, 8-bit KS adder, and 16-bit KS

adder. The results in the figure show that, at each value of (1−p > 0.005), the energy

reduction achieved with an 8-bit KS adder in 14 nm FinFET CMOS technology with a

98

noise power spectral density of 3 × 10−12 V2/Hz is greater than the energy reduction

achieved with an 8-bit KS adder in 0.6 μm CMOS technology with a noise power

spectral density of 5 × 10−12 V2/Hz.

Fig. 31 shows the reduction in the energy-delay product per switching cycle as a

function of 1− p, for 8-bit ripple carry adder, a 16-bit ripple carry adder, an 8-bit KS

adder, a 16-bit KS adder, and a 0.6 μm 8-bit KS adder. For the lowest values of the

noise power spectral density, the results in the figure show that the reduction in the

energy-delay product can take on a maximum value for a certain choice of (1 − p).

For example for the lowest value of the noise power spectral density of 3 ×1012 V2/Hz

(curves labeled ‘a’ curves), the energy-delay product achieves a maximum reduction

for the 8-bit KS adder in 14 nm FinFET CMOS technology (blue curve with triangles)

when the value of (1 − p) is approximately 0.05. The results in the figure show that

the reduction in the energy-delay product tends to be smaller as the noise power

spectral density is increased.

10
-4

10
-3

10
-2

10
-1

10
0

0

10

20

30

40

50

60

70

a b
e

f c d

Figure 31. Percent reduction in energy-delay product (EDP) per switching cycle, as a
function of 1 − p, for the noisy 8 and 16-bit ripple-carry (RC) and Kogge-Stone (KS)
adders in 0.6 μm CMOS and 14 nm FinFET CMOS technologies. 1−p is the probability
of error at each node within the adder circuit. Curves (a) through (f) represent the
noise conditions specified by their power spectral densities: (a) 3 × 10−12 V2/Hz, (b)
5 × 10−12 V2/Hz, (c) 1 × 10−11 V2/Hz, (d) 2 × 10−11 V2/Hz, (e) 5 × 10−10 V2/Hz, and (f)
1 × 10−9 V2/Hz. Results are from SpectreTM simulation.

99

Fig. 32 shows another main result of this dissertation. This figure shows the

energy reduction as a function of the standard deviation of the normalized output

error for an 8-bit ripple carry adder and a 16-bit ripple carry adder in 14 nm FinFET

CMOS technology. The figure also shows the energy reduction as a function of the

standard deviation of the normalized output error for an 8-bit KS adder and a 16-bit

KS adder in 14 nm FinFET CMOS technology, and for an 8-bit KS adder in 0.6

μm CMOS technology. Results are shown for six values of the noise power spectral

density, (a)-(f).

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

a
b

e f c d

Figure 32. Percent reduction in energy Eavg per switching cycle, as a function of the
standard deviation of the normalized output error ε̂, for the noisy 8 and 16-bit ripple-
carry (RC) and Kogge-Stone (KS) adders in 0.6 μm CMOS and 14 nm FinFET CMOS
technologies. Curves (a) through (f) represent the noise conditions specified by their
power spectral densities: (a) 3× 10−12 V2/Hz, (b) 5× 10−12 V2/Hz, (c) 1× 10−11 V2/Hz,
(d) 2 × 10−11 V2/Hz, (e) 5 × 10−10 V2/Hz, and (f) 1 × 10−9 V2/Hz. Results are from
SpectreTM simulation.

The results for these adders in Fig. 32 show that the error reduction in each adder

architecture tends to take on the largest value, exceeding 90%, when the standard

deviation of the error exceeds approximately 0.18. For example, for the case in which

the noise power spectral density takes on a value of 3 ×10−12 V2/Hz (see ‘a’ curves in

the figure), the results in the figure show that the energy reduction of approximately

95% can be achieved with a standard deviation of the normalized output error of 0.18

100

for the 8-bit ripple carry adder, 16-bit ripple carry adder, 8-bit KS adder, and 16-bit

KS adder.

Fig. 33 shows the reduction in the energy-delay product per switching cycle as a

function of the standard deviation of the normalized output error. The results in this

figure show that the 8-bit ripple-carry adder and 16-bit ripple carry adder in 14 nm

FinFET CMOS technology achieve the greatest reduction in the energy-delay product

of 60% when the noise power spectral density takes on the value of 2 × 10−11 V2/Hz,

as shown in the ‘d’ curves, where the standard deviation of the error is approximately

0.32. The results for the 8-bit KS adder and 16-bit KS adder show that as the noise

power spectral density is increased, the energy-delay product benefit is reduced from

50% to 22% (see ‘a’ curves compared with ‘b’ curves).

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

70

a

b e f c

c

d

d

Figure 33. Percent reduction in energy-delay product (EDP) per switching cycle, as
a function of the standard deviation of the normalized output error ε̂, for the noisy 8
and 16-bit ripple-carry (RC) and Kogge-Stone (KS) adders in 0.6 μm CMOS and 14
nm FinFET CMOS technologies. Curves (a) through (f) represent the noise conditions
specified by their power spectral densities: (a) 3 × 10−12 V2/Hz, (b) 5 × 10−12 V2/Hz,
(c) 1 × 10−11 V2/Hz, (d) 2 × 10−11 V2/Hz, (e) 5 × 10−10 V2/Hz, and (f) 1 × 10−9 V2/Hz.
Results are from SpectreTM simulation.

Plots of energy consumption Eavg and energy-delay product (EDP) as functions

of the error ε̂ are shown in Fig. 32. This figure shows that Eavg greatly increases

as ε̂ approaches zero. Scaling the supply voltage increases delay. In spite of this

101

trade-off, Fig. 33 shows that there is still a benefit in terms of EDP, as mentioned in

the previous paragraph.

A similar result for the 14 nm ripple-carry adders is shown in Figs. 32-33. Fig.

32 confirms that, in a noisy circuit, energy savings can be achieved by allowing more

errors at the output. Fig. 33 shows that EDP improvements can be made by allowing

more errors, up to a point. However, if the error standard deviation is allowed to

increase beyond 0.12 (corresponding to Vdd < 0.4 V in curve (a)), the increased delay

begins to dominate the EDP. Therefore, correctness can only be traded for EDP up

to that point. A designer who is interested only in saving energy, and not concerned

about speed, would use Figs. 30 and 32 to choose acceptable values of p, output

error, and energy reduction. However, a designer concerned with delay could instead

use the EDP curves in Figs. 31 and 33.

5.2 Shift-and-Add Multiplier with PBL

A 16-bit noisy shift-and-add multiplier was simulated using probabilistic Boolean

logic, as described in Section 4.4, for various values of p. The inputs A and B were

randomly drawn from a uniform distribution between 0 and 2N−1; in each simulation,

the sample size was 105. For each simulation, the noisy product P̃ and the normalized

error ε̂ were observed. Error histograms for p = 0.90, 0.95, and 0.99 are shown in

Fig. 34. The figure shows that as p increases, ε̂ is more tightly dispersed around 0.

Each histogram has a primary mode at ε̂ = 0 and multiple other modes at powers of

1
2
. Error statistics for various values of p are summarized in Table 10. Future work

will include SpectreTM analog simulations of 16-bit shift-and-add multipliers.

102

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) p = 0.90. Histogram peak value is 0.035.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) p = 0.95. Histogram peak value is 0.078.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(c) p = 0.99. Histogram peak value is 0.456.

Figure 34. Error histograms for an inexact 16-bit shift-and-add multiplier, with inputs
A and B uniformly distributed from 0 to 2N − 1, for various values of p. Results are
from Matlab PBL simulation.

103

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) p = 0.95. Histogram peak value is 0.007.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) p = 0.99. Histogram peak value is 0.135.

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(c) p = 0.999. Histogram peak value is 0.799.

Figure 35. Error histograms for an inexact 16-bit Wallace tree multiplier, with inputs
A and B uniformly distributed from 0 to 2N − 1, for various values of p. Results are
from Matlab PBL simulation.

104

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

(a) Probability that ε̂ = 0

0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

(b) Mean of ε̂

0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

(c) Median of ε̂

0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) Standard deviation of ε̂

0.8 0.85 0.9 0.95 1
-5

0

5

10

15

20

25

(e) Skewness of ε̂

0.8 0.85 0.9 0.95 1
10

0

10
1

10
2

10
3

10
4

(f) Kurtosis of ε̂

Figure 36. Error statistics for various inexact multipliers, with inputs A and B uni-
formly distributed from 0 to 2N − 1. Results are from Matlab PBL simulation.

105

Table 10. Error Statistics: 16-bit Shift-and-Add Multiplier with PBL

p P(ε̂ = 0) Mean Std Dev Skewness Kurtosis
0.8000 0.0042 0.0966 0.2650 0.3295 4.04
0.8500 0.0047 0.0878 0.2478 0.4303 4.37
0.9000 0.0056 0.0745 0.2221 0.5528 5.07
0.9500 0.0177 0.0481 0.1733 0.8228 7.14
0.9600 0.0277 0.0408 0.1576 0.9201 8.09
0.9700 0.0513 0.0327 0.1389 1.1144 9.91
0.9800 0.1124 0.0230 0.1140 1.3123 13.2
0.9900 0.2901 0.0126 0.0842 1.9383 23.6
0.9950 0.5215 0.0064 0.0591 2.8432 42.4
0.9960 0.5915 0.0052 0.0529 3.0746 53.9
0.9970 0.6685 0.0040 0.0462 3.7838 71.1
0.9980 0.7645 0.0025 0.0374 4.1237 105
0.9990 0.8731 0.0012 0.0266 5.7969 203
0.9995 0.9330 0.0007 0.0186 10.5104 419
0.9996 0.9469 0.0004 0.0160 9.7384 537
0.9997 0.9591 0.0004 0.0146 16.2839 713
0.9998 0.9719 0.0004 0.0127 22.1914 928
0.9999 0.9859 0.0001 0.0082 13.4407 1965

5.3 Comparisons Among Multiplier Types

Fig. 36 provides summary statistics for 16, 32, and 64-bit shift-and-add multipliers

for various values of p between 0.8000 and 0.9999. Fig. 36a shows that the probability

of zero error (ε̂ = 0) increases with p and decreases with N . Figs. 36b-c show that,

for the Wallace tree with p < 0.98, the mean and median of ε̂ are much larger than

for the shift and add multiplier. For example, for a 64-bit Wallace tree multiplier

with p = 0.95, the mean of ε̂ is 0.2208 and the median is 0.2042, while for the 64-bit

shift-and-add multiplier the mean error is 0.0464 and the median is 0.0117. This

nonzero mean is also evident in Fig. 35a. Fig. 36d shows that the standard deviation

of ε̂ decreases with p. For example, for the 64-bit Wallace tree multiplier, when

p = 0.95 the standard deviation of ε̂ is 0.3174; when p = 0.99 the error standard

deviation drops to 0.1743. From Fig. 36d, we can see that the dispersion of error is

greater for the Wallace tree than for the shift and add multiplier. For example, when

106

p = 0.90, the error standard deviation is 0.3420 for the 16-bit Wallace tree multiplier

and 0.3538 for the 32 and 64-bit Wallace tree multipliers, but only 0.2204 for the 16,

32, and 64-bit shift-and-add multipliers. Fig. 36e shows slight skewness for small p,

which greatly increases when p is large. Fig. 36f shows that the distribution of ε̂ is

exceedingly kurtotic for large values of p. For example, when p ≥ 0.998, the kurtosis

of ε̂ for the 16, 32, and 64-bit shift-and-add multipliers is greater than 100. Figs.

36b-f show that the bit width of the multiplier has very little effect on the mean,

median, standard deviation, skewness, and kurtosis of the error distribution.

We considered using IEEE 754 standard floating-point adders and multipliers for

use in the JPEG compression algorithm. As was mentioned in Section 5.1.3, the initial

results were not promising for this purpose, due to large errors occurring frequently,

and we were able to implement the JPEG algorithm using integer arithmetic. The

results are included here for completeness. When viewing multiplier performance

in terms of the product error metric ε, floating-point multiplier overall errors vary

tremendously with p, as shown in Figs. 37-38.

5.4 JPEG Image Compression

The JPEG compression algorithm, repeated in Fig. 39, brings together the

methodologies described througout this dissertation. The color space transform, dis-

crete cosine transform, and quantization can all be performed using inexact adders

and multipliers. In this work, we show the results of the inexact color space transfor-

mation and inexact DCT on the performance of the JPEG algorithm.

5.4.1 Inexact Color Space Transform.

This section illustrates the result of performing an inexact CST described in Sec-

tion 4.6 and shown in Fig. 39. Performance results for the inexact CST are shown in

107

-4 -2 0 2 4 6
10-6

10-4

10-2

100

(a) p = 0.99.

-2 0 2 4
10-6

10-4

10-2

100

(b) p = 0.999.

-2 0 2 4
10-6

10-4

10-2

100

(c) p = 0.9999.

Figure 37. Error histograms for an inexact half-precision floating-point multiplier, with
inputs A and B uniformly distributed from −100 to +100, for various values of p. Each
distribution has several modes, representing the following cases: (1) ε = 1 meaning no
error; (2) powers of 2, meaning a single bit of the exponent was flipped from 0 to 1; (3)
powers of 1

2 , meaning a single bit of the exponent was flipped from 1 to 0; (4) ε close
to zero, meaning the MSB of the exponent was flipped from 1 to 0; and (5) ε = −1,
meaning the sign bit was flipped. Results are from Matlab PBL simulation.

108

1019
-2 -1 0 1 2

10-6

10-4

10-2

100

(a) p = 0.99.

-2 0 2 4
10-6

10-4

10-2

100

(b) p = 0.999.

-2 0 2 4
10-6

10-4

10-2

100

(c) p = 0.9999.

Figure 38. Error histograms for an inexact single-precision floating-point multiplier,
with inputs A and B uniformly distributed from −100 to +100, for various values of p.
Plots are asymmetric because ε < 0 only occurs when there is an error in the sign bit
of the output. Results are from Matlab PBL simulation.

109

Tiling
(routing)

Zigzagging
(routing)

Run-Amplitude
Encoding

Huffman
Encoding

Discrete Cosine Transformation

Floating-Point Multipliers:
· Multiplier
· Adder
· Multiplexers
· Bit Shifter
· Sign Logic (XOR)

Floating-Point Adders:
· Comparators
· Adder / Subtractor
· Multiplexers
· Bit Shifters
· Bit Counter

Discrete Cosine Transformation

Bit Shifters

Integer Multipliers Integer Adders

Color Space Transformation

Bit Shifters

Integer Multipliers Integer Adders

Color Space Transformation

Floating-Point
Adders

Floating-Point
Multipliers

Quantization

Floating-Point Multipliers

Quantization

Integer Multipliers

Bit Shifters

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

FLOATING-POINT ARITHMETIC

OR

INTEGER ARITHMETIC

Figure 39. Block diagram of the JPEG image compression algorithm. In this disserta-
tion, the JPEG algorithm is a motivational example for inexact computing. The shaded
boxes show areas where inexact methods can be considered (for example, in adder cir-
cuits and multiplier circuits). The white boxes show areas where inexact methods
cannot be considered (“keep-out zones”).

Fig. 40. The images in this figure have not yet undergone compression. The figure

shows how the image degrades as p decreases. For example, when p = 0.999999 as

in Fig. 40b, the RMS error is 0.91 and the SNR is 23.73 dB. If the RMS error is

normalized relative to its maximum possible value of 255, then the RMS error of 0.91

normalizes to 0.36%. When p = 0.99 as in Fig. 40f, the RMS error degrades to 13.85

(5.4% normalized RMS error) with an SNR of 11.91 dB.

The formula for the CST for the intensity component Y of a single pixel is given

in Eq. (69). This equation contains three multiplications and two additions. Using

16-bit multipliers (NA = 8, NB = 8) with Nmult,exact = 3, followed by truncation of

the lower 8 bits, followed by 8-bit addition with Nadd,exact = 3, we have a total of:

• 2 × 3 = 6 exact one-bit adders from the two addition operations,

• 2 × 5 = 10 inexact one-bit adders from the two addition operations,

• 3 × 3 = 9 exact one-bit adders from the three multiplication operations (see

110

(a) Original image. (b) p = 0.999999, RMS error = 0.91,
SNR = 23.73 dB.

(c) p = 0.99999. RMS error = 0.99,
SNR = 23.37 dB.

(d) p = 0.9999. RMS error = 1.52,
SNR = 21.51 dB.

(e) p = 0.999. RMS error = 4.06,
SNR = 17.24 dB.

(f) p = 0.99. RMS error = 13.85,
SNR = 11.91 dB.

Figure 40. Uncompressed bitmap images computed using an inexact color space trans-
formation with various values of p, RMS error, and signal-to-noise ratio (SNR). Only
the intensity component Y is shown.

111

Table 7), and

• 3 × 53 = 159 inexact one-bit adders from the three multiplication operations.

From the above, there are 6 + 9 = 15 exact one-bit adders and 10 + 159 = 169

inexact one-bit adders per pixel for the CST. In this example, a contribution of this

dissertation is that we show 169
169+15

= 91.8% of the CST can be built from inexact

components. Using data from Fig. 30, we see that a probability of correctness

p = 0.99 with a noise PSD of 3 × 10−12 V2/Hz gives an energy savings of about 62%,

and p = 0.999 gives an energy savings of about 15%. Employing exact computation

on the three most significant bits and using Eq. (107) gives the energy savings and

error values shown in Table 11.

Table 11. Energy Savings and Errors for Inexact Color Space Transformation

Energy Normalized
p Savings % RMS Error %

0.99 57 5.4
0.999 14 1.6

5.4.2 Inexact DCT.

This section illustrates the result of using an inexact DCT, but exact color space

transformation and no quantization. An inexact JPEG compression algorithm was

simulated as described in Section 4.6 and shown in Fig. 39. Performance results for

the inexact DCT are shown in Fig. 41. This figure shows how the image degrades as

p decreases. For example, when p = 0.999999 as in Fig. 41b, the RMS error is 2.29

(0.90% normalized) and the SNR is 19.73 dB. When p = 0.99 as in Fig. 41f, the RMS

error degrades to 50.51 (19.8% normalized) with an SNR of 6.29 dB. The artifacts in

Fig. 41f resemble those explained in Fig. 15 on page 52; this is the result of errors

in the DCT algorithm. The compression ratios are still low (1.63 at best) because

112

we have not yet done quantization as described in Section 3.6.4. After quantization,

typical compression ratios range from 1.7 (using a quality factor q = 100%) up to 22

(using a quality factor q = 25%) [46, p. 191]. The compression ratio in Fig. 41f is

degraded down to 0.72 due to the introduction of artifacts into the DCT as a results

of errors in the inexact computation of the DCT. These nonzero artifacts reduce the

sparsity of the DCT matrix, resulting in a longer set of run-amplitude encoded data.

With proper quantization according to Equation (73), most of those artifacts would

be filtered out.

The formula for the discrete cosine transform for an 8×8 block is given in Eq. (72).

One 8 × 8 matrix multiplication contains 512 multiplications and 448 additions, and

the second 8 × 8 matrix multiplication contains another 512 multiplications and 448

additions; the total is 1024 multiplications and 896 additions. Using 16-bit multipliers

(NA = 8, NB = 8) with Nmult,exact = 3, and 16-bit addition with Nadd,exact = 3, we

have a total of:

• 896 × 3 = 2, 688 exact one-bit adders from the 896 addition operations,

• 896 × 13 = 11, 648 inexact one-bit adders from the 896 addition operations,

• 1, 024×3 = 3, 072 exact one-bit adders from the 1,024 multiplication operations

(see Table 7), and

• 1, 024× 53 = 54, 272 inexact one-bit adders from the 1,024 multiplication oper-

ations.

From the above, there are 2, 688 + 3, 072 = 5, 760 exact one-bit adders and 11, 648 +

54, 272 = 65, 920 inexact one-bit adders per block for the discrete cosine trans-

formation. In this example, a contribution of this dissertation is that we show

65,920
65,920+5,760

= 92.0% of the discrete cosine transform can be built from inexact compo-

nents. Using data from Fig. 30, we see that a probability of correctness p = 0.99 with

113

(a) Uncompressed image. (b) p = 0.999999, RMS error = 2.29,
CR= 1.63, SNR = 19.73 dB.

(c) p = 0.99999. RMS error = 2.80,
CR = 1.62, SNR = 18.86 dB.

(d) p = 0.9999. RMS error = 5.82,
CR = 1.47, SNR = 15.68 dB.

(e) p = 0.999. RMS error = 17.87,
CR = 1.05, SNR = 10.80 dB.

(f) p = 0.99. RMS error = 50.51, CR
= 0.72, SNR = 6.29 dB.

Figure 41. JPEG images, without quantization, computed using an inexact discrete
cosine transformation with various values of p, RMS error, Compression Ratio (CR),
and Signal-to-Noise Ratio (SNR). Only the intensity component Y is shown.

114

a noise PSD of 3× 10−12 V2/Hz gives an energy savings of about 62%, and p = 0.999

gives an energy savings of about 15%. Employing exact computation on the three

most significant bits and using (107) gives the energy savings and error values shown

in Table 12. Note that the relative energy savings of the inexact DCT are roughly

the same as the relative energy savings for the inexact CST. Future work should

further examine optimization of the DCT for energy savings via inexact computing.

Future research will also examine the results of performing inexact quantization on

the overall performance of the JPEG compression algorithm shown in Fig. 39.

Table 12. Energy Savings and Errors for Inexact Discrete Cosine Transformation

Energy Normalized
p Savings % RMS Error %

0.99 57 19.8
0.999 14 7.0

5.5 Remarks

Although RMS error is a useful metric of image quality, it is very simplistic.

Models of human perception are very complex, and are not easily summarized by

simple metrics. If an image is intended for human consumption, it is up to the

human observer whether or not the image quality is “good enough”.

The JPEG standard has been around since the early 1990s [49]. Although re-

searchers are working on new image compression algorithms, the legacy JPEG al-

gorithm is well-understood and still widely used. The results of this dissertation

demonstrate a promising approach to improving other image compression algorithms

via inexact computing.

115

VI. Discussion

The decision flowchart in Fig. 1 provides the overall framework for inexact com-

puting design. In this dissertation, we demonstrated the following steps in the

flowchart:

• Profiling of the JPEG algorithm (Fig. 2),

• Deciding which sub-algorithms are amenable to inexact design (Sections 3.6.8

and 4.7 and Fig. 2),

• Choosing the right amount of precision (Section 4.6.1),

• Choosing error metrics (Section 4.7),

• Using noisy inexactness to reduce energy and area (Sections 4.1.1.4, 4.3 and

4.4), and

• Comparing the inexact sub-algorithm design vs. the exact sub-algorithm base-

line (Tables 11 and 12).

Tables 11 and 12 illustrate the tradeoffs made within the space of inexact computing

design.

With sufficient energy reduction, breakpoints in the tradeoffs begin to emerge.

For example, consider the case in which the energy reduction with the use of inexact

methods is reduced to 1/4 of the initial energy consumption, as shown in Fig. 32,

curve (a), with 73% energy reduction and a 7.5% error standard deviation. In this

case, circuit designers can pull ahead of the energy need even when three adders are

used (triple module redundancy). In such cases, there are “break points” when energy

savings are sufficient to justify a change in circuit architecture, and the contribution

116

of this dissertation is to provide data to decide the break points for a few specific

adder circuits in 14 nm FinFET CMOS technology and 0.6 μm CMOS technology.

This dissertation helps designers find a way to pull ahead, such that designers

can find a tradeoff in energy that gives a clear decisive drop in power faster than

the growth in area. As an example, consider triple module redundancy for which the

breakpoint is approximately 67%, not including the small area overhead in the voting

circuitry; thus, designers would need to achieve a gain of approximately four in order

to beat an area (overhead) occupied by three modules.

Note that designers can achieve this breakpoint in time or area. In time, one can

just take three consecutive samples—which is very attractive for circuits—designers

can slow down the circuits, take more samples, and vote; the more one can slow down

the circuit, the more accurate the result can be, and then one could achieve perhaps a

20-fold energy reduction. In such a way, designers can play with the time dimension

a lot in order to pull ahead.

Another question we are asking is, “What is the best a designer can ever do?”

For example, a broken clock is really energy efficient but is not wrong all of the time;

the broken clock is correct twice a day. We are trying to understand if it is possible

to make a clock that wiggles a bit; in such a case we would expect that it is wrong

less of the time. The same principle applies to inexact adders.

Other components, such as barrel shifters, bit counters, multiplexers, multipliers,

floating-point adders, and floating-point multipliers can be built using inexact logic

circuits. Such components can be used in the JPEG compression algorithm, as shown

in Fig. 2. However, in this work we used only integer adders and multipliers, and

the only bit shifting we did was simply a matter of truncating some of the least

significant bits. The purpose of the compression algorithm is to reduce the size

of the data while retaining most of the information contained therein. The first

117

step in the algorithm is the color space transformation. In this step, the processor

transforms the red, blue, and green image components into a luminance component

and two chrominance components. This is a linear formula consisting of addition and

multiplication, and could be accomplished using integer adders and multipliers. This

is a possible application for inexact computing.

The second step of the JPEG compression algorithm, tiling, does not involve

inexact components; it consists of wiring only. In this step, the processor arranges

each data component into 8×8 blocks of pixels. This is simply routing of data. Under

our inexact computing model, routing can be accomplished via hard-wiring without

any inexactness.

In the third step, the processor performs the discrete cosine transformation (DCT)

on each 8×8 block of data. This consists of two 8×8 matrix multiplications involving

non-whole signed numbers. To handle fractional numbers, we chose to use signed

integer arithmetic instead of IEEE 754 standard floating point numbers, because

initial results indicate integer arithmetic produced lower errors. This signed integer

arithmetic was optimized by the use of various p-values, exact computation on the

three most significant bits, and precision limited to only the number of bits needed,

as described in Section 4.6. Future research will further examine optimization of the

DCT for energy and EDP improvement via inexact computing.

The fourth step of the compression algorithm, quantization, consists of dividing

(or multiplying) each DCT output by a constant value. The purpose of quantization

is to reduce the DCT data into a sparse matrix consisting of mostly zeros. This could

also be performed using inexact multipliers.

The final three steps in the compression algorithm are not applications for inexact

computing. Step five is zigzagging, which is routing of data, and can be accomplished

without inexactness. Step six, which is run-amplitude encoding, and step seven,

118

which is Huffman encoding, are state machine applications, which are not tolerant of

error.

The results shown in this dissertation provide a promising approach to continue

improvements on the energy and EDP of the JPEG compression algorithm via inex-

act computing, at the expense of tradeoffs in image quality and compression ratio.

We have demonstrated the inexact color space transformation and DCT; the other

component, quantization, is reserved for future work. Future work will also consider

the increases in energy consumption caused by degradation of the compression ra-

tio. Also, future research will utilize inexact techniques to optimize JPEG image

compression hardware for reduced energy consumption and reduced EDP via inexact

computing.

119

VII. Summary and Conclusions

The past five decades have seen an insatiable demand for computation supported

by the success of Moore’s Law, and concerns about limits to power reduction that can

be realized with traditional digital design and device scaling are being raised. At the

same time, a need exists to build a fault tolerant semiconductor chip that can han-

dle failure gracefully. These trends provide motivation for researchers to investigate

areas such as probabilistic computing and inexact methods that offer potential im-

provement in energy (savings), performance (improvement), and area (improvement).

Probabilistic computing offers a potential capability to extract functionality that is

‘good enough’ while operating with lower power dissipation.

This dissertation presents a method to quantify the energy savings resulting from

the decision to accept a specified percentage of error in some components of a com-

puting system. With the JPEG algorithm, loss is tolerated in certain components

(e.g. color space transformation and discrete cosine transform) that contain adder

circuits. The contribution of this dissertation is to provide energy-accuracy tradeoffs

for a few inexact adder architectures in 14 nm FinFET CMOS technology.

7.1 Adders

This dissertation investigated the susceptibility to noise of some digital adder

circuits that are deliberately engineered to be imprecise. The adders are characterized

with probabilistic Boolean logic which provides the capability to characterize random

noise in digital circuits. In this study, each binary logic gate was assigned a probability

p of correctness between 0.8000 and 0.9999.

The contribution of this dissertation is to provide quantitative data providing

energy-accuracy tradeoffs for 8-bit and 16-bit ripple carry adders and 8-bit and 16-

120

bit Kogge-Stone adders in 14 nm FinFET CMOS technology as functions of four levels

of noise power spectral density introduced in the circuits. Error histograms, standard

deviation, kurtosis, and probability of zero error are reported. The power supply

voltage takes on values in the range of 0.3 V to 0.8 V in 14 nm FinFET CMOS

technology. The main results of this dissertation show that the energy reduction

can take on the largest value of 92% with an error rate of 0.1 (where the noise

power spectral density takes on a value of 3 × 10−12 V2/Hz). Second, results show

that an energy reduction of 95% can be achieved with a standard deviation of a

normalized output error of 0.18 (again, where the noise power spectral density takes

on a value of 3 × 10−12 V2/Hz). The results also show that for VDD=0.6 V and

p=0.91, energy consumption can be reduced by 50% compared with VDD = 0.8 V,

with a normalized error standard deviation of 0.2, and a reduction of 30% in the

energy-delay product. When VDD is further reduced to VDD = 0.5 V with p = 0.87,

the error standard deviation is 0.25, and energy consumption is reduced by 65%, and

energy-delay product is reduced by 40%. Results show that the energy-delay product

is minimized when the normalized error standard deviation takes on a value between

0.25 and 0.32. As error increases beyond this point, the increase in delay exceeds the

reduction in energy, and so the EDP starts to increase again.

7.2 Multipliers

This dissertation presents a methodology for inexact multipliers, including shift

and add, Baugh-Wooley, and Wallace tree multipliers. Probabilistic Boolean logic

simulations of these multipliers and the associated error are presented with Mat-

lab. Results show that for a probability of correctness of 0.999, the normalized error

standard deviation achieved in an 8-bit shift-and-add multiplier is 2.66%. For the

shift-and-add multiplier, a methodology was presented to use exact technology to

121

compute the most significant bits, and inexact technology to compute the least sig-

nificant bits, and an example was provided. An expression to calculate the energy

per cycle by an exact shift-and-add multiplier was discussed.

The results provided by the Matlab simulations of an 8-bit noisy shift-and-add

multiplier and an 8-bit Wallace tree multiplier show that as the probability of correct-

ness p takes on a larger value (increases), the standard deviation in the error decreases

in both multipliers, as shown in Fig. 34(a)-(c) and Fig. 35(a)-(c). Similar results are

also summarized for 16-bit shift-and-add multipliers and 16-bit Wallace tree multipli-

ers and 32-bit shift-and-add multipliers and 32-bit Wallace tree multipliers, as shown

in Fig. 36. Detailed error statistics are summarized in Table 10.

7.3 JPEG

This dissertation presents a methodology for the JPEG compression algorithm.

Uncompressed TIFF files from the University of Southern California Signal and Image

Processing Institute (SIPI) are evaluated with the methodology presented in this

dissertation. This dissertation uses integer arithmetic and Matlab simulations to

carry out the inexact JPEG algorithm (See green boxes and pink box in the flowchart

in Fig. 39).

The JPEG algorithm is composed of the following steps: color space transfor-

mation, tiling, discrete cosine transform, quantization, zigzagging, run-amplitude en-

coding, and Huffman encoding. As discussed in the dissertation, inexact computing

(inexactness) can be tolerated in the first, third, and fourth, steps of the JPEG

algorithm, namely color space transformation, discrete cosine transformation, and

quantization.

This dissertation presents an inexact approach to the JPEG algorithm through

incorporation of inexact adders and inexact multipliers in the color space transfor-

122

mation step and the discrete cosine transformation step (green boxes in Fig. 39). In

this methodology, exact computation is used on the three most significant bits of each

addition and multiplication operation in the color space transformation step and in

the discrete cosine transformation step. Exact methods are used in the the quan-

tization step for simplicity, even though it is recognized that this step can tolerate

inexact methods. Fig. 39 summarizes the JPEG algorithm. Note that floating point

arithmetic or integer arithmetic can be used in the methodology.

The results obtained in this dissertation show that a signal-to-noise ratio of 15.68

dB and RMS error of 5.82 can be achieved with a probability of correctness of 99.99%,

as shown in Fig. 41(d). The results also show that a signal-to-noise ratio of 6.29 dB

and RMS error of 50.51 can be achieved with a probability of correctness of 99%, as

shown in Figure 41(f).

We recognize that a fully inexact JPEG algorithm should take advantage of inexact

methods at all steps. Therefore future work should consider the incorporation of

inexact methods in the quantization step.

7.4 Contributions

Using inexact design methods, we have shown that we could cut energy demand

in half with 16-bit Kogge-Stone adders that deviated from the correct value by an

average of 3.0 percent in 14 nm CMOS FinFET technology, assuming a noise ampli-

tude of 3 × 10−12 V2/Hz (see Fig. 32). This was achieved by reducing VDD to 0.6 V

instead of its maximum value of 0.8 V. The energy-delay product (EDP) was reduced

by 38 percent (see Fig. 33).

Adders that got wrong answers with a larger deviation of about 7.5 percent (using

VDD = 0.5 V) were up to 3.7 times more energy-efficient, and the EDP was reduced

by 45 percent.

123

Adders that got wrong answers with a larger deviation of about 19 percent (using

VDD = 0.3 V) were up to 13 times more energy-efficient, and the EDP was reduced

by 35 percent.

We used inexact adders and inexact multipliers to perform the color space trans-

form, and found that with a 1 percent probability of error at each logic gate, the

letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to 10

pixels tall, are readable in the processed image, as shown in Fig. 40f, where the

relative RMS error is 5.4 percent.

We used inexact adders and inexact multipliers to perform the discrete cosine

transform, and found that with a 1 percent probability of error at each logic gate,

the letters “F-16”, which are 14 pixels tall, and “U.S. AIR FORCE”, which are 8 to

10 pixels tall, are readable in the processed image, as shown in Fig. 41f, where the

relative RMS error is 20 percent.

This dissertation demonstrates the implementation of a complex algorithm using

inexact design methods. In this demonstration, inexactness is the result of noise,

crosstalk, RF interference, cross-chip variations, or other imperfections which affect

circuit performance in a probabilistic manner. These results show savings of energy,

delay, and area by continuing device scaling with hardware technologies which are

less than perfectly reliable. Future research will include fabrication of complex sys-

tems using such unreliable technologies, and further development of inexact design

methodologies.

124

Appendix A. Inexact Integer Adders

1.1 Ripple-Carry Adder

1 function [S, Cout , S0] = Adder_RCA_inexact(n, A, B, Cin , p
, bit , msbhalfadder)

2 %Adder_RCA_inexact: Adds inputs A, B, and Cin , simulating
a ripple -carry

3 %adder , except that each AND , OR, and AO21 (and -or) gate
has a random

4 %error probability equal to 1-p.
5 %
6 %Inputs:
7 %n: (positive integer) Number of bits processed by the

adder.
8 %A, B: (n-bit integer arrays) Input arguments for the

adder.
9 % If B is a scalar , then B is treated as a constant ,

allowing for a
10 % simplified hardware implementation , which results in

less inexactness.
11 %Cin: (logical array) Carry -in input for the adder.
12 %p: (scalar) Probability of correctness of each AND , XOR ,

and AO21 gate
13 % inside the adder. 0 <= p <= 1.
14 %bit: (integer vector) Which bit positions can be inexact

. Position 1 is
15 % lowest -order bit. (optional) If bit is omitted , then

all positions
16 % can be inexact.
17 %msbhalfadder: Assumes the most significant bit (MSB) of

B is always 0,
18 % and uses a half -adder to add the MSB of A and to the

carry.
19 %
20 %Outputs:
21 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
22 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
23 %Cout: (logical array) Carry -out bit.
24 %
25 %References:
26 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,
27 %Boston: Addison -Wesley , 2011, p. 449.

125

28 %
29 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
30 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
31 %Computer Science , Jun 2008.
32
33 switch class(A)
34 case ’int8’
35 na = 8; signedA = true;
36 case ’uint8’
37 na = 8; signedA = false;
38 case ’int16’
39 na = 16; signedA = true;
40 case ’uint16 ’
41 na = 16; signedA = false;
42 case ’int32’
43 na = 32; signedA = true;
44 case ’uint32 ’
45 na = 32; signedA = false;
46 case ’int64’
47 na = 64; signedA = true;
48 case ’uint64 ’
49 na = 64; signedA = false;
50 otherwise
51 error ’Addends must be of the integer classes.’
52 end
53 A = unsigned(A);
54 signA = logical(bitget(A,n));
55
56 switch class(B)
57 case ’int8’
58 nb = 8; signedB = true;
59 case ’uint8’
60 nb = 8; signedB = false;
61 case ’int16’
62 nb = 16; signedB = true;
63 case ’uint16 ’
64 nb = 16; signedB = false;
65 case ’int32’
66 nb = 32; signedB = true;
67 case ’uint32 ’
68 nb = 32; signedB = false;
69 case ’int64’
70 nb = 64; signedB = true;
71 case ’uint64 ’

126

72 nb = 64; signedB = false;
73 otherwise
74 error ’Addends must be of the integer classes.’
75 end
76 B = unsigned(B);
77 signB = logical(bitget(B,n));
78
79 if n <= 8
80 classname = ’uint8’;
81 elseif n <= 16
82 classname = ’uint16 ’;
83 elseif n <= 32
84 classname = ’uint32 ’;
85 else
86 classname = ’uint64 ’;
87 end
88
89 if ~exist(’Cin’,’var’)
90 Cin = [];
91 end
92
93 if ~exist(’p’,’var’)
94 p = 1;
95 end
96
97 if ~exist(’bit’,’var’)
98 bit = 1 : n;
99 end

100
101 if ~exist(’msbhalfadder ’,’var’)
102 msbhalfadder = false;
103 end
104
105 if isempty (bit)
106 minbit = Inf;
107 maxbit = Inf;
108 else
109 minbit = min(bit(:));
110 maxbit = max(bit(:));
111 end
112
113 constantadder = isscalar(B);
114
115 S = zeros(size(A),classname);
116 Cout = false(size(A));
117

127

118 % Initial propagate/generate stage.
119 if constantadder
120 % If we are adding only a constant B, we can use fewer

components ,
121 % and therefore less inexactness. For each bit:
122 % A AND 1 = A, and can be omitted altogether from

hardware.
123 % A AND 0 = 0.
124 % A XOR 0 = A, and can be omitted.
125 % A XOR 1 can be hard -wired as an inverter.
126
127 AandB = bitand(A, B);

% generate
128 AxorB = bitxor(A, B);

% propagate
129
130 % Introduce errors only into the bits of B which are

set high.
131 err = bitand(B, biterrors(size(AxorB), p, classname ,

bit));
132 AxorB = bitxor(AxorB , err);
133 clear err
134 else % A and B are both variables
135 AandB = bitand_inexact(A, B, p, classname , bit);

% generate
136 AxorB = bitxor_inexact(A, B, p, classname , bit);

% propagate
137 end
138
139 cols = 1 : n;
140 cols = repmat(cols , [numel(A), 1]);
141 Sbits = false(size(cols));
142 if isempty (Cin)
143 Cbits = [false(numel(A) ,1), Sbits];
144 elseif isscalar(Cin)
145 Cbits = [repmat(logical(Cin),[numel(A) ,1]), Sbits];
146 else
147 Cbits = [logical(Cin(:)), Sbits];
148 end
149 Bbits = Sbits;
150 AandBbits = Sbits;
151 AxorBbits = Sbits;
152 AxorBandCbits = Sbits;
153 AandBbits (:) = bitget(repmat(AandB (:) ,[1,n]),cols);
154 AxorBbits (:) = bitget(repmat(AxorB (:) ,[1,n]),cols);
155 if isscalar(B)

128

156 Bbits (:) = bitget(repmat(B(:) ,[numel(A),n]),cols);
157 else
158 Bbits (:) = bitget(repmat(B(:) ,[1,n]),cols);
159 end
160
161 for j = 1 : n
162 k = find(j == bit , 1, ’first’);
163 if (j== minbit) && isempty(Cin) % half

adder on lowest bit
164 Sbits(:,j) = AxorBbits(:,j);
165 Cbits(:,j+1) = AandBbits(:,j);
166 elseif (j== maxbit) && msbhalfadder % half

adder on highest bit
167 Amsb = logical(bitget(A(:),maxbit));
168 Sbits(:,j) = xor(Amsb , Cbits(:,j));
169 Cbits(:,j+1) = Amsb & Cbits(:,j);
170 if k
171 i = (rand(numel(A) ,1) > p);
172 Sbits(i,j) = ~Sbits(i,j);
173 i = (rand(numel(A) ,1) > p);
174 Cbits(i,j+1) = ~Cbits(i,j+1);
175 end
176 else % full

adder
177 Sbits(:,j) = xor(AxorBbits(:,j), Cbits(:,j));
178 if k
179 i = (rand(numel(A) ,1) > p);
180 Sbits(i,j) = ~Sbits(i,j);
181 end
182 AxorBandCbits (:,j) = AxorBbits(:,j) & Cbits(:,j);
183 if k
184 i = (rand(numel(A) ,1) > p);
185 AxorBandCbits(i,j) = ~AxorBandCbits(i,j);
186 end
187 Cbits(:,j+1) = AxorBandCbits (:,j) | AandBbits(:,j)

;
188 if k
189 i = (rand(numel(A) ,1) > p) & (~ constantadder |

Bbits(:,j));
190 %If B is const , the OR gate is only needed

for hi bits of B
191 Cbits(i,j+1) = ~Cbits(i,j+1);
192 end
193 end
194 end
195

129

196 Cout (:) = Cbits(:,n+1);
197 twos = cast(pow2 (0:(n-1)),’like’,S);
198 S(:) = sum(cast(Sbits ,’like’,S) .* twos(ones(numel(S) ,1)

,:) ,2,’native ’);
199
200 if n <= 7
201 S0 = uint8(S);
202 elseif n <= 15
203 S0 = uint16(S);
204 elseif n <= 31
205 S0 = uint32(S);
206 elseif n <= 63
207 S0 = uint64(S);
208 else
209 S0 = double(S) + double(pow2(n) * Cout);
210 end
211
212 if signedA || signedB
213 signout = logical(bitget(S,n));
214 % overflow = (~signA | ~signout) & (signA | ~signB) & (

signB | signout);
215
216 OxFFFF = intmax(class(S));
217 OxF000 = bitshift(OxFFFF ,n);
218 S(signout) = bitor(S(signout),OxF000);
219 S = signed(S);
220
221 if n <= 63
222 Cout2 = xor(Cout ,xor(signA ,signB));
223 OxFFFFFFFF = intmax(class(S0));
224 OxF0000000 = bitshift(OxFFFFFFFF ,n);
225 S0(Cout2) = bitor(S0(Cout2),OxF0000000);
226 S0 = signed(S0);
227 else
228 S0(signout) = -S0(signout);
229 end
230 elseif n <= 63
231 S0 = bitset(S0,n+1,Cout);
232 end

130

1.2 Kogge-Stone Adder

1 function [S, Cout , S0] = kogge_stone_inexact_PBL(n, A,
B, Cin , p)

2 %kogge_stone_inexact_PBL: Adds inputs A, B, and Cin ,
simulating a Kogge -

3 %Stone adder , except that each AND , XOR , and AO21 (and -or)
gate has a

4 %random error probability equal to 1-p.
5 %
6 %Inputs:
7 %n: (positive integer) Number of bits processed by the

adder.
8 %A, B: (n-bit integer arrays) Input arguments for the

adder.
9 % A, B, and Cin must all have the same dimensions.

10 %Cin: (logical array) Carry -in input for the adder.
11 %p: (scalar) Probability of correctness of each AND , XOR ,

and AO21 gate
12 % inside the adder. 0 <= p <= 1.
13 %
14 %Outputs:
15 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
16 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
17 %Cout: (logical array) Carry -out bit.
18 %
19 %References:
20 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,
21 %Boston: Addison -Wesley , 2011, p. 449.
22 %
23 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
24 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
25 %Computer Science , Jun 2008.
26
27 if n <= 7
28 classname0 = ’uint8’;
29 classname = ’uint8’;
30 elseif n <= 8
31 classname0 = ’uint8’;
32 classname = ’uint16 ’;
33 elseif n <= 15

131

34 classname0 = ’uint16 ’;
35 classname = ’uint16 ’;
36 elseif n <= 16
37 classname0 = ’uint16 ’;
38 classname = ’uint32 ’;
39 elseif n <= 31
40 classname0 = ’uint32 ’;
41 classname = ’uint32 ’;
42 elseif n <= 32
43 classname0 = ’uint32 ’;
44 classname = ’uint64 ’;
45 else
46 classname0 = ’uint64 ’;
47 classname = ’uint64 ’;
48 end
49
50 if nargin < 5
51 p = 1;
52 end
53
54 if (nargin < 4) || isempty(Cin)
55 c = 0;
56 Cin = zeros(classname);
57 else
58 c = 1;
59 Cin0 = logical(Cin);
60 Cin = zeros(size(Cin),classname);
61 Cin(:) = Cin0;
62 end
63
64 logn = log2(n) + c + 1;
65 S0 = zeros ([max([numel(A), numel(B)]), 1], classname);
66 P = zeros ([max([numel(A), numel(B)]), logn], classname);
67 G = P;
68
69 P(:,1) = bitxor_inexact(A(:), B(:), p, classname0 , 1:n);
70 G(:,1) = bitand_inexact(A(:), B(:), p, classname0 , 1:n);
71 if c
72 P(:,1) = bitshift(P(:,1), 1);
73 G(:,1) = bitor(bitshift(G(:,1), 1), Cin(:));
74 end
75
76 i2 = zeros(classname);
77 for i = 2 : logn
78 i1 = pow2(i-2);
79 i2(:) = pow2(i1) -1;

132

80 i2c = bitcmp0(i2, n+c);
81 P(:,i) = bitand_inexact(P(:,i-1), bitshift(P(:,i-1),i1

), p, classname , (2*i1+1):(n+c+1));
82 P(:,i) = bitor(bitand(P(:,i),i2c), bitand(P(:,i-1),i2)

);
83 G(:,i) = AO21_inexact(G(:,i-1), P(:,i-1), bitshift(G

(:,i-1),i1), p, classname , (i1+1):(n+c+1));
84 G(:,i) = bitor(bitand(G(:,i),i2c), bitand(G(:,i-1),i2)

);
85 end
86
87 S0(:) = bitxor_inexact(P(:,1), bitshift(G(:,logn) ,1), p,

classname , 2:(n+c+1));
88 if c
89 S0(:) = bitshift(S0(:), -1);
90 end
91
92 if isscalar(A)
93 S0 = reshape(S0, size(B));
94 else
95 S0 = reshape(S0, size(A));
96 end
97
98 intmax1 = zeros(classname);
99 intmax1 (:) = pow2(n) - 1;

100 S = zeros(size(S0), classname0);
101 S(:) = bitand(S0, intmax1);
102
103 Cout = false(size(S0));
104 Cout (:) = bitget(S0, n+1);

133

1.3 Ling Radix-4 Carry-Lookahead Adder

1 function [S, Cout , S0] = ling_adder_inexact_PBL(n, A, B
, Cin , p)

2 %ling_adder: Adds inputs A, B, and Cin , simulating a
valency -4

3 %carry lookahead adder using the Ling technique.
4 %
5 %Inputs:
6 %n: (positive integer) Number of bits processed by the

adder.
7 %A, B: (n-bit integer arrays) Input arguments for the

adder.
8 % A, B, and Cin must all have the same dimensions.
9 %Cin: (logical array) Carry -in input for the adder.

10 %p: (scalar) Probability of correctness of each AND , OR,
XOR , and AOAO2111

11 % gate inside the adder. 0 <= p <= 1.
12 %
13 %Outputs:
14 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
15 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
16 %Cout: (logical array) Carry -out bit.
17 %
18 %Reference:
19 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
20 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
21 %Computer Science , Jun 2008.
22
23 switch class(A)
24 case {’int8’, ’uint8’}
25 na = 8;
26 case {’int16’, ’uint16 ’}
27 na = 16;
28 case {’int32’, ’uint32 ’}
29 na = 32;
30 case {’int64’, ’uint64 ’}
31 error ’64-bit not supported.’
32 otherwise
33 error ’Addends must be of the integer classes.’
34 end
35

134

36 switch class(B)
37 case {’int8’, ’uint8’}
38 nb = 8;
39 case {’int16’, ’uint16 ’}
40 nb = 16;
41 case {’int32’, ’uint32 ’}
42 nb = 32;
43 case {’int64’, ’uint64 ’}
44 error ’64-bit not supported.’
45 otherwise
46 error ’Addends must be of the integer classes.’
47 end
48
49 if n <= 7
50 classname0 = ’uint8’;
51 classname = ’uint8’;
52 elseif n <= 8
53 classname0 = ’uint8’;
54 classname = ’uint16 ’;
55 elseif n <= 15
56 classname0 = ’uint16 ’;
57 classname = ’uint16 ’;
58 elseif n <= 16
59 classname0 = ’uint16 ’;
60 classname = ’uint32 ’;
61 elseif n <= 31
62 classname0 = ’uint32 ’;
63 classname = ’uint32 ’;
64 elseif n <= 32
65 classname0 = ’uint32 ’;
66 classname = ’uint64 ’;
67 else
68 classname0 = ’uint64 ’;
69 classname = ’uint64 ’;
70 end
71
72 if nargin < 5
73 p = 1;
74 end
75
76 if (nargin < 4) || isempty(Cin)
77 c = 0;
78 Cin = zeros(classname);
79 else
80 c = 1;
81 Cin0 = logical(Cin);

135

82 Cin = zeros(size(Cin),classname);
83 Cin(:) = Cin0;
84 end
85
86 L = ceil(n / 4);
87 S0 = zeros ([max([numel(A), numel(B)]), 1], classname);
88 H = zeros ([max([numel(A), numel(B)]), 2], classname);
89 P = zeros ([max([numel(A), numel(B)]), 1], classname);
90 I = P;
91
92 P(:,1) = bitxor_inexact(A(:), B(:), p, classname0 , 1:n);
93 I(:,1) = bitor_inexact(A(:), B(:), p, classname0 , 1:n);
94 H(:,1) = bitand_inexact(A(:), B(:), p, classname0 , 1:n);
95 P(:,1) = bitshift(P(:,1), 1);
96 I(:,1) = bitshift(I(:,1), 1);
97 H(:,1) = bitshift(H(:,1), 1);
98 if c
99 H(:,1) = bitor(H(:,1), Cin(:));

100 I(:,1) = bitor(I(:,1), Cin(:));
101 end
102 I(:,1) = bitshift(I(:,1), 1);
103 H(:,2) = H(:,1);
104 I(:,2) = I(:,1);
105
106 for i = 1 : L
107 H(:,1) = bitset(H(:,1), 4*i+1, bitor_inexact(...
108 bitget(H(:,1), 4*i+1), AOAO2111_inexact(...
109 bitget(H(:,1), 4*i), bitget(I(:,1), 4*i+1), ...
110 bitget(H(:,1), 4*i-1), bitget(I(:,1), 4*i), ...
111 bitget(H(:,1), 4*i-2), p, classname , 1), p,

classname , 1));
112 I(:,1) = bitset(I(:,1), 4*i+1, bitand4_inexact(...
113 bitget(I(:,1), 4*i+1), ...
114 bitget(I(:,1), 4*i), ...
115 bitget(I(:,1), 4*i-1), ...
116 bitget(I(:,1), 4*i-2), p, classname , 1));
117 H(:,1) = bitset(H(:,1), 4*i+1, AO21_inexact(...
118 bitget(H(:,1), 4*i+1), bitget(I(:,1), 4*i+1), ...
119 bitget(H(:,1), 4*i-3), p, classname , 1));
120 H(:,1) = bitset(H(:,1), 4*i-2, AO21_inexact(...
121 bitget(H(:,1), 4*i-2), bitget(I(:,1), 4*i-2), ...
122 bitget(H(:,1), 4*i-3), p, classname , 1));
123 H(:,1) = bitset(H(:,1), 4*i-1, AO21_inexact(...
124 bitget(H(:,1), 4*i-1), bitget(I(:,1), 4*i-1), ...
125 bitget(H(:,1), 4*i-2), p, classname , 1));
126 H(:,1) = bitset(H(:,1), 4*i, AO21_inexact(...

136

127 bitget(H(:,1), 4*i), bitget(I(:,1), 4*i), ...
128 bitget(H(:,1), 4*i-1), p, classname , 1));
129 end
130
131 S0(:) = mux2_inexact(bitshift(H(:,1) ,1), P(:,1), bitxor(P

(:,1), I(:,2)), ...
132 p, classname , 1:(n+2));
133 S0(:) = bitshift(S0(:), -1);
134
135 if isscalar(A)
136 S0 = reshape(S0, size(B));
137 else
138 S0 = reshape(S0, size(A));
139 end
140
141 intmax1 = zeros(classname);
142 intmax1 (:) = pow2(n) - 1;
143 S = zeros(size(S0), classname0);
144 S(:) = bitand(S0, intmax1);
145
146 Cout = false(size(S0));
147 Cout (:) = bitget(S0, n+1);

137

1.4 Brent-Kung Adder

1 function [S, Cout , S0] = brent_kung_inexact_PBL(n, A, B
, Cin , p)

2 %brent_kung_inexact_PBL: Adds inputs A, B, and Cin ,
simulating a Brent -Kung

3 %adder , except that each AND , XOR , and AO21 (and -or) gate
has a random error

4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %n: (positive integer) Number of bits processed by the

adder.
8 %A, B: (n-bit integer arrays) Input arguments for the

adder.
9 % A, B, and Cin must all have the same dimensions.

10 %Cin: (logical array) Carry -in input for the adder.
11 %p: (scalar) Probability of correctness of each AND , XOR ,

and AO21 gate
12 % inside the adder. 0 <= p <= 1.
13 %
14 %Outputs:
15 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
16 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
17 %Cout: (logical array) Carry -out bit.
18 %
19 %References:
20 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,
21 %Boston: Addison -Wesley , 2011, p. 449.
22 %
23 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
24 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
25 %Computer Science , Jun 2008.
26
27 switch class(A)
28 case {’int8’, ’uint8’}
29 na = 8;
30 case {’int16’, ’uint16 ’}
31 na = 16;
32 case {’int32’, ’uint32 ’}
33 na = 32;

138

34 case {’int64’, ’uint64 ’}
35 error ’64-bit not supported.’
36 otherwise
37 error ’Addends must be of the integer classes.’
38 end
39
40 switch class(B)
41 case {’int8’, ’uint8’}
42 nb = 8;
43 case {’int16’, ’uint16 ’}
44 nb = 16;
45 case {’int32’, ’uint32 ’}
46 nb = 32;
47 case {’int64’, ’uint64 ’}
48 error ’64-bit not supported.’
49 otherwise
50 error ’Addends must be of the integer classes.’
51 end
52
53 if n <= 7
54 classname0 = ’uint8’;
55 classname = ’uint8’;
56 elseif n <= 8
57 classname0 = ’uint8’;
58 classname = ’uint16 ’;
59 elseif n <= 15
60 classname0 = ’uint16 ’;
61 classname = ’uint16 ’;
62 elseif n <= 16
63 classname0 = ’uint16 ’;
64 classname = ’uint32 ’;
65 elseif n <= 31
66 classname0 = ’uint32 ’;
67 classname = ’uint32 ’;
68 elseif n <= 32
69 classname0 = ’uint32 ’;
70 classname = ’uint64 ’;
71 else
72 classname0 = ’uint64 ’;
73 classname = ’uint64 ’;
74 end
75
76 if nargin < 5
77 p = 1;
78 end
79

139

80 if (nargin < 4) || isempty(Cin)
81 c = 0;
82 Cin = zeros(classname);
83 else
84 c = 1;
85 Cin0 = logical(Cin);
86 Cin = zeros(size(Cin),classname);
87 Cin(:) = Cin0;
88 clear Cin0
89 end
90
91 logn = 2 * log2(n);
92 S0 = zeros ([max([numel(A), numel(B)]), 1], classname);
93 P = zeros ([max([numel(A), numel(B)]), logn], classname);
94 G = P;
95
96 P(:,1) = bitxor_inexact(A(:), B(:), p, classname0 , 1:n);
97 G(:,1) = bitand_inexact(A(:), B(:), p, classname0 , 1:n);
98 if c
99 P(:,1) = bitshift(P(:,1), 1);

100 G(:,1) = bitor(bitshift(G(:,1), 1), Cin(:));
101 end
102
103 i2c = zeros(classname);
104 i3c = i2c;
105 for i = 2 : (0.5 * logn + 1)
106 i1 = pow2(i-2);
107 i2c(:) = sum(pow2 ((pow2(i) -1):pow2(i-1):(n+c-1)));
108 i3c(:) = sum(pow2 ((pow2(i-1) -1):pow2(i-1):(n+c-1)));
109 i2 = bitcmp(i2c , n+c);
110 i3 = bitcmp(i3c , n+c);
111 P(:,i) = bitand_inexact(P(:,i-1), bitshift(P(:,i-1),i1

), p, classname);
112 P(:,i) = bitor(bitand(P(:,i),i2c), bitand(P(:,i-1),i2)

);
113 G(:,i) = AO21_inexact(G(:,i-1), P(:,i-1), bitshift(G

(:,i-1),i1), p, classname);
114 G(:,i) = bitor(bitand(G(:,i),i3c), bitand(G(:,i-1),i3)

);
115 end
116
117 for i = (0.5 * logn + 2) : logn
118 i1 = pow2(logn -i);
119 i3c(:) = sum(pow2 ((3* pow2(logn -i) -1):(pow2(logn -i+1))

:(n+c-1)));
120 i3 = bitcmp(i3c , n+c);

140

121 P(:,i) = P(:,i-1);
122 G(:,i) = AO21_inexact(G(:,i-1), P(:,i-1), bitshift(G

(:,i-1),i1), p, classname);
123 G(:,i) = bitor(bitand(G(:,i),i3c), bitand(G(:,i-1),i3)

);
124 end
125
126 S0(:) = bitxor_inexact(P(:,1), bitshift(G(:,logn) ,1), p,

classname , 2:(n+c+1));
127 if c
128 S0(:) = bitshift(S0(:), -1);
129 end
130
131 if isscalar(A)
132 S0 = reshape(S0, size(B));
133 else
134 S0 = reshape(S0, size(A));
135 end
136
137 intmax1 = zeros(classname);
138 intmax1 (:) = pow2(n) - 1;
139 S = zeros(size(S0), classname0);
140 S(:) = bitand(S0, intmax1);
141
142 Cout = false(size(S0));
143 Cout (:) = bitget(S0, n+1);

141

1.5 Sklansky Adder

1 function [S, Cout , S0] = sklansky_inexact_PBL(n, A, B,
Cin , p)

2 %sklansky_inexact_PBL: Adds inputs A, B, and Cin ,
simulating a Sklansky

3 %adder , except that each AND , XOR , and AO21 (and -or) gate
has a random

4 %error probability equal to 1-p.
5 %
6 %Inputs:
7 %n: (positive integer) Number of bits processed by the

adder.
8 %A, B: (n-bit integer arrays) Input arguments for the

adder.
9 % A, B, and Cin must all have the same dimensions.

10 %Cin: (logical array) Carry -in input for the adder.
11 %p: (scalar) Probability of correctness of each AND , XOR ,

and AO21 gate
12 % inside the adder. 0 <= p <= 1.
13 %
14 %Outputs:
15 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
16 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
17 %Cout: (logical array) Carry -out bit.
18 %
19 %References:
20 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,
21 %Boston: Addison -Wesley , 2011, p. 449.
22 %
23 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
24 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
25 %Computer Science , Jun 2008.
26
27 if n <= 7
28 classname0 = ’uint8’;
29 classname = ’uint8’;
30 elseif n <= 8
31 classname0 = ’uint8’;
32 classname = ’uint16 ’;
33 elseif n <= 15

142

34 classname0 = ’uint16 ’;
35 classname = ’uint16 ’;
36 elseif n <= 16
37 classname0 = ’uint16 ’;
38 classname = ’uint32 ’;
39 elseif n <= 31
40 classname0 = ’uint32 ’;
41 classname = ’uint32 ’;
42 elseif n <= 32
43 classname0 = ’uint32 ’;
44 classname = ’uint64 ’;
45 else
46 classname0 = ’uint64 ’;
47 classname = ’uint64 ’;
48 end
49
50 if (~ exist(’p’,’var’)) || isempty(p)
51 p = 1;
52 end
53
54 if (~ exist(’Cin’,’var’)) || isempty(Cin)
55 c = 0;
56 Cin = zeros(classname);
57 else
58 c = 1;
59 Cin0 = logical(Cin);
60 Cin = zeros(size(Cin),classname);
61 Cin(:) = Cin0;
62 end
63
64 logn = log2(n) + c + 1;
65 S0 = zeros ([max([numel(A), numel(B)]), 1], classname);
66 P = zeros ([max([numel(A), numel(B)]), logn], classname);
67 G = P;
68 bits0 = 1 : pow2(logn - 1);
69
70 P(:,1) = bitxor_inexact(A(:), B(:), p, classname0 , 1:n);
71 G(:,1) = bitand_inexact(A(:), B(:), p, classname0 , 1:n);
72 if c
73 P(:,1) = bitshift(P(:,1), 1);
74 G(:,1) = bitor(bitshift(G(:,1), 1), Cin(:));
75 end
76
77 for i = 2 : logn
78 i1 = pow2(i-2);
79 bits0 = reshape(bits0 , [2*i1, numel(bits0)/(2*i1)]);

143

80 bits1 = bitset(zeros(classname), bits0 (1:i1 ,:),
classname);

81 bits1 = sum(bits1 (:),’native ’);
82 bits1c = bitcmp0(bits1 , n+c);
83 bits1c_ = bits0((i1+1):end ,:);
84 bits2 = bitset(zeros(classname), i1 : (2*i1) : (2* pow2

(logn -i)*i1-i1), classname);
85 bits2 = sum(bits2 (:),’native ’);
86 P1 = bitand(P(:,i-1), bits1);
87 G1 = bitand(G(:,i-1), bits1);
88 P1c = bitand(P(:,i-1), bits1c);
89 G1c = bitand(G(:,i-1), bits1c);
90 P2_ = bitand(P(:,i-1), bits2);
91 G2_ = bitand(G(:,i-1), bits2);
92 P2 = P2_;
93 G2 = G2_;
94 for j = 1 : (i1 -1)
95 P2 = P2_ + bitshift(P2 ,1);
96 G2 = G2_ + bitshift(G2 ,1);
97 end
98 P2 = bitshift(P2 ,1);
99 G2 = bitshift(G2 ,1);

100 P(:,i) = bitor(P1, bitand_inexact(P1c , P2, p,
classname , bits1c_));

101 G(:,i) = bitor(G1, AO21_inexact(G1c , P1c , G2, p,
classname , bits1c_));

102 end
103
104 S0(:) = bitxor_inexact(P(:,1), bitshift(G(:,logn) ,1), p,

classname , 2:(n+c+1));
105 if c
106 S0(:) = bitshift(S0(:), -1);
107 end
108
109 if isscalar(A)
110 S0 = reshape(S0, size(B));
111 else
112 S0 = reshape(S0, size(A));
113 end
114
115 intmax1 = zeros(classname);
116 intmax1 (:) = intmax(classname0);
117 S = zeros(size(S0), classname0);
118 S(:) = bitand(S0, intmax1);
119
120 Cout = false(size(S0));

144

121 Cout (:) = bitget(S0, n+1);

145

1.6 Adder Front-End

The following is a front-end for all of the inexact integer adders.

1 function [S, Cout , S0] = adder_inexact_PBL(arch , n, A,
B, Cin , p)

2 %adder_inexact_PBL: Adds inputs A, B, and Cin , simulating
an

3 %adder , except that each AND , XOR , and AO21 (and -or) gate
has a random

4 %error probability equal to 1-p.
5 %
6 %Inputs:
7 %arch: (string) Inexact adder architecture: ’RC’ (ripple

-carry),
8 % ’Ling ’ (valency -4 carry lookahead), ’Sklansky ’, ’

Brent -Kung ’, or
9 % ’Kogge -Stone ’.

10 %n: (positive integer) Number of bits processed by the
adder.

11 %A, B: (n-bit integer arrays) Input arguments for the
adder.

12 % A, B, and Cin must all have the same dimensions.
13 %Cin: (logical array) Carry -in input for the adder.
14 %p: (scalar) Probability of correctness of each AND , OR,

XOR , AO21 , and/or
15 % AOAO2111 gate inside the adder. 0 <= p <= 1.
16 %
17 %Outputs:
18 %S0: (2*n-bit integer array) Sum of A, B, and Cin ,

including carry -out bit.
19 %S: (n-bit integer array) Lower n bits of S0, excluding

carry -out bit.
20 %Cout: (logical array) Carry -out bit.
21 %
22 %References:
23 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,
24 %Boston: Addison -Wesley , 2011, p. 449.
25 %
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29

146

30 if (~ exist(’arch’,’var’)) || isempty(arch)
31 arch = ’RC’;
32 end
33
34 if ~exist(’Cin’,’var’)
35 Cin = [];
36 end
37
38 if (~ exist(’p’,’var’)) || isempty(p)
39 p = 1;
40 end
41
42 curdir = pwd;
43 dirname = userpath;
44 if (dirname(end) == ’;’) || (dirname(end) == ’\’)
45 dirname = dirname (1: end -1);
46 end
47
48 switch upper(arch)
49 case {’LING’,’LING CLA’,’LING -CLA’,’CLA’,’CARRY

LOOKAHEAD ’,’CARRY -LOOKAHEAD ’,’CARRY LOOK AHEAD’}
50 dirname = [dirname , ’\Ling -CLA’];
51 fname = ’ling_adder_inexact_PBL ’;
52 case ’SKLANSKY ’
53 dirname = [dirname , ’\Sklansky ’];
54 fname = ’sklansky_inexact_PBL ’;
55 case {’BRENT -KUNG’,’BRENT KUNG’}
56 dirname = [dirname , ’\Brent -Kung’];
57 fname = ’brent_kung_inexact_PBL ’;
58 case {’KOGGE -STONE’,’KOGGE STONE’}
59 dirname = [dirname , ’\Kogge -Stone’];
60 fname = ’kogge_stone_inexact_PBL ’;
61 otherwise % use inexact ripple -carry architecture
62 dirname = [dirname , ’\Ripple -Carry’];
63 fname = ’Adder_RCA_inexact ’;
64 end
65
66 cd(dirname)
67
68 try
69 [S, Cout , S0] = feval(fname , n, A, B, Cin , p);
70 catch exception
71 cd(curdir)
72 rethrow(exception)
73 end
74

147

75 cd(curdir)

148

1.7 Adder-Subtractor

1 function [S, Cout , S0] = adder_subtractor_inexact_PBL(arch
, n, A, B, D, p)

2 %adder_subtractor_inexact_PBL adds or subtracts inputs A,
B,

3 %depending on the value of D, simulating an inexact
digital

4 %adder -subtractor. Each AND , XOR , NOT , and AO21 (and -or)
5 %gate within the circuit has a random error probability
6 %equal to 1-p.
7 %
8 %Inputs:
9 %arch: (string) Inexact adder architecture: ’RC’ (ripple

-
10 % carry), ’Ling ’ (valency -4 carry lookahead), ’Sklansky

’,
11 % ’Brent -Kung ’, or ’Kogge -Stone ’.
12 %n: (positive integer) Number of bits processed by the

adder
13 %A, B: (n-bit integer arrays) Input arguments for the

adder.
14 % A, B, and D must all have the same dimensions.
15 %D: (logical array) Determines whether the device

performs
16 % addition or subtraction. If D is false , then add.

If
17 % D is true , then subtract.
18 %p: (scalar) Probability of correctness of each AND , OR,
19 % NOT , XOR , AO21 , and/or AOAO2111 gate inside the adder

.
20 % 0 <= p <= 1.
21 %
22 %Outputs:
23 %S0: (2*n-bit integer array) Sum A+B or difference A-B,
24 % including the carry -out bit.
25 %S: (n-bit integer array) Lower n bits of S0, excluding

the
26 % carry -out bit.
27 %Cout: (logical array) Carry -out bit. For addition , Cout
28 % is true in case of a carry. For subtraction , Cout is
29 % false in case of a borrow.
30 %
31 %References:
32 %N. H. E. Weste and D. M. Harris , CMOS VLSI Design , 4th ed

.,

149

33 %Boston: Addison -Wesley , 2011, p. 449.
34 %
35 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic
36 %Boolean logic and its meaning ," Tech. Rep. TR -08-05, Rice
37 %University , Department of Computer Science , Jun 2008.
38
39 if (~ exist(’arch’,’var’)) || isempty(arch)
40 arch = ’RC’;
41 end
42
43 if ~exist(’D’,’var’) || isempty(D)
44 D = false;
45 end
46
47 if (~ exist(’p’,’var’)) || isempty(p)
48 p = 1;
49 end
50
51 OxFFFF = bitcmp0(zeros(’like’,B),n);
52 B_ = bitcmp_inexact(B,n,p);
53 D1 = cast(D,’like’,B) * OxFFFF;
54 B1 = mux2_inexact(D1,B,B_,p);
55
56 [S, Cout , S0] = adder_inexact_PBL(arch , n, A, B1, D, p);
57 Cout_ = xor_inexact(Cout ,D,p);
58 S0 = bitset(cast(S,’like’,S0),n+1,Cout_);

150

Appendix B. Inexact Floating-Point Adder

1 function [Ss, Es, Ms] = Adder_floating_inexact(Sa, Ea,
Ma, Sb, Eb, Mb, fmt , p)

2
3 switch upper(fmt)
4 case ’BINARY16 ’
5 ne = 5;
6 nm = 10;
7 case ’BINARY32 ’
8 ne = 8;
9 nm = 23;

10 case ’BINARY64 ’
11 ne = 11;
12 nm = 52;
13 case ’BINARY128 ’
14 ne = 15;
15 nm = 112;
16 otherwise
17 error ’fmt must be binary16 , binary32 , binary64 ,

or binary128.’
18 end
19
20 if ~exist(’p’,’var’)
21 p = 1;
22 end
23
24 [Sa1 ,Ea1 ,Ma1 ,~,Eb1 ,Mb1 ,D] = big_comparator(Sa,Ea,Ma,Sb,Eb,

Mb,ne,nm,p);
25
26 Ediff = adder_subtractor_inexact_PBL(’RC’,ne,Ea1 ,Eb1 ,true ,

p); %abs(Ea-Eb)
27
28 [Ma2 ,nm4] = prepend_mantissa(Ea1 ,Ma1 ,ne,nm,p);
29 Mb2 = prepend_mantissa(Eb1 ,Mb1 ,ne,nm,p);
30
31 Mb3 = rightshift_mantissa(Mb2 ,Ediff ,nm4 ,ne,p);
32
33 OxFF = cast(pow2a(ne,’uint64 ’) - 1, ’like’, Ea);
34 Ox7FFFFF = cast(pow2a(nm4 ,’uint64 ’) - 1, ’like’, Ma2);
35
36 Ss = Sa1;
37 [~,Mc,Ms1] = adder_subtractor_inexact_PBL(’RC’,nm4 ,Ma2 ,Mb3

,D,p); % add
38 Mc1 = and_inexact(Mc ,~D,p);

151

39 Ea2 = adder_inexact_PBL(’RC’,ne,Ea1 ,zeros(’like’,Ea1),Mc1 ,
p); %carry to exponent

40 [~,~,Ms2] = bitshifter_inexact_PBL(Ms1 ,-int8(Mc1),nm4+1,1,
p); %if carry -out , then shift right

41
42 Eborrow_ = cast(bitcounter(Ms2 ,nm4 ,p), ’like’, Ea);
43 Eborrow = bitcmp(Eborrow_);
44 gd_ = comparator_inexact_PBL(ne,Ea2 ,Eborrow ,p); %

graceful degradation (GD) flag
45 gd__ = cast(gd_ ,’like’,Ea) * OxFF;
46 gd___ = cast(gd_ ,’like’,Ma2) * Ox7FFFFF;
47 Ea3 = adder_inexact_PBL(’RC’,ne,Ea2 ,Eborrow_ ,true ,p); %

borrow from exponent
48 Ms3 = leftshift_mantissa(Ms2 ,nm4 ,p); % shift left

after subtraction
49
50 Ms3g = bitshifter_inexact_PBL(Ms2 ,Ea2 ,nm4 ,ne,p); %

mantissa in case of GD
51 Ms4 = mux2_inexact(gd___ ,Ms3g ,Ms3 ,p,class(Ms3) ,1:nm4);
52
53 R = roundoff(Ms4 ,p);
54 Ms5 = bitshift(bitset(Ms4 ,nm4 ,0) ,-3); % drop extra

bits from mantissa
55 [Ms,Mc2] = adder_inexact_PBL(’RC’,nm,Ms5 ,zeros(’like’,Ms5)

,R,p); %round off
56
57 Ea4 = adder_inexact_PBL(’RC’,ne,Ea3 ,zeros(’like’,Ea3),Mc2 ,

p);
58 Es = mux2_inexact(gd__ , zeros(’like’,Ea4),Ea4 ,p,class(Ea4)

,1:ne); % with GD, exponent =0
59
60 end
61
62 function [Sa1 , Ea1 , Ma1 , Sb1 , Eb1 , Mb1 , D] =

big_comparator(Sa, Ea, Ma, Sb, Eb, Mb, ne, nm, p)
63 %Compares the magnitude of input A with the magnitude of

input B. If A>B,
64 %then output A1=A and output B1=B. If A<=B, then A1=B and

B1=A.
65
66 OxFF = cast(pow2a(ne,’uint64 ’) - 1, ’like’, Ea);
67 Ox7FFFFF = cast(pow2a(nm,’uint64 ’) - 1, ’like’, Ma);
68 n = ne + nm;
69 classname = classn(n);
70 Ea_ = cast(Ea,classname);
71 Ma_ = cast(Ma,classname);

152

72 Eb_ = cast(Eb,classname);
73 Mb_ = cast(Mb,classname);
74 AA = bitshift(Ea_ ,nm) + Ma_; % merge

mantissa with exponent
75 BB = bitshift(Eb_ ,nm) + Mb_;
76 [AgtB ,~,AeqB] = comparator_inexact_PBL(n,AA,BB,p);

% compare
77 AgtB_ = cast(AgtB ,’like’,Ea) * OxFF;
78 AgtB__ = cast(AgtB ,’like’,Ma) * Ox7FFFFF;
79
80 D = xor_inexact(Sa,Sb,p);
81 Z = and_inexact(D,AeqB ,p);
82 Z_ = cast(Z,’like’,Ea) * OxFF;
83 Z__ = cast(Z,’like’,Ma) * Ox7FFFFF;
84 Saz = mux2_inexact(Z,Sa,false ,p,class(Sa) ,1);
85 Eaz = mux2_inexact(Z_,Ea, zeros(’like’,Ea),p,class(Ea) ,1:ne

); % if B == -A, then output 0
86 Maz = mux2_inexact(Z__ ,Ma, zeros(’like’,Ma),p,class(Ma) ,1:

nm);
87 Sbz = mux2_inexact(Z,Sb,false ,p,class(Sb) ,1);
88 Ebz = mux2_inexact(Z_,Eb, zeros(’like’,Eb),p,class(Eb) ,1:ne

); % if B == -A, then output 0
89 Mbz = mux2_inexact(Z__ ,Mb, zeros(’like’,Mb),p,class(Mb) ,1:

nm);
90
91 [Sa1 ,Sb1] = mux2_inexact(AgtB ,Sbz ,Saz ,p,class(Sa) ,1);

% assign the greater value to A1
92 [Ea1 ,Eb1] = mux2_inexact(AgtB_ ,Ebz ,Eaz ,p,class(Ea) ,1:ne);

% and the lesser value to B1
93 [Ma1 ,Mb1] = mux2_inexact(AgtB__ ,Mbz ,Maz ,p,class(Ma) ,1:nm);
94
95 end
96
97 function [Ma2 , nm4] = prepend_mantissa(Ea, Ma1 , ne, nm,

p)
98 %For all nonzero Ea, a 1 is prepended to the mantissa Ma.

Then three zeros
99 %are added to the end.

100
101 H = any_high_bits_inexact_PBL(Ea,ne,p); %

check for 0
102 nm4 = nm + 4;
103 classname = classn(nm4); % allow space for

four more bits
104 Ma1 = cast(Ma1 ,classname);

153

105 Ma2 = bitshift(bitset(Ma1 ,nm+1,H) ,3); % prepend 1 and
shift 3 to the left

106
107 end
108
109 function Mb3 = rightshift_mantissa(Mb2 , Ediff , nm4 , ne, p

)
110
111 classname = class(Ediff);
112
113 if intmin(classname) >= 0
114 classname = classn(ne+1,true);
115 Ediff = cast(Ediff ,classname);
116 end
117
118 [~,~,Mb3] = bitshifter_inexact_PBL(Mb2 ,-Ediff ,nm4 ,ne,p);
119
120 end
121
122 function Ms3 = leftshift_mantissa(Ms2 , nm4 , p)
123 %Left -shift the mantissa until the most significant bit is

1.
124
125 OxFFFF = cast(pow2a(nm4 ,’uint64 ’) - 1, ’like’, Ms2);
126 Ms3 = Ms2;
127
128 for i = 1 : (nm4 -1)
129 Ms3a = bitshift(Ms3 ,1);
130 Ms3a = bitand(Ms3a ,OxFFFF);
131 s = bitget(Ms3 ,nm4) * OxFFFF;
132 Ms3 = mux2_inexact(s,Ms3a ,Ms3 ,p,class(Ms2) ,1:nm4);
133 end
134
135 end
136
137 function N = bitcounter(Ms2 , nm4 , p)
138
139 s = logical(bitget(repmat(Ms2(:) ,[1,nm4]), repmat (1:nm4 ,[

numel(Ms2) ,1])));
140
141 if nm4 == 14
142 N = bitset(N,1, and3_inexact ([or3_inexact ([~s(:,1),s(:
143 :,2),s(:,4),s(:,6),s(:,8),s(:,10),s(:,12),s(:,14)],p),or3
144 3_inexact ([~s(:,3),s(:,4),s(:,6),s(:,8),s(:,10),s(:,12),s
145 s(:,14)],p),or3_inexact ([~s(:,5),s(:,6),s(:,8),s(:,10),s(
146 (:,12),s(:,14)],p),or3_inexact ([~s(:,7),s(:,8),s(:,10),s(

154

147 (:,12),s(:,14)],p),or3_inexact ([~s(:,9),s(:,10),s(:,12),s
148 s(:,14)],p),or3_inexact ([~s(:,11),s(:,12),s(:,14)],p),or3
149 3_inexact ([~s(:,13),s(:,14)],p)],p));
150 N = bitset(N,2, and3_inexact ([or3_inexact ([s(:,1),s(:,
151 ,2),s(:,5),s(:,6),s(:,9),s(:,10),s(:,13),s(:,14)],p),or3_
152 _inexact ([~s(:,3),s(:,5),s(:,6),s(:,9),s(:,10),s(:,13),s(
153 (:,14)],p),or3_inexact ([~s(:,4),s(:,5),s(:,6),s(:,9),s(:,
154 ,10),s(:,13),s(:,14)],p),or3_inexact ([~s(:,7),s(:,9),s(:,
155 ,10),s(:,13),s(:,14)],p),or3_inexact ([~s(:,8),s(:,9),s(:,
156 ,10),s(:,13),s(:,14)],p),or3_inexact ([~s(:,11),s(:,13),s(
157 (:,14)],p),or3_inexact ([~s(:,12),s(:,13),s(:,14)],p)],p)))

;
158 N = bitset(N,3, and3_inexact ([or3_inexact ([~s(:,10),s(
159 (:,11),s(:,12),s(:,13),s(:,14)],p),or3_inexact ([s(:,3),s(
160 (:,4),s(:,5),s(:,6),s(:,11),s(:,12),s(:,13),s(:,14)],p),o
161 or3_inexact ([~s(:,7),s(:,11),s(:,12),s(:,13),s(:,14)],p),
162 ,or3_inexact ([~s(:,8),s(:,11),s(:,12),s(:,13),s(:,14)],p)
163),or3_inexact ([~s(:,9),s(:,11),s(:,12),s(:,13),s(:,14)],p
164 p)],p));
165 N = bitset(N,4, or3_inexact ([s(:,7),s(:,8),s(:,9),s(:,
166 ,10),s(:,11),s(:,12),s(:,13),s(:,14)],p));
167
168 elseif nm4 == 27
169 N = repmat(intmax(’uint8’),[numel(Ms2) ,1]);
170 N = bitset(N,1, and3_inexact ([or3_inexact ([s(:,1),s(:,
171 ,3),s(:,5),s(:,7),s(:,9),s(:,11),s(:,13),s(:,15),s(:,17),
172 ,s(:,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_inexact(
173 ([~s(:,10),s(:,11),s(:,13),s(:,15),s(:,17),s(:,19),s(:,21
174 1),s(:,23),s(:,25),s(:,27)],p),or3_inexact ([~s(:,2),s(:,3
175 3),s(:,5),s(:,7),s(:,9),s(:,11),s(:,13),s(:,15),s(:,17),s
176 s(:,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_inexact ([
177 [~s(:,4),s(:,5),s(:,7),s(:,9),s(:,11),s(:,13),s(:,15),s(:
178 :,17),s(:,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_ine
179 exact ([~s(:,6),s(:,7),s(:,9),s(:,11),s(:,13),s(:,15),s(:,
180 ,17),s(:,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_inex
181 xact ([~s(:,8),s(:,9),s(:,11),s(:,13),s(:,15),s(:,17),s(:,
182 ,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_inexact ([~s(
183 (:,12),s(:,13),s(:,15),s(:,17),s(:,19),s(:,21),s(:,23),s(
184 (:,25),s(:,27)],p),or3_inexact ([~s(:,14),s(:,15),s(:,17),
185 ,s(:,19),s(:,21),s(:,23),s(:,25),s(:,27)],p),or3_inexact(
186 ([~s(:,16),s(:,17),s(:,19),s(:,21),s(:,23),s(:,25),s(:,27
187 7)],p),or3_inexact ([~s(:,18),s(:,19),s(:,21),s(:,23),s(:,
188 ,25),s(:,27)],p),or3_inexact ([~s(:,20),s(:,21),s(:,23),s(
189 (:,25),s(:,27)],p),or3_inexact ([~s(:,22),s(:,23),s(:,25),
190 ,s(:,27)],p),or3_inexact ([~s(:,24),s(:,25),s(:,27)],p),or
191 r3_inexact ([~s(:,26),s(:,27)],p)],p));

155

192 N = bitset(N,2, and3_inexact ([or3_inexact ([s(:,3),s(:,
193 ,6),s(:,7),s(:,10),s(:,11),s(:,14),s(:,15),s(:,18),s(:,19
194 9),s(:,2),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_inexact
195 t([~s(:,4),s(:,6),s(:,7),s(:,10),s(:,11),s(:,14),s(:,15),
196 ,s(:,18),s(:,19),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_
197 _inexact ([~s(:,5),s(:,6),s(:,7),s(:,10),s(:,11),s(:,14),s
198 s(:,15),s(:,18),s(:,19),s(:,22),s(:,23),s(:,26),s(:,27)],
199 ,p),or3_inexact ([~s(:,8),s(:,10),s(:,11),s(:,14),s(:,15),
200 ,s(:,18),s(:,19),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_
201 _inexact ([~s(:,9),s(:,10),s(:,11),s(:,14),s(:,15),s(:,18)
202),s(:,19),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_inexact
203 t([~s(:,12),s(:,14),s(:,15),s(:,18),s(:,19),s(:,22),s(:,2
204 23),s(:,26),s(:,27)],p),or3_inexact ([~s(:,13),s(:,14),s(:
205 :,15),s(:,18),s(:,19),s(:,22),s(:,23),s(:,26),s(:,27)],p)
206),or3_inexact ([~s(:,16),s(:,18),s(:,19),s(:,22),s(:,23),s
207 s(:,26),s(:,27)],p),or3_inexact ([~s(:,17),s(:,18),s(:,19)
208),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_inexact ([~s(:,2
209 20),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_inexact ([~s(:
210 :,21),s(:,22),s(:,23),s(:,26),s(:,27)],p),or3_inexact ([~s
211 s(:,24),s(:,26),s(:,27)],p),or3_inexact ([~s(:,25),s(:,26)
212),s(:,27)],p)],p));
213 N = bitset(N,3, and3_inexact ([or3_inexact ([~s(:,4),s(:
214 :,8),s(:,9),s(:,10),s(:,11),s(:,16),s(:,17),s(:,18),s(:,1
215 19),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:
216 :,5),s(:,8),s(:,9),s(:,10),s(:,11),s(:,16),s(:,17),s(:,18
217 8),s(:,19),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexac
218 ct([~s(:,6),s(:,8),s(:,9),s(:,10),s(:,11),s(:,16),s(:,17)
219),s(:,18),s(:,19),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3
220 3_inexact ([~s(:,7),s(:,8),s(:,9),s(:,10),s(:,11),s(:,16),
221 ,s(:,17),s(:,18),s(:,19),s(:,24),s(:,25),s(:,26),s(:,27)]
222],p),or3_inexact ([~s(:,12),s(:,16),s(:,17),s(:,18),s(:,19
223 9),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,
224 ,13),s(:,16),s(:,17),s(:,18),s(:,19),s(:,24),s(:,25),s(:,
225 ,26),s(:,27)],p),or3_inexact ([~s(:,14),s(:,16),s(:,17),s(
226 (:,18),s(:,19),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_in
227 nexact ([~s(:,15),s(:,16),s(:,17),s(:,18),s(:,19),s(:,24),
228 ,s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,20),s(:,24
229 4),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,21),s(:,
230 ,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,22),s(
231 (:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,23),
232 ,s(:,24),s(:,25),s(:,26),s(:,27)],p)],p));
233 N = bitset(N,4, and3_inexact ([or3_inexact ([s(:,4),s(:,
234 ,5),s(:,6),s(:,7),s(:,8),s(:,9),s(:,10),s(:,11),s(:,20),s
235 s(:,21),s(:,22),s(:,23),s(:,24),s(:,25),s(:,26),s(:,27)],
236 ,p),or3_inexact ([~s(:,12),s(:,20),s(:,21),s(:,22),s(:,23)
237),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,1

156

238 13),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s(:,25),s(:,2
239 26),s(:,27)],p),or3_inexact ([~s(:,14),s(:,20),s(:,21),s(:
240 :,22),s(:,23),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_ine
241 exact ([~s(:,15),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s
242 s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:,16),s(:,20)
243),s(:,21),s(:,22),s(:,23),s(:,24),s(:,25),s(:,26),s(:,27)
244)],p),or3_inexact ([~s(:,17),s(:,20),s(:,21),s(:,22),s(:,2
245 23),s(:,24),s(:,25),s(:,26),s(:,27)],p),or3_inexact ([~s(:
246 :,18),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s(:,25),s(:
247 :,26),s(:,27)],p),or3_inexact ([~s(:,19),s(:,20),s(:,21),s
248 s(:,22),s(:,23),s(:,24),s(:,25),s(:,26),s(:,27)],p)],p));
249 N = bitset(N,5, or3_inexact ([s(:,12),s(:,13),s(:,14),s
250 s(:,15),s(:,16),s(:,17),s(:,18),s(:,19),s(:,20),s(:,21),s
251 s(:,22),s(:,23),s(:,24),s(:,25),s(:,26),s(:,27)],p));
252
253 elseif nm4 == 56
254 N = repmat(intmax(’uint16 ’),[numel(Ms2) ,1]);
255 N = bitset(N,1, and3_inexact ([or3_inexact ([~s(:,1),s(:
256 :,2),s(:,4),s(:,6),s(:,8),s(:,10),s(:,12),s(:,14),s(:,16)
257),s(:,18),s(:,20),s(:,22),s(:,24),s(:,26),s(:,28),s(:,30)
258),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s(:,42),s(:,44)
259),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3
260 3_inexact ([~s(:,3),s(:,4),s(:,6),s(:,8),s(:,10),s(:,12),s
261 s(:,14),s(:,16),s(:,18),s(:,20),s(:,22),s(:,24),s(:,26),s
262 s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s
263 s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s
264 s(:,56)],p),or3_inexact ([~s(:,5),s(:,6),s(:,8),s(:,10),s(
265 (:,12),s(:,14),s(:,16),s(:,18),s(:,20),s(:,22),s(:,24),s(
266 (:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(
267 (:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(
268 (:,54),s(:,56)],p),or3_inexact ([~s(:,7),s(:,8),s(:,10),s(
269 (:,12),s(:,14),s(:,16),s(:,18),s(:,20),s(:,22),s(:,24),s(
270 (:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(
271 (:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(
272 (:,54),s(:,56)],p),or3_inexact ([~s(:,9),s(:,10),s(:,12),s
273 s(:,14),s(:,16),s(:,18),s(:,20),s(:,22),s(:,24),s(:,26),s
274 s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s
275 s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s
276 s(:,56)],p),or3_inexact ([~s(:,11),s(:,12),s(:,14),s(:,16)
277),s(:,18),s(:,20),s(:,22),s(:,24),s(:,26),s(:,28),s(:,30)
278),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s(:,42),s(:,44)
279),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3
280 3_inexact ([~s(:,13),s(:,14),s(:,16),s(:,18),s(:,20),s(:,2
281 22),s(:,24),s(:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,3
282 36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,5
283 50),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,15),s(:

157

284 :,16),s(:,18),s(:,20),s(:,22),s(:,24),s(:,26),s(:,28),s(:
285 :,30),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s(:,42),s(:
286 :,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p)
287),or3_inexact ([~s(:,17),s(:,18),s(:,20),s(:,22),s(:,24),s
288 s(:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s
289 s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s
290 s(:,54),s(:,56)],p),or3_inexact ([~s(:,19),s(:,20),s(:,22)
291),s(:,24),s(:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,36)
292),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50)
293),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,21),s(:,2
294 22),s(:,24),s(:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,3
295 36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,5
296 50),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,23),s(:
297 :,24),s(:,26),s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:
298 :,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:
299 :,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,25),s(:,26),s
300 s(:,28),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(:,40),s
301 s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s
302 s(:,56)],p),or3_inexact ([~s(:,27),s(:,28),s(:,30),s(:,32)
303),s(:,34),s(:,36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46)
304),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3_inexact
305 t([~s(:,29),s(:,30),s(:,32),s(:,34),s(:,36),s(:,38),s(:,4
306 40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,5
307 54),s(:,56)],p),or3_inexact ([~s(:,31),s(:,32),s(:,34),s(:
308 :,36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:
309 :,50),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,33),s
310 s(:,34),s(:,36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s
311 s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([
312 [~s(:,35),s(:,36),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46)
313),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3_inexact
314 t([~s(:,37),s(:,38),s(:,40),s(:,42),s(:,44),s(:,46),s(:,4
315 48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:
316 :,39),s(:,40),s(:,42),s(:,44),s(:,46),s(:,48),s(:,50),s(:
317 :,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,41),s(:,42),s
318 s(:,44),s(:,46),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],
319 ,p),or3_inexact ([~s(:,43),s(:,44),s(:,46),s(:,48),s(:,50)
320),s(:,52),s(:,54),s(:,56)],p),or3_inexact ([~s(:,45),s(:,4
321 46),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p),or3_inexa
322 act([~s(:,47),s(:,48),s(:,50),s(:,52),s(:,54),s(:,56)],p)
323),or3_inexact ([~s(:,49),s(:,50),s(:,52),s(:,54),s(:,56)],
324 ,p),or3_inexact ([~s(:,51),s(:,52),s(:,54),s(:,56)],p),or3
325 3_inexact ([~s(:,53),s(:,54),s(:,56)],p),or3_inexact ([~s(:
326 :,55),s(:,56)],p)],p));
327 N = bitset(N,2, and3_inexact ([or3_inexact ([~s(:,1),s(:
328 :,3),s(:,4),s(:,7),s(:,8),s(:,11),s(:,12),s(:,15),s(:,16)
329),s(:,19),s(:,20),s(:,23),s(:,24),s(:,27),s(:,28),s(:,31)

158

330),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44)
331),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3
332 3_inexact ([~s(:,2),s(:,3),s(:,4),s(:,7),s(:,8),s(:,11),s(
333 (:,12),s(:,15),s(:,16),s(:,19),s(:,20),s(:,23),s(:,24),s(
334 (:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s(
335 (:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(
336 (:,55),s(:,56)],p),or3_inexact ([~s(:,5),s(:,7),s(:,8),s(:
337 :,11),s(:,12),s(:,15),s(:,16),s(:,19),s(:,20),s(:,23),s(:
338 :,24),s(:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:
339 :,39),s(:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:
340 :,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:,6),s(:,7),s(:
341 :,8),s(:,11),s(:,12),s(:,15),s(:,16),s(:,19),s(:,20),s(:,
342 ,23),s(:,24),s(:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,
343 ,36),s(:,39),s(:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,
344 ,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:,9),s(:
345 :,11),s(:,12),s(:,15),s(:,16),s(:,19),s(:,20),s(:,23),s(:
346 :,24),s(:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:
347 :,39),s(:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:
348 :,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:,10),s(:,11),s
349 s(:,12),s(:,15),s(:,16),s(:,19),s(:,20),s(:,23),s(:,24),s
350 s(:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s
351 s(:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s
352 s(:,55),s(:,56)],p),or3_inexact ([~s(:,13),s(:,15),s(:,16)
353),s(:,19),s(:,20),s(:,23),s(:,24),s(:,27),s(:,28),s(:,31)
354),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44)
355),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3
356 3_inexact ([~s(:,14),s(:,15),s(:,16),s(:,19),s(:,20),s(:,2
357 23),s(:,24),s(:,27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,3
358 36),s(:,39),s(:,40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,5
359 51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:,18),s(:
360 :,19),s(:,20),s(:,23),s(:,24),s(:,27),s(:,28),s(:,31),s(:
361 :,32),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44),s(:
362 :,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_ine
363 exact ([~s(:,17),s(:,19),s(:,20),s(:,23),s(:,24),s(:,27),s
364 s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40),s
365 s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s
366 s(:,56)],p),or3_inexact ([~s(:,21),s(:,23),s(:,24),s(:,27)
367),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40)
368),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55)
369),s(:,56)],p),or3_inexact ([~s(:,22),s(:,23),s(:,24),s(:,2
370 27),s(:,28),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s(:,4
371 40),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,5
372 55),s(:,56)],p),or3_inexact ([~s(:,25),s(:,27),s(:,28),s(:
373 :,31),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:
374 :,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p)
375),or3_inexact ([~s(:,26),s(:,27),s(:,28),s(:,31),s(:,32),s

159

376 s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44),s(:,47),s
377 s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([
378 [~s(:,29),s(:,31),s(:,32),s(:,35),s(:,36),s(:,39),s(:,40)
379),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55)
380),s(:,56)],p),or3_inexact ([~s(:,30),s(:,31),s(:,32),s(:,3
381 35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44),s(:,47),s(:,4
382 48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:
383 :,33),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s(:,44),s(:
384 :,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_ine
385 exact ([~s(:,34),s(:,35),s(:,36),s(:,39),s(:,40),s(:,43),s
386 s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],
387 ,p),or3_inexact ([~s(:,37),s(:,39),s(:,40),s(:,43),s(:,44)
388),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3
389 3_inexact ([~s(:,38),s(:,39),s(:,40),s(:,43),s(:,44),s(:,4
390 47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexa
391 act([~s(:,41),s(:,43),s(:,44),s(:,47),s(:,48),s(:,51),s(:
392 :,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:,42),s(:,43),s
393 s(:,44),s(:,47),s(:,48),s(:,51),s(:,52),s(:,55),s(:,56)],
394 ,p),or3_inexact ([~s(:,45),s(:,47),s(:,48),s(:,51),s(:,52)
395),s(:,55),s(:,56)],p),or3_inexact ([~s(:,46),s(:,47),s(:,4
396 48),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([~s(:
397 :,49),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([~s
398 s(:,50),s(:,51),s(:,52),s(:,55),s(:,56)],p),or3_inexact ([
399 [~s(:,53),s(:,55),s(:,56)],p),or3_inexact ([~s(:,54),s(:,5
400 55),s(:,56)],p)],p));
401 N = bitset(N,3, and3_inexact ([or3_inexact ([~s(:,1),s(:
402 :,6),s(:,7),s(:,8),s(:,13),s(:,14),s(:,15),s(:,16),s(:,21
403 1),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,32
404 2),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47
405 7),s(:,48),s(:,5),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3
406 3_inexact ([~s(:,2),s(:,6),s(:,7),s(:,8),s(:,13),s(:,14),s
407 s(:,15),s(:,16),s(:,21),s(:,22),s(:,23),s(:,24),s(:,29),s
408 s(:,30),s(:,31),s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s
409 s(:,45),s(:,46),s(:,47),s(:,48),s(:,5),s(:,53),s(:,54),s(
410 (:,55),s(:,56)],p),or3_inexact ([~s(:,3),s(:,6),s(:,7),s(:
411 :,8),s(:,13),s(:,14),s(:,15),s(:,16),s(:,21),s(:,22),s(:,
412 ,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,32),s(:,37),s(:,
413 ,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s(:,
414 ,5),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:
415 :,4),s(:,5),s(:,6),s(:,7),s(:,8),s(:,13),s(:,14),s(:,15),
416 ,s(:,16),s(:,21),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),
417 ,s(:,31),s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),
418 ,s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)]
419],p),or3_inexact ([~s(:,10),s(:,13),s(:,14),s(:,15),s(:,16
420 6),s(:,21),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31
421 1),s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46

160

422 6),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or
423 r3_inexact ([~s(:,11),s(:,13),s(:,14),s(:,15),s(:,16),s(:,
424 ,21),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,
425 ,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,
426 ,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inex
427 xact ([~s(:,12),s(:,13),s(:,14),s(:,15),s(:,16),s(:,21),s(
428 (:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,32),s(
429 (:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(
430 (:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~
431 ~s(:,9),s(:,13),s(:,14),s(:,15),s(:,16),s(:,21),s(:,22),s
432 s(:,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,32),s(:,37),s
433 s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s
434 s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,17)
435),s(:,21),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31)
436),s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46)
437),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3
438 3_inexact ([~s(:,18),s(:,21),s(:,22),s(:,23),s(:,24),s(:,2
439 29),s(:,30),s(:,31),s(:,32),s(:,37),s(:,38),s(:,39),s(:,4
440 40),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,5
441 55),s(:,56)],p),or3_inexact ([~s(:,19),s(:,21),s(:,22),s(:
442 :,23),s(:,24),s(:,29),s(:,30),s(:,31),s(:,32),s(:,37),s(:
443 :,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s(:
444 :,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,20),s
445 s(:,21),s(:,22),s(:,23),s(:,24),s(:,29),s(:,30),s(:,31),s
446 s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s
447 s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_i
448 inexact ([~s(:,25),s(:,29),s(:,30),s(:,31),s(:,32),s(:,37)
449),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48)
450),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,2
451 26),s(:,29),s(:,30),s(:,31),s(:,32),s(:,37),s(:,38),s(:,3
452 39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:,5
453 54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,27),s(:,29),s(:
454 :,30),s(:,31),s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:
455 :,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:
456 :,56)],p),or3_inexact ([~s(:,28),s(:,29),s(:,30),s(:,31),s
457 s(:,32),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s
458 s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_i
459 inexact ([~s(:,33),s(:,37),s(:,38),s(:,39),s(:,40),s(:,45)
460),s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)
461)],p),or3_inexact ([~s(:,34),s(:,37),s(:,38),s(:,39),s(:,4
462 40),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,5
463 55),s(:,56)],p),or3_inexact ([~s(:,35),s(:,37),s(:,38),s(:
464 :,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:
465 :,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,36),s(:,37),s
466 s(:,38),s(:,39),s(:,40),s(:,45),s(:,46),s(:,47),s(:,48),s
467 s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,41)

161

468),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55)
469),s(:,56)],p),or3_inexact ([~s(:,42),s(:,45),s(:,46),s(:,4
470 47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexa
471 act([~s(:,43),s(:,45),s(:,46),s(:,47),s(:,48),s(:,53),s(:
472 :,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,44),s(:,45),s
473 s(:,46),s(:,47),s(:,48),s(:,53),s(:,54),s(:,55),s(:,56)],
474 ,p),or3_inexact ([~s(:,49),s(:,53),s(:,54),s(:,55),s(:,56)
475)],p),or3_inexact ([~s(:,50),s(:,53),s(:,54),s(:,55),s(:,5
476 56)],p),or3_inexact ([~s(:,51),s(:,53),s(:,54),s(:,55),s(:
477 :,56)],p),or3_inexact ([~s(:,52),s(:,53),s(:,54),s(:,55),s
478 s(:,56)],p)],p));
479 N = bitset(N,4, and3_inexact ([or3_inexact ([s(:,1),s(:,
480 ,2),s(:,3),s(:,4),s(:,5),s(:,6),s(:,7),s(:,8),s(:,17),s(:
481 :,18),s(:,19),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s(:
482 :,33),s(:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:
483 :,40),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:
484 :,55),s(:,56)],p),or3_inexact ([~s(:,10),s(:,17),s(:,18),s
485 s(:,19),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s(:,33),s
486 s(:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s
487 s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s
488 s(:,56)],p),or3_inexact ([~s(:,11),s(:,17),s(:,18),s(:,19)
489),s(:,20),s(:,21),s(:,22),s(:,23),s(:,24),s(:,33),s(:,34)
490),s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,49)
491),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)
492)],p),or3_inexact ([~s(:,12),s(:,17),s(:,18),s(:,19),s(:,2
493 20),s(:,21),s(:,22),s(:,23),s(:,24),s(:,33),s(:,34),s(:,3
494 35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,49),s(:,5
495 50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),o
496 or3_inexact ([~s(:,13),s(:,17),s(:,18),s(:,19),s(:,20),s(:
497 :,21),s(:,22),s(:,23),s(:,24),s(:,33),s(:,34),s(:,35),s(:
498 :,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),s(:
499 :,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_ine
500 exact ([~s(:,14),s(:,17),s(:,18),s(:,19),s(:,20),s(:,21),s
501 s(:,22),s(:,23),s(:,24),s(:,33),s(:,34),s(:,35),s(:,36),s
502 s(:,37),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),s(:,51),s
503 s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([
504 [~s(:,15),s(:,17),s(:,18),s(:,19),s(:,20),s(:,21),s(:,22)
505),s(:,23),s(:,24),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37)
506),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52)
507),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,1
508 16),s(:,17),s(:,18),s(:,19),s(:,20),s(:,21),s(:,22),s(:,2
509 23),s(:,24),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37),s(:,3
510 38),s(:,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52),s(:,5
511 53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,9),s(:,
512 ,17),s(:,18),s(:,19),s(:,20),s(:,21),s(:,22),s(:,23),s(:,
513 ,24),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,

162

514 ,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
515 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,25),s(:,33),s(
516 (:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(
517 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
518 (:,56)],p),or3_inexact ([~s(:,26),s(:,33),s(:,34),s(:,35),
519 ,s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),
520 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
521 _inexact ([~s(:,27),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37
522 7),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52
523 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
524 ,28),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,
525 ,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
526 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,29),s(:,33),s(
527 (:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(
528 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
529 (:,56)],p),or3_inexact ([~s(:,30),s(:,33),s(:,34),s(:,35),
530 ,s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),
531 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
532 _inexact ([~s(:,31),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37
533 7),s(:,38),s(:,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52
534 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
535 ,32),s(:,33),s(:,34),s(:,35),s(:,36),s(:,37),s(:,38),s(:,
536 ,39),s(:,40),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
537 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,41),s(:,49),s(
538 (:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p
539 p),or3_inexact ([~s(:,42),s(:,49),s(:,50),s(:,51),s(:,52),
540 ,s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,43
541 3),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55
542 5),s(:,56)],p),or3_inexact ([~s(:,44),s(:,49),s(:,50),s(:,
543 ,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inex
544 xact ([~s(:,45),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(
545 (:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,46),s(:,49),
546 ,s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)]
547],p),or3_inexact ([~s(:,47),s(:,49),s(:,50),s(:,51),s(:,52
548 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
549 ,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,
550 ,55),s(:,56)],p)],p));
551 N = bitset(N,5, and3_inexact ([or3_inexact ([s(:,9),s(:,
552 ,10),s(:,11),s(:,12),s(:,13),s(:,14),s(:,15),s(:,16),s(:,
553 ,17),s(:,18),s(:,19),s(:,20),s(:,21),s(:,22),s(:,23),s(:,
554 ,24),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,
555 ,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
556 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,25),s(:,41),s(
557 (:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(
558 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
559 (:,56)],p),or3_inexact ([~s(:,26),s(:,41),s(:,42),s(:,43),

163

560 ,s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),
561 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
562 _inexact ([~s(:,27),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45
563 5),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52
564 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
565 ,28),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,
566 ,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
567 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,29),s(:,41),s(
568 (:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(
569 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
570 (:,56)],p),or3_inexact ([~s(:,30),s(:,41),s(:,42),s(:,43),
571 ,s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),
572 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
573 _inexact ([~s(:,31),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45
574 5),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52
575 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
576 ,32),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,
577 ,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
578 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,33),s(:,41),s(
579 (:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(
580 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
581 (:,56)],p),or3_inexact ([~s(:,34),s(:,41),s(:,42),s(:,43),
582 ,s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),
583 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
584 _inexact ([~s(:,35),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45
585 5),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52
586 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
587 ,36),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,
588 ,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
589 ,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,37),s(:,41),s(
590 (:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(
591 (:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(
592 (:,56)],p),or3_inexact ([~s(:,38),s(:,41),s(:,42),s(:,43),
593 ,s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),
594 ,s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_
595 _inexact ([~s(:,39),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45
596 5),s(:,46),s(:,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52
597 2),s(:,53),s(:,54),s(:,55),s(:,56)],p),or3_inexact ([~s(:,
598 ,40),s(:,41),s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,
599 ,47),s(:,48),s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,
600 ,54),s(:,55),s(:,56)],p)],p));
601 N = bitset(N,6, or3_inexact ([s(:,25),s(:,26),s(:,27),s
602 s(:,28),s(:,29),s(:,30),s(:,31),s(:,32),s(:,33),s(:,34),s
603 s(:,35),s(:,36),s(:,37),s(:,38),s(:,39),s(:,40),s(:,41),s
604 s(:,42),s(:,43),s(:,44),s(:,45),s(:,46),s(:,47),s(:,48),s
605 s(:,49),s(:,50),s(:,51),s(:,52),s(:,53),s(:,54),s(:,55),s

164

606 s(:,56)],p));
607
608 end
609
610 N = reshape(N,size(Ms2));
611
612 end
613
614 function R = roundoff(Ms3 , p)
615
616 s = logical(bitget(Ms3 ,2));
617 r = logical(bitget(Ms3 ,3));
618 m0 = logical(bitget(Ms3 ,4));
619 R = and_inexact(r,or_inexact(m0,s,p),p);
620
621 end

165

Appendix C. Inexact Integer Multipliers

3.1 Shift-and-Add Multiplier

1 function [P] = Multiplier_basic_inexact(A, B, na, nb, p
, bit)

2
3 %bit: The highest -order bit which can be inexact.
4
5 switch class(A)
6 case {’int8’,’uint8’}
7 na0 = 8;
8 case {’int16’,’uint16 ’}
9 na0 = 16;

10 case {’int32’,’uint32 ’}
11 na0 = 32;
12 case {’int64’,’uint64 ’}
13 na0 = 64;
14 otherwise
15 error ’Multiplicands must be of the integer

classes.’
16 end
17 [A, signA , signedA] = unsigned(A);
18
19 switch class(B)
20 case {’int8’,’uint8’}
21 nb0 = 8;
22 case {’int16’,’uint16 ’}
23 nb0 = 16;
24 case {’int32’,’uint32 ’}
25 nb0 = 32;
26 case {’int64’,’uint64 ’}
27 nb0 = 64;
28 otherwise
29 error ’Multiplicands must be of the integer

classes.’
30 end
31 [B, signB , signedB] = unsigned(B);
32
33 if (~ exist(’na’,’var’)) || isempty(na)
34 na = na0;
35 end
36
37 if (~ exist(’nb’,’var’)) || isempty(nb)
38 nb = nb0;
39 end

166

40
41 if ~exist(’p’,’var’)
42 p = 1;
43 end
44
45 if exist(’bit’,’var’)
46 p1 = 1; % p1 is the probability of

correctness for signed math
47 else
48 bit = Inf;
49 p1 = p;
50 end
51
52 if signedA
53 OxFFFF = cast(-1,’like’,A);
54 OxF000 = bitshift(OxFFFF ,na);
55 Ox0FFF = bitcmp(OxF000);
56 A = bitand(A,Ox0FFF);
57 A = bitxor_inexact(A, cast(signA , ’like’,Ox0FFF) *

Ox0FFF , p1, class(A), 1: min([na,bit -nb])); %
ones complement

58 A = Adder_RCA_inexact(na,A, zeros(’like’,A),signA ,p1 ,1:
min([na,bit -nb]),false); % twos complement

59 else
60 OxFFFF = intmax(class(A));
61 OxF000 = bitshift(OxFFFF ,na);
62 Ox0FFF = bitcmp(OxF000);
63 A = bitand(A,Ox0FFF);
64 end
65
66 if signedB
67 OxFFFF = cast(-1,’like’,B);
68 OxF000 = bitshift(OxFFFF ,nb);
69 Ox0FFF = bitcmp(OxF000);
70 B = bitand(B,Ox0FFF);
71 B = bitxor_inexact(B, cast(signB , ’like’,Ox0FFF) *

Ox0FFF , p1, class(B), 1:nb); % ones complement
72 B = Adder_RCA_inexact(nb,B, zeros(’like’,B),signB ,p1 ,1:

nb,false); % twos complement
73 else
74 OxFFFF = intmax(class(B));
75 OxF000 = bitshift(OxFFFF ,nb);
76 Ox0FFF = bitcmp(OxF000);
77 B = bitand(B,Ox0FFF);
78 end
79

167

80 na = na - signedA;
81 nb = nb - signedB;
82 np = na + nb + (signedA || signedB);
83
84 bit = min([bit ,np]);
85
86 if np <= 8
87 np0 = 8;
88 P = zeros(size(A),’uint8’);
89 A = uint8(A);
90 elseif np <= 16
91 np0 = 16;
92 P = zeros(size(A),’uint16 ’);
93 A = uint16(A);
94 elseif np <= 32
95 np0 = 32;
96 P = zeros(size(A),’uint32 ’);
97 A = uint32(A);
98 elseif np <= 64
99 np0 = 64;

100 P = zeros(size(A),’uint64 ’);
101 A = uint64(A);
102 else
103 P = zeros(size(A),’double ’);
104 A = double(A);
105 end
106
107 np = na + nb;
108
109 allbits0 = zeros(size(A),’like’,A);
110 allbits1 = allbits0;
111 allbits1 (:) = pow2(na) - 1;
112
113 for i = 1 : nb
114 j = logical(bitget(B(:),i));
115 if i == 1
116 P(j) = Adder_RCA_inexact(np, bitshift(bitand(A(j),

allbits1(j)), i-1), P(j), [], p, i: min([i+na
-1,bit]), true);

117 else
118 P(j) = Adder_RCA_inexact(np, bitshift(bitand(A(j),

allbits1(j)), i-1), P(j), [], p, i: min([i+na
-1,bit]), false);

119 end
120 end
121

168

122 if signedA || signedB
123 signP = xor_inexact(signA ,signB ,p1);
124 OxFFFF = intmax(class(P));
125 P = bitxor_inexact(P, cast(signP , ’like’,OxFFFF) *

OxFFFF , p, class(P), 1:bit); % ones complement
126 P = Adder_RCA_inexact(np0 ,P, zeros(’like’,P),signP ,p,1:

bit ,false); % twos complement
127 P = signed(P);
128 end
129
130 P = correct_upperbits(P,np);

169

3.2 Wallace Tree Multiplier

3.2.1 Main Function.

1 function [P] = multiplier_wallace_tree_inexact_PBL(A, B
, p)

2
3 switch class(A)
4 case {’int8’, ’uint8’}
5 na = 8;
6 case {’int16’, ’uint16 ’}
7 na = 16;
8 case {’int32’, ’uint32 ’}
9 na = 32;

10 case {’int64’, ’uint64 ’}
11 na = 64;
12 otherwise
13 error ’Multiplicands must be of the integer

classes.’
14 end
15
16 switch class(B)
17 case {’int8’, ’uint8’}
18 nb = 8;
19 case {’int16’, ’uint16 ’}
20 nb = 16;
21 case {’int32’, ’uint32 ’}
22 nb = 32;
23 case {’int64’, ’uint64 ’}
24 nb = 64;
25 otherwise
26 error ’Multiplicands must be of the integer

classes.’
27 end
28
29 n = max([na, nb]);
30
31 switch n
32 case 8
33 classname0 = ’uint8’;
34 classname = ’uint16 ’;
35 A = uint16(A(:)); B = uint16(B(:));
36 case 16
37 classname0 = ’uint16 ’;
38 classname = ’uint32 ’;
39 A = uint32(A(:)); B = uint32(B(:));

170

40 case 32
41 classname0 = ’uint32 ’;
42 classname = ’uint64 ’;
43 A = uint64(A(:)); B = uint64(B(:));
44 case 64
45 classname0 = ’uint64 ’;
46 classname = ’double ’;
47 A = double(A(:)); B = double(B(:));
48 end
49 P = zeros(size(A),classname);
50
51 r = 1 : nb;
52 t = zeros(size(r),classname);
53 t(:) = intmax(classname0);
54 t = bitshift(t,r-1);
55 pp = t(1) * bitget(repmat(B,[1,nb]), repmat(r,[numel(B)

,1]));
56 pp = bitand_inexact(pp, repmat(A, [1,nb]), p, classname ,

1:n);
57 pp = bitshift(pp, repmat(r-1,[numel(B) ,1]));
58
59 npp = size(pp ,2);
60 while npp > 2
61 j = 1;
62 for k = 1 : 3 : npp
63 if k <= (npp - 2)
64 [pp(:,j), pp(:,j+1), t(j), t(j+1)] =

wallace_1bit_adder_inexact_PBL(...
65 pp(:,k), pp(:,k+1), pp(:,k+2), t(k), t(k

+1), t(k+2), p);
66 npp2 = j + 1;
67 r(j:(j+1)) = r((k+1):(k+2));
68 j = j + 2;
69 elseif k == (npp - 1)
70 pp(:,j:(j+1)) = pp(:,k:(k+1));
71 npp2 = j + 1;
72 r(j:(j+1)) = r(k:(k+1));
73 t(j:(j+1)) = t(k:(k+1));
74 j = j + 2;
75 else
76 pp(:,j) = pp(:,k);
77 npp2 = j;
78 r(j) = r(k);
79 t(j) = t(k);
80 j = j + 1;
81 end

171

82 end
83 pp = pp(:,1: npp2);
84 r = r(1: npp2);
85 t = t(1: npp2);
86 npp = size(pp ,2);
87 end
88
89 logn2 = 2 * log2(n) - 1;
90 if n <= 16
91 logn2mask1 = pow2 (2*n - logn2) - 1;
92 else
93 logn2mask1 = intmax(classname);
94 for i = (2*n - logn2 + 1) : (2*n)
95 logn2mask1 = bitset(logn2mask1 ,i,0);
96 end
97 end
98 logn2mask2 = pow2(logn2) - 1;
99 P(:) = ling_adder_inexact_PBL(bitshift(pp(:,1) ,-logn2),

bitshift(pp(:,2) ,-logn2), [], p);
100 P(:) = bitand(P(:),logn2mask1);
101 P(:) = bitshift(P(:),logn2);
102 P(:) = bitor(bitor(P(:),bitand(pp(:,1),logn2mask2)),bitand

(pp(:,2),logn2mask2));

3.2.2 1-Bit Adder Subfunction.

1 function [S, Cout , Smask , Coutmask] =
wallace_1bit_adder_inexact_PBL(...

2 A, B, Cin , Amask , Bmask , Cinmask , p)
3
4 fullmask = bitand(bitand(Amask ,Bmask),Cinmask);
5 halfmask1 = bitand(bitand(Amask ,Bmask),bitcmp(Cinmask));
6 halfmask2 = bitand(bitand(Amask ,Cinmask),bitcmp(Bmask));
7 halfmask3 = bitand(bitand(Bmask ,Cinmask),bitcmp(Amask));
8 Smask = bitor(bitor(Amask ,Bmask),Cinmask);
9 Coutmask = bitshift(bitor(bitor(fullmask ,halfmask1),bitor(

halfmask2 ,halfmask3)) ,1);
10 noaddmask = bitand(Smask ,majority(bitcmp(Amask),bitcmp(

Bmask),bitcmp(Cinmask)));
11 AxorB = bitand(bitxor_inexact(A,B,p),fullmask);
12 Sn = bitand(bitor_inexact(bitor_inexact(A,B,p),Cin ,p),

noaddmask);
13 Sf = bitand(bitxor_inexact(AxorB ,Cin ,p),fullmask);
14 S1 = bitand(bitxor_inexact(A,B,p),halfmask1);
15 S2 = bitand(bitxor_inexact(A,Cin ,p),halfmask2);
16 S3 = bitand(bitxor_inexact(B,Cin ,p),halfmask3);

172

17 Coutf = bitand(bitor_inexact(bitand_inexact(AxorB ,Cin ,p),
...

18 bitand_inexact(A,B,p),p),fullmask);
19 Cout1 = bitand(bitand_inexact(A,B,p),halfmask1);
20 Cout2 = bitand(bitand_inexact(A,Cin ,p),halfmask2);
21 Cout3 = bitand(bitand_inexact(B,Cin ,p),halfmask3);
22 S = bitor(bitor(bitor(Sf,S1),bitor(S2,S3)),Sn);
23 Cout = bitshift(bitor(bitor(Coutf ,Cout1),bitor(Cout2 ,Cout3

)) ,1);

173

3.3 Baugh-Wooley Multiplier

The Baugh-Wooley multiplier is capable of directly multiplying signed integers.

1 function [P] = multiplier_baugh_wooley_inexact_PBL(A, B
, p)

2
3 switch class(A)
4 case {’int8’, ’uint8’}
5 na = 8;
6 case {’int16’, ’uint16 ’}
7 na = 16;
8 case {’int32’, ’uint32 ’}
9 na = 32;

10 case {’int64’, ’uint64 ’}
11 na = 64;
12 otherwise
13 error ’Multiplicands must be of the integer

classes.’
14 end
15
16 switch class(B)
17 case {’int8’, ’uint8’}
18 nb = 8;
19 case {’int16’, ’uint16 ’}
20 nb = 16;
21 case {’int32’, ’uint32 ’}
22 nb = 32;
23 case {’int64’, ’uint64 ’}
24 nb = 64;
25 otherwise
26 error ’Multiplicands must be of the integer

classes.’
27 end
28
29 switch class(A)
30 case {’int8’, ’int16’, ’int32’, ’int64’}
31 sa = true;
32 case {’uint8’, ’uint16 ’, ’uint32 ’, ’uint64 ’}
33 sa = false;
34 end
35
36 switch class(B)
37 case {’int8’, ’int16’, ’int32’, ’int64’}
38 sb = true;
39 case {’uint8’, ’uint16 ’, ’uint32 ’, ’uint64 ’}

174

40 sb = false;
41 end
42
43 if (na ~= nb) && (sa ~= sb)
44 error ’If using signed integers , both multiplicands

must be of the same class.’
45 end
46
47 n = na + nb;
48 if n <= 8
49 classname = ’int8’;
50 elseif n <= 16
51 classname = ’int16’;
52 elseif n <= 32
53 classname = ’int32’;
54 elseif n <= 64
55 classname = ’int64’;
56 else
57 classname = ’double ’;
58 end
59
60 if ~(sa || sb)
61 classname = regexprep(classname , ’int’,’uint’);
62 end
63
64 if sa
65 Ox7FFF = intmax(class(A));
66 Ox8000 = intmin(class(A));
67 OxFFFF = -ones(’like’,A);
68 else
69 Ox8000 = bitset(0,na,class(A));
70 OxFFFF = intmax(class(A));
71 Ox7FFF = bitxor(OxFFFF ,Ox8000);
72 end
73
74 if ~exist(’p’,’var’)
75 p = 1;
76 end
77
78 P = zeros(size(A),classname);
79 bb = zeros(size(A),’like’,A);
80
81 bb(:) = bitget(B(:) ,1);
82 ss = bitand_inexact(A(:),OxFFFF*bb(:),p,class(A));
83 if sa

175

84 ss = bitxor(ss,Ox8000); % NAND at
uppermost bit

85 end
86 P(:) = bitget(ss ,1);
87 ss = bitshift(ss ,-1);
88 ss = bitand(ss,Ox7FFF); % 0 at

uppermost bit
89
90 bb(:) = bitget(B(:) ,2);
91 ab = bitand_inexact(A(:),OxFFFF*bb(:),p,class(A));
92 if sa
93 ab = bitxor(ab,Ox8000); % NAND at

uppermost bit
94 end
95 cc = bitand_inexact(ab,ss,p,class(A) ,1:(na -1)); %

half adder: ab + ss
96 ss = bitxor_inexact(ab,ss,p,class(A) ,1:(na -1));
97 P(:) = bitset(P(:) ,2,bitget(ss ,1));
98 ss = bitshift(ss ,-1);
99 ss = bitand(ss,Ox7FFF); % 0 at

uppermost bit
100
101 for i = 3 : nb
102 bb(:) = bitget(B(:),i);
103 ab = bitand_inexact(A(:),OxFFFF*bb(:),p,class(A));
104 if sa
105 ab = bitxor(ab,Ox8000); % NAND at

uppermost bit
106 end
107
108 if (i == nb) && sb
109 ab = bitxor(ab,OxFFFF); % flip all bits (i.e

. 1’s complement)
110 end
111
112 dd = bitxor_inexact(ab,ss,p,class(A) ,1:(na -1)); %

full adder: ab+ss+cc
113 ee = bitand_inexact(ab,ss,p,class(A) ,1:(na -1));
114 ff = bitand_inexact(dd,cc,p,class(A));
115 ss = bitxor_inexact(dd,cc,p,class(A));
116 cc = bitor_inexact(ee,ff,p,class(A));
117
118 P(:) = bitset(P(:),i,bitget(ss ,1));
119 ss = bitshift(ss ,-1);
120
121 if (i < nb) || (~sa)

176

122 ss = bitand(ss,Ox7FFF); % 0 at
uppermost bit

123 else
124 ss = bitor(ss,Ox8000); % 1 at

uppermost bit
125 end
126 end
127
128 dd = bitxor_inexact(cc,ss,p,class(A) ,2:(na -1));
129 ee = bitand_inexact(cc,ss,p,class(A) ,2:(na -1));
130 c = ones(’like’,A);
131 c(:) = sb;
132
133 for i = 1 : na
134 d = bitget(dd,i);
135 e = bitget(ee,i);
136 f = and_inexact(c,d,p);
137 s = xor_inexact(c,d,p);
138 c = or_inexact(e,f,p);
139 P(:) = bitset(P(:),nb+i,s);
140 end

177

Appendix D. Inexact Floating-Point Multiplier

1 function [Sp, Ep, Mp] = Multiplier_floating_inexact(Sa,
Ea, Ma, Sb, Eb, Mb, fmt , p)

2
3 switch upper(fmt)
4 case ’BINARY16 ’
5 ne = 5;
6 nm = 10;
7 case ’BINARY32 ’
8 ne = 8;
9 nm = 23;

10 case ’BINARY64 ’
11 ne = 11;
12 nm = 52;
13 case ’BINARY128 ’
14 ne = 15;
15 nm = 112;
16 otherwise
17 error ’fmt must be binary16 , binary32 , binary64 ,

or binary128.’
18 end
19
20 if ~exist(’p’,’var’)
21 p = 1;
22 end
23
24 OxFF = cast(pow2a(ne,’uint64 ’) - 1, ’like’, Ea);
25 Ox7FFFFF = cast(pow2a(nm,’uint64 ’) - 1, ’like’, Ma);
26
27 % compute sign bit
28 Sp1 = sign_logic(Sa,Sb,p);
29
30 % compute mantissa
31 Ma1 = prepend_mantissa(Ea, Ma, ne, nm, p);
32 Mb1 = prepend_mantissa(Eb, Mb, ne, nm, p);
33 [Mp1 , c] = multiply_mantissas (Ma1 , Mb1 , nm, p);
34
35 % compute exponent
36 [Ep1 , u, v] = add_exponents (Ea, Eb, ne, c, p);
37
38 % underflow and overflow
39 u_ = cast(u,’like’,Ea) * OxFF;
40 u__ = cast(u,’like’,Ma) * Ox7FFFFF;
41 v_ = cast(v,’like’,Ea) * OxFF;
42 v__ = cast(v,’like’,Ma) * Ox7FFFFF;

178

43
44 % output Inf in case of overflow
45 Ep2 = mux2_inexact(v_,Ep1 ,OxFF ,p,class(Ep1) ,1:ne);
46 Mp2 = mux2_inexact(v__ ,Mp1 , zeros(’like’,Mp1),p,class(Mp1)

,1:nm);
47
48 % output 0 in case of underflow
49 Sp = mux2_inexact(u,Sp1 ,false ,p, ’logical ’ ,1);
50 Ep = mux2_inexact(u_,Ep2 , zeros(’like’,Ep2),p,class(Ep2) ,1:

ne);
51 Mp = mux2_inexact(u__ ,Mp2 , zeros(’like’,Mp2),p,class(Mp2)

,1:nm);
52
53 end
54
55 function Sp = sign_logic (Sa, Sb, p)
56
57 Sp = xor_inexact(Sa,Sb,p);
58
59 end
60
61 function [Ep, u, v] = add_exponents (Ea, Eb, ne, c, p)
62
63 [~, ~, E0] = adder_inexact_PBL(’RC’, ne, Ea, Eb, c, p);
64 v = and_inexact(bitget(E0,ne),bitget(E0,ne+1),p); %

overflow
65 Ep = zeros(size(E0),’like’,Ea);
66 OxFFFF = bitcmp0(zeros(’like’,E0),ne);
67 minus127 = zeros(’like’,E0);
68 minus127 (:) = pow2(ne) + pow2(ne -1) + 1; %

bin2dec (’110000001 ’)
69 E0 = adder_inexact_PBL(’RC’, ne+1, E0, minus127 , [], p);
70 u = logical(bitget(E0,ne+1)); %

underflow
71 Ep(:) = bitand(E0,OxFFFF);
72
73 end
74
75 function Ma1 = prepend_mantissa(Ea, Ma, ne, nm, p)
76 %For all nonzero Ea, a 1 is prepended to the mantissa Ma.

For Ea==0, the
77 %mantissa is returned unchanged.
78
79 H = any_high_bits_inexact_PBL(Ea,ne,p);
80
81 switch class(Ma)

179

82 case ’uint8’
83 if nm == 8
84 Ma = uint16(Ma);
85 end
86 case ’uint16 ’
87 if nm == 16
88 Ma = uint32(Ma);
89 end
90 case ’uint32 ’
91 if nm == 32
92 Ma = uint64(Ma);
93 end
94 case ’uint64 ’
95 if nm == 64
96 Ma = double(Ma);
97 end
98 end
99

100 Ma1 = bitset(Ma,nm+1,H);
101
102 end
103
104 function [Mp, c] = multiply_mantissas (Ma1 , Mb1 , nm, p

)
105
106 Mp0 = Multiplier_basic_inexact(Ma1 , Mb1 , p);
107 c = zeros(size(Mp0),’like’,Mp0);
108 c(:) = bitget(Mp0 ,2*(nm+1)); % carry -

out bit
109 Mp0 = bitshifter_inexact_PBL(Mp0 ,-int8(c) ,2*(nm+1) ,1,p);
110
111 OxFFFF = bitcmp0(zeros(’like’,Mp0),nm -1);
112 lsb0 = logical(bitget(Mp0 ,nm+1));
113 roundbit0 = logical(bitget(Mp0 ,nm));
114 stickybit0 = any_high_bits_inexact_PBL(bitand(Mp0 ,OxFFFF),

nm -1,p);
115 Mp0 = cast(bitshift(Mp0 ,-nm),’like’,Ma1);
116 Mp0 = adder_inexact_PBL(’RC’, nm+2, Mp0 , zeros(’like’,Mp0)

, ...
117 and(roundbit0 ,or(lsb0 ,stickybit0)), p);
118
119 Mp = zeros(size(Mp0),’like’,Ma1);
120 OxFFFF = bitcmp0(zeros(’like’,Mp0),nm);
121 Mp(:) = bitand(Mp0 ,OxFFFF);
122 c = logical(c);
123

180

124 end

181

Appendix E. Inexact Matrix Multiplier

1 function [C, nc] = mtimes_inexact_PBL(A, B, na, nb, p,
bit)

2 %Performs matrix multiplication , similar to the Matlab *
3 %(asterisk) operator or mtimes function , except inexact
4 %adders and multipliers are used in the process. The

inputs
5 %A and B must be of the integer classes. Inputs A and B

can
6 %have more than two dimensions.
7 %
8 %Inputs:
9 % A, B: (integer arrays) Matrices to be multiplied.

10 %size(A,2) must equal size(B,1). For higher dimensions ,
11 %size(A,3) must equal size(B,3); size(A,4) must equal
12 %size(B,4) etc.
13 %
14 % na: (integer) Number of bits needed to store the

data
15 %in A.
16 % nb: (integer) Number of bits needed to store the

data
17 %in B.
18 % p: (real number) Probability of correctness of each
19 %binary operation within the inexact adders and

multipliers.
20 % bit: (integer or integer array) The highest -order

bit
21 %which can be inexact within the addition and

multiplication
22 %operations. This can either be a scalar , or else an

array
23 %with dimensions [size(A,1),size(B,2),size(A,3),size(A,4)]
24 %etc.
25 %
26 %Outputs:
27 %
28 % C: (integer array) Matrix product of A and B. Dimen

-
29 %sions of C are [size(A,1),size(B,2),size(A,3),size(A,4)]
30 %etc. C may be of a different integer class than A and B.
31 % nc: (integer) Number of bits needed to store the

data
32 %in C. nc = na + nb + ceil(log2(size(A,2))).
33

182

34 if ~exist(’bit’,’var’)
35 bit = Inf;
36 end
37
38 if isscalar(na)
39 na = repmat(na ,[size(A,1),size(B,2)]);
40 end
41
42 if isscalar(nb)
43 nb = repmat(nb ,[size(A,1),size(B,2)]);
44 end
45
46 if isscalar(bit)
47 bit = repmat(bit ,[size(A,1),size(B,2)]);
48 end
49
50 switch class(A)
51 case {’int8’, ’int16’, ’int32’, ’int64’}
52 sa = true;
53 case {’uint8’, ’uint16 ’, ’uint32 ’, ’uint64 ’}
54 sa = false;
55 end
56
57 switch class(B)
58 case {’int8’, ’int16’, ’int32’, ’int64’}
59 sb = true;
60 case {’uint8’, ’uint16 ’, ’uint32 ’, ’uint64 ’}
61 sb = false;
62 end
63
64 if (sa ~= sb) && ~strcmp(class(A),class(B))
65 error ’If using signed integers , both multiplicands

must be of the same class.’
66 end
67
68 nc = na + nb + ceil(log2(size(A,2)));
69 nc(nc >64) = 64;
70 ncmax = max(nc(:));
71 if ncmax <= 8
72 classname = ’int8’;
73 elseif ncmax <= 16
74 classname = ’int16’;
75 elseif ncmax <= 32
76 classname = ’int32’;
77 else
78 classname = ’int64’;

183

79 end
80
81 if ~(sa || sb)
82 classname = regexprep(classname , ’^int’,’uint’);
83 end
84
85 if (~ isscalar(A)) && (~ isscalar(B)) && (size(A,2) ~= size(

B,1))
86 error ’Inner matrix dimensions must agree.’
87 end
88
89 C = zeros(size(A,1),size(B,2),size(A,3),size(A,4),

classname);
90
91 for r = 1 : size(A,1)
92 for c = 1 : size(B,2)
93 A_ = permute(A(r,:,:,:) ,[2,1,3,4]);
94 Cc = Multiplier_basic_inexact(A_, B(:,c,:,:), na(r

,c), nb(r,c), p, bit(r,c));
95 OxFFFF = cast(-1,’like’,Cc);
96 OxF000 = bitshift(OxFFFF ,na(r,c)+nb(r,c));
97 Ox0FFF = bitcmp(OxF000);
98 scc = (Cc < 0);
99 Cc(scc) = bitor(Cc(scc),OxF000);

100 Cc(~scc) = bitand(Cc(~scc),Ox0FFF);
101 C(r,c,:,:) = Cc(1,1,:,:);
102
103 for i = 2 : size(Cc ,1)
104 nc_ = na(r,c) + nb(r,c) + ceil(log2(i));
105 C(r,c,:,:) = Adder_RCA_inexact(nc_ ,C(r,c,:,:),

cast(Cc(i,1,:,:),’like’,C) ,[],p,1: min([nc_ ,
bit(r,c)]));

106 end
107 end
108 end

184

Appendix F. Inexact JPEG Compression Algorithm

6.1 Main Program

1 % Source:
2 % http ://www.impulseadventure.com/photo/jpeg -huffman -

coding.html
3
4 clear; close all
5 q = 100;
6
7 for f = 1 : 1
8 if f == 1
9 fname = ’F16’;

10 elseif f == 2
11 fname = ’Lena’;
12 elseif f == 3
13 fname = ’Frisco ’;
14 else
15 fname = ’Mandrill ’;
16 end
17
18 ncomponents = 1; % 3 for color

, 1 for grayscale
19 A = imread ([fname ,’.tif’]);
20 % A = A(263:342 ,247:326 ,:); % Lena
21 % A = A(18:97 ,137:216 ,:); % Mandrill
22 % A = A(522:681 ,357:516 ,:); % Frisco
23 height = size(A,1);
24 width = size(A,2);
25 R = A(:,:,1); G = A(:,:,2); B = A(:,:,3);
26
27 fprintf(’Color space transformation ...\n’)
28 Yexact = YCbCr(R,G,B);
29 figure; image(repmat(Yexact ,[1,1,3])); title(’Original

Image’); axis equal; axis tight; axis off
30 [Y, Cb, Cr] = YCbCr_inexact(R, G, B, 1);
31 figure; image(repmat(Y,[1,1,3])); title(’Color Space

Transformation ’); axis equal; axis tight; axis off
32 uncompressed_size = numel(Y);
33 npixels = numel(Y);
34
35 Y1 = tile8x8(Y);
36 Y1 = int8(int16(Y1) - 128);
37
38 for p = [0.99 ,0.999 ,0.9999 ,0.99999 ,0.999999]

185

39
40 fprintf(’Discrete cosine transformation ...\n’)
41 Byexact = DCT0(double(Y1));
42 By = DCT_inexact_PBL(Y1 ,22,p);
43
44 Qy = quantize0(double(By), q, ’Y’);
45
46 scandata = run_amp_huff_all(Qy ,[],[],fname ,q);
47
48 Aj = imread ([fname ,’.jpg’]);
49 figure
50 if ncomponents > 1
51 image(Aj)
52 else
53 image(repmat(Aj ,[1,1,3]))
54 err = double(Aj) - double(Yexact);
55 end
56 title(’Final JPEG Image’)
57 axis equal; axis tight; axis off
58
59 compressed_size = numel(scandata);
60 compression_ratio = uncompressed_size / compressed_size;
61 bits_per_pixel = 8 / compression_ratio;
62 err_rms = sqrt(mean(err(:) .^2));
63 snr_dB = 10 * log10 ((double(max(Yexact (:))) - double(min(

Yexact (:)))) ...
64 / err_rms);
65 fprintf(’p = %8.6f\n’,p)
66 fprintf(’Uncompressed size: %d bytes\n’,

uncompressed_size)
67 fprintf(’Compressed size: %d bytes\n’,compressed_size)
68 fprintf(’Compression ratio: %5.2f\n’,compression_ratio)
69 fprintf(’Bits per pixel: %4.2f\n’,bits_per_pixel)
70 fprintf(’RMS error: %7.3f\n’,err_rms)
71 fprintf(’SNR: %7.3f dB\n’,snr_dB)
72
73 fname2 = sprintf(’%s_p =%8.6 f_err =%7.3 f_comp =%5.2 f_snr =%7.3

f’,fname ,p,err_rms ,compression_ratio ,snr_dB);
74 fname2 = regexprep(fname2 ,’\s+’,’’);
75 fname2 = regexprep(fname2 ,’\.’,’_’);
76 movefile ([fname ,’.jpg’],[fname2 ,’.jpg’]);
77
78 end
79 end

186

6.2 Color Space Transformation

6.2.1 Exact Color Space Transformation.

The exact color space transformation is needed in order to compute the errors of

the inexact color space transformation.

1 % Color space transformation
2
3 % Reference:
4 % http ://www.jpeg.org/public/jfif.pdf
5
6 function [Y, Cb, Cr] = YCbCr(R, G, B, approx)
7
8
9 if ~exist(’approx ’,’var’)

10 approx = ’exact’;
11 end
12
13 switch lower(approx)
14 case ’uint8’
15 R = uint16(R);
16 G = uint16(G);
17 B = uint16(B);
18 Y = uint8(bitshift (154*R,-9)) + uint8(bitshift

(151*G,-8)) + uint8(bitshift (234*B,-11));
19 R = int16(R);
20 G = int16(G);
21 B = int16(B);
22 Cb = int8(bitshift (-86*R,-9)) + int8(bitshift (-84*

G,-8)) + int8(bitshift(B,-1));
23 i = (Cb >= 0);
24 Cb = uint8(bitset(Cb ,8,0));
25 Cb(i) = Cb(i) + uint8 (128);
26 Cr = int8(bitshift(R,-1)) + int8(bitshift (-107*G

,-8)) + int8(bitshift (-83*B,-10));
27 i = (Cr >= 0);
28 Cr = uint8(bitset(Cr ,8,0));
29 Cr(i) = Cr(i) + uint8 (128);
30 otherwise % exact method
31 R = double(R);
32 G = double(G);
33 B = double(B);
34 Y = 0.299 * R + 0.587 * G + 0.114 * B;
35 Cb = - 0.16874 * R - 0.33126 * G + 0.5 * B + 128;

187

36 Cr = 0.5 * R - 0.41869 * G - 0.08131 * B + 128;
37 Y = uint8(Y);
38 Cb = uint8(Cb);
39 Cr = uint8(Cr);
40 end

188

6.2.2 Inexact Color Space Transformation.

1 % Color space transformation
2
3 % Reference:
4 % http ://www.jpeg.org/public/jfif.pdf
5
6 function [Y, Cb, Cr] = YCbCr_inexact(R, G, B, p)
7
8
9 if ~exist(’p’,’var’)

10 p = 1;
11 end
12
13 R = uint8(R);
14 G = uint8(G);
15 B = uint8(B);
16 Y1 = bitshift(Multiplier_basic_inexact(R,repmat(uint8 (154)

,size(R)) ,8,8,p) ,-9);
17 % always < 77 (7 bits)
18 Y1 = uint8(bitand(Y1,uint16 (127)));

% lower 7 bits
19 Y2 = bitshift(Multiplier_basic_inexact(G,repmat(uint8 (151)

,size(G)) ,8,8,p) ,-8);
20 % always < 151 (8 bits)
21 Y2 = uint8(bitand(Y2,uint16 (255)));

% lower 8 bits
22 Y3 = bitshift(Multiplier_basic_inexact(B,repmat(uint8 (234)

,size(B)) ,8,8,p) ,-11);
23 % always < 30 (5 bits)
24 Y3 = uint8(bitand(Y3,uint16 (31)));

% lower 5 bits
25 Y = Adder_RCA_inexact (8,Y1,Y2 ,[],p);
26 Y = Adder_RCA_inexact (8,Y,Y3 ,[],p);
27 Cb1 = bitshift(Multiplier_basic_inexact(R,repmat(uint8 (86)

,size(R)) ,8,7,p) ,-9);
28 % always < 43 (6 bits)
29 Cb1 = uint8(bitand(Cb1 ,uint16 (63)));

% lower 6 bits
30 Cb2 = bitshift(Multiplier_basic_inexact(G,repmat(uint8 (84)

,size(G)) ,8,7,p) ,-8);
31 % always < 84 (7 bits)
32 Cb2 = uint8(bitand(Cb2 ,uint16 (127)));

% lower 7 bits
33 Cb2 = Adder_RCA_inexact (7,Cb2 ,Cb1 ,[],p,1:7, true); %

always <= 127

189

34 Cb2 = bitand(Cb2 ,uint8 (127));
% lower 7 bits

35 Cb3 = bitshift(B,-1); % always <= 127
36 Cb3 = bitor(Cb3 ,128); % add 128
37 Cb = adder_subtractor_inexact_PBL(’RC’,8,Cb3 ,Cb2 ,true ,p);
38
39 Cr1 = bitshift(Multiplier_basic_inexact(B,repmat(uint8 (83)

,size(B)) ,8,7,p) ,-10);
40 % always < 21 (5 bits)
41 Cr1 = uint8(bitand(Cr1 ,uint16 (31)));

% lower 5 bits
42 Cr2 = bitshift(Multiplier_basic_inexact(G,repmat(uint8

(107),size(G)) ,8,7,p) ,-8);
43 % always < 107 (7 bits)
44 Cr2 = uint8(bitand(Cr2 ,uint16 (127)));

% lower 7 bits
45 Cr2 = Adder_RCA_inexact (7,Cr2 ,Cr1 ,[],p,1:7, true); %

always <= 127
46 Cr2 = bitand(Cr2 ,uint8 (127));

% lower 7 bits
47 Cr3 = bitshift(R,-1); % always <= 127
48 Cr3 = bitor(Cr3 ,128); % add 128
49 Cr = adder_subtractor_inexact_PBL(’RC’,8,Cr3 ,Cr2 ,true ,p);

190

6.3 Tiling Function

1 function [B] = tile8x8(A)
2
3 % See if the dimensions of A are divisible by 8. If not ,

pad with zeros.
4 A = padarray(A, mod(- size(A) ,8), ’post’);
5
6 % Break A up into 8x8 tiles. Dimensions: yminor , ymajor ,

xminor , xmajor
7 B = reshape(A, [8, size(A,1)/8, 8, size(A,2) /8]);
8
9 % Rearrange dimensions: xminor , yminor , xmajor , ymajor

10 B = permute(B, [3, 1, 4, 2]);

191

6.4 Discrete Cosine Transformation (DCT)

6.4.1 Exact DCT.

The exact DCT is needed in order to compute the errors of the inexact DCT.

1 % There are four types of DCT -- this is type II (DCT -II).
2
3 % References:
4 %
5 % http ://www.whydomath.org/node/wavlets/dct.html
6 %
7 % Rao , K. R. and P. Yip. Discrete Cosine Transform:

Algorithms , Advantages ,
8 % and Applications. Academic Press , San Diego , CA, 1990, p

37.
9

10 function [B] = DCT0(A)
11
12 U = 1:2:15;
13 U = ([0:7]. ’) * U;
14 U = U * pi / 16;
15 U = 0.5 * cos(U);
16 U(1,:) = 0.25 * sqrt (2);
17
18 if ndims(A) == 2
19 B = U * A * (U.’);
20 else
21 B = zeros(size(A));
22 for i = 1 : size(A,4)
23 for j = 1 : size(A,3)
24 B(:,:,j,i) = U * squeeze(A(:,:,j,i)) * (U.’);
25 end
26 end
27 end

192

6.4.2 Inexact DCT.

1 % There are four types of DCT -- this is type II (DCT -II).
2
3 % References:
4 %
5 % http ://www.whydomath.org/node/wavlets/dct.html
6 %
7 % Rao , K. R. and P. Yip. Discrete Cosine Transform:

Algorithms , Advantages ,
8 % and Applications. Academic Press , San Diego , CA, 1990,

p 37.
9

10 function [B] = DCT_inexact_PBL(A, nbits , p)
11
12 % Maximum number of bits used by the DCT in all of the

following images:
13 % Mandrill (4.2.03) , Lena (4.2.04) , F16 (4.2.05) , and San

Francisco (2.2.15):
14
15 By1max = [17 17 17 17 17 17 17 17; 16 16 16 16 16 16 16

16; ...
16 16 16 16 16 16 16 16 16; 16 16 16 16 15 15 15 16;

...
17 15 15 15 15 15 15 15 15; 15 15 15 15 15 15 15 15;

...
18 15 15 14 15 15 15 14 14; 15 15 14 14 15 14 14 14];
19 % for U * A, where nu=7 and na=8
20
21 By2max = [25 25 24 24 23 23 23 23; 25 24 24 23 23 23 23

23; ...
22 24 24 23 23 23 22 23 22; 24 23 23 23 23 23 22 22;

...
23 23 23 23 22 23 22 22 22; 23 22 22 22 22 22 22 22;

...
24 22 22 22 22 22 21 22 21; 22 22 22 21 22 21 21 21];
25 % for (U*A)*(U.’), where nu=7, na=8 and nut=7
26
27 Bymax = [11 11 10 10 9 9 9 9; 11 10 10 9 9 9 9 9; ...
28 10 10 9 9 9 8 9 8; 10 9 9 9 9 9 8 8; ...
29 9 9 9 8 9 8 8 8; 9 8 8 8 8 8 8 8; ...
30 8 8 8 8 8 7 8 7; 8 8 8 7 8 7 7 7];
31 % for the final (U*A)*(U.’)
32
33 if ~exist(’nbits’,’var’)
34 nbits = 22;

193

35 end
36
37 if ~exist(’p’,’var’)
38 p = 1;
39 end
40
41 if nbits < 18
42 na = floor ((nbits + 1) / 3) + 1;
43 nu = floor(nbits / 3);
44 nut = nbits - na - nu;
45 else
46 na = 8;
47 nu = ceil ((nbits - na) / 2);
48 nut = nbits - na - nu;
49 end
50
51 sa = na - 8;
52 su = nu;
53 sut = nut;
54
55 A = floor(A * pow2(sa));
56
57 U = 1:2:15;
58 U = ((0:7).’) * U;
59 U = U * pi / 16;
60 U = 0.5 * cos(U);
61 U(1,:) = 0.25 * sqrt (2);
62 U1 = round(pow2(su) * U);
63 U2 = round(pow2(sut) * U.’);
64
65 if nu < 8
66 U1 = int8(U1);
67 elseif nu < 16
68 U1 = int16(U1);
69 elseif nu < 32
70 U1 = int32(U1);
71 else
72 U1 = int64(U1);
73 end
74
75 if nut < 8
76 U2 = int8(U2);
77 elseif nut < 16
78 U2 = int16(U2);
79 elseif nut < 32
80 U2 = int32(U2);

194

81 else
82 U2 = int64(U2);
83 end
84
85 if ~ismatrix(A)
86 U1 = repmat(U1 ,[1,1, size(A,3),size(A,4)]);
87 U2 = repmat(U2 ,[1,1, size(A,3),size(A,4)]);
88 end
89
90 By1max = By1max + nu + na - 15;
91 [B,nb] = mtimes_inexact_PBL(U1,A,nu+1,na,p,By1max -3);
92 By1max = repmat(By1max ,[1,1, size(B,3),size(B,4)]);
93 sgn = (B < 0);
94 B = bitset(B,By1max ,sgn);
95 B = correct_upperbits(B,By1max);
96
97 B = bitshift(B,-8);
98 By2max = By2max - 8;
99

100 By2max = By2max + nut - 7;
101 B = mtimes_inexact_PBL(B,U2,nb,nut ,p,By2max -5);
102 By2max = repmat(By2max ,[1,1, size(B,3),size(B,4)]);
103 sgn = (B < 0);
104 B = bitset(B,By2max ,sgn);
105 B = correct_upperbits(B,By2max);
106
107 B = bitshift(B,-sa-su-sut+8);
108 Bymax = repmat(Bymax ,[1,1, size(B,3),size(B,4)]);
109 sgn = (B < 0);
110 B = bitset(B,Bymax ,sgn);
111 B = correct_upperbits(B,Bymax);

195

6.5 Quantization

1 % References:
2 % http ://www.ams.org/samplings/feature -column/fcarc -image -

compression
3 % http ://www.whydomath.org/node/wavlets/quantization.html
4
5 function [Q, DQT] = quantize0(B, q, fun)
6
7 if q < 1
8 q = 1;
9 end

10
11 if nargin < 3
12 fun = ’luminance ’;
13 end
14
15 switch upper(fun)
16 case {’CHROMINANCE ’,’CB’,’CR’}
17 Z = [17 18 24 47 99 99 99 99; 18 21 26 66 99 99 99

99; ...
18 24 26 56 99 99 99 99 99; 47 66 99 99 99 99 99

99; ...
19 99 99 99 99 99 99 99 99; 99 99 99 99 99 99 99

99; ...
20 99 99 99 99 99 99 99 99; 99 99 99 99 99 99 99

99].’;
21 otherwise
22 Z = [16 11 10 16 24 40 51 61; 12 12 14 19 26 58 60

55; ...
23 14 13 16 24 40 57 69 56; 14 17 22 29 51 87 80

62; ...
24 18 22 37 56 68 109 103 77; 24 35 55 64 81 104

113 92; ...
25 49 64 78 87 103 121 120 101; 72 92 95 98 112

100 103 99].’;
26 end
27
28 if q <= 50
29 alpha = 50 / q;
30 else
31 alpha = 2 - q / 50;
32 end
33
34 if q >= 100
35 Q = round(B);

196

36 DQT = ones(size(Z));
37 else
38 DQT = round(alpha * Z);
39 if ~ismatrix(B)
40 Z = repmat(Z,[1, 1, size(B,3), size(B,4)]);
41 end
42 Q = round(B ./ (alpha * Z));
43 end
44
45 if all((abs(Q(:)) <= 2047) & (~ isnan(Q(:))))
46 Q = int16(Q);
47 else
48 warning(’Quantized data out of range.’)
49 Q((abs(Q) >2047) | isnan(Q)) = 0;
50 Q = int16(Q);
51 end

197

6.6 Zigzag Function

1 % Reference:
2 % http ://www.ams.org/samplings/feature -column/fcarc -image -

compression
3
4 function [Q1] = zigzag8x8(Q)
5
6 zigzag = [1, 2, 6, 7, 15, 16, 28, 29 ;
7 3, 5, 8, 14, 17, 27, 30, 43 ;
8 4, 9, 13, 18, 26, 31, 42, 44 ;
9 10, 12, 19, 25, 32, 41, 45, 54 ;

10 11, 20, 24, 33, 40, 46, 53, 55 ;
11 21, 23, 34, 39, 47, 52, 56, 61 ;
12 22, 35, 38, 48, 51, 57, 60, 62 ;
13 36, 37, 49, 50, 58, 59, 63, 64].’;
14
15 Q1 = zeros(size(Q), class(Q));
16
17 if ismatrix(Q) % two -dimensional , one 8x8

tile only
18 Q1(zigzag) = Q;
19 else % four -dimensional , entire

image
20 [~,z2,z3] = ndgrid (1:64, (0:(size(Q,3) -1))*64, (0:(

size(Q,4) -1))*64* size(Q,3));
21 z2 = reshape(z2, size(Q));
22 z3 = reshape(z3, size(Q));
23 zigzag = repmat(zigzag , [1, 1, size(Q,3),size(Q,4)]) +

z2 + z3;
24 Q1(zigzag) = Q;
25 end

198

6.7 Run-Amplitude Encoding

1 % Run -amplitude encoding
2
3 % References:
4 % http ://cnx.org/content/m11096/latest/
5 % http ://www.impulseadventure.com/photo/jpeg -huffman -

coding.html
6
7 function [jpg , jpgstr] = run_amp_encode0(Q1, bitstrings

)
8
9 % bitstrings must be sorted in order by code number.

10
11 if numel(Q1) > 1
12 dc = false;
13 else
14 dc = true;
15 end
16 jpg = cell(2,numel(Q1));
17
18 nz = 0;
19 j = 0;
20 for i = 1 : numel(Q1)
21 if Q1(i) || dc
22 j = j + 1;
23 s = numel(dec2bin(abs(Q1(i))));
24 if (16 * nz + s + 1) <= numel(bitstrings)
25 jpg{1,j} = bitstrings {16 * nz + s + 1};
26 else
27 jpg{1,j} = bitstrings {1};
28 warning ’Data out of range.’
29 end
30 if Q1(i) >= 0
31 jpg{2,j} = dec2bin(Q1(i));
32 else
33 jpg{2,j} = dec2bin(bitcmp0(-Q1(i),s),s);
34 end
35 nz = 0;
36 else
37 nz = nz + 1;
38 if (i == numel(Q1)) || (~ sum(abs(Q1(i:end))))
39 j = j + 1;
40 jpg{1,j} = bitstrings {1}; % end -of-block (

EOB)
41 if j < numel(Q1)

199

42 jpg(:,(j+1):end) = [];
43 end
44 break
45 elseif nz == 16
46 j = j + 1;
47 jpg{1,j} = bitstrings {241}; % zero run length

(ZRL) (0xF0 + 1)
48 nz = 0;
49 end
50 end
51 end
52
53 if nargout >= 2
54 jpgstr = char(’1’ * ones ([1 ,16* numel(jpg)],’uint8’));
55 k = 1;
56 for m = 1 : numel(jpg)
57 jpgstr(k:(k+numel(jpg{m}) -1)) = jpg{m};
58 k = k + numel(jpg{m});
59 end
60 jpgstr = jpgstr (1:(k-1));
61 end

200

6.8 Huffman Encoding

1 function scandata = run_amp_huff_all(Qy, Qcb , Qcr , fname ,
q)

2 %Source:
3 %http ://www.impulseadventure.com/photo/jpeg -huffman -coding

.html
4
5 if ~exist(’Qy’,’var’)
6 Qy = [];
7 end
8
9 if ~exist(’Qcb’,’var’)

10 Qcb = [];
11 end
12
13 if ~exist(’Qcr’,’var’)
14 Qcr = [];
15 end
16
17 [~, fname] = fileparts(fname);
18 fname = [fname ,’.jpg’];
19
20 ncomponents = (~ isempty(Qy)) + (~ isempty(Qcb)) + (~ isempty

(Qcr));
21 height = 8 * size(Qy ,4);
22 width = 8 * size(Qy ,3);
23 Q0 = zigzag8x8(Qy);
24
25 load huffman_dc_luminance_sorted
26 bitstrings_dc_luminance = bitstrings;
27 load huffman_ac_luminance_sorted
28 bitstrings_ac_luminance = bitstrings;
29 load huffman_dc_chrominance_sorted
30 bitstrings_dc_chrominance = bitstrings;
31 load huffman_ac_chrominance_sorted
32 bitstrings_ac_chrominance = bitstrings;
33
34 fprintf(’Run -amplitude encoding ...\n’)
35 jpgstr = char(’1’ * ones ([1 ,32* numel(Qy)],’uint8’));
36 k = 1;
37 prev_Qy_dc = 0;
38 prev_Qcb_dc = 0;
39 prev_Qcr_dc = 0;
40 dc_correction = 0;
41 for i = 1 : size(Qy ,4)

201

42 fprintf(’%i ’, size(Qy ,4)-i);
43 if ~mod(i,10)
44 fprintf(’\n’);
45 end
46 for j = 1 : size(Qy ,3)
47 Q1 = squeeze(Q0(:,:,j,i));
48 [~, jpgstr0] = run_amp_encode0(Q1(1)-prev_Qy_dc ,

bitstrings_dc_luminance);
49 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
50 k = k + numel(jpgstr0);
51 [~, jpgstr0] = run_amp_encode0(Q1(2: end),

bitstrings_ac_luminance);
52 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
53 k = k + numel(jpgstr0);
54 prev_Qy_dc = Q1(1);
55
56 % Very slight error in the dc component -- not

sure why.
57 % No big deal for small images , but for large

images it accumulates
58 prev_Qy_dc = prev_Qy_dc - floor(dc_correction);
59 if floor(dc_correction) >= 1
60 dc_correction = 0;
61 else
62 dc_correction = dc_correction + 0.02;
63 end
64
65 if ncomponents > 1
66 Q1 = zigzag8x8(squeeze(Qcb(:,:,j,i)));
67 [~, jpgstr0] = run_amp_encode0(Q1(1)-

prev_Qcb_dc , bitstrings_dc_chrominance);
68 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
69 k = k + numel(jpgstr0);
70 [~, jpgstr0] = run_amp_encode0(Q1(2: end),

bitstrings_ac_chrominance);
71 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
72 k = k + numel(jpgstr0);
73 prev_Qcb_dc = Q1(1);
74
75 Q1 = zigzag8x8(squeeze(Qcr(:,:,j,i)));
76 [~, jpgstr0] = run_amp_encode0(Q1(1)-

prev_Qcr_dc , bitstrings_dc_chrominance);
77 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
78 k = k + numel(jpgstr0);
79 [~, jpgstr0] = run_amp_encode0(Q1(2: end),

bitstrings_ac_chrominance);

202

80 jpgstr(k:(k+numel(jpgstr0) -1)) = jpgstr0;
81 k = k + numel(jpgstr0);
82 prev_Qcr_dc = Q1(1);
83 end
84 end
85 end
86
87 jpgstr = jpgstr (1:(k-1));
88 jpgstr = stuffbyte(jpgstr)
89 jpgstr = reshape(jpgstr , [8, numel(jpgstr)/8]).’;
90 scandata = bin2dec(jpgstr);
91
92 fileID = fopen(fname ,’w’);
93 fwrite1_SOI(fileID);
94 fwrite2_APP0(fileID);
95 [~, DQT] = quantize0(zeros (8,8), q, ’luminance ’);
96 fwrite3_DQT(fileID , 0, DQT , q, ’luminance ’);
97 if ncomponents > 1
98 [~, DQT] = quantize0(zeros (8,8), q, ’chrominance ’);
99 fwrite3_DQT(fileID , 1, DQT , q, ’chrominance ’);

100 end
101 fwrite4_SOF0(fileID , height , width , ncomponents);
102 load(’huffman_dc_luminance ’,’DHT’)
103 fwrite5_DHT(fileID , 0, 0, DHT);
104 load(’huffman_ac_luminance ’,’DHT’)
105 fwrite5_DHT(fileID , 0, 1, DHT);
106 if ncomponents > 1
107 load(’huffman_dc_chrominance ’,’DHT’)
108 fwrite5_DHT(fileID , 1, 0, DHT);
109 load(’huffman_ac_chrominance ’,’DHT’)
110 fwrite5_DHT(fileID , 1, 1, DHT);
111 end
112 fwrite6_SOS(fileID , ncomponents);
113 fwrite(fileID ,scandata);
114 fwrite(fileID , [255; 217]); % 0xFFD9 (EOI)
115 fclose(’all’);

203

6.9 Stuff Byte

1 % Reference:
2 % http ://www.impulseadventure.com/photo/jpeg -huffman -

coding.html
3
4 function [jpgstr_stuffed] = stuffbyte(jpgstr)
5
6 % Check to see if the number of bits is a multiple of 8.
7 % If not , then pad with ones.
8 jpgstr1 = char(padarray(uint8(jpgstr), [0,mod(-numel(

jpgstr) ,8)], ...
9 uint8(’1’), ’post’));

10
11 % Split jpgstr1 up into 8-bit groups.
12 jpgstr2 = reshape(jpgstr1 ,[8,numel(jpgstr1)/8]).’;
13
14 jpgstr_stuffed = [];
15 for i = 1 : size(jpgstr2 ,1)
16 jpgstr_stuffed = [jpgstr_stuffed , jpgstr2(i,:)];
17 if strcmp(jpgstr2(i,:),’11111111 ’) % 0xFF becomes 0

xFF00 (stuff byte)
18 jpgstr_stuffed = [jpgstr_stuffed , ’00000000 ’];
19 end
20 end

204

6.10 File Operations

1 function [count] = fwrite1_SOI(fileID)
2
3 % Reference:
4 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
5
6 count = fwrite(fileID , [255; 216]);

% 0xFFD8 (SOI)

1 function [count] = fwrite2_APP0(fileID)
2
3 % Reference:
4 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
5
6 A = [255; 224; ... % 0xFFE0 (APP0)
7 0; 16; ... % APP0 field length
8 74; 70; 73; 70; 0; ... % JFIF identifier
9 1; 2; ... % version 1.02

10 1; ... % units=1 means dots per
inch (DPI)

11 0; 72; ... % X density (DPI)
12 0; 72; ... % Y density (DPI)
13 0; ... % X thumnail width
14 0]; % Y thumnail height
15
16 count = fwrite(fileID , A);

1 function [count , DQT] = fwrite3_DQT(fileID , tableID ,
DQT , q, fun)

2
3 % References:
4 % http ://www.ams.org/samplings/feature -column/fcarc -image -

compression
5 % http ://www.whydomath.org/node/wavlets/quantization.html
6 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
7
8 if nargin < 5
9 fun = ’luminance ’;

10 end
11
12 if nargin < 4
13 q = 100;
14 end

205

15
16 if numel(DQT) ~= 64
17
18 if (q < 1) || (q > 100)
19 error ’q must be between 1 and 100.’
20 end
21
22 switch upper(fun)
23 case {’C’,’CB’,’CR’,’CHROMINANCE ’}
24 Z = [17 18 24 47 99 99 99 99; 18 21 26 66 99

99 99 99; ...
25 24 26 56 99 99 99 99 99; 47 66 99 99 99 99

99 99; ...
26 99 99 99 99 99 99 99 99; 99 99 99 99 99 99

99 99; ...
27 99 99 99 99 99 99 99 99; 99 99 99 99 99 99

99 99];
28 otherwise % luminance
29 Z = [16 11 10 16 24 40 51 61; 12 12 14 19 26

58 60 55; ...
30 14 13 16 24 40 57 69 56; 14 17 22 29 51 87

80 62; ...
31 18 22 37 56 68 109 103 77; 24 35 55 64 81

104 113 92; ...
32 49 64 78 87 103 121 120 101; 72 92 95 98

112 100 103 99];
33 end
34
35 if q <= 50
36 alpha = 50 / q;
37 else
38 alpha = 2 - q / 50;
39 end
40
41 DQT = round(alpha * Z);
42
43 end
44
45 A = [255; 219; ... % 0xFFDB (DQT)
46 0; 67; ... % DQT field length
47 tableID]; % destination ID number
48
49 A = [A; reshape(zigzag8x8(DQT) ,[64,1])];
50
51 count = fwrite(fileID , A);

206

1 function [count] = fwrite4_SOF0(fileID , height , width ,
ncomponents)

2
3 % Reference:
4 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
5
6 A = [255; 192; ... % 0xFFC0 (SOF0)
7 0; 3* ncomponents +8; ... % SOF0 field length
8 8; ... % data precision
9 floor(height /256); mod(height ,256); ... % image

height
10 floor(width /256); mod(width ,256); ... % image

width
11 ncomponents]; % number of components
12
13 for i = 1 : ncomponents
14 A = [A; i; ... % component ID number
15 17; ... % 0x11 sampling factors
16 i~=1]; % quantization table number

(0 or 1)
17 end
18
19 count = fwrite(fileID , A);

1 function [count] = fwrite5_DHT(fileID , tableID , acdc ,
DHT)

2
3 % Reference:
4 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
5
6 % DHT must be sorted in order by code length.
7 % DHT{i} = vector of all codes of length i bits.
8
9 if (tableID ~=0) && (tableID ~=1) && (tableID ~=2) && (

tableID ~=3)
10 error ’tableID must be 0, 1, 2, or 3.’
11 end
12
13 switch upper(acdc)
14 case ’DC’
15 acdc = 0;
16 case ’AC’
17 acdc = 1;
18 case {0,1}
19 otherwise

207

20 error ’acdc must be 0 (dc) or 1 (ac).’
21 end
22
23 A = [255; 196; ... % 0xFFC4 (DHT)
24 0; 0; ... % DHT field length (

calculated below)
25 16* acdc+tableID; ... % DHT information byte
26 zeros (16,1)];
27
28 for i = 1 : numel(DHT)
29 A(i+5) = numel(DHT{i});
30 end
31
32 for i = 1 : numel(DHT)
33 A = [A; DHT{i}(:)];
34 end
35
36 A(4) = numel(A) - 2; % DHT field length
37
38 count = fwrite(fileID , A);

1 function [count] = fwrite6_SOS(fileID , ncomponents)
2
3 % Reference:
4 % http ://vip.sugovica.hu/Sardi/kepnezo/JPEG %20 File %20

Layout %20and%20 Format.htm
5
6 if (ncomponents ~=1)&& (ncomponents ~=2)&& (ncomponents ~=3)

&&(ncomponents ~=4)
7 error ’ncomponents must be 1, 2, 3, or 4.’
8 end
9

10 A = [255; 218; ... % 0xFFDA (SOS)
11 0; 2* ncomponents +6; ... % SOS field length
12 ncomponents]; % number of components
13
14 for i = 1 : ncomponents
15 A = [A; i; ... % component ID number
16 17*(i~=1)]; % DC & AC Huffman table ID

numbers
17 end
18
19 A = [A; 0; 63; ... % spectral selection
20 0]; % successive approximation
21
22 count = fwrite(fileID , A);

208

Appendix G. Logical Functions

7.1 Inexact NOT

1 function [B] = not_inexact(A, p)
2 %Calculates the logical NOT of the input argument A,

similar to the
3 %standard not function , except that each bit has a random

error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A: (logical array) Input argument for the NOT operator.
8 %p: (scalar) Probability of correctness of each bit

within the output B.
9 % 0 <= p <= 1.

10 %
11 %Outputs:
12 %B: (logical array) B = A OR B, subject to a bitwise

random error
13 % probability 1-p. B has the same dimensions as A and

B.
14 %
15 %Notes:
16 %If p=1, then B = ~A and is error -free.
17 %If p=0, then B = A.
18 %If p=0.5, then B contains completely random data.
19 %
20 %Reference:
21 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
22 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
23 %Computer Science , Jun 2008.
24
25 B = ~A;
26 err = (rand(size(B)) > p);
27 B(err) = ~B(err);

209

7.2 Inexact AND

1 function [C] = and_inexact(A, B, p)
2 %Calculates the bitwise AND of the input arguments A and B

, similar to the
3 %standard and function , except that each bit has a random

error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (logical arrays) Input arguments for the AND

operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %
12 %Outputs:
13 %C: (logical array) C = A AND B, subject to a bitwise

random error
14 % probability 1-p. C has the same dimensions as A and

B.
15 %
16 %Notes:
17 %If p=1, then C = A AND B and is error -free.
18 %If p=0, then C = A NAND B.
19 %If p=0.5, then C contains completely random data.
20 %
21 %Reference:
22 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
23 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
24 %Computer Science , Jun 2008.
25
26 C = and(A, B);
27 err = (rand(size(C)) > p);
28 C(err) = ~C(err);

210

7.3 Inexact OR

1 function [C] = or_inexact(A, B, p)
2 %Calculates the bitwise OR of the input arguments A and B,

similar to the
3 %standard or function , except that each bit has a random

error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (logical arrays) Input arguments for the OR

operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %
12 %Outputs:
13 %C: (logical array) C = A OR B, subject to a bitwise

random error
14 % probability 1-p. C has the same dimensions as A and

B.
15 %
16 %Notes:
17 %If p=1, then C = A OR B and is error -free.
18 %If p=0, then C = A NOR B.
19 %If p=0.5, then C contains completely random data.
20 %
21 %Reference:
22 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
23 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
24 %Computer Science , Jun 2008.
25
26 C = or(A, B);
27 err = (rand(size(C)) > p);
28 C(err) = ~C(err);

211

7.4 Inexact XOR

1 function [C] = xor_inexact(A, B, p)
2 %Calculates the bitwise XOR of the input arguments A and B

, similar to the
3 %standard xor function , except that each bit has a random

error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (logical arrays) Input arguments for the XOR

operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %
12 %Outputs:
13 %C: (logical array) C = A XOR B, subject to a bitwise

random error
14 % probability 1-p. C has the same dimensions as A and

B.
15 %
16 %Notes:
17 %If p=1, then C = A XOR B and is error -free.
18 %If p=0, then C = A XNOR B.
19 %If p=0.5, then C contains completely random data.
20 %
21 %Reference:
22 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
23 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
24 %Computer Science , Jun 2008.
25
26 C = xor(A, B);
27 err = (rand(size(C)) > p);
28 C(err) = ~C(err);

212

7.5 Inexact Multiplexer

1 function [Z, Z_] = mux2_inexact(S, A0, A1, p, classname
, bit)

2 %mux2_inexact: Two -input multiplexer. Computes the
bitwise

3 %((~S AND A0) OR (S AND A1)), similar to the bitand func -
4 %tion , except that each AND , OR, and NOT gate has a random
5 %error probability equal to 1-p.
6 %
7 %Inputs:
8 %S: (nonnegative integer array) Selector.
9 %A0, A1: (nonnegative integer arrays) Input signals for

the
10 % multiplexer. S, A0, and A1 must all have the same di

-
11 % mensions.
12 %p: (scalar) Probability of correctness of each bit

within
13 % the output Z. 0 <= p <= 1.
14 %classname: (string) The class name of the output arrays

Z
15 % and Z_.
16 %bit: (integer vector) Which bit positions can be inexact

.
17 % Position 1 is the lowest -order bit. (optional) If

bit
18 % is omitted , then all positions can be inexact.
19 %
20 %Outputs:
21 %Z: (integer array) Z = ((~S AND A0) OR (S AND A1)), sub

-
22 % ject to a bitwise random error probability 1-p. Z

has
23 % the same dimensions as S, A0, and A1.
24 %Z_: (integer array) Z_ = ((S AND A0) OR (~S AND A1)),

sub -
25 % ject to a bitwise random error probability 1-p. Z_

has
26 % the same dimensions as S, A0, and A1.
27 %
28 %Notes:
29 %If p=1, then Z = ((~S AND A0) OR (S AND A1)) and is
30 % error -free.
31 %If p=0, then Z = ((~~S NAND A0) NOR (S NAND A1)).
32 %If p=0.5, then Z contains completely random data.

213

33 %
34 %Reference:
35 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic
36 %Boolean logic and its meaning ," Tech. Rep. TR -08-05, Rice
37 %University , Department of Computer Science , Jun 2008.
38
39 if ~exist(’p’,’var’)
40 p = 1;
41 end
42
43 if ~exist(’classname ’,’var’)
44 classname = class(bitor(bitand(bitcmp(S(1)),A0(1)),

bitand(S(1),A1(1))));
45 end
46
47 switch classname
48 case ’logical ’
49 n = 1;
50 case {’uint8’, ’int8’}
51 n = 8;
52 case {’uint16 ’, ’int16’}
53 n = 16;
54 case {’uint32 ’, ’int32’}
55 n = 32;
56 case {’uint64 ’, ’int64’}
57 n = 64;
58 otherwise
59 error ’classname must be logical , uint8 , uint16 ,

uint32 , uint64 , int8 , int16 , int32 , or int64.’
60 end
61
62 if ~exist(’bit’,’var’)
63 bit = 1 : n;
64 end
65
66 if islogical(S)
67 S_ = not_inexact(S, p);
68
69 Z0 = and_inexact(S_, A0, p);
70 Z1 = and_inexact(S, A1, p);
71 Z = or_inexact(Z0, Z1, p);
72
73 Z2 = and_inexact(S, A0, p);
74 Z3 = and_inexact(S_, A1, p);
75 Z_ = or_inexact(Z2, Z3, p);
76 else

214

77 S_ = bitcmp_inexact(S, n, p, classname , bit);
78
79 Z0 = bitand_inexact(S_, A0, p, classname , bit);
80 Z1 = bitand_inexact(S, A1, p, classname , bit);
81 Z = bitor_inexact(Z0, Z1, p, classname , bit);
82
83 Z2 = bitand_inexact(S, A0, p, classname , bit);
84 Z3 = bitand_inexact(S_, A1, p, classname , bit);
85 Z_ = bitor_inexact(Z2, Z3, p, classname , bit);
86 end

215

7.6 Inexact AND-OR-2-1

1 function [D] = AO21_inexact(A, B, C, p, classname , bit
)

2 %Calculates the bitwise (A OR (B AND C)), similar to the
bitand function ,

3 %except that each bit has a random error probability equal
to 1-p.

4 %
5 %Inputs:
6 %A, B, C: (nonnegative integer arrays) Input arguments

for the AOI
7 % function. A, B, and C must all have the same

dimensions.
8 %p: (scalar) Probability of correctness of each bit

within the output D.
9 % 0 <= p <= 1.

10 %classname: (string) The class name of the output array D
.

11 %bit: (integer vector) Which bit positions can be inexact
. Position 1 is

12 % lowest -order bit. (optional) If bit is omitted , then
all positions can

13 % be inexact.
14 %
15 %Outputs:
16 %D: (nonnegative integer array) D = (A OR (B AND C)),

subject to a
17 % bitwise random error probability 1-p. D has the same

dimensions as A,
18 % B, and C.
19 %
20 %Notes:
21 %If p=1, then D = (A OR (B AND C)) and is error -free.
22 %If p=0, then D = (A NOR (B AND C)) (and -or-invert).
23 %If p=0.5, then D contains completely random data.
24 %
25 %Reference:
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29
30 D0 = bitand(B, C);
31 if nargin < 5

216

32 D = bitor(A, D0);
33 classname = class(D);
34 else
35 D = zeros(size(A), classname);
36 D(:) = bitor(A, D0);
37 end
38
39 if nargin >= 6
40 err = biterrors(size(D), p, classname , bit);
41 else
42 err = biterrors(size(D), p, classname);
43 end
44
45 D = bitxor(D, err);

217

7.7 Inexact AND-OR-AND-OR-2-1-1-1

1 function [F] = AOAO2111_inexact(A, B, C, D, E, p,
classname , bit)

2 %AOAO2111_inexact: Computes the bitwise (A OR (B AND (C
OR (D AND E))))),

3 %similar to the bitand function , except that each bit has
a random error

4 %probability equal to 1-p.
5
6 F0 = bitand(D, E);
7 F1 = bitor(C, F0);
8 F2 = bitand(B, F1);
9 if nargin < 7

10 F = bitor(A, F2);
11 classname = class(F);
12 else
13 F = zeros(size(A), classname);
14 F(:) = bitor(A, F2);
15 end
16
17 if nargin >= 8
18 err = biterrors(size(F), p, classname , bit);
19 else
20 err = biterrors(size(F), p, classname);
21 end
22
23 F = bitxor(F, err);

218

7.8 Inexact n-Input AND

1 function [C] = and3_inexact(A, p)
2 %Performs the logical AND of all elements along the rows

of
3 %a two -dimensional array A. The output is a column vector

.
4 %This function simulates an inexact N-input AND gate (

where
5 %N is the number of columns of A), by ANDing the inputs
6 %pairwise in a binary tree of 2-input inexact AND gates.
7 %Each 2-input AND gate has a probability of correctness p
8 %and a probability of error 1-p.
9 %

10 %Note that since it is a binary tree structure , if there
is

11 %an odd number of inputs (that is, if N is not a power of
2)

12 %then the rightmost columns of A are evaluated last.
There -

13 %fore , the rightmost columns suffer from less inexactness
14 %than the rest of the array.
15 %
16 %Inputs:
17 %A: (2- dimensional logical array) Input data.
18 %p: (scalar) Probability of correctness of each 2-input

AND
19 % gate within the binary tree. (0 <= p <= 1)
20 %
21 %Output:
22 %C: (column vector of logicals) Approximate N-input AND

of
23 % each row of A.
24
25 if ~exist(’p’,’var’)
26 p = 1;
27 end
28
29 for i = 1 : ceil(log2(size(A,2)))
30 for j = 1 : size(A,2)
31 if j < size(A,2)
32 A = [A(:,1:(j-1)), and_inexact(A(:,j),A(:,j+1)

,p), A(:,(j+2):end)];
33 else
34 break
35 end

219

36 end
37 end
38
39 C = A;

220

7.9 Inexact n-Input OR

1 function [C] = or3_inexact(A, p)
2 %Performs the logical OR of all elements along the rows of
3 %a two -dimensional array A. The output is a column vector

.
4 %This function simulates an inexact N-input OR gate (where
5 %N is the number of columns of A), by ORing the inputs
6 %pairwise in a binary tree of 2-input inexact OR gates.
7 %Each 2-input OR gate has a probability of correctness p
8 %and a probability of error 1-p.
9 %

10 %Note that since it is a binary tree structure , if there
is

11 %an odd number of inputs (that is, if N is not a power of
2)

12 %then the rightmost columns of A are evaluated last.
There -

13 %fore , the rightmost columns suffer from less inexactness
14 %than the rest of the array.
15 %
16 %Inputs:
17 %A: (2- dimensional logical array) Input data.
18 %p: (scalar) Probability of correctness of each 2-input

OR
19 % gate within the binary tree. (0 <= p <= 1)
20 %
21 %Output:
22 %C: (column vector of logicals) Approximate N-input OR of
23 % each row of A.
24
25 if ~exist(’p’,’var’)
26 p = 1;
27 end
28
29 for i = 1 : ceil(log2(size(A,2)))
30 for j = 1 : size(A,2)
31 if j < size(A,2)
32 A = [A(:,1:(j-1)), or_inexact(A(:,j),A(:,j+1),

p), A(:,(j+2):end)];
33 else
34 break
35 end
36 end
37 end
38

221

39 C = A;

222

Appendix H. Bitwise Functions

8.1 N-Bit One’s Complement (Exact)

1 function [cmp] = bitcmp0(A, N)
2 %Returns an N-bit complement of the input A.
3 %Same as bitcmp(A,N) which is deprecated.
4
5 switch class(A)
6 case {’int8’,’uint8’}
7 nmax = 8;
8 case {’int16’,’uint16 ’}
9 nmax = 16;

10 case {’int32’,’uint32 ’}
11 nmax = 32;
12 case {’int64’,’uint64 ’}
13 nmax = 64;
14 case {’double ’,’single ’}
15 if any(A < 0) || any(A ~= floor(A))
16 c = class(A);
17 c(1) = upper(c(1));
18 error ([c,’ inputs must be nonnegative integers

.’])
19 elseif any(A > intmax(’uint64 ’))
20 error ’Values in A should not have "on" bits

in positions greater than N.’
21 end
22 A = uint64(A);
23 nmax = 64;
24 case ’logical ’
25 A = uint8(A);
26 nmax = 1;
27 otherwise
28 error ’Operands to bitcmp0 must be numeric.’
29 end
30
31 if ~exist(’N’,’var’)
32 N = nmax;
33 end
34
35 if any(N < 0) || any(N > nmax) || any(N ~= floor(N))
36 error ’Number of bits must be an integer within the

range of the input A.’
37 end
38
39 if N < 64

223

40 OxFFFF = cast(pow2a(N,’uint64 ’) - 1, ’like’, A);
41 elseif intmin(class(A)) < 0
42 OxFFFF = intmin(’int64’);
43 else
44 OxFFFF = intmax(’uint64 ’);
45 end
46
47 cmp = bitxor(A, OxFFFF);

224

8.2 Majority Function (Exact)

1 function [D] = majority(A, B, C)
2 %majority: Computes the bitwise majority of A, B, and C,
3 %similar to the bitand function.
4
5 D0 = bitand(bitand(bitcmp(A),B),C);
6 D1 = bitand(bitand(A,bitcmp(B)),C);
7 D2 = bitand(bitand(A,B),bitcmp(C));
8 D3 = bitand(bitand(A,B),C);
9 D = bitor(bitor(bitor(D0,D1),D2),D3);

10
11 end

225

8.3 Bitwise Error Generator

This function is used by many higher functions to simulate unreliable computation.

1 function [err] = biterrors(outputsize , p, classname ,
bit)

2 %Generates an array of random integers. The numbers are
generated bitwise

3 %such that p is the probability that each bit is 0, and 1-
p is the

4 %probability that each bit 1.
5 %
6 %Inputs:
7 %outputsize: (vector) The dimensions of the output array

err.
8 %p: (scalar) The probability that each output bit is a

zero. 0 <= p <= 1
9 %classname: (string) The class name of the output array

err.
10 %bit: (integer vector) Which bit positions can be nonzero

. Position 1 is
11 % lowest -order bit. (optional) If bit is omitted , then

all positions can
12 % be nonzero.
13 %
14 %Ouptut:
15 %err: (integer array) Random array of dimensions

specified by outputsize.
16
17 switch classname
18 case {’uint8’, ’int8’}
19 n = 8;
20 case {’uint16 ’, ’int16’}
21 n = 16;
22 case {’uint32 ’, ’int32’}
23 n = 32;
24 case {’uint64 ’, ’int64’}
25 n = 64;
26 otherwise
27 error ’classname must be uint8 , uint16 , uint32 ,

uint64 , int8 , int16 , int32 , or int64.’
28 end
29
30 err = zeros(outputsize , classname);
31 err0 = (rand ([numel(err), n]) > p); % generate

random binary digits

226

32 twos = pow2(n-1: -1:0);
33 err(:) = sum(err0 .* twos(ones(numel(err) ,1) ,:) ,2); %

convert binary to dec
34
35 if nargin >= 4
36 bit = bit((bit >= 1) & (bit <= n));
37 b = zeros(classname);
38 b(:) = sum(bitset(zeros(classname), bit(:)));
39 err = bitand(err , b);
40 end

227

8.4 N-Bit One’s Complement (Inexact)

1 function [C] = bitcmp_inexact(A, n, p, classname , bit)
2 %Calculates the n-bit complement of the input argument A,

similar to the
3 %standard bitcmp function , except that each bit has a

random error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A: (nonnegative integer array) Input argument for the

bitcmp function.
8 %n: (integer) Number of bits to complement. The lowest n

bits are comple -
9 % mented. (optional) If n is omitted , then all bits

are complemented.
10 %p: (scalar) Probability of correctness of each bit

within the output C.
11 % 0 <= p <= 1.
12 %classname: (string) The class name of the output array C

.
13 %bit: (integer vector) Which bit positions can be inexact

. Position 1 is
14 % lowest -order bit. (optional) If bit is omitted , then

all positions can
15 % be inexact.
16 %
17 %Outputs:
18 %C: (nonnegative integer array) The bitwise complement of

A, subject to a
19 % bitwise random error probability 1-p. C has the same

dimensions as A.
20 %
21 %Notes:
22 %If p=1, then C = bitcmp(A) and is error -free.
23 %If p=0, then C = A.
24 %If p=0.5, then C contains completely random data.
25 %
26 %Reference:
27 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
28 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
29 %Computer Science , Jun 2008.
30
31 if ~exist(’classname ’,’var’)

228

32 classname = class(A);
33 end
34
35 if exist(’n’,’var’)
36 C = bitcmp0(A, n);
37 else
38 C = bitcmp0(A);
39 end
40
41 if exist(’bit’,’var’)
42 err = biterrors(size(C), p, classname , bit);
43 else
44 err = biterrors(size(C), p, classname);
45 end
46
47 C = bitxor(C, err);

229

8.5 Inexact Bitwise AND

1 function [C] = bitand_inexact(A, B, p, classname , bit)
2 %bitand_inexact: Calculates the bitwise AND of the input

arguments A and
3 %B, similar to the standard bitand function , except that

each bit has a
4 %random error probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (nonnegative integer arrays) Input arguments for

the AND operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %classname: (string) The class name of the output array C

.
12 %bit: (integer vector) Which bit positions can be inexact

. Position 1 is
13 % lowest -order bit. (optional) If bit is omitted , then

all positions can
14 % be inexact.
15 %
16 %Outputs:
17 %C: (nonnegative integer array) C = A AND B, subject to

a bitwise random
18 % error probability 1-p. C has the same dimensions as

A and B.
19 %
20 %Notes:
21 %If p=1, then C = A AND B and is error -free.
22 %If p=0, then C = A NAND B.
23 %If p=0.5, then C contains completely random data.
24 %
25 %Reference:
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29
30 C = bitand(A, B);
31
32 if exist(’classname ’,’var’)
33 C = cast(C,classname);

230

34 else
35 classname = class(C);
36 end
37
38 if exist(’bit’,’var’)
39 err = biterrors(size(C), p, classname , bit);
40 else
41 err = biterrors(size(C), p, classname);
42 end
43
44 C = bitxor(C, err);

231

8.6 Inexact Bitwise OR

1 function [C] = bitor_inexact(A, B, p, classname , bit)
2 %Calculates the bitwise OR of the input arguments A and B,

similar to the
3 %standard bitor function , except that each bit has a

random error
4 %probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (nonnegative integer arrays) Input arguments for

the OR operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %classname: (string) The class name of the output array C

.
12 %bit: (integer vector) Which bit positions can be inexact

. Position 1 is
13 % lowest -order bit. (optional) If bit is omitted , then

all positions can
14 % be inexact.
15 %
16 %Outputs:
17 %C: (nonnegative integer array) C = A OR B, subject to a

bitwise random
18 % error probability 1-p. C has the same dimensions as

A and B.
19 %
20 %Notes:
21 %If p=1, then C = A OR B and is error -free.
22 %If p=0, then C = A NOR B.
23 %If p=0.5, then C contains completely random data.
24 %
25 %Reference:
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29
30 if nargin < 4
31 C = bitor(A, B);
32 classname = class(C);
33 else

232

34 C = zeros(size(A), classname);
35 C(:) = bitor(A, B);
36 end
37
38 if nargin >= 5
39 err = biterrors(size(C), p, classname , bit);
40 else
41 err = biterrors(size(C), p, classname);
42 end
43
44 C = bitxor(C, err);

233

8.7 Inexact Bitwise XOR

1 function [C] = bitxor_inexact(A, B, p, classname , bit)
2 %bitxor_inexact: Calculates the bitwise XOR of the input

arguments A and
3 %B, similar to the standard bitxor function , except that

each bit has a
4 %random error probability equal to 1-p.
5 %
6 %Inputs:
7 %A, B: (nonnegative integer arrays) Input arguments for

the XOR operator.
8 % B must have the same dimensions as A.
9 %p: (scalar) Probability of correctness of each bit

within the output C.
10 % 0 <= p <= 1.
11 %classname: (string) The class name of the output array C

.
12 %bit: (integer vector) Which bit positions can be inexact

. Position 1 is
13 % lowest -order bit. (optional) If bit is omitted , then

all positions can
14 % be inexact.
15 %
16 %Outputs:
17 %C: (nonnegative integer array) C = A XOR B, subject to

a bitwise random
18 % error probability 1-p. C has the same dimensions as

A and B.
19 %
20 %Notes:
21 %If p=1, then C = A XOR B and is error -free.
22 %If p=0, then C = A XNOR B.
23 %If p=0.5, then C contains completely random data.
24 %
25 %Reference:
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29
30 if nargin < 4
31 C = bitxor(A, B);
32 classname = class(C);
33 else

234

34 C = zeros(size(A), classname);
35 C(:) = bitxor(A, B);
36 end
37
38 if nargin >= 5
39 err = biterrors(size(C), p, classname , bit);
40 else
41 err = biterrors(size(C), p, classname);
42 end
43
44 C = bitxor(C, err);

235

8.8 Inexact 4-Input Bitwise AND

1 function [E] = bitand4_inexact(A, B, C, D, p, classname
, bit)

2 %Calculates the bitwise (A AND B AND C AND D), similar to
the bitand func -

3 %tion , except that each bit has a random error probability
equal to 1-p.

4 %
5 %Inputs:
6 %A, B, C, D: (nonnegative integer arrays) Input arguments

for the AND4
7 % function. A, B, C, and D must all have the same

dimensions.
8 %p: (scalar) Probability of correctness of each bit

within the output E.
9 % 0 <= p <= 1.

10 %classname: (string) The class name of the output array E
.

11 %bit: (integer vector) Which bit positions can be inexact
. Position 1 is

12 % lowest -order bit. (optional) If bit is omitted , then
all positions can

13 % be inexact.
14 %
15 %Outputs:
16 %E: (nonnegative integer array) E = (A AND B AND C AND D

), subject to a
17 % bitwise random error probability 1-p. E has the same

dimensions as A,
18 % B, C, and D.
19 %
20 %Notes:
21 %If p=1, then E = (A AND B AND C AND D) and is error -free.
22 %If p=0, then E equals the bitwise complement of (A AND B

AND C AND D).
23 %If p=0.5, then E contains completely random data.
24 %
25 %Reference:
26 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic

Boolean logic and
27 %its meaning ," Tech. Rep. TR -08-05, Rice University ,

Department of
28 %Computer Science , Jun 2008.
29
30 E0 = bitand(B, bitand(C, D));

236

31 if nargin < 6
32 E = bitand(A, E0);
33 classname = class(D);
34 else
35 E = zeros(size(A), classname);
36 E(:) = bitand(A, E0);
37 end
38
39 if nargin >= 7
40 err = biterrors(size(E), p, classname , bit);
41 else
42 err = biterrors(size(E), p, classname);
43 end
44
45 E = bitxor(E, err);

237

Appendix I. Advanced Bitwise Functions

9.1 Unsigned to Signed Class Conversion

1 function [b, sgn , signedclass] = signed(a, classname)
2
3 if ~exist(’classname ’,’var’)
4 classname = regexprep(class(a),’uint’,’int’);
5 end
6
7 if isa(a,’uint8’)
8 signedclass = false;
9 n = 8;

10 switch classname
11 case {’int8’,’int16’,’int32’,’int64’}
12 b = zeros(size(a),classname);
13 otherwise
14 error ’For 8-bit input , classname must be int8

, int16 , int32 , or int64.’
15 end
16 elseif isa(a,’uint16 ’)
17 signedclass = false;
18 n = 16;
19 switch classname
20 case {’int16’,’int32’,’int64’}
21 b = zeros(size(a),classname);
22 otherwise
23 error ’For 16-bit input , classname must be

int16 , int32 , or int64.’
24 end
25 elseif isa(a,’uint32 ’)
26 signedclass = false;
27 n = 32;
28 switch classname
29 case {’int32’,’int64’}
30 b = zeros(size(a),classname);
31 otherwise
32 error ’For 32-bit input , classname must int32

or int64.’
33 end
34 elseif isa(a,’uint64 ’)
35 signedclass = false;
36 n = 64;
37 switch classname
38 case ’int64’
39 b = zeros(size(a),classname);

238

40 otherwise
41 error ’For 64-bit input , classname must be

int64.’
42 end
43 else
44 signedclass = true;
45 b = a;
46 if nargout >= 2
47 sgn = (a < 0);
48 end
49 end
50
51 if ~signedclass
52 OxFFFF = intmax(class(a));
53 sgn = logical(bitget(a,n));
54 acomp = bitxor(a(sgn),OxFFFF);
55 m = (acomp == intmax(classname));
56 b1 = -cast(acomp + 1, classname);
57 b1(m) = intmin(classname);
58 b(sgn) = b1;
59 b(~sgn) = abs(a(~sgn));
60 end

239

9.2 Signed to Unsigned Class Conversion

1 function [b, sgn , signedclass] = unsigned(a, classname
)

2
3 if ~exist(’classname ’,’var’)
4 classname = regexprep(class(a),’^int’,’uint’);
5 end
6
7 if isa(a,’int8’)
8 signedclass = true;
9 switch classname

10 case {’uint8’,’uint16 ’,’uint32 ’,’uint64 ’}
11 b = zeros(size(a),classname);
12 otherwise
13 error ’For 8-bit input , classname must be

uint8 , uint16 , uint32 , or uint64.’
14 end
15 elseif isa(a,’int16’)
16 signedclass = true;
17 switch classname
18 case {’uint16 ’,’uint32 ’,’uint64 ’}
19 b = zeros(size(a),classname);
20 otherwise
21 error ’For 16-bit input , classname must be

uint16 , uint32 , or uint64.’
22 end
23 elseif isa(a,’int32’)
24 signedclass = true;
25 switch classname
26 case {’uint32 ’,’uint64 ’}
27 b = zeros(size(a),classname);
28 otherwise
29 error ’For 32-bit input , classname must be

uint32 or uint64.’
30 end
31 elseif isa(a,’int64’)
32 signedclass = true;
33 switch classname
34 case ’uint64 ’
35 b = zeros(size(a),classname);
36 otherwise
37 error ’For 64-bit input , classname must be

uint64.’
38 end
39 else

240

40 signedclass = false;
41 b = a;
42 if nargout >= 2
43 sgn = (a < 0);
44 end
45 end
46
47 if signedclass
48 OxFFFF = intmax(classname);
49 sgn = (a < 0);
50 m = (a == intmin(class(a)));
51 b(sgn) = bitxor(cast(-a(sgn),classname),OxFFFF) + 1;
52 b(m) = cast(intmax(class(a)),classname) + 1;
53 b(~sgn) = a(~sgn);
54 end

241

9.3 Clear Upper Bits

1 function B = correct_upperbits(A, n)
2 %Takes an integer array A, stored as an m-bit signed or
3 %unsigned integer class (where m=8,16,32, or 64), and an
4 %integer n, and:
5 % (1) For each A>=0, or if A is unsigned , clears the
6 % uppermost m-n bits of A, and
7 % (2) For each A<0, sets the uppermost m-n bits of A.
8 %
9 %The lower n bits remain unchanged.

10 %
11 %Inputs:
12 % A: (integer array) Input data. Must be one of the
13 %integer classes.
14 % n: (integer) The number of lower bits of A which

will
15 %remain unchanged.
16 %
17 %Output:
18 % B: (integer array) Output data , with upper bits set

or
19 %cleared as described above. B is the same class as A.
20
21 switch class(A)
22 case ’int8’
23 m = 8; signedA = true;
24 case ’uint8’
25 m = 8; signedA = false;
26 case ’int16’
27 m = 16; signedA = true;
28 case ’uint16 ’
29 m = 16; signedA = false;
30 case ’int32’
31 m = 32; signedA = true;
32 case ’uint32 ’
33 m = 32; signedA = false;
34 case ’int64’
35 m = 64; signedA = true;
36 case ’uint64 ’
37 m = 64; signedA = false;
38 otherwise
39 error ’Input A must be of the integer classes.’
40 end
41
42 if signedA

242

43 signA = logical(bitget(A,m));
44 OxFFFF = cast(-1,’like’,A);
45 OxF000 = bitshift(OxFFFF ,n);
46 Ox0FFF = bitcmp(OxF000);
47 B = zeros(size(A),’like’,A);
48 if isscalar(n)
49 B(signA) = bitor(A(signA),OxF000);
50 B(~signA) = bitand(A(~signA),Ox0FFF);
51 else
52 B(signA) = bitor(A(signA),OxF000(signA));
53 B(~signA) = bitand(A(~signA),Ox0FFF (~signA));
54 end
55 else
56 OxFFFF = intmax(class(A));
57 OxF000 = bitshift(OxFFFF ,n);
58 Ox0FFF = bitcmp(OxF000);
59 B = bitand(A,Ox0FFF);
60 end

243

9.4 Test if an N-Bit Number is Nonzero (Inexact)

1 function H = any_high_bits_inexact_PBL(X, n, p)
2 %Computes the bitwise OR of all bits in X. If any bits in

X are nonzero ,
3 %then H is true; otherwise , H is false. The algorithm

uses a binary tree
4 %of 2-input OR gates to form an n-input OR gate.
5
6 if ~exist(’p’,’var’)
7 p = 1;
8 end
9

10 k = [64,32,16,8,4,2,1];
11 k = k(k <= n);
12
13 OxFFFF = bitcmp0(zeros(’like’,X),n);
14 X = bitand(X,OxFFFF);
15
16 for k = k
17 if mod(n,2) % if n is odd , then OR the last

two bits together
18 X = bitset(X,2, or_inexact(bitget(X,2),bitget(X,1),

p));
19 X = bitshift(X,-1);
20 n = n - 1;
21 OxFFFF = bitcmp0(zeros(’like’,X),n);
22 X = bitand(X,OxFFFF);
23 end
24
25 for i = 1 : k
26 if (i+k) <= n
27 X = bitset(X,i,or_inexact(bitget(X,i),bitget(X

,i+k),p));
28 end
29 end
30
31 n = k;
32 OxFFFF = bitcmp0(zeros(’like’,X),n);
33 X = bitand(X,OxFFFF);
34 end
35
36 H = logical(bitget(X,1));
37
38 end

244

9.5 Inexact Barrel Shifter

1 function [C, stickybit , Cs] = bitshifter_inexact_PBL(A,
B, na, nb, p)

2 %bitshifter returns A shifted B bits to the left (
equivalent

3 %to multiplying A by 2^B), similar to the Matlab bitshift
4 %function , except this function simulates a barrel shifter
5 %in a digital electronic circuit. If B is positive , then

A
6 %is shifted left. If B is negative , then A is shifted

right.
7 %Any overflow or underflow bits are truncated.
8 %
9 %This barrel shifter is subject to random errors at each

10 %node in the circuit -- that is, every AND or OR gate has
a

11 %random error probability equal to 1-p.
12 %
13 %Inputs:
14 %A: (integer array) Number(s) to be shifted.
15 %B: (integer array) Number of bit positions that A is to

be
16 % shifted.
17 %na: (integer) Word size (number of bits) of A.
18 %nb: (integer) Word size of B.
19 %p: (scalar) Probability of correctness of each AND or OR
20 % gate inside the barrel shifter. 0 <= p <= 1.
21 %
22 %Output:
23 %C: (intger array) The result of shifting A to the left

by
24 % B bits.
25 %stickybit: (logical array) The logical OR of all bits

lost
26 % due to truncation.
27 %Cs: (integer array) For B<0, the stickybit is OR’d with
28 % the least significant bit of C. For B>0, the

stickybit
29 % is OR’d with the most significant bit of C.
30
31 if ~exist(’p’,’var’)
32 p = 1;
33 end
34
35 sticky = (nargout >= 2);

245

36
37 OxFFFF = cast(pow2a(na,’uint64 ’) - 1, ’like’, A);
38
39 S = sign(B);
40 B = abs(B);
41 L = (S > 0); % left shift
42 R = ~L; % right shift
43
44 C = bitand(A,OxFFFF);
45 bb = zeros(size(B),’like’,A);
46 bb_ = bb;
47 ilsb = bb;
48
49 for i = 1 : nb
50 bb(:) = bitget(B(:),i);
51 bb_(:) = 1 - bb(:);
52 bb(:) = bb(:) * OxFFFF;
53 bb_(:) = bb_(:) * OxFFFF;
54 k = pow2(i-1);
55 C1 = bitshift0(C,k*S,na);
56 C1(R) = bitand_inexact(C1(R),bb(R),p,class(A) ,1:(na-k)

);
57 C1(L) = bitand_inexact(C1(L),bb(L),p,class(A),(k+1):na

);
58 C0 = bitand_inexact(C,bb_ ,p,class(A) ,1:na);
59
60 %%%%%%%%%% Compute sticky bit %%%%%%%%%%
61 if sticky
62 iR = min([na,pow2(i-1)]);
63 % iL = max([0,na-pow2(i-1)]);
64 iL = na - iR;
65 ilsb (:) = pow2a(iR,’uint64 ’) - 1;
66 ilsb(L) = bitshift(ilsb(L),iL);
67 C2 = bitand(C,ilsb);
68 C2(R) = bitand_inexact(C2(R),bb(R),p,class(A) ,1:iR

);
69 C2(L) = bitand_inexact(C2(L),bb(L),p,class(A),(iL

+1):na);
70 if i == 1
71 stickybit = logical(C2);
72 else
73 C2(L) = bitshift(C2(L),-iL);
74 C3 = any_high_bits_inexact_PBL(C2,iR,p);
75 stickybit = or_inexact(stickybit ,C3,p);
76 end
77 end

246

78 %%
79
80 C(R) = bitor_inexact(C0(R),C1(R),p,class(A) ,1:(na-k));
81 C(L) = bitor_inexact(C0(L),C1(L),p,class(A),(k+1):na);
82 end
83
84 if (nargout >= 3) && sticky % merge sticky bit

with final output
85 Cs = C;
86 R = (S < 0); % right shift
87 sb0 = cast(stickybit ,’like’,C);
88 Cs(R) = bitor_inexact(Cs(R), sb0(R), p, class(C), 1);
89 Cs(L) = bitset(Cs(L), na, or_inexact(bitget(Cs(L),na),

sb0(L), p));
90 end

247

9.6 Inexact Comparator

1 function [AgtB , AltB , AeqB] = comparator_inexact_PBL(n,
A, B, p)

2 %comparator_inexact_PBL simulates an integer comparator
3 %using inexact digital logic , and returns logical values

as
4 %follows:
5 % AgtB = true if A>B, false otherwise ,
6 % AltB = true if A<B, false otherwise , and
7 % AeqB = true if A=B, false otherwise.
8 %Each AND , OR, and NOT gate in the comparator is subject

to
9 %a random error probability 1-p, consistent with the model

10 %of Probabilistic Boolean Logic.
11 %
12 %Inputs:
13 %n: (integer) Number of bits processed by the comparator.
14 %A, B: (integer arrays) Integers to be compared.
15 %p: (scalar) Probability of correctness of each gate

within
16 % the comparator. 0 <= p <= 1.
17 %
18 %Outputs:
19 %AgtB: (logical array) True if A>B, false otherwise.
20 %AltB: (logical array) True if A<B, false otherwise.
21 %AeqB: (logical array) True if A=B, false otherwise.
22 %
23 %Reference:
24 %L. N. B. Chakrapani and K. V. Palem , "A probabilistic
25 %Boolean logic and its meaning ," Tech. Rep. TR -08-05, Rice
26 %University , Department of Computer Science , Jun 2008.
27
28 if ~exist(’p’,’var’)
29 p = 1;
30 end
31
32 OxFFFF = bitcmp0(zeros(’like’,A),n);
33 A = bitand(A,OxFFFF);
34 B = bitand(B,OxFFFF);
35 Abar = bitxor_inexact(A,OxFFFF ,p,class(A) ,1:n);
36 Bbar = bitxor_inexact(B,OxFFFF ,p,class(B) ,1:n);
37 AbarB = bitand_inexact(Abar ,B,p,class(A) ,1:n);
38 ABbar = bitand_inexact(A,Bbar ,p,class(A) ,1:n);
39 AxnorB = bitnor_inexact(AbarB ,ABbar ,n,p,class(A) ,1:n);
40

248

41 C = false(numel(A),n);
42 C(:,n) = bitget(AxnorB (:),n);
43
44 AgtB = false(size(A));
45 AgtB (:) = bitget(ABbar (:),n);
46
47 for i = (n-1) : -1 : 1
48 C(:,i) = and_inexact(C(:,i+1),bitget(AxnorB (:),i),p);
49 end
50
51 for i = 1 : (n-1)
52 AgtB (:) = or_inexact(AgtB (:),and(C(:,i+1),bitget(ABbar

(:),i)),p);
53 end
54
55 if nargout >= 2
56 AltB = false(size(A));
57 AltB (:) = bitget(AbarB (:),n);
58
59 for i = 1 : (n-1)
60 AltB (:) = or_inexact(AltB (:),and(C(:,i+1),bitget(

AbarB (:),i)),p);
61 end
62
63 if nargout >= 3
64 AeqB = false(size(A));
65 AeqB (:) = C(:,1);
66 end
67 end

249

Appendix J. IEEE 754 Floating-Point Functions

10.1 Separate Floating-Point Number into its Components

1 function [S, E, M, ne, nm, ee, mm] = DecToIEEE754(X,
fmt)

2 %BINARY16 (half precision)
3 % Minimum value with graceful degradation: 6e-8
4 % Minimum value with full precision: 6.104e-5
5 % Maximum value: 6.550e+4
6 %
7 %BINARY32 (single precision)
8 % Minimum value with graceful degradation: 1.4e-45
9 % Minimum value with full precision: 1.1754944e-38

10 % Maximum value: 3.4028235e+38
11 %
12 %BINARY64 (double precision)
13 % Minimum value with graceful degradation: 4.9e-324
14 % Minimum value with full precision:

2.225073858507201e-308
15 % Maximum value:

1.797693134862316e+308
16 %
17 %BINARY128 (quadruple precision)
18 % Minimum value with graceful degradation:
19 % Minimum value with full precision:
20 % Maximum value:

1.1897314953572318e+4932
21
22 if ~exist(’fmt’,’var’)
23 fmt = ’BINARY32 ’;
24 end
25
26 switch upper(fmt)
27 case ’BINARY16 ’
28 ebias = 15;
29 ne = 5;
30 nm = 10;
31 E = zeros(size(X),’uint8’);
32 M = zeros(size(X),’uint16 ’);
33 mnm = 1024;
34 mna = 1023;
35 case ’BINARY32 ’
36 ebias = 127;
37 ne = 8;
38 nm = 23;

250

39 E = zeros(size(X),’uint8’);
40 M = zeros(size(X),’uint32 ’);
41 mnm = 8388608;
42 mna = 8388607;
43 case ’BINARY64 ’
44 ebias = 1023;
45 ne = 11;
46 nm = 52;
47 E = zeros(size(X),’uint16 ’);
48 M = zeros(size(X),’uint64 ’);
49 mnm = 4503599627370496;
50 mna = 4503599627370495;
51 case ’BINARY128 ’
52 ebias = 16383;
53 ne = 15;
54 nm = 112;
55 E = zeros(size(X),’uint16 ’);
56 M = zeros(size(X),’double ’);
57 mnm = 5.1922968585348276 e33;
58 mna = 5.1922968585348276 e33;
59 otherwise
60 error ’fmt must be binary16 , binary32 , binary64 ,

or binary128.’
61 end
62
63 S = (X < 0);
64 X = abs(X);
65
66 ee = floor(log2(X));
67 i = (ee <= -ebias); % graceful degradation

toward zero
68 ee(i) = -ebias;
69 E(:) = ee + ebias;
70
71 mm = X ./ pow2(ee);
72
73 mm1 = mm;
74 mm1(~i) = mm1(~i) - 1;
75 M(~i) = mm1(~i) * mnm;
76 M(i) = 0.5 * mm1(i) * mnm;
77
78 c = (M >= mnm) & (~i);
79 E(c) = E(c) + 1;
80 M(c) = M(c) - mnm;
81
82 j = (isinf(X) | (ee > ebias)); % infinity

251

83 ee(j) = ebias + 1;
84 E(j) = ee(j) + ebias;
85 mm(j) = 0;
86 M(j) = 0;
87
88 k = isnan(X); % NaN
89 ee(k) = ebias + 1;
90 E(k) = ee(k) + ebias;
91 mm(k) = mna;
92 M(k) = mna;
93
94 z = (X == 0); % zero
95 ee(z) = 0;
96 mm(z) = 0;
97 E(z) = 0;
98 M(z) = 0;

252

10.2 Merge Components into a Floating-Point Number

1 function X = IEEE754toDec(S, E, M, fmt , infnan)
2 %BINARY16 (half precision)
3 % Minimum value with graceful degradation: 6e-8
4 % Minimum value with full precision: 6.104e-5
5 % Maximum value: 6.550e+4
6 %
7 %BINARY32 (single precision)
8 % Minimum value with graceful degradation: 1.4e-45
9 % Minimum value with full precision: 1.1754944e-38

10 % Maximum value: 3.4028235e+38
11 %
12 %BINARY64 (double precision)
13 % Minimum value with graceful degradation: 4.9e-324
14 % Minimum value with full precision:

2.225073858507201e-308
15 % Maximum value:

1.797693134862316e+308
16 %
17 %BINARY128 (quadruple precision)
18 % Minimum value with graceful degradation:
19 % Minimum value with full precision:
20 % Maximum value:

1.1897314953572318e+4932
21
22 if ~exist(’fmt’,’var’)
23 fmt = ’BINARY32 ’;
24 end
25
26 if ~exist(’infnan ’,’var’)
27 infnan = true;
28 end
29
30 switch upper(fmt)
31 case ’BINARY16 ’
32 ebias = 15;
33 einf = 31;
34 mnm = 1024;
35 case ’BINARY32 ’
36 ebias = 127;
37 einf = 255;
38 mnm = 8388608;
39 case ’BINARY64 ’
40 ebias = 1023;
41 einf = 2047;

253

42 mnm = 4503599627370496;
43 case ’BINARY128 ’
44 ebias = 16383;
45 einf = 32767;
46 mnm = 5.1922968585348276 e33;
47 otherwise
48 error ’fmt must be binary16 , binary32 , binary64 ,

or binary128.’
49 end
50
51 if (isinteger(E) || isinteger(M)) && all(E(:) >= 0)
52 ee = double(E) - ebias;
53 i = (E <= 0); % graceful degradation

toward zero
54
55 mm1 = zeros(size(M));
56 mm1(~i) = double(M(~i)) / mnm;
57 mm1(i) = 2 * double(M(i)) / mnm;
58 mm = mm1;
59 mm(~i) = mm(~i) + 1;
60 else
61 ee = double(E);
62 mm = double(M);
63 end
64
65 X = pow2(ee) .* mm;
66
67 j = ((E >= einf) & (M == 0)); % infinity
68 k = ((E >= einf) & (M > 0)); % NaN
69 if infnan
70 X(j) = Inf;
71 X(k) = NaN;
72 end
73
74 z = ((E == 0) & (M == 0)); % zero
75 X(z) = 0;
76
77 S = (S ~= 0);
78 X(S) = -X(S);
79
80 switch upper(fmt)
81 case {’BINARY16 ’,’BINARY32 ’}
82 X = cast(X,’single ’);
83 end

254

Bibliography

1. Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8):114–117, Apr 1965.

2. Gordon E. Moore. Progress in digital integrated electronics. In Electron Devices
Meeting, 1975 Int., volume 21, pages 11–13, Dec 1975.

3. Gordon E. Moore. Lithography and the future of Moore’s law. In Proc. SPIE
vol. 2437, pages 2–17, May 1995.

4. The MIT probabilistic computing project. [Online] Available:
http://probcomp.csail.mit.edu, accessed 6 Jul 2015.

5. Krishna V. Palem. Energy aware computing through probabilistic switching: a
study of limits. IEEE Trans. Comput., 54(9):1123–1137, Sept 2005.

6. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, October 1980.

7. L. Chakrapani and K. V. Palem. A probabilistic Boolean logic for energy ef-
ficient circuit and system design. In 2010 15th Asia and South Pacific Design
Automation Conf. (ASP-DAC), pages 628–635, Jan 2010.

8. B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem. Probabilistic
CMOS technology: A survey and future directions. In 2006 IFIP Int. Conf. Very
Large Scale Integration, pages 1–6, Oct 2006.

9. Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Kork-
maz, Krishna V. Palem, and Balasubramanian Seshasayee. Ultra-efficient (em-
bedded) SOC architectures based on probabilistic CMOS (PCMOS) technology.
In Proc. Conf. Design, Automation and Test Europe (DATE), DATE ’06, pages
1110–1115, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automa-
tion Association.

10. C. Mead. Neuromorphic electronic systems. Proc. IEEE, 78(10):1629–1636, Oct
1990.

11. Shimeng Yu, D. Kuzum, and H.-S. P. Wong. Design considerations of synaptic
device for neuromorphic computing. In Circuits and Systems (ISCAS), 2014
IEEE International Symposium on, pages 1062–1065, June 2014.

12. Chi-Sang Poon and Kuan Zhou. Neuromorphic silicon neurons and large-scale
neural networks: challenges and opportunities. Frontiers in Neuroscience, 5(108),
2011.

255

13. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha. A
digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike
in 45 nm. In Custom Integrated Circuits Conf. (CICC), 2011 IEEE, pages 1–4,
Sept 2011.

14. R. H. Dennard, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State
Circuits, 9(5):256–268, 1974.

15. Joel Hruska. Probabilistic computing: Imprecise chips save
power, improve performance, Oct 2013. [Online] Available:
http://www.extremetech.com/computing/168348-probabilistic-computing-
imprecise-chips-save-power-improve-performance, accessed 6 Jul 2015.

16. M. Damiani and G. DeMicheli. Don’t care set specifications in combinational
and synchronous logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., 12(3):365–388, Mar 1993.

17. J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In C. E. Shannon and J. McCarthy, editors, Automata
Studies, pages 43–98. Princeton University Press, Princeton, NJ, 1956.

18. Claude E. Shannon. Von Neumann’s contributions to automata theory. In J. C.
Oxtoby, B. J. Pettis, and G. B. Price, editors, Bulletin of the American Mathe-
matical Society, Vol. 64, No. 3, Part 2, pages 123–129. American Mathematical
Society, Providence, RI, May 1958.

19. S. Ulam. John Von Neumann 1903-1957. In J. C. Oxtoby, B. J. Pettis, and
G. B. Price, editors, Bulletin of the American Mathematical Society, Vol. 64, No.
3, Part 2, pages 123–129. American Mathematical Society, Providence, RI, May
1958.

20. N. Pippenger. Developments in “the synthesis of reliable organisms from un-
reliable components”. In James Glimm, John Impagliazzo, and Isadore Singer,
editors, Proc. Symp. Pure Mathematics, Vol. 50: The Legacy of John Von Neu-
mann, pages 311–324. American Mathematical Society, Providence, RI, 1990.

21. A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet. Energy parsi-
monious circuit design through probabilistic pruning. In Design, Automation
and Test in Europe Conf and Exhibition (DATE), 2011, pages 1–6, 2011. DOI:
10.1109/DATE.2011.5763130.

22. David A. Mindell. Digital Apollo: Human and Machine in Spaceflight. The MIT
Press, Cambridge, MA, 2008.

23. Eldon C. Hall. A case history of the AGC integrated logic circuits, E-1880.
Technical report, MIT Instrumentation Laboratory, Cambridge, MA, Dec 1965.

256

http://dx.doi.org/10.1109/DATE.2011.5763130
http://dx.doi.org/10.1109/DATE.2011.5763130

24. Technology horizons: A vision for air force science and technology 2010-30. Tech-
nical report, Air University Press, Maxwell AFB, AL, Sep 2011.

25. The USC signal and image processing institute (SIPI) image database. [Online]
Available: http://sipi.usc.edu/database, accessed 24 Aug 2015.

26. Avinash Lingamneni, Christian Enz, Krishna Palem, and Christian Piguet. Par-
simonious circuits for error-tolerant applications through probabilistic logic min-
imization. In Proc PATMOS, pages 204–213, 2011. DOI: 10.1007/978-3-642-
24154-3 21.

27. Krishna V. Palem and Avinash Lingamneni. Ten years of building broken chips:
The physics and engineering of inexact computing. ACM Trans. Embedded Com-
puting Syst., (Special Issue on Probabilistic Embedded Computing), 2012.

28. Krishna Palem and Avinash Lingamneni. What to do about the end of Moore’s
law, probably! In Proc 49th Annual Design Automation Conf, DAC ’12, pages
924–929, New York, NY, USA, 2012. ACM. DOI: 10.1145/2228360.2228525.

29. Jaeyoon Kim, Sanghyeon Lee, J. Rubin, Moonkyung Kim, and Sandip Ti-
wari. Scale changes in electronics: Implications for nanostructure devices for
logic and memory and beyond. Solid-State Electron., 84:2–12, Jun 2013. DOI:
10.1016/j.sse.2013.02.031.

30. P. Korkmaz. Probabilistic CMOS (PCMOS) in the Nanoelectronics Regime. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, Jul 2007.

31. Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and Subhasish
Mitra. ERSA: Error resilient system architecture for probabilistic applications.
In Proc. Conf. Design, Automation and Test Europe (DATE), DATE ’10, pages
1560–1565, 3001 Leuven, Belgium, Belgium, 2010. European Design and Automa-
tion Association.

32. Lakshmi N. Chakrapani, Pinar Korkmaz, Bilge E. S. Akgul, and Krishna V.
Palem. Probabilistic system-on-a-chip architectures. ACM Trans. Des. Autom.
Electron. Syst., 12(3):29:1–29:28, Aug 2007.

33. J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic arithmetic
and energy efficient embedded signal processing. In Proc. 2006 Int. Conf. Com-
pilers, Architecture and Synthesis Embedded Syst., CASES ’06, pages 158–168,
New York, NY, USA, 2006. ACM.

34. Jaeyoon Kim and Sandip Tiwari. Inexact computing using probabilistic circuits:
Ultra low-power digital processing. ACM J. Emerging Technol. Comput. Syst.,
10(2):16:1–16:23, Feb 2014.

257

http://dx.doi.org/10.1016/j.sse.2013.02.031
http://dx.doi.org/10.1016/j.sse.2013.02.031
http://dx.doi.org/10.1145/2228360.2228525
http://dx.doi.org/10.1007/978-3-642-24154-3_21
http://dx.doi.org/10.1007/978-3-642-24154-3_21

35. Avinash Lingamneni, Kirthi Krishna Muntimadugu, Christian Enz, Richard M.
Karp, Krishna V. Palem, and Christian Piguet. Algorithmic methodologies for
ultra-efficient inexact architectures for sustaining technology scaling. In Proc 9th
Conf Computing Frontiers, CF ’12, pages 3–12, Cagliari, Italy, 2012. ACM. DOI:
10.1145/2212908.2212912.

36. Ick-Sung Choi, Hyoung Kim, Shin-Il Lim, Sun-Young Hwang, Bhum-Cheol Lee,
and Bong-Tae Kim. A kernel-based partitioning algorithm for low-power, low-
area overhead circuit design using dont-care sets. ETRI J., 24(6):473–476, Dec
2002.

37. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, New York, 1991.

38. L. N. B. Chakrapani and K. V. Palem. A probabilistic Boolean logic and its
meaning. Technical Report TR-08-05, Rice University, Department of Computer
Science, Jun 2008.

39. Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical
Engineering, 3rd ed. Pearson Education, Upper Saddle River, NJ, 2009.

40. Neil H. E. Weste and David Money Harris. CMOS VLSI Design, 4th ed. Addison-
Wesley, Boston, MA, 2011.

41. Huey Ling. High-speed binary adder. IBM J. Research and Develop., 25(3):156–
166, Mar 1981.

42. Pong-Fei Lu, G. A. Northrop, and K. Chiarot. A semi-custom design of branch
address calculator in the IBM Power4 microprocessor. In 2005 Int. Symp. VLSI
Design, Automation and Test (VLSI-TSA-DAT), pages 329–332, Apr 2005.

43. Robert M. Norton. The double exponential distribution: Using calculus to find a
maximum likelihood estimator. The American Statistician, 38(2):135–136, May
1984.

44. Saralees Nadarajah. Exact distribution of the product of N Student’s t RVs.
Methodology and Computing in Appl. Probability, 14(4):997–1009, Dec 2012.

45. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70,
Aug 2008. DOI: 10.1109/IEEESTD.2008.4610935.

46. V. Britanak. Discrete cosine and sine transforms. In K. R. Rao and P. C. Yip,
editors, The Transform and Data Compression Handbook, chapter 4, pages 117–
195. CRC Press, Boca Raton, FL, 2001.

47. K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, and
Applications. Academic Press, San Diego, CA, 1990.

258

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1145/2212908.2212912
http://dx.doi.org/10.1145/2212908.2212912

48. Vasudev Bhaskaran and Konstantinos Konstantinides. Image and Video Com-
pression Standards: Algorithms and Architectures. Kluwer Academic Publishers,
Boston, 1995.

49. Eric Hamilton. JPEG File Interchange Format, Version 1.02. C-Cube Microsys-
tems, Milpitas, CA, Sep 1992. [Online] Available: http://jpeg.org/public/jfif.pdf,
accessed 21 Sep 2014.

50. M. L. Haque. A two-dimensional fast cosine transform. IEEE Trans.
Acoust., Speech, and Signal Process, ASSP-33(6):1532–1538, Dec 1985. DOI:
10.1109/TASSP.1985.1164737.

51. M. Vetterli. Fast 2-d discrete cosine transform. In Proc. IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, ICASSP ’85, volume 10, pages 1538–1541,
Apr 1985. DOI: 10.1109/ICASSP.1985.1168211.

52. Bayesteh G. Kashef and Ali Habibi. Direct computation of higher-order dct
coefficients from lower-order dct coefficients. volume 504, pages 425–431, 1984.
DOI: 10.1117/12.944892.

53. Wen-Hsiung Chen, C. Smith, and S. Fralick. A fast computational algorithm
for the discrete cosine transform. IEEE Trans. Commun., 25(9):1004–1009, Sep
1977. DOI: 10.1109/TCOM.1977.1093941.

54. Byeong Lee. A new algorithm to compute the discrete cosine transform. IEEE
Trans. Acoust., Speech, Signal Process., 32(6):1243–1245, Dec 1984. DOI:
10.1109/TASSP.1984.1164443.

55. C. Loeffler, A. Ligtenberg, and George S. Moschytz. Practical fast 1-d dct al-
gorithms with 11 multiplications. In Proc. IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, ICASSP-89, volume 2, pages 988–991, May 1989. DOI:
10.1109/ICASSP.1989.266596.

56. F. A. Kamangar and K. R. Rao. Fast algorithms for the 2-d discrete co-
sine transform. IEEE Trans. Comput., C-31(9):899–906, Sept 1982. DOI:
10.1109/TC.1982.1676108.

57. Nam-Ik Cho and San Uk Lee. Fast algorithm and implementation of 2-d discrete
cosine transform. IEEE Trans. Circuits Syst., 38(3):297–305, Mar 1991. DOI:
10.1109/31.101322.

58. Yukihiro Arai, Takeshi Agui, and Masayuki Nakajima. A fast DCT-SQ scheme
for images. Trans. IEICE, E71(11):1095–1097, Nov 1988.

59. Peter Symes. Video Compression. McGraw-Hill, New York, 1998.

259

http://dx.doi.org/10.1109/31.101322
http://dx.doi.org/10.1109/31.101322
http://dx.doi.org/10.1109/TC.1982.1676108
http://dx.doi.org/10.1109/TC.1982.1676108
http://dx.doi.org/10.1109/ICASSP.1989.266596
http://dx.doi.org/10.1109/ICASSP.1989.266596
http://dx.doi.org/10.1109/TASSP.1984.1164443
http://dx.doi.org/10.1109/TASSP.1984.1164443
http://dx.doi.org/10.1109/TCOM.1977.1093941
http://dx.doi.org/10.1117/12.944892
http://dx.doi.org/10.1109/ICASSP.1985.1168211
http://dx.doi.org/10.1109/TASSP.1985.1164737
http://dx.doi.org/10.1109/TASSP.1985.1164737
http://jpeg.org/public/jfif.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24-12-2015 Dissertation Sep 2012 - Dec 2015

Demonstration of Inexact Computing Implemented in the JPEG
Compression Algorithm using Probabilistic Boolean Logic applied to
CMOS Components

15G150

Allen, Christopher I., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-DS-15-D-001

Air Force Research Laboratory, Sensors Directorate (AFRL/RYDI)
Attn: Bradley Paul
2241 Avionics Circle, Bldg 600
WPAFB OH 45433-7302
(937) 528-8706 (DSN: 798-8706) Bradley.Paul@us.af.mil

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Probabilistic computing offers potential improvements in energy, performance, and area compared with
traditional digital design. This dissertation quantifies energy and energy-delay tradeoffs in digital adders, multipliers, and
the JPEG image compression algorithm. This research shows that energy demand can be cut in half with noise-
susceptible 16-bit Kogge-Stone adders that deviate from the correct value by an average of 3% in 14 nanometer CMOS
FinFET technology, while the energy-delay product (EDP) is reduced by 38%. This is achieved by reducing the power
supply voltage which drives the noisy transistors. If a 19% average error is allowed, the adders are 13 times more
energy-efficient and the EDP is reduced by 35%. This research demonstrates that 92% of the color space transform and
discrete cosine transform circuits within the JPEG algorithm can be built from inexact components, and still produce
readable images. Given the case in which each binary logic gate has a 1% error probability, the color space
transformation has an average pixel error of 5.4% and a 55% energy reduction compared to the error-free circuit, and the
discrete cosine transformation has a 55% energy reduction with an average pixel error of 20%.

Adders, FET Integrated Circuits, Image Compression, Inexact Computing, Integrated Circuit Noise, JPEG, Multipliers,
Probabilistic Logic, Energy-Delay Product

U U U UU 283

Maj Derrick Langley (ENG)

(310) 653-9113 Derrick.Langley@us.af.mil

	Air Force Institute of Technology
	AFIT Scholar
	12-24-2015

	Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components
	Christopher I. Allen
	Recommended Citation

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	Introduction
	Strategy for Applying Inexact Methods
	Motivational Link to Air Force Needs and Vision
	Contributions

	Literature Review
	Background
	Taxonomy of Inexact Computing
	Deterministic
	Non-Deterministic

	Adders
	1-Bit Full Adder
	1-Bit Half Adder
	N-bit Ripple-Carry Adder
	Propagate/Generate Logic
	Ripple-Carry Adder
	Carry Lookahead Adder
	Kogge-Stone Adder
	Ling Adder
	Probabilistic Boolean Logic (PBL)
	Propagate/Generate Logic with PBL
	Kogge-Stone Adder with PBL

	Multipliers
	Probability Distributions
	Gaussian Distribution
	Laplacian Distribution
	Normal Product Distribution
	Maximum Likelihood Estimation

	IEEE 754 Floating Point Storage
	Floating Point Addition
	Floating Point Multiplication

	JPEG Compression Algorithm
	Color Space Transformation
	Tiling
	Discrete Cosine Transformation
	Quantization
	Zigzagging of Q
	Run-Amplitude Encoding
	Huffman Encoding
	Summary

	Methodology
	Circuit Simulations
	Spectre’ Simulation

	Probabilistic Boolean Logic Simulations
	Inexact Adders
	Ripple-Carry Adder with Inexactness Only on Less-Significant Bits

	Inexact Multipliers
	Shift-and-Add Multiplier with Inexactness Only on Less-Significant Bits

	Distribution Fitting
	Optimizing the JPEG Algorithm for Inexact Computing
	Limited Precision
	Exact Computation of the Most Significant Bits

	JPEG Compression Performance
	Matlab Scripts
	Ripple-Carry Adders
	Kogge-Stone Adders
	Ling Carry-Lookahead Adders
	Shift-and-Add Multipliers
	Wallace Tree Multipliers
	Floating-Point Adders
	Floating-Point Multipliers
	Matrix Multiplier
	Discrete Cosine Transform
	JPEG Compression Algorithm

	Results
	Inexact Adders
	Inexact Adders with PBL
	Probability Distributions
	Comparisons Among Adder Types
	Spectre’ Simulation

	Shift-and-Add Multiplier with PBL
	Comparisons Among Multiplier Types
	JPEG Image Compression
	Inexact Color Space Transform
	Inexact DCT

	Remarks

	Discussion
	Summary and Conclusions
	Adders
	Multipliers
	JPEG
	Contributions

	Inexact Integer Adders
	Ripple-Carry Adder
	Kogge-Stone Adder
	Ling Radix-4 Carry-Lookahead Adder
	Brent-Kung Adder
	Sklansky Adder
	Adder Front-End
	Adder-Subtractor

	Inexact Floating-Point Adder
	Inexact Integer Multipliers
	Shift-and-Add Multiplier
	Wallace Tree Multiplier
	Main Function
	1-Bit Adder Subfunction

	Baugh-Wooley Multiplier

	Inexact Floating-Point Multiplier
	Inexact Matrix Multiplier
	Inexact JPEG Compression Algorithm
	Main Program
	Color Space Transformation
	Exact Color Space Transformation
	Inexact Color Space Transformation

	Tiling Function
	Discrete Cosine Transformation (DCT)
	Exact DCT
	Inexact DCT

	Quantization
	Zigzag Function
	Run-Amplitude Encoding
	Huffman Encoding
	Stuff Byte
	File Operations

	Logical Functions
	Inexact NOT
	Inexact AND
	Inexact OR
	Inexact XOR
	Inexact Multiplexer
	Inexact AND-OR-2-1
	Inexact AND-OR-AND-OR-2-1-1-1
	Inexact n-Input AND
	Inexact n-Input OR

	Bitwise Functions
	N-Bit One's Complement (Exact)
	Majority Function (Exact)
	Bitwise Error Generator
	N-Bit One's Complement (Inexact)
	Inexact Bitwise AND
	Inexact Bitwise OR
	Inexact Bitwise XOR
	Inexact 4-Input Bitwise AND

	Advanced Bitwise Functions
	Unsigned to Signed Class Conversion
	Signed to Unsigned Class Conversion
	Clear Upper Bits
	Test if an N-Bit Number is Nonzero (Inexact)
	Inexact Barrel Shifter
	Inexact Comparator

	IEEE 754 Floating-Point Functions
	Separate Floating-Point Number into its Components
	Merge Components into a Floating-Point Number

	Bibliography

