
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

9-17-2015

A System-Level Throughput Model for Quantum
Key Distribution
Robert C. Cernera

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Cernera, Robert C., "A System-Level Throughput Model for Quantum Key Distribution" (2015). Theses and Dissertations. 213.
https://scholar.afit.edu/etd/213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277526004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/213?utm_source=scholar.afit.edu%2Fetd%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


A SYSTEM-LEVEL THROUGHPUT MODEL FOR 
QUANTUM KEY DISTRIBUTION 

THESIS 

Robelt C. Cemera, Civilian 

AFIT-ENG-MS-15-S-069 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States.



 

AFIT-ENG-MS-15-S-069 
 

 

A SYSTEM-LEVEL THROUGHPUT MODEL FOR 
QUANTUM KEY DISTRIBUTION 

 
 

THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Cyber Operations 

 

 

Robert C. Cernera, BS 

Civilian 

 

September 2015 

DISTRIBUTION STATEMENT A. 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT-ENG-MS-15-S-069 

 

A SYSTEM-LEVEL THROUGHPUT MODEL FOR 
QUANTUM KEY DISTRIBUTION 

 
 

 
 

Robert C. Cernera, BS 

Civilian 

 

Committee Membership: 

 

Douglas D. Hodson, Ph.D. 
Chair 

 

Michael R. Grimaila, Ph.D., CISM, CISSP 
Member 

 

Gerald B. Baumgartner, Ph.D. 
Member 

 
 

 
 
 
 
 
 



iv 

 

 
AFIT-ENG-MS-15-S-069 
 

Abstract 

Quantum Key Distribution (QKD) is an innovative technology which exploits the 

laws of quantum mechanics to generate and distribute shared secret keying material. 

QKD systems generate and distribute key by progressing through a number of distinct 

phases, typically in a serial manner. The purpose of this research is to identify these 

phases, their relationships to each other, as well as their relationship to time, memory 

space, computational requirements, and hardware resources. A mathematical model is 

developed which enables the study of critical system parameters, identifies and 

demonstrates potential bottlenecks that affect the overall key generation rate of serial 

implementations, and facilitates the analysis of design trade-offs in terms of parameters 

associated with specific implementations. Existing models of throughput performance 

make use of secure key rate equations which do not account for detailed system 

parameters and performance characteristics, particularly in the post-processing phases. In 

this research we build a model that is abstract enough to be applied to a wide range of 

QKD system configurations. The results of the model form an accurate prediction of 

throughput. The analysis contained herein provides QKD practitioners guidance in 

system analysis and design. 

 

 

 

 



v 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This work is dedicated to my family, for their unwavering support. 

 

 

 

 

 

  



vi 

 

Acknowledgements 

 I would first like to thank my advisor, Dr. Douglas Hodson for providing me the 

opportunity to be part of the QKD research team and his guidance during the completion 

of this thesis. I would also like to thank Dr. Michael Grimaila for his unbridled enthusiasm 

for this project and the welfare of our team. Your patience and insights were invaluable 

during the monumental task of learning QKD. 

 To my lab partners, Major Logan Mailloux and Captain Ryan Engle, I want to thank 

both of your for brightening each day we worked together. Without your advice and 

encouragement I fear the road to graduation would have been much longer. You are both 

scholars and gentlemen.  

 I would like to give a very special thank you to Dr. Gerald Baumgartner, without whom 

the QKD team would not exist. Without your help and expertise, none of this would be 

possible. And finally, I would like to thank Howard Poston for our weekly discussions on 

cryptography, quantum mechanics, and information theory.  

Robert C. Cernera 

  



vii 

 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Dedication ............................................................................................................................v 

Acknowledgements ............................................................................................................ vi 

Table of Contents .............................................................................................................. vii 

List of Figures .................................................................................................................... ix 

List of Tables ..................................................................................................................... xi 

List of Equations .............................................................................................................. xiii 

Dictionary ..........................................................................................................................xv 

I. Introduction ......................................................................................................................1 

1.1 Problem Statement..................................................................................................1 

1.2 Research Purpose....................................................................................................2 

1.3 Research Goals .......................................................................................................4 

1.4 Thesis Structure ......................................................................................................5 

II. Literature Review ............................................................................................................6 

2.1 Overview ................................................................................................................6 

2.2 Classical Cryptography ..........................................................................................6 

2.3 Public-Key Distribution Methods...........................................................................8 

2.4 Quantum Key Distribution ...................................................................................10 

2.5 Secure Key Rate Estimates ...................................................................................18 

III. Methodology ................................................................................................................20 

3.1 Overview ..............................................................................................................20 

3.2 Baseline Configuration .........................................................................................20 

3.3 Phase Model Development ...................................................................................21 

3.4 ICOM Models, Equations, and Sequences ...........................................................24 



viii 

 

3.5 Baseline Configuration and Testing .....................................................................25 

IV. QKD System-Level Model ..........................................................................................26 

4.1 Introduction ..........................................................................................................26 

4.2 System Characterization Model ...........................................................................26 

4.3 Authentication ......................................................................................................33 

4.4 Quantum Exchange (QE) .....................................................................................38 

4.5 Sifting ...................................................................................................................45 

4.6 Error Estimation ...................................................................................................50 

4.7 Error Reconciliation .............................................................................................53 

4.8 Entropy Estimation ...............................................................................................58 

4.9 Privacy Amplification (PA) ..................................................................................65 

4.10 Final Key Generation .........................................................................................70 

V. Baseline Configuration and Use Case ...........................................................................75 

5.1 Introduction ..........................................................................................................75 

5.2 Modeling Assumptions of Practical QKD ............................................................75 

5.3 Baseline Configuration .........................................................................................76 

5.4 Use Case: Answering Fundamental Performance Questions ...............................86 

VI. Conclusions and Future Work .....................................................................................95 

6.1 Research Relevance ..............................................................................................95 

6.2 Answering Research Questions ............................................................................95 

6.3 Contributions and Future Work ..........................................................................100 

Appendix A: Equations ....................................................................................................102 

Appendix B: Model Code ................................................................................................105 

References ........................................................................................................................111 



ix 

 

List of Figures 

Figure 1. The One-Time Pad Algorithm ............................................................................. 8 

Figure 2. Photon Polarization [19] .................................................................................... 12 

Figure 3. QKD Phase Relationships ................................................................................. 21 

Figure 4. Example of ICOM model .................................................................................. 24 

Figure 5. Example of Sequence Diagram ......................................................................... 25 

Figure 6. Overview of QKD System................................................................................. 26 

Figure 7. Example of System Memory Allocation Map ................................................... 28 

Figure 8. Authentication ICOM Model ............................................................................ 34 

Figure 9. Sequence Diagram of Classical Communication During Authentication ......... 36 

Figure 10. Quantum Exchange ICOM Model................................................................... 38 

Figure 11. Sequence Diagram of Classical Communication During Quantum Exchange 42 

Figure 12. Sifting ICOM Model ....................................................................................... 46 

Figure 13. Sequence Diagram of Classical Communication During Sifting .................... 48 

Figure 14. Error Estimation ICOM Model ....................................................................... 50 

Figure 15. Sequence Diagram of Classical Communication During Error Estimation .... 52 

Figure 16. Error Reconciliation ICOM Model ................................................................. 54 

Figure 17. Sequence Diagram of Classical Communication During ER .......................... 56 

Figure 18. Entropy Estimation ICOM Model ................................................................... 58 

Figure 19. Sequence Diagram of Classical Communication During Entropy Estimation 61 

Figure 20. Privacy Amplification ICOM Model............................................................... 66 

Figure 21. Sequence Diagram of Classical Communication During PA .......................... 68 

Figure 22. Final Key Generation ICOM Model................................................................ 71 



x 

 

Figure 23. Sequence Diagram of Classical Communication During FKG ....................... 73 

Figure 24. System-Level Parameters in Model, Part 1 ..................................................... 77 

Figure 25. System-Level Parameters in Model, Part 2 ..................................................... 77 

Figure 26. Allocation of Alice/Bob's Memory Per Phase ................................................. 78 

Figure 27. System Memory Configuration Check ............................................................ 78 

Figure 28. Computational Workload Assigned to Each Phase ......................................... 80 

Figure 29. Readout of Model Performance Metrics ......................................................... 85 

Figure 30. Execution Flow of Practical QKD System ...................................................... 86 

Figure 31. Graph of Routines Required to Achieve 1 Mbit Final Key ............................. 89 

Figure 32. Graph of Alice Memory Effect on Final Key Rate ......................................... 91 

Figure 33. Graph Comparing Final Key Rate to CPU Power ........................................... 93 

Figure 34. Graph Comparing System Runtime to CPU Power ........................................ 94 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Tables 

Table 1. Alice System-Level Parameters .......................................................................... 30 

Table 2. Bob System-Level Parameters ............................................................................ 31 

Table 3. Classical Channel System-Level Parameters ...................................................... 31 

Table 4. Shared Parameters of Classical Channel Communications ................................ 32 

Table 5. Quantum Channel System-Level Parameters ..................................................... 33 

Table 6. Inputs/Outputs Local to Authentication .............................................................. 34 

Table 7. Inputs/Outputs Local to Quantum Exchange ...................................................... 38 

Table 8. Input/Outputs Local to Sifting ............................................................................ 46 

Table 9. Input/Outputs Local to Error Estimation ............................................................ 51 

Table 10. Input/Outputs Local to Error Reconciliation .................................................... 54 

Table 11. Input/Outputs Local to Entropy Estimation ...................................................... 59 

Table 12. Input/Outputs Local to Privacy Amplification ................................................. 66 

Table 13. Input/Outputs Local to Final Key Generation .................................................. 71 

Table 14. System-Level Parameters of Chen configuration ............................................. 77 

Table 15. Valid Configuration Memory Check Logic ...................................................... 79 

Table 16. Input Parameters Local to Authentication ........................................................ 81 

Table 17. Input Parameters Local to Quantum Exchange ................................................ 81 

Table 18. Input Parameters Local to Sifting ..................................................................... 81 

Table 19. Input parameters Local to Error Estimation ..................................................... 82 

Table 20. Input Parameters Local to Error Reconciliation ............................................... 83 

Table 21. Input Parameters Local to Entropy Estimation ................................................. 83 

Table 22. Input Parameters Local to Privacy Amplification ............................................ 84 



xii 

 

Table 23. Input Parameters Local to Final Key Generation ............................................. 84 

Table 24. Table of Performance Metrics Produced By Model ......................................... 86 

Table 25. Theoretical Bounded Key Rates During Phases With Loss ............................. 90 

Table 26. Table of Performance Metrics Compared to CPU Power................................. 92 

 

  



xiii 

 

List of Equations 

 
The secure key rate equation (1) ....................................................................................... 18 

Equation describing the transmission time of all classical communication (2) ................ 32 

Equation describing the time required to complete Authentication (3) ............................ 35 

Equation describing the resulting size of the Authentication reservoir (4) ...................... 35 

Equation describing the time required to complete Quantum Exchange (5) .................... 39 

Equation describing the cumulative Poisson probability (6) ............................................ 39 

Equation describing the number of pulses Alice sends (7) ............................................... 40 

Equation describing the number of detections at Bob (8)................................................. 40 

Equation describing the time between pulses arriving at Bob (9) .................................... 40 

Equation describing the average time interval between detections at Bob (10) ............... 40 

Equation describing the detection rate at Bob (11) ........................................................... 41 

Equation describing Alice’s raw memory buffer (12) ...................................................... 41 

Equation describing Bob's raw memory buffer (13) ......................................................... 41 

Equation describing the number of Alice’s candidate key bits (14) ................................ 41 

Equation describing the number of Bob's candidate key bits (15) ................................... 41 

Equation describing the time required to complete Sifting (16) ....................................... 47 

Equation describing the size of Bob's sifted key buffer (17) ............................................ 47 

Equation describing the size of Alice's sifted key buffer (18) .......................................... 47 

Equation describing the time required to complete Error Estimation (19) ....................... 51 

Equations describing the size of Alice/Bob's Error Estimated key buffer (20) ................ 51 

Equation describing the time required to complete Error Reconciliation (21) ................. 55 



xiv 

 

Equations describing the size of Alice/Bob's Error Reconciled key buffer (22) .............. 55 

Equation describing the number of Error Reconciliation routines required (23) ............. 55 

Equation describing the time required to complete Entropy Estimation (24) .................. 60 

Equations describing the size of Alice/Bob's Entropy Estimated key buffers (25) .......... 60 

Equation describing the size of the final secure key buffer (26) ...................................... 60 

Calculating entropy loss estimate (27) .............................................................................. 63 

Shannon equation for minimum information loss (28) ..................................................... 64 

Poisson distribution for multi-photon probability (29) ..................................................... 64 

Equation describing the time required to complete Privacy Amplification (30) .............. 67 

Equations describing the size of Alice/Bob's Privacy Amplified key buffers (31) .......... 67 

Definition of a universal hash function (32) ..................................................................... 69 

Example of modular affine transform universal hash family (33) .................................... 69 

Equation describing the time required to complete Final Key Generation (34) ............... 72 

Equations describing the size of Alice/Bob's final key bit buffers (35) ........................... 72 

Revised entropy loss estimate (36) ................................................................................... 74 

 
 
 
 
 
 
 
 
 
 
 
 
 



xv 

 

Dictionary 

QKD = Quantum Key Distribution 

OTP = One-Time Pad cryptographic algorithm 

DES = Data Encryption Standard 

3DES = Triple Data Encryption Standard 

AES = Advanced Encryption Standard 

XOR = Exclusive-or operations 

FPGA = Field-Programmable Gate Array 

CPU = Central Processing Unit 

GPU = Graphical Processing Unit 

RSA = Rivest, Shamir, Adleman, in reference to the public-key cryptosystem 

MPN = Mean Photon Number 

ER = Error Reconciliation 

PA = Privacy Amplification 

FKG = Final Key Generation 

 

 

 

 

 

 

 

  



1 

 

A SYSTEM-LEVEL THROUGHPUT MODEL FOR 

QUANTUM KEY DISTRIBUTION 

 

I. Introduction 

1.1 Problem Statement 

Quantum Key Distribution (QKD) is a method that offers theoretical 

unconditional security in the transmission of secure cryptographic key between two 

parties. As a key distribution technique, it is unique in that an eavesdropper can be 

detected during transmission over the quantum channel. This is made possible by 

employing the laws of quantum mechanics. Observation of quantum information 

effectively changes its state in transit, which will increase the error rate between the 

communicating parties. When paired with an unconditionally secure cryptosystem, such 

as the One-Time Pad (OTP), it possesses the potential for provable information-

theoretically secure communications, with the conservative attribution of all errors to an 

eavesdropping adversary [1].  

The performance of QKD with respect to key generation rate is determined by 

many factors, such as loss and inefficiency associated with photon transmission, the need 

to correct errors, and mechanisms to assure an eavesdropper has gained little to no 

information about the key. As a result, in its current state QKD systems often generate 

key at too low of a rate to use OTP for transmission of large data sets. The rate at which 

systems can generate usable keying material is highly dependent on its design and 

implementation. Research in the field of QKD performance has primarily been focused 



2 

 

on improving throughput (i.e. key generation rate) by increasing the performance of 

individual components, protocols, algorithms, hardware, etc., of a particular system 

bottleneck [11, 14, 20]. Novel solutions have historically been devised for 

implementation-specific problems, such as alterations to system components to achieve a 

secret key rate at a particular distance, of which system-wide implications are not well 

understood [26].  

General throughput equations exist that claim to give predictive assessments on 

final key rates, but the scarcity of input parameters into these equations makes their 

accuracy coarse at best. No credence is given to the monumental task of classical 

information processing or the time it takes to accomplish relative to quantum 

transmission. The problem with using the current throughput equations is two-fold: they 

are not comprehensive enough to offer end-to-end insight when designing new QKD 

systems, and offer no avenue to study or search for optimizations in systems that have 

already been implemented. In order to find an ideal system configuration, a throughput 

model that captures implementation specifics is required. This can be accomplished 

mathematically with a thorough and in-depth understanding of the many 

interdependencies between input parameters to the QKD protocol phases. 

1.2 Research Purpose 

Most modern implementations of QKD increase key generation rate by selecting 

from optimal best practices and available technology at each phase of the system. For 

example, during Quantum Exchange the performance of optical detectors in Bob is 

determined by hardware available when the system was designed. Detectors are limited 



3 

 

by detection rates and recovery time dictated by the hardware. Similarly, Alice’s ability 

to generate ideal single photons is currently not possible given similar hardware 

limitations, forcing her to attenuate pulses down to some probability of single photon 

generation.  

QKD cannot be accomplished without the use of both a quantum channel and a 

classical channel. Classical processing presents its own unique problems in that both 

algorithms and their implementations must be selected and communication between Alice 

and Bob can only occur at the speed limited by latency constraints. For example, 

regardless of the reconciliation algorithm used (e.g., Cascade, Winnow, LDPC) and its 

optimized implementation (e.g., FPGA, parallel GPU), there is an upper bound on the 

speed at which information reconciliation can occur, given the computational complexity 

and the number of messages that must be passed between Alice and Bob [20]. Little 

research has been published in the way of optimizing the system as a whole when 

designed, given there are certain limiting factors which govern the overall speed of QKD.   

The phases of operation of a QKD system are often processed in serial fashion: 

encoded photons are exchanged for some arbitrary amount of time or Bob has received an 

arbitrary number of photons, quantum exchange ceases and sifting begins until 

completion, sifting ceases and error estimation begins on the sifted key, etc. [28]. For a 

serial process such as this, there exist dependencies throughout the system which QKD 

practitioners must consider. The purpose of this research is to develop a mathematical 

model which incorporates system-specific performance criteria that may be used in 

addition to the generally accepted throughput rate equations for the enhanced study of 

Quantum Key Distribution systems.  



4 

 

This thesis seeks to answers the following research questions: 

RQ1: What are the parameters that define a Quantum Key Distribution system? 

RQ2: What phases exist in all Quantum Key Distribution systems? 

RQ3: What are the necessary input and output parameters to define a phase? 

RQ4: Can the notion of system time and performance be measured at the phase level? 

RQ5: Can a system-level throughput model be developed that incorporates time, system 

memory, computational power, and the speed of classical communication? 

RQ6: If so, how can it be used to answer fundamental performance questions of QKD 

such as, “How many Quantum Exchange, Error Reconciliation, and Privacy 

Amplification routines are necessary to achieve a desired amount final key?” 

RQ7: What are the implications of altering the amount of Alice’s memory allocated for 

Quantum Exchange? 

RQ8: What are the implications of altering computational power for Alice and Bob? 

RQ9: How can this model be used to study Quantum Key Distribution systems? 

1.3 Research Goals 

The goal of this research is to model and study end-to-end QKD systems through 

the buildup of a series of “mini models” at the protocol phase level. Specifically, this 

overarching model will incorporate performance parameters associated with quantum 

transmission, classical transmission, algorithmic complexity and execution, various 

information theory techniques, and performance of specific hardware components present 

in the system. The intent is to provide a useful mechanism (i.e., tool or model) for QKD 

practitioners in the initial design or optimization of system configurations. 



5 

 

In this thesis, we illuminate the various relationships, interdependencies, 

consequences, and implications of the numerous design decisions required to implement 

QKD processes, with the goal of providing the cursory understanding necessary for the 

QKD practitioner to design their own system. 

1.4 Thesis Structure 

 The remainder of this thesis is organized into six chapters. Chapter II is a 

literature review of pertinent background information to understand Quantum Key 

Distribution systems and the performance trade-offs in their design and implementation. 

Chapter III discusses the research methodology used to answer relevant questions from 

Chapter I. Chapter IV provides an in-depth discussion on how the model was developed, 

the mathematical equations that govern it, the sequence of classical communications, and 

a discussion of phase implementation in practical QKD systems. In Chapter V, we 

generate a baseline configuration used to gauge the effectiveness of the model, as well as 

model outputs. In Chapter VI, outstanding research questions are answered, conclusions 

from this research are discussed, and future work in this area is proposed.  

  



6 

 

II. Literature Review 

2.1 Overview 

 The purpose of this chapter is to present the necessary background to understand 

the research proposed in Chapter III and IV. This discussion will present topics that are 

not covered explicitly in Chapter III and IV. In particular, the history of cryptography 

will be reviewed along with the use of cryptosystems for non-confidentiality purposes. 

Next, the need for secret key distribution is presented along with the current practice of 

public-key distribution. The advent of Quantum Key Distribution and the need for it will 

then be examined along with its most popular protocol. 

2.2 Classical Cryptography 

 Cryptography is the study and implementation of techniques that ensure 

information remains confidential. The techniques from this field can also be used to 

authenticate communications, apply signatures, and offer non-repudiation. We will focus 

on the problem of confidentiality in the form of ciphers, or cryptographic algorithms.  

 The goal of a cryptographic algorithm is to transform a message, or plaintext, into 

an unreadable and seemingly useless set of data, known as the ciphertext, by means of 

encryption. The intended recipient, however, possesses the knowledge to revert the 

transformed message to its original form and gain the ability to read it. This knowledge 

comes in the form of a secret key. In modern cryptosystems, the algorithm is usually a 

known entity, taking both the plaintext message and secret key as inputs. According to 

Kerchoff’s principle, the real security of a cryptosystem should rely on the security of the 

key, rather than the secrecy of the algorithm [33].  



7 

 

 In a large network of communicating parties, it is not practical to change the 

algorithm used between every pair of individuals or nodes. The same algorithm is agreed 

upon by all communicating parties, and each pair will instead share a secret key. The key 

the sender uses to encrypt messages is the same as the key used by the recipient to 

decrypt messages. Encrypted communication with this attribute is known as symmetric-

key cryptography, in which the same key is used for both encryption and decryption. 

Popular examples of these algorithms used today include the Data Encryption Standard 

(DES), the Triple Data Encryption Standard (3DES), and the Advanced Encryption 

Standard (AES) [36]. 

 There exists a single known symmetric-key algorithm that is both information-

theoretically secure and offers perfect secrecy, known as the One-Time Pad. Information-

theoretic security is the ability to remain unbreakable in the presence of an adversary with 

unlimited computing power. To have perfect secrecy, knowledge of the ciphertext must 

not reveal any additional knowledge of the plaintext. The One-Time Pad is relatively 

simple compared so other symmetric ciphers. A secret key string of bits are randomly 

selected, equal to the bit length of the message to be sent. The random bits are then XOR-

ed to the original message and transmitted to the recipient. As long as the message 

receiver has the random bit string, the XOR on the ciphertext can be undone to reveal the 

plaintext, as shown in Figure 1.  

 

 



8 

 

 

 

 

 

 

  

 

 

 

A secret key for the One-Time Pad carries several stipulations: it must be truly 

random, it must be as long as the message being sent, and must never be reused. This 

introduces two problems with its use: generating enough key to use the algorithm on 

large datasets and the ability to distribute the key from one party to another securely. In 

modern cryptosystems, a common solution for the latter issue is the use of public-key, or 

asymmetric algorithms, used to distribute the key. 

2.3 Public-Key Distribution Methods 

 Public-key cryptography involves the use of two keys instead of one. The first key 

is known as the public key, which can encrypt messages. The second key, known as the 

private key, can decrypt messages. Asymmetric algorithms answer the question of 

whether or not it is possible to distribute a secret message (in this case the key) between 

two parties without ever physically meeting.  

Figure 1. The One-Time Pad Algorithm 



9 

 

The first known instance of this technique is the Diffie-Hellman key exchange 

created in 1976, which is based on the calculation of discrete logarithms in a finite field 

[35]. Arguably the most popular asymmetric encryption scheme is the RSA algorithm, 

published a year later in 1977 by three postgraduates at MIT [34]. Much like Diffie-

Hellman, RSA allows for the sharing of a secret key by two parties at a distance. Unlike 

Diffie-Hellman, however, it relies on the integer factorization problem for its security. 

That is, the difficulty of factoring a large number into two distinct prime factors.  In 

computational complexity theory, both the discrete logarithm and integer factorization 

problems are considered difficult for a computer to solve [34]. The security of these 

algorithms is such that a modern supercomputer would take millions of years of brute-

force searching to find a solution to the problem. 

 Supercomputing technology has made rapid advances in the last several decades. 

In addition, the advent of research into quantum computers has posed a threat to security 

by means of mathematical complexity. In fact, an algorithm has already been written for 

a quantum computer that would allow for finding a solution to the integer factorization 

and discrete logarithm problems in polynomial time, should a quantum computer come 

into existence [30]. In order to combat this threat, research in the field is being conducted 

to leverage the laws of quantum mechanics as a means for secure key distribution. If 

possible, not only would it break the reliance on the security of unsolved problems in 

mathematics and computer science, but it would allow for an efficient means of 

generating secret keying material. As a result, information-theoretically secure 

communications may be possible through the use of the One-Time Pad and Quantum Key 

Distribution. 



10 

 

2.4 Quantum Key Distribution 

 Quantum Key Distribution (QKD) is a technique that allows two communicating 

parties, normally referred to as Alice and Bob in the literature, to decide on a secret key 

between them. Once the secret key has been agreed upon, Alice and Bob can use it in any 

of the aforementioned symmetric algorithms as well as any others. It should be noted that 

QKD is not in itself a form of encryption, but merely a means of generating and 

distributing (i.e., growing) key. The goal of QKD is to guarantee and maintain the 

secrecy of the key. 

 Quantum Key Distribution relies on the laws of quantum mechanics. In particular, 

QKD relies on the Heisenberg Uncertainty Principle (or Principle of Indeterminacy), 

entanglement, Schrödinger’s paradox, and the no cloning theorem [33]. The Principle of 

Indeterminacy states that no pair of the attributes positions, energy, or time can be 

measured simultaneously on an object. In quantum entanglement, the physical properties 

of particle pairs or groups of particles are correlated – the quantum state of each particle 

cannot be described independently. Schrödinger’s paradox states that the observation of a 

quantum state collapses it, and the no cloning theorem forbids perfectly copying any 

unknown quantum states. 

 In classical communications, information is transmitted as bit values of 1 or 0. In 

quantum communications a quantum bit, or qubit, can be transmitted (or represented) as a 

1, 0, or superpositions of a 1 or 0. Quantum Key Distribution represents these qubits as 

photons, or particles of light, which obey the rules of quantum mechanics previously 

discussed. They can be transmitted over terrestrial fiber optic cable or over an open-air 

free-space channel. These principles of quantum behavior allow for the detection of the 



11 

 

presence of an eavesdropper attempting to learn information about the secret key, which 

is not feasible in classical cryptography. 

 

2.4.1 QKD Protocols 

The advent of Quantum Key Distribution began with Stephen Wiesner, who proposed 

the idea of encoding information on polarized photons using two conjugate bases in the 

late 1960s [2]. Almost two decades later in 1984, Charles Bennett and Gilles Brassard 

used this concept to develop the first QKD protocol, known as “BB84,” to generate shared 

secret keying material between two parties [3]. Current research in the field of QKD 

attempts to build or propose practical key distribution configurations and demonstrate 

their use in networked key sharing configurations. 

In the BB84 polarization-based prepare and measure QKD system, the sender “Alice” 

prepares quantum bits (qubits) in one of four polarization states: |↔⟩, |↕⟩, |⤢⟩, or |⤡⟩. 

These qubits are encoded according to a randomly selected basis (“rectilinear” ⊕ or 

“diagonal” ⊗) and bit value (0 or 1) and sent over a “quantum channel” where they are 

measured by the receiver “Bob.” The quantum channel is used for photon transmission, 

and can be either a dedicated optical fiber or a free-space optical communication channel, 

as previously mentioned. A bit can be represented in one of two polarization bases: 

rectilinear and diagonal, with the bit value of 1 encoded as 135° and 90°, while 0 is 

encoded as 45° and 0°, for example [19]. 

 



12 

 

 

Alice will randomly choose a bit and basis measurement. She will transmit one photon to 

Bob for each bit. Bob will then randomly choose a basis in which to measure the 

polarization of any photon he receives during quantum transmission. If Bob chooses the 

same basis as Alice, then both she and Bob should end up with corresponding bit values. 

If he chooses the wrong basis, however, the resultant bit value will be random. Measuring 

an encoded qubit disturbs its quantum state, a phenomenon unique to quantum 

communications [4]. This process of preparing, sending, and measuring qubits is known 

as “quantum exchange” and results in raw keys at both Alice and Bob.  

After qubits are successfully exchanged between both parties, the system must employ 

techniques to generate a secure and error-free secret key. This process begins by first 

Figure 2. Photon Polarization [19] 



13 

 

eliminating non-matching basis measurements. Bob announces his basis measurement 

information (not the measured bit values) for each detected photon over the classical 

communications channel. The result is a shared sifted key buffer between Alice and Bob, 

in which approximately half of the raw key bits are retained and half is lost due to Bob’s 

random (i.e., incorrect) basis selection. Next, any errors that exist in the sifted key buffer 

will be corrected with a error reconciliation algorithm, used to minimize the amount of 

information an adversary can gain during the error correction process. Finally, an 

advanced information theory technique known as privacy amplification is used to ensure 

that any residual information an adversary may have obtained about the secret key is 

negligible. The shared secret key can then either be used to prime a symmetric encryption 

algorithm such as DES, 3DES, or AES or used in the unconditionally secure One-Time 

Pad (OTP) implementation. 

 After comparing preparation and measurements bases and eliminating the 

measured bits corresponding to mismatched bases, any remaining errors (bit mismatches) 

in the sifted key buffers may indicate the presence of an eavesdropper. Even if the errors 

were created by channel noise or any other kind of interference, all remaining errors are 

attributed to a listening adversary, conventionally known as Eve. An eavesdropper can 

introduce errors into the key because she is forced to measure the photons in transmission 

from Alice to Bob in order to determine their states, before resending random photons to 

Bob. The no cloning theorem protects the photon transmission because it is impossible to 

perfectly replicate a particle that has an unknown state [31]. At the time of measurement, 

Eve has no knowledge of the basis Alice used to encode the bit, so she must guess. If she 

measures incorrectly, the information encoded on the other bases is lost due the 



14 

 

Uncertainty Principle. When these photons reach Bob, his measurements will also be 

random, and will only guess the correct bit 50% of the time. Eve guesses the 

measurement basis correctly only 50% of the time as well, which means 25% of Bob’s 

bits will differ from Alice’s bits [32].  

 In addition to the originally designed protocol, there are practical security 

concerns that are addressed after key sifting has completed. Although all errors are 

attributed to Eve, some of them may in fact naturally occur due to noise in the channel. 

To address this issue, Alice and Bob will go through an error correction routine to 

eliminate remaining errors. To protect against the possibility that those errors might have 

been caused by Eve, and to maintain a usable key, the key buffer will go through a 

privacy amplification to obtain a shortened key of which Eve has little or no knowledge. 

The execution order of these processes largely remains the same from system to system, 

however their logical grouping tends to differ based on interpretation. 

 

2.4.2 Phase Grouping 

 In the broadest terms, the BB84 protocol can be grouped into two major phases: 

quantum channel processing, and classical channel post-processing. The original protocol 

defines the post-processing to consist of the Sifting phase [3]. It was not until 1992 that 

the authors of the original protocol formalized the need for more post-processing in the 

form of error correction and privacy amplification, as well as authenticating the public 

channel [27]. The QKD post-processing aspect is often viewed differently from the 

protocol phases – those that exist up to and including key sifting. 



15 

 

 This newfound understanding brought on differing opinions about the logical 

grouping of responsibilities per phase and how many phases should exist. The most 

popular groupings either consist of three or four relevant system phases. In a three-phase 

interpretation, there exists [37]: 

1. Quantum Exchange 
2. Key Sifting 
3. Classical Post-Processing 

Raw Key Exchange and Sifting are identical to those described above; however 

“Classical Post-Processing” encompasses Error Correction, Privacy Amplification, and 

Authentication. 

 The four-phase interpretation views Error Correction as its own category [12]: 

1. Quantum Exchange 
2. Key Sifting 
3. Error Correction 
4. Privacy Amplification 

Regardless of how the phases are grouped, the processes and procedures that exist 

amongst them must be performed, in some capacity, within the Quantum Key 

Distribution System. They are: a quantum transmission, key sifting, error estimation and 

correction, privacy amplification, and authentication of a classical communications 

channel, described in the following sections: 

We eight distinct processes required for the composition of a Quantum Key 

Distribution are defined as follows: 

2.4.2.1 Authentication 

Alice and Bob must authenticate their communication over the classical channel 

before transmission. It is assumed an adversary cannot alter any message exchanged over 



16 

 

the classical channel during post-processing. The periodicity of re-authentication is at the 

discretion of the system designer [8]. 

2.4.2.2 Quantum Exchange 

Alice prepares a sequence of qubits and transfers them to Bob over the quantum 

channel. For example, in polarization-based BB84, Alice randomly chooses a basis for 

each qubit: rectilinear or diagonal. Rectilinear basis can either be horizontal (0°) or 

vertical (90°), while diagonal can be ± 45°. Alice will then map a qubit state to each 

polarization. For instance, in the rectilinear basis, a 0 bit may be encoded as horizontal 

and 1 as vertical. Similarly, in the diagonal basis 0 may be encoded as 45° and 1 as 135°  

(or -45°) [3, 4, 19]. 

2.4.2.3 Raw Key Sifting 

Bob must choose – at random – a basis with which to measure each qubit after 

receiving encoded photon pulses from Alice. He shares these bases with Alice and she 

confirms when their prepare and measure bases match. Any non-matching qubit 

measurements will be discarded. The remaining key should be identical for both parties, 

however channel noise or the presence of device non-idealities may inflict bit errors in 

the sequence [3, 4]. 

2.4.2.4 Error Estimation 

Before these errors can be corrected, Alice and Bob must first determine if they 

have exceeded a predetermined error threshold, otherwise the unconditional security 

proofs will be violated [1]. Part of Bob’s key material will be sampled at random and 

compared to estimate the overall average error rate. If it is too high, Alice and Bob may 

choose to abort this instance of key generation and start over [1]. 



17 

 

2.4.2.5 Error Reconciliation 

If the error rate is below the threshold, Alice and Bob perform an error correction 

scheme to ensure that they both possess identical keys. There are several reconciliation 

algorithms that can be used during this process, including Cascade, Winnow, and LDPC 

[20]. 

2.4.2.6 Entropy Estimation 

 Entropy loss estimation is an estimate of the amount of information Eve may 

know about the now reconciled key held by Alice and Bob. As we will discuss, the 

difficulty of estimating the total system entropy exists due to the multitude of design 

decisions that must be made with the potential to influence entropy. This is an inherently 

different problem than estimating the amount of information Eve can glean from classical 

cryptographic methods that rely on computational complexity [12]. 

2.4.2.7 Privacy Amplification 

In an effort to further minimize the amount of information Eve has about the key, 

privacy amplification is used. During this process, more of the key is discarded in order 

to form a more secure final key. In general, the output of Entropy Estimation will 

determine the loss in final key size – the higher the entropy loss, the more key will be 

sacrificed to ensure Eve knows the least amount of information possible. This is 

accomplished by utilizing some variation of a Universal2 hashing function [12, 15, 42].  

2.4.2.8 Final Key Generation 

 The Privacy Amplified buffers held by Alice and Bob are checked one final time 

for consistency to ensure they are identical. This is accomplished through a final hash of 

both buffers and comparison of those hashes. If they do match, the Privacy Amplified key 



18 

 

can be added to the final secure key buffer for use in an encryption scheme. It is unclear 

exactly how, when, and in what form this final hash should be accomplished. We will 

discuss a possible solution to this problem [15, 17, 42]. 

 

2.5 Secure Key Rate Estimates 

 In QKD literature, the performance of the system is usually described as the 

throughput of the secure key in bits per unit time [5, 18, 19]. For example, the equation in 

Zhou et. al. is described as [5]: 

𝑲𝒔𝒆𝒄𝒖𝒓𝒆 = 𝒒 ∙ 𝑸𝝁�−𝑯𝟐�𝑬𝝁� + ∆𝟏[𝟏 − 𝑯𝟐(𝒆𝟏)]� ∙ 𝒇       (1) 

Ksecure = the secure key rate of a QKD system 

q = protocol efficiency fraction 

Qµ = photon counting rate, or gain 

Eµ = Quantum Bit Error Rate (QBER) 

e1 = QBER caused by single photons 

H2(x) = −∑ 𝑝𝑖 ∙ 𝑙𝑜𝑔2(𝑝𝑖𝑛−1
𝑖=0 ), the Shannon Entropy 

Δ1 = 𝑄1
𝑄𝜇

, the ratio of single photon signals to all signals detected at Bob 

f = the pulse rate at Alice 

As we have discussed, QKD protocols describe the necessary processes up to and 

including sifting. The secure key rate equations make a deterministic prediction of the 

final key rate of the system by applying parameters that are specific to the protocol 

definition, particularly to the Quantum Exchange aspect of the system.  

It is understood that the classical post-processing aspect of QKD is necessary to 

perform, but as such is not considered in this interpretation of gauging system 



19 

 

performance. The variables listed above are specific only to the Quantum Exchange and 

Sifting aspects of the system, yet the equation attempts to determine key throughput for 

the system as a whole. The throughput equations in literature better serve as an upper 

bound on the performance of a system based on the pulse rate of Alice’s laser. It is 

difficult to gauge actual performance, however, without specific knowledge of the 

implementation of computationally or communications intensive phases such as Error 

Reconciliation or Privacy Amplification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

III. Methodology 

3.1 Overview 

 The purpose of this chapter is to describe the methodology used to conduct the 

analysis necessary for the development of a proof-of-concept empirical model. The 

rationale for answering the relevant research questions in Chapter I will be presented, in 

addition to a discussion on the experimental design and the methods that were used to 

validate the model.  

3.2 Baseline Configuration 

 A thorough study was conducted on QKD system architectures. As described in 

Chapter II, and will be discussed more in-depth in Chapter IV, focus was given to 

systems implementing the BB84 protocol as well as the protocol itself. To estimate the 

performance of complete system designs, a system model needs to exist at a level of 

abstraction to include all the phases. The intent of this research is to establish the “least 

case” or the baseline at which a system can be called Quantum Key Distribution. There is 

consensus in the academic community about which procedures must be accomplished in 

order to be considered QKD. However, there is no universal agreement on which and 

how many of these procedures should be grouped into an individual phase and in which 

order each should occur. 

 In Chapter II, the generally recognized four phases of QKD were discussed. The 

model proposed here will break these into eight distinct phases. The four generally 

recognized phases were subdivided to provide a higher level of detail. For instance, 

Slutsky et. al. describe entropy loss estimation, privacy amplifying the key, and 



21 

 

producing the final key as a single phase called Privacy Amplification [12], whereas our 

model assigns all three parts their own phase with unique inputs and outputs:  

 

 

 

 

 

 

 

 

 

 

Figure 3. QKD Phase Relationships 

3.3 Phase Model Development 

 It is worth reiterating that QKD is a technology used to distribute secret key, not 

an encryption scheme, and should only be considered as such. The effectiveness of a 

distribution system can be evaluated considering its performance in six areas [6]: 

confidentiality of keys, authentication routine requirements, the delivered key rate, 

systems robustness (behavior against denial of service, etc.), distance and location 

independence of communicating nodes, and resistance to traffic analysis. Contrasted with 

existing public-key distribution algorithms, there is much variability in QKD system 

designs. The inherent simplicity and lack of variability in public-key distribution allows 



22 

 

for ease of implementation; they are algorithms which are selected for their individual 

qualities in the implementation of a complex cryptosystem or cryptographic suite. But 

such a method is not without its imperfections. One fundamental question for the QKD 

practitioner is: Does the cost of building such a system warrant the amount of key able to 

be generated, given that QKD is at least as secure of a distribution method as public-key 

distribution?  

The lack of standardization in the design of QKD systems requires a level of 

understanding with high granularity. The system is not a singular entity, but a 

concatenation of eight distinct phases of operation. These phases define the operational 

aspects of a Quantum Key Distribution system. The need for their existence is dictated by 

the original protocols, such as BB84 [3]. The execution of each phase can be viewed 

independently, but given the serial nature of the system phases, there exist implications 

and/or consequences of design choices committed upstream (earlier phases) that affect 

subsequent execution and output of the system downstream (later phases). We view the 

QKD model in this way rather than as typical communications protocol stack model – the 

phases are, in fact, more akin to a pipeline stage than a protocol stack [5, 6]. 

The model developed for this research in Chapter IV represents the independent 

view of the system resource costs associated with each phase, as it relates to time, 

computational workload, and memory consumption. Each subsequent discussion 

highlights or enumerates the necessary considerations required in the design of a 

particular phase. The models depict: the input parameters into the phase, the major 

operations occurring during the phase and their resultant output as effects on the 



23 

 

commodities of time and memory usage in Alice and Bob, as well inputs to the next 

phase. 

The throughput of the QKD system is determined by the aggregate throughput of 

the phases, which is defined by a summation formula. Each discrete phase model’s output 

provides, at minimum, the total time necessary to propagate through the phase, in 

addition to the amount of bits remaining in Alice and Bob’s buffers at the conclusion of 

the required processing defined by the protocol. The inputs were determined, by a 

thorough analysis of the literature, as any tunable system parameters that could affect the 

outputs. Many of the input parameters possess dependencies that affect other parts of the 

system. The discrete phase equations were designed in such a way that when applied to 

the overall summation formula, dependency effects manifest themselves in final 

throughput. All of the dependencies that could be identified are discussed in detail in 

Chapter IV. All calculations are performed using number of bytes and amount of time in 

seconds, although the model is adaptable to other units of measure (e.g., kilobits, 

megabits, seconds, microseconds, etc.). 

 For any nondeterministic calculations (i.e., any computational processing that’s 

determined at runtime by randomness, such as the Quantum Bit Error Rate), a variable 

for computational time is present. The value of this input variable represents the time it 

takes to propagate through the phase, or to complete a particular sub-block of the phase. 

For every phase aside from Quantum Exchange, communication across the public 

channel is required, and often halts the processing of the phase until Alice and Bob have 

communicated successfully. It is therefore natural to discuss computational time required 

in conjunction with communications overhead. 



24 

 

3.4 ICOM Models, Equations, and Sequences 

 Each phase is discussed in Chapter IV will be modeled in the same format. First, 

an ICOM (Input/Output, Controls, and Mechanisms) diagram is used to describe phase 

[39]. The ICOM diagram is paramount to the understanding of the flow of information 

and constraints governing execution. The following diagram shows an example of the 

ICOM format: 

 

Figure 4. Example of ICOM model 

Next, a series of abstract equations will be developed for each phase which describes the 

relevant behaviors of the phase (i.e., describing how inputs are converted to outputs). 

Finally, each phase will have a sequence diagram depicting the necessary classical 

communications required for execution. The following figure is an example of a 



25 

 

sequence diagram in which the flow of communication occurs from left to right and vice 

versa, while the flow of time occurs from top to bottom: 

 

Figure 5. Example of Sequence Diagram 

3.5 Baseline Configuration and Testing 

 After the model is defined, a configuration selected from QKD literature is used 

to establish a baseline model. The published findings’ does not include all of the data in 

terms of input parameters needed for the model. Therefore, known values will be 

included as is, and reasonable assumptions about missing parameters are made. A series 

of exploration studies are conducted to answer relevant research questions. We will 

illustrate how design decision information and system behaviors can be understood, and 

how system optimizations can be found. An Excel model will be developed to 

encapsulate the phases into a serial sequence of phases. 

 



26 

 

IV. QKD System-Level Model 

4.1 Introduction 

 In this chapter, the development of the system-level model is described in detail. 

First, an explanation of high-level system parameters will be discussed. Next, a model of 

each phase will be presented along with descriptions of phase-specific parameters, the 

sequence of classical communications during the phase, and a discussion of 

implementations in practical QKD systems. 

4.2 System Characterization Model 

 

Figure 6. Overview of QKD System 

 At the system level, Quantum Key Distribution consists of the sender “Alice”, a 

receiver “Bob”, a quantum channel used to transfer photons, and a classical channel that 

supports conventional network communications. We first characterize each component 

by defining high-level system parameters, so that system designers can better understand, 

model and study the performance tradeoffs associated with particular design choices. The 

model outlined here uses several important metrics to both study system performance and 



27 

 

describe the system behaviors of interest. We define each of these parameters in the 

following sections. 

4.2.1 Alice and Bob 

 At a high level, we characterize the performance of a QKD system (consisting of 

an Alice, Bob, and associated networks) with consideration of computer processing 

power, network bandwidth and latency, and fundamental memory constraints. For 

example, a phase cannot execute unless a minimum amount of memory is available. 

Likewise, at the conclusion of each phase the memory usage associated with that phase 

will either increase or decrease.  

4.2.1.1 Memory 

We describe Alice and Bob’s memory usage in terms of eight dedicated memory 

blocks of configurable size: one for each of the eight phases defined in Chapter 3. These 

memory blocks are pre-allocated and remain static for the duration of execution. While 

this assumption might not be as accurate as a model that considers dynamic memory 

allocation, it greatly simplifies modeling the entire system which provides insight into 

design tradeoffs. 

The following memory map depicts an example snapshot how this allocation may 

be represented in the system: 

 



28 

 

 

Figure 7. Example of System Memory Allocation Map 

 

Each phase is allocated a percentage of available system memory. The total allocation 

cannot exceed 100% of the available memory. However it is possible to have a total 

allocation less than 100%, if desired. In general, the minimum amount of memory 

required for each phase is the size of the bit buffer passing through the phase and any 

additional memory overhead required for the processing of that buffer.  

The additional memory overhead requirement is defined as any memory that is 

required in addition to the arbitrarily large input buffer to the phase, as well as any inter-

phase memory requirements, such as the need to store information on pulses sent and 

received during Quantum Exchange. An example of additional memory requirement is 

any memory that is not immediately calculable during the phase, and must be defined 

from a posteriori knowledge of the system itself. For instance, in Error Reconciliation 

there exists memory overhead to complete computationally complex calculations for each 

block of key. The additional memory may therefore define the amount of computational 

memory required per block. This requirement must be defined per individual phase, and 

reduces the amount of available memory allocated for that phase. 



29 

 

4.2.1.2 Workloads 

 Each phase implicitly carries a workload representing the amount of work the 

processor must perform, captured by the “{Alice, Bob}cpu_power” parameter. Workload 

varies from phase to phase, but in this model it represents a standard unit of work that is 

treated equally to other units. We define one unit of work to mean a computational task 

that the processor must perform. The uniformity of how we treat work units lends itself to 

simplicity in a baseline configuration. The abstract workload parameters can be defined 

as detailed as needed to facilitate understanding tradeoffs. 

4.2.1.3 Time 

Aside from the Quantum Exchange phase of QKD, all communication occurs 

over the classical communications channel. The time necessary to complete this public 

discussion is relative to the amount of data that must be transferred between Alice and 

Bob. At minimum, each phase contains a “handshake” agreement between Alice and Bob 

deciding whether or not both parties are ready to continue execution. Depending on the 

phase and its implementation, any additional communications may be symmetrical (Alice 

and Bob send an equal number of messages of an average size), or asymmetrical (Alice 

or Bob sends many more messages than the other party, or the average size of the 

messages that one party sends is much greater than the other). In this model we consider 

that Alice and Bob each have a number of transactions that must be completed during 

each phase, each with a uniform or average message size.  

 In addition to the communications overhead, the total execution time of a phase 

also contains the time it takes for Alice and Bob’s processors to complete (i.e., compute) 

the work associated with that phase. Each phase is associated with a static number work 



30 

 

units, and Alice/Bob have a processor with a computational power defined as 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑
𝑡𝑖𝑚𝑒

. In 

the definition of this model, we will assume processing power is constant across all 

phases. The total time it takes to propagate through the phases will be a summation of the 

times it takes for each phase to execute one or more times, dictated by system’s target 

performance. Examples of performance targets include a desired final key rate, a desired 

number of final key bits, a desired key buffer size as an input to Privacy Amplification, or 

a desired key buffer size as an input to Error Reconciliation. The metrics used to define 

the system will also be used to define the system resource cost of reaching these 

performance targets. 

 

4.2.1.4 Alice 

 The system-level input parameters for Alice are described in the following table: 

Table 1. Alice System-Level Parameters 

Parameter 
Name Units Definition Detailed Description 

pulse_rate Mhz The pulse rate of Alice’s 
laser. 

The pulse rate of Alice’s represents the number of pulses 
she sends per second. Example: 4 Mhz = 4,000,000 
pulses/sec 

MPN unitless The Mean Photon Number 
(MPN) 

The Mean Photon Number is an input to the Poisson 
distribution that describes the probability of n photon(s) 
appearing in a laser pulse with MPN = 𝜇, described by:  
𝑃(𝑛; 𝜇) =  𝜇

𝑛∙𝑒−𝜇

𝑛!
 

signalpercent % 
The percentage of signal 
states present in Alice’s 
transmissions. 

QKD practitioners may choose to implement a decoy-state 
protocol, which defines a percentage of the pulses sent are 
signal states, decoy states, and vacuum states. The final key 
rate is determined only be the number of signal-states that 
are successfully received at Bob. 

Alicetotal_memory bytes The total amount of memory 
allocated in Alice for QKD. 

Alice has a finite amount of total memory that is 
represented by the aggregate memory allocated by each 
phase.  

Alicecpu_power units/sec The computational power of 
Alice’s classical processor. 

The power of Alice’s processor is defined by the speed at 
which she can process units of work. A faster processor can 
compute more units of work in less time. 

 

 



31 

 

4.2.1.5 Bob 

 The system-level input parameters for Bob are described in the following table: 

Table 2. Bob System-Level Parameters 

Parameter 
Name Units Definition Detailed Description 

𝑑𝑏_𝑙𝑜𝑠𝑠_𝐵𝑜𝑏 dB The loss as a result of 
propagation through Bob. 

Pulses arriving at Bob have a calculable amount of loss 
(dB) due to the propagation through Bob’s hardware. In 
this model we use the efficiency parameter for calculations, 
derived from the efficiency equation as a function of loss in 
dB: 𝐸𝑓𝑓(𝑑𝐵) =  10

−𝑑𝐵
10   

𝜂detector unitless The efficiency of Bob’s 
detectors. 

A SPD suffers from poor detection efficiency due to 
recovery times, jitter times, quench times, dark counts, and 
afterpulses associated with the APD.  

tdead sec The dead time of Bob’s 
detectors. 

The dead time is a user defined period of idle time after a 
detection (i.e., an avalanche event, where a SPD is “turned 
off” to avoid afterpulsing). This is known as the dead time 
between detections, and limits Bob’s overall detection 
speed. 

Bobtotal_memory bytes 
The total amount of 
memory allocated in Bob 
for QKD. 

Bob has a finite amount of total memory that is represented 
by the aggregate memory allocated by each phase.  

Bobcpu_power units/sec The computational power of 
Bob’s classical processor. 

The power of Bob’s processor is defined by the speed at 
which he can process units of work. A faster processor can 
compute more units of work in less time. 

 

 

4.2.2 Classical Channel 

A classical channel can exist in different forms, including free-space, over mixed 

use optical fiber, dedicated optical fiber, a public network, or even on the same fiber as 

the quantum channel. The system-level input parameters for the classical channel are 

described in the following table: 

Table 3. Classical Channel System-Level Parameters 

Parameter Name Units Definition Detailed Description 

dist_btwn_Alice_Bob km The distance between 
Alice and Bob. 

Alice and Bob share a fixed distance between them. In this 
model we assume the distance of the classical channel and 
the distance of the quantum channel to be equal. 

delay_per_unit_length sec/km 
The delay per kilometer 
incurred as a result of 
propagation. 

The classical channel contains a delay associated with 
transmission that is bounded by the speed of light, c, in 
free-space and  2

3
∙ 𝑐 through optical fiber [40]. 

Conventional networks may also have an added delay due 
to the communications protocol.  

bandwidth Mbits/s Information capacity of 
the classical channel. 

The classical channel has a limit on the amount of 
information that can be transferred in a given period of 
time, usually described in Mbits per second. Example: 100 
Mbit/s bandwidth 



32 

 

 

 

All transmission times across the classical channel are calculated using the following 

formula: 

 

𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒎𝒔𝒈𝒔𝒊𝒛𝒆,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔)  = 𝒎𝒔𝒈𝒔𝒊𝒛𝒆(𝒃𝒊𝒕𝒔)
𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 (𝒃𝒊𝒕𝒔/𝒔𝒆𝒄)

∙

𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔 + 𝒕𝒄𝒍𝒂𝒔𝒔_𝒑𝒓𝒐𝒑_𝒅𝒆𝒍𝒂𝒚 (𝒔𝒆𝒄)       (2) 

Additionally, we will define the inputs related to the sending and receiving of messages 

that are shared across all phases: 

Table 4. Shared Parameters of Classical Channel Communications 

Parameter 
Name Units Definition Detailed Description 

AB_avg_msg_size bytes 

The average size of a 
message passed between 
Alice and Bob that is sent 
from Alice. 

In phases that require communication over the classical 
channel, there is an amount of data that Alice must send to 
Bob. Although it is not required that each message carry 
the same amount of data, we represent the size of each 
message uniformly. For each phase where 
AB_avg_msg_size is defined, it is assumed that all 
messages passed sent by Alice to Bob are of that size. 

BA_avg_msg_size bytes 

The average size of a 
message passed between 
Alice and Bob that is sent 
from Bob. 

In phases that require communication over the classical 
channel, there is an amount of data that Bob must send to 
Alice. Although it is not required that each message carry 
the same amount of data, we represent the size of each 
message uniformly. For each phase where 
BA_avg_msg_size is defined, it is assumed that all 
messages passed sent by Bob to Alice are of that size. 

AB_num_trans unitless 
The number of transactions 
between Alice and Bob that 
are initiated by Alice. 

The number of transactions from Alice to Bob multiplied 
by the average message size from Alice to Bob calculates 
the approximate total amount of data that is passed in that 
direction. If the total number of transactions from AB are 
added to the total number of transactions from BA, we 
calculate the total number of transactions during the phase.  

BA_num_trans unitless 
The number of transactions 
between Alice and Bob that 
are initiated by Bob. 

The number of transactions from Bob to Alice multiplied 
by the average message size from Bob to Alice calculates 
the approximate total amount of data that is passed in that 
direction. If the total number of transactions from BA are 
added to the total number of transactions from AB, we 
calculate the total number of transactions during the phase. 

 

In this model we assume the time it takes for Alice and Bob to communicate at the 

beginning of each phase (signified by a dashed outline in the sequence diagrams) to be 

insignificant.  



33 

 

 

4.2.3 Quantum Channel 

 Unlike the classical channel, the quantum channel is dedicated to quantum 

transmission – the transmission of photons from Alice to Bob. Its properties are similar to 

those of the classical channel with some slight differences, mainly to account for losses 

experienced during transmission. The system-level input parameters for the quantum 

channel are described in the following table: 

Table 5. Quantum Channel System-Level Parameters 

Parameter Name Units Definition Detailed Description 

delay_per_unit_length sec/km The delay per kilometer incurred 
as a result of propagation. 

The classical channel contains a delay associated 
with transmission that is bounded by the speed of 
light, c, in free-space and  2

3
∙ 𝑐 through optical fiber 

[40].  

𝑙𝑜𝑠𝑠_𝑝𝑒𝑟_𝑘𝑚 dB/km The average amount of loss, in 
dB, experienced per kilometer. 

Optical communication has losses associated with 
transmission. For example, optical fiber losses are 
approximately 0.2 dB/km. In this model we use the 
efficiency parameter for calculations, derived from 
the efficiency equation as a function of loss in dB: 

𝐸𝑓𝑓(𝑑𝐵) =  10
−𝑑𝐵
10  

 

4.3 Authentication 

4.3.1 ICOM Model 

 The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Authentication phase: 



34 

 

 

Figure 8. Authentication ICOM Model 

 The inputs and outputs local to Authentication are discussed in the following 

table: 

Table 6. Inputs/Outputs Local to Authentication 

Parameter Name Units Definition Detailed Description 

𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠𝑖𝑧𝑒 bytes 

The number of bytes in the 
authentication reservoir that 
can be used to authenticate a 
message. 

The size of the authentication reservoir must 
be at least large enough at the beginning of 
each QKD round to authenticate the 
communication between Alice and Bob. 

𝑎𝑢𝑡ℎ_𝑘𝑒𝑦_𝑟𝑒𝑞 bytes The number of bytes required 
to authenticate a message. 

For more information, see section 4.3.4. 

𝑇𝐴𝑢𝑡ℎ  sec 
The time required to 
complete a single 
authentication. 

If the QKD practitioner chooses to 
authenticate classical communications more 
than once per round, then the total time it 
takes to complete authentication will be a 
summation of time it takes to complete a 
single authentication multiplied by the 
chosen number of iterations.  

𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑖𝑧𝑒  bytes 
The number of bytes 
remaining in the 
authentication reservoir. 

The number of times Alice and Bob’s 
communication can be re-authenticated 
during a QKD round is dictated by the 
amount of key remaining in the 
authentication reservoir. 

 



35 

 

4.3.2 Abstract Equations 

 The total amount of time required for a single authentication can be calculated 

with the following equation, which describes the time it takes to transmit data between 

Alice and Bob in addition to the time it takes to perform computations: 

𝑻𝑨𝒖𝒕𝒉 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +
{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑨𝒖𝒕𝒉

{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓
        

(3) 

The amount of Authentication key remaining in the Authentication reservoir after 

the phase has completed execution can be calculated with the following equation: 

𝒂𝒖𝒕𝒉_𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓_𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈𝒔𝒊𝒛𝒆 = (𝒂𝒖𝒕𝒉_𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓𝒔𝒊𝒛𝒆 − 𝒂𝒖𝒕𝒉_𝒌𝒆𝒚_𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅)       (𝟒) 

4.3.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 



36 

 

 

Figure 9. Sequence Diagram of Classical Communication During Authentication 

4.3.4 Discussion of Practical Implementation 

In applications outside of QKD, most authentications are done by utilizing 

computationally hard public-key methods. If this were the case in QKD, the security of 

the entire system would effectively be reduced to the computational security of the 

public-key algorithm [7]. Since QKD itself is provably information-theoretically secure, 

the public channel authentication must emulate the same theoretic security on the 

classical channel. The standard in QKD is the Wegman-Carter authentication scheme [8], 

which is based on 𝜖-Almost Strongly-Universal2 (ASU2) hash functions, a subset of the 

strongly Universal2 hash family discussed in depth in the Privacy Amplification section.  

The required number of sacrificed secret key bits can be on the order of several 

bytes if necessary, making the Wegman-Carter routine very efficient [41]. This is an 

essential feature of QKD authentication because the system must produce more secret 

key than is lost during the Authentication phase. The sacrificed number of bits grows 



37 

 

logarithmically with the message size.  The authentication routine can be thought of in 

five steps [41]: 

1) The sender (Alice) selects a message, m. 
2) The sender (Alice) uses key bits, k, from previous round to create an 

authentication tag for the message, where k ≈ log2(|m|). 
3) The sender (Alice) discards used key bits and sends the message to the 

receiver (Bob). 
4) The receiver (Bob) reads the tag, computes his own based off of his own 

secret key, and compares them. 
5) If both tags match, the receiver (Bob) sends a message back to the sender 

(Alice) confirming that the message is authentic and QKD can continue. 

In order to achieve this type of authentication, Alice and Bob must acquire a 

prepositioned secret key in order to agree on a priming key for the initial authentication 

round. In every round thereafter, a portion of the final key from the previous iteration will 

be used to authenticate the new communication. It is not advisable to consider a public-

key distribution of the priming key between both parties for the same reason an 

information-theoretically secure authentication method must be used – it effectively 

reduces the security of the system to a computationally hard problem [6].  

 Standard practice in electronic communications suggests the periodic re-

authentication of the communicating parties. For QKD, the frequency of this practice is 

dictated by the system practitioner and has a direct impact on the final key rate, given that 

the secret key used to prime the Wegman-Carter routine must come from the identical 

secure key buffers shared by Alice and Bob. The nature of 𝜖-ASU2 hash functions for use 

in QKD does not allow the authentication of more than a pair of messages at a time [42], 

which means that new secret key must be sacrificed for every message pair. The 

evaluation of the hash functions is assumed to occur in constant time. 



38 

 

4.4 Quantum Exchange (QE) 

4.4.1 ICOM Model 

 The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Quantum Exchange phase: 

 

Figure 10. Quantum Exchange ICOM Model 

The inputs and outputs local to Quantum Exchange are discussed in the following 

table: 

Table 7. Inputs/Outputs Local to Quantum Exchange 

Parameter Name Units Definition Detailed Description 

𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑢𝑙𝑠𝑒 bytes 
The amount of memory 
required to store information on 
each pulse. 

The memory required for each pulse is, at 
minimum, the space necessary to store the bit, 
basis, and timing (frame and slot) information. 
Alice stores information on every pulse she 
sends, while Bob store information on only the 
pulses he detects. 

𝑇𝑄𝐸  sec 
The time required to complete 
a single iteration of Quantum 
Exchange. 

In this model we assume that Quantum 
Exchange will run until Alice’s memory has 
been filled before moving to the next phase. To 
reach a desired number of final bits will most 
likely require multiple iterations QE during a 
single round of QKD. The total time of QE is 
calculated by the summation of time for the 



39 

 

total number of QE iterations. 

𝐴_𝑟𝑎𝑤𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Alice’s memory 
buffer after completion of QE. 

If Alice runs QE until her memory buffer is 
full, then her raw buffer size will always be the 
maximum amount of memory allocated to her 
QE phase. 

𝐵_𝑟𝑎𝑤𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Bob’s memory 
buffer after completion of QE. 

Bob’s memory buffer will be significantly 
smaller than Alices, due to his inability to store 
information on pulses he does not detect. 

𝐴𝑙𝑖𝑐𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑘𝑒𝑦_𝑏𝑖𝑡𝑠 bits 

The number of bits Alice 
possesses at the end of QE with 
the potential to be final key 
bits. 

The number of bits Alice has will be equal to 
the number of pulses that she sends to Bob. 

𝐵𝑜𝑏_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑘𝑒𝑦_𝑏𝑖𝑡𝑠 bits 

The number of bits Bob 
possesses at the end of QE with 
the potential to be final key 
bits. 

The number of bits Bob has will be equal to the 
number of detections he receives. 

 

4.4.2 Abstract Equations 

The time required to complete Quantum Exchange will either be the total time it 

takes for Alice to transmit all pulses required to fill her memory or the amount of time it 

takes to complete the classical processing necessary to process the information associated 

with each pulse, whichever takes longer. In this model the time to complete Quantum 

Exchange: 

𝑻𝑸𝑬 = 𝒎𝒂𝒙�𝒏𝒖𝒎_𝒅𝒆𝒕_𝒂𝒕_𝑩𝒐𝒃
𝒂𝒄𝒕𝒖𝒂𝒍_𝒅𝒆𝒕_𝒓𝒂𝒕𝒆

+ 𝒕𝒒𝒖𝒂𝒏𝒕_𝒑𝒓𝒐𝒑_𝒅𝒆𝒍𝒂𝒚 ,  
{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑸𝑬

{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓
�        (𝟓) 

The Poisson distribution is used to calculate the probability that n photons will be 

present in a pulse. Thus, the cumulative Poisson probability describing the probability 

that one or more photons will be present is represent with the following equation: 

𝑷𝒐𝒊𝒔(𝑿 ≥ 𝟏) = 𝟏 − 𝒆−𝝁      (𝟔) 

The total number of pulses that Alice sends is limited by the amount of memory 

she has allocated to Quantum Exchange. If the amount of memory required to store 

information (bit, basis, and timing) is known, the maximum number of pulses Alice can 

send is modeled by the following equation: 



40 

 

𝒏𝒖𝒎_𝒑𝒖𝒍𝒔𝒆𝒔_𝒔𝒆𝒏𝒕 = 𝑨𝒎𝒆𝒎 𝒂𝒗𝒂𝒊𝒍
𝒎𝒆𝒎_𝒓𝒆𝒒_𝒑𝒆𝒓_𝒑𝒖𝒍𝒔𝒆

       (𝟕) 

The number of detections that will actually be received at Bob is a product of 

efficiencies of the channel and Bob’s hardware, the probability that a pulse contains a 

photon(s), the chosen signal percentage, and the total number of pulses sent by Alice. The 

approximate total number of detections at Bob can be modeled with the following 

equation: 

𝒏𝒖𝒎_𝒅𝒆𝒕_𝒂𝒕_𝑩𝒐𝒃 = 𝒏𝒖𝒎_𝒑𝒖𝒍𝒔𝒆𝒔_𝒔𝒆𝒏𝒕 ∙ 𝑷𝒐𝒊𝒔(𝑿 ≥ 𝟏) ∙ 𝒔𝒊𝒈𝒑𝒆𝒓𝒄𝒆𝒏𝒕 ∙ 𝜼𝒄𝒉𝒂𝒏𝒏𝒆𝒍 ∙ 𝜼𝑩𝒐𝒃 ∙ 𝜼𝒅𝒆𝒕       (𝟖) 

The average time between the arrival of each pulse at Bob is represented by the 

inverse of the pulse rate after experiencing losses associated with photon probability, 

signal percentage, and the efficiencies of the channel and Bob’s hardware in the 

following equation: 

𝒕𝒕𝒊𝒎𝒆_𝒃𝒕𝒘𝒏_𝒑𝒖𝒍𝒔𝒆_𝒂𝒓𝒓𝒊𝒗𝒂𝒍 = 𝟏
𝒑𝒖𝒍𝒔𝒆_𝒓𝒂𝒕𝒆 ∙ 𝑷𝒐𝒊𝒔(𝑿≥𝟏)∙ 𝒔𝒊𝒈𝒑𝒆𝒓𝒄𝒆𝒏𝒕 ∙ 𝜼𝒄𝒉𝒂𝒏𝒏𝒆𝒍 ∙ 𝜼𝑩𝒐𝒃 ∙ 𝜼𝒅𝒆𝒕

       (𝟗) 

We assume the average pulse arrival interval, 𝑡𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑝𝑢𝑙𝑠𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙, at Bob is 

uniform. To account for the scenario where the dead time of the detectors exceeds the 

time between arriving pulses, we can calculate the average time between detections due 

to missed pulses with the following equation: 

𝒕𝒂𝒗𝒈_𝒕𝒊𝒎𝒆_𝒃𝒕𝒘𝒏_𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 = 𝒄𝒆𝒊𝒍 � 𝒕𝒅𝒆𝒂𝒅
𝒕𝒕𝒊𝒎𝒆_𝒃𝒕𝒘𝒏_𝒑𝒖𝒍𝒔𝒆_𝒂𝒓𝒓𝒊𝒗𝒂𝒍

� ∙ 𝒕𝒕𝒊𝒎𝒆_𝒃𝒕𝒘𝒏_𝒑𝒖𝒍𝒔𝒆_𝒂𝒓𝒓𝒊𝒗𝒂𝒍       (𝟏𝟎) 

The actual detection rate (per second) can then be calculated by the inverse of the 

average time between detections. In the case where the dead time does not exceed the 

time between arriving pulses, 𝑡𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑝𝑢𝑙𝑠𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙, will be equal to 



41 

 

𝑡𝑎𝑣𝑔_𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛. In that case the pulse arrival rate would be equal to the actual 

detection rate, represented by the following equation: 

𝒂𝒄𝒕𝒖𝒂𝒍_𝒅𝒆𝒕_𝒓𝒂𝒕𝒆 = 𝟏
𝒕𝒂𝒗𝒈_𝒕𝒊𝒎𝒆_𝒃𝒕𝒘𝒏_𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏

        (𝟏𝟏) 

Given that Alice and Bob are required to store information about each pulse 

during Quantum Exchange, we can represent the size of their raw memory buffers as the 

amount of information required to store the number of pulses sent (Alice) and detections 

(Bob) with the following equations: 

𝑨𝒓𝒂𝒘𝒃𝒖𝒇𝒇𝒆𝒓 = 𝒏𝒖𝒎_𝒑𝒖𝒍𝒔𝒆𝒔_𝒔𝒆𝒏𝒕 ∙ 𝒎𝒆𝒎_𝒓𝒆𝒒_𝒑𝒖𝒍𝒔𝒆       (𝟏𝟐) 

𝑩𝒓𝒂𝒘𝒃𝒖𝒇𝒇𝒆𝒓 = 𝒏𝒖𝒎_𝒅𝒆𝒕_𝒂𝒕_𝑩𝒐𝒃 ∙ 𝒎𝒆𝒎_𝒓𝒆𝒒_𝒑𝒖𝒍𝒔𝒆        (𝟏𝟑) 

The number of candidate key bits (i.e., bits that have the potential to become final 

key bits) as a result of completing Quantum Exchange may be represented simply as 

being equal to the number of pulses sent (Alice) and detections (Bob) with the following 

equations: 

𝑨𝑸𝑬_𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆_𝒌𝒆𝒚_𝒃𝒊𝒕𝒔 = 𝒏𝒖𝒎_𝒑𝒖𝒍𝒔𝒆𝒔_𝒔𝒆𝒏𝒕       (𝟏𝟒) 

𝑩𝑸𝑬_𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆_𝒌𝒆𝒚_𝒃𝒊𝒕𝒔 = 𝒏𝒖𝒎_𝒅𝒆𝒕_𝑩𝒐𝒃        (𝟏𝟓) 

4.4.3 Sequence Diagram 

The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

arrow pointing from Alice to Bob represents communication initiated by Alice, and the 

arrow pointing from Bob to Alice represents communication initiated by Bob: 



42 

 

 

Figure 11. Sequence Diagram of Classical Communication During Quantum Exchange 

4.4.4 Discussion of Practical Implementation 

The objective of this phase is to maximize photon detection at Bob while 

overcoming potential obstacles in the system that limit Bob’s detection efficiency. These 

realities primarily stem from the fact that neither perfect single photon generation nor 

detection is possible as of this writing. To address the lack of perfect single photon 

sources, photons are created at Alice with a defined probability – it is associated with 

attempting to maximize photon detection under these conditions, which by implication 

maximizes the final key generation rate. There are four major areas in which key 

generation rates can be significantly increased [21]: improvement in detection efficiency, 

increase in pulse rate at Alice, refinement of entropy estimates to reduce the amount of 

required privacy amplification, and increase in Mean Photon Number (MPN or µ, as is 

commonly denoted in literature).  Note that QE is the only time during an iteration of the 



43 

 

QKD system where bits are being added to Bob’s buffer. Successive phases seek to 

reduce the bit buffer, as sacrificial bits are required to complete their tasking. 

The high amount of loss over long distances is generally overcome by utilizing 

Avalanche Photodiode (APD) detectors operating in the single-photon detection “Geiger-

mode” in conjunction with a high pulse rate at Alice. The universal speed limit in these 

detectors, however, is dictated by the recovery or dead time between detections. This 

measurable recovery time exists due to the need to reset the device for a subsequent 

detection and prevent any charge carriers (e.g., electrons of holes) that were trapped in 

the device from being released during the next detector gating period, known as an after 

pulse, which may result in an arbitrary detection event that increases the number of 

errors.  The recovery time of detectors must be long enough to limit or eliminate after 

pulsing but still generate sufficient key. It is worth mentioning that most detectors operate 

in a super-cooled state in order to reduce thermally generated contribution to the dark 

count rate [22], where a dark count is any arbitrary detection event that is not caused by a 

pulse from Alice.  

The necessity for a recovery time of several microseconds forms one of the most 

important bottlenecks in overall system performance [21]. In addition, the efficiencies of 

APD detectors tend to be very low, typically around 10-20% [9]. In fact, the most 

fundamental trade-off in the operation of SPDs is that between dark count rate and 

photon detection efficiency [22]. A balance must exist then between Alice’s pulse firing 

rate and Bob’s ability to detect photons after incurring channel loss in the fiber, poor 

efficiency, and dead times. Since Alice must store information on every pulse she sends, 



44 

 

if her pulse rate is too high she will quickly run out of available memory. Conversely, if 

her pulse rate is too low, the final key generation rate will be insufficiently low. 

 Another critical factor in determining the photon counting rate at Bob as well as 

final key rate is the selection of an optimal Mean Photon Number, or MPN. As stated, the 

lack of true single photon sources requires that Alice’s pulses be attenuated so that they 

approximate single photon pulses. Bennett & Brassard, the original authors of the BB84 

protocol, suggested the use of µ = 0.1, however “contrary to frequent misconception, 

there is nothing special about a µ value of 0.1, even though it has been selected by most 

experimentalists” [29]. In other words, a system utilizing this probability will produce, on 

average, one pulse containing at least one photon for every ten pulses Alice generates 

according to the Poisson distribution. It is possible to increase the final key generation 

rate by simply increasing the MPN. In fact, the optimal probability is slightly over 1.0; 

however optimality varies between distinct systems [21]. The consequence of increased 

MPN is increased multi-photon entropy, which should be accounted for during the 

Entropy Estimation phase, and is the critical input parameter affecting how Privacy 

Amplification is performed. If the appropriate safeguards are built into the Entropy 

Estimation phase for a reasonable expectation of Eve’s abilities, “one can in fact safely 

operate with a larger MPN … without any adverse effects on security” [21]. The major 

advantage of an increased MPN is an immediate increase in key generation without any 

detriment to system resources, namely memory space. A higher µ value increases the 

number of pulses that contain photons – pulses which have already been accounted for in 

memory by Alice. Thus, Alice’s memory and MPN are independent, whereas Alice’s 

memory usage and pulse rate are perfectly correlated. 



45 

 

The notion of dark counts in these detections, in terms of representation within the 

mathematical model, is such that if a dark count occurs, the result would be a skew in the 

number of detections at Bob, which is potentially more detrimental to the accurate 

representation of performance of a system than the actual ratio of dark counts to signal 

detections. If we assume Quantum Exchange will cease once Alice has produced an 

arbitrary number of pulses, yielding an equivalent bit count in her raw key buffer, the 

dark count rate will marginally skew the number of detections at Bob, potentially 

introducing errors. Dark counts and after pulsing therefore manifest their effects in the 

form of a higher error rate. As a result, if the calculated error rate exceeds its threshold 

during Entropy Estimation, no key will be generated in that particular iteration of the 

QKD system due to termination of execution. In general, the limit of secret key 

generation is the point which the probability of a dark count meets or exceeds the 

probability of detecting a signal bit [4], but dark count probabilities are so small that we 

did not include them in our general model. However, we note that when path loss is high 

(e.g., due to long propagation distances) and the photon detection probability becomes 

low, dark counts may become significant, and even dominate the detection rate. The 

desired speed of final key generation rate must be considered with the total distance of 

the system, which is true for all QKD implementations. 

4.5 Sifting 

4.5.1 ICOM Model 

The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Sifting phase: 



46 

 

 

Figure 12. Sifting ICOM Model 

The inputs and outputs local to Sifting are discussed in the following table: 

Table 8. Input/Outputs Local to Sifting 

Parameter Name Units Definition Detailed Description 

𝑠𝑖𝑓𝑡𝑖𝑛𝑔_𝑒𝑓𝑓_𝑓𝑟𝑎𝑐 unitless 

The approximate ratio of 
detections to correct basis 
measurements, as defined by the 
protocol. 

The BB84 protocol, for instance, dictates that 
approximately half the time Bob will choose the 
correct basis measurement. The incorrect 
measurements will be discarded. 

𝑇𝑆𝑖𝑓𝑡  sec The time required to complete the 
sifting process. 

The time required to complete Sifting consists of 
the time it takes transfer all of Bob’s basis 
measurements to Alice, for Alice to reply to Bob 
with the correct/incorrect measurements, and the 
processing time it takes to adjust the size of the bit 
buffers. 

𝐴_𝑠𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Alice’s sifted key 
buffer. 

After Alice eliminates pulses from her buffer with 
mismatched basis measurements, discards pulses 
that Bob did not detect and removes the extraneous 
information (basis, timing, etc.) stored on the 
remaining pulses, she is left with a sifted bit buffer. 

𝐵_𝑠𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Bob’s sifted key 
buffer. 

The size of Bob’s sifted key buffer is the result of 
applying the sifting efficiency fraction and 
eliminating all unnecessary information that was 
required for Quantum Exchange (basis, timing, 
etc.) 

 

 



47 

 

4.5.2 Abstract Equations 

 The total time required to sift the raw key buffer is determined by the time it takes 

to transmit required data across the classical channel in addition to the computational 

time required, represented by the following equation: 

𝑻𝑺𝒊𝒇𝒕 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +

{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑺𝒊𝒇𝒕
{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓

       (𝟏𝟔) 

 After sifting has completed, Alice and Bob are no longer required to possess the 

basis and timing information for each bit. Therefore the size of Bob’s sifted bit buffer is 

the result of removing both the unnecessary information about each pulse and 

mismatched basis measurements between himself and Alice. This process can be 

represented mathematically by the following equation: 

𝑩𝒔𝒊𝒇𝒕𝒃𝒖𝒇𝒇𝒆𝒓 = 𝒔𝒊𝒇𝒕_𝒆𝒇𝒇_𝒇𝒓𝒂𝒄 ∙
𝑩𝒓𝒂𝒘𝒃𝒖𝒇𝒇𝒆𝒓

𝒎𝒆𝒎_𝒓𝒆𝒒_𝒑𝒖𝒍𝒔𝒆
       (𝟏𝟕) 

 The size of Alice’s bit buffer should be equal to Bob’s after removing all 

extraneous information related to erroneous basis measurements: 

𝑨𝒔𝒊𝒇𝒕𝒃𝒖𝒇𝒇𝒆𝒓 = 𝑩𝒔𝒊𝒇𝒕𝒃𝒖𝒇𝒇𝒆𝒓       (𝟏𝟖) 

4.5.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 



48 

 

 

Figure 13. Sequence Diagram of Classical Communication During Sifting 

4.5.4 Discussion of Practical Implementation 

At minimum, the completion time of Sifting will require the time it takes to 

transmit all of the measurement basis information from Bob’s raw key buffer to Alice in 

a series of messages across the classical channel, and a response from Alice for each 

message. Note that this is only one example of an implementation. In fact, Alice could 

theoretically send all of her basis preparation information to Bob and force him to 

complete the necessary processing to match and compare his measurements on received 

photons to Alice’s entire buffer, then communicate that information back to her. The 

consequence of completing sifting in the latter fashion is the major increase in 

communications overhead that is required across the classical channel, which is directly 

correlated to the amount of loss on the quantum channel. Alice must store in memory, in 

some way, information about each pulse sent. At minimum, this includes the bit value, 

basis measurement, and timing information. Given the high amount of loss described in 



49 

 

the previous Quantum Exchange section, if Alice communicates all of her pulse 

information to Bob after a Quantum Exchange that experienced 90% loss, there will be 

nine times as many messages required across the classical channel than if Bob initiated 

the Sifting phase by sending his basis measurements first. 

There is a significant increase in available memory space after the Sifting phase 

has completed.  In a signal-state-only BB84 implementation, for instance, the protocol 

efficiency fraction will be approximately one half [18]. In other words, 50% of Bob’s raw 

key buffer will be discarded in addition to Alice discarding her entire buffer except those 

which matches Bob’s buffer. Memory, however, is finite. Leveraging the memory space 

bottleneck is one of the most difficult challenges in the design of a QKD system. It limits 

the total number of photons that can be “in play” within the system at any given time, and 

is initially governed by the amount of loss in the channel. Until the Sifting phase has 

completed, Alice has to maintain information on every pulse that she sends, whereas Bob 

can only record what he detects. And as such, Alice suffers from a proportional increase 

in memory requirement to the amount of loss she must incur. The memory space being 

utilized in Alice is therefore disproportionately larger than in Bob before Sifting.  

The nature of serialized phase execution dictates that before an attempt can be 

made to generate more key, the previous iteration of the system must have completed 

operation. It is therefore of interest to maximize the amount of key generated per system 

iteration while decreasing the time it takes to achieve the desired output of keying 

material. In general, the more signal bits detected at Bob during Quantum Exchange, the 

larger the output of secure key will be. The prospect of infinite detections, however, is 

hedged by the practical need for Alice to store information on all transmitted photons, the 



50 

 

loss in both the channel and Bob, and the inefficiencies of Bob’s detectors. Given 

practical limitations on the size of Alice’s memory, a balance must be achieved between 

the amount of desired key in a given window of time, at a particular distance, for a single 

iteration of the system. It is crucial to affirm this concept as it relates to the Sifting phase 

because memory requirements, particularly for Alice, are at their peak at the conclusion 

of Quantum Exchange and the start of the Sifting. 

4.6 Error Estimation 

4.6.1 ICOM Model 

The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Error Estimation phase: 

 

Figure 14. Error Estimation ICOM Model 



51 

 

The inputs and outputs local to Error Estimation are discussed in the following 

table: 

Table 9. Input/Outputs Local to Error Estimation 

Parameter Name Units Definition Detailed Description 

𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑_𝑝𝑐𝑡 % 
The percentage of the sifted key 
buffers sacrificed to provide an 
error estimate. 

The percentage of eliminated sifted key for Error 
Estimation is entirely dependent on the needs of the 
practitioner. If a more accurate estimation is 
desired, the percentage can be increased at the 
detriment of final throughput. 

𝑇𝐸𝑟𝑟𝐸𝑠𝑡  sec The time required to complete 
Error Estimation. 

The time to complete sifting consists of 
communications time to transfer the sacrificed bits 
across the classical channel and processing time for 
error estimation calculations. 

𝐴_𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Alice’s Error 
Estimated key buffer. 

The size of the Error Estimated buffer equals the 
size of the input sifted key buffer after eliminating 
the bits sacrificed percentage of the key. 

𝐵_𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Bob’s Error 
Estimated key buffer. 

The size of the Error Estimated buffer equals the 
size of the input sifted key buffer after eliminating 
the bits sacrificed percentage of the key. 

 

4.6.2 Abstract Equations 

The total time required to estimate the error percentage of the sifted key buffer is 

determined by the time it takes to transmit required data across the classical channel in 

addition to the computational time required, represented by the following equation: 

𝑻𝑬𝒓𝒓𝑬𝒔𝒕 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +

{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑬𝒓𝒓𝑬𝒔𝒕
{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓

       (𝟏𝟗) 

 The size of the error estimated buffers for both Alice and Bob are determined the 

percentage of bits that are saved multiplied to the sized of the sifted key buffer, 

represented by the following equation: 

{𝑨,𝑩}𝑬𝒓𝒓𝑬𝒔𝒕𝒃𝒖𝒇𝒇𝒆𝒓 = (𝟏 − 𝒃𝒊𝒕𝒔_𝒔𝒂𝒄𝒓𝒊𝒇𝒊𝒄𝒆𝒅𝒑𝒄𝒕) ∙ {𝑨,𝑩}𝑺𝒊𝒇𝒕𝒃𝒖𝒇𝒇𝒆𝒓        (𝟐𝟎) 



52 

 

4.6.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 

 

Figure 15. Sequence Diagram of Classical Communication During Error Estimation 

4.6.4 Discussion of Practical Implementation 

 Time of completion in Error Estimation is primarily determined by how quickly a 

sampling of sacrificed bits can be transmitted between the parties. The Error Estimation 

phase presents the QKD practitioner with an opportunity to have a significant impact on 

the amount of final key generated by dictating the amount of key sacrificed to calculate 

the error rate. The trade-offs between sacrificing too much key or too little key can be 

significant. By sacrificing a high percentage of key it is also an immediate deduction in 

potential key at the conclusion of the final phase. But from this we gain a highly accurate 



53 

 

estimate of the error rate, which may save vital resources required to propagate further 

through the system (assuming the error rate does not exceed the error threshold). A 

highly accurate error rate will also pay dividends during calculations for Error 

Reconciliation (e.g., performance optimization if the error rate is used to select the initial 

starting block size in the highly interactive Cascade algorithm). We must also consider 

that when leveraging phase execution time against amount of final key produced, there 

must be an intersection between how much final key is retained during Error Estimation 

and the subsequent gain in memory and final throughput per QKD iteration.  

4.7 Error Reconciliation 

4.7.1 ICOM Model 

 The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Error Reconciliation phase: 



54 

 

 

Figure 16. Error Reconciliation ICOM Model 

The inputs and outputs local to Error Reconciliation are discussed in the following 

table: 

Table 10. Input/Outputs Local to Error Reconciliation 

Parameter Name Units Definition Detailed Description 

𝑛𝑢𝑚_𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑 unitless 
The number of bits sacrificed for 
each Error Reconciliation 
routine. 

Some QKD error correction algorithms sacrifice 
bits as a result of their processing. The most 
common algorithms, such as Cascade and LDPC, 
do not. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 bits 
The required input block size to 
perform an Error Reconciliation 
routine. 

An error correction algorithm may have an optimal 
chosen block size that maximizes performance. In 
the case of LDPC, required a fixed input size based 
on the standard matrix selected for processing.  

𝑇𝐸𝑟𝑟𝑅𝑒𝑐  sec 
The total time required to 
complete a round of Error 
Reconciliation. 

The time to complete Error Reconciliation depends 
highly on the algorithm chosen, its interactivity on 
the classical channel, and computational 
complexity. 

𝐴_𝐸𝑟𝑟𝑅𝑒𝑐𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of the Error Reconciled 
buffer. 

The size of the Error Reconciled buffer will be the 
same size as the Error Estimated buffer (assuming 
no bits are lost due to algorithm choice). 

𝐵_𝐸𝑟𝑟𝑅𝑒𝑐𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of the Error Reconciled 
buffer. 

The size of the Error Reconciled buffer will be the 
same size as the Error Estimated buffer (assuming 
no bits are lost due to algorithm choice). 

𝑛𝑢𝑚_𝑒𝑟𝑟_𝑟𝑒𝑐 unitless 
The total number of Error 
Reconciliation routines required 
to process the input buffer. 

The need to perform Error Reconciliation by block 
size means multiple rounds will be required if the 
input to Error Reconciliation exceeds the block 
size. 



55 

 

 

 

4.7.2 Abstract Equations 

 The total time required to complete Error Reconciliation, assuming that a single 

iteration of the algorithm occurs at a time, is equal to the time it takes to complete a 

single block of input key multiplied by the number of total blocks in the error estimated 

input buffer. We also assume that if the number of blocks does not divide the error 

estimated buffer evenly, the last block will be padded in order for the algorithm to run 

successfully, defined by the following equation: 

𝑻𝑬𝒓𝒓𝑹𝒆𝒄 =

𝒄𝒆𝒊𝒍 �
{𝑨,𝑩}𝑬𝒓𝒓𝑬𝒔𝒕𝒃𝒖𝒇𝒇𝒆𝒓

𝒃𝒍𝒐𝒄𝒌𝒔𝒊𝒛𝒆
� ∙

�𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +
{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑬𝒓𝒓𝑹𝒆𝒄

{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓
�        

(4) 

 The size of the error reconciled buffer will be equal to the size of the error 

estimated buffer minus the number of bits sacrificed during all iterations of the algorithm 

(if any): 

{𝑨,𝑩}𝑬𝒓𝒓𝑹𝒆𝒄𝒃𝒖𝒇𝒇𝒆𝒓 = {𝑨,𝑩}𝑬𝒓𝒓𝑬𝒔𝒕𝒃𝒖𝒇𝒇𝒆𝒓 − (𝒏𝒖𝒎_𝒃𝒊𝒕𝒔_𝒔𝒂𝒄𝒓𝒊𝒇𝒊𝒄𝒆𝒅 ∙ 𝒏𝒖𝒎_𝒆𝒓𝒓_𝒓𝒆𝒄)         (𝟐𝟐) 

 The total number of error reconciliation iterations depends on the number of 

blocks contained in the error estimated buffer, represented by the following equation: 

𝒏𝒖𝒎_𝒆𝒓𝒓_𝒓𝒆𝒄 = 𝒄𝒆𝒊𝒍 �
{𝑨,𝑩}𝑬𝒓𝒓𝑬𝒔𝒕𝒃𝒖𝒇𝒇𝒆𝒓

𝒃𝒍𝒐𝒄𝒌𝒔𝒊𝒛𝒆
�        (5) 



56 

 

4.7.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 

 

Figure 17. Sequence Diagram of Classical Communication During ER 

4.7.4 Discussion of Practical Implementation 

 The timing equation for Error Reconciliation exists at a level of abstraction to 

represent the three major reconciliation algorithms, namely Cascade, Winnow, and LDPC 

(Low Density Parity Check). More importantly, it is robust enough to identify the inverse 

relationship between the number of messages sent and the computational time required 

for that dataset. For instance, Cascade requires high cost in communications overhead 

given a relatively large number of messages, which is variable depending on the error 



57 

 

rate. It benefits, however, from low computational complexity and necessary memory 

space for the calculations that need to be performed, requiring 1 to 2 bytes per bit of data 

to be reconciled [20]. Latencies of a network are generally much higher than those of a 

CPU, which creates a bottleneck in processing in the case of Cascade. Winnow and 

LDPC represent the opposite scenario, requiring a very low number of communications 

and much higher computational time. In addition, necessary memory space for 

computation requires 20 to 30 bytes of memory per bit of data to be reconciled [20]. 

 A strict sense of time is an important consideration for final throughput given that 

the algorithm chosen is viable. There are other considerations and trade-offs specific to 

each algorithm, however, that must not be ignored by the practitioner of a QKD system. 

For instance, Winnow suffers from the potential to induce errors during processing, and 

is therefore less effective than Cascade when discussing accuracy in the absence of time. 

Winnow also requires a privacy maintenance step in which a small amount of key is 

sacrificed during calculation – a step which is absent in both Cascade and LDPC [10]. 

Cascade also suffers from a higher variability in processing time, given that the number 

of messages that will be required per iteration is dictated by the error rate. Similarly, for 

LDPC codes the size of the error correction code and the computation time also depend 

upon the estimated error rate. The expected window of completion with respect to time 

would therefore need to be larger to account for that variability.  

A study conducted at the National Institute of Standards and Technology (NIST) 

quantified the speed differential between FPGA implementations of Cascade and LDPC. 

It found that the throughput for Cascade dropped off from 5 Mbits/s to 3 Mbits/s between 

0 and 100 km. LDPC, however, remained closer to a constant 2 Mbits/s [20]. This proved 



58 

 

that the performance of Cascade is dictated mainly by the increased latency over the 

classical channel at greater distances. In short, the algorithm chosen is still highly 

implementation-specific regardless of its theoretical characteristics. The most intriguing 

part of the study, however, was that each throughput figure exists on a per-thread basis. 

That is, LDPC has the potential to run 2 Mbits/s per thread at 100 km. This presents the 

ability for linear scaling with parallel instantiations, with an upper bound on the thread 

count limited by the available memory, recalling that the required memory per bit 

reconciled is an order of magnitude larger for LDPC and Winnow than it is for Cascade.   

4.8 Entropy Estimation 

4.8.1 ICOM Model 

The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Entropy Estimation phase: 

 

Figure 18. Entropy Estimation ICOM Model 



59 

 

The inputs and outputs local to Authentication are discussed in the following 

table: 

Table 11. Input/Outputs Local to Entropy Estimation 

Parameter Name Units Definition Detailed Description 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑄𝐵𝐸𝑅 % 

The percentage of 
key lost due to 
entropy loss on the 
quantum channel. 

Imperfect transmission on the quantum channel 
results in the possibilities of errors, all of which 
are attributed to Eve. Any leaked information as a 
result of this transmission must be subtracted 
away from the final key.  

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑝𝑢𝑏𝑙𝑖𝑐 % 

The percentage of 
key lost due to 
entropy loss during 
Error Reconciliation.  

Information is leaked during transmission of data 
across the classical channel during Error 
Reconciliation. Although these leaks occur in the 
form of parity information, an estimated amount 
of information about the key Eve might glean 
from this information must be subtracted away 
from the final key. 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑚𝑢𝑙𝑡𝑖_𝑝ℎ𝑜𝑡𝑜𝑛 % 
The percentage of 
key lost due to 
multi-photon pulses. 

Information is potentially leaked with the presence 
of multi-photon pulses. Defense against the 
possibility of a Photon-Number Splitting attack 
may result in subtracting away the probability of 
all multi-photon pulses from the final key. 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑠𝑎𝑓𝑒𝑡𝑦 % 

The percentage of 
key lost due to 
arbitrary safety 
margin. 

An arbitrary amount of information may also be 
subtracted from the final key as a “safety net” to 
protect against any unaccounted for entropy loss. 

𝑇𝐸𝑛𝑡𝐸𝑠𝑡 sec 
The time required to 
complete Entropy 
Estimation. 

The time required to complete Entropy Estimation 
is marginal, give that both Alice and Bob know 
the entropy estimation routine. Communication 
across the classical channel may not be required to 
complete Entropy Estimation. 

𝐴_𝐸𝑛𝑡𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes 
The size of the 
Entropy Estimated 
buffer. 

The Entropy Estimated buffer will equal the size 
of the input Error Reconciled buffer. The bit 
buffers remain unaffected during Entropy 
Estimation. 

𝐵_𝐸𝑛𝑡𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟  bytes 
The size of the 
Entropy Estimated 
buffer. 

The Entropy Estimated buffer will equal the size 
of the input Error Reconciled buffer. The bit 
buffers remain unaffected during Entropy 
Estimation. 

𝑁𝑠𝑒𝑐𝑢𝑟𝑒  bytes 

The number of bits 
that can be saved 
after Privacy 
Amplification. 

The number of secure bits that can be saved post-
Privacy Amplification is calculated by the 
summation of the entropy loss percentages applied 
to the Error Reconciled buffer. 

 

4.8.2 Abstract Equations 

The total time required to estimate the entropy loss is determined by the time it 

takes to transmit required data across the classical channel in addition to the 

computational time required, represented by the following equation: 



60 

 

𝑻𝑬𝒏𝒕𝑬𝒔𝒕 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +
{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑬𝒏𝒕𝑬𝒔𝒕

{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓
  

(𝟐𝟒) 

 Considering no bits are lost during entropy estimation, the size of the entropy 

estimated buffer is identical to the size of the error reconciled buffer, represented by the 

following equation: 

{𝑨,𝑩}𝑬𝒏𝒕𝑬𝒔𝒕𝒃𝒖𝒇𝒇𝒆𝒓 = {𝑨,𝑩}𝑬𝒓𝒓𝑹𝒆𝒄𝒃𝒖𝒇𝒇𝒆𝒓          (𝟐𝟓) 

 The number of bits that can be saved during the upcoming Privacy Amplification 

phase can be represented by the percentage of key remaining after losses multiplied to 

size of the error reconciled buffer, as shown in the following equation: 

𝑵𝒔𝒆𝒄𝒖𝒓𝒆 = (𝟏 − 𝒕𝒐𝒕𝒂𝒍_𝒆𝒏𝒕_𝒍𝒐𝒔𝒔_𝒑𝒄𝒕) ∙ {𝑨,𝑩}𝑬𝒓𝒓𝑹𝒆𝒄𝒃𝒖𝒇𝒇𝒆𝒓         (6) 

4.8.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 



61 

 

 

Figure 19. Sequence Diagram of Classical Communication During Entropy Estimation 

4.8.4 Discussion of Practical Implementation 

 Although the execution requirements for this phase are trivial, the implications for 

the security of the overall system are significant. Time and space requirements for 

Entropy Estimation are minimal. The Nsecure processing is at most an O(1) operation [3]. 

It is assumed that the inputs into the algorithmic calculation have been gleaned and 

retained from prior phases. 

 Earlier in this thesis we claimed that QKD as a distribution system is markedly 

different than public-key distribution methods. This notion becomes most apparent when 

discussing the representation of security in the form of a proof. Recent research has 

suggested that the catchall nature of proofs in conventional cryptography, in which Eve’s 

actions are confined to the limits of mathematical processing, do not apply to QKD [11]. 

This stems from the fact that the exchange of quantum material is probabilistic, and as a 

result relies on the system’s practitioner to estimate the entropy loss, or how much 

information Eve may have gleaned during Quantum Exchange. It is unclear if it is 

possible to know whether or not the amount of entropy accounted for is indeed provably 



62 

 

secure, because unlike in conventional cryptography, the physical components (i.e. 

design choices of hardware) influence the theoretical security. It is therefore necessary to 

recognize the sources of entropy loss and its causes in order to generate a sufficient 

estimate of entropy loss. 

 Information leakage presents itself in three key areas [12, 23]: the presence of 

multi-photon pulses during Quantum Exchange, disclosure of block checksums or parity 

bits during Error Reconciliation (also known as the public discussion), and any 

eavesdropping that occurs on the quantum channel. Since it is impossible to distinguish 

between channel noise and eavesdropping, most security analyses make the conservative 

attribution of any detected errors to the presence of Eve. Of the few recognized entropy 

estimates based on information theory that exist, none take into account all three sources 

of entropy. The original BBBSS92 estimate from Bennett, et al. [27], Slutsky et al.’s 

Defense Frontier Analysis [12], and the Myers-Pearson estimate [23] are mostly 

concerned with information learned from measuring single-photon pulses, which is 

“intimately related to the observed error rate” [23]. Furthermore, within the singularly 

focused source of entropy, Eve is assumed to be conducting individual attacks in which 

she measures photons independently. The disregarded alternative, known as a coherent 

attack, occurs when Eve can measure several photons at the same time, which is 

infeasible without the advent of quantum memory.  

 The other two sources of information leakage, multi-photon pulses and public 

discussion, are not entirely ignored but rather account for their miscalculation in what 

Slutsky et al. refer to as an “arbitrary safety margin,” which is subtracted from the final 

estimate for single-photon pulses to create an Nsecure number of bits that can be used as 



63 

 

final key. The focus on a perceived error rate as the primary source of entropy stems from 

the fact that a “combination of a low error rate and high information leakage is unlikely 

no matter what strategy the eavesdropper uses” [12]. The amount safety margin added is 

at the discretion of the practitioner to ensure a desired level of security. Higher estimates 

may be desired for added security. However, this will result in a smaller number of final 

bits, more Privacy Amplification, and a reduced final key rate. A balance must be 

achieved between security requirements and desired final key rate with the stipulation 

that the input QBER to Entropy Estimation be no greater than 11%, which is the point at 

which the Shannon entropy reaches zero [1]. In other words, an upper bound under which 

the QKD system remains provably secure.   

The final number of Nsecure bits can be derived with the following equation [13]: 

𝑵𝒔𝒆𝒄𝒖𝒓𝒆 = 𝑵𝒄𝒐𝒓𝒓(𝟏 − 𝒉𝟐(𝑸𝑩𝑬𝑹)) −𝑵𝒍𝒆𝒂𝒌𝒆𝒅 − 𝑵𝒎𝒖𝒍𝒕𝒊 − 𝑵𝒔𝒂𝒇𝒆𝒕𝒚        (7) 

Nsecure = final number of usable secure bits after Privacy Amplification 

Ncorr = number of bits after Error Reconciliation 

h2(x) = −𝑥 ∙ log(𝑥) − (1 − 𝑥) ∙ log (1 − 𝑥), the binary entropy function  

QBER = actual Quantum Bit Error Rate 

Nleaked = number of bits revealed during Error Reconciliation 

Nmulti = number of bits that must be discarded due to multi-photon pulses 

Nsafety = number of bits to be used as an arbitrary safety margin  

In this model we chose not to neglect entropy loss as a result of public discussion. 

Although entropy loss cannot be directly estimated without running a real 

implementation of Error Reconciliation, we can instead use the Shannon bound for the 



64 

 

minimum amount of information that will be revealed during an error correction routine. 

In fact, it is not possible to perform error correction without exposing information. The 

ratio between number of bits, 𝑁, needed to correct a sifted key of length 𝜂 is given by 

[43]: 

𝑵
𝜼

= −𝒆 ∙ 𝒍𝒐𝒈𝟐(𝒆) − (𝟏 − 𝒆) ∙ 𝒍𝒐𝒈𝟐(𝟏 − 𝒆)        (8) 

where e is the observed error rate in the sifted key. This ratio is then multiplied to the 

number of bits in the sifted key, and reveals the amount of information that must be 

discarded. As long as we assume that an error correction routine is being used that is 

close to the Shannon bound, then use of a conservative safety margin should make the 

loss estimate a reasonably close approximation to the losses in a real system. 

 To estimate the entropy loss as a result of multi-photon pulses, we chose to 

implement a revised version of the conservative BBBSS92 estimate [27], which states 

that the percentage of discarded signal bits is equal to the probability of a multi-photon 

pulse. This probability can be described with the Poisson distribution [21] 

𝒎 = 𝟏 −  𝝁𝒆
−𝝁

𝟏−𝒆−𝝁
         (9) 

where 𝜇 is the Mean Photon Number. The irony of QKD is that although it is supposed to 

offer provable information-theoretic security in conjunction with a One-Time Pad, the 

existence of non-idealities in the system (i.e. lack of single photon source or detection, 

channel loss, etc.) make it evident that “the security that can be achieved is not absolute 

but probabilistic in nature” [12].  



65 

 

As discussed, this probabilistic security begins during Quantum Exchange, in 

which a Mean Photon Number is selected. We can increase system throughput by simply 

increasing the MPN, but as a consequence must alter our Entropy Estimate, and by 

implication the amount of Privacy Amplification incurred in order to maintain the same 

level of security. In fact, the optimal MPN value, which will provide the highest levels of 

both key rate and security, depends on the optical losses in the channel and on 

assumptions about Eve’s technology [29]. By altering the arbitrary safety margin in the 

so-called entropy “defense function” to account for any new information Eve may have 

learned, it may be possible to safely operate with a much higher MPN. Specifically, we 

must account for an increase in the possibility for multi-photon pulses, which we recall 

are not directly considered in the standard entropy estimation functions.  Pearson & 

Elliott have come to the conclusion that although there are numerous factors that affect 

key rate (most of which have been highlighted in this paper), that regardless of which 

initial entropy estimate is chosen (BBBSS92, Slutsky’s Defense Frontier, Myers-Pearson 

estimate, etc.), the ideal µ value “will always be slightly over 1.0” – this translates into a 

ten-fold increase in system throughput compared to an MPN of 0.1 [21]. 

4.9 Privacy Amplification (PA) 

4.9.1 ICOM Model 

The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Privacy Amplification phase: 



66 

 

 

Figure 20. Privacy Amplification ICOM Model 

The inputs and outputs local to Authentication are discussed in the following 

table: 

Table 12. Input/Outputs Local to Privacy Amplification 

Parameter Name Units Definition Detailed Description 

𝑚𝑖𝑛_𝑛𝑢𝑚_𝑟𝑒𝑞_𝑏𝑖𝑡𝑠 bits 
The minimum number of 
required bits necessary to 
perform Privacy Amplification. 

To reduce finite key size effects, it is 
recommended that the input to Privacy 
Amplification bet at least 1 Mbit [38]. 

𝑁𝑠𝑒𝑐𝑢𝑟𝑒  bytes 
The number of bits that can be 
saved after Privacy 
Amplification. 

The number of secure bits that can be saved post-
Privacy Amplification is calculated by the 
summation of the entropy loss percentages applied 
to the Error Reconciled buffer. 

𝑇𝑃𝑟𝑖𝑣𝐴𝑚𝑝 sec The time required to complete 
Privacy Amplification. 

The time required to complete Privacy 
Amplification is dictated mainly by computational 
processing power to do mathematical operations on 
large numbers. 

𝐴_𝑃𝑟𝑖𝑣𝐴𝑚𝑝𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Alice’s Privacy 
Amplified buffer. 

The size of the Privacy Amplified buffer will be 
equal to the size of Nsecure. More specifically, Nsecure 
bits will be selected from the Privacy Amplified 
buffer after the computing the Universal-2 hash 
algorithm. 

𝐵_𝑃𝑟𝑖𝑣𝐴𝑚𝑝𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Bob’s Privacy 
Amplified buffer. 

The size of the Privacy Amplified buffer will be 
equal to the size of Nsecure. More specifically, Nsecure 
bits will be selected from the Privacy Amplified 
buffer after the computing the Universal-2 hash 
algorithm. 

 



67 

 

4.9.2 Abstract Equations 

The total time required to privacy amplify the entropy estimated key buffer is 

determined by the time it takes to transmit required data across the classical channel in 

addition to the computational time required, represented by the following equation: 

𝑻𝑷𝒓𝒊𝒗𝑨𝒎𝒑 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +

{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑷𝒓𝒊𝒗𝑨𝒎𝒑
{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓

        (10) 

 The size of the privacy amplified buffer will now be equal to the number of bits 

that can be saved as a result of entropy estimation, represented by the following equation: 

{𝑨,𝑩}𝑷𝒓𝒊𝒗𝑨𝒎𝒑𝒃𝒖𝒇𝒇𝒆𝒓 = 𝑵𝒔𝒆𝒄𝒖𝒓𝒆        (11) 

4.9.3 Sequence Diagram 

 The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 



68 

 

 

Figure 21. Sequence Diagram of Classical Communication During PA 

4.9.4 Discussion of Practical Implementation 

The completion time of Privacy Amplification, much like Error Reconciliation, is 

highly dependent on its implementation and the specific algorithm chosen. The goal of 

Privacy Amplifying a key is to apply the leftover hash lemma to the error reconciled key. 

The lemma states that if there exists an n-bit secret key X of which Eve knows 𝑡 <  𝑛 

bits, we can produce a key of approximately 𝑛 –  𝑡 bits of which Eve has no knowledge, if 

Alice and Bob were to randomly and secretly select a one-way hash function ℎ ∈ 𝐻 

family of hash functions [24]. 

 By convention, in QKD a hash family is chosen that exhibits 2-universality. That 

is, a 2-universal hash function is one which the probability of collision between two 

distinct input keys is 1
𝑚

 for every possible function ℎ ∈ 𝐻, where m is the number of 

possible outputs of the hash function h [15]. More formally, a family of hash functions 

mapping A to B is said to be 2-universal if [14]: 



69 

 

𝐏𝐫{𝒉:𝒉(𝒙) = 𝒉(𝒚)} ≤  𝟏
|𝑩|

 for all 𝒙 ≠ 𝒚,    (12) 

where h is a randomly chosen hash function. There are several well-known classes of 

functions that exhibit such behavior suitable for use as a hash family, including 

multiplication of binary matrices (specifically Toeplitz matrices), modular affine 

transforms, multiplication in finite fields, and multiplication in binary fields [16]. The 

Privacy Amplification phase contains two parts: computation of the privacy amplified bit 

buffer, and the selection of final secure bits. The computation performs the one-way 2-

universal hash function previously described, and the final secure bit selection uses the 

output of the Entropy Estimation phase to select the least-significant Nsecure bits from the 

bit buffer. 

 As an example, we will select the first 2-universal hash function described by 

Wegman & Carter, in the form of a modular affine transform [15]: 

𝑲𝒇𝒊𝒏𝒂𝒍 = (𝒎 ∙ 𝑲𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 + 𝒏) 𝒎𝒐𝒅 𝒑        (13) 

Kfinal = key buffer from which final secure key will be selected 

Kcorrected = error corrected key buffer 

m,n = large composites < p, where 𝑚 ≠ 0 

p = large prime ≥ Kcorrected 

 The calculation of Kfinal technically has O(1) computational complexity, as does 

Entropy Estimation. However, the size of the Kcorrected buffer is on the order of hundreds 

of thousands (if not over a million) bits, which makes the seemingly straightforward 

calculation much more computationally intensive due to the sheer size of the numbers. 

Alice and Bob must also first agree, randomly and secretly, on the input parameters m, n, 



70 

 

and p across the classical channel, which adds to the time through the phase. Although 

the class of functions can be publicly known, in this case affine transformations, the 

selection of a specific hash function from the hash family must be kept secret for it to 

remain universal [24].  

 At the output of Privacy Amplification there will indeed be a shorter, more secure 

key, but the hashing algorithm itself does not perform the reduction. The hash function 

will return a bit buffer, Kfinal, roughly the same size as the input buffer, Kcorrected. It is not 

until we select the least significant Nsecure bits from this buffer that we possess a privacy 

amplified key. Therefore the throughput implications come from the estimated loss of 

entropy in the previous phase and not from Privacy Amplification itself. Perhaps the only 

trade-off in system performance during this phase is the selection and implementation of 

the algorithm. Any hash family, so long as it is proven 2-universal, can be used. Some 

hash families, such as Toeplitz matrix hashing [14], will naturally have better 

computability than others, and may be more desirable for implementations in which the 

speed of post-processing is a critical factor. 

4.10 Final Key Generation 

4.10.1 ICOM Model 

 The following ICOM model depicts the inputs, outputs, controls, and mechanisms 

relevant to the Final Key Generation phase: 



71 

 

 

Figure 22. Final Key Generation ICOM Model 

The inputs and outputs local to Authentication are discussed in the following 

table: 

Table 13. Input/Outputs Local to Final Key Generation 

Parameter Name Units Definition Detailed Description 

𝑛𝑢𝑚_𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑏𝑖𝑡𝑠 bits The number of bits reserved for 
the Authentication reservoir. 

A small number of final key bits must be 
reserved for Authentication of the next round of 
QKD. 

𝑇𝐹𝐾𝐺  sec The time required to complete 
Final Key Generation. 

The total time required to complete FKG 
involves the computational time to compute the 
hash of the final key by Alice and Bob, and the 
comparison of those hashed across the classical 
channel. 

𝐴_𝐹𝐾𝐺𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Alice’s Final Key 
Generation buffer. 

The size of the final key buffer is the size of the 
Privacy Amplified buffer after the reduction of 
reserved bits for the Authentication reservoir. 

𝐵_𝐹𝐾𝐺𝑏𝑢𝑓𝑓𝑒𝑟  bytes The size of Bob’s Final Key 
Generation buffer. 

The size of the final key buffer is the size of the 
Privacy Amplified buffer after the reduction of 
reserved bits for the Authentication reservoir. 

 



72 

 

4.10.2 Abstract Equations 

The total time required to privacy amplify the entropy estimated key buffer is 

determined by the time it takes to transmit required data across the classical channel in 

addition to the computational time required, represented by the following equation: 

𝑻𝑭𝑲𝑮 = 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏_𝒕𝒊𝒎𝒆(𝒂𝒗𝒈_𝒎𝒔𝒈_𝒔𝒊𝒛𝒆{𝑨𝑩,𝑩𝑨} ,𝒃𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉,𝒏𝒖𝒎_𝒕𝒓𝒂𝒏𝒔{𝑨𝑩,𝑩𝑨}) +

{𝑨,𝑩}𝒘𝒐𝒓𝒌𝒍𝒐𝒂𝒅𝑭𝑲𝑮
{𝑨,𝑩}𝒄𝒑𝒖𝒑𝒐𝒘𝒆𝒓

 (14) 

 The size of the final key buffer will be equal to the size of the privacy amplified 

buffer with a slight reduction due to the need to reserve bits for the authentication 

reservoir, as described in the following equation: 

{𝑨,𝑩}𝑭𝑲𝑮𝒃𝒖𝒇𝒇𝒆𝒓 = {𝑨,𝑩}𝑷𝒓𝒊𝒗𝑨𝒎𝒑𝒃𝒖𝒇𝒇𝒆𝒓 − 𝒏𝒖𝒎_𝒂𝒖𝒕𝒉_𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓_𝒃𝒊𝒕𝒔        (15) 

4.10.3 Sequence Diagram 

The following sequence diagram describes the classical communications 

necessary to execute the phase, where n signifies the number of transactions required, the 

purple arrow represents communication initiated by Alice, and the red arrow represents 

communication initiated by Bob: 



73 

 

 

Figure 23. Sequence Diagram of Classical Communication During FKG 

4.10.4 Discussion of Practical Implementation 

 Although Error Reconciliation’s purpose is to provide matching key buffers 

between Alice and Bob with very high probability, there is still the possibility of masked 

errors existing in one or more key buffers. Even if only one bit is incorrect, the final key 

is useless. To protect against this scenario, standard practice is to hash the final key 

buffer after Privacy Amplification to make sure that keying material held by Alice and 

Bob does indeed match. Bennett & Brassard suggest conducting this step during Privacy 

Amplification, comparing the pre-privacy amplified key buffer, before the final reduction 

[17]. The practice of using a 2-universal hash function, however, is not cryptographic in 

nature, but sufficient for only randomizing the input [25].  

 The other problem with this approach is the use of the final key as input to the 

hash function. This effectively reduces the security of the QKD system to the security of 

the hashing algorithm itself. To protect against this security reduction, we suggest an 



74 

 

alternative hashing routine which doesn’t include the use of the final key directly. Since 

the goal of a final hash is to prove all bit errors were corrected during the Error 

Reconciliation phase, the errors are assumed to be corrected at the conclusion of that 

phase. In fact, the error corrected buffers are assumed to be identical; otherwise Privacy 

Amplification would be fruitless. It would then be beneficial to use the error corrected 

key buffer as the input to the final hash. If their comparison over the classical channel 

matches, it is assumed the final secure key will also match if Alice and Bob perform 

identical mathematical operations on the key thereafter. If the hashing is done in this way, 

even if the error corrected key buffer is recovered from a one-way, computationally-

secure hash algorithm, an adversary would additionally require specific details of the 

algorithm chosen during Privacy Amplification as well an accurate knowledge of Alice 

and Bob’s entropy loss estimation routine. 

 In addition, it may be beneficial to add additional safety margin to our entropy 

loss estimate, if desired. It is unclear if and how much entropy is lost during the 

conversion from a message to message digest in the application of a cryptographic hash 

function [25]. For this reason, an entropy loss adjustment can be viewed as adding 

additional arbitrary safety margin rather than introducing another variable in the 

calculation of Nsecure (refer to Figure 3):  

𝑵𝒔𝒆𝒄𝒖𝒓𝒆 = 𝑵𝒄𝒐𝒓𝒓(𝟏 − 𝒉𝟐(𝑸𝑩𝑬𝑹)) −𝑵𝒍𝒆𝒂𝒌𝒆𝒅 − 𝑵𝒎𝒖𝒍𝒕𝒊 − 𝑵𝒉𝒂𝒔𝒉 − 𝑵𝒔𝒂𝒇𝒆𝒕𝒚       (16) 

We can conservatively assign Nhash to be the number of output bits of the chosen 

cryptographic hash function. Again, the consequence of increasing the amount of 

information Eve might know results in a reduction of final keying material. 



75 

 

V. Baseline Configuration and Use Case 

5.1 Introduction 

 In this chapter a baseline configuration is introduced that is used to study the 

relevant research questions presented in Chapter I. First, a list of modeling assumptions is 

made about implementing a practical QKD system in the model. Next, the parameter 

values that make up the baseline configuration are introduced and their resulting 

performance is discussed. Finally, the research questions pertinent to QKD performance 

are answered using the model and an analysis is provided of the results. 

5.2 Modeling Assumptions of Practical QKD  

In the representation of the configuration used in this model, we make the following 

assumptions about the implementation of a practical Quantum Key Distribution system: 

1) The quantum channel and classical channel are both optical fiber of the same 
length. 

2) Communication over the classical channel is accomplished using the TCP/IP 
protocol with a maximum transmission unit (MTU) of 1500 bytes. 

3) The propagation delay over both the quantum and classical channels is two-thirds 
the speed of light [40]. 

4) The bandwidth of the classical channel is 100 Mbits/s [45].  
5) Alice and Bob share the identical processing power and total memory size. 
6) The protocol efficiency fraction for BB84 is 0.5. 
7) Authentication is done once per round of QKD. 
8) Authentication is done using a Wegman-Carter 𝜖-Almost Strongly Universal2 

hash function [8]. 
9) Alice ceases Quantum Exchange when her allocated QE memory is filled. 
10) Weak coherent optical pulses arriving at Bob are uniformly spaced. 
11) The information required for each pulse can be stored in 5 bytes for both Alice 

and Bob. 
12) A maximum message size (MTU) is 1500 bytes. 
13) The LDPC error correction algorithm is being used with a standard matrix that 

has a required block size of 54000 bits [20]. 



76 

 

14) The memory overhead required to perform the LDPC algorithm is 30 bytes per bit 
[20]. 

15) LDPC can be performed with a number of bits less than the block size if it is 
padded to meet the block size requirement [20]. 

16) No communication is necessary to complete Entropy Estimation [20]. 
17) The minimum number of required bits as an input to Privacy Amplification is 1 

Mbit [38]. 
18) If an insufficient amount of key is generated to conduct Privacy Amplification, 

Quantum Exchange is restarted. 
19) Privacy Amplification implements a Strongly Universal2

 hash function using a 
Toeplitz matrix. 

20) The matrix required to do Privacy Amplification hashing is approximately twice 
the size of the input to the Privacy Amplification phase [14]. 

21) A cryptographic hash function, SHA-512, is being used to perform Final Key 
Generation. 

22) The minimum amount of memory necessary to perform small operations (e.g., the 
computation of a cryptographic hash) is 1024 bytes. 
 

5.3 Baseline Configuration 

5.3.1 System-Level Parameters 

 In this model we chose to implement the so-called “Chen” as a baseline for 

conducting simulations and answering research questions [18]. In particular we attempted 

to model the Binhu-USTC link of the three-node network. The following figures show 

key performance parameters for our implementation: 

 



77 

 

 

Figure 24. System-Level Parameters in Model, Part 1 

 

Figure 25. System-Level Parameters in Model, Part 2 

The following table describes the chosen parameter values for our implementation 

of the Chen configuration: 

Table 14. System-Level Parameters of Chen configuration 

Parameter Name Units Value Justification 

𝑑𝑖𝑠𝑡_𝑏𝑡𝑤𝑛_𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 km 23 

Although the Binhu-USTC link is technically 20 km, we 
chose a value of 23 km in order to match the efficiency of the 
quantum channel, which is measured in Chen as a “total 
attenuation” of 4.5 dB [18]. Chen specifically states the loss to 
be 0.2 dB/km, which equates to 4 dB of loss. To meet the total 
attenuation loss, we added 3 km to the total distance. 

𝑑𝑒𝑙𝑎𝑦_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡_𝑙𝑒𝑛𝑔𝑡ℎ sec/km 5.00E-06 Two-thirds the speed of light. 
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ Mbits/s 100 The Fast Ethernet standard bandwidth. 
𝑙𝑜𝑠𝑠_𝑝𝑒𝑟_𝑘𝑚 dB/km 0 2 Described by the Chen configuration [18]. 
𝑝𝑢𝑙𝑠𝑒_𝑟𝑎𝑡𝑒 Mhz 4 Described by the Chen configuration [18]. 

𝑀𝑃𝑁 unitless 0.6 Described by the Chen configuration [18]. 
𝑠𝑖𝑔𝑛𝑎𝑙𝑝𝑒𝑟𝑐𝑒𝑛𝑡  % 75 Described by the Chen configuration [18]. 

𝐴𝑙𝑖𝑐𝑒𝑡𝑜𝑡𝑎𝑙_𝑚𝑒𝑚𝑜𝑟𝑦  GB 4 Discussions with Subject-Matter Experts yielded values for 
Alice and Bob’s total memory. 



78 

 

𝐴𝑙𝑖𝑐𝑒𝑐𝑝𝑢_𝑝𝑜𝑤𝑒𝑟  work/sec 1.00E+09 Discussions with Subject-Matter Experts yielded values for 
Alice and Bob’s CPU power. 

𝑑𝐵 𝑙𝑜𝑠𝑠 𝐵𝑜𝑏 dB 3 5 Described by the Chen configuration [18]. 
𝜂𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟  unitless 0 1 Described by the Chen configuration [18]. 
𝑡𝑑𝑒𝑎𝑑  sec 2.00E-05 Described by the Chen configuration [18]. 

𝐵𝑜𝑏𝑡𝑜𝑡𝑎𝑙_𝑚𝑒𝑚𝑜𝑟𝑦  GB 4 Discussions with Subject-Matter Experts yielded values for 
Alice and Bob’s total memory. 

𝐵𝑜𝑏𝑐𝑝𝑢_𝑝𝑜𝑤𝑒𝑟  work/sec 1.00E+09 Discussions with Subject-Matter Experts yielded values for 
Alice and Bob’s CPU power. 

 

 The following figures show the allocation of Alice and Bob’s memory to each of 

the eight QKD phases and the status of the validity of the configuration: 

 

Figure 26. Allocation of Alice/Bob's Memory Per Phase 

 

Figure 27. System Memory Configuration Check 

 We chose to allocate 10% of Alice and Bob’s total system memory to each of the 

phases, except for the more resource intensive Quantum Exchange and Error 

Reconciliation, which received 20%. The Valid Configuration Memory Check detects, 

via backend logic written in Visual Basic, if there is enough memory allocated to the 



79 

 

phase for it to proceed based on all of the values that are currently implemented in the 

model. The following table describes the backend logic that is being evaluated in code: 

Table 15. Valid Configuration Memory Check Logic 

Phase Evaluation Logic 

Authentication 
Authentication memory must be large enough to store the Auth 
key reservoir in addition to a very small amount of memory 
required for small operations, default 1024 bytes. 

Quantum Exchange 

Alice's memory must be at least large enough to hold the 
information required for a single pulse, otherwise QE can't run.  
 
Bob's memory must at least be larger than the ratio of sent pulses 
at Alice to detections at Bob, in relation to Alice's memory. 

Sifting 
Sifting memory must be at least large enough to hold the size of 
the sifted key buffers after the sifting efficiency fraction has been 
applied. 

Error Estimation Error Estimation memory requires only a small amount of 
memory necessary for small operations, default 1024 bytes. 

Error Reconciliation 

Error Reconciliation requires enough memory to receive the bit 
buffer from Error Estimation after key sacrifice, plus 30 bytes of 
computational memory overhead (NIST numbers for efficient 
FPGA implementation [20]) per bit of the block size. 

Entropy Estimation Error Estimation memory requires only a small amount of 
memory necessary for small operations, default 1024 bytes. 

Privacy 
Amplification 

Checks if the allocated memory for PA is at least twice the size 
of the input buffer. To reduce finite key size effects, the input to 
PA must be large - on the order of 1 Mbit or more. The matrices 
used in the hash calculation must be the same size as the input 
buffer, or very close to it, to obtain a privacy amplified key. 

Final Key Generation 

In this model we assume that a cryptographic hash is being used 
during final key generation, as opposed to a non-cryptographic 
Wegman-Carter style hash function that is more computationally 
intensive. For more information, see Chapter IV of thesis. 
 
The memory required must therefore be large enough to process 
a hash value using a standard hash function, such as SHA-512. 
Additionally it requires memory overhead for small computation, 
default 1024 bytes. 

 

 The following figure shows the computational workload assigned to each phase of 

the QKD system: 



80 

 

 

Figure 28. Computational Workload Assigned to Each Phase 

Typically computational processing is measured in instructions per second, where 

a number of instructions are defined as the amount of work (an instruction is a single 

operation of the processor, which is defined by the processor’s instruction set).  In this 

model, we measure processing as units of work (rather than number of instructions) in 

order to reach a level of abstraction removed from any specific architecture. Ideally, we 

would run benchmark tests on the phases of operation in a real system to establish a 

baseline of work units required for each phase. Given that measurements for work 

attributed to a phase for nonspecific architectures are not present in QKD literature, we 

have discussed the appropriate values for computational workload with subject-matter 

experts and decided on appropriate values for each phase. The relative ratios between 

work assigned for each phase is more important than the numbers themselves (e.g., the 

work assigned to Authentication is much less than more resource intensive phases such as 

Error Reconciliation). 

 

5.3.2 Phase Input Parameters 

 The following tables describe the input parameters chosen for each of the eight 

phases: 



81 

 

Authentication 

Table 16. Input Parameters Local to Authentication 

Parameter Name Units Value Justification 

𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠𝑖𝑧𝑒 bytes 100 
The Authentication reservoir must be large enough to authenticate an entire 
round of QKD. Since we are assuming that authentication is done once per 
round, 1250 bytes is more than sufficient.  

𝑎𝑢𝑡ℎ_𝑘𝑒𝑦_𝑟𝑒𝑞 bytes 10 

The amount of authentication key required from the reservoir to complete a 
single authentication. In practical QKD using Wegman-Carter style 
authentication, this is the amount of auth key required to authenticate a single 
message. 
 
Since authentication uses the ASU-2 version of Wegman-Carter universal 
hash families, the amount of key required for authentication can be on the 
order of only several bytes, if necessary.  
 
In general, the amount of key needed to authenticate a message is 
log2(msg size). 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1490 

If the MTU of a message is approximately 1500 bytes and the amount of 
authentication key required is approximately log2(msg_size), then 1490 
should be sufficient size to carry the message to be authenticated with an 
appended authentication tag. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 10 The log2(1490) is approximately 10 bytes. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 
Wegman-Carter authentication only requires a single message to be passed 
from Alice to Bob:  the message to be authenticated with the appended 
authentication tag. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 Bob is only required to respond to Alice if the message she sent was authentic 
or not, based on his own calculation of the authentication tag. 

 

Quantum Exchange 

Table 17. Input Parameters Local to Quantum Exchange 

Parameter Name Units Value Justification 

𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑢𝑙𝑠𝑒 bytes 5 
Bit and basis can be stored as 2 separate bits. The timing information, 
assuming it consists of a frame and slot number, can perhaps be stored as an 
unsigned long, which is 4 bytes. Thus 5 total bytes should be sufficient. 

 

Sifting 

Table 18. Input Parameters Local to Sifting 

Parameter Name Units Value Justification 
𝑠𝑖𝑓𝑡𝑖𝑛𝑔_𝑒𝑓𝑓_𝑓𝑟𝑎𝑐 unitless 0.5 The BB84 protocol defines the efficiency fraction to be approximately one 

half. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1500 

Assuming sifting is accomplished by Bob sending his basis measurements to 
Alice, she must respond with either which measurements are correct or 
incorrect. This is approximately half the amount of information that Bob sent 
to Alice. 
 
Representation of this scenario is possible in several different ways:  Alice 
sends back the same number of messages that Bob sent, but half the size, or 
she sends back half the number of messages Bob sent but of the same size. 
 
Since a high volume of data (relative to the other phases) must be transmitted, 
we can set the message size to be a full MTU (Maximum Transmission Unit), 



82 

 

which is 1500 bytes for the TCP/IP protocol. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1500 

Assuming sifting is accomplished by Bob sending his basis measurements to 
Alice, she must respond with either which measurements are correct or 
incorrect. This is approximately half the amount of information that Bob sent 
to Alice. 
 
Representation of this scenario is possible in several different ways:  Alice 
sends back the same number of messages that Bob sent, but half the size, or 
she sends back half the number of messages Bob sent but of the same size. 
 
Since a high volume of data (relative to the other phases) must be transmitted, 
we can set the message size to be a full MTU (Maximum Transmission Unit), 
which is 1500 bytes for the TCP/IP protocol. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1501 

In the memory required per pulse, we claimed that bit and basis information 
can be captured in 2 bits. If Bob must send his basis information to Alice, he 
must send data approximately equal to the size of his pre-sifting bit buffer, to 
include timing information for Alice to compare against.  
 
We can therefore divide the raw bit buffer by the chosen average message 
size to get an approximate number of transactions required for BobAlice, 
and half of that number for transactions required for AliceBob. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 3002 

In the memory required per pulse, we claimed that bit and basis information 
can be captured in 2 bits. If Bob must send his basis information to Alice, he 
must send data approximately equal to the size of his pre-sifting bit buffer, to 
include timing information for Alice to compare against.  
 
We can therefore divide the raw bit buffer by the chosen average message 
size to get an approximate number of transactions required for BobAlice, 
and half of that number for transactions required for AliceBob. 

 

Error Estimation 

Table 19. Input parameters Local to Error Estimation 

Parameter Name Units Value Justification 

𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑_𝑝𝑐𝑡 % 25 
The percentage of bits sacrificed must be good enough to get an accurate 
error rate, but small enough for sufficient throughput. We chose to sacrifice 
25% of the key. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1500 

Assuming Alice initiates Error Estimation, she must send data to Bob 
approximately equal to the total number of sacrificed bits.  
 
For most buffer sizes this should be enough to fill at least one MTU 
(Maximum Transmission Unit) worth of data, which is 1500 bytes under the 
TCP/IP protocol. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 250 

Bob is only required to send back to Alice the estimated error rate once he 
compares her sacrificed bits to his own. This action may be accomplished in 
250 bytes or less. 
 
This action should only require a single message worth of data. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 10 

Assuming Alice initiates Error Estimation, she must send data to Bob 
approximately equal to the total number of sacrificed bits.  
 
The number of transactions required can be estimated by dividing the number 
of sacrificed bits by the average AB message size. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 

Bob is only required to send back to Alice the estimated error rate once he 
compares her sacrificed bits to his own. 
 
This action should only require a single message worth of data. 

 

Error Reconciliation 



83 

 

Table 20. Input Parameters Local to Error Reconciliation 

Parameter Name Units Value Justification 
𝑛𝑢𝑚_𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑 bytes 0 No bits are sacrificed while using the LDPC error correction algorithm. 

𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 bits 54000 
For LDPC this size is dictated by a pre-determined standard matrix. The ETSI 
DVB matrix, for instance, was selected for its reasonable 5/6 coding rate and 
requires a 54000 bit block [20]. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1200 

Alice is required to send Bob a parity syndrome of size S=N(1-R), where S is 
the size of the syndrome, N is the block size, and R is the coding rate of the 
LDPC matrix. For the ETSI DVB matrix, for example, the code rate is 5/6. 
 
In this instance, the size of the syndrome totals 9000 bits, which is 
approximately 1200 bytes of information [38]. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 750 

Bob is required to communicate information back to Alice on how to fix the 
errors in her bit buffer. 
 
This amount of data required to communicate this information will be no 
greater than the size of the initial syndrome she sent to Bob. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 
For LDPC, the number of transactions is limited to 1 from AliceBob and 1 
from BobAlice for each block (the number of total executions varies 
depending on the input buffer). 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 
For LDPC, the number of transactions is limited to 1 from AliceBob and 1 
from BobAlice for each block (the number of total executions varies 
depending on the input buffer). 

 

Entropy Estimation 

Table 21. Input Parameters Local to Entropy Estimation 

Parameter Name Units Value Justification 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑄𝐵𝐸𝑅 % 12 

The percentage of entropy loss on the Quantum Channel was 
calculated using the Shannon limit for minimum entropy loss. For 
more information, see Chapter IV discussion on Entropy 
Estimation. 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑝𝑢𝑏𝑙𝑖𝑐 % 12 

The percentage of entropy loss on the Classical Channel during 
Error Reconciliation was calculated using the Shannon limit for 
minimum entropy loss. For more information, see Chapter IV 
discussion on Entropy Estimation. 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑚𝑢𝑙𝑡𝑖_𝑝ℎ𝑜𝑡𝑜𝑛 % 12 

The percentage of entropy loss due to multi-photon pulses was 
calculated using the cumulative Poisson probability of multi-photon 
pulses.  
 
We assume all multi-photon pulses will be eliminated from the final 
key buffer in order to defend against Photon-Number Splitting 
(PNS) attacks. For more information, see Chapter IV discussion on 
Entropy Estimation. 

𝑝𝑐𝑡_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠_𝑠𝑎𝑓𝑒𝑡𝑦 % 4 
The percentage of arbitrary safety margin was selected to account 
for any unaccounted for entropy loss. For more information, see 
Chapter IV discussion on Entropy Estimation. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 0 

Alice and Bob independently possess the information required to 
calculate the entropy loss, given that they are aware of the entropy 
loss calculation procedure before QKD execution begins. It is 
therefore not necessary for Alice and Bob to communicate during 
this phase. However, it is a practitioner’s design choice whether or 
not Alice and Bob should communicate to ensure matching entropy 
estimates. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 0 

Alice and Bob independently possess the information required to 
calculate the entropy loss, given that they are aware of the entropy 
loss calculation procedure before QKD execution begins. It is 
therefore not necessary for Alice and Bob to communicate during 
this phase. However, it is a practitioner’s design choice whether or 
not Alice and Bob should communicate to ensure matching entropy 
estimates. 



84 

 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 0 

Alice and Bob independently possess the information required to 
calculate the entropy loss, given that they are aware of the entropy 
loss calculation procedure before QKD execution begins. It is 
therefore not necessary for Alice and Bob to communicate during 
this phase. However, it is a practitioner’s design choice whether or 
not Alice and Bob should communicate to ensure matching entropy 
estimates. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 0 

Alice and Bob independently possess the information required to 
calculate the entropy loss, given that they are aware of the entropy 
loss calculation procedure before QKD execution begins. It is 
therefore not necessary for Alice and Bob to communicate during 
this phase. However, it is a practitioner’s design choice whether or 
not Alice and Bob should communicate to ensure matching entropy 
estimates. 

 

Privacy Amplification 

Table 22. Input Parameters Local to Privacy Amplification 

Parameter Name Units Value Justification 
𝑚𝑖𝑛_𝑛𝑢𝑚_𝑟𝑒𝑞_𝑏𝑖𝑡𝑠 bits 1000000 To reduce finite key size effects, it is suggested that the input to Privacy 

Amplification be between 1-100 Mbits [38]. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 1500 

Alice and Bob must communicate a seed to prime random number generation 
to construct a very large matrix used in the calculation of Privacy 
Amplification.  
 
We assume that Alice initiates this communication, selects the seed, and 
communicates it to Bob. The message(s) she sends to Bob will therefore most 
likely be larger than the acknowledgment received from Bob. 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 500 

Alice and Bob must communicate a seed to prime random number generation 
to construct a very large matrix used in the calculation of Privacy 
Amplification.  
 
We assume that Alice initiates this communication, selects the seed, and 
communicates it to Bob. The message(s) she sends to Bob will therefore most 
likely be larger than the acknowledgment received from Bob. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 The random seed Alice sends to Bob can be sent to Bob in the amount of data 
contained in one message. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 Bob’s reply is relatively small and can be contained in one message. 

 

Final Key Generation 

Table 23. Input Parameters Local to Final Key Generation 

Parameter Name Units Value Justification 

𝑛𝑢𝑚_𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑏𝑖𝑡𝑠 bits 10000 
We assume Alice and Bob reserve enough bits for Authentication to 
refill the entire size of the Authentication reservoir buffer, as defined in 
the Authentication phase. 

𝐴𝐵_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 64 

We assume that a standard cryptographic hash, such as SHA-512, is 
being used to complete Final Key Generation. 
 
If Alice initiates this hash comparison, she will need to send a message 
to Bob of at least 512 bits (the output of the hash function). 

𝐵𝐴_𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 bytes 50 After computing the same hash as Alice, Bob is required to confirm that 
his hash value is identical to Alice by sending her a response message. 

𝐴𝐵_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 Alice computes a cryptographic hash, which can fit inside one message, 
and sends it to Bob. 

𝐵𝐴_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 unitless 1 Bob receives the hash from Alice and replies with a confirmation that 
his calculated hash matches hers. 



85 

 

 

 After establishing reasonable input values for the phase calculations, we can 

observe the final performance metrics of the configuration by selecting a desired number 

of final key bits, as shown in the figure below: 

 

 

Figure 29. Readout of Model Performance Metrics 

The interpretation of performance in terms of number of QE, ER, and PA routines 

assumes the execution of Quantum Exchange will continue until Alice’s QE memory 

buffer is filled, ER will run as many times as necessary to process the input as a result of 

QE and subsequent phases, and PA will only execute if there are enough key bits to meet 

the minimum requirement (i.e., one million bits). If there are not enough key bits, QE will 

restart as many times as necessary to meet PA requirements. The flow of this process can 

be seen in the following figure: 



86 

 

 

Figure 30. Execution Flow of Practical QKD System 

5.4 Use Case: Answering Fundamental Performance Questions 

5.4.1 Performance Metrics 

 In the design of this model, the user is required to enter a desired amount of final 

key in order to calculate performance metrics. The following tests were performed with 1 

Mbit of desired final key using parameters from the Chen configuration and under the 

assumptions described in Section 5.1. The table below shows the results of increasing the 

percentage of memory allocated to Alice for Quantum Exchange out of a total of 4GB, 

incremented from 1 to 50% of her total memory. 

Table 24. Table of Performance Metrics Produced By Model 

Alice’s 
QE 

Memory 
(% of 
4GB) 

Alice’s 
QE 

Memory 
(GB) 

Final 
Key Bits 
(Mbit) 

Final 
Key 
Rate 

(kbps) 

System 
Runtime 

(sec) 

Total 
QE 

Routines 

Total 
ER 

Routines 

Total 
PA 

Routines 

Total 
QKD 

Rounds 

1 0.04 1.19 2.38 501 120 120 2 2 
2 0.08 1.19 3.13 381 60 60 2 2 
3 0.12 1.19 3.5 340 40 40 2 2 



87 

 

4 0.16 1.19 3.13 380 30 60 2 2 
5 0.2 1.19 3.34 356 24 48 2 2 
6 0.24 1.19 3.50 340 20 40 2 2 
7 0.28 1.25 3.28 382 18 54 2 2 
8 0.32 1.27 3.4 375 16 48 2 2 
9 0.36 1.25 3.5 358 14 42 2 2 

10 0.4 1.19 3.34 356 12 48 2 2 
11 0.44 1.31 3.43 383 12 48 2 2 
12 0.48 1.19 3.5 340 10 40 2 2 
13 0.52 1.29 3.38 382 10 50 2 2 
14 0.56 1.39 3.45 404 10 50 2 2 
15 0.6 1.19 3.5 340 8 40 2 2 
16 0.64 1.27 3.4 374 8 48 2 2 
17 0.68 1.35 3.46 391 8 48 2 2 
18 0.72 1.43 3.51 409 8 48 2 2 
19 0.76 1.51 3.52 426 8 48 2 2 
20 0.8 1.19 3.46 344 6 42 2 2 
21 0.84 1.25 3.5 358 6 42 2 2 
22 0.88 1.31 3.54 371 6 42 2 2 
23 0.92 1.37 3.47 396 6 48 2 2 
24 0.96 1.43 3.5 409 6 48 2 2 
25 1.0 1.49 3.55 422 6 48 2 2 
26 1.04 1.56 3.48 447 6 54 2 2 
27 1.08 1.62 3.52 460 6 54 2 2 
28 1.12 1.68 3.55 473 6 54 2 2 
29 1.16 1.74 3.49 498 6 60 2 2 
30 1.2 1.19 3.5 340 4 40 2 2 
31 1.24 1.23 3.53 349 4 40 2 2 
32 1.28 1.27 3.48 366 4 44 2 2 
33 1.32 1.31 3.5 375 4 44 2 2 
34 1.36 1.35 3.53 383 4 44 2 2 
35 1.4 1.39 3.56 392 4 44 2 2 
36 1.44 1.43 3.51 409 4 48 2 2 
37 1.48 1.47 3.53 417 4 48 2 2 
38 1.52 1.51 3.56 426 4 48 2 2 
39 1.56 1.56 3.51 443 4 52 2 2 
40 1.6 1.6 3.54 451 4 52 2 2 
41 1.64 1.64 3.56 460 4 52 2 2 
42 1.68 1.68 3.52 477 4 56 2 2 
43 1.72 1.72 3.54 486 4 56 2 2 
44 1.76 1.76 3.56 494 4 56 2 2 
45 1.8 1.8 3.52 511 4 60 2 2 
46 1.84 1.84 3.54 520 4 60 2 2 
47 1.88 1.88 3.56 528 4 60 2 2 
48 1.92 1.92 3.52 545 4 64 2 2 
49 1.96 1.96 3.54 554 4 64 2 2 
50 2.0 1.00 3.56 281 2 32 1 1 



88 

 

 

 The table reveals the cyclical nature of achieving a desired number of final key 

bits. The model assumes that Quantum Exchange will run until all of Alice’s memory 

allocated for QE has been filled. This assumption presents the possibility of a scenario 

where even if the amount of final key already generated is very close to the desired final 

key bits, Quantum Exchange will be forced to run again until Alice fills her memory,  

resulting in a final number of bits in excess of the desired number of bits.  

This effect is magnified by the presence of a minimum number of required bits to 

perform Privacy Amplification (in this case 1 Mbit). For example, when 49% of Alice’s 

memory is allocated for QE, it results in 1.96 Mbit of final key being generated and 

requires 4 iterations of QE. At 50% memory allocation, exactly 1 Mbit of key is 

generated with only 2 iterations of QE. This scenario is the result of having to perform 

QE enough times to perform PA more than once, as opposed to having to perform PA 

only once. 

 The following graph illustrates the need for an increased number of ER routines 

until the amount of allocated memory reaches a threshold such that fewer QE routines are 

required to attain the desired number of final key bits. We can see the most radical drop-

off at 50% where both fewer QE and PA routines are necessary to achieve the desired 

number of final key bits, which consequently results in fewer required ER routines. 



89 

 

 

Figure 31. Graph of Routines Required to Achieve 1 Mbit Final Key 

5.4.2 Bounds on Final Key Rate 

The Chen configuration advertises a sifted key rate of approximately 10.5 kbps 

[18]. Given the BB84 protocol was used in this configuration, we can assume that the 

protocol efficiency fraction (applied to sifting) is approximately 0.5.  In other words half 

of Bob’s detection rate should result in a reasonable estimation of the sifted key rate. 

Similarly, doubling the sifted key rate should result in a reasonable estimate for Bob’s 

detection rate. We should expect a detection rate around 21,000 detections per second at 

Bob in order to achieve a sifted key rate of 10.5 kbps in the Chen configuration.  



90 

 

The detection rate in the model is 20,964 detections per second, which is just 

under the 21,000 we expected to see for Chen. Therefore we can assume this model 

provides a reasonable representation of the Chen detection rate. If we apply similar logic 

from the derivation of the sifted key rate to the losses incurred during other phases of the 

system, we can establish an upper bound on the final key rate that can be achieved based 

on the initial detection rate. The following table shows the reduction in potential final key 

rate as a result of imposed configuration losses incurred during Sifting, Error Estimation, 

and Privacy Amplification based on a 20,964 det/sec detection rate (for descriptions of 

incurred loss refer to Section 5.3): 

Table 25. Theoretical Bounded Key Rates During Phases With Loss 

Phase Losses Incurred Resultant Key 
Rate (kbps) 

Sifting 50% 10.482 
Error Estimation 25% 7.861 

Privacy Amplification 40% 4.716 
 

Considering there are no major losses incurred during the other phases and barring the 

inclusion of any communications and/or processing overhead, 4.716 kbps is the 

theoretical upper bound on the performance of the configuration implemented in the 

model. 

 We can now evaluate the final key rate performance of the entire system and 

compare it to the upper bound. The following graph compares the final key rate against 

the percentage of Quantum Exchange memory allocated for Alice while attempting to 

generate 1 Mbit of desired final key (the data contained in this graph can be viewed in 

Table 23): 



91 

 

 

Figure 32. Graph of Alice Memory Effect on Final Key Rate 

 As the amount of allocated memory increases, the final key rate appears to 

emulate a sigmoid curve function with an approximate ceiling of 3.6 kbps. We also 

observe the cyclical fluctuations of the key rate due to the inability to generate exactly 1 

Mbit of desired key. It appears that an arbitrarily large amount of memory allocated to 

Alice will only have a marginal performance benefit as it approaches a limit on 

performance. To get closer to the asymptotic bound on final key rate, performance in 

other areas of the system will most likely need to be improved. 

 

5.4.3 Increased Processing Power 

 In this model we assume that both Alice and Bob have identical processing 

power. Additionally, we assume the processor is fully available to each phase (i.e., does 

not suffer from decreased performance due to the existence of concurrent processes). We 



92 

 

initially set Alice and Bob’s processing power to one billion work units per second. The 

following table shows the effects on final key rate and system runtime by increasing the 

power of the CPU from 1 to 16 billion units of work per second while the rest of the 

system configuration remained unchanged: 

Table 26. Table of Performance Metrics Compared to CPU Power 

Alice/Bob CPU 
Power 

(work units/sec) 

Final Key Rate 
(kbps) 

System Runtime 
(sec) 

1.00E+09 3.46 344.97 
2.00E+09 3.94 302.96 
3.00E+09 4.13 288.96 
4.00E+09 4.24 281.96 
5.00E+09 4.30 277.76 
6.00E+09 4.34 274.96 
7.00E+09 4.37 272.96 
8.00E+09 4.40 271.46 
9.00E+09 4.42 270.29 
10.00E+9 4.43 269.36 
11.00E+9 4.45 268.60 
12.00E+9 4.46 267.96 
13.00E+9 4.47 267.42 
14.00E+9 4.47 266.96 
15.00E+9 4.48 266.56 
16.00E+9 4.49 266.21 

 

 The following graph shows the effect of increased processing power on the final 

key rate: 



93 

 

 

Figure 33. Graph Comparing Final Key Rate to CPU Power 

It is clear that processing power and final key rate share an approximately 

logarithmic relationship. The final key rate quickly approaches the theoretical 4.716 kbps 

asymptotic bound, but exhibits diminishing returns on performance above 8 billion work 

units per second. This phenomenon can perhaps best be described by Amdahl’s law on 

system design [44], which states that system performance will not be indefinitely 

improved by increasing the performance of one component in the system. An arbitrarily 

large increase in CPU power will never exceed the asymptotic bound on final key rate. In 

order to increase the final throughput, the performance bound must be increased. 

Increasing the performance of one component moves the bottleneck to another 

component. As we have seen, the performance bound is dictated by the detection rate at 

Bob, which is ultimately dictated by the pulse rate at Alice, loses on the quantum 

channel, and the dead time of Bob’s detectors. 



94 

 

 The following graph shows the effect of increased processing power on the 

system runtime:  

 

Figure 34. Graph Comparing System Runtime to CPU Power 

There appears to be an exponential decrease in the system runtime as processing power is 

increased. Therefore system runtime and final key rate share an inverse relationship with 

respect to the processing power of the system. The decrease in runtime exhibits similar 

behavior to the final key rate – an arbitrarily large increase in CPU power will experience 

diminishing returns in the total execution time of the system. 

  

 

 

 

 



95 

 

VI. Conclusions and Future Work 

6.1 Research Relevance 

 Research in the field of Quantum Key Distribution performance has historically 

been achieved by the alleviation of one or more bottlenecks in the hopes of increasing 

final key throughput. These bottlenecks occur at specific chokepoints in the system, such 

as Bob’s detectors or the resource intensive post-processing algorithms. The best way to 

gauge system throughput performance, aside from observed results, has been the use of 

various forms of a secure key rate equation. This research models other aspects of QKD 

systems not captured by these formulas, such as system memory, CPU power, classical 

communications, and time. 

 The model presented in this thesis represents the performance characteristics of 

both the quantum and classical processing of QKD, and is tailorable to implementation-

specific systems. The goal was to build a model for QKD practitioners that provides more 

accurate predictions of throughput performance in the design of systems, and a heuristic 

method of finding optimality in systems that are already deployed, while at the same time 

educate the practitioner on the abundance of major system dependencies and trade-offs in 

design that may be detrimental to key throughput. 

6.2 Answering Research Questions 

RQ1: What are the parameters that define a Quantum Key Distribution system? 

 In Chapter IV Section 2, we characterized QKD in terms of several components: 

Alice, Bob, the classical channel, and the quantum channel. Thus, the parameters that 

define these components will define the system. A distinction is made between the 



96 

 

attributes local to each of these components in a one-way QKD system (i.e., defined as 

Alice being the sender of photons and Bob the receiver of photons). Alice and Bob both 

share a total amount of system memory and computational power, and the classical and 

quantum channels both share a finite distance between Alice and Bob, in addition to a 

propagation delay per unit of distance. All other parameters are local to each component 

and describe its behavior.  

Since Alice must send photons, she is defined by a pulse rate, a Mean Photon 

Number, and a percentage of signal states. As the receiver of photons, Bob is defined by 

loss, the efficiency of his detectors, and the dead time of the detectors. The classical 

channel is also defined by the total bandwidth of the channel, whereas the quantum 

channel is defined by a loss associated with transmission. 

RQ2: What phases exist in all Quantum Key Distribution systems? 

The model presented in Chapter IV was derived from a review of the system 

processes outlined in QKD literature. It consists of a series of independently modeled 

phases, which provide an aggregate performance prediction of total final bits, the total 

system execution time, as well as execution time bit buffer sizes for each intermediate 

phase. The phases considered in this model include: 

1. Authentication 
2. Quantum Exchange 
3. Sifting 
4. Error Estimation 
5. Error Reconciliation 
6. Entropy Estimation 
7. Privacy Amplification 
8. Final Key Generation 

RQ3: What are the necessary input and output parameters to define a phase? 



97 

 

 System performance in QKD is generally measured in final key bits per second. 

Thus, the necessary inputs and outputs to each phase must, at minimum, address the issue 

of key bits and time. The inputs and outputs required to track key bits throughout system 

execution are the key buffer as an input from the previous phase, and the amount of key 

that is lost as a result of executing the current phase. The resulting size of the output key 

buffer will either be the same size as the input buffer (if no bits are lost or sacrificed 

during the phase) or smaller than the input buffer as a result of lost or sacrificed bits. 

 The notion of time to execute a phase has two primary components: 

computational time and transmission time. If the amount of the work required for each 

phase is determined prior to execution and Alice/Bob possess a computational power that 

is also defined prior to execution, then the computational time required is known. This 

time requirement is addressed in the Controls & Mechanisms aspect of the ICOM 

modeling, considering these predetermined aspects of time are not inputs to the phase 

itself. The transmission time is defined as inputs to each phase in the form of average 

message size and total number of transactions that must be passed back and forth between 

Alice and Bob. The total time of transmission is then dictated by the transmission time 

equation as a function of message size, number of transactions, and bandwidth of the 

classical channel. 

RQ4: Can the notion of system time and performance be measured at the phase level? 

 In the answer to RQ3 we established that the primary factor in determining 

necessary inputs and outputs to a phase is final key throughput, which consists of both 

time and bit buffer components. In order to calculate the time required to execute QKD, it 

is necessary to know the execution time of each phase. The total system time can then be 



98 

 

determined by the summation of phase time, where each phase is executed an 

independent number of times (i.e., QE may occur more times than PA). Similarly, 

computational performance of the phase is predetermined at the phase level based on an 

assigned measure of work for the phase and the computational power of Alice/Bob. The 

aggregate performance is then determined by number of times a particular phase is 

executed. 

RQ5: Can a system-level throughput model be developed that incorporates time, system 

memory, computational power, and the speed of classical communication? 

 Yes. If computational power, system memory, and the speed of classical 

communication are dictated by the definition of the system itself (i.e., system 

characterization in Chapter IV), then these metrics can be used to calculate the time 

required to complete each of the eight phases of a QKD system, defined in Chapter III. 

The total execution time of the system can then be determined by the number of times 

each phase is required to execute. 

RQ6: If so, how can it be used to answer fundamental performance questions of QKD 

such as, “How many Quantum Exchange, Error Reconciliation, and Privacy 

Amplification routines are necessary to achieve a desired amount final key?” 

 The answer to fundamental performance questions relies upon a definition of 

what constitutes a single QKD round. In Chapter V, we defined a serial implementation 

of QKD, in which a single round consisted of executing Quantum Exchange, Sifting, 

Error Estimation, Error Reconciliation, and Entropy Estimation multiple times in order to 

achieve a minimum desired key buffer size as an input to Privacy Amplification. Since 



99 

 

we defined the style of execution, we can determine how many rounds of phase will be 

required to generate a desired number of final key bits. 

RQ7: What are the implications of altering the amount of Alice’s memory allocated for 

Quantum Exchange? 

 As Alice’s memory is increased, the number of Quantum Exchange routines will 

decrease and the number of Error Reconciliation routines will increase proportional to 

QE. The number of Privacy Amplification routines will remain relatively constant since it 

cannot execute until a minimum threshold is met. The final key rate also increases as 

Alice’s QE memory increases, but only to an extent. There is an asymptotic upper bound 

on final key rate that is dictated by the losses imposed on the system at various phases. 

The final key rate reaches a logistical ceiling below the asymptotic bound and does not 

increase indefinitely as QE memory is increased. 

RQ8: What are the implications of altering computational power for Alice and Bob? 

 In the answer to RQ7, we recognized that there is an asymptotic upper bound on 

final key rate in a QKD system, and that increasing the memory allocated to Alice for 

Quantum Exchange will cause the final key rate to find an intermediate upper bound. 

Increasing the computational power allocated to Alice and Bob will cause a logarithmic 

increase final key rate as it quickly approaches the asymptotic upper bound. It is 

considered asymptotic because regardless of how much computational power is given to 

both Alice and Bob, the bound will never be reached because the time required for 

classical communication cannot be eliminated completely. Additionally, the time 

required for system execution experiences an exponential decrease as computational 

power is increased. 



100 

 

RQ9: How can this model be used to study Quantum Key Distribution systems? 

 The answers to research questions 6, 7, and 8 demonstrate several examples of 

studies that can be performed using the model. In general, the outputs of the model are 

performance metrics of QKD execution for a particular configuration. Therefore in order 

to study QKD systems, either alterations to the definition of QKD execution or the 

configuration itself must be altered to observe new behavior.  

6.3 Contributions and Future Work 

This research effort began as an investigation into optimal execution patterns for 

Quantum Key Distribution systems. QKD literature describes the execution of the phases 

in a serial manner, but there may be more optimal solutions in the form of pipelining, 

concurrency, or parallelization. It became apparent that the mechanism to study 

alternative execution patterns did not exist, and this thesis set out to create those 

mechanisms. As a result, the throughput model that resulted from this research suggests 

that increasing the size of system memory (in excess of the memory necessary to run the 

system) only marginally improves performance. A better return on investment may 

instead be realized by increasing the CPU power of Alice and Bob, although even then 

the improvement in system performance exhibits the behavior of Amdahl’s law. It 

appears the most effective way to achieve the highest amount of throughput is to raise the 

asymptotic bound on final throughput that is dictated by the detection rate at Bob. It is the 

authoritative speed limit on the rest of the QKD system. 

The major contribution of this research includes a mathematical model used to 

assess the performance of QKD systems. It differs from current interpretations in 



101 

 

literature by incorporating post-processing performance characteristics as well as 

memory constraints that expand upon the protocol-centric focus in evaluating final 

throughput. This allows for practitioners to make more educated decisions in the design 

of their systems as well as search for optimization of parameters or design choices in 

currently implemented systems. In addition, understanding the trade-offs and 

dependencies that exist within QKD allows designers to achieve a desired throughput rate 

around constraints, such as the need to use a particular detector or laser source. 

 Future work in this area could include finding optimality or trade-offs in 

alternative execution styles, such as continuous Quantum Exchange, ratios of executions 

between Sifting and Error Correction to Privacy Amplification as it relates to final key 

throughput, and optimal buffer sizes going into each successive phase. Additionally, the 

use of Amdahl’s law could be used to quantify the bounds on optimality at the phase 

level, and how it relates to the theoretical upper bound on throughput if the phases are 

viewed as “threads” in a parallel system. 

 

 

 

 

 

 

 

 



102 

 

Appendix A: Equations 

System Time 

The total system runtime can be described as: 

𝑇𝑠𝑦𝑠 = ��𝑇𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=0

 

where i is the total time through phase i, based on m iterations required for that phase, 

where 𝑇𝐴𝑢𝑡ℎ 𝑇𝐹𝐾𝐺  are represented numerically as i = 0, 1, 2, …7. 

 

Transmission Time 

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑚𝑠𝑔𝑠𝑖𝑧𝑒 ,𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚𝑡𝑟𝑎𝑛𝑠) =
𝑚𝑠𝑔𝑠𝑖𝑧𝑒(𝑏𝑖𝑡𝑠)

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ �𝑏𝑖𝑡𝑠𝑠𝑒𝑐 �
∙ 𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠 + 𝑡𝑐𝑙𝑎𝑠𝑠_𝑝𝑟𝑜𝑝_𝑑𝑒𝑙𝑎𝑦(𝑠𝑒𝑐)  

𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑠𝑒𝑛𝑡_𝑚𝑠𝑔 =
𝑚𝑠𝑔_𝑠𝑖𝑧𝑒(𝑏𝑖𝑡𝑠)

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ �𝑏𝑖𝑡𝑠𝑠 �
 

 

Authentication, i = 0 

𝑇𝐴𝑢𝑡ℎ = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} , 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴}) +
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑢𝑡ℎ

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑖𝑧𝑒 = (𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠𝑖𝑧𝑒 − 𝑎𝑢𝑡ℎ_𝑘𝑒𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑) 

 

Quantum Exchange, i = 1 

Note: In the case of QE, we assume the end of the phase is signaled by the entire free 
memory buffer being filled.  
 

𝑇𝑄𝐸 = 𝑚𝑎𝑥 �
𝑛𝑢𝑚_𝑑𝑒𝑡_𝑎𝑡_𝐵𝑜𝑏
𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑒𝑡_𝑟𝑎𝑡𝑒

+ 𝑡𝑞𝑢𝑎𝑛𝑡_𝑝𝑟𝑜𝑝_𝑑𝑒𝑙𝑎𝑦  ,  
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑄𝐸

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
� 

𝑃𝑜𝑖𝑠(𝑋 ≥ 1) = 1 − 𝑒−𝜇 



103 

 

𝑛𝑢𝑚_𝑝𝑢𝑙𝑠𝑒𝑠_𝑠𝑒𝑛𝑡 =
𝐴𝑚𝑒𝑚_𝑎𝑣𝑎𝑖𝑙

𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑒𝑟_𝑝𝑢𝑙𝑠𝑒
 

𝑛𝑢𝑚_𝑑𝑒𝑡_𝑎𝑡_𝐵𝑜𝑏 = 𝑛𝑢𝑚_𝑝𝑢𝑙𝑠𝑒𝑠_𝑠𝑒𝑛𝑡 ∙ 𝑃𝑜𝑖𝑠(𝑋 ≥ 1) ∙ 𝑠𝑖𝑔𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∙ 𝜂𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∙ 𝜂𝐵𝑜𝑏 ∙ 𝜂𝑑𝑒𝑡 

𝑡𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑝𝑢𝑙𝑠𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 =
1

𝑝𝑢𝑙𝑠𝑒_𝑟𝑎𝑡𝑒 ∙ 𝑃𝑜𝑖𝑠(𝑋 ≥ 1) ∙ 𝑠𝑖𝑔𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∙ 𝜂𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ∙ 𝜂𝐵𝑜𝑏 ∙ 𝜂𝑑𝑒𝑡
 

𝑡𝑎𝑣𝑔_𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑒𝑖𝑙 �
𝑡𝑑𝑒𝑎𝑑

𝑡𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑝𝑢𝑙𝑠𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙
� ∙ 𝑡𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑝𝑢𝑙𝑠𝑒_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑒𝑡_𝑟𝑎𝑡𝑒 =
1

𝑡𝑎𝑣𝑔_𝑡𝑖𝑚𝑒_𝑏𝑡𝑤𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
  

𝐴𝑟𝑎𝑤𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑛𝑢𝑚_𝑝𝑢𝑙𝑠𝑒𝑠_𝑠𝑒𝑛𝑡 ∙ 𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑢𝑙𝑠𝑒 

𝐵𝑟𝑎𝑤𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑛𝑢𝑚_𝑑𝑒𝑡_𝑎𝑡_𝐵𝑜𝑏 ∙ 𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑢𝑙𝑠𝑒 

𝐴𝑄𝐸_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑘𝑒𝑦_𝑏𝑖𝑡𝑠 = 𝑛𝑢𝑚_𝑝𝑢𝑙𝑠𝑒𝑠_𝑠𝑒𝑛𝑡 

𝐵𝑄𝐸_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑘𝑒𝑦_𝑏𝑖𝑡𝑠 = 𝑛𝑢𝑚_𝑑𝑒𝑡_𝐵𝑜𝑏 

 

Sifting, i = 2 

𝑇𝑆𝑖𝑓𝑡 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} , 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴}) +
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑆𝑖𝑓𝑡

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

𝐵𝑠𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑠𝑖𝑓𝑡_𝑒𝑓𝑓_𝑓𝑟𝑎𝑐 ∙
𝐵𝑟𝑎𝑤𝑏𝑢𝑓𝑓𝑒𝑟

𝑚𝑒𝑚_𝑟𝑒𝑞_𝑝𝑢𝑙𝑠𝑒
 

𝐴𝑠𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟 = 𝐵𝑠𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟  

 

Error Estimation, i = 3 

𝑇𝐸𝑟𝑟𝐸𝑠𝑡 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} , 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴})

+
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑟𝑟𝐸𝑠𝑡

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

{𝐴,𝐵}𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟 = (1 − 𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑𝑝𝑐𝑡) ∙ {𝐴,𝐵}𝑆𝑖𝑓𝑡𝑏𝑢𝑓𝑓𝑒𝑟  

 



104 

 

Error Reconciliation, i = 4 

𝑇𝐸𝑟𝑟𝑅𝑒𝑐 = 𝑐𝑒𝑖𝑙 �
{𝐴,𝐵}𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒
�

∙ �𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} ,𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴})

+
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑟𝑟𝑅𝑒𝑐

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
� 

 

{𝐴,𝐵}𝐸𝑟𝑟𝑅𝑒𝑐𝑏𝑢𝑓𝑓𝑒𝑟 = {𝐴,𝐵}𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟 − (𝑛𝑢𝑚_𝑏𝑖𝑡𝑠_𝑠𝑎𝑐𝑟𝑖𝑓𝑖𝑐𝑒𝑑 ∙ 𝑛𝑢𝑚_𝑒𝑟𝑟_𝑟𝑒𝑐) 

 

𝑛𝑢𝑚_𝑒𝑟𝑟_𝑟𝑒𝑐 = 𝑐𝑒𝑖𝑙 �
{𝐴,𝐵}𝐸𝑟𝑟𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒
� 

 

Entropy Estimation, i = 5 

𝑇𝐸𝑛𝑡𝐸𝑠𝑡 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} ,𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴}) +
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑛𝑡𝐸𝑠𝑡

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

{𝐴,𝐵}𝐸𝑛𝑡𝐸𝑠𝑡𝑏𝑢𝑓𝑓𝑒𝑟 = {𝐴,𝐵}𝐸𝑟𝑟𝑅𝑒𝑐𝑏𝑢𝑓𝑓𝑒𝑟  

𝑁𝑠𝑒𝑐𝑢𝑟𝑒 = (1 − 𝑡𝑜𝑡𝑎𝑙_𝑒𝑛𝑡_𝑙𝑜𝑠𝑠_𝑝𝑐𝑡) ∙ {𝐴,𝐵}𝐸𝑟𝑟𝑅𝑒𝑐𝑏𝑢𝑓𝑓𝑒𝑟  

 

Privacy Amplification, i = 6 

𝑇𝑃𝑟𝑖𝑣𝐴𝑚𝑝 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} ,𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴}) +
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑃𝑟𝑖𝑣𝐴𝑚𝑝

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

{𝐴,𝐵}𝑃𝑟𝑖𝑣𝐴𝑚𝑝𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑁𝑠𝑒𝑐𝑢𝑟𝑒 

 

Final Key Generation, i = 7 

𝑇𝐹𝐾𝐺 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑣𝑔_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒{𝐴𝐵,𝐵𝐴} , 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠{𝐴𝐵,𝐵𝐴}) +
{𝐴,𝐵}𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐹𝐾𝐺

{𝐴,𝐵}𝑐𝑝𝑢𝑝𝑜𝑤𝑒𝑟
 

{𝐴,𝐵}𝐹𝐾𝐺𝑏𝑢𝑓𝑓𝑒𝑟 = {𝐴,𝐵}𝑃𝑟𝑖𝑣𝐴𝑚𝑝𝑏𝑢𝑓𝑓𝑒𝑟 − 𝑛𝑢𝑚_𝑎𝑢𝑡ℎ_𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟_𝑏𝑖𝑡𝑠 



105 

 

Appendix B: Model Code 

The following code is associated with ‘Sheet1’ of the Excel model: 

Private Sub Worksheet_Change(ByVal Target As Excel.Range) 
 
Dim num_bytes_in_gigabyte As Double 
Dim num_bits_in_gigabyte As Double 
Dim num_bits_in_byte As Double 
 
Dim notional_memory_requirement_for_small_operations As Integer 
Dim mem_required_per_ER_block As Integer 
 
num_bytes_in_gigabyte = 1073741824 
num_bits_in_gigabyte = 8589934592# 
num_bits_in_byte = 8 
 
mem_required_per_ER_block = 30 'bytes 
notional_memory_requirement_for_small_operations = 1024 'bytes 
 
 
'Enable events on current worksheet 
Application.EnableEvents = False 
Target.Activate 
Application.EnableEvents = True 
 
 
'Alice memory allocation check if memory is greater than 100% 
If Range("C27").Value > "1" Then 
 
    Cells(27, 3).Interior.ColorIndex = 3 
    Cells(10, 10).Interior.ColorIndex = 3 
     
    Else 
     
        Cells(27, 3).Interior.Color = RGB(146, 208, 80) 
        Cells(10, 10).Interior.Color = RGB(255, 204, 153) 
         
    End If 
     
'Bob memory allocation check if allocated memory is greater than 100% 
If Range("F27").Value > "1" Then 
 
    Cells(27, 6).Interior.ColorIndex = 3 
    Cells(10, 14).Interior.ColorIndex = 3 
     
    Else 
     
        Cells(27, 6).Interior.Color = RGB(146, 208, 80) 
        Cells(10, 14).Interior.Color = RGB(255, 204, 153) 
         
    End If 
     
'Auth memory configuration check 
'Checks if allocated memory is greater than auth reservoir size plus some 
notional amount of memory overhead 
If (Range("D18").Value * num_bytes_in_gigabyte) > 
Worksheets("Sheet2").Range("B15").Value + 
notional_memory_requirement_for_small_operations And _ 
    (Range("G18").Value * num_bytes_in_gigabyte) > 



106 

 

Worksheets("Sheet2").Range("B15").Value + 
notional_memory_requirement_for_small_operations Then 
     
    Cells(18, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(18, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Quantum Exchange memory configuration check 
'Checks if allocated memory for Alice is greater than the size of memory 
required to store information on a single pulse, the minimum memory required 
for quantum exchange 
'Checks if the ratio of allocated memory between Alice and Bob is at least the 
ratio between sent pulses and detections 
If (Range("D19").Value * num_bytes_in_gigabyte > 
Worksheets("Sheet2").Range("B34").Value) And _ 
    (Range("D19").Value / Range("G19").Value < 
Worksheets("Sheet2").Range("G41").Value / 
Worksheets("Sheet2").Range("G46").Value) Then 
     
    Cells(19, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(19, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Sifting memory configuration check 
'Checks if allocated memory is at least greater than sifting_eff_frac * 
num_detections_at_bob 
If (Range("D20").Value * num_bits_in_gigabyte > 
Worksheets("Sheet2").Range("B78").Value * 
Worksheets("Sheet2").Range("G46").Value) And _ 
    (Range("G20").Value * num_bits_in_gigabyte > 
Worksheets("Sheet2").Range("B78").Value * 
Worksheets("Sheet2").Range("G46").Value) Then 
     
    Cells(20, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(20, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Error Estimation memory configuration check 
'Checks if memory allocated is at least greater than some notional amount of 
memory overhead 
If (Range("D21").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations) And _ 
    (Range("G21").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations) Then 
     
    Cells(21, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     



107 

 

        Cells(21, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Error Reconciliation memory configuration check 
'Checks if memory allocated is at least greater than the size of bit buffer 
after experiencing sacrifice during Err Est + 30 bytes of computational memory 
overhead * block_size 
If (Range("D22").Value * num_bits_in_gigabyte > 
Worksheets("Sheet2").Range("B102").Value * 
Worksheets("Sheet2").Range("N84").Value + mem_required_per_ER_block * 
num_bits_in_byte * Worksheets("Sheet2").Range("B125").Value) And _ 
    (Range("G22").Value * num_bits_in_gigabyte > 
Worksheets("Sheet2").Range("B102").Value * 
Worksheets("Sheet2").Range("N84").Value + num_mem_bytes_required_per_ER_block * 
num_bits_in_byte * Worksheets("Sheet2").Range("B125").Value) Then 
     
    Cells(22, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(22, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Entropy Estimation memory configuration check 
'Checks if memory allocated is at least greater than some notional amount of 
memory overhead 
If (Range("D23").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations) And _ 
    (Range("G23").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations) Then 
     
    Cells(23, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(23, 13).Interior.ColorIndex = 3 
         
    End If 
     
'Privacy Amplification memory configuration check 
'Checks if memory allocated is at least greater than twice the size of the 
input into PA 
'The matrix used for PA is approx the same size as the input key length into 
PA, a smaller matrix results in a compression of the final key size (before 
N_secure subtraction) - minmum compression (the ratio between the length of the 
output and 
'input keys, i.e. the ratio between the number of rows and columns of the 
Toeplitz matrix) = 0% 
If (Worksheets("Sheet2").Range("N158").Value > 
Worksheets("Sheet2").Range("B179").Value) Then 
     
    If (Range("D24").Value * num_bytes_in_gigabyte > 
Worksheets("Sheet2").Range("N158").Value * 2) And _ 
        (Range("D24").Value * num_bytes_in_gigabyte > 
Worksheets("Sheet2").Range("N158").Value * 2) Then 
         
        Cells(24, 13).Interior.Color = RGB(146, 208, 80) 
         
        Else 



108 

 

         
            Cells(24, 13).Interior.ColorIndex = 3 
             
        End If 
         
    Else 
     
        If (Range("D24").Value * num_bytes_in_gigabyte > 
Application.Ceiling(Worksheets("Sheet2").Range("B179").Value / 
Worksheets("Sheet2").Range("N158").Value, 1) * 
Worksheets("Sheet2").Range("N158").Value * 2) And _ 
            (Range("G24").Value * num_bytes_in_gigabyte > 
Application.Ceiling(Worksheets("Sheet2").Range("B179").Value / 
Worksheets("Sheet2").Range("N158").Value, 1) * 
Worksheets("Sheet2").Range("N158").Value * 2) Then 
            
           Cells(24, 13).Interior.Color = RGB(146, 208, 80) 
            
        Else 
         
            Cells(24, 13).Interior.ColorIndex = 3 
             
        End If 
         
    End If 
 
     
'Final Key Generation memory configuration check 
'Checks if memory allocated is at least greater than some notional amount of 
memory overhead + SHA-512 requirements ~2kb 
If (Range("D25").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations + 2048) And _ 
    (Range("G25").Value * num_bytes_in_gigabyte > 
notional_memory_requirement_for_small_operations + 2048) Then 
     
    Cells(25, 13).Interior.Color = RGB(146, 208, 80) 
     
    Else 
     
        Cells(25, 13).Interior.ColorIndex = 3 
         
    End If 
 
End Sub 
 

The following code is associated with ‘Sheet2’ of the Excel model: 

Private Sub CommandButton1_Click() 
'This subroutine determines final performance metrics when the Calculate button 
is clicked and the desired number of final bits is > 0 
 
Dim num_bits_in_megabit As Double 
Dim num_bits_in_kilobit As Double 
 
num_bits_in_megabit = 1000000 
num_bits_in_kilobit = 1000 
 
'Determines final performance metrics 
If Range("B3").Value > 0 Then 



109 

 

    Cells(3, 2).Interior.Color = RGB(255, 204, 153) 
     
    If (Range("N158").Value > Range("B179").Value) Then 
         
        'Actual final key bits 
        Range("B5").Value = (Application.Ceiling((Range("B3").Value * 
num_bits_in_megabit) / Range("N205").Value, 1) * Range("N205").Value) / 
num_bits_in_megabit 
         
        'Total PA routines 
        Range("G7").Value = Application.Ceiling((Range("B3").Value * 
num_bits_in_megabit) / Range("N205").Value, 1) 
     
        'Total QKD rounds 
        Range("G8").Value = Range("G7").Value 
         
        'Total QE routines 
        Range("G5").Value = Range("G8").Value 
     
        'Total ER routines 
        Range("G6").Value = Range("G5").Value * Range("L137") 
         
        'Total System Runtime: add up all of phases that only occur once per 
round, then calculate ER time 
        Range("B7").Value = (Range("G8").Value * Range("L18").Value + _ 
                            Range("G8").Value * Range("L38").Value + _ 
                            Range("G8").Value * Range("L79").Value + _ 
                            Range("G8").Value * Range("L103").Value + _ 
                            Range("G8").Value * Range("L153").Value + _ 
                            Range("G8").Value * Range("L179").Value + _ 
                            Range("G8").Value * Range("L200").Value) + _ 
                            Range("G6").Value * Range("L125").Value 
         
        'Actual final key rate 
        Range("B6").Value = ((Range("B5").Value * num_bits_in_megabit) / 
Range("B7").Value) / num_bits_in_kilobit 
         
        Else 
         
            Dim num_QE_to_reach_PA As Double 
            Dim num_bits_end_FKG As Double 
         
            num_QE_to_reach_PA = Application.Ceiling(Range("B179").Value / 
Range("N158").Value, 1) 
             
            num_bits_end_FKG = (num_QE_to_reach_PA * Range("N164").Value) - 
Range("B199").Value 
         
            'Actual final key bits 
            Range("B5").Value = (Application.Ceiling((Range("B3").Value * 
num_bits_in_megabit) / num_bits_end_FKG, 1) * num_bits_end_FKG) / 
num_bits_in_megabit 
             
            'Total PA routines 
            Range("G7").Value = Application.Ceiling((Range("B3").Value * 
num_bits_in_megabit) / num_bits_end_FKG, 1) 
             
            'Total QKD rounds 
            Range("G8").Value = Range("G7").Value 
             
            'Total QE routines 



110 

 

            Range("G5").Value = num_QE_to_reach_PA * Range("G7").Value 
             
            'Total ER routines 
            Range("G6").Value = Range("G5").Value * Range("L137") 
             
            'Total System Runtime: the only phases that occur once per round 
are Auth, PA, and FKG; all other pahses run "Total QE" number of times 
            Range("B7").Value = (Range("G8").Value * Range("L18").Value + _ 
                                Range("G8").Value * Range("L179").Value + _ 
                                Range("G8").Value * Range("L200").Value) + _ 
                                (Range("G5").Value * Range("L38").Value + _ 
                                Range("G5").Value * Range("L79").Value + _ 
                                Range("G5").Value * Range("L103").Value + _ 
                                Range("G5").Value * Range("L153").Value) + _ 
                                Range("G5").Value * Range("L125").Value 
             
            'Actual final key rate 
            Range("B6").Value = ((Range("B5").Value * num_bits_in_megabit) / 
Range("B7").Value) / num_bits_in_kilobit 
         
        End If 
     
    Else 
     
        Cells(3, 2).Interior.ColorIndex = 3 
     
    End If 
     
End Sub 
 
 
Private Sub Worksheet_Change(ByVal Target As Excel.Range) 
 
'Enable events on current worksheet 
Application.EnableEvents = False 
Target.Activate 
Application.EnableEvents = True 
 
'Checks if the total amount of entropy loss is greater than 100% of the key 
If Range("G156").Value > "1" Then 
 
    Cells(156, 7).Interior.ColorIndex = 3 
     
    Else 
     
        Cells(156, 7).Interior.Color = RGB(198, 239, 206) 
         
    End If 
     
End Sub 
 

 

 



111 

 

References 

[1] P. Shor and J. Preskill, 'Simple Proof of Security of the BB84 Quantum Key 

Distribution Protocol',Phys. Rev. Lett., vol. 85, no. 2, pp. 441-444, 2000. 

[2] S. Wiesner, 'Conjugate coding', SIGACT News, vol. 15, no. 1, pp. 78-88, 1983. 

[3] C. Bennett and G. Brassard, 'Quantum cryptography: Public key distribution and 

coin tossing',Theoretical Computer Science, vol. 560, pp. 7-11, 2014. 

[4] V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus and M. 

Peev, 'The security of practical quantum key distribution', Reviews of Modern 

Physics, vol. 81, no. 3, pp. 1301-1350, 2009. 

[5] J. Zhou, B. Liu, B. Zhao and B. Liu, 'A Pipeline Optimization Model for QKD Post-

processing System', Information and Communication Technology, pp. 472-481, 

2014. 

[6] C. Elliott, D. Pearson and G. Troxel, 'Quantum cryptography in 

practice', Proceedings of the 2003 conference on Applications, technologies, 

architectures, and protocols for computer communications - SIGCOMM '03, 2003. 

[7] C. Kollmitzer and M. Pivk, 'Applied Quantum Cryptography', Lecture Notes in 

Physics, 2010. 

[8] A. Abidin, Authentication in Quantum Key Distribution: Security Proof and 

Universal Hash Functions. Linköping: Linköping University Electronic Press, 2013, 

p. 55. 



112 

 

[9] R. Hadfield, 'Single-photon detectors for optical quantum information 

applications', Nature Photonics, vol. 3, no. 12, pp. 696-705, 2009. 

[10] W. Buttler, S. Lamoreaux, J. Torgerson, G. Nickel, C. Donahue and C. Peterson, 

'Fast, efficient error reconciliation for quantum cryptography', Physical Review A, 

vol. 67, no. 5, 2003. 

[11] H. Yuen, 'Some physics and system issues in the security analysis of quantum key 

distribution protocols', Quantum Inf Process, vol. 13, no. 10, pp. 2241-2254, 2014. 

[12] B. Slutsky, R. Rao, P. Sun, L. Tancevski and S. Fainman, 'Defense Frontier Analysis 

of Quantum Cryptographic Systems', Applied Optics, vol. 37, no. 14, p. 2869, 1998. 

[13] C. Erven, C. Couteau, R. Laflamme and G. Weihs, 'Entangled quantum key 

distribution over two free-space optical links', Opt. Express, vol. 16, no. 21, p. 

16840, 2008. 

[14] C. Fung, X. Ma and H. Chau, 'Practical issues in quantum-key-distribution 

postprocessing',Physical Review A, vol. 81, no. 1, 2010. 

[15] J. Carter and M. Wegman, 'Universal classes of hash functions', Journal of Computer 

and System Sciences, vol. 18, no. 2, pp. 143-154, 1979. 

[16] G. Van Assche, Quantum cryptography and secret-key distillation. Cambridge: 

Cambridge University Press, 2006. 

[17] C. Bennett, G. Brassard and J. Robert, 'Privacy Amplification by Public 

Discussion', SIAM J. Comput., vol. 17, no. 2, pp. 210-229, 1988. 



113 

 

[18] T. Chen, H. Liang, Y. Liu, W. Cai, L. Ju, W. Liu, J. Wang, H. Yin, K. Chen, Z. 

Chen, C. Peng and J. Pan, 'Field test of a practical secure communication network 

with decoy-state quantum cryptography', Opt. Express, vol. 17, no. 8, p. 6540, 2009. 

[19] Mart Haitjema, “A Survey of the Prominent Quantum Key Distribution Protocols”, 

online. Available at http://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/ 

[20] Alan Mink and Anastase Nakassis,"LDPC for QKD Reconciliation", The Computing 

Science and Technology International Journal, Vol. 2, No. 2, June, 2012, ISSN 

(Print) 2162-0660, ISSN (Online) 2162-0687, (June, 2012). 

[21] D.S. Pearson and C. Elliott, “On the optimal mean photon number for quantum 

cryptography,” Eprint quant-ph/0403065 (2004) 

[22] M.A. Itzler, M. Entwistle, and X. Jiang, “High-rate photon counting with Geiger-

mode APDs,” IEEE Photons Annual Meeting, S1. (2011). 

[23] J.M. Myers, T. Wu and D. Pearson (2004), “Entropy estimates for individual attacks 

on the BB84 protocol for quantum key distribution,” Proceedings of the SPIE 

Defense and Security 2004, vol. 5105—Quantum Information and Computation, 

April 2004.  

[24] D.R. Stinson, “Universal Hash Families and the Leftover Hash Lemma, and 

Applications to Cryptography and Computing,” Journal of Combinatorial 

Mathematics and Combinatorial Computing vol. 42, pp.  3–31, 2002. 

[25] I. Mironov. Hash function: Theory, attacks and applications. [Online]. Available: 

http://research.microsoft.com/pubs/64588/hash_survey.pdf   



114 

 

[26]  V. Scarani and C. Kurtsiefer, 'The black paper of quantum cryptography: Real 

implementation problems', Theoretical Computer Science, vol. 560, pp. 27-32, 2014. 

[27]  C. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, 'Experimental 

quantum cryptography', J. Cryptology, vol. 5, no. 1, 1992. 

[28] H. Singh, D. Gupta and A. Singh, 'Quantum Key Distribution Protocols: A 

Review', IOSRJCE, vol. 16, no. 2, pp. 01-09, 2014. 

[29] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, 'Quantum cryptography', Reviews of 

Modern Physics, vol. 74, no. 1, pp. 145-195, 2002. 

[30] P. Shor, 'Polynomial-Time Algorithms for Prime Factorization and Discrete 

Logarithms on a Quantum Computer', SIAM J. Comput., vol. 26, no. 5, pp. 1484-

1509, 1997. 

[31] W. Wootters and W. Zurek, 'A single quantum cannot be cloned', Nature, vol. 299, 

no. 5886, pp. 802-803, 1982. 

[32] E. Rieffel and W. Polak, 'An introduction to quantum computing for non-

physicists', CSUR, vol. 32, no. 3, pp. 300-335, 2000. 

[33] J. Townsend, A modern approach to quantum mechanics. Sausalito, Calif.: 

University Science Books, 2000. 

[34] R. Rivest, A. Shamir and L. Adleman, 'A method for obtaining digital signatures and 

public-key cryptosystems', Commun. ACM, vol. 21, no. 2, pp. 120-126, 1978. 



115 

 

[35] W. Diffie and M. Hellman, 'New directions in cryptography', IEEE Transactions on 

Information Theory, vol. 22, no. 6, pp. 644-654, 1976. 

[36] G. Singh and S. Supriya, 'A Study of Encryption Algorithms (RSA, DES, 3DES and 

AES) for Information Security', International Journal of Computer Applications, 

vol. 67, no. 19, pp. 33-38, 2013. 

[37] N. Gigov, 'Quantum Key Distribution Data Post-Processing with Limited Resources: 

Towards Satellite-Based Quantum Communication', PhD, University of Waterloo, 

2013. 

[38] A. Dixon and H. Sato, 'High speed and adaptable error correction for megabit/s rate 

quantum key distribution', Scientific Reports, vol. 4, p. 7275, 2014. 

[39] Idef.com, 'IDEF0', 2015. [Online]. Available: http://www.idef.com/idef0.htm. 

[Accessed: 11- Jun- 2015]. 

[40] K. Sairam, Optical communications. New Delhi: Laxmi Publications, 2007. 

[41] J. Cederlof and J. Larsson, 'Security Aspects of the Authentication Used in Quantum 

Cryptography',IEEE Transactions on Information Theory, vol. 54, no. 4, pp. 1735-

1741, 2008. 

[42] M. Wegman and J. Carter, 'New hash functions and their use in authentication and 

set equality',Journal of Computer and System Sciences, vol. 22, no. 3, pp. 265-279, 

1981. 



116 

 

[43] C. Shannon, 'A Mathematical Theory of Communication', Bell System Technical 

Journal, vol. 27, no. 3, pp. 379-423, 1948. 

[44] G. Amdahl, 'Computer Architecture and Amdahl's Law', Computer, vol. 46, no. 12, 

pp. 38-46, 2 

[45] L. Dostálek, A. Kabelová, A. Shirodkar and D. Parekh, Understanding TCP/IP. 

Birmingham, U.K.: Packt Pub., 2006. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, 
Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
17-09-2015 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From — To) 
August 2013 – September 2015 

4. TITLE AND SUBTITLE  
 
A System-Level Throughput Model for Quantum Key 
Distribution 

5a. CONTRACT NUMBER  

5b. GRANT NUMBER  
5713400-301-6448 

5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
 
Cernera, Robert C., Civilian, USAF 

5d. PROJECT NUMBER  
15 ENV180-24 
5e. TASK NUMBER  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
 

AFIT-ENG-MS-15-S-069 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
Laboratory for Telecommunication Sciences 
Dr. Gerry Baumgartner 
8080 Greenmead Drive 
College Park MD 20740 
gbaumgartner@ltsnet.net  
(240) 373-2743 

10. SPONSOR/MONITOR’S ACRONYM(S)  
LTS 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS 
UNLIMITED. 
13. SUPPLEMENTARY NOTES       
This work is declared a work of the U.S. Government and is not subject to copyright protection in the 
United States. 
14. ABSTRACT  

Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum mechanics to 
generate and distribute shared secret keying material. QKD systems generate and distribute key by progressing through a 
number of distinct phases, typically in a serial manner. The purpose of this research is to identify these phases, their 
relationships to each other, as well as their relationship to time, memory space, computational requirements, and hardware 
resources. A mathematical model is developed which enables the study of critical system parameters, identifies and 
demonstrates potential bottlenecks that affect the overall key generation rate of serial implementations, and facilitates the 
analysis of design trade-offs in terms of parameters associated with specific implementations. Existing models of throughput 
performance make use of secure key rate equations which do not account for detailed system parameters and performance 
characteristics, particularly in the post-processing phases. In this research we build a model that is abstract enough to be 
applied to a wide range of QKD system configurations. The results of the model form an accurate prediction of throughput. The 
analysis contained herein provides QKD practitioners guidance in system analysis and design. 

15. SUBJECT TERMS 
Quantum Key Distribution; model; throughput; key rate; dependency; analysis; trade-offs 
16. SECURITY CLASSIFICATION OF:  17. LIMITATION 

OF ABSTRACT  
 
 
UU 

18. NUMBER 
OF PAGES  
 

133 
 

19a. NAME OF RESPONSIBLE PERSON 
Dr. Douglas D. Hodson 

a. 
REPORT 
 
U 

b. 
ABSTRACT 
 
U 

c. THIS 
PAGE 
 
U 

19b. TELEPHONE NUMBER (Include Area Code) 
 (937) 255-3636 x4719; 
Douglas.Hodson@afit.edu 

 
 


	Air Force Institute of Technology
	AFIT Scholar
	9-17-2015

	A System-Level Throughput Model for Quantum Key Distribution
	Robert C. Cernera
	Recommended Citation


	tmp.1508252707.pdf.qYh_i

