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Abstract

As technology steadily increases in the field of image manipulation, determining
which software was used to manipulate an image becomes increasingly complex for
law enforcement and intelligence agencies. When only the image is available, the task
becomes much more difficult. However, this should be surmountable because differ-
ent image manipulation programs will have implemented the manipulation algorithms
differently. This research examines the use of four preexisting image manipulation
detection techniques: Two-Dimensional Second Derivative, One-Dimensional Zero
Crossings, Quantization Matrices Identification, and File Metadata analysis applied
to the task of identifying the image manipulation program used. The determination
is based on each image manipulation software program having implemented the ma-
nipulation algorithms differently. These differences in the implementation will leave
behind different artifacts in the resultant image. Experimental results demonstrate
the framework’s ability to identify from the 48 combinations of image manipulation
software programs, scaling, and the algorithm used with a true positive rate of 0.54,
false positive rate of 0.01, and a Kappa statistic of 0.53 for Joint Photographic Ex-
perts Group (JPEG). The results for Tagged Image File Format (TIFF) images were

a true positive rate of 0.53, false positive rate of 0.01, and a Kappa statistic of 0.52.
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IDENTIFYING IMAGE MANIPULATION
SOFTWARE FROM IMAGE FEATURES

I. Introduction

The progression in technology since the invention of digital photography has led
to the creation of many high quality Image Manipulation Software Programs (IMSP)
being readily available to the general public. IMSPs can make a manipulated image
appear as though no alteration has occurred. Numerous techniques have been devel-
oped in the area of digital image authentication to detect image manipulation when
it is not obvious or visible to the viewer [9, 11, 16, 17, 26]. However, there is little
research focusing on identification of the IMSP that created the manipulated image
when only in possession of the altered image.

Law enforcement and intelligence agencies have a need to identify the utilized im-
age manipulation software as part of the investigative and evidence gathering process.
By detecting the super/sub-position algorithms used in IMSP, an image suspected of
undergoing an alteration can be associated with an IMSP. Knowledge of the IMPS
aids in identifying the computer system used in altering the image. This assists

examiners in reconstructing how and by whom an image manipulation occurred.

1.1 Problem Statement

This research demonstrates the development of techniques that can be employed
to identify the software and interpolation algorithm used to resize an image. Although
different IMSPs make use of the same algorithms for resizing, we hypothesize that

differences in implementation of the algorithms leave detectable traces in the modified

1



image. The techniques for identifying a specific IMSP entail building a framework
of modules used to detect artifacts present after an image manipulation occurred

employing existing image authentication methods.

1.2 Hypothesis, Goals, and Assumptions

It is hypothesized that the proposed framework improves an examiner’s ability to
classify an image to which IMSP created the manipulated image beyond the prob-
ability of a random guess. To evaluate the hypothesis a framework is created that
classifies a manipulated image to the correct IMSP.

The research’s hypothesis contains two main assumptions. First, the only manip-
ulation addressed is resizing an image using specific rates, interpolation algorithms,
and IMSPs. Additionally, only one manipulation occurs per image and no cross con-

tamination occurs by using multiple IMSPs on a single image.

1.3 Implementation

This research implements unique Python modules using four previously devel-
oped image manipulation techniques to create a framework to detect specific IMSPs
[11, 16, 17, 26]. The first module reads in the file metadata and conducts string
matching against known signatures IMSPs embedded in the image [17]. The sec-
ond module extracts the quantization tables for Joint Photographic Experts Group
(JPEG) images only and compares them to tables known to be used by specific IMSPs
[16]. Another module examines the image’s statistics by calculating the derivative of
a row of pixels and processing that data with a Discrete Fourier Transform (DFT)
function in order to find spikes that correspond to an IMSP [11]. The final module ex-
amines the zero crossings of an image to create a binary sequence that is processed by

a DFT function to find spikes that correspond to an IMSP [26]. A Bayesian Network



classifier processes the data from the modules and classifies an image to an IMSP.

1.4 Testing

The experiments in this research were used to determine the framework’s accuracy.
Two datasets were built for the purpose of training and testing the two image format
specific classifiers: one consists of only JPEG images and the other of only Tagged
Image File Format (TIFF) images. One hundred images were taken using the Nikon
D5100 digital camera in the Nikon RAW format and then converted to either JPEG
or TIFF.

After conversion to the two image formats, the two sets of 100 images were resized
48 different ways for a total of 4,800 images per set. The classes are sorted by software
used, Adobe Photoshop Creative Cloud Release 2014.0.0 (APS), Microsoft Office
Picture Manager 14.0.7010.1000 (MSPM), or GNU Image Manipulation Program
2.8.10 (GIMP), algorithm used (bilinear, bicubic, nearest-neighbor, or undetermined),
and the interpolation rate (0.50, 0.66, 0.75, 0.90, 1.10, 1.25, 1.33, or 2.00). For
example, images 1-100 were resized with GIMP using the bicubic algorithm at the
interpolation rate of 1.10 would be grouped into the same class. The interpolation
rates were chosen in include both superposition and subposition rates. None of the
rates are instances in which one rate is implemented more than once to get the other
rate. For example, 0.25 can be implemented by using the rate 0.50 twice. See Table 4.3
for a graphical representation of the classes.

The framework was then combined in thirteen different variations of the original
four modules: Two-Dimensional Second Derivative, One-Dimensional Zero Crossings,
Quantization Matrices Identification, and File Metadata analysis. These thirteen
variations are tested by classifying of the manipulated images using the Bayesian

Network classifier. In order to create a variation in the TPR results, the number of



images to be processed by the classifier were scaled down to 80% of the original size of
the dataset by randomly selecting images 10 times to create 10 different unbalanced
sub-datasets. The Bayesian Network classifier processed each sub-dataset 10 times
using a 10 fold cross-validation method with different random number seeds.

Each test was performed ten times using the cross-validation method implemented
in Waikato Environment for Knowledge Analysis (WEKA) with ten different random
seeds, 1-10. The mean true positive rates (TPR), false positive rates (FPR), and F-
Measure for each class and Kappa Statistic for the overall framework were determined

for each grouping of modules.

1.5 Success Criteria

The defined success criteria requires the framework to have a statistically signifi-
cant Kappa statistic that compares the classification results to a random guess. This
comparison was conducted using a t-statistic test with a 95% confidence interval. The
size of the tested data set and number of classes defines a random guess to be 0.02084.
The data set contains 48 distinct classes. The results show that the framework can
distinguish between many of the classes but previous research shows several of the
classes will not have a statistically significant improvement in the accuracy rate when
compared to a random guess.

The results also examined the framework’s ability classify an image to a specific
interpolation rate and algorithm. A comparison between the true positive rate and a
random guess using a t-statistic test was conducted with a 95% confidence interval.
The random guess probability for the interpolation rate is 0.125 and for the algorithm
is 0.25.



1.6 Paper Organization

The remainder of the thesis follows this outline. Chapter 2 discusses previous
research conducted in the area of image authentication and image manipulation de-
tection. The related work in image authentication and manipulation detection spans
five different categories of image forensic detection and techniques as described by
Farid, [9]. Farid’s categories assist in the organization of Chapter 2 with the associ-
ated techniques and details the literature on the specific methods implemented in this
paper. Chapter 3 presents the proposed framework. Each of the proposed modules
described in Section 1.4 are detailed in this chapter.

Chapter 4 discusses the results and analyzes the findings. Testing focused on
Nearest Neighbor, Bilinear and Bicubic interpolation algorithms used in Adobe Pho-
toshop Creative Cloud Release 2014.0.0 (APS), Microsoft Office Picture Manager
14.0.7010.1000 (MSPM), and GNU Image Manipulation Program 2.8.10 (GIMP) with
the following resizing rates; 0.50, 0.66, 0.75, 0.90, 1.10, 1.25, 1.33, and 2.00. The
Chapter begins with discussion on the overall experiment process. Then the individ-
ual tests and their results are presented. Finally, the chapter discusses the analysis
of the results and observations made. The results of the four main experiments show
with statistical significance the framework’s ability to determine a specific IMSP that
manipulated an image when compared to a random guess.

Chapter 5 concludes the paper and discusses further areas of research. The next
chapter discusses previous work in the area of image authentication and manipulation

detection.



II. Related Work

The ability to detect an image that has undergone a common image processing
operation, such as scaling, rotation, brightness adjustment, compression, etc., is im-
portant for use by law enforcement and intelligence agencies in identifying which
Image Manipulation Software Program (IMSP) conducted the image manipulation.
The research discussed in this thesis builds on the concepts and algorithms for de-
tecting image manipulations.

This chapter presents the literature on the superposition/subpostion algorithms
and the implementation of the algorithms within various IMSPs. The presented
literature covers five different categories of image forensic detection and associated
techniques as developed by Farid [9]. The following section defines the mathematical
definition of an image, discusses two image formats, and three interpolation algo-

rithms.

2.1 Mathematical Image Definition, Image Formats, and Interpolation

Algorithms

This section defines an image mathematically, discusses the Joint Photographic
Experts Group (JPEG) [14] lossy and Tagged Image File Format (TIFF) [1] lossless

image formats, and discusses the interpolation algorithms related to the IMSPs.

2.1.1 Mathematical Image Definition.

An image (I) can be defined as a row (i) x column (j) matrix of pixels values,
Equation 2.1 [14]. A single pixel value for digital images relevant to this research
consists of three primary color channels, Red-Green-Blue (RGB) [23] where each

channel ranges between 0 and 255. A digital camera stores digital images in this



color space format.
JPEG File Interchange Format (JFIF) images can also be represented in YCbCr
format [14]. The conversions from RGB to YCbCr and YCbCr to RGB are illustrated

in Equation 2.2 and Equation 2.3 [14].

[ 00 01 - 0j-1 05 |
10 1,1 - 1j—1 1,
I= (2.1)
P—1,0 i=1,1 - i=1j—1 i—1,j
S RN S RN

Y = 0.299R + 0.587G + 0.114B
RGB = YCbCr = | Cb=—0.1687R — 0.3313G + 0.5B + 128 (2.2)
Cr = 0.5R — 0.4187G — 0.0813B + 128

R=Y +1.402(Cr — 128)
YCWCOr = RGB = | G =Y —0.34414(Cb — 128) — 0.71414(C'r — 128) (2.3)
B=Y +1.772(Cb — 128+)

Many image feature detection techniques use images that have been converted to
grayscale. When an image is converted to grayscale, the pixel values are intensity
values of black and white. Two generic intensity value formulas are presented in
Equation 2.4 and Equation 2.5, where R, GG, B represent the respective channel
values and wl, w2, and w3 represent a value to weight each channel representation
[23].  After the intensity value has been calculated the value replaces each of the
channel values in order to get a grayscale value for each pixel. The research in this

thesis uses the Equation 2.5, where wl = 0.299, w2 = 0.587, and w3 = 0.114 [23].
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Figure 2.1. DCT Based Encoder Simplified Diagram.

Lossy and lossless image formats are discussed next.

R+G+ B
intensity value = % (2.4)
intensity value = R-wl+ G- w2+ B - w3 (2.5)

2.1.2 Lossy and Lossless Image Formats.

There are two main types of image file compression, lossy and lossless [5, 1, 14].
Lossy file compression reduces image quality in order to attain a smaller file size. The
JPEG lossy format uses Discrete Cosine Transform (DCT) encoding for compression
while still producing a high quality replica of a source image [5]. Figure 2.1 shows
an overview of the DCT based encoding process [5]. When an image is processed
by lossless compression, a file’s size is reduced while still maintaining a pixel value
replica of the original file.

The CCITT, a branch of the International Telecommunication Union in the United
Nations, developed the JPEG format and describes the format in the publication T.81
[5]. The CCITT describes the processes of formatting an image to a JPEG in Steps.
Step 1 decomposes the source image into 8 x 8 blocks. Each block undergoes a

transformation by the Forward Discrete Cosine Transform (FDCT) into an 8 x 8
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Figure 2.2. Preparation of Quantized Coefficients for Entropy Encoding [5].

matrix composed of 64 DCT coefficient values. The upper left most coefficient in the
matrix is called the Discrete Cosine (DC) coefficient. The other 63 coefficients are
the AC coefficients. These 64 coefficients are quantized using the values from an 8
x 8 quantization table for color channels and sometimes a 4 x 4 table for non-color
channels, Figure 2.1. After quantization, the DC coefficient and the 63 Alternate
Coefficients (AC) undergo entropy encoding. The entropy encoding process uses the
previous quantized DC coefficient to predict the current quantized DC coefficient
and encode the difference. Figure 2.1 illustrates this process. The 63 quantized AC
coefficients are converted into a one-dimensional zig-zag sequence, Figure 2.2. After
quantization is complete, the entropy encoding process is performed using one of two
compression methods, Huffman or arithmetic [5].

The quantization stage uses between one and four tables [16]. An image normally
contains two tables. The third table becomes a duplicate of the second when three
tables are used. Each block is transformed by the source image into 8 x 8 blocks. The
most commonly used tables are those published by the Independent JPEG Group
(IJG) [16, 12]. As noted by Kornblum, [16], several of the IMSPs use their own



custom non-I1JG tables based on the JPEG quality desired.

The psuedocode in Algorithm 1, illustrates the TIFF lossless Lempel-Ziv and
Welch (LZW) compression algorithm [1]. The characters in the LZW strings are
bytes containing TIFF uncompressed image data. Omega, €2, represents the prefix
string. InitializeStringTable() initializes a string table of all possible character strings
numbered 0 to 255. WriteCode() writes a code to the output stream. GetNextChar-
acter() retrieves the next character value from the input stream. AddTableEntry()

adds a table entry [1].

Algorithm 1 Lempel-Ziv and Welch Compression Algorithm.
1: InitializeStringTable()
2: WriteCode(ClearCode)
3: ) = the empty string
4: for each character in the strip do

5: K = GetNextCharacter()

6: if Q+K is in the string table then

7 Q= Q+K /* string concatenation */
8: else

9: WriteCode (CodeFromString(€2))

10: AddTableEntry(Q+K)

11: Q=K

12: end if

13: end for

14: WriteCode (CodeFromString(€2))
15: WriteCode (EndOfInformation)

The algorithm reduces the file size by concatenating sequences together. For
example, there are two dictionaries, Tables 2.1 and 2.2, used to encode the message
“weartearbear#”, where the “#” tells the encoder it has arrived at the end of the
message. The first dictionary is all letters in the alphabet and the “#” symbol. The
second dictionary concatenates the letters together to create an extended dictionary.
Using this method reduces the encoding space from the original size of 13 symbols -

5 bits/symbol = 65 bits to 6 codes - 5 bits/code + 4 codes - 6 bits/code = 54 bits.
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Table 2.1. TIFF Compression Dictionary 1.

Symbol | Binary | Decimal

#  |00000 0
A |00001 1
B |00010 2
C |00011 3
D |00100 4
E 00101 5
F_|ooi10] 6 Table 2.2. TIFF Compression Dictionary 2.
G |00111 7
H |01000 3
I 01001 5 Current |Next| Output Extended Comments
Sequence | Char| Code| Bits | Dictionary
J 01010 10 NULL W
K_]01011f 11 w E | 23 |10111| 27:WE | 27 - first available code after 0 through 26
L |olloo] 12 A | 5 |oowo1| zsea
[\l 01101 13 A R 1 00001 29: AR
N 01110 14 R T 18 | 10010 [ 30:RT
O Jo11i1f 15 T E | 20 | 10100 | 31:TE
P 10000 15 EA R 28 | 11100 | 32: EAR | 32 requires 6 bits, so for next output use 6 bits
Q 10001 17 R B 18 |010010( 33:RB
R 10010 18 B E 2 |000002| 34:BE
3 10011 10 EAR # 32 |100000 # stops the algorithm; send the cur seq
0 |000000 and the stop code
T 10100 20
U 10101 21
) 10110 22
W [10111) 23
X 11000| 24
A 11001| 25
Z 11010| 26

11100

11111

2.1.3 Interpolation Algorithms.

The objective of image interpolation is to “produce acceptable images at different
resolutions,” where the image variations are derived from one original [29]. Inter-
polation refers to a process of approximating new data points within the range of
discrete known data points [15]. This research focuses on two positional interpolation
algorithm categories, superposition and subposition. Superposition refers to resizing
a picture to a larger pixel grid and subposition refers to resizing a picture to a smaller
pixel grid. An example of superposition appears in Figure 2.3.

Commercial applications implement three common interpolation algorithms: nearest-
neighbor [21], bilinear [21], and bicubic [21]. Each IMSP can implement details of the
three algorithms differently resulting in slight variations in the manipulated image.

The following explanations are just a few examples of possible implementation.

11
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Figure 2.4. Nearest Neighbor Interpolation.

Nearest-Neighbor.

The nearest-neighbor algorithm [21] takes the value of the nearest old pixel coor-
dinate point and sets it to the value of the closest new pixel coordinate point. Ap-
plications typically do not implement this algorithm when large images are resized,
therefore, it is not a popular choice for IMSPs. Figure 2.4 represents an example of
the implementation of the nearest neighbor algorithm for a grayscale image, where
the new position value box is at the intersection where the new pixel value is being
interpolated. Algorithm 2 represents a method for computing the new pixel value,
where z is the distance from the j column, y is the distance from the i row, and N PV
is the new pixel value.

Figure 2.4 and Algorithm 2 are one representation of the implementation of the

algorithm. The IMSPs can alter the implementation so that a different NPV can be

12



calculated. For instance, instead of looking at the four surrounding pixels, the IMSP
implementation might only examine the horizontal values (i,j) and i,7 4+ 1. In this
instance, whichever location is closer to the (i 4y, j + x) location would set the N PV

as that location’s pixel value.

Algorithm 2 Nearest-Neighbor Interpolation Algorithm.

Vo = pixel value at (i,j)

Vi = pixel value at (i+1,j)

V, = pixel value at (i,j+1)

V3 = pixel value at (i+1,j+1)

NPV = pixel value at (i+y,j+x)

if (j+1)—(+a)>zand ((i+1)— (i+y)) >y then
NPV =V,

elseif (j+1)—(j+x)) <zand ((i+1)— (i+y)) >y then
NPV =V,

elseif (j+1)—(j+=x)) >z and ((i+1)— (i+y)) <y then
NPV =V,

: else

NPV =V3

: end if

— = =
w2

Bilinear.

The bilinear interpolation algorithm [21] is a commonly implemented algorithm
in IMSPs. However, it has a slightly higher computational cost than the nearest-
neighbor. The bilinear interpolation algorithm implementation process begins by
interpolating the new pixel point linearly between the old pixel points and then cal-
culating the weighted average value of the four surrounding pixels. Figure 2.5 is an
example of the bilinear algorithm for a grayscale image, where the value at the inter-
section of the dotted lines is the new pixel value. Equation 2.6 is the set of equations
for computing the new pixel value, where x is the distance from the j column, y is
the distance from the ¢ row, and NPV is the new pixel value.

The bilinear algorithm can be implemented differently across the IMSPs. An

13
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Figure 2.5. Bilinear Interpolation.

alternate implementation could be that all four known pixel values Vg, Vi, V5, and V3
are summed together and then divided by four to create the average value and set as
the new NPV. Alternatively, a weighting function such as an inverse Gaussian filter

could be used to result in a crisper modified image.

— Gtr)=(+e) (+2)—j
Vi= (G+1)—j Vot (G+1)—3 Vi
_ U+)-(0+=) (j+z)—
Vs = ](j+1>j Vet G Vs (2:6)

(z+1) (i+1)—i

Bicubic.

Adobe Photoshop (APS) and GNU Image Manipulation Program (GIMP) im-
plement the bicubic algorithm as the default interpolation algorithm. The bicubic
algorithm [21] begins by taking the weighted average of the nearest sixteen pixels to
set the new pixel value. Figure 2.6 is an example of an implementation of the bicubic
algorithm for a grayscale image, where the value at the intersection of the dotted
lines is the new pixel value. Equation 2.7 is the set of equations for computing the
new pixel value, where xg is the distance from the j column, z; is the distance from
the j 4+ 1 column, y, is the distance from the ¢ row, y; is the distance from the ¢ + 1

row, and NPV is the new pixel value.

14
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Figure 2.6. Bicubic Interpolation.

The bicubic algorithm can also be implemented differently across the IMSPs. An
alternate implementation could be that all sixteen known pixel values are summed

together and then divided by sixteen to create the average value and set as the NPV'.
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(G +3)—(G+zo) =1 +z0) —jl=[((G+D)+z1)—(G+1)] Vit
(j+3)—+(G+2)—(+1)
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(+3)=j+(+2-G+1) 18
_ NGE+3) = (i4yo) = (i4+2) = (E+D)+y1) [ [((G+ D) +y1) = (+1)]|
NPV = : (i+3)fi+(i+2)j(i+1) :
11(3+3) — (i+yo) [—[(i+2) = ((i+1)+y1 )| = (i+yo) —il|
NG sy my e Vot
1(i+3)—(i+yo) | = (i+yo) =i ((i+1)+y1) —(E+1)||
Gy gy ey Vit
G +yo) =il —[((i+1)+y1) —(E+1) | —[((+1) +y1) — (i+2)|] Vi
| (i43)—i+(i+2)—(i+1) 19

- Vot

-Vt

- Vio+

-Vis+

Vit

(2.7)

Figure 2.7 and Figure 2.8 illustrate the resulting images after undergoing pro-

cessing by the three IMSPs and their respective interpolation algorithms at a 0.75

interpolation rate. This means that there are 75% of the original number of pixels,

12 x 12 pixels to 9 x 9 pixels. Figure 2.7 displays an original image black and white

checkerboard with a group of 3 x 3 pixel squares and the images after the resizing
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a) Original

e

) APS Bicubic ) APS Bilinear Nearest
Nelghbor
) GIMP Bicubic ) GIMP Bilinear ) MSPM Undefined

Figure 2.7. Interpolation Algorithms in Black and White.

process in grayscale. In order to achieve this all three channels for each pixel were
set to either black (0) or white (255).

Figure 2.8 displays an original image with different colored checkerboards with a
group of 3 x 3 pixel squares and the images after the resizing process. In order to
achieve this, all three channels for each pixel were set to different values to attain
different colors for each 3 x 3 pixel square.

The resulting images result in noticeable differences. APS bicubic appears to

smooth the image while the GIMP bicubic is more crisp. Both bilinear images are
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a) Original

) APS Bicubic ) APS Bilinear Nearest
Nelghbor

) GIMP Bicubic ) GIMP Bilinear ) MSPM Undefined

Figure 2.8. Interpolation Algorithms in color.
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too similar to determine any differences and when examining the RGB channel values
the pixels are only off by one or two digits. The APS nearest neighbor and the MSPM

undefined algorithms behave like none of the other algorithms.

2.2 Image Manipulation and Detection

Alterations to images occur in many ways: rotation, resize, crop, sharpen, soften,
contrast changes, etc. Farid [9] described categories and techniques used to detect im-
age manipulations by looking at how image processing alters the underlying statistics
of the images. The two categories (pixel and format) and four techniques (statisti-
cal, resampling, header, and double JPEG compression) that are pertinent to this

research are discussed in the following sections.

2.2.1 Pixel Based.

In the pixel based category, four different techniques to detect image manipu-
lation by analyzing correlation between pixels are discussed [9]. In order to detect
this manipulation, an analysis on the Fourier statistics of the derivative of an image
is conducted by looking at the frequency composition of a signal. The main tech-
niques used to detect an altered image within the pixel based category are: cloning,

resampling, splicing, and statistical.

2.2.2 Format Based.

The format based category focuses on the JPEG lossy compression scheme and
image headers [9]. Cameras and image manipulation software programs can use dif-
ferent quantization tables when compressing images. By extracting the table from
the image, a forensic examiner can compare the extracted table from tables known

to be used by a suspect’s cameras or image manipulation software to determine what
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device took the photo or what software altered the image. As mentioned previously,
JPEG compression is based on block Discrete Cosign Transform (DCT) where each 8
x 8 pixel image block is individually transformed and quantized. Artifacts are created
as edges at the border of these blocks. JPEG blocking occurs when an image is al-
tered and then re-compressed leaving behind a new set of blocking artifacts that may
not align with the original image artifacts. These misaligned blocks can be detected
by the examiners [9, 18, 22]|. Farid discusses three techniques that utilize the JPEG
lossy compression scheme: JPEG quantization, double compression, and blocking. A
simpler technique analyzes the JPEG headers, specifically the data within the header

and the format of the headers [17, 3].

2.2.3 Camera Based.

Farid equates the camera based category to bullet ballistics analysis in which a
bullet fired by a specific weapon can be traced back to that weapon by unique marks
created on the bullet by grooves within the barrel [9]. When modeling and estimating
camera artifacts, inconsistencies can be found during the analysis of the suspected
altered image. The four techniques described in [9] are chromatic aberration, color

filter array, camera response, and sensor noise.

2.2.4 Physical Based.

The physical based category includes three techniques that are based on deter-
mining the lighting environments in which photographs were taken [9]. Differences
in lighting on parts of an image can show that an image has been altered. The tech-
niques relevant to this category are 2-dimensional light direction, 3-dimensional light

direction, and the light environment.
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2.2.5 Geometry Based.

In his discussion of the geometry based category, Farid includes examining an
image and how geometric shapes should appear in the images. Light principle point
and metric measurement are techniques relevant to the geometric based category [9].
These techniques use geometrics of surrounding objects in the image as well as the
knowledge that the projection of the camera’s center is near the image’s center. The

next section discusses the individual feature detection.

2.3 Feature Detection

Fontani, et al. [10] describes a method of detecting image splicing manipulations
using existing detection techniques. The authors created a framework that utilizes ex-
isting image manipulation detection techniques and fuses the results of each algorithm
together to return an easily readable output to an image forensic analyst. Fontani,
et al. treat each technique as an expert in its focused area and used a decision fusion
engine to determine trace relationships between the techniques [10].

Avcibas, et al. [2] discuss the use of detectable features to design a classifier to
discriminate between an original and manipulated image. Avcibas, et al. focused
on the idea that most manipulated images have undergone some sort of standard
image processing operation such as scaling, rotation, and brightness adjustment. The
authors developed a group of classifiers that were able to discern between an original
image and an altered image by determining whether one or more of these image
processing operations were conducted on the altered image.

Bayram, et al., [4] builds on Avcibas, et al.’s, [2] work and discusses how to de-
tect image manipulations by looking at different operations in image processing and
detected image feature alterations. By developing tools that individually examined

features common to these operations and then fusing the results of the individual
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analysis together, the authors created over 100 features to detect when images had
been manipulated. Bayram, et al. then grouped the features into three categories:
Image Quality Measures (IQM), Higher Order Wavelet Statistics (HOWS), and Bi-
nary Similarity Measures (BSM). IQM features analyze the differences between the
original and the altered image. HOWS features decompose images by filters and
compute the mean, variance, skewness, and kurtosis of the sub-band coefficients at
each orientation and scale. The BSM features analyze the correlation and texture
properties between and within the lower significant bit planes.

The authors in [4] grouped these categories into two sets, the Joint Feature Set
(JFS) and Core Feature Set (CFS). An examiner can then choose specific features.
The JFS includes 188 features: 108 BSM, 72 HOWS, and 8 IQM. The CFS is a
smaller population of features that were selected using the Sequential Forward Feature
Selection (SFFS). Pudil, et al. [27] discussed the construction of the best feature set by
adding to and/or removing from the current set of features until no more performance
improvement is possible.

The research presented in this thesis combines parts of these authors’ research
and the techniques outlined in the next section to develop a framework of modules
that have the capability of being used to determine which interpolation algorithm,

rate, and image manipulation software program was used.

2.4 Implemented Techniques

The techniques used in this research are grouped within Farid’s [9] categories.
Resampling and statistical are in the Pixel category, while header format and double
JPEG compression are in the Format category. Each technique is discussed in one of

the next four sections.
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2.4.1 Header Format.

When analyzing the data within the header and the format of the header, the
Exchange image file format (Exif), [7], includes information that can reveal which
software manipulated a suspect image. For the purposes of this research, file meta-
data includes the information found in the Exif data. As first noted by Levine and
Liberatore [17], an IMSP can add its name to the file metadata or it could rearrange
the file metadata to a format of its choosing. Levine and Liberatore [17] and Ball
and Keefer [3] note that while this technique is simple in its execution, it is easy
to manipulate the header to provide false information about the suspect software.
Therefore, the results of analyzing the file metadata should not be the only source of
data in determining image manipulation software.

As noted by the authors in [3, 17], file metadata in the header is normally added
by the device (camera most often) that took the picture [7]. Some IMSPs alter the
file metadata by signing its name in the “software” tag. Ball and Keefer [3] developed
a method of extracting that data and analyzing it for the signatures added by the
image manipulation software programs. As noted prior, this method is not 100%
accurate as the file metadata can be manipulated by using a HEX editor or one of
the many file metadata manipulation tools available online.

Ball and Keefer [3] developed a method similar to the previously described method
to examine the header format of the image files. Some of the IMSPs add various APP
headers that are unique to specific programs. The authors’ method detects these APP

headers and can analyze to determine a probable IMSP [3].

2.4.2 Resampling.

Resampling is the resizing, rotation, or stretching of part of an image. Parker, et

al. [21] defines re-sampling as “the process of transforming a discrete image which is
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defined at one set of coordinate locations to a new set of coordinate locations.” This
alteration occurs when the original image is laid onto a new sampling lattice. The
key element in detection of this manipulation is the unnatural periodic correlations
between neighboring pixels occurring on this new lattice [9]. Note that detection
of resampling of images focuses on the pixel domain [26] and the frequency domain
[25]. This paper’s research focuses on the pixel domain. Popescu and Farid [24, 25]
describe the resampling process of a one dimensional signal, z[t], with m samples by
a factor of p/q to n samples in three steps. Popescu and Farid’s steps are outlined

below:

1. Up-sample: create a new signal z,[t] with pm samples, where z,[pt] = z[t],

t=1,2,...,m, and z,[t] = 0.
2. Interpolate: convolve z,[t] with a low-pass filter: x;[t] = z,[t] * h[t].

3. Down-sample: create a new signal x4[t] with n samples, where x4[t] = x;[qt],

t=1,2,...,n. Denote the resampled signal as y[t] = x4[t].

Where, x, is the upsampled signal, z; is the interpolated signal, and x; is the
downsampled signal. Depending on the re-sampling algorithm, linear or cubic, the
interpolation filter A[t] will differ. These steps can be re-written in vector form ¢ =
A, /e where 7 is the original image, i/ is the re-sampled signal, and A, /, is an m x n
matrix representing the process outlined above in a two dimensional space [24].

Popescu and Farid [24] discuss a method of detecting resampling using an im-
plementation of the Expectation Maximization (EM) algorithm to estimate a set of
periodic samples that are correlated to their neighbors and the form of these corre-
lations. The EM Algorithm 3 used in the authors’ research is outlined below, where

N is the neighborhood size, d is the set of weights that satisfy Equation 2.8.
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N
a = Z ORYitk (2.8)
k=N

In Equation 2.8, a; is the ith row of the resampling matrix, and ¢ = 3,7, 11, #etc,
if the correlations, 3, are known then solve for y; using the Equation 2.9 and o is

the variance.

N
Yi = Z CLYi+k (2.9)
k=—N
yroe YN YN+2 0 YN+l
Y2 YN+1 YN+3 0 YaN+2
Y=1: : : ; (2.10)
Yi - YN+i—1 YN+i+1 - YN+

After processing the original and scaled one-dimensional signals with the EM al-
gorithm, Popescu and Farid [24] show how the probability of a sample is related to
its neighbors. The probability a sample is related to its neighbors becomes periodic
when interpolated. While the authors focus on one-dimensional signals that have
been interpolated with a linear formula, they note in their work that this method
can be modified to include the two-dimensional space and additional interpolation
algorithms. The EM algorithm creates a two-dimensional probability map that rep-
resents the spatial correlations in the image. The Discrete Fourier Transform (DFT)
is then computed for the probability map to show the frequency representation of the
spatial correlations.

Prasad and Ramakrishnan [26] discuss a technique in the pixel domain that is rel-

evant to the research presented in this paper. In this technique, the authors analyzed
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Algorithm 3 Expectation-Maximization Algorithm.

1: /* Initialize */

2: choose a random 30

3: choose N and oy

4: set pg to the reciprocal of the range of the signal Y

5: set matrix Y /* equation (2.10) */

6: set h to be a binomial low-pass filter of size (N}, x Nj)

7. n=0

8: repeat

9: /* Expectation Step */

10: for each sample i do

11: R(i) = |y(@) — o0y an(k)y(i + k)| /* residual */

12: end for

13: R = R« h /* spatially average the residual error */

14: for each sample 7 do .
R(i

15: P(i) = (Uml/ﬂ)e% /* conditional probability */

16: w(i) = P(I;)(j-)po /* posterior probability */

17: end for

18: /* Maximization Step */

19: W =0

20: for each sample ¢ do

21: W(i,i) = W (i) /* weighting matrix */

22: end for -

2 O = (BT

24: new variance estimate */

25: Ay = YTWY) 'YW /* new estimate */
26: n=n+1
27: until (||a, — ap_1]| <€)
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the zero-crossings of the second difference of a resampled image. Prasad and Ramakr-
ishnan first construct a second difference sequence of the grayscale of an image and
then find the zero crossings along a row. The binary sequence, p[j], is constructed
using Equation 2.11, where I” is the second derivative of a row of the image and j
is the pixel location in the image’s row. The binary sequence, p[j], is used to com-
pute the DFT in order to convert it into the frequency domain. The magnitude of
the resulting DFT is analyzed for spikes that indicate if a resizing manipulation has
occurred. A candidate spike is the local maximum and is ¢ times larger than its local
average magnitude. This method can also be altered to analyze the two-dimensional

space of the entire image. A periodicity will occur if the image has been resampled.

_ 1, if I"[j]=0
pljl = (2.11)
0, otherwise

Mahdain and Saic [19] present a method of examining the affine transformation.
The authors conduct this examination in four steps: region of interest selection,
second derivative computation, radon transformation, and search for periodicity. For
the region of interest selection, Mahdain and Saic select a block of pixels, b(i, 7) (block
of i x j pixels), suspected of having undergone resampling. If a selection cannot be
made then the image can be composed of overlapping blocks, b;(i,j). Each block,
b(i,7), then has its second derivative D"b(i, j) taken. Mahdain and Saic note that
similar results can be achieved using other derivative orders. To compute the radon

transform, Mahdain and Saic used Equation 2.12 [19].

po = / |D"b(i, 7)| - (i’ cos@ — j'sin 6,4 sin 6 + ;' cos 6)dj’ (2.12)

o0
Theta, p(#) is 180 one-dimensional vectors and 6 denotes the orientation of the a’

axis counterclockwise from the x axis [19]. In order to determine if resampling has
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occurred, p(0) is searched for periodicity in the autocovariance of these vectors using

Equation 2.13:

Ry, (k) = (po(i + k) — o) (po(i) — po) (2.13)

i

Mahdain and Saic applied a derivative filter of order one to emphasize and detect
periodicity in pg [19]. The DFT is computed on this sequence and the magnitude
of the resulting DFT is analyzed for spikes that indicate a resizing manipulation has
occurred. A candidate spike is the local maximum and is ¢ times larger than its local
average magnitude.

Ouwerkerk examined several super-resolution algorithms to determine differences
in their implementation and resulting images [20]. The author performed objective
measuring tests using various error measures and subjective tests looking at perfor-
mance in edge blurring, edge blocking, and generation of detail. Each test image
was first decimated using the same filter and down sampling step. Then, each of the
decimated images were up sampled and then processed by a super-resolution algo-
rithm. The resulting images are examined using objective and subjective tests. The
objective tests included evaluating the Peak Signal to Noise Ratio (PSNR) based
on the Mean Square Error (MSE), Structural Similarity (SIMM) error measure, and
edge stability error measures using edge detectors. The subjective tests involve the
author examining a portion of the super-resolution images to determine how much
edge blurring and blocking were introduced. The author also determined which image

appeared to keep the most detail in the images [20].

2.4.3 Statistical.

Researchers also analyze the statistical properties of an image to determine if an

image has been manipulated, in particular, the higher-order statistics from a wavelet
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decomposition [9]. This technique can be used to detect several different manipula-
tion methods. Farid [9] discusses how resizing, filtering, discerning between photo-
graphic and computer generated images, and steganography can all be detected by
this method.

Gallagher [11] demonstrated a two-dimensional second derivative method of de-
termining the interpolation factor with which an image had been manipulated. The
two-dimensional second derivative method calculates the second derivative of an im-
age for each row and then averages each row to create a one-dimensional frequency
histogram. The resulting sequence is then used to compute the DFT. Similar to
the One-Dimensional Zero Crossing method developed by Prasad and Ramakrishnan
[26], the magnitude of the resulting DFT is analyzed for spikes that indicate a resizing
manipulation has occurred. A candidate spike is the local maximum and is ¢ times

larger than its local average magnitude.

2.4.4 Double JPEG Compression.

The steps to manipulate images by IMSPs are: import an original image in the
software, manipulate it, and then resave the image. In the process of resaving the
image, a second compression of the JPEG occurs, hence the name of the detection
technique: double JPEG compression. If an image was not cropped, detectable arti-
facts are embedded in the image [9, 25].

In order to understand double JPEG compression, it is important to first under-
stand how quantization and dequantization work. Section 1.1 presented the JPEG
lossy image format, the process of compression by the quantization of the DCT coef-
ficients, c¢. Farid describes the process as: ¢,(c) = |¢/a|, where a is the quantization
step (positive integer), [9]. Dequantization is converting the new values back to the

original values: ¢;'(c) = ac. Double compression is the double quantization using
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Figure 2.9. Single and Double Quantization [25].

the equation gu(c) = | |¢/b|b/a], where a and b are the quantization steps [9].

Farid represents double quantization in a sequence of three steps [9]:
1. Quantization with step b.

2. Dequantization with step b.

3. Quantization with step a.

Popescu and Farid examined histograms of an image’s DCT coefficients [25]. Pe-
riodicity occurs within the histograms when an image has undergone double quan-
tization. The authors note that the presence of double quantization artifacts does
not mean an image has been altered, only that it has been saved more than once.
Figure 2.9 displays both single and double quantization of a one-dimensional signal.
The left column is quantized with Step 3 then 2 and the right column uses Step 2
then 3.

Kornblum [16] developed a software library, Calvin, that extracts quantization
tables from images and matches the tables to standard tables, extended tables, and
tables from APS. Kornblum, used this library to determine if an image was taken by a
specific camera. The author’s process can also be used to determine what IMSP was
used to alter an image. By matching the tables used in a image and tables known to

be used by an IMSP, the correlation can be made between the IMSP and the image.
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2.5 Classification Overview

Whitten, et al. [28] define data mining as “discovering patterns in data” to solve
problems. This research used the open source University of Waikato software data
mining program Waikato Environment for Knowledge Analysis (WEKA) [13]. The
classifier examined in this research is the WEKA Bayesian Network algorithm. The
Bayesian network implemented in this research uses the K2 learning algorithm, first
introduced by Cooper and Herskovits [8]. The K2 algorithm orders the features, then
processes each feature and considers adding edges from previously processed features
to the current one. The added edge must maximize the networks score until there is
no additional improvement. Whitten, et al. state that since the results depend on the
initial ordering, it is advisable to run the algorithm with different random orderings.

Whitten, et al. [28] discuss a ten fold cross-validation as a concept where the
entire dataset is randomly partitioned into ten parts. Each part should hold approxi-
mately the same proportion of each class as the whole dataset. The machine learning
algorithm processes the dataset ten times using nine of the parts for training and one
part for testing. Each part should be tested once and then the statistics for each test
combined to create the overall test statistics. Whitten, et al. discuss how the ten fold
cross-validation should be performed ten times on the dataset with different random
number seeds for partitioning of the dataset. This will randomize how the parts are
distributed. The statistics for the overall experiment can be extracted from these ten

runs.

2.6 Summary

This chapter first defined an image as a two dimensional array and then lossy
and lossless compression implementation was discussed. The three relevant interpo-

lation algorithms were discussed next, nearest-neighbor, bilinear, and bicubic. The
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colorspace of a pixel in RGB and the black and white conversion were outlined. Also,
this chapter discussed the literature on the four image manipulation detection tech-
niques implemented in this research: the Two-Dimensional Second Derivative, One-
Dimensional Zero Crossings, Quantization Matrices Identification, and File Metadata
analysis. Finally, the classifier used in this research was briefly given an overview.

The next chapter discusses the focus of this research, the framework of modules.
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III. Methodology

To identify artifacts present in images after alteration by an Image Manipula-
tion Software Program (IMSP) requires identification using preexisting techniques:
Two-Dimensional Second Derivative, One-Dimensional Zero Crossings, Quantization
Matrices Identification, and File Metadata analysis [11, 16, 17, 26]. These four mod-
ules are used to generate features using the data within an image file. Then, these
features are sent to a Bayesian Network classifier.

This chapter first discusses the basic flow of the framework. Then each module and
the features generated from them are described in detail. Finally, the implemented
classifier and the correlation of the classifier’s output are discussed. The detection

framework is discussed in the next section.

3.1 Detection Framework

To evaluate the hypothesis that the proposed framework improves an examiners’
ability to classifying an image to which IMSP created the manipulated image beyond
the probability of a random guess a framework is created that classifies a manipulated
image to what IMSP, interpolation algorithm, and rate was used to alter an image.
Subsequently, a digital image forensic analyst can reconstruct how an image was
manipulated and by what IMSP by utilizing this framework. This is an important
step in reconstructing a sequence of events in an investigation by law enforcement
agencies.

The developed framework leverages existing image manipulation detection tech-
niques used to detect specific manipulations conducted on digital images. An image
suspected of undergoing manipulation by an IMSP is processed by three to four mod-

ules. Three modules are used for the Tagged Image File Format (TIFF) images and
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Figure 3.10. Framework Process Flow.

four modules are used for the Joint Photographic Experts Group (JPEG) images.
The first module detects the artifacts present in the file metadata left behind by an
IMSP [17]. The second module is used on only the JPEG images and it determines
the Quantization matrix used on the image [16]. The third module examines the
averages across the columns of the second derivative of an image [11]. Finally, the
fourth module examines the zero crossings of the second derivative of an image [26].
Figure 3.10 depicts the process flow for the framework.

An assumption of this framework is that the analyst does not have any prior
knowledge of which IMSP was used. A suspect image is first processed individually
by each of the four modules. The modules identify features present after an image
has been manipulated. The features identified are then processed by a classifier. The
classifier’s output is a prediction as to which IMSP was used to manipulate an image.
The next section discusses in detail the modules and what features are identified by

each.

34



3.2 Feature Generation

This section describes the modules and provides the pseudocode for each. Each
module returns features identified from the suspect image. These features are ar-
tifacts left behind in the file metadata or image statistics after a manipulation has
occurred. Different types of image alterations leave different artifacts within an im-
age. As mentioned in Chapter 2, this research focuses on interpolating an image and,
therefore, the modules presented here focus on identifying the artifacts left behind by

interpolation operations. Each of the modules are detailed next.

3.2.1 File Metadata.

During the processing of a image by an IMSP, the file metadata in an image is
often altered to leave a signature of the IMSP. The file metadata module inspects the
file metadata of an image and performs string matching against a predefined known
signature of an IMSP. See Algorithm 4 for the file metadata module pseudocode. An
image’s file metadata is extracted and then each string from an array of a predefined
signature is compared to the extracted data. If a match is found, the module returns
the IMSP that corresponds to the matching signature.

As noted in Chapter 2, the file metadata is easily manipulated with a HEX editor
or other software available for download from the internet. The next sections describe

modules that inspect the statistics of an image that are more difficult to alter.

3.2.2 Quantization Matrices Identification.

Many IMSPs use different quantization matrices. For example, Adobe PhotoShop
(APS) uses 12 proprietary quantization matrices, one for each JPEG compression and
quality level. The Quantization Matrices Identification (QMI) module extracts the

quantization matrix from the image and matches it to known quantization matrices.
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Algorithm 4 File Metadata.

10:
11:
12:
13:

14:
15:
16:
17:

18:
19:

/* Initialize and populate signature arrays */
SignaturelFileMetadatal]
Signature2FileMetadata]]
Signature3FileMetadatal]
/* Extract File Metadata */
ImageFileMetadata = GetFileMetadata(Image)
/* Perform string matching for each signature */
for cach element(i) in SignaturelFileMetadata do
if SignaturelFileMetadatali] is in ImageFileMetadata then return Signa-
turel
end if
end for
for cach element(j) in Signature2FileMetadata do
if Signature2FileMetadatalj] is in ImageFileMetadata then return Signa-
ture2
end if
end for
for ecach element(k) in Signature3FileMetadata do

if Signature3FileMetadatalk] is in ImageFileMetadata then return Signa-
ture3
end if

end for
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There are currently only 14 signatures included in the module. See Algorithm 5 for

the QMI module pseudocode.

Algorithm 5 Quantization Matrices.

1: /* Initialize and populate signature arrays */

2: SignaturelQmatrix]|]

3: Signature2Qmatrix]|]

4: Signature3Qmatrix||

5. /* Extract qmatrix data */

6: ImageQmatrix = string(Image.quantization)

7. /* Perform string matching for each signature */

8: if SignaturelQmatrix[i] is in ImageQmatrix then return Signaturel
9: end if

10: if SignaturelQmatrix[j] is in ImageQmatrix then return Signature2
11: end if

12: if SignaturelQmatrix[k] is in ImageQmatrix then return Signature3
13: end if

The quantization matrices embedded in an image can be easily altered by saving

the altered image with a different IMSP than the IMSP used to manipulate the image.

3.2.3 Two-Dimensional Second Difference.

The Two-Dimensional Second Difference (2DSD) module examines the averages
across the columns of the second derivative of an image. See Algorithm 6 for the
2DSD module pseudocode. The grayscale of an image is first read into memory as a
matrix, I[i, j], of the pixel values. The Algorithm then computes the second derivative
of an image, I"[i, j], across the rows. Next, the mean of the magnitude of the column
values are computed and placed into a one-dimensional array, avg[k], where k is the
index value of the array. This sequence is then used to compute a Discrete Fourier
Transform (DFT) representation, dft, of the data in the frequency domain. After
converting the absolute values of the dft to integers, the sequence is searched for the
250 largest spikes while ignoring the lower and upper two percent of DFT frequencies.

The frequencies are normalized to values between 0 and 1. The frequencies are then
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classified as candidate peaks if the frequency’s magnitude is a local maximum and
is T' times larger than its local average magnitude. For the 2DSD module the local
maximum area is the surrounding one percent of frequencies and T' = 5. The 2DSD
and 1DZC modules can each generate 1,000 possible features from an image when
the DFT frequencies are normalized from 0 to 1 and when the accuracy is limited to
the thousandths decimal place. The frequencies that occur from JPEG compression

are ignored: g, T g, g, %, and 7

Algorithm 6 Two-Dimensional Second Difference.

1: Read grayscale of image [[i, j] into memory
2: for i in I[i, j] do

3 for j in I[7, ] do

4 I'li, j] = I[i, 5] — I[i, j + 1|

5: end for
6
7
8
9

: end for
: for i in I'[1, j] do
for jin I'[i,j] d

: I"[i, j] = [I'[t, J]—]/[ZJ+1]|
10: end for
11: end for
12: for j in I"[7, 5] do
13 auglk] = (S o |1 g])
14: end for

15: dft = DFT(avg[k])

16: dft = dft.real

17: dft = np.absolute(dft.astype(int))

18: lowlimit = dft.size x .02

19: highlimit = dft.size * .98

20: peaks = —bn.partsort(—dft[lowlimit : highlimit], 250)[: 250]

21: peaks = np.sort(peaks)

22: candiditepeaks = findPeaks(dft, peaks, dftsize, lowlimit, highlimit)

3.2.4 One-Dimensional Zero Crossings.

The One-Dimensional Zero Crossings (1DZC) module inspects where an image’s

second derivative pixel value is zero across a single row. See Algorithm 7 for the
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1DZC module pseudocode. Similar to the 2DSD module, the 1DZC module starts
by reading the grayscale of an image into memory as a matrix, [[i, j|, of the pixel
values. Next, the algorithm computes the second derivative of the middle row of an
image, I"” [%, all j]. Then the row, I"” [%, all j], is searched for zero crossings and a new
sequence, Z[k], is created using Equation 3.14, where the location & in the sequence
Z[k] corresponds to the location j in the row I"[%, j].

1, if I"[%, 5] =0

Zk] = (3.14)
0, otherwise

This sequence, Z|k], is then used to compute a DFT representation, dft, of the
data in the frequency domain. After converting the absolute values of the dft to
integers, it is searched for the 250 largest spikes while ignoring the lower and upper
two percent of DFT frequencies. The frequencies are normalized to values between
0 and 1. The frequencies are then classified as candidate peaks if the frequency’s
magnitude is a local maximum and is 7" times larger than its local average magnitude.
For the 1DZC module, the local maximum area is the surrounding three percent of
frequencies and 7' = 4. Similar to the 2DSD module, the frequencies that occur from

JPEG compression are ignored and total possible 1,000 features can be generated.

3.3 Classification

After the modules have generated the features of an image, the features are pro-
cessed by a classifier. The output of the classifier is the determination of which IMSP
manipulated the image.

This research used the open source University of Waikato software data mining
program Waikato Environment for Knowledge Analysis (WEKA) [13]. The classifier
examined in this research is the WEKA Bayesian Nework algorithm. The WEKA
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Algorithm 7 One-Dimensional Zero Crossings.

1: Read grayscale of image I[i, j| into memory
2: for j in I[i/2,j] do

3 I'[j] = I[i, 5] — 1[i, j + 1]]

4: end for

5: for j in I'[j] do

6:  I"[j] = |I'[j] = I'lj + 1]]

7: end for

8: for 7 in I"[j] do

9: k=7

10: if I"[j] == 0 then

11: Zlk] =1

12: else

13: Zlk] =0

14: end if

15: end for

16: dft = DFT(Z[k])

17: dft = dft.real

18: dft = np.absolute(dft.astype(int))

19: lowlimit = dft.size x .02
20: highlimit = dft.size x .98
21: peaks = —bn.partsort(—dft[lowlimit : highlimit], 250)[: 250]
22: peaks = np.sort(peaks)
23: candiditepeaks = findPeaks(dft, peaks, dftsize, lowlimit, highlimit)
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Bayesian Network algorithm was chosen for implementation because it returned the
best results when higher valued features were not present in an image, specifically
features extracted by the file metadata and QMI modules. The J4.8 classifier was a
contender for possible implementation, but when the file metadata was not present
the classifier classified all images as APS. The Bayesian Network algorithm did not

do this. The next chapter will discuss the experiments and results of this research.

3.4 Summary

The Two-Dimensional Second Derivative, One-Dimensional Zero Crossings, Quan-
tization Matrices Identification, and File Metadata analysis modules facilitate the
identification of artifacts present in images after alteration by an IMSP [11, 16, 17, 26].
These four modules are used to generate features using the data within an image file.
After feature generation the Bayesian Network classifier classifies an image using the
features. The next chapter discusses experimentation on the methods presented in

this chapter.
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IV. Experiments and Results

To evaluate the framework presented in Chapter 3, a series of tests were performed
to determine if the framework is able to classify an image better than a random
guess. In addition to classifying an image into the correct class, the classification of
an image to the correct algorithm and rate is also examined through the results of
the experiment.

The overall experiment process is discussed first. The first step in the experiment
process begins with building the databases of images. The features are then generated
from the images by the framework of modules. Classification of the images into 48
classes occurs next and statistics of the accuracy of the classification. This is followed
by hypothesis testing to determine the statistical significance of the results. The
analysis of the results are discussed after the classification. Finally, the results are
concluded and a summary of the findings are discussed. The next section discusses

the experiments.

4.1 Experiments

The experiments in this research were used to determine the framework’s accuracy.
Two datasets were built for the purpose of training and testing the two image format
specific classifiers: one consists of only JPEG images and the other of only TIFF
images. One hundred images were taken using the Nikon D5100 digital camera in
the Nikon RAW format where the image’s original dimensions are 3264 x 4928 pixels.
The images were a combination of both outdoor scenes and indoor scenes. The intent
in selection of each image was to have a variety of images. The RAW format was
used to allow for conversion of the images to both JPEG or TIFF images.

After conversion to the two image formats using the Nikon Picture Image Control
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Table 4.3. Image Modification Settings.

GIMP-0.50-bilinear

GIMP-0.50-bicubic

MSPM-0.50-undefined

APS-0.50-bilinear

APS-0.50-bicubic

APS-0.50-nearest neighbor

GIMP-0.66-bilinear

GIMP-0.66-bicubic

MSPM-0.66-undefined

APS-0.66-bilinear

APS-0.66-bicubic

APS-0.66-nearest neighbor

GIMP-0.75-bilinear

GIMP-0.75-bicubic

MSPM-0.75-undefined

APS-0.75-bilinear

APS-0.75-bicubic

APS-0.75-nearest neighbor

GIMP-0.90-bilinear

GIMP-0.90-bicubic

MSPM-0.90-undefined

APS-0.90-bilinear

APS-0.90-bicubic

APS-0.90-nearest neighbor

GIMP-1.10-bilinear

GIMP-1.10-bicubic

MSPM-1.10-undefined

APS-1.10-bilinear

APS-1.10-bicubic

APS-1.10-nearest neighbor

GIMP-1.25-bilinear

GIMP-1.25-bicubic

MSPM-1.25-undefined

APS-1.25-bilinear

APS-1.25-bicubic

APS-1.25-nearest neighbor

GIMP-1.33-bilinear

GIMP-1.33-bicubic

MSPM-1.33-undefined

APS-1.33-bilinear

APS-1.33-bicubic

APS-1.33-nearest neighbor

GIMP-2.00-bilinear

GIMP-2.00-bicubic

MSPM-2.00-undefined

APS-2.00-bilinear

APS-2.00-bicubic

APS-2.00-nearest neighbor

Utility 2, the two sets of 100 images were resized 48 different ways for a total of
4,800 images per set. The classes are sorted by software used, Adobe Photoshop Cre-
ative Cloud Release 2014.0.0 (APS), Microsoft Office Picture Manager 14.0.7010.1000
(MSPM), or GNU Image Manipulation Program 2.8.10 (GIMP), algorithm used (bi-
linear, bicubic, nearest-neighbor, or undefined), and the interpolation rate (0.50, 0.66,
0.75, 0.90, 1.10, 1.25, 1.33, or 2.00). For example, the images resized with GIMP us-
ing the bicubic algorithm at the interpolation rate of 1.10 would be grouped into the
same class. The interpolation rates were chosen to include both superposition and
subposition rates. None of the rates are instances in which one rate is implemented
more than once to get the other rate. For example, 0.25 could be implemented by
using the 0.50 rate twice. See Table 4.3 for a list of the 48 classes.

Four collections of different variations in the collection of modules were tested in
order to examine each module’s performance and their combined performance. The
TIFF dataset was tested on only the file metadata (FMD), Two-Dimensional Second
Derivative (2DSD) and the One-Dimensional Zero Crossings (1DZC) modules because
TIFF images do not contain quantization matrices.

Group 1 contains the individual modules, 2DSD and 1DZC (JPEG and TIFF),
tested on each dataset separately. The Quantization Matrices Identification (QMI)
and FMD modules were excluded from this test because it was determined that the
signature for each image altered by a specific IMSP were the same across the classes
associated with the IMSP. For example, the FMD and QMI modules tested on all

24 classes associated with APS returned only that it was altered by APS. The two
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modules are unable to determine, with any statistically significant accuracy, a specific
class an image belongs to. These variations also indicate anticipated results if the
header had been modified.

Group 2 contains different combinations of pairings of the modules: 2DSD with
1DZC (JPEG and TIFF), 2DSD with QMI (JPEG), 1DZC with QMI (JPEG), 2DSD
with FMD (TIFF), and 1DZC with FMD (TIFF).

Group 3 contained only the QMI, 2DSD, 1DZC modules (JPEG) and the FMD,
2DSD, and 1DZC modules (TIFF).

Group 4 included four modules: FMD, QMI, 2DSD, and 1DZC modules. This
group of modules did not process the TIFF dataset because TIFF images do not
contain quantization matrices.

After the images were processed by the feature generation modules, the classifi-
cation of the images was performed. The results for each variation were converted
to an Attribute-Relation File Format (ARFF) file to be processed by the Bayesian
Network classifier. In order to create a variation in the true positive rates (TPR)
results, the number of images to be processed by the classifier were scaled down to
80% of the original size of the dataset by randomly selecting images 10 times to create
10 different unbalanced sub-datasets. The Bayesian Network classifier processed each
sub-dataset 10 times using a 10 fold cross-validation method with different random
number seeds.

Each test was performed ten times using the cross-validation method implemented
in Waikato Environment for Knowledge Analysis (WEKA) with ten different random
seeds, 1-10. The mean TPR, false positive rates (FPR), and F-Measure for each class
and Kappa statistic for the overall framework were determined for each grouping
of modules. Each group’s results were also examined for the framework’s ability to

classify an image to the correct algorithm and rate.
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For the group results, the Kappa statistic [6], k, is a chance corrected measure of
accuracy. If k& > 0 then the classifier is performing better than a random guess. This
statistic was used to evaluate the classifier’s ability to perform better than random
guessing. For the rate and algorithm results the TPR is evaluated against a random
guess using a t-statistic test. The individual class analysis examined the TPR, FPR,
and F-measure. The F-measure is a measure of the test’s accuracy by considering the
precision Equation 4.15 and recall Equation 4.16 of each class [28].

test rate —
, _ test rate —p (4.15)

a

v

test rate —
p= e (4.16)

=
The one tailed t-statistic test was determined for each class and using Equa-
tion 4.17. Where p = 0.0208 is the probability expected for a random guess and the
sample size n = 10. Using the 95% confidence interval with the degrees of freedom,
df =9, the critical ¢ value is 1.833. Therefore, if the t-statistic is greater than 1.833
and the computed P-Value is less than 0.05 then Hj is rejected and H; is accepted.

test rate —
, _ test rate —p (4.17)

a

v

4.2 Results and Analysis

This section discusses the results of the tests conducted on each variation: Groups
1-4. Appendix A contains in-depth results for each variation and a representative
confusion matrix. Table 4.4 gives the mean TPR, FPR, Kappa statistic, and each
of their variances for each of the 13 variations of modules when classifying an image

to one of the 48 classes, “IMSP-RATE-ALGORITHM”. Each individual class was
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tested to determine if its F-Measure was statistically significant when compared to
a random guess. Table 4.5 examined the framework’s ability to classify an image
to the rate and algorithm used during manipulation. When conducting hypothesis
testing on the overall rate compared to the random probability of guessing the rate
for algorithm, the resulting P-Value was extremely small. This indicates that each of
the variations was a statistically significant improvement when compared to a random
guess. The random guess probability of 0.125 was used for hypothesis testing on the

rate classification and 0.25 for hypothesis testing on the algorithm classification.

Table 4.4. Group Overall Results.

Framework TPR FPR Kappa Statistic

Mean | STDEV | Mean | STDEV | Mean | STDEV
2DSD Only (JPEG) 0.381 | 0.005 0.014 | 0.000 0.367 | 0.005
1DZC Only (JPEG) 0.092 | 0.007 0.023 | 0.001 0.069 | 0.007
2DSD Only (TIFF) 0.343 | 0.005 0.015 | 0.000 0.328 | 0.005
1DZC Only (TIFF) 0.112 | 0.006 0.022 | 0.001 0.090 | 0.006
2DSD & 1DZC (JPEG) 0.390 | 0.003 0.014 | 0.001 0.377 | 0.003
2DSD & QMI (JPEG) 0.534 | 0.008 0.010 | 0.000 0.524 | 0.008
1DZC & QMI (JPEG) 0.143 | 0.008 0.022 | 0.001 0.122 | 0.008
2DSD & 1DZC (TIFF) 0.384 | 0.008 0.014 | 0.000 0.370 | 0.008
2DSD & FMD (TIFF) 0.506 | 0.011 0.011 | 0.000 0.495 | 0.011
1DZC & FMD (TIFF) 0.190 | 0.009 0.020 | 0.000 0.171 | 0.009
2DSD & 1DZC & QMI (JPEG) 0.544 | 0.006 0.010 | 0.000 0.533 | 0.006
2DSD & 1DZC & FMD (TIFF) 0.532 | 0.008 0.010 | 0.000 0.522 | 0.008
2DSD & 1DZC & QMI & FMD (JPEG) | 0.542 | 0.013 0.011 | 0.000 0.532 | 0.013

Table 4.5. Group By Rate and Algorithm Results.

Rate Classification Algorithm Classification
Framework TPR FPR TPR FPR
Mean | STDEV | P-Value | Mean | STDEV | Mean | STDEV | P-Value | Mean | STDEV
2DSD Only (JPEG) 0.706 | 0.010 0.000 0.042 | 0.001 0.557 | 0.028 0.000 0.190 | 0.014
1DZC Only (JPEG) 0.194 | 0.009 0.000 0.116 | 0.001 0.356 | 0.046 0.000 0.260 | 0.036
2DSD Only (TIFF) 0.884 | 0.003 0.000 0.017 | 0.000 0.487 | 0.012 0.000 0.208 | 0.011
1DZC Only (TIFF) 0.370 | 0.021 0.000 0.090 | 0.003 0.320 | 0.057 0.005 0.253 | 0.039
2DSD & 1DZC (JPEG) 0.697 | 0.009 0.000 0.043 | 0.001 0.571 | 0.022 0.000 0.183 | 0.013
2DSD & QMI (JPEG) 0.713 | 0.010 0.000 0.041 | 0.001 0.659 | 0.013 0.000 0.151 | 0.014
1DZC & QMI (JPEG) 0.204 | 0.009 0.000 0.114 | 0.001 0.508 | 0.006 0.000 0.191 | 0.043
2DSD & 1DZC (TIFF) 0.886 | 0.007 0.000 0.016 | 0.001 0.523 | 0.023 0.000 0.186 | 0.011
2DSD & FMD (TIFF) 0.886 | 0.004 0.000 0.016 | 0.001 0.541 | 0.012 0.000 0.187 | 0.011
1DZC & FMD (TIFF) 0.382 | 0.016 0.000 0.089 | 0.002 0.397 | 0.013 0.000 0.246 | 0.024
2DSD & 1DZC & QMI (JPEG) 0.719 | 0.008 0.000 0.040 | 0.001 0.668 | 0.014 0.000 0.150 | 0.010
2DSD & 1DZC & FMD (TIFF) 0.883 | 0.005 0.000 0.017 | 0.001 0.572 | 0.011 0.000 0.178 | 0.006
2DSD & 1DZC & QMI & FMD (JPEG) | 0.717 | 0.014 0.000 0.041 | 0.002 0.662 | 0.010 0.000 0.150 | 0.015

In addition to Tables 4.4 and 4.5, the by class, rate, and algorithm results are

presented in Appendix A. The next four sections discuss results and observations
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for the different variations in the module combinations. Results for same modules
performed on different image types had similar results, therefore, unless specifically
stated all observations discussed are referring to the modules on both image types.

The next section discusses the Group 1 Results.

4.2.1 Group 1: Individual Modules.

This experiment focused on testing the individual modules for both JPEG and
TIFF images to determine their accuracy. In this experiment, the 2DSD Only and
1DZC Only modules generated the features and the previously outlined process was
conducted to determine the results.

Both modules, 2DSD and 1DZC, were able to classify an image to its correct class,
“IMSP-RATE-ALGORITHM”, with a statistically significant improvement over a
random guess. The Kappa Statistics for both modules are both greater than zero.
Both modules are also able to classify the image to the rate and algorithm with a
statistically significant improvement over a random guess. This determination was
made by examining the TPR for each module. When comparing the 2DSD and
1DZC modules against each other it was noted that the 2DSD module performed
significantly better than the 1DZC in classifying an image based the rate, algorithm,
and class.

The 2DSD modules for both JPEG and TIFF images generated features that re-
late to the interpolation rate used by an IMSP with high statistical significance. This
is expected because the 2DSD module is based on Gallagher’s work on detecting inter-
polation rate [11]. The 1DZC module was also able to identify the interpolation rate
with which an image was manipulated with statistical significance when compared to
a random guess. It was noted that the 2DSD module was able to classify the interpo-

lation rate best when the images were manipulated at the 0.75, 0.90, 1.10, 1.25, and
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2.00. The 2DSD module’s mean TPR when identifying the images manipulated at
these rates was above 0.90. It was noted that the majority of the FPs were classified
at the 0.50 rate. The 1DZC module performed best at 1.10, 1.25, 1.33, and 2.00 with
its mean TPR for these interpolation rates above 0.35. More detailed results are in

Appendex A.1.

4.2.2 Group 2: Pairing of modules.

This experiment focused on testing pairings of modules for both JPEG and TIFF
images to determine their accuracy. The results were similar when the variation was
applied to both JPEG and TIFF images. In this experiment, the pairings of modules
generated the features. The process outlined in the previous section was conducted
to determine the results. More detailed results are in Appendex A.2.

The first part of this experiment examined the combination of the 2DSD and 1DZC
modules. The main observation from this pairing was the slightly improved TPR and
Kappa statistic from the 2DSD Only variation and significant improvements from the
1DZC Only variation. The rate and algorithm classification had slight improvements
in the FPR rate but decline in the TPR from the 2DSD Only variation and significant
improvements from the 1DZC Only variation.

Both the QMI and FMD modules only determine which IMSP altered an image
for JPEG images. The 2DSD and QMI pairing was used on the JPEG images. Since
the TTFF images do not contain quantization matrices, the 2DSD and FMD pairing
was used on these images.

The 2DSD and QMI modules (JPEG) and the 2DSD and FMD (TIFF) were the
next pairing of modules to be examined. These results were a significant improvement
to the overall results for the 2DSD and 1DZC pairing. The mean TPR reached over

0.50 with this pairing. The reason for this increase is the inclusion of the QMI module
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data. With the inclusion of this data, the classifier is now able to classify the image,
using the features generated from the 2DSD module, to a more limited number of
classes because the QMI module is able to specify which IMSP manipulated the image.
The rate and algorithm classification only had a slight increase. This is expected
because the QMI module only gives information on which IMSP manipulated the
image; it does not generate features based on the statistics of an image that can be
used to determine the rate or algorithm used during the manipulation.

The final pairing was between the 1DZC and QMI modules. As expected, this
pairing performed similar to the 2DSD and QMI pairing. The QMI module increased
the 1DZC module’s ability to classify the image, using the features generated from
the 1DZC module, to a more limited number of classes. This pairing also did not
significantly improve the rate and algorithm classification.

In summary all pairings showed an increase in the TPR and Kappa statistic while
decreasing the FPR for the overall variation results. The TPR for the results by al-
gorithm and by rate also increased for all pairings except when comparing the 2DSD
Only and 2DSD and 1DZC modules. There was a slight decline in the TPR but the
TPRs for both are close together. Therefore the decline is not statistically signifi-
cant. The increase in TPRs and Kappa statistics while decreasing FPRs illustrates
how grouping different modules focused on specific features can be used to assist in
classifying an image to a specific IMSP, rate, and algorithm. The best performing
combination of modules was the 2DSD and QMI for the JPEG images and the 2DSD
FMD for the TIFF images.

4.2.3 Group 3: Three Modules.

This experiment focused on a variation of the modules containing three modules.

The variation examined is 2DSD, 1DZC, and QMI for the JPEG images and 2DSD,
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1DZC, and FMD for the TIFF images. It was noted in this experiment that the
addition of the 1DZC module does not significantly increase the accuracy of the
framework when compared to the 2DSD and QMI pairing. However, it displays a
significant improvement when compared to the 1DZC and QMI pairing. This is
because of the 2DSD module and it’s ability to classify an image into one of the 48

classes. More detailed results are in Appendix A.3.

4.2.4 Group 4: All Modules.

The next experiment examined the implementation of all modules. Only the JPEG
images were examined in this experiment because the TIFF images do not contain
quantization matrices and therefore no information can be gained by processing TIFF
images through the QMI module. The results of this experiment show a slight decline
in the results from the variation of three modules, 2DSD, 1DZC, and QMI. More

detailed results are in Appendix A.4.

4.2.5 Results Conclusion.

This section discusses the observations made during the testing of the 13 variations
of the module groupings, the rankings of the modules using specific quantitative and
qualitative measures, and identification of the best group of modules to keep in the
framework. Observations made during the 13 tests will be discussed first.

The interpolation rate features are significant to the classifier. For tests conducted
when the 2DSD module was present, the interpolation rate was correctly classified
between 69.698% — 71.852% of the time on JPEG images and 88.352% — 88.598% of
the time on TIFF images. When the 1DZC module was present, the interpolation
rate was correctly detected between 19.392% — 71.852% of the time on JPEG images

and 37.025% — 88.272% of the time on TIFF images. For the variations where either

50



module was paired with QMI or FMD the TPR increased and the FPR decreased.
For reference, a random guess of the interpolation rate is expected to yield a correct
guess 12.5% of the time. The grouping of modules that returned the best by algorithm
results were the 2DSD, 1DZC, and QMI for JPEG images 71.852% and the best results
were returned from the 2DSD and FMD grouping for TIFF images.

The algorithm only results show trends similar to the rate only results. For tests
conducted when the 2DSD module was present, the algorithm was correctly classified
between 55.670% — 66.758% of the time on JPEG images and 48.746% — 57.241%
of the time on TIFF images. When the 1DZC module was present, the algorithm
was correctly classified between 35.621% — 66.758% of the time on JPEG images and
37.025% — 57.241% of the time on TIFF images. For the variations where the either
module was paired with QMI or FMD the TPR increased and the FPR decreased.
For reference, a random guess of the algorithm is expected to yield a correct guess
25% of the time. The grouping of modules that returned the best by algorithm results
were the 2DSD, 1DZC, and QMI for JPEG images 71.852% and the best results were
returned from the 2DSD, 1DZC, and FMD grouping for TIFF images.

The next observation is the large number of false positives appearing consistently
in several classes when the 2DSD and/or the 1DZC modules are used in conjunction
with the QMI or the FMD modules. The ReliefFAttributeEval attribute evaluator
implementing the Ranker search method within WEKA was implemented to deter-
mine the highest ranking features. The consistent number of false positives are most
likely images that do not contain any of the high ranking features of the classifier.
This is especially true when only the false positives that are not classified to the
correct interpolation rate are examined. A simple way to rectify this is to decrease
the sensitivity for spike detection in the 2DSD and 1DZC modules. In other words

accept smaller less distinct spikes as candidate spikes. This will increase the features
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the classifier uses to make its decision. This can also have the opposite desired effect
and generate too many features for the classifier to correctly classify an image. If this
occurs then the FPR will increase and the TPR will decrease.

Another observation is the improved results when the modules are grouped to-
gether into a framework instead of an independent implementation. The Kappa
statistic for the individual modules when processing JPEG images was the highest
with the 2DSD module at 0.36738. When 2DSD, 1DZC, and QMI modules were
implemented together, the Kappa statistic was 0.53342. The results after processing
TIFF images showed similar trends. The 2DSD Only test for TIFF images resulted
in a Kappa statistic of 0.32815 and 0.52186 when the 2DSD, 1DZC, and FMD mod-
ules were grouped together. The 1DZC module’s results show similar trends but the
Kappa statistic was not as high as the 2DSD module.

When ranking the modules for implementation in the framework, both qualitative
and quantitative comparisons were conducted. The quantitative comparison exam-
ined the ability of the individual module only and grouping the module with others
to classify an image with an improvement over a random guess. The qualitative com-
parison looked at how easily an image could be manipulated to hide the features the
module extracted from them.

The module with the highest Kappa statistic when implemented individually was
the 2DSD module for both JPEG and TIFF images. This module had a Kappa
statistic of 0.36738 for JPEG images and 0.32815 for TIFF images when implemented
alone and showed the largest increase when implemented in conjunction with the QMI
or FMD module a 0.52404 for JPEG images and 0.49512 for TIFF images rate. Both
results are a statistically significant improvement over a random guess. The 1DZC
module also performed better than a random guess with its Kappa statistic at 0.06944

for JPEG images and 0.09025 for TIFF images when implemented alone and a 0.12224

52



for JPEG images and 0.17064 for TIFF images rate when implemented in conjunction
with the QMI or FMD module. However, this is significantly less than 2DSD module
with and without the QMI or FMD module. The QMI and FMD modules were not
rated quantitatively because both modules are strictly signature based. This means
the signatures are built into the program and no alteration was made to the QMI
or FMD in the images, they would both be able to detect which IMSP altered an
image with a 1.0 TP rate. As noted previously the QMI and FMD modules do not
detect the interpolation rate or the algorithm used in the manipulations. Therefore,
the modules cannot be compared to the 2DSD and 1DZC modules.

The qualitative comparison between the modules examines how easy it is to ma-
nipulate an image to hide features the modules generates within the constraints of
this research. In other words, this research only looks at what happens when an image
is manipulated by only one IMSP and only one resizing occurs. It does not look at
what happens to an image when it has been altered by more than one IMSP because
multiple IMSPs can leave conflicting features. For example, the FMD is altered by
each IMSP, it is possible that an image can contain FMD related to each IMSP that
altered it. This would give conflicting evidence on which IMSP created the most
recent manipulations.

The easiest data to manipulate is the FMD. Erasing the data does not change any
characteristics of the actual image but it can leave the module without any detectable
signatures. The QMI data is more difficult to alter given confines of the experiment,
only one IMSP can manipulate the image. However, if the IMSP used to manipulate
an image then altered the quantization tables then the module would fail. This is
harder to accomplish in a proprietary software like APS or MSPM compared to an
open source software like GIMP. It is possible to change the tables of an image if the

image is opened and altered within a simple HEX editor. The 2DSD and 1DZC data
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are the most difficult to alter because the features they detect are within the statistics
of the images and cannot be changed without additional image manipulations such
as resizing the images multiple times or resaving with different quantization table
settings. The next section discusses a summary of the results and a recommendation

for the best combination of modules for the framework.

4.3 Summary

In summary, thirteen different combinations of the four modules that compose
the framework were tested to attain results and determine the best combination of
modules for the framework. Testing started on the individual modules using both
JPEG and TIFF images. Both the 2DSD and 1DZC modules improvement over a
random guess probability were statistically significant. The 2DSD module’s Kappa
statistic was greater than the 1DZC module with statistical significance. The next
test examined the results of grouping the modules into pairs. During this test, pairing
the modules together significantly improved the Kappa statistic. Also, the pairing
of the 2DSD and 1DZC modules only yielded a slight improvement when compared
to the 2DSD only. Testing of groups of three modules occurred next. 2DSD, 1DZC,
and QMI were tested with JPEG images and 2DSD, 1DZC, and FMD were tested
with TIFF images. These groupings showed a slight improvement over the pairings of
modules. Finally, all four modules were tested with JPEG images only. This grouping
was a slightly less accurate when compared to the 2DSD, 1DZC, and QMI grouping.

With the current settings on the modules, 2DSD, 1DZC, and QMI is the best
combination of modules to comprise the framework for JPEG images. This combina-
tion contained the best TPR of 0.54219, the lowest FPR of 0.01030, and best Kappa
statistic of 0.53342. 2DSD, 1DZC and FMD is the best combination for TIFF images.
The TPR was 0.53220, lowest FPR of 0.01042, and best Kappa statistic of 0.52186.
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The next chapter concludes the research and gives possible future work.
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V. Conclusion

The invention of Image Manipulation Software Programs (IMSP) within the field
of digital photography has made it so a manipulated image appears as though no
alteration has occurred. Numerous techniques have been developed in the area of
digital image authentication to detect image manipulation when it is not obvious or
visible to the viewer [9, 11, 16, 17, 26]. This research has adapted these preexisting
techniques to be able to determine which IMSP manipulated an image.

Law enforcement and intelligence agencies have a need to identify the utilized im-
age manipulation software as part of the investigative and evidence gathering process.
By detecting the super/sub-position algorithms used in IMSP, an image suspected of
undergoing an alteration can be associated with an IMSP. Knowledge of the IMPS
aids in identifying the computer system used in altering the image. This will assist
examiners in reconstructing how and by whom an image manipulation occurred. The
results of this research show an ability of the framework to classify an image better
than a random guess. The final chapter discusses the hypothesis with the success
criteria and whether the framework produced a true positive accuracy rate that is
a statistically significant improvement over the probability of random guess using a

t-statistic test with a 95% confidence interval.

5.1 Hypothesis and Success Criteria

This research demonstrated the development of techniques that can be employed
to identify the software and interpolation algorithm used to resize an image. Although
different IMSPs make use of the same algorithms for resizing, we hypothesized that
differences in implementation of the algorithms leave detectable traces in the modified

image. The techniques for identifying a specific IMSP entail building a framework
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of modules used to detect artifacts present after an image manipulation occurred
employing existing image authentication methods.

It is hypothesized that the proposed framework improves an examiner’s ability to
classify an image to which IMSP created the manipulated image beyond the proba-
bility of a random guess. To evaluate the hypothesis a framework was created that
classifies a manipulated image to the correct IMSP. The research’s hypothesis con-
tained two main assumptions. First, the only manipulation addressed is resizing an
image using specific rates, interpolation algorithms, and IMSPs. Additionally, only
one manipulation occurs per image and no cross contamination occurs by using mul-
tiple IMSPs on a single image.

The research is implemented by creating unique Python modules using four pre-
viously developed image manipulation detection techniques to generate features then
a Bayesian Network classifier would use the features to classify an image to a specific
IMSP. The modules are the Two-Dimensional Second Derivative, One-Dimensional
Zero Crossings, Quantization Matrices Identification, and File Metadata analysis
[11, 16, 17, 26]. Testing was conducted using a dataset of Joint Photographic Experts

Group (JPEG) images and a dataset of Tagged Image File Format (TIFF) images.

5.2 Results Synopsis

The framework’s ability to correctly classify an image is a statistically significant
improvement when compared to a random guess probability. The author acknowl-
edges that the dataset used in testing is relatively small when compared to the large
number of IMSPs. However, the three IMSPs used have widespread applications in
digital imagery manipulations. The main observations made after the conclusion of
the tests are discussed next.

The Two-Dimensional Second Difference (2DSD) module focused on the interpo-
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lation rate used in the manipulations and the features extracted by the module were
significant to the classifier. The Quantization Matrices Identification (QMI) and File
Metadata (FMD) modules return only which IMSP was used to manipulate an im-
age. When used separately, the two modules could only differentiate between the
three IMSPs. However, when one of the modules is used in conjunction with the
2DSD module the Kappa statistic of the 2DSD module improved significantly. The
One-Dimensional Zero Crossings (1DZC) module also showed an improvement, but
the improvement was not as significant as with the 2DSD and QMI pairing. After an-
alyzing different combinations of the modules, the ideal framework composition when
inspecting a JPEG image consists of the 2DSD, 1DZC, and QMI modules which had
a Kappa statistic £ = 0.53342. For TIFF images, the 2DSD, 1DZC, and FMD mod-
ules were selected for inclusion in the framework with & = 0.52186. These groups
contained the best Kappa statistic k. Because £ > 0 the hypthesis is confirmed at

the framework is an improvement when compared to a random guess probability.

5.3 Significance in the Area of Research

The findings are significant to this area of research because it shows that previ-
ously developed techniques to find specific image manipulations can also be used to
determine which specific IMSP was used to manipulate the image. The findings show
that if the correct techniques are selected, then a framework of several techniques
can be built that can improve the ability of law enforcement agencies to classify

manipulated images based on which IMSP conducted the manipulations.

5.4 Future Work

This research is intended to be a progression towards creating a framework that

is able to classify an image to a specific IMSP. In order to improve accuracy of the
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proposed framework, several additional areas of research are recommended. The
first proposed area is adding a capability to process other image types. The current
framework was only tested on JPEG and TIFF image formats. While the results
showed the implementation worked on lossy and lossless, expanding the capability
and testing to other image formats is desired.

The second recommended improvement is the addition of modules focused on
features not specifically associated with the rate. The current framework can correctly
classify 71.852% of the images JPEG images and 88.272% of the TIFF images to
the correct interpolation rate. The framework’s focus on detecting rate was a first
step in creating a framework that can detect multiple manipulation types. Modules
that detect skewing, copy-paste forgeries, rotating, etc. manipulations and how each
IMSP implements the manipulation should be a focus of additional research. Chapter
2 discussed several of these recommended image manipulation detection techniques.

The next recommended improvement to the framework is with the 1DZC module.
The 1DZC module showed promise for several classes. Currently, the module uses a
one-dimensional implementation of the technique outlined in the literature. It can
also be implemented in a two-dimensional technique. This two-dimensional technique
should be investigated for future development of the framework.

The final recommended improvement to the framework is a front end Graphical
User Interface (GUI). This will give a user with no programming experience the abil-
ity to interact with the framework. The GUI should allow the user to increase the
framework’s classification ability by inputting a group of images that have been ma-
nipulated in the exact same manner by a single IMSP. This will assist the framework
in the detection of manipulations by additional IMSPs and the ability to classify the

images with an IMSP.
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Appendix A. Results

The tables in Appendix A are detailed results from the thirteen tests of the varia-
tions of modules. Each test’s results are displayed in four tables. The first of the four
tables is the by class results. This table details the True Positive Rate (TPR), False
Positive Rate (FPR) and F-Measure for each class. The next two tables contain the
by rate and by algorithm results. Each table contains the TPR and the FPR. The

final table is the confusion matrix for the classifier.
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Table A.6. 2DSD Only By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.101 | 0.101 0.024 | 0.029 0.076 | 0.048 0.007
GIMP-0.50-bilinear 0.121 | 0.177 0.035 | 0.066 0.073 | 0.052 0.015
GIMP-0.66-bicubic 0.094 | 0.045 0.003 | 0.001 0.148 | 0.061 0.000
GIMP-0.66-bilinear 0.098 | 0.081 0.002 | 0.002 0.154 | 0.096 0.002
GIMP-0.75-bicubic 0.224 | 0.087 0.006 | 0.003 0.284 | 0.095 0.000
GIMP-0.75-bilinear 0.058 | 0.088 0.003 | 0.003 0.078 | 0.108 0.146
GIMP-0.90-bicubic 0.381 | 0.091 0.014 | 0.003 0.368 | 0.068 0.000
GIMP-0.90-bilinear 0.087 | 0.090 0.005 | 0.005 0.111 | 0.097 0.021
GIMP-1.10-bicubic 0.348 | 0.074 0.016 | 0.004 0.332 | 0.058 0.000
GIMP-1.10-bilinear 0.527 | 0.049 0.012 | 0.002 0.505 | 0.045 0.000
GIMP-1.25-bicubic 0.297 | 0.051 0.008 | 0.002 0.352 | 0.046 0.000
GIMP-1.25-bilinear 0.419 | 0.112 0.012 | 0.003 0.424 | 0.078 0.000
GIMP-1.33-bicubic 0.195 | 0.205 0.023 | 0.034 0.150 | 0.069 0.000
GIMP-1.33-bilinear 0.211 | 0.185 0.041 | 0.034 0.117 | 0.056 0.001
GIMP-2.00-bicubic 0.330 | 0.305 0.023 | 0.020 0.202 | 0.142 0.004
GIMP-2.00-bilinear 0.050 | 0.027 0.002 | 0.003 0.083 | 0.036 0.001
MSPM-0.50-undefined | 0.044 | 0.029 0.002 | 0.001 0.077 | 0.050 0.008
MSPM-0.66-undefined | 0.989 | 0.013 0.001 | 0.001 0.965 | 0.018 0.000
MSPM-0.75-undefined | 0.666 | 0.091 0.020 | 0.002 0.519 | 0.064 0.000
MSPM-0.90-undefined | 0.885 | 0.029 0.011 | 0.001 0.738 | 0.027 0.000
MSPM-1.10-undefined | 0.885 | 0.023 0.000 | 0.000 0.931 | 0.020 0.000
MSPM-1.25-undefined | 0.941 | 0.020 0.007 | 0.001 0.838 | 0.030 0.000
MSPM-1.33-undefined | 0.870 | 0.020 0.000 | 0.000 0.929 | 0.011 0.000
MSPM-2.00-undefined | 0.517 | 0.060 0.001 | 0.001 0.667 | 0.049 0.000
APS-0.50-bicubic 0.400 | 0.378 0.115 | 0.126 0.119 | 0.039 0.000
APS-0.50-bilinear 0.179 | 0.329 0.053 | 0.104 0.046 | 0.057 0.221
APS-0.50-nearest 0.204 | 0.310 0.052 | 0.098 0.095 | 0.040 0.000
APS-0.66-bicubic 0.094 | 0.241 0.029 | 0.080 0.032 | 0.039 0.430
APS-0.66-bilinear 0.263 | 0.083 0.007 | 0.002 0.326 | 0.085 0.000
APS-0.66-nearest 0.235 | 0.075 0.003 | 0.001 0.331 | 0.085 0.000
APS-0.75-bicubic 0.055 | 0.034 0.003 | 0.001 0.091 | 0.055 0.004
APS-0.75-bilinear 0.709 | 0.030 0.004 | 0.001 0.742 | 0.033 0.000
APS-0.75-nearest 0.395 | 0.046 0.003 | 0.001 0.512 | 0.051 0.000
APS-0.90-bicubic 0.272 | 0.128 0.010 | 0.004 0.290 | 0.108 0.000
APS-0.90-bilinear 0.061 | 0.036 0.002 | 0.001 0.102 | 0.057 0.002
APS-0.90-nearest 0.624 | 0.032 0.001 | 0.001 0.749 | 0.031 0.000
APS-1.10-bicubic 0.679 | 0.050 0.008 | 0.001 0.667 | 0.048 0.000
APS-1.10-bilinear 0.545 | 0.072 0.008 | 0.001 0.567 | 0.063 0.000
APS-1.10-nearest 0.632 | 0.044 0.002 | 0.000 0.740 | 0.035 0.000
APS-1.25-bicubic 0.498 | 0.063 0.007 | 0.001 0.544 | 0.056 0.000
APS-1.25-bilinear 0.972 | 0.011 0.003 | 0.001 0.920 | 0.023 0.000
APS-1.25-nearest 0.566 | 0.078 0.005 | 0.001 0.622 | 0.059 0.000
APS-1.33-bicubic 0.062 | 0.053 0.005 | 0.003 0.089 | 0.062 0.009
APS-1.33-bilinear 0.239 | 0.087 0.003 | 0.001 0.337 | 0.092 0.000
APS-1.33-nearest 0.485 | 0.042 0.005 | 0.001 0.564 | 0.037 0.000
APS-2.00-bicubic 0.322 | 0.302 0.024 | 0.023 0.216 | 0.133 0.002
APS-2.00-bilinear 0.156 | 0.201 0.011 | 0.018 0.134 | 0.107 0.011
APS-2.00-nearest 0.023 | 0.023 0.002 | 0.003 0.040 | 0.040 0.172
Framework 0.381 | 0.005 0.014 | 0.000 0.378 | 0.007 0.000
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Table A.7. 2DSD Only By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.322 | 0.023 0.000 0.230 | 0.056
0.66 0.837 | 0.163 0.000 0.031 | 0.074
0.75 0.944 | 0.011 0.000 0.005 | 0.001
0.90 0.977 | 0.009 0.000 0.002 | 0.001
1.10 0.982 | 0.002 0.000 0.003 | 0.000
1.25 0.998 | 0.003 0.000 0.000 | 0.000
1.33 0.575 0.107 0.000 0.062 0.029
2.00 0.976 | 0.021 0.000 0.003 | 0.003
Overall | 0.706 | 0.010 0.000 0.042 | 0.001

Table A.8. 2DSD Only By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.506 | 0.026 0.000 0.302 | 0.122
Bilinear 0.571 | 0.079 0.000 0.205 | 0.121
Nearest 0.667 | 0.178 0.000 0.078 | 0.105
Undefined 0.753 | 0.016 0.000 0.049 | 0.004
Overall 0.557 | 0.028 0.000 0.190 | 0.014
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Table A.9. 2DSD Confusion Matrix (JPEG).

|
%

aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av

z

YU YT E YR
STEZIIEELE
B o B o B o o R o R o R g 8¢9
LR R E R LR R R R o h b b k) T T T T T
23$2¢2¢ < 7.2 B CERLEZLRERL 29 By
R Rl N e LR AR RN RN RN
S E s e E e E B E 8 82 8EEEE5EE:5E8E:52 S22 S22 2 82222 E=22 ¢z =
A e B8 B BB R B8 BB BB P R R S N P2 E 8288288288288 2882882 ¢
I LN e L e R R R R R R LR
== CERCE S~ === =" WID OO0 O OO W MMM O OO
C I P P R R I A L L L L Ll Ll DR RO0 D EEERRE oA AAD 00 S S S
AL AL S S SIS S S ST 9999999999 DA
S S S RS R R R R AR AL AL AL N DN D DDDDDDNDDDDDNDDNDDDD N DN
SR=g=pepcp=pcy= gy N RN R R R R B R 7 B - Vi vi- v ol My Vol W ol i ol i Vvl o o v
[CACRCRCRORE VUOVUVVVUVUVUEEAEmamamn << << << <<
L L O O i
) o i 0 OTY Qe 0T~ B2 QRT K E
L 0T o T~ HHOATH®N+ B> ERNPRNI SIS ITTITITIGR SRS =
oo CocooocococCococooc o cC oo o oo oo Cocococoocococoo)co
— =3
cCoocococoocococococo oo cCoocCococo0oCoco oo Cococococ oo O
o« o — <
oo ocoococococococooc o cCCcCoCoc oo oo ocococoocococoocoNA
=3
S oo oo ococCoc oo S CcCoO oo oo oo oo oo oMo oo
=1
cCoo—-oo0o0oococococoe o cCoocCoc oo Ccocoococoocoo oo o o
[l e == e e e i 1 o B =] cCoCocCcoooooCcoco oo T O OO
= ar}
S oC OO HIOC OO cCCcCooc o000 oco o oMo Foooo oo
o
cCoocococoocococo™MHC oo cCocCc oo oocoocCcococCcomM-aNco oo oo
el =23
=Rl el = R=l=l el i = =] S CcC oo oo oo oMo Moo oo CC
0
CoOCOoOO0C oo CoCOoO|H-HOOOCOCO COC OO OCOODOOCOOCO(HOMWMODODODODODOoOOOO
I~ ar
oo Ccoooowm oo o oo cCoocCococooococCcoocfoocooocooooco
=2 R=3
cCoocococooco|HHOOoC S OO cCococCocoooococCcoomomMmoooocoocoCoco
=
cococococo (=] cc o (=1 ccoc oo oo = Foococococooo
S oo oOoOMmHcCoc oo oo (=Rl e el el =2 R ) e R e i e e e B i )
o =
coococoolrrloccococooo cococcoco~ocollwwlcoocococoococoococooo
—
cocooco|l~nNjccoococoocooo cocococo~olmno®Moo—~ocoocoocoocoococoocoocooo
cooolodloocoocococoococoo cocoocooclonmmopococ oo o000 oo OoR
CoOoQoHOoOOHOoOOo OO OO cCoococooTo oo CccoococococoooCoco
el
col-oclccocococococo~o coclco~lcccocococococococ oo ~~00 O~
™ —
[} o oo ococococococoo cCooNFNVwOoOoO oo CocCoco oo ooooCo
+wbwlHammnoococoamo cCowtTIFLMoONNNSO OO OO TOMOOA
— o AN 0o (=
oFltomTomoOo o =0~ O A A 0 0O M FIINONODOODOO D=0~ — ™
ol — 0 M| o
DHH O M FOI OO~ O — = = = = oSN TFw o FoOoooo M~ — = m
o S o [ ™ ™M © N 0= D0 O — — I~ =
IR B o e B R R e R e B R | N TR e R R e R N . = = R= RIS RN I
oo oo oCcocoocococo S C OO DD DD DD oooHS O
cCoooocooocococoo oo o cCoococ oo o oo ococooooPmooco o
-
cCococococoocococomHC o oo cCoocCococooococCcocoococomMmowmoooooco
cCoocCococooQoPKCoocococococo cCocoCocCococooococococCoCcooccoococooC (=]
= <t
cococcoo@™M~cCoococCocoCoco cCococCococooooHMHOOOoO OO oo C
O I~ ©o =
cocooolm~lccococococococoo cococococo-=Nlcocococoocoococoococoocoocooo
colocolccocococococoocococoo cooclcowlocoocococoocococoococoocoocoooo
cCocococoococococococococoo oo oo o oo ocococococococoocoCoco
cCoocococoocococococococoHm cCocCocCc oo o oo ococococococooo|=HA A
© = NI
cocoococoocoocococococoldA cCCcoCcooocoCcocococococCco (=l e el
— <t 0 o«
= A NS O AN NFANN O NSO MO H — 0 —
© —~
LM NN OO NO(H~|Mm A CSCHANOOoODOoOOoO 0o oo OCHOO~ =[N MmO
00 1D <
cCococCococoocococoHmMo o oo cCoocCococooococCcocococCocovHHOOoOOoOoOCOoO
o) —
coocococo Sloococo coococococococoocococoococoo|m~omboocooo
—
coocooco coococo coocococococoocococoocloclAmwooocoococoo o
™ —~
cococococo cocococo coc oo oo oo oo oo o
cocococo o coc oo coc oo coococococococooco
cococococo ccococ o cc oo coococoocoocoCc o
oo oo™ = cocooo (= Bl c oo coooc oo o
0 O
cocogQo"mmHOoOOoCoc oo ocCocoCoCo cCoCococooMmMmIFOoOoOoOoOcocOCcooc oo ocoCoc o
colowlccocococoocoocooococoo cocomHlcococococoococococoocoococooo
co~lcccocococococococoo cocorNlcococcocoocococoo0c0o0000OO O
W HFFN NN N OSSOSO N~ CLFFFFDO AN NO AT OOOO O I NN N
BN NN NS - OO OO~ 0NN NN A~ 0000000000 TMO NN O




Table A.10. 1DZC Only By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.022 | 0.055 0.018 | 0.051 0.008 | 0.017 0.056
GIMP-0.50-bilinear 0.083 | 0.169 0.077 | 0.155 0.010 | 0.019 0.119
GIMP-0.66-bicubic 0.057 | 0.170 0.049 | 0.148 0.005 | 0.016 0.015
GIMP-0.66-bilinear 0.087 | 0.260 0.080 | 0.238 0.006 | 0.017 0.028
GIMP-0.75-bicubic 0.002 | 0.005 0.002 | 0.005 0.001 | 0.002 0.000
GIMP-0.75-bilinear 0.108 | 0.262 0.091 | 0.243 0.027 | 0.029 0.537
GIMP-0.90-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.001 0.000
GIMP-0.90-bilinear 0.004 | 0.009 0.003 | 0.005 0.004 | 0.010 0.001
GIMP-1.10-bicubic 0.008 | 0.018 0.001 | 0.002 0.013 | 0.029 0.413
GIMP-1.10-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
GIMP-1.25-bicubic 0.041 | 0.112 0.038 | 0.103 0.006 | 0.015 0.020
GIMP-1.25-bilinear 0.103 | 0.240 0.078 | 0.219 0.027 | 0.044 0.706
GIMP-1.33-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
GIMP-1.33-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
GIMP-2.00-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
GIMP-2.00-bilinear 0.003 | 0.007 0.002 | 0.003 0.004 | 0.010 0.001
MSPM-0.50-undefined | 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
MSPM-0.66-undefined | 0.000 | 0.000 0.000 | 0.001 0.000 | 0.000 0.000
MSPM-0.75-undefined | 0.015 | 0.044 0.014 | 0.042 0.005 | 0.010 0.001
MSPM-0.90-undefined | 0.001 | 0.003 0.000 | 0.001 0.002 | 0.005 0.000
MSPM-1.10-undefined | 0.406 | 0.214 0.015 | 0.008 0.362 | 0.155 0.000
MSPM-1.25-undefined | 0.912 | 0.047 0.017 | 0.002 0.685 | 0.049 0.000
MSPM-1.33-undefined | 0.945 | 0.030 0.015 | 0.003 0.715 | 0.044 0.000
MSPM-2.00-undefined | 0.935 | 0.021 0.034 | 0.002 0.534 | 0.027 0.000
APS-0.50-bicubic 0.007 | 0.022 0.000 | 0.001 0.012 | 0.037 0.497
APS-0.50-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.50-nearest 0.070 | 0.196 0.063 | 0.187 0.013 | 0.020 0.256
APS-0.66-bicubic 0.000 | 0.000 0.000 | 0.001 0.000 | 0.000 0.000
APS-0.66-bilinear 0.003 | 0.010 0.003 | 0.010 0.001 | 0.003 0.000
APS-0.66-nearest 0.016 | 0.031 0.017 | 0.034 0.005 | 0.011 0.002
APS-0.75-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.75-bilinear 0.006 | 0.012 0.006 | 0.012 0.003 | 0.005 0.000
APS-0.75-nearest 0.003 | 0.008 0.003 | 0.010 0.001 | 0.004 0.000
APS-0.90-bicubic 0.001 | 0.002 0.000 | 0.001 0.001 | 0.004 0.000
APS-0.90-bilinear 0.115 | 0.261 0.107 | 0.240 0.010 | 0.020 0.144
APS-0.90-nearest 0.079 | 0.236 0.068 | 0.204 0.005 | 0.015 0.013
APS-1.10-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-1.10-bilinear 0.057 | 0.145 0.055 | 0.137 0.008 | 0.017 0.045
APS-1.10-nearest 0.001 | 0.004 0.002 | 0.005 0.001 | 0.002 0.000
APS-1.25-bicubic 0.000 | 0.001 0.001 | 0.001 0.001 | 0.002 0.000
APS-1.25-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-1.25-nearest 0.000 | 0.000 0.000 | 0.001 0.000 | 0.000 0.000
APS-1.33-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-1.33-bilinear 0.026 | 0.044 0.024 | 0.046 0.013 | 0.018 0.226
APS-1.33-nearest 0.001 | 0.004 0.002 | 0.005 0.001 | 0.002 0.000
APS-2.00-bicubic 0.006 | 0.009 0.002 | 0.002 0.010 | 0.015 0.061
APS-2.00-bilinear 0.045 | 0.107 0.045 | 0.107 0.007 | 0.015 0.027
APS-2.00-nearest 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
Framework 0.092 | 0.007 0.023 | 0.001 0.054 | 0.006 0.000
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Table A.11. 1DZC Only By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.165 | 0.184 0.534 0.157 | 0.259
0.66 0.041 | 0.057 0.002 0.148 | 0.271
0.75 0.215 | 0.280 0.357 0.115 | 0.234
0.90 0.071 | 0.072 0.052 0.176 | 0.287
1.10 0.426 | 0.133 0.000 0.070 | 0.133
1.25 0.454 | 0.159 0.000 0.135 | 0.233
1.33 0.523 0.140 0.000 0.041 0.047
2.00 0.388 | 0.088 0.000 0.083 | 0.108
Overall | 0.194 | 0.009 0.000 0.116 | 0.001

Table A.12. 1DZC Only By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.355 | 0.060 0.001 0.108 | 0.166
Bilinear 0.346 | 0.070 0.003 0.546 | 0.281
Nearest 0.104 | 0.076 0.000 0.153 | 0.248
Undefined 0.517 | 0.055 0.000 0.098 | 0.051
Overall 0.356 | 0.046 0.000 0.260 | 0.036
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Table A.13. 1DZC Confusion Matrix (JPEG).
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Table A.14. 2DSD Only By Class (TIFF).

TPR FPR F-Measure

Class Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value

GIMP-0.50-bicubic 0.306 | 0.374 0.063 | 0.078 0.104 | 0.066 0.004

GIMP-0.50-bilinear 0.130 | 0.237 0.022 | 0.055 0.093 | 0.045 0.001

GIMP-0.66-bicubic 0.140 | 0.087 0.005 | 0.004 0.192 | 0.092 0.000

GIMP-0.66-bilinear 0.108 | 0.089 0.004 | 0.002 0.149 | 0.114 0.008

GIMP-0.75-bicubic 0.043 | 0.046 0.004 | 0.004 0.062 | 0.061 0.076
GIMP-0.75-bilinear 0.173 | 0.095 0.011 | 0.007 0.201 | 0.083 0.000
GIMP-0.90-bicubic 0.465 | 0.037 0.003 | 0.001 0.570 | 0.033 0.000

GIMP-0.90-bilinear 0.423 | 0.142 0.026 | 0.009 0.319 | 0.066 0.000

GIMP-1.10-bicubic 0.457 | 0.220 0.022 | 0.010 0.342 | 0.092 0.000

GIMP-1.10-bilinear 0.201 | 0.076 0.010 | 0.005 0.230 | 0.057 0.000

GIMP-1.25-bicubic 0.388 | 0.282 0.032 | 0.023 0.222 | 0.103 0.000

GIMP-1.25-bilinear 0.186 | 0.199 0.014 | 0.017 0.158 | 0.086 0.001

GIMP-1.33-bicubic 0.395 | 0.347 0.022 | 0.017 0.264 | 0.171 0.002
GIMP-1.33-bilinear 0.227 | 0.262 0.012 | 0.014 0.193 | 0.131 0.003
GIMP-2.00-bicubic 0.260 | 0.163 0.012 | 0.011 0.263 | 0.092 0.000
GIMP-2.00-bilinear 0.144 | 0.182 0.008 | 0.011 0.145 | 0.109 0.008
MSPM-0.50-undefined | 0.069 | 0.055 0.007 | 0.014 0.092 | 0.039 0.000
MSPM-0.66-undefined | 0.994 | 0.008 0.002 | 0.001 0.945 | 0.017 0.000
MSPM-0.75-undefined | 0.125 | 0.085 0.006 | 0.004 0.163 | 0.096 0.002
MSPM-0.90-undefined | 0.314 | 0.058 0.004 | 0.001 0.415 | 0.059 0.000

MSPM-1.10-undefined | 0.785 | 0.054 0.000 | 0.000 0.876 | 0.035 0.000

MSPM-1.25-undefined | 0.322 | 0.235 0.024 | 0.019 0.238 | 0.090 0.000

MSPM-1.33-undefined | 0.862 | 0.028 0.000 | 0.000 0.921 | 0.016 0.000

MSPM-2.00-undefined | 0.538 | 0.088 0.004 | 0.002 0.622 | 0.048 0.000

APS-0.50-bicubic 0.269 | 0.308 0.059 | 0.072 0.101 | 0.062 0.004
APS-0.50-bilinear 0.186 | 0.319 0.038 | 0.070 0.073 | 0.060 0.029
APS-0.50-nearest 0.120 | 0.246 0.024 | 0.055 0.062 | 0.049 0.034
APS-0.66-bicubic 0.023 | 0.021 0.002 | 0.001 0.041 | 0.038 0.137
APS-0.66-bilinear 0.256 | 0.133 0.010 | 0.004 0.286 | 0.127 0.000
APS-0.66-nearest 0.268 | 0.067 0.004 | 0.001 0.367 | 0.076 0.000
APS-0.75-bicubic 0.021 | 0.018 0.001 | 0.001 0.038 | 0.033 0.159
APS-0.75-bilinear 0.051 | 0.053 0.003 | 0.003 0.078 | 0.072 0.042
APS-0.75-nearest 0.731 | 0.107 0.035 | 0.008 0.438 | 0.028 0.000
APS-0.90-bicubic 0.276 | 0.111 0.017 | 0.008 0.257 | 0.054 0.000
APS-0.90-bilinear 0.233 | 0.196 0.016 | 0.014 0.202 | 0.114 0.001
APS-0.90-nearest 0.827 | 0.023 0.005 | 0.001 0.796 | 0.021 0.000
APS-1.10-bicubic 0.423 | 0.130 0.011 | 0.009 0.440 | 0.069 0.000
APS-1.10-bilinear 0.224 | 0.147 0.014 | 0.008 0.221 | 0.096 0.000
APS-1.10-nearest 0.649 | 0.022 0.009 | 0.002 0.616 | 0.027 0.000
APS-1.25-bicubic 0.262 | 0.044 0.002 | 0.001 0.382 | 0.046 0.000
APS-1.25-bilinear 0.049 | 0.038 0.002 | 0.002 0.083 | 0.061 0.014
APS-1.25-nearest 0.415 | 0.168 0.017 | 0.004 0.359 | 0.109 0.000
APS-1.33-bicubic 0.646 | 0.039 0.002 | 0.001 0.737 | 0.039 0.000
APS-1.33-bilinear 0.385 | 0.327 0.020 | 0.017 0.269 | 0.147 0.001
APS-1.33-nearest 0.480 | 0.059 0.004 | 0.001 0.573 | 0.062 0.000
APS-2.00-bicubic 0.460 | 0.255 0.028 | 0.014 0.305 | 0.110 0.000
APS-2.00-bilinear 0.094 | 0.112 0.007 | 0.007 0.108 | 0.093 0.020
APS-2.00-nearest 0.596 | 0.041 0.021 | 0.001 0.468 | 0.025 0.000
Framework 0.343 | 0.005 0.015 | 0.000 0.319 | 0.005 0.000
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Table A.15. 2DSD Only By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.531 | 0.007 0.000 0.126 | 0.002
0.66 0.948 | 0.021 0.000 0.004 | 0.001
0.75 0.991 | 0.005 0.000 0.001 | 0.001
0.90 0.996 | 0.003 0.000 0.001 | 0.000
1.10 0.997 | 0.002 0.000 0.000 | 0.000
1.25 0.995 | 0.003 0.000 0.001 | 0.000
1.33 0.998 0.002 0.000 0.000 0.000
2.00 0.992 | 0.003 0.000 0.001 | 0.000
Overall | 0.884 | 0.003 0.000 0.017 | 0.000

Table A.16. 2DSD Only By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.470 | 0.025 0.000 0.309 | 0.092
Bilinear 0.493 | 0.035 0.000 0.217 | 0.100
Nearest 0.451 | 0.050 0.000 0.138 | 0.063
Undefined 0.665 | 0.090 0.000 0.057 | 0.026
Overall 0.487 | 0.012 0.000 0.208 | 0.011
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Table A.17. 2DSD Confusion Matrix (TIFF).
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Table A.18. 1DZC Only By Class (TIFF).

TPR FPR F-Measure

Class Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value

GIMP-0.50-bicubic 0.039 | 0.092 0.033 | 0.079 0.009 | 0.020 0.113

GIMP-0.50-bilinear 0.057 | 0.167 0.041 | 0.117 0.008 | 0.020 0.078

GIMP-0.66-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000

GIMP-0.66-bilinear 0.018 | 0.054 0.016 | 0.047 0.005 | 0.014 0.006

GIMP-0.75-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000

GIMP-0.75-bilinear 0.080 | 0.197 0.058 | 0.140 0.011 | 0.022 0.196

GIMP-0.90-bicubic 0.003 | 0.008 0.000 | 0.001 0.005 | 0.015 0.011

GIMP-0.90-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000

GIMP-1.10-bicubic 0.064 | 0.106 0.007 | 0.007 0.064 | 0.093 0.200

GIMP-1.10-bilinear 0.157 | 0.089 0.015 | 0.008 0.159 | 0.066 0.000

GIMP-1.25-bicubic 0.051 | 0.123 0.008 | 0.010 0.042 | 0.080 0.454

GIMP-1.25-bilinear 0.385 | 0.258 0.031 | 0.018 0.234 | 0.114 0.000

GIMP-1.33-bicubic 0.002 | 0.004 0.002 | 0.003 0.003 | 0.005 0.000

GIMP-1.33-bilinear 0.047 | 0.041 0.003 | 0.003 0.075 | 0.058 0.020

GIMP-2.00-bicubic 0.245 | 0.197 0.063 | 0.145 0.169 | 0.118 0.004

GIMP-2.00-bilinear 0.010 | 0.022 0.001 | 0.004 0.014 | 0.030 0.502

MSPM-0.50-undefined | 0.096 | 0.268 0.068 | 0.187 0.010 | 0.022 0.171

MSPM-0.66-undefined | 0.003 | 0.008 0.002 | 0.007 0.001 | 0.004 0.000

MSPM-0.75-undefined | 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000

MSPM-0.90-undefined | 0.097 | 0.277 0.065 | 0.183 0.009 | 0.021 0.130
MSPM-1.10-undefined | 0.119 | 0.178 0.012 | 0.015 0.092 | 0.108 0.078
MSPM-1.25-undefined | 0.413 | 0.208 0.022 | 0.011 0.310 | 0.154 0.000

MSPM-1.33-undefined | 0.918 | 0.020 0.045 | 0.004 0.452 | 0.040 0.000

MSPM-2.00-undefined | 0.931 | 0.025 0.024 | 0.002 0.595 | 0.026 0.000

APS-0.50-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.50-bilinear 0.118 | 0.265 0.086 | 0.184 0.017 | 0.028 0.659
APS-0.50-nearest 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.66-bicubic 0.073 | 0.219 0.050 | 0.151 0.007 | 0.021 0.083
APS-0.66-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.66-nearest 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.75-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.75-bilinear 0.001 | 0.003 0.001 | 0.002 0.001 | 0.002 0.000
APS-0.75-nearest 0.005 | 0.014 0.005 | 0.013 0.002 | 0.006 0.000
APS-0.90-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.90-bilinear 0.074 | 0.221 0.048 | 0.145 0.007 | 0.020 0.069
APS-0.90-nearest 0.003 | 0.008 0.000 | 0.001 0.005 | 0.013 0.005
APS-1.10-bicubic 0.036 | 0.074 0.008 | 0.010 0.032 | 0.053 0.530
APS-1.10-bilinear 0.272 | 0.192 0.023 | 0.013 0.200 | 0.098 0.000
APS-1.10-nearest 0.231 | 0.157 0.023 | 0.012 0.166 | 0.107 0.003
APS-1.25-bicubic 0.030 | 0.053 0.008 | 0.003 0.037 | 0.056 0.403
APS-1.25-bilinear 0.151 | 0.116 0.009 | 0.009 0.167 | 0.087 0.001
APS-1.25-nearest 0.232 | 0.084 0.016 | 0.004 0.226 | 0.071 0.000
APS-1.33-bicubic 0.080 | 0.194 0.064 | 0.156 0.011 | 0.023 0.248
APS-1.33-bilinear 0.018 | 0.023 0.004 | 0.002 0.028 | 0.035 0.555
APS-1.33-nearest 0.012 | 0.013 0.001 | 0.001 0.022 | 0.024 0.859
APS-2.00-bicubic 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-2.00-bilinear 0.029 | 0.062 0.003 | 0.005 0.031 | 0.063 0.650
APS-2.00-nearest 0.065 | 0.189 0.046 | 0.132 0.008 | 0.019 0.066
Framework 0.112 | 0.006 0.022 | 0.001 0.069 | 0.006 0.000
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Table A.19. 1DZC Only By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.122 | 0.075 0.900 0.218 | 0.259
0.66 0.050 | 0.069 0.010 0.066 | 0.145
0.75 0.037 | 0.067 0.003 0.061 | 0.146
0.90 0.132 | 0.116 0.866 0.108 | 0.209
1.10 0.756 | 0.007 0.000 0.029 | 0.002
1.25 0.804 | 0.015 0.000 0.027 | 0.002
1.33 0.686 0.207 0.000 0.085 0.163
2.00 0.452 | 0.139 0.000 0.130 | 0.187
Overall | 0.370 | 0.021 0.000 0.090 | 0.003

Table A.20. 1DZC Only By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.387 | 0.025 0.000 0.235 | 0.225
Bilinear 0.394 | 0.060 0.000 0.346 | 0.248
Nearest 0.232 | 0.033 0.128 0.095 | 0.125
Undefined 0.314 | 0.074 0.028 0.258 | 0.253
Overall 0.320 | 0.057 0.005 0.253 | 0.039
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Table A.21. 1DZC Confusion Matrix (TIFF).
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Table A.22. 2DSD and 1DZC By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.217 | 0.163 0.046 | 0.035 0.113 | 0.043 0.000
GIMP-0.50-bilinear 0.053 | 0.040 0.004 | 0.003 0.080 | 0.060 0.017
GIMP-0.66-bicubic 0.162 | 0.215 0.043 | 0.079 0.096 | 0.060 0.004
GIMP-0.66-bilinear 0.119 | 0.086 0.005 | 0.003 0.166 | 0.107 0.003
GIMP-0.75-bicubic 0.254 | 0.138 0.007 | 0.002 0.307 | 0.139 0.000
GIMP-0.75-bilinear 0.049 | 0.044 0.003 | 0.001 0.080 | 0.066 0.025
GIMP-0.90-bicubic 0.397 | 0.083 0.014 | 0.002 0.385 | 0.065 0.000
GIMP-0.90-bilinear 0.057 | 0.038 0.004 | 0.002 0.087 | 0.050 0.003
GIMP-1.10-bicubic 0.376 | 0.098 0.015 | 0.002 0.351 | 0.068 0.000
GIMP-1.10-bilinear 0.532 | 0.085 0.013 | 0.003 0.505 | 0.045 0.000
GIMP-1.25-bicubic 0.308 | 0.083 0.009 | 0.002 0.349 | 0.069 0.000
GIMP-1.25-bilinear 0.433 | 0.059 0.010 | 0.003 0.451 | 0.047 0.000
GIMP-1.33-bicubic 0.192 | 0.114 0.024 | 0.022 0.163 | 0.081 0.001
GIMP-1.33-bilinear 0.148 | 0.131 0.025 | 0.025 0.113 | 0.056 0.001
GIMP-2.00-bicubic 0.436 | 0.295 0.026 | 0.017 0.278 | 0.151 0.001
GIMP-2.00-bilinear 0.097 | 0.082 0.004 | 0.004 0.134 | 0.101 0.008
MSPM-0.50-undefined | 0.057 | 0.030 0.006 | 0.008 0.087 | 0.050 0.003
MSPM-0.66-undefined | 0.991 | 0.010 0.001 | 0.001 0.973 | 0.017 0.000
MSPM-0.75-undefined | 0.629 | 0.057 0.020 | 0.002 0.490 | 0.052 0.000
MSPM-0.90-undefined | 0.861 | 0.052 0.009 | 0.002 0.743 | 0.041 0.000
MSPM-1.10-undefined | 0.938 | 0.037 0.000 | 0.000 0.965 | 0.022 0.000
MSPM-1.25-undefined | 0.962 | 0.014 0.002 | 0.001 0.933 | 0.013 0.000
MSPM-1.33-undefined | 0.929 | 0.023 0.000 | 0.000 0.963 | 0.012 0.000
MSPM-2.00-undefined | 0.748 | 0.056 0.003 | 0.001 0.782 | 0.035 0.000
APS-0.50-bicubic 0.373 | 0.323 0.116 | 0.115 0.113 | 0.024 0.000
APS-0.50-bilinear 0.112 | 0.230 0.030 | 0.073 0.056 | 0.048 0.057
APS-0.50-nearest 0.200 | 0.254 0.055 | 0.087 0.098 | 0.036 0.000
APS-0.66-bicubic 0.098 | 0.105 0.028 | 0.040 0.071 | 0.037 0.003
APS-0.66-bilinear 0.213 | 0.099 0.006 | 0.002 0.276 | 0.111 0.000
APS-0.66-nearest 0.294 | 0.076 0.004 | 0.002 0.391 | 0.075 0.000
APS-0.75-bicubic 0.054 | 0.026 0.002 | 0.000 0.091 | 0.042 0.001
APS-0.75-bilinear 0.715 | 0.045 0.004 | 0.002 0.749 | 0.036 0.000
APS-0.75-nearest 0.369 | 0.066 0.003 | 0.001 0.490 | 0.071 0.000
APS-0.90-bicubic 0.291 | 0.099 0.011 | 0.003 0.315 | 0.089 0.000
APS-0.90-bilinear 0.099 | 0.075 0.004 | 0.003 0.143 | 0.091 0.003
APS-0.90-nearest 0.594 | 0.053 0.001 | 0.000 0.722 | 0.039 0.000
APS-1.10-bicubic 0.655 | 0.091 0.007 | 0.001 0.649 | 0.070 0.000
APS-1.10-bilinear 0.483 | 0.072 0.008 | 0.001 0.518 | 0.056 0.000
APS-1.10-nearest 0.633 | 0.042 0.002 | 0.001 0.742 | 0.036 0.000
APS-1.25-bicubic 0.600 | 0.072 0.007 | 0.002 0.628 | 0.043 0.000
APS-1.25-bilinear 0.977 | 0.015 0.003 | 0.001 0.914 | 0.024 0.000
APS-1.25-nearest 0.656 | 0.076 0.004 | 0.001 0.706 | 0.063 0.000
APS-1.33-bicubic 0.061 | 0.045 0.005 | 0.003 0.086 | 0.057 0.007
APS-1.33-bilinear 0.188 | 0.068 0.004 | 0.001 0.270 | 0.091 0.000
APS-1.33-nearest 0.544 | 0.061 0.003 | 0.001 0.639 | 0.052 0.000
APS-2.00-bicubic 0.198 | 0.207 0.010 | 0.015 0.201 | 0.113 0.001
APS-2.00-bilinear 0.196 | 0.227 0.012 | 0.013 0.178 | 0.110 0.002
APS-2.00-nearest 0.020 | 0.018 0.001 | 0.001 0.037 | 0.031 0.152
Framework 0.390 | 0.003 0.014 | 0.001 0.390 | 0.004 0.000
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Table A.23. 2DSD and 1DZC By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.307 | 0.023 0.000 0.216 | 0.064
0.66 0.660 | 0.196 0.000 0.069 | 0.079
0.75 0.954 | 0.009 0.000 0.004 | 0.001
0.90 0.978 | 0.010 0.000 0.002 | 0.001
1.10 0.981 | 0.006 0.000 0.003 | 0.001
1.25 0.997 | 0.003 0.000 0.000 | 0.000
1.33 0.627 0.127 0.000 0.049 0.030
2.00 0.977 |0.011 0.000 0.002 | 0.001
Overall | 0.697 | 0.009 0.000 0.043 | 0.001

Table A.24. 2DSD and 1DZC By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.507 | 0.028 0.000 0.348 | 0.103
Bilinear 0.620 | 0.061 0.000 0.137 | 0.088
Nearest 0.646 | 0.170 0.000 0.078 | 0.089
Undefined 0.756 | 0.035 0.000 0.050 | 0.010
Overall 0.571 | 0.022 0.000 0.183 | 0.013
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Table A.26. 1DZC and QMI By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.036 | 0.051 0.009 | 0.013 0.038 | 0.046 0.299
GIMP-0.50-bilinear 0.089 | 0.265 0.027 | 0.081 0.015 | 0.042 0.670
GIMP-0.66-bicubic 0.004 | 0.012 0.002 | 0.006 0.003 | 0.010 0.001
GIMP-0.66-bilinear 0.102 | 0.273 0.031 | 0.083 0.026 | 0.047 0.729
GIMP-0.75-bicubic 0.049 | 0.146 0.016 | 0.046 0.014 | 0.037 0.566
GIMP-0.75-bilinear 0.088 | 0.256 0.029 | 0.086 0.018 | 0.041 0.854
GIMP-0.90-bicubic 0.103 | 0.286 0.031 | 0.085 0.022 | 0.043 0.930
GIMP-0.90-bilinear 0.003 | 0.007 0.000 | 0.000 0.005 | 0.013 0.005
GIMP-1.10-bicubic 0.057 | 0.043 0.004 | 0.002 0.086 | 0.065 0.015
GIMP-1.10-bilinear 0.036 | 0.079 0.009 | 0.025 0.028 | 0.044 0.650
GIMP-1.25-bicubic 0.101 | 0.266 0.030 | 0.082 0.029 | 0.050 0.643
GIMP-1.25-bilinear 0.182 | 0.303 0.055 | 0.094 0.053 | 0.050 0.084
GIMP-1.33-bicubic 0.020 | 0.033 0.003 | 0.004 0.026 | 0.040 0.686
GIMP-1.33-bilinear 0.195 | 0.365 0.057 | 0.105 0.036 | 0.055 0.418
GIMP-2.00-bicubic 0.011 | 0.016 0.003 | 0.004 0.015 | 0.022 0.448
GIMP-2.00-bilinear 0.059 | 0.039 0.007 | 0.004 0.078 | 0.045 0.004
MSPM-0.50-undefined | 0.208 | 0.320 0.016 | 0.024 0.124 | 0.141 0.057
MSPM-0.66-undefined | 0.110 | 0.249 0.009 | 0.019 0.061 | 0.124 0.353
MSPM-0.75-undefined | 0.399 | 0.369 0.029 | 0.030 0.218 | 0.137 0.002
MSPM-0.90-undefined | 0.210 | 0.337 0.015 | 0.024 0.120 | 0.147 0.073
MSPM-1.10-undefined | 0.487 | 0.131 0.002 | 0.000 0.613 | 0.123 0.000
MSPM-1.25-undefined | 0.897 | 0.032 0.004 | 0.001 0.855 | 0.026 0.000
MSPM-1.33-undefined | 0.918 | 0.032 0.003 | 0.001 0.901 | 0.027 0.000
MSPM-2.00-undefined | 0.924 | 0.039 0.002 | 0.001 0.903 | 0.023 0.000
APS-0.50-bicubic 0.002 | 0.005 0.002 | 0.002 0.004 | 0.008 0.000
APS-0.50-bilinear 0.010 | 0.026 0.003 | 0.004 0.011 | 0.029 0.323
APS-0.50-nearest 0.061 | 0.043 0.005 | 0.005 0.087 | 0.059 0.008
APS-0.66-bicubic 0.001 | 0.002 0.001 | 0.002 0.002 | 0.004 0.000
APS-0.66-bilinear 0.001 | 0.003 0.001 | 0.002 0.002 | 0.005 0.000
APS-0.66-nearest 0.090 | 0.234 0.044 | 0.112 0.016 | 0.030 0.643
APS-0.75-bicubic 0.002 | 0.003 0.001 | 0.001 0.002 | 0.003 0.000
APS-0.75-bilinear 0.000 | 0.001 0.000 | 0.000 0.001 | 0.002 0.000
APS-0.75-nearest 0.098 | 0.273 0.047 | 0.132 0.017 | 0.032 0.727
APS-0.90-bicubic 0.048 | 0.142 0.023 | 0.067 0.009 | 0.025 0.209
APS-0.90-bilinear 0.003 | 0.008 0.002 | 0.004 0.003 | 0.007 0.000
APS-0.90-nearest 0.195 | 0.384 0.085 | 0.167 0.022 | 0.041 0.925
APS-1.10-bicubic 0.154 | 0.313 0.072 | 0.146 0.021 | 0.041 0.990
APS-1.10-bilinear 0.033 | 0.037 0.006 | 0.004 0.042 | 0.046 0.193
APS-1.10-nearest 0.051 | 0.150 0.025 | 0.071 0.010 | 0.026 0.245
APS-1.25-bicubic 0.094 | 0.273 0.045 | 0.131 0.014 | 0.030 0.542
APS-1.25-bilinear 0.022 | 0.035 0.005 | 0.008 0.025 | 0.041 0.747
APS-1.25-nearest 0.022 | 0.040 0.005 | 0.006 0.025 | 0.043 0.780
APS-1.33-bicubic 0.034 | 0.073 0.016 | 0.039 0.021 | 0.025 0.970
APS-1.33-bilinear 0.051 | 0.087 0.020 | 0.042 0.029 | 0.042 0.586
APS-1.33-nearest 0.092 | 0.275 0.044 | 0.130 0.010 | 0.031 0.348
APS-2.00-bicubic 0.035 | 0.040 0.007 | 0.003 0.046 | 0.052 0.179
APS-2.00-bilinear 0.020 | 0.022 0.005 | 0.005 0.025 | 0.027 0.621
APS-2.00-nearest 0.039 | 0.085 0.020 | 0.043 0.013 | 0.027 0.423
Framework 0.143 | 0.008 0.021 | 0.001 0.101 | 0.009 0.000
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Table A.27. 1DZC and QMI By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.186 | 0.040 0.001 0.065 | 0.086
0.66 0.098 | 0.072 0.290 0.092 | 0.136
0.75 0.218 | 0.087 0.011 0.130 | 0.161
0.90 0.149 | 0.061 0.269 0.162 | 0.176
1.10 0.387 | 0.188 0.002 0.120 | 0.151
1.25 0.425 | 0.187 0.001 0.149 | 0.211
1.33 0.424 0.215 0.002 0.148 0.170
2.00 0.451 | 0.109 0.000 0.046 | 0.042
Overall | 0.204 | 0.009 0.000 0.114 | 0.001

Table A.28. 1DZC and QMI By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.451 | 0.067 0.000 0.248 | 0.243
Bilinear 0.476 | 0.030 0.000 0.212 | 0.103
Nearest 0.336 | 0.015 0.000 0.225 | 0.165
Undefined 1.000 | 0.000 0.000 0.000 | 0.000
Overall 0.508 | 0.006 0.000 0.191 | 0.043
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Table A.29. 1DZC and QMI Confusion Matrix (JPEG).

0
0
0
0
0
0
0
0
0

1819 28 16 1

0
0

q

0

0

1

3(0
1

o p
210
210

4 0 00

00

13 0
14 0 2|0
14 0
13 0 1]0
14 0 2|0
14 0 110
13 0
14 0 2|0
16 0
1710
1610 1]0

n

m
1
0
0
0
0
0
0
0
0
0
1
0
0

15
12
13
1:

12
12
14
14
12
13
17
13
14
13

7
2 7
7
7

1
1
2 8
2 8
1

1
9 0(0 2 7

3 717 010
1

9 0 0

3 6
36 800
3970

2 6 06 46 6 00 26

3 6
610 8|4 8 9 0 0

912 6 8 0 2
2 70 814 7|8 0 0 2 8

2 6 0 749

6[0 7 47 8 00 26

8|10 7
6|0

3
1
2

2
0 0{0 0 O0OO0O0OO0OTO0OTO0UO0O 0

2 6 07
17009
2 806 47 700 2[9
2 6 07 48800 2|8
2 7 0 8
07 0 8

0

0

0
0

0

0

0
0
0
0
0
0

0
0
0
0
0
0

0

0

0
0

000000 0

0

00 0O0O0O0O0OO0OTO0OTU 0TUO0O0
0 0{0 0 O0O0O0OO0OO0OTO0O0TO0
0 0{0 0 O0O0O0OO0OTO0OTO0UO0O0

00 0O0UO0O0O0OTO0OTGO0o@ 0

0

~ ©
) ) ™
] ]
=} =]
o o
© ©
< ) < <t < |
o o =} <) — =] —
— MmN =) el = =]
— = — —_|= - =
m ™ <t © 0 <+ ™M
— = — — — —
o o o o o o
™ <t ™
~ ©
=} o
=} =]
~ ©
=} o
o o
— o
=} <o
=} S
= o
=} o
=} o
=} o
=} o
=} =]
o o o =}
=} =} =] =}
cCoococoocoo0coco0CcOoOoCO
coococoococoo cocococoo
=} =]
cococoocoocoocoo o o o
coococoocoo cocolco o
c oo ccococoocolcoo o
coococoocoocooccoclcocolco o
cCocoococoococooco o
cCoocooColcoococooo o
cocoococlococoocloccoocooc oo
cooclcooclococoocoocococoo
cococlocoocjlococoocoocococoo
cooclococoococooocoooC
cococlocococoococoocoocoo
c o o ccoco ccococoo
cocoococococoo cocococoo

00 00O0OO0OO0OO0OTO OO OO 0O

00 0O0O0OO0OCO0OO0OTO0OO0TO0O0
00 0O0O0OO0OOO0OTO0OO0UO0O0
00 0O0O0O0CO0OO0OTO0OTO0O0O0
00 0O0O0OO0OOOTUO0OO0UO0O0
00 00O0O0O0O0GO0O0O00O0

APS-200-nearest

7

0

0




Table A.30. 2DSD and QMI By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.214 | 0.227 0.024 | 0.031 0.147 | 0.067 0.000
GIMP-0.50-bilinear 0.434 | 0.274 0.051 | 0.032 0.202 | 0.058 0.000
GIMP-0.66-bicubic 0.302 | 0.270 0.030 | 0.032 0.189 | 0.084 0.000
GIMP-0.66-bilinear 0.288 | 0.068 0.004 | 0.010 0.406 | 0.068 0.000
GIMP-0.75-bicubic 0.328 | 0.102 0.005 | 0.002 0.410 | 0.093 0.000
GIMP-0.75-bilinear 0.291 | 0.129 0.006 | 0.001 0.356 | 0.139 0.000
GIMP-0.90-bicubic 0.422 | 0.055 0.005 | 0.001 0.507 | 0.058 0.000
GIMP-0.90-bilinear 0.325 | 0.025 0.004 | 0.001 0.436 | 0.027 0.000
GIMP-1.10-bicubic 0.647 | 0.080 0.006 | 0.001 0.663 | 0.051 0.000
GIMP-1.10-bilinear 0.733 | 0.063 0.005 | 0.002 0.736 | 0.037 0.000
GIMP-1.25-bicubic 0.574 | 0.061 0.006 | 0.002 0.614 | 0.040 0.000
GIMP-1.25-bilinear 0.651 | 0.081 0.007 | 0.001 0.661 | 0.063 0.000
GIMP-1.33-bicubic 0.335 | 0.169 0.022 | 0.016 0.274 | 0.062 0.000
GIMP-1.33-bilinear 0.087 | 0.082 0.007 | 0.011 0.102 | 0.057 0.002
GIMP-2.00-bicubic 0.540 | 0.243 0.010 | 0.004 0.497 | 0.192 0.000
GIMP-2.00-bilinear 0.283 | 0.238 0.005 | 0.005 0.324 | 0.162 0.000
MSPM-0.50-undefined | 1.000 | 0.000 0.013 | 0.002 0.778 | 0.041 0.000
MSPM-0.66-undefined | 1.000 | 0.000 0.000 | 0.000 0.807 | 0.055 0.000
MSPM-0.75-undefined | 0.679 | 0.074 0.000 | 0.000 0.984 | 0.017 0.000
MSPM-0.90-undefined | 1.000 | 0.000 0.000 | 0.000 0.977 | 0.010 0.000
MSPM-1.10-undefined | 0.986 | 0.010 0.000 | 0.000 0.901 | 0.061 0.000
MSPM-1.25-undefined | 0.990 | 0.013 0.000 | 0.000 0.463 | 0.315 0.002
MSPM-1.33-undefined | 0.947 | 0.018 0.000 | 0.000 0.133 | 0.088 0.004
MSPM-2.00-undefined | 0.735 | 0.036 0.000 | 0.000 0.112 | 0.064 0.002
APS-0.50-bicubic 0.166 | 0.258 0.017 | 0.045 0.112 | 0.072 0.004
APS-0.50-bilinear 0.273 | 0.369 0.046 | 0.068 0.254 | 0.143 0.001
APS-0.50-nearest 0.271 | 0.338 0.044 | 0.061 0.429 | 0.053 0.000
APS-0.66-bicubic 0.288 | 0.358 0.051 | 0.067 0.361 | 0.123 0.000
APS-0.66-bilinear 0.292 | 0.043 0.004 | 0.002 0.549 | 0.278 0.000
APS-0.66-nearest 0.356 | 0.092 0.003 | 0.001 0.680 | 0.109 0.000
APS-0.75-bicubic 0.150 | 0.029 0.003 | 0.002 0.560 | 0.081 0.000
APS-0.75-bilinear 0.789 | 0.068 0.003 | 0.001 0.482 | 0.077 0.000
APS-0.75-nearest 0.579 | 0.091 0.007 | 0.002 0.645 | 0.168 0.000
APS-0.90-bicubic 0.415 | 0.044 0.006 | 0.002 0.783 | 0.021 0.000
APS-0.90-bilinear 0.404 | 0.091 0.007 | 0.001 0.791 | 0.037 0.000
APS-0.90-nearest 0.716 | 0.035 0.001 | 0.001 0.763 | 0.051 0.000
APS-1.10-bicubic 0.698 | 0.034 0.002 | 0.001 0.789 | 0.029 0.000
APS-1.10-bilinear 0.840 | 0.046 0.005 | 0.001 0.883 | 0.054 0.000
APS-1.10-nearest 0.687 | 0.057 0.003 | 0.001 0.906 | 0.039 0.000
APS-1.25-bicubic 0.771 | 0.038 0.002 | 0.001 0.499 | 0.270 0.000
APS-1.25-bilinear 0.969 | 0.016 0.002 | 0.000 0.304 | 0.068 0.000
APS-1.25-nearest 0.814 | 0.051 0.002 | 0.000 0.499 | 0.175 0.000
APS-1.33-bicubic 0.216 | 0.123 0.013 | 0.012 0.468 | 0.213 0.000
APS-1.33-bilinear 0.212 | 0.074 0.002 | 0.001 0.409 | 0.199 0.000
APS-1.33-nearest 0.555 | 0.043 0.003 | 0.000 0.230 | 0.111 0.000
APS-2.00-bicubic 0.481 | 0.281 0.015 | 0.009 0.404 | 0.138 0.000
APS-2.00-bilinear 0.333 | 0.334 0.009 | 0.008 0.241 | 0.234 0.020
APS-2.00-nearest 0.249 | 0.129 0.016 | 0.010 0.005 | 0.016 0.020
Framework 0.534 | 0.008 0.010 | 0.000 0.000 | 0.000 0.000
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Table A.31. 2DSD and QMI By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.354 | 0.019 0.000 0.180 | 0.061
0.66 0.566 | 0.170 0.000 0.085 | 0.067
0.75 0.954 | 0.016 0.000 0.004 | 0.001
0.90 0.986 | 0.007 0.000 0.002 | 0.001
1.10 0.986 | 0.005 0.000 0.002 | 0.001
1.25 0.996 | 0.003 0.000 0.001 | 0.000
1.33 0.669 0.126 0.000 0.040 0.025
2.00 0.891 | 0.057 0.000 0.014 | 0.008
Overall | 0.713 | 0.010 0.000 0.041 | 0.001

Table A.32. 2DSD and QMI By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.574 | 0.026 0.000 0.228 | 0.051
Bilinear 0.619 | 0.075 0.000 0.188 | 0.088
Nearest 0.659 | 0.116 0.000 0.077 | 0.057
Undefined 1.000 | 0.001 0.000 0.000 | 0.000
Overall 0.659 | 0.013 0.000 0.151 | 0.014
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Table A.33. 2DSD and QMI Confusion Matrix (JPEG).
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Table A.34. 2DSD and 1DZC By Class (TIFF).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.253 | 0.292 0.038 | 0.064 0.161 | 0.031 0.000
GIMP-0.50-bilinear 0.258 | 0.271 0.047 | 0.060 0.138 | 0.041 0.000
GIMP-0.66-bicubic 0.147 | 0.076 0.005 | 0.004 0.205 | 0.076 0.000
GIMP-0.66-bilinear 0.240 | 0.122 0.008 | 0.004 0.279 | 0.112 0.000
GIMP-0.75-bicubic 0.082 | 0.076 0.006 | 0.003 0.111 | 0.093 0.018
GIMP-0.75-bilinear 0.129 | 0.061 0.007 | 0.004 0.168 | 0.062 0.000
GIMP-0.90-bicubic 0.488 | 0.043 0.004 | 0.001 0.583 | 0.047 0.000
GIMP-0.90-bilinear 0.407 | 0.195 0.023 | 0.011 0.310 | 0.116 0.000
GIMP-1.10-bicubic 0.291 | 0.130 0.012 | 0.004 0.292 | 0.087 0.000
GIMP-1.10-bilinear 0.304 | 0.109 0.012 | 0.005 0.317 | 0.086 0.000
GIMP-1.25-bicubic 0.080 | 0.137 0.005 | 0.006 0.084 | 0.126 0.165
GIMP-1.25-bilinear 0.350 | 0.128 0.019 | 0.007 0.302 | 0.080 0.000
GIMP-1.33-bicubic 0.512 | 0.082 0.024 | 0.003 0.381 | 0.048 0.000
GIMP-1.33-bilinear 0.338 | 0.189 0.012 | 0.005 0.324 | 0.128 0.000
GIMP-2.00-bicubic 0.205 | 0.104 0.009 | 0.004 0.242 | 0.091 0.000
GIMP-2.00-bilinear 0.186 | 0.178 0.010 | 0.012 0.190 | 0.114 0.002
MSPM-0.50-undefined | 0.262 | 0.297 0.048 | 0.066 0.135 | 0.044 0.000
MSPM-0.66-undefined | 0.993 | 0.008 0.002 | 0.001 0.946 | 0.016 0.000
MSPM-0.75-undefined | 0.162 | 0.075 0.008 | 0.004 0.204 | 0.087 0.000
MSPM-0.90-undefined | 0.352 | 0.074 0.005 | 0.001 0.446 | 0.075 0.000
MSPM-1.10-undefined | 0.747 | 0.053 0.000 | 0.000 0.843 | 0.032 0.000
MSPM-1.25-undefined | 0.430 | 0.131 0.018 | 0.006 0.362 | 0.084 0.000
MSPM-1.33-undefined | 0.897 | 0.032 0.000 | 0.000 0.938 | 0.020 0.000
MSPM-2.00-undefined | 0.990 | 0.018 0.001 | 0.000 0.844 | 0.271 0.000
APS-0.50-bicubic 0.167 | 0.196 0.024 | 0.048 0.120 | 0.050 0.000
APS-0.50-bilinear 0.144 | 0.221 0.022 | 0.047 0.109 | 0.055 0.001
APS-0.50-nearest 0.148 | 0.227 0.023 | 0.049 0.104 | 0.054 0.001
APS-0.66-bicubic 0.069 | 0.038 0.005 | 0.004 0.136 | 0.094 0.005
APS-0.66-bilinear 0.184 | 0.141 0.006 | 0.004 0.252 | 0.113 0.000
APS-0.66-nearest 0.281 | 0.049 0.004 | 0.001 0.325 | 0.119 0.000
APS-0.75-bicubic 0.047 | 0.032 0.002 | 0.003 0.069 | 0.051 0.019
APS-0.75-bilinear 0.056 | 0.086 0.005 | 0.007 0.133 | 0.133 0.032
APS-0.75-nearest 0.706 | 0.085 0.031 | 0.009 0.422 | 0.077 0.000
APS-0.90-bicubic 0.369 | 0.173 0.020 | 0.011 0.291 | 0.090 0.000
APS-0.90-bilinear 0.206 | 0.139 0.014 | 0.008 0.304 | 0.203 0.002
APS-0.90-nearest 0.831 | 0.035 0.005 | 0.001 0.767 | 0.089 0.000
APS-1.10-bicubic 0.722 | 0.063 0.019 | 0.007 0.529 | 0.058 0.000
APS-1.10-bilinear 0.284 | 0.144 0.011 | 0.004 0.345 | 0.171 0.000
APS-1.10-nearest 0.651 | 0.048 0.007 | 0.002 0.625 | 0.051 0.000
APS-1.25-bicubic 0.730 | 0.052 0.017 | 0.003 0.515 | 0.153 0.000
APS-1.25-bilinear 0.193 | 0.096 0.010 | 0.008 0.284 | 0.110 0.000
APS-1.25-nearest 0.461 | 0.084 0.010 | 0.004 0.517 | 0.101 0.000
APS-1.33-bicubic 0.645 | 0.042 0.003 | 0.001 0.665 | 0.136 0.000
APS-1.33-bilinear 0.340 | 0.142 0.013 | 0.006 0.386 | 0.135 0.000
APS-1.33-nearest 0.518 | 0.059 0.005 | 0.002 0.530 | 0.120 0.000
APS-2.00-bicubic 0.387 | 0.226 0.017 | 0.012 0.347 | 0.089 0.000
APS-2.00-bilinear 0.294 | 0.217 0.020 | 0.013 0.243 | 0.140 0.001
APS-2.00-nearest 0.573 | 0.083 0.013 | 0.002 0.507 | 0.089 0.000
Framework 0.384 | 0.008 0.014 | 0.000 0.306 | 0.127 0.000
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Table A.35. 2DSD and 1DZC By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.537 | 0.020 0.000 0.120 | 0.006
0.66 0.898 | 0.039 0.000 0.008 | 0.004
0.75 0.992 | 0.006 0.000 0.001 | 0.001
0.90 0.997 | 0.003 0.000 0.000 | 0.000
1.10 0.997 | 0.002 0.000 0.000 | 0.000
1.25 0.998 | 0.002 0.000 0.000 | 0.000
1.33 0.998 0.002 0.000 0.000 0.000
2.00 0.994 | 0.003 0.000 0.001 | 0.000
Overall | 0.886 | 0.007 0.000 0.016 | 0.001

Table A.36. 2DSD and 1DZC By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.530 | 0.030 0.000 0.225 | 0.079
Bilinear 0.529 | 0.044 0.000 0.230 | 0.080
Nearest 0.503 | 0.065 0.000 0.114 | 0.055
Undefined 0.622 | 0.143 0.000 0.095 | 0.073
Overall 0.523 | 0.023 0.000 0.186 | 0.011
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Table A.37. 2DSD and 1DZC Confusion Matrix (TIFF).
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Table A.38. 1DZC and FMD By Class (TIFF).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.008 | 0.013 0.002 | 0.005 0.011 | 0.017 0.132
GIMP-0.50-bilinear 0.129 | 0.261 0.041 | 0.078 0.035 | 0.051 0.422
GIMP-0.66-bicubic 0.085 | 0.256 0.024 | 0.072 0.015 | 0.045 0.699
GIMP-0.66-bilinear 0.038 | 0.114 0.014 | 0.041 0.011 | 0.033 0.387
GIMP-0.75-bicubic 0.082 | 0.244 0.025 | 0.074 0.015 | 0.042 0.692
GIMP-0.75-bilinear 0.066 | 0.162 0.018 | 0.051 0.033 | 0.047 0.452
GIMP-0.90-bicubic 0.034 | 0.052 0.006 | 0.015 0.040 | 0.063 0.376
GIMP-0.90-bilinear 0.113 | 0.278 0.030 | 0.084 0.039 | 0.080 0.516
GIMP-1.10-bicubic 0.156 | 0.114 0.012 | 0.006 0.161 | 0.104 0.003
GIMP-1.10-bilinear 0.412 | 0.145 0.018 | 0.005 0.351 | 0.089 0.000
GIMP-1.25-bicubic 0.234 | 0.167 0.012 | 0.006 0.230 | 0.103 0.000
GIMP-1.25-bilinear 0.370 | 0.145 0.017 | 0.006 0.324 | 0.107 0.000
GIMP-1.33-bicubic 0.001 | 0.004 0.003 | 0.001 0.002 | 0.007 0.000
GIMP-1.33-bilinear 0.051 | 0.033 0.002 | 0.001 0.089 | 0.056 0.005
GIMP-2.00-bicubic 0.217 | 0.100 0.012 | 0.009 0.247 | 0.122 0.000
GIMP-2.00-bilinear 0.039 | 0.079 0.010 | 0.025 0.031 | 0.036 0.399
MSPM-0.50-undefined | 0.085 | 0.232 0.026 | 0.070 0.019 | 0.039 0.894
MSPM-0.66-undefined | 0.080 | 0.234 0.026 | 0.075 0.014 | 0.038 0.624
MSPM-0.75-undefined | 0.064 | 0.191 0.021 | 0.062 0.013 | 0.037 0.563
MSPM-0.90-undefined | 0.107 | 0.298 0.027 | 0.079 0.027 | 0.050 0.697
MSPM-1.10-undefined | 0.202 | 0.151 0.012 | 0.008 0.203 | 0.132 0.003
MSPM-1.25-undefined | 0.523 | 0.066 0.013 | 0.003 0.488 | 0.042 0.000
MSPM-1.33-undefined | 0.928 | 0.023 0.024 | 0.003 0.613 | 0.032 0.000
MSPM-2.00-undefined | 0.942 | 0.023 0.012 | 0.001 0.753 | 0.032 0.000
APS-0.50-bicubic 0.188 | 0.348 0.069 | 0.134 0.040 | 0.052 0.311
APS-0.50-bilinear 0.010 | 0.025 0.002 | 0.003 0.012 | 0.032 0.424
APS-0.50-nearest 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.66-bicubic 0.175 | 0.330 0.066 | 0.123 0.032 | 0.052 0.546
APS-0.66-bilinear 0.067 | 0.080 0.011 | 0.021 0.071 | 0.072 0.066
APS-0.66-nearest 0.001 | 0.002 0.001 | 0.001 0.001 | 0.003 0.000
APS-0.75-bicubic 0.091 | 0.268 0.034 | 0.099 0.013 | 0.035 0.518
APS-0.75-bilinear 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.75-nearest 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
APS-0.90-bicubic 0.000 | 0.001 0.000 | 0.000 0.001 | 0.002 0.000
APS-0.90-bilinear 0.113 | 0.262 0.043 | 0.100 0.022 | 0.045 0.915
APS-0.90-nearest 0.131 | 0.259 0.032 | 0.091 0.070 | 0.113 0.221
APS-1.10-bicubic 0.060 | 0.065 0.006 | 0.004 0.076 | 0.072 0.048
APS-1.10-bilinear 0.639 | 0.061 0.012 | 0.002 0.590 | 0.046 0.000
APS-1.10-nearest 0.215 | 0.142 0.010 | 0.005 0.231 | 0.129 0.001
APS-1.25-bicubic 0.018 | 0.016 0.004 | 0.001 0.029 | 0.025 0.328
APS-1.25-bilinear 0.808 | 0.035 0.014 | 0.002 0.662 | 0.031 0.000
APS-1.25-nearest 0.245 | 0.033 0.011 | 0.002 0.285 | 0.039 0.000
APS-1.33-bicubic 0.173 | 0.348 0.065 | 0.130 0.023 | 0.047 0.873
APS-1.33-bilinear 0.548 | 0.056 0.014 | 0.002 0.497 | 0.044 0.000
APS-1.33-nearest 0.009 | 0.011 0.001 | 0.000 0.017 | 0.020 0.543
APS-2.00-bicubic 0.009 | 0.021 0.002 | 0.003 0.013 | 0.027 0.389
APS-2.00-bilinear 0.166 | 0.096 0.008 | 0.007 0.203 | 0.118 0.001
APS-2.00-nearest 0.068 | 0.193 0.025 | 0.070 0.015 | 0.038 0.648
Framework 0.190 | 0.009 0.020 | 0.000 0.142 | 0.010 0.000
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Table A.39. 1DZC and FMD By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.230 | 0.088 0.006 0.136 | 0.138
0.66 0.194 | 0.110 0.091 0.139 | 0.167
0.75 0.256 | 0.265 0.173 0.095 | 0.160
0.90 0.244 | 0.208 0.120 0.133 | 0.186
1.10 0.762 | 0.020 0.000 0.028 | 0.003
1.25 0.813 | 0.013 0.000 0.025 | 0.002
1.33 0.670 0.213 0.000 0.087 0.138
2.00 0.483 | 0.151 0.000 0.066 | 0.069
Overall | 0.382 | 0.016 0.000 0.089 | 0.002

Table A.40. 1DZC and FMD By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.386 | 0.013 0.000 0.340 | 0.158
Bilinear 0.441 | 0.051 0.000 0.287 | 0.196
Nearest 0.399 | 0.049 0.000 0.070 | 0.093
Undefined 0.458 | 0.086 0.000 0.153 | 0.106
Overall 0.397 | 0.013 0.000 0.246 | 0.024
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Table A.41. 1DZC and FMD Confusion Matrix (TIFF).

CSYYYEE R
EREE R
o B o B H oo R o H o RO NG R ===
B2 E2 2S5 SEEEEEEEEIETEEL o : PR o oHroEeg
2 2 9 2 <2 2 < S BB FRLIRLIRLIR =z 229 2%
SEB3E83EBE383873 8 SETYTTCTYUTSTTEE S B 222 Z2ZEEZE 38R G ] ]
EEEEEEEEEEEE e RN AL RN LN N
S B R B R RS BB BB E AT E T T T S T S EESEELEEETEEEEE Z 822 ¢
I LR L e R R N N RN e R L L R R -
BRESEELEZSZI N 0TI NNYIOO S NoS bbb bdbddoodd D HhD DD
T I IO TS L L Ll Y el DO EEEDIDID === AN NHNS S S
AAAAAAAAAAAAAAARAA S S S S S S =929 Q i aninininin - TR
SE S50 0555000l DD DDA AD DDA A h DN A
PR g=f=p =Ry N R N R R R R BT 7 7§ V- iy Ol U< ol U ol Vo o U oy T [PV -o. vy
ERCRCRORVRGVRCVRCRCRCRCACACRCRCRCRGIP=p=jp=jp=p= gp= = = gl IR ool el el < << <<
=
54
F2= e T (1 |
7
E g
< o . s 29T - — g9 & =
O ® L2 o U 4 B0 -~ =~ B2 0 AT wom e 2P ETE T T A R A R A A B B - B A~ ) <
%
=
BROOOOCOCOCOOO0OOCOCOO O COCCOCODO(FFMIdDF DI FIND FO FFONMO ~ 10—~ M
O OO OCCODOO0OOCOOCOOOo Do PP =T O -H AN NOOoOOCOO OO |
o
OO OCOoCCcC oo oo Ccoooococ o oo cCoocooc oo Ccococoocoococococoocooe
A
IO oo o000 oo ococ o oo cCoocoCocoocCocococoocoocococoocooie
- ”m D
OO ooOocCooocoo o cooc oo oo SN YO0 F A0 HOMOS O NSO T~
=3 M AN FFN NN F O =) —
O OCOCOoCOCOoOOCOoOOCOoCOoCCooococ o Cc o oo B B R e I e e B R A B I Sl S B Is N )
o I~ =]
BO OO OCCOCO0OO0OOOCCCO0DDOOoCOoOCIPOHOCO OO OO0 0O -HO|HOANO ™~
Q —
RO OO OO0 DO PO CODO0OO0OO0C OO H 1O ~~0O0O0 DD ~HWOMODODOO @™
Fdococococcoococolcolcooc o oo oo olcoo|HOoNoO000cOoOMNOO~NOOHOOlCo OO
E - O O
IO oCcCcCCcC o000 oo o Cc oo HOHO OO O " HHHHIHOOOOOCO
— o <t
OO OO COCOO|IDOCCOCOO0OO0OCOOIOCOOCC—TOONHOO A H[OIDHINOO OO W
g
O OO O OH OO NSO OoOOM AN FNOS—~ OO
| —
- =h=]
T OoOoOocCocoo|Coococococ oo WV~ DDV~~~ F O N0 MO 0
?DDOCCCODDOCQCO SoocoCocCcCcoocoocc oo oo oo
=
T|Oo o oo ococococoo o o coococococlcococ oo cocococoo
e
B OOoOOoOOoCoOD|ICDOoOoD oo O SO oo oo oo c oo oo oo
@
IO CcCoOoCcICOoODooc oo Cc oo P~ I~ I=[00 © === 00 F — & MO A I~ a0
=
TOCclocccooco o ococoCc oo ocococoococococoococococoocooo
Q
El=N=l(=-)-lelelelelele - - LM NN~ 0002200~ F O~
=) 0 10 M| ™ @ @ m + -
O oClococcoc oo oo Cc oo — — — — — O~ © 00 DN —~ D 00— —
<
IO coccoocoococoCc oo cC oo oo oo ocoococoocoocoooo f=]
o o coococoocococ oo o oo oo cCoococoocococoocooo =1
0 M D N AN A <F <F D o [=ntel <t
mOoOoDCc oo oo oo oo o o = 00 N O N O —
KN mtrTotrto—~NOoDOoOOS S oo oo oo oo oo oo oooIC =]
= ™ D
FNOCOC N NODOoODOoODOoODOocoOo™MmMMm ScCoococococococoococococoo|ooc ol (=}
<+ <o
cCoococococococoo|HMOoOo oo oo ocCococoocoocoo|ooc oo =]
O -
PO o000 OO ~ | oo o oo oo cococooco c c oo oo =
- O oo~ O~Mm A~ O MmO ScoCcocoCccoocoocococoocococooCoc o
NF O FFMWOO F O S NN oo ooccococoococococoocooo =]
=TT O N[O O OV O~~~ O MMm (==l il el el e N = =1 =i =R R e e ) (=]
Th=M~C o~~~ F N cCoococococococoococococoocoocoo (=}
=5 NN NN~ N~~~ O o oo (=i o oo (=i o oo (=]
QM N~ AN AN AN NOOoOOoOo —~ O cCoococococococoococoocoocoocoie (=}
Foococo—~ooococococom oo oo ocooCocoococooococolcC
EOOD oNoOoNOoO o oo o oo oc oo oococoocoo|oo o1
@ 2
—@e "o ococ oo oo MO~ oo oo ocococoocoocooooc oo
~
OO ™= =M~ O [ o cCoococoCococooocooCcooooc oo
mn M
s OO oo MODoONO Do oo oo ocooccooc oo oo
oo
=N OO N 4O OO~ OO DO — cCoCc oo oo Coc oo cICccooc oo o
=
W~ — - O — (NN O SO O o cCoocCcCocoococooCc Koo ocococococoococoo f=]
= |[F D F DD O NN~ N =M < coococoococoolo clcocococo cocococoo o o
DD © 1D Ol OO © AN~ — O AN AN = (- O © oo CcooooCoc oo oo Cc oo oo oocCoc oo
T M NMENNO NN A OO~ — N M T OO0 OO CCOoOOOOCD OO o0 OoOoCc oo oo
VO =00 O©IN O —~ —~ — D a M OO oo oo ooccoc oo c o c oo oocoo f=]
o™ — (=1 o=
2= == DH DDA M N OID MDD — N oo oococc oo ocoocococoococoo (=}
o fe=je=g ) oo o oo cocococ oo oo oo oococ oo o oo Cococoocooo =]

89



Table A.42. 2DSD and FMD By Class (TIFF).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.437 | 0.375 0.038 | 0.034 0.232 | 0.103 0.000
GIMP-0.50-bilinear 0.256 | 0.260 0.020 | 0.027 0.188 | 0.091 0.000
GIMP-0.66-bicubic 0.128 | 0.053 0.002 | 0.001 0.205 | 0.074 0.000
GIMP-0.66-bilinear 0.424 | 0.094 0.004 | 0.001 0.517 | 0.078 0.000
GIMP-0.75-bicubic 0.183 | 0.168 0.007 | 0.006 0.214 | 0.141 0.003
GIMP-0.75-bilinear 0.382 | 0.213 0.011 | 0.005 0.367 | 0.161 0.000
GIMP-0.90-bicubic 0.521 | 0.053 0.002 | 0.002 0.645 | 0.034 0.000
GIMP-0.90-bilinear 0.819 | 0.076 0.017 | 0.003 0.623 | 0.045 0.000
GIMP-1.10-bicubic 0.751 | 0.069 0.014 | 0.002 0.623 | 0.041 0.000
GIMP-1.10-bilinear 0.438 | 0.091 0.007 | 0.002 0.496 | 0.076 0.000
GIMP-1.25-bicubic 0.385 | 0.305 0.014 | 0.012 0.311 | 0.181 0.001
GIMP-1.25-bilinear 0.332 | 0.262 0.013 | 0.011 0.292 | 0.142 0.000
GIMP-1.33-bicubic 0.452 | 0.283 0.010 | 0.006 0.427 | 0.159 0.000
GIMP-1.33-bilinear 0.566 | 0.322 0.011 | 0.005 0.484 | 0.198 0.000
GIMP-2.00-bicubic 0.528 | 0.213 0.011 | 0.004 0.504 | 0.118 0.000
GIMP-2.00-bilinear 0.400 | 0.211 0.010 | 0.005 0.400 | 0.151 0.000
MSPM-0.50-undefined | 0.348 | 0.356 0.030 | 0.031 0.182 | 0.116 0.002
MSPM-0.66-undefined | 1.000 | 0.000 0.001 | 0.000 0.969 | 0.009 0.000
MSPM-0.75-undefined | 0.218 | 0.154 0.006 | 0.004 0.265 | 0.142 0.001
MSPM-0.90-undefined | 0.474 | 0.053 0.004 | 0.002 0.569 | 0.043 0.000
MSPM-1.10-undefined | 0.765 | 0.040 0.000 | 0.000 0.861 | 0.025 0.000
MSPM-1.25-undefined | 0.364 | 0.303 0.012 | 0.013 0.328 | 0.139 0.000
MSPM-1.33-undefined | 0.902 | 0.024 0.000 | 0.000 0.942 | 0.016 0.000
MSPM-2.00-undefined | 0.974 | 0.048 0.003 | 0.001 0.925 | 0.028 0.000
APS-0.50-bicubic 0.140 | 0.239 0.011 | 0.025 0.118 | 0.087 0.008
APS-0.50-bilinear 0.387 | 0.376 0.035 | 0.039 0.204 | 0.105 0.001
APS-0.50-nearest 0.506 | 0.410 0.054 | 0.042 0.201 | 0.120 0.001
APS-0.66-bicubic 0.054 | 0.026 0.001 | 0.001 0.097 | 0.047 0.001
APS-0.66-bilinear 0.400 | 0.054 0.004 | 0.002 0.501 | 0.034 0.000
APS-0.66-nearest 0.394 | 0.106 0.004 | 0.002 0.497 | 0.099 0.000
APS-0.75-bicubic 0.074 | 0.069 0.003 | 0.002 0.116 | 0.095 0.015
APS-0.75-bilinear 0.223 | 0.101 0.004 | 0.001 0.298 | 0.117 0.000
APS-0.75-nearest 0.758 | 0.066 0.014 | 0.001 0.625 | 0.048 0.000
APS-0.90-bicubic 0.565 | 0.219 0.010 | 0.003 0.535 | 0.131 0.000
APS-0.90-bilinear 0.474 | 0.205 0.009 | 0.005 0.471 | 0.151 0.000
APS-0.90-nearest 0.932 | 0.034 0.003 | 0.001 0.904 | 0.033 0.000
APS-1.10-bicubic 0.649 | 0.117 0.011 | 0.003 0.598 | 0.055 0.000
APS-1.10-bilinear 0.466 | 0.149 0.008 | 0.002 0.487 | 0.097 0.000
APS-1.10-nearest 0.681 | 0.037 0.006 | 0.001 0.694 | 0.030 0.000
APS-1.25-bicubic 0.408 | 0.230 0.007 | 0.008 0.446 | 0.112 0.000
APS-1.25-bilinear 0.567 | 0.294 0.015 | 0.008 0.451 | 0.175 0.000
APS-1.25-nearest 0.544 | 0.119 0.009 | 0.002 0.551 | 0.097 0.000
APS-1.33-bicubic 0.626 | 0.051 0.003 | 0.001 0.713 | 0.035 0.000
APS-1.33-bilinear 0.937 | 0.027 0.014 | 0.002 0.723 | 0.023 0.000
APS-1.33-nearest 0.487 | 0.049 0.003 | 0.001 0.598 | 0.045 0.000
APS-2.00-bicubic 0.502 | 0.200 0.011 | 0.005 0.480 | 0.101 0.000
APS-2.00-bilinear 0.429 | 0.234 0.010 | 0.005 0.412 | 0.158 0.000
APS-2.00-nearest 0.582 | 0.039 0.009 | 0.001 0.586 | 0.032 0.000
Framework 0.506 | 0.011 0.011 | 0.000 0.483 | 0.011 0.000
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Table A.43. 2DSD and FMD By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV

0.50 0.528 | 0.014 0.000 0.124 | 0.005
0.66 0.956 | 0.012 0.000 0.003 | 0.001
0.75 0.995 | 0.005 0.000 0.001 | 0.000
0.90 0.996 | 0.003 0.000 0.000 | 0.000
1.10 0.998 | 0.002 0.000 0.000 | 0.000
1.25 0.994 | 0.003 0.000 0.001 | 0.000
1.33 0.998 0.002 0.000 0.000 0.000
2.00 0.993 | 0.003 0.000 0.001 | 0.000
Overall | 0.886 | 0.004 0.000 0.016 | 0.001

Table A.44. 2DSD and FMD By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.529 | 0.028 0.000 0.207 | 0.060
Bilinear 0.487 | 0.025 0.000 0.268 | 0.061
Nearest 0.573 | 0.062 0.000 0.108 | 0.041
Undefined 0.699 | 0.103 0.000 0.063 | 0.034
Overall 0.541 | 0.012 0.000 0.187 | 0.011
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Table A.46. 2DSD, 1DZC, and QMI By Class (JPEG).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.318 | 0.227 0.031 | 0.030 0.221 | 0.064 0.000
GIMP-0.50-bilinear 0.346 | 0.344 0.039 | 0.042 0.166 | 0.104 0.002
GIMP-0.66-bicubic 0.434 | 0.365 0.041 | 0.038 0.216 | 0.123 0.001
GIMP-0.66-bilinear 0.307 | 0.055 0.002 | 0.001 0.433 | 0.063 0.000
GIMP-0.75-bicubic 0.384 | 0.127 0.005 | 0.002 0.458 | 0.109 0.000
GIMP-0.75-bilinear 0.250 | 0.120 0.005 | 0.003 0.323 | 0.126 0.000
GIMP-0.90-bicubic 0.425 | 0.049 0.005 | 0.001 0.507 | 0.052 0.000
GIMP-0.90-bilinear 0.308 | 0.056 0.003 | 0.001 0.425 | 0.058 0.000
GIMP-1.10-bicubic 0.655 | 0.063 0.006 | 0.002 0.671 | 0.043 0.000
GIMP-1.10-bilinear 0.729 | 0.069 0.005 | 0.001 0.735 | 0.046 0.000
GIMP-1.25-bicubic 0.582 | 0.063 0.007 | 0.002 0.618 | 0.058 0.000
GIMP-1.25-bilinear 0.639 | 0.057 0.007 | 0.001 0.644 | 0.051 0.000
GIMP-1.33-bicubic 0.301 | 0.165 0.015 | 0.017 0.303 | 0.071 0.000
GIMP-1.33-bilinear 0.146 | 0.153 0.008 | 0.011 0.161 | 0.100 0.002
GIMP-2.00-bicubic 0.441 | 0.275 0.009 | 0.005 0.417 | 0.220 0.000
GIMP-2.00-bilinear 0.371 | 0.274 0.006 | 0.005 0.390 | 0.195 0.000
MSPM-0.50-undefined | 0.971 | 0.019 0.007 | 0.002 0.838 | 0.026 0.000
MSPM-0.66-undefined | 1.000 | 0.000 0.000 | 0.000 0.853 | 0.078 0.000
MSPM-0.75-undefined | 0.701 | 0.052 0.000 | 0.000 0.955 | 0.064 0.000
MSPM-0.90-undefined | 1.000 | 0.000 0.000 | 0.000 0.850 | 0.261 0.000
MSPM-1.10-undefined | 0.993 | 0.009 0.000 | 0.000 0.539 | 0.351 0.002
MSPM-1.25-undefined | 1.000 | 0.000 0.000 | 0.000 0.253 | 0.262 0.026
MSPM-1.33-undefined | 0.973 | 0.023 0.000 | 0.000 0.156 | 0.158 0.031
MSPM-2.00-undefined | 0.945 | 0.073 0.001 | 0.000 0.171 | 0.087 0.001
APS-0.50-bicubic 0.237 | 0.223 0.032 | 0.041 0.276 | 0.158 0.001
APS-0.50-bilinear 0.158 | 0.207 0.026 | 0.036 0.380 | 0.123 0.000
APS-0.50-nearest 0.230 | 0.296 0.034 | 0.055 0.394 | 0.179 0.000
APS-0.66-bicubic 0.378 | 0.375 0.064 | 0.064 0.511 | 0.218 0.000
APS-0.66-bilinear 0.317 | 0.041 0.003 | 0.001 0.600 | 0.133 0.000
APS-0.66-nearest 0.348 | 0.054 0.003 | 0.001 0.520 | 0.093 0.000
APS-0.75-bicubic 0.121 | 0.040 0.003 | 0.001 0.546 | 0.103 0.000
APS-0.75-bilinear 0.770 | 0.080 0.003 | 0.002 0.653 | 0.154 0.000
APS-0.75-nearest 0.568 | 0.097 0.008 | 0.003 0.772 | 0.112 0.000
APS-0.90-bicubic 0.403 | 0.051 0.006 | 0.001 0.786 | 0.070 0.000
APS-0.90-bilinear 0.409 | 0.074 0.007 | 0.001 0.794 | 0.028 0.000
APS-0.90-nearest 0.732 | 0.035 0.001 | 0.001 0.806 | 0.069 0.000
APS-1.10-bicubic 0.681 | 0.050 0.003 | 0.001 0.861 | 0.050 0.000
APS-1.10-bilinear 0.883 | 0.062 0.004 | 0.001 0.770 | 0.221 0.000
APS-1.10-nearest 0.717 | 0.063 0.002 | 0.001 0.560 | 0.279 0.000
APS-1.25-bicubic 0.738 | 0.061 0.002 | 0.001 0.441 | 0.200 0.000
APS-1.25-bilinear 0.984 | 0.013 0.003 | 0.001 0.450 | 0.149 0.000
APS-1.25-nearest 0.808 | 0.036 0.001 | 0.001 0.490 | 0.171 0.000
APS-1.33-bicubic 0.205 | 0.095 0.016 | 0.012 0.427 | 0.122 0.000
APS-1.33-bilinear 0.248 | 0.048 0.003 | 0.001 0.343 | 0.147 0.000
APS-1.33-nearest 0.573 | 0.049 0.002 | 0.001 0.349 | 0.144 0.000
APS-2.00-bicubic 0.425 | 0.318 0.011 | 0.009 0.216 | 0.210 0.021
APS-2.00-bilinear 0.427 | 0.324 0.010 | 0.009 0.055 | 0.114 0.385
APS-2.00-nearest 0.246 | 0.111 0.016 | 0.010 0.033 | 0.099 0.720
Framework 0.544 | 0.006 0.010 | 0.000 0.000 | 0.000 0.000
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Table A.47. 2DSD, 1DZC, and QMI By Rate (JPEG).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.401 | 0.083 0.000 0.156 | 0.070
0.66 0.530 | 0.170 0.000 0.106 | 0.067
0.75 0.945 | 0.014 0.000 0.005 | 0.001
0.90 0.985 | 0.004 0.000 0.002 | 0.000
1.10 0.986 | 0.006 0.000 0.002 | 0.001
1.25 0.999 | 0.002 0.000 0.000 | 0.000
1.33 0.675 | 0.091 0.000 0.038 | 0.017
2.00 0.892 | 0.059 0.000 0.015 | 0.009
Overall | 0.719 | 0.008 0.000 0.040 | 0.001

Table A.48. 2DSD, 1DZC, and QMI By Algorithm (JPEG).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.572 | 0.021 0.000 0.258 | 0.058
Bilinear 0.639 | 0.047 0.000 0.159 | 0.064
Nearest 0.682 | 0.117 0.000 0.066 | 0.055
Undefined 0.999 | 0.001 0.000 0.000 | 0.000
Overall 0.668 | 0.014 0.000 0.150 | 0.010
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Table A.50. 2DSD, 1DZC, and QMI By Class (TIFF).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.396 | 0.289 0.032 | 0.029 0.254 | 0.078 0.000
GIMP-0.50-bilinear 0.324 | 0.308 0.028 | 0.030 0.208 | 0.091 0.000
GIMP-0.66-bicubic 0.203 | 0.072 0.004 | 0.001 0.288 | 0.086 0.000
GIMP-0.66-bilinear 0.360 | 0.086 0.004 | 0.001 0.469 | 0.073 0.000
GIMP-0.75-bicubic 0.118 | 0.069 0.003 | 0.002 0.175 | 0.084 0.000
GIMP-0.75-bilinear 0.509 | 0.107 0.013 | 0.004 0.480 | 0.061 0.000
GIMP-0.90-bicubic 0.492 | 0.045 0.002 | 0.001 0.626 | 0.044 0.000
GIMP-0.90-bilinear 0.783 | 0.086 0.017 | 0.002 0.605 | 0.052 0.000
GIMP-1.10-bicubic 0.681 | 0.053 0.013 | 0.002 0.591 | 0.035 0.000
GIMP-1.10-bilinear 0.477 | 0.074 0.008 | 0.002 0.518 | 0.063 0.000
GIMP-1.25-bicubic 0.507 | 0.168 0.012 | 0.005 0.485 | 0.090 0.000
GIMP-1.25-bilinear 0.361 | 0.173 0.011 | 0.007 0.360 | 0.100 0.000
GIMP-1.33-bicubic 0.656 | 0.106 0.010 | 0.002 0.614 | 0.069 0.000
GIMP-1.33-bilinear 0.525 | 0.109 0.008 | 0.002 0.544 | 0.076 0.000
GIMP-2.00-bicubic 0.449 | 0.144 0.009 | 0.004 0.480 | 0.083 0.000
GIMP-2.00-bilinear 0.608 | 0.185 0.012 | 0.003 0.544 | 0.105 0.000
MSPM-0.50-undefined | 0.347 | 0.315 0.028 | 0.027 0.227 | 0.082 0.000
MSPM-0.66-undefined | 1.000 | 0.001 0.001 | 0.000 0.974 | 0.009 0.000
MSPM-0.75-undefined | 0.304 | 0.155 0.006 | 0.004 0.361 | 0.122 0.000
MSPM-0.90-undefined | 0.449 | 0.044 0.006 | 0.002 0.522 | 0.041 0.000
MSPM-1.10-undefined | 0.746 | 0.047 0.001 | 0.000 0.842 | 0.036 0.000
MSPM-1.25-undefined | 0.483 | 0.117 0.010 | 0.003 0.472 | 0.072 0.000
MSPM-1.33-undefined | 0.912 | 0.027 0.000 | 0.000 0.946 | 0.013 0.000
MSPM-2.00-undefined | 1.000 | 0.001 0.000 | 0.000 0.423 | 0.327 0.005
APS-0.50-bicubic 0.374 | 0.290 0.038 | 0.032 0.167 | 0.091 0.001
APS-0.50-bilinear 0.206 | 0.278 0.020 | 0.027 0.203 | 0.082 0.000
APS-0.50-nearest 0.395 | 0.329 0.035 | 0.036 0.147 | 0.099 0.004
APS-0.66-bicubic 0.124 | 0.176 0.009 | 0.019 0.387 | 0.133 0.000
APS-0.66-bilinear 0.365 | 0.068 0.004 | 0.001 0.466 | 0.089 0.000
APS-0.66-nearest 0.380 | 0.091 0.004 | 0.002 0.295 | 0.143 0.000
APS-0.75-bicubic 0.142 | 0.085 0.003 | 0.001 0.250 | 0.122 0.000
APS-0.75-bilinear 0.184 | 0.110 0.005 | 0.002 0.499 | 0.192 0.000
APS-0.75-nearest 0.730 | 0.063 0.014 | 0.004 0.573 | 0.099 0.000
APS-0.90-bicubic 0.608 | 0.195 0.011 | 0.004 0.549 | 0.075 0.000
APS-0.90-bilinear 0.479 | 0.200 0.009 | 0.004 0.772 | 0.230 0.000
APS-0.90-nearest 0.942 | 0.027 0.002 | 0.001 0.756 | 0.095 0.000
APS-1.10-bicubic 0.816 | 0.038 0.010 | 0.002 0.695 | 0.028 0.000
APS-1.10-bilinear 0.602 | 0.046 0.003 | 0.001 0.704 | 0.033 0.000
APS-1.10-nearest 0.672 | 0.054 0.005 | 0.001 0.688 | 0.033 0.000
APS-1.25-bicubic 0.691 | 0.068 0.007 | 0.002 0.659 | 0.067 0.000
APS-1.25-bilinear 0.711 | 0.089 0.009 | 0.001 0.580 | 0.063 0.000
APS-1.25-nearest 0.495 | 0.058 0.007 | 0.002 0.685 | 0.095 0.000
APS-1.33-bicubic 0.720 | 0.080 0.004 | 0.002 0.737 | 0.044 0.000
APS-1.33-bilinear 0.865 | 0.092 0.011 | 0.003 0.696 | 0.065 0.000
APS-1.33-nearest 0.558 | 0.055 0.003 | 0.001 0.516 | 0.121 0.000
APS-2.00-bicubic 0.527 | 0.182 0.012 | 0.005 0.442 | 0.116 0.000
APS-2.00-bilinear 0.392 | 0.202 0.009 | 0.005 0.543 | 0.116 0.000
APS-2.00-nearest 0.588 | 0.041 0.008 | 0.001 0.543 | 0.034 0.000
Framework 0.532 | 0.008 0.010 | 0.000 0.145 | 0.207 0.104
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Table A.51. 2DSD, 1DZC, and QMI By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.537 | 0.018 0.000 0.118 | 0.015
0.66 0.885 | 0.082 0.000 0.012 | 0.016
0.75 0.990 | 0.006 0.000 0.001 | 0.001
0.90 0.995 | 0.002 0.000 0.001 | 0.000
1.10 0.999 | 0.001 0.000 0.000 | 0.000
1.25 0.995 | 0.003 0.000 0.001 | 0.000
1.33 0.998 0.002 0.000 0.000 0.000
2.00 0.992 | 0.002 0.000 0.001 | 0.000
Overall | 0.883 | 0.005 0.000 0.017 | 0.001

Table A.52. 2DSD, 1DZC, and QMI By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.543 | 0.028 0.000 0.229 | 0.050
Bilinear 0.531 | 0.030 0.000 0.233 | 0.038
Nearest 0.623 | 0.067 0.000 0.085 | 0.037
Undefined 0.710 | 0.082 0.000 0.058 | 0.028
Overall 0.572 | 0.011 0.000 0.178 | 0.006
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Table A.53. 2DSD, 1DZC, and FMD (TIFF).
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Table A.54. All Modules By Class (TIFF).

Class TPR FPR F-Measure
Mean | STDEV | Mean | STDEV | Mean | STDEV | P-Value
GIMP-0.50-bicubic 0.320 | 0.245 0.039 | 0.042 0.197 | 0.037 0.000
GIMP-0.50-bilinear 0.509 | 0.313 0.057 | 0.035 0.216 | 0.085 0.000
GIMP-0.66-bicubic 0.154 | 0.168 0.011 | 0.019 0.154 | 0.076 0.001
GIMP-0.66-bilinear 0.280 | 0.068 0.001 | 0.001 0.411 | 0.086 0.000
GIMP-0.75-bicubic 0.470 | 0.091 0.007 | 0.002 0.532 | 0.070 0.000
GIMP-0.75-bilinear 0.185 | 0.121 0.003 | 0.002 0.260 | 0.149 0.001
GIMP-0.90-bicubic 0.467 | 0.032 0.005 | 0.001 0.548 | 0.019 0.000
GIMP-0.90-bilinear 0.294 | 0.041 0.003 | 0.001 0.406 | 0.050 0.000
GIMP-1.10-bicubic 0.652 | 0.043 0.007 | 0.001 0.664 | 0.029 0.000
GIMP-1.10-bilinear 0.702 | 0.055 0.006 | 0.001 0.714 | 0.040 0.000
GIMP-1.25-bicubic 0.576 | 0.049 0.007 | 0.002 0.615 | 0.040 0.000
GIMP-1.25-bilinear 0.645 | 0.086 0.007 | 0.001 0.653 | 0.067 0.000
GIMP-1.33-bicubic 0.224 | 0.088 0.009 | 0.008 0.268 | 0.083 0.000
GIMP-1.33-bilinear 0.272 | 0.180 0.023 | 0.016 0.217 | 0.087 0.000
GIMP-2.00-bicubic 0.508 | 0.237 0.009 | 0.004 0.485 | 0.187 0.000
GIMP-2.00-bilinear 0.333 | 0.175 0.006 | 0.004 0.396 | 0.137 0.000
MSPM-0.50-undefined | 0.983 | 0.009 0.008 | 0.002 0.840 | 0.025 0.000
MSPM-0.66-undefined | 1.000 | 0.000 0.000 | 0.000 0.802 | 0.036 0.000
MSPM-0.75-undefined | 0.677 | 0.047 0.000 | 0.000 0.970 | 0.034 0.000
MSPM-0.90-undefined | 1.000 | 0.000 0.000 | 0.000 0.749 | 0.306 0.000
MSPM-1.10-undefined | 0.994 | 0.006 0.000 | 0.000 0.210 | 0.139 0.003
MSPM-1.25-undefined | 1.000 | 0.000 0.000 | 0.000 0.138 | 0.057 0.000
MSPM-1.33-undefined | 0.988 | 0.017 0.000 | 0.000 0.123 | 0.039 0.000
MSPM-2.00-undefined | 0.932 | 0.086 0.000 | 0.000 0.185 | 0.091 0.000
APS-0.50-bicubic 0.242 | 0.269 0.033 | 0.054 0.379 | 0.065 0.000
APS-0.50-bilinear 0.202 | 0.302 0.031 | 0.052 0.388 | 0.130 0.000
APS-0.50-nearest 0.296 | 0.331 0.045 | 0.062 0.371 | 0.245 0.002
APS-0.66-bicubic 0.218 | 0.308 0.035 | 0.053 0.700 | 0.122 0.000
APS-0.66-bilinear 0.297 | 0.055 0.004 | 0.001 0.608 | 0.078 0.000
APS-0.66-nearest 0.315 | 0.083 0.002 | 0.001 0.479 | 0.065 0.000
APS-0.75-bicubic 0.159 | 0.167 0.016 | 0.037 0.571 | 0.118 0.000
APS-0.75-bilinear 0.807 | 0.056 0.002 | 0.001 0.766 | 0.062 0.000
APS-0.75-nearest 0.599 | 0.086 0.007 | 0.002 0.795 | 0.034 0.000
APS-0.90-bicubic 0.409 | 0.065 0.006 | 0.001 0.828 | 0.036 0.000
APS-0.90-bilinear 0.409 | 0.057 0.006 | 0.002 0.803 | 0.021 0.000
APS-0.90-nearest 0.706 | 0.065 0.001 | 0.001 0.851 | 0.063 0.000
APS-1.10-bicubic 0.718 | 0.029 0.003 | 0.001 0.905 | 0.023 0.000
APS-1.10-bilinear 0.875 | 0.065 0.004 | 0.001 0.703 | 0.253 0.000
APS-1.10-nearest 0.726 | 0.025 0.003 | 0.001 0.283 | 0.151 0.001
APS-1.25-bicubic 0.768 | 0.072 0.002 | 0.001 0.430 | 0.123 0.000
APS-1.25-bilinear 0.970 | 0.012 0.002 | 0.001 0.538 | 0.156 0.000
APS-1.25-nearest 0.834 | 0.036 0.001 | 0.001 0.455 | 0.140 0.000
APS-1.33-bicubic 0.168 | 0.106 0.011 | 0.010 0.319 | 0.109 0.000
APS-1.33-bilinear 0.245 | 0.054 0.002 | 0.001 0.332 | 0.119 0.000
APS-1.33-nearest 0.539 | 0.053 0.002 | 0.001 0.374 | 0.190 0.000
APS-2.00-bicubic 0.426 | 0.264 0.011 | 0.007 0.050 | 0.088 0.346
APS-2.00-bilinear 0.383 | 0.252 0.011 | 0.008 0.000 | 0.000 0.000
APS-2.00-nearest 0.261 | 0.112 0.018 | 0.010 0.000 | 0.000 0.000
Framework 0.542 | 0.013 0.011 | 0.000 0.000 | 0.000 0.000
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Table A.55. All Modules By Rate (TIFF).

Rate TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
0.50 0.358 | 0.022 0.000 0.196 | 0.056
0.66 0.697 | 0.180 0.000 0.048 | 0.055
0.75 0.895 | 0.148 0.000 0.019 | 0.040
0.90 0.982 | 0.008 0.000 0.002 | 0.001
1.10 0.984 | 0.004 0.000 0.002 | 0.001
1.25 0.998 | 0.002 0.000 0.000 | 0.000
1.33 0.652 0.056 0.000 0.041 0.016
2.00 0.883 | 0.062 0.000 0.016 | 0.009
Overall | 0.717 | 0.014 0.000 0.041 | 0.002

Table A.56. All Modules By Algorithm (TIFF).

Algorithm TPR FPR
Mean | STDEV | P-Value | Mean | STDEV
Bicubic 0.585 | 0.046 0.000 0.222 | 0.083
Bilinear 0.623 | 0.051 0.000 0.188 | 0.073
Nearest 0.658 | 0.115 0.000 0.079 | 0.060
Undefined 1.000 | 0.000 0.000 0.000 | 0.000
Overall 0.662 | 0.010 0.000 0.150 | 0.015
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