
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

9-1-2018

Application of Spectral Solution and Neural
Network Techniques in Plasma Modeling for
Electric Propulsion
Joseph R. Whitman

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Plasma and Beam Physics Commons, and the Propulsion and Power Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Whitman, Joseph R., "Application of Spectral Solution and Neural Network Techniques in Plasma Modeling for Electric Propulsion"
(2018). Theses and Dissertations. 1921.
https://scholar.afit.edu/etd/1921

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277525933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/225?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1921?utm_source=scholar.afit.edu%2Fetd%2F1921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

APPLICATION OF SPECTRAL SOLUTION
AND NEURAL NETWORK TECHNIQUES IN

PLASMA MODELING FOR ELECTRIC
PROPULSION

THESIS

Joseph Whitman, Civilian

AFIT-ENY-MS-18-S-076

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENY-MS-18-S-076

APPLICATION OF SPECTRAL SOLUTION AND NEURAL NETWORK

TECHNIQUES IN PLASMA MODELING FOR ELECTRIC PROPULSION

THESIS

Presented to the Faculty

Department of Aeronautics & Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Joseph Whitman, BS

Civilian

July 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENY-MS-18-S-076

APPLICATION OF SPECTRAL SOLUTION AND NEURAL NETWORK

TECHNIQUES IN PLASMA MODELING FOR ELECTRIC PROPULSION

THESIS

Joseph Whitman, BS
Civilian

Committee Membership:

Dr. Carl R. Hartsfield, Ph.D.
Chair

Dr. Justin W. Koo, Ph.D.
Member

Dr. Tabitha Dodson, Ph.D.
Member

AFIT-ENY-MS-18-S-076

Abstract

A solver for Poisson’s equation was developed using the Radix-2 FFT method first

invented by Carl Friedrich Gauss. Its performance was characterized using simulated

data and identical boundary conditions to those found in a Hall Effect Thruster. The

characterization showed errors below machine-zero with noise-free data, and above

20% noise-to-signal strength, the error increased linearly with the noise. This solver

can be implemented into AFRL’s plasma simulator, the Thermophysics Universal Re-

search Framework (TURF) and used to quickly and accurately compute the electric

field based on charge distributions. The validity of a machine learning approach and

data-based complex system modeling approach was demonstrated. To this end, sev-

eral multilayer perceptrons were created and validated against AFRL-provided Hall

Thruster test data, with two networks showing mean error below 1% and standard

deviations below 10%. These results, while not ready for implementation as a replace-

ment for lookup tables, strongly suggest paths for future work and the development

of networks that would be acceptable in such a role, saving both RAM space and

time in plasma simulations.

iv

Acknowledgements

I would not be here except for the help and support from so many people, and

though it would be impossible to thank everyone who deserves it, there are some who

deserve special acknowledgement and gratitude. I would first like to thank my advisor,

Dr. Carl Hartsfield, my research sponsor, Dr. Justin Koo, and Dr. Tabitha Dodson,

who together make up my thesis committee. Dr. Koo’s staff at AFRL, in particular

Mr. David Bilyeu, have provided assistance in understanding an extremely complex

code base. I would like to extend special gratitude to Mr. Jacob Henderson, Matthew

Jahns, Darryl Masson, and Levi Linville for teaching me so much computer science

over time, to say nothing of staying up long hours to explain particularly arcane rules

of C++ to me. I would not have been capable of attempting this without your help.

To all those friends who put up with lack of free time while I pursued this master’s

degree, thank you. I owe particular thanks to Ms. Emily Murch, Mr. Jared Loving,

and Mr. Nick Savino, who listened to my frustrations patiently time and time (and

time, and time, and time...) again, and who kept me on task even when I began

doubting myself. This would have been so much harder alone. To my mother and

father, who raised me to value intellectual curiosity and to be persistent in my goals

above all else, and to Mr. Richard Gargas, who would never have let me provide less

than my best. Finally, and especially, to Arika. You’ve been a constant on the most

important parts of my journey, and I cannot imagine more without you.

Joseph Whitman

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

1. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Scope and Objectives . 3

2. Theory and Background . 5

2.1 Plasma Physics . 5
2.1.1 Plasma Basics . 5
2.1.2 Anomalous Electron Transport . 10
2.1.3 Cross-Field Mobility . 12
2.1.4 Ion-Acoustic Waves . 13
2.1.5 Electron-Ion Instability . 14
2.1.6 Beam-Cyclotron Waves . 15

2.2 Computational Theory and Mathematics . 16
2.2.1 Spectral Solvers . 16
2.2.2 Time-Memory Tradeoff . 17
2.2.3 Neural Networks . 19

3. Experiment . 29

3.1 Plasma simulation . 29
3.1.1 Intended Simulation . 29
3.1.2 Problems Encountered . 31
3.1.3 Solver Characterizatiton . 33

3.2 Neural Network Model . 34
3.2.1 Network Toplogy . 37
3.2.2 IVB Mapping and Training Approach . 37
3.2.3 Code Validation . 38

4. Results and Analysis . 39

4.1 Solver Characterization . 39
4.1.1 Performance with Increasingly Complex Waves

and Transformation Lengths . 39

vi

Page

4.1.2 Noise Performance . 40
4.2 ANN Results . 42

4.2.1 Varying Neuron Numbers . 42
4.2.2 Data Quantity Effects . 53
4.2.3 Noise Effects . 56

5. Conclusion . 61

Appendix A. 64

A.1 Solver Code . 64
A.1.1 ValidationFFT Header . 64
A.1.2 ValidationFFT Code . 65

A.2 Neural Network Code . 82
A.2.1 FCNetwork.py . 82
A.2.2 Master Approximator.py . 87

Bibliography . 102

vii

List of Figures

Figure Page

1. Electron-Ion stability based on λ [3, p. 178]. The first
chart shows a stable dispersion relationship with all real
roots; the second shows critical stability, with one real
root at λ = z; the final plot indicates an unstable
dispersion relationship with two complex conjugate roots. 16

2. Illustration of a Hall Thruster with the computational
domain shown in pink as shown in Tran’s thesis work
[2, p. 16] . 30

3. Error (Blue) and Machine-Zero (Red) vs. Number of
Component Waves and Transformation Length . 40

4. Introduction of any noise worsens performance above
the noise floor of this solver, but the performance
appears relatively constant with additional noise . 41

5. Close-up of the noisy data errors. Note that the error
level increases approximately linearly with the noise 41

6. 20-Neuron Results . 44

7. 40-Neuron Results . 45

8. 80-Neuron Results . 45

9. 160-Neuron Results . 46

10. 320-Neuron Results . 46

11. 640-Neuron Results . 47

12. 1280-Neuron Results . 47

13. 20 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 48

14. 40 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 49

15. 80 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 50

viii

Figure Page

16. 160 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 51

17. 320 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 51

18. 640 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 52

19. 1280 Neuron Error % vs. Normalized Discharge Voltage
and Electromagnet Current . 52

20. Discharge Current vs. Discharge Voltage by
Electromagnet Current . 53

21. Effects of increasing training data quantity on total cost
of the network . 54

22. Effects of increasing training data quantity on miss cost
of the network . 55

23. Effects of increasing noise on total cost of a network
trained on 240 datapoints. 57

24. Effects of increasing noise on miss cost of a network
trained on 240 datapoints. 57

25. Effects of increasing noise on total cost of a network
trained on 1200 datapoints . 58

26. Effects of increasing noise on miss cost of a network
trained on 1200 datapoints . 58

27. Effects of increasing noise on total cost of a network
trained on 2400 datapoints . 59

28. Effects of increasing noise on miss cost of a network
trained on 2400 datapoints . 59

ix

List of Tables

Table Page

1. Experimental ANN Statistics . 43

x

APPLICATION OF SPECTRAL SOLUTION AND NEURAL NETWORK

TECHNIQUES IN PLASMA MODELING FOR ELECTRIC PROPULSION

1. Introduction

1.1 Background

Although used primarily by the USSR during the Cold War, Hall Effect Thrusters

(HETs) have seen greatly increased use since the fall of the Berlin Wall. Like their

cousin, the gridded ion thruster (also called an ion drive), they provide low thrust

over extremely long timeframes while using much less propellant mass than a chemical

rocket would require for a comparable delta-V. Both systems function by ionizing a

propellant gas such as Xenon, then accelerating the resulting ions through a powerful

electrical field. The Hall thruster makes use of the eponymous Hall current and

resulting electron bombardment as an effective ionization mechanism and to magnify

the accelerating potential gradient, unlike the gridded ion thruster with physically

separate discharge chamber and acceleration zones. The relative lack of moving parts

and chemically benign propellants present few opportunities for thruster failure, and

the quasineutral physics underlying HETs permits a higher practical thrust-to-power-

required ratio and thrust density than the ion drive; when coupled with the advantages

both systems share, HETs become a very attractive solution for any space mission

that will demand small, repeated thrust events over a very long time [1, p. 325]. With

improved technology, longer-lifetime spacecraft and longer-duration missions can be

designed, saving the Air Force and U.S. taxpayer money.

1

1.2 Motivation

Hall thrusters are extremely relevant to the Air Force space mission. Satellites that

are part of a constellation may need to shift position, while geosynchronous spacecraft

require small station-keeping thrusts – both ideal tasks for the extremely reliable

Hall thruster. Improved understanding of the physics underlying HETs will lead to

improved thruster designs with higher efficiencies and longer lifetimes. Propellant

is a spacecraft lifetime constraint, and expended propellant cannot (generally) be

replenished on-orbit. Spacecraft are extremely expensive and meant for one-time use,

so anything that extends the spacecraft lifetime has the potential to substantially

reduce procurement costs by permitting a longer replacement interval. Improving

the thruster performance may also reduce the power or mass required for use, in both

cases freeing a key resource for other aspects of the spacecraft design.

The long lifetime characteristic of HETs makes them extremely expensive to test

to failure for several reasons. HETs do not function outside of hard vacuum, therefore

testing them requires an expensive vacuum chamber, maintaining the vacuum, and

test monitoring at all times to prevent any minor issues from becoming a potentially

data-invalidating or even catastrophic error. The thruster propellant must be replen-

ished either through costly recovery equipment or through the ongoing cost of buying

new propellant and exhausting the old. All of these conditions must be maintained

for months or years at a time. The Air Force Institute of Technology (AFIT) has a

600-Watt thruster that would require an estimated $1M per year to test to failure

in labor expenses alone. Simulating the thruster’s behavior is a solution to these

issues, but it is much more complex than even a more standard computational fluid

dynamics (CFD) problem, since the plasma is governed by Maxwell’s Laws in ad-

dition to the Navier-Stokes equations. Implementing the Navier-Stokes equations is

further complicated by electric thrusters using rarified plasmas that must be treated

2

as individual particles rather than a continuum fluid.

While the advance of massively parallel computing has reduced the time required

to execute a simulation, limitations on supercomputer node RAM and graphics card

(GPU) RAM remain, making the use of lookup tables highly problematic. A five-

dimensional input table as has been discussed within AFRL for recalling cross-field

electron mobility using 64-bit floating point numbers with ten points along each di-

mension requires only 800 KB of RAM. Ten datapoints is too coarse for use in a

system with such highly nonlinear dynamics and extreme sensitivity to input condi-

tions unless only a tiny domain in each axis is desired. Systems in which tiny changes

to input could result in entirely different end states, such as a plasma simulator,

are usually described as chaotic. Increasing to 100 datapoints in each dimension, on

the other hand, requires 80 GB of space, which is too much to be loaded into most

server nodes’ RAM and all but the most powerful of workstations. The lookup table

may still be too coarse for effective use, and increasing the number of datapoints per

dimension will only continue to increase the size, requiring advanced memory pagi-

nation techniques, causing a computational bottleneck by exchanging data between

RAM and hard disk frequently. Using an artificial neural network provides the abil-

ity to approximate such functions to an arbitrarily high degree of accuracy, and it

does so without necessarily incurring the memory penalty of a lookup table or the

computational cost of exchanging data between disk and RAM.

1.3 Scope and Objectives

This work initially sought both to further the plasma simulator developed at

the Air Force Research Lab (AFRL) called the Thermophysics Universal Research

Framework (TURF) by adding a Fourier spectral solver for Poisson’s equation and to

demonstrate the applicability of artificial neural networks to plasma physics problems

3

as a replacement for large-scale lookup tables. The spectral solver would operate in

the azimuthal direction (taking advantage of the periodic nature of a HET acceler-

ation channel) to examine cross-field electron mobility in the radial-azimuthal plane

following the work of LaFleur, Baalrud, and Chabert and duplicating the work per-

formed by Tran in his thesis [2,7]. The results of the simulation would be compared

with the results Tran achieved using a non-spectral solver. Unfortunately, persistent

problems interfacing with TURF required scaling back this goal to developing a solver

algorithm and quantifying its performance, leaving integration to future work. The

second goal required the development of an artificial neural network and demonstrat-

ing its use by training it using data from a HET test that the AFRL conducted. No

attempt was made to develop an optimal network as the goal was simply to demon-

strate the concept. This effort was entirely successful.

4

2. Theory and Background

2.1 Plasma Physics

2.1.1 Plasma Basics.

2.1.1.1 Quasineutrality and Debye shielding.

A plasma is a collection of charged and neutral particles with sufficiently high

energy that can cause atoms to ionize. Both ions and electrons behave as gases

coupled to the local electric and magnetic fields, resulting in behavior that is vastly

more complex than that of a simple gas. A plasma is defined as quasineutral when it

has approximately as many electrons as ions. The quasineutrality condition is met for

any “significantly large” volume of the plasma has no net charge, where “significantly

large” means any distance greater than the Debye length, to be discussed below

[3, p. 11]. Internal fields occur within the plasma once the quasineutrality condition

is violated, and quasineutrality does not forbid local electromagnetic fields within

length scales smaller than the Debye length.

The Debye length serves as an important scaling distance in plasma physics as it

limits how deeply into a plasma any electrostatic field will penetrate– whether the

source is internal to the bulk plasma or external to it. Without loss of generality,

slightly displacing an ion within a quasineutral plasma will cause nearby electrons

to move towards the new ion position, and nearby ions to move away slightly. This

reaction will cause a local electron cloud surrounding the displaced ion, meaning that

another particle or observer far away from the displaced ion will see no net change

in potential from the displacement [4] [3, p. 8]. The potential of the electron cloud

is then said to shield the potential from the test particle at a rate proportional to

the exponential of reciprocal Debye length. The Debye length calculations are shown

below, with Equation 1 used to calculate the Debye length of an individual species

5

within the plasma and Equation 2 used for the overall Debye length. Equation 3

shows mathematically the impact of Debye shielding on the potential at some distance

r from a potential source. Within these equations, σ refers to an individual species

within the plasma, T to the temperature in Kelvin, n to the number density of the

species (#/m3), q to charge in Coulombs, ε0 to free space permittivity, and κ to the

Boltzmann Constant.

λσ =

(
ε0κTσ
nσ,0q2

σ

)1/2

(1)

λσ =

(∑
σ

1

λ2
σ

)−1/2

(2)

Φ = Φ0 exp
−r
λD

(3)

2.1.1.2 Poisson’s Equation.

One of the most important equations in plasma physics is Poisson’s equation as

applied to electrostatics. This second-order partial differential equation (shown in

Equation 4 below) directly relates the distribution of free charges, to the overall

electric potential.

O2ϕ = −ρ
ε

(4)

In 4 the electric potential is represented by ϕ, the charge density is represented

by ρ, and ε refers to the permittivity of the medium, in this case free space. The

most straightforward and obvious approach to solving this equation numerically in

1D requires a tridiagonal solution, the mechanics of which include a matrix inversion.

Matrix inversions are very computationally expensive, so other approaches may be

6

used if the boundary conditions permit. In this work, the boundary conditions are

periodic in both the first and second derivative, making a solution relying on Fourier

transforms and wave properties (referred to as a spectral solver) a very appealing ap-

proach. As will be discussed later, this work focused on a radial-azimuthal simulation

and used the spectral solver in the azimuthal direction. In a HET, the acceleration

channel is cylindrical, so periodic boundary conditions stem from 0 and 2πr being the

same physical location.

2.1.1.3 Maxwellian Distribution.

As large collections of particles, plasmas are thermodynamically best described

by some distribution function over their velocities. The Maxwell distribution is most

commonly used and will be presented here, though it is not necessarily a valid assump-

tion for plasmas with very few collisions, such as those not in thermal equilibrium

[1]. Mathematically, a Maxwellian distribution in three dimensions is described in

Equation 5 below [3, p. 51].

fσ (~x,~v, t) = nσ

(
mσ

2πκTσ

)3/2

exp

[
−mσ

(~v − ~v0)2

2κTσ

]
(5)

In this distribution, v refers to the particle velocity while ~v0 refers the the electron

drift relative to the lab reference frame.

2.1.1.4 Vlasov Equation and EM Acceleration.

The Vlasov equation (Equation 6) governs the rate of change of particles within an

infinitesimal plasma element and provides a very powerful method for examining the

change of plasma parameters [5]. The right side of the Vlasov equation accounts for

the change in the distribution of particles due to collisions. Over timescales shorter

than that required for a collision process to take place, the right hand side can be

7

treated as 0, giving a simpler version of the Vlasov equation.

∂fσ
∂t

+ ~v · Ofσ +
~F

m
· ∂fσ
∂~v

=

(
∂fσ
∂t

)
collision

(6)

The acceleration term in the Vlasov equation can be further expanded into the

Lorentz equation (7), in which ~E and ~B indicate the electric and magnetic fields

acting on a given particle. For the purposes of this work, the distribution function

will be assumed Maxwellian in all cases as is convention.

~F = q
(
~E + ~vdrift × ~B

)
(7)

The ~v× ~B component of the Lorentz equation causes particles to move in a helical

pattern around the magnetic field lines if a magnetic field is present. The frequency,

radius, and period are referred to as the gyrofrequency, gyroradius (or Larmor radius,

depending on the author), and gyroperiod, respectively. Another type of motion that

occurs with both an applied electric and magnetic field is called the ~E × ~B drift,

causing particles to move in a direction perpendicular to both fields [5, p. 8]. In a

Hall thruster, this corresponds to an azimuthal drift described by Equation 8.

~vdrift =
~E × ~B

B2
(8)

Equation 7’s azimuthal drift velocity, when crossed with the radial magnetic field,

leads to a net axial electron acceleration, which affects the thrust force both directly

as shown in 9 and indirectly via the electric potential as discussed in 2.1.1.2 [1,

p.333]. These mechanisms drive the interest in electron behavior and lead to this

work focusing on the electron motion.

T =

∫ (
~JH × ~B

)
dA ≈ IHB (9)

8

In 9, T stands for the Hall thruster force, JH for the Hall current density vector,

IH and the area for the cross-sectional area of the Hall current density.

2.1.1.5 Plasma Waves and Damping.

Perturbations in a plasma can propagate in the form of waves, as might be ex-

pected from a system of many coupled particles. One of the most basic characteristics

of the plasma is the electron plasma frequency, shown in Equation 10. This frequency

defines the characteristic timescale with which the electrons in the plasma react to

perturbations. Though many forms of wave exist, those of interest to this work are

primarily the electron plasma oscillations known as Langmuir waves or as electro-

static waves, which propagate only if the electrons have a distribution of velocities

(unlike an idealized free-electron laser, for example) [5, p .10]. These waves have a

dispersion relationship as shown in equations 10-13.

ωp =

(
4πne2

me

)
(10)

ω = ωr + iωi (11)

ωr =

√
ω2
p +

3κTk2

m
(12)

ωi = −
√
π

8

ωp

(kλD,e)
3 exp

[
−1

2
(kλD,e)

−2 − 3

2

]
(13)

The imaginary term in Equation 13 is only valid when ωi � ωr and when λD,e =(
kTe

4πne2

)1/2
[5, p.12]. Its presence is known as Landau, or collisionless, damping. Under

some circumstances, Langmuir waves can become a form of electrostatic instability, or

an instability associated with charges grouping together and separating in space. As

will be discussed in 2.1.2 and 2.1.3, these instabilities are the phenomenon of interest

9

in the plasma simulations of this work.

2.1.1.6 Hall Thrusters.

-Hall thrusters rely on a typically annular thrust channel with an axial electric

field and radial magnetic field to function. They are classified as electrostatic rather

than electromagnetic thrusters because the ion’s mass, on order of a million times

greater for Xenon, causes a cyclotron radius much larger than the length of the thrust

chamber and therefore are not affected significantly by the magnetic field’s presence.

The magnetic field is responsible for trapping the electrons and the generation of

the Hall current from which the thruster gains its name. This azimuthal rotation

of electrons along magnetic field lines causes most electrons to spend substantial

time near the thruster exit plane in a region of very strong magnetic fields, as Tran

mentions in his 2017 work [2]. Electrons may become freed from the magnetic field

trap through several methods, including collisions with other particles or the channel

walls (in a classical model), or plasma instabilities, and begin to drift towards the

anode, referred to as cross-field drift as will be discussed in 2.1.3 [6]. Instabilities in

plasmas have been an active area of research since the 1960s, though work initially

focused on nuclear fusion and the fully magnetized and higher density plasmas more

typical of fusion reactors.

2.1.2 Anomalous Electron Transport.

Hall thruster experiments and testing have demonstrated a higher than expected

concentration of electrons near the anode. The cathode’s position outside the accel-

eration channel requires that some electrons must travel across the magnetic field (in

the axial direction), and as such this motion will be referred to as cross-field motion

and anomalous diffusion interchangeably in this work. Classical plasma diffusion the-

10

ory considers electron transport to be driven by collisions with other species in the

plasma, and ignores electron-wall interactions and electron-instability interactions,

and scales with the inverse square of the magnetic field strength [3, p. 64]. Many

observed systems show diffusion instead proportional to just the inverse magnetic

field, known as Bohm diffusion [4]. According to Cunningham, Bohm diffusion is

usually attributed to instabilities in a plasma, but the instability responsible for it

in HETs remains unknown. Cunningham identifies an azimuthal spoke instability,

where there is a region of increased electron density moving in the azimuthal domain

as a possible contributing factor, and his work observed a strong correlation between

these azimuthal spokes and an increased plasma potential. His work has interesting

implications if combined with LaFleur, Baalrud, and Chabert’s simulations. These

simulations showed that with plasma densities similar to those found near the maxi-

mum magnetic field locations in HETs (usually the exit plane) and pressures on order

of 1 mTorr, a quasi-steady fluctuation in both electric field and electron number den-

sity would form over the course of 1-2 µs. The electron density fluctuated between

20% and 30% with electric field fluctuation amplitudes “larger than the applied ‘axial’

electric field itself” [7]. At higher pressures, however, their simulations agreed almost

perfectly with the classical mobility theory.

Tran’s work duplicated the anomalous behavior shown LaFleur, Baalrud, and

Chabert’s simulations, and identified beam-cyclotron instabilities present under nor-

mal HET operating conditions, and that this mode transitions to an ion-acoustic wave

that saturates over approximately 2µs. Although he found that the beam-cyclotron

instability was insufficient to describe the full anomalous transport, the transition to

the ion-acoustic wave was found to be extremely important to correctly model the

cross-field electron mobility and suggested that the ionzation fluctuations caused by

Landau damping may generate the azimuthal spoke modes [2].

11

2.1.3 Cross-Field Mobility.

This cross-field electron motion has been an active object of study for more than 50

years but remains incompletely understood yet vital to the design of Hall Thrusters,

contributing between 20 and 30 percent to the discharge current [2,8,9]. The cross-

field mobility, defined as the constant of proportionality between the axial electron

velocity and the axial electric field length, is classically given as shown in 14, as shown

in [6]. In this equation, vm stands for the momentum-transfer collision frequency for

electrons, and ωce stands for the electron cyclotron frequency.

µez ≡
uez
Ez

=
e

meνm
∗ 1

1 + w2
ce

ν2m

(14)

Kwon, Tran, and Koo all agree that the anomalous electron motion cannot be fully

explained by this classical model, although Koo’s work does identify Bohm diffusion

as a major factor [2,8,9]. Lafleur, Baalrud, and Chabert agree and further identify

azimuthal instabilities in the electron current as a likely source for the anomalous

transport above and beyond what the classical model predicts [7]. Their simulations

reproduced the observed anomalously high electron mobility via instability-driven

transport alone, as walls and emission were not modeled in the simulation. They

propose an effective cross-field mobility model to account for the instability-driven

transport, as shown in Equation 15

µeff =

|q|
mνm

1 + ω2
ce

ν2m

[
1− ωce

νm

< neEy >

neEz

]
(15)

In this equation ne represents the electron number density and the angle brackets

indicate a time-averaged value. Several instabilities of interest exist, some of which

have been topics of research since the early 1970s. These instabilities will be discussed

in the following subsections. It is worth noting that much of the early research in

12

plasmas stemmed from fusion research and therefore focused on plasmas that fully

magnetized the ions. This stands in distinct contrast to the plasmas involved in

HETs, which by design do not magnetize the ions as discussed above. The difference

in behavior can be substantial as mentioned in Tran’s work, so research into fusion

plasma instabilities cannot necessarily be applied to the plasmas common in HETs

[2]. Only instabilities applicable HETs will be discussed here. Full derivations of

wave frequencies and growth rates will not be presented in this work for brevity.

2.1.4 Ion-Acoustic Waves.

An ion-acoustic wave can occur in plasmas when conditions obey Equation 16

below. In this case, ω and k refer to the frequency and wavenumber of the wave in

question. The ion acoustic velocity is then defined as shown in Equation 17, and the

dispersion relationship as Equation 18 [3, p. 152].

√
κTi0/mi � ω/k �

√
κTe0/me (16)

c2
s = ω2

piλ
2
D,e = κTe/mi (17)

ω2 =
k2c2

s

1 + k2λ2
D

(18)

Notably, these waves can only exist when the electrons are much hotter than the

ions, as is the case in a HET. Thermodynamically, the regime described by Equation

16 causes the electrons to behave isothermally while the ions behave adiabatically.

When this wave exists and there is no electron drift relative to the ions, the wave

becomes weakly Landau damped. If the electron drift velocity relative to the ions is

nonzero and exceeds the phase velocity, the instability may grow at a rate according

13

to Tran and presented in Equation 19.

γ =

(
πme

8mi

)1/2 |k| cs
(1 + k2λ2)2 (19)

Importantly, this wave propagates through the ions in the form of ion density

perturbations and can thereby impact the electron behavior through their shared

influence on the electric field.

2.1.5 Electron-Ion Instability.

Consider a plasma where electrons stream past ions with a much lower velocity,

this relative velocity being v0, as is the case in a HET [3]. The dispersion relationship

of such a scenario, shown as Equation 20 can be simplified by collecting terms as

follows: let z = ω/ωp,e, ε = me/mi, and λ = ~k · ve,0/ωp,e. The resulting equation is

presented below as Equation 21.

1−
ω2
p,i

ω2
−

ω2
p,e

ω − ~k · ~ve,0
= 0 (20)

1 =
ε

z2
+

1

(z − λ)2 (21)

Equation 21 clearly diverges at z=0 and z=λ, and has a minimum between these

two values. For sufficiently large values of λ, this minimum is less than one, resulting

in four roots of the dispersion equation; as λ falls, however, these roots converge and

eventually vanish once λ falls below a critical value. Once this occurs, there will

be two complex conjugate roots, one of which will cause an instability since it has

a positive sign. The critical value for instability onset occurs when the condition

expressed in Equation 22 [3, p. 179]. These situations are illustrated in Figure 1.

14

λ =
(
1 + ε1/3

)3/2 ⇒ ~k · ~v0 = ωp,e

[
1 +

(
me

mi

)1/3
]3/2

(22)

The maximum growth rate of this instability occurs when ~k · ~v0 ' ωp,e, and has a

value ωi,max '
√

3
2

(
me

2mi

)1/3

ωp,e [3, p. 179].

2.1.6 Beam-Cyclotron Waves.

Lampe, et al. presented both the theory and simulations of the beam-cyclotron

theory in 1971 [10]. The instability requires that ions drift with some speed relative to

electrons (denoted vd in the following equations)and across a magnetic field and that

the electrons be magnetized but the ions are not. They found that the presence of an

external magnetic field discretized the ion-acoustic into separate bands centered on the

cyclotron harmonic bands (Equations 23-24), with bandwidths shown in Equations

25 and 26.

ωk = nΩe (23)

k =
nΩe[

vd − cs

(1+k2λ2D)
1/2

] (24)

δω ' 2γ (25)

δk ' 2δω/vd (26)

In these equations, Ωe represents the electron gyroperiod as it orbits a magnetic

field line, cs the ion acoustic speed, λD refers to the Debye length covered in 2.1.1.

The discretization breaks into a continuous spectrum once the ratio of electron-ion

15

Figure 1. Electron-Ion stability based on λ [3, p. 178]. The first chart shows a stable
dispersion relationship with all real roots; the second shows critical stability, with one
real root at λ = z; the final plot indicates an unstable dispersion relationship with two
complex conjugate roots.

drift velocity to electron thermal speed grows too high, as can be assumed in a Hall

thruster, and the instability degenerates to that discussed in section 2.1.4.

2.2 Computational Theory and Mathematics

2.2.1 Spectral Solvers.

Spectral methods for solving differential equations rely on transforming the input

function from one domain, most typically time or space, into a frequency domain

with mutually orthogonal basis functions. In doing so, they rely on the core tenet

of Fourier theory: that any arbitrary function can be represented as the sum of a

(possibly infinite) number of orthogonal basis functions such as sines and cosines.

When the boundary conditions are homogeneous or periodic, sines and cosines are

indeed appropriate basis functions , though Pozarkidis states that Chebyshev polyno-

16

mials are more accurate and appropriate for nonperiodic cases [11, p. 511]. A spectral

solution provides very high accuracy for smooth functions even with relatively few

input points, and may be faster or the only practical method of solving a differential

equation with available computing resources [12, ch. 16][11, p. 512].

Koo, Bilyeu, and Martin have demonstrated the use of a pseudospectral 2-D

azimuthal-axial model (spectral methods applied in the azimuthal and nonspectral

methods in the axial) of a Hall thruster in 2015 intending to investigate azimuthally-

driven axial motion [8]. That work largely inspired this one owing to the promise

it showed even though the simulation was incomplete as of the time of publication.

In particular, spectral methods are ideal for investigating azimuthal motion of any

charged species in a HET, since a HET channel is periodic and therefore species

number densities must be as well. Azimuthal transport of charged particles, as in

Cunningham’s work, will cause azimuthal instabilities in the electric field unless the

particle distribution is homogeneous, making a spectral approach highly appropri-

ate for updating the electric and magnetic fields as well. This work sought to use a

spectral approach to solve Poisson’s equation (Equation 4) for electrostatics in the

azimuthal direction based on the distribution of charges at a given instant in time [4].

2.2.2 Time-Memory Tradeoff.

When solving any computational problem, the programmer generally faces a choice

between pre-computing the results and looking them up when needed, or computing

them as needed but not storing the results. The former solution requires the compu-

tation of N elements in the data set and only requires the computation once, but it

requires a potentially large ongoing memory commitment to store the computed data.

Conversely, computing the data only as needed may require less computational effort

if the total number of result references is smaller than N, and requires no storage

17

space whatever. Though such a solution may seem more appealing, computationally

expensive problems may require too much time for such an approach to be practical.

The chaotic nature of fluids problems that arises from the nonlinear output sensi-

tivity to input conditions makes precomputations very difficult for most parts of the

fluid dynamics. Engineers and scientists routinely rely on them for fluid properties

by using lookup tables. The U.S. Standard Atmosphere (1976) remains a vital tool

for aerospace engineers, and tables of water properties (especially steam) have been

so commonly used that references to them in popular culture can be found by at least

the 1950s. Tables work for these properties because their behavior is non-chaotic

unlike, for example, turbulent flow problems. More complex relationships, or ones

that require high fidelity, would be impractical even with today’s memory standards.

Consider an arbitrary nonlinear function with five input variables– a simple lookup

table using a 64-bit floating point representation that has ten points in each of the five

input dimensions would require 105 ∗ 64 = 6.4 megabits (800 kilobytes) of disk space,

which is well within modern technology’s capabilities but has very few data points

per dimension. If the output variable changes only very slowly with the change in an

input variable or the domain is very small, the lookup table may be acceptable, but

neither is generally true. Using a finer mesh over the domain may make the table more

acceptable, but only at the price of a much greater memory cost– using 100 datapoints

along each of the input variables would require 1005∗64 = 640 gigabits, or 80 gigabytes

of storage space. This is a ludicrous amount of RAM, though still within the realm

of possibility for some very large desktop workstations. If the machine lacks sufficient

RAM to store the entire lookup table, the program would need to load it from the

hard drives at an enormous speed penalty due to the overhead and the specialized

hardware underlying the RAM connection to the motherboard. Further increasing the

mesh density over the domain would continue to increase the requirements, and this

18

method all requires either an effective method of interpolation or never attempting

to use any value not specified by the table. The interpolation of nonlinear systems at

an acceptable accuracy level may not be possible.

2.2.3 Neural Networks.

Neural networks represent an alternative to lookup tables, and represent a sort of

middle ground between the two aforementioned options. If the lookup table repre-

sents all results of a function over a given domain, the neural network approximates

the function itself. As will be discussed, even a very simple network can represent a

continuous function to an arbitrarily high degree of accuracy, averting the interpo-

lation restriction imposed on lookup tables [13,14]. A network consists of a number

of neurons, organized into a number of layers, as will be discussed in more detail in

the following section. Each neuron, broadly speaking, requires two values associated

with it (a weight and bias). This fact makes computing the break-even point in mem-

ory requirements trivial; while not guaranteed, neural networks have demonstrated

remarkable approximation capabilities even with very simple networks.

Using a network imposes some computational cost at run-time since the user

must execute the network’s inherent math, although this may be less computation-

ally intensive than executing many other ’exact’ functions, such as computing the

exponential of 1E-15 (in C++ where such behavior is implementation dependent).

The greater strength of neural networks stems from removing the requirement that

the programmer or user knows the exact functional relationship between the input

and output variables. The programmer can instead know or estimate that some rela-

tionship between the variables exists based on experimental data, and use the network

to determine a useful approximation of that relationship so long as the network is

“trained” properly. Training, in this context, refers to the process of adjusting the

19

neuron parameters until reaching a valid approximation. The number of layers, num-

ber of neurons in each layer, and the type of neurons are not adjusted during training

and are heavily dependent on the problem the network solves and the input data

form.

The universal approximation theorem (UAT), developed by George Cybenko in

1989, states that any continuous, bounded function can be approximated to arbitrarily

high accuracy by a feed-forward network (meaning one with no loops in the network

itself, so that data flows strictly from input to output) using sigmoidal activation

functions such as the hyperbolic tangent [13]. Kurt Hornik extended this in 1991,

and proved that the UAT applies to any feedforward network regardless of activation

function, making radial basis functions (RBFs) a plausible choice to attempt the

approximation required for this work [14]. This incredibly powerful theorem does

come with a few implicit caveats, most notably that it makes no statement about the

hidden layer size required for such an approximation nor the time needed to train

such a network. In effect, while it is possible to build a multilayer perceptron (MLP)

with one hidden layer to approximate any function, doing so may be completely

impractical. Importantly, the UAT only applies on a bounded function, meaning

in effect that a network trained on the domain from A to B can achieve arbitrary

accuracy over that range, but may be uselessly inaccurate beyond it. The limitation

to continuous functions did not affect this work.

2.2.3.1 Structure of a Neural Network.

Inspired by biological neurons and some of the simpler information-processing

networks in the brains of living things, artificial neural networks (ANNs or neural

networks hereafter) have found great use across science and engineering fields as an

effective mechanism for solving very complex problems, including many that would

20

be difficult or entirely impractical via more conventional programming methods [15,

p. 11]. Broadly speaking, ANNs consist of an input layer, a number of hidden layers,

and an output layer. Though strict definitions do not exist, common parlance in the

field refers to a network with a single hidden layer as “shallow” and one with several

or many hidden layers as “deep”. Each connection from one neuron to another has a

weight, and may or may not have a bias; each neuron sums the weighted inputs, adds

the bias, and executes an activation function of some kind. The number of neurons in

each hidden layer, the number of hidden layers, and the connections between layers

together make up the topology of the network. Many such topologies exist, and a

good survey may be found on the website of the Asimov Institute, including a wide

variety of network types along with descriptions of what and how they function [16].

The same networks are covered with slightly differently focused explanations on the

“Towards Data Science” website [17]. The details of a problem solved with an ANN

fixes the number of input and output neurons; each input variable requires its own

neuron, as does each output value. Regression and function-modelling problems such

as those covered in this thesis require a single output neuron, while a classification

problem may require dozens or hundreds depending on the number of separate classes

the network must distinguish. In their simplest form, classification problems can be

considered just a regression problem with multiple possible outputs with independent

output variables, one per option, although this is not true of all network topologies and

is suggested merely as a useful way to conceptualize the difference for an unfamiliar

reader.

Only a few of the topologies illustrated in either of the aforementioned surveys

received significant consideration for the purposes of this work. The networks entitled

“(Deep) Feed Forward”, more commonly known as a dense network or MLP, presents

the perhaps the most broadly used network topology for approximation tasks such as

21

those involved in this research [15]. Despite the name, most graphics will show only

a single hidden layer since every neuron in layer A connects to every neuron in layer

B, so the rules of matrix multiplication and addition permit representing an arbitrary

number of hidden layers as effectively a single operation. The radial basis function

(RBF hereafter) is structurally identical but specifies the use of a radial basis function

as its activation function, the implications of which will be discussed later. Convo-

lutional neural networks, though popular as of 2018, deliberately attempt to model

the behavior of the human eye, so while excellent for picking features from images,

audio data, and other similar dataforms, were rejected both for the topology’s opti-

mization for other tasks and for being needlessly complex approaches to the problem

at hand [16,17]. The various memory-related networks shown in those surveys (RNN,

LSTM, and GRU) were rejected on the grounds that they are designed to work on

time-series data, e.g. predicting text and voice patterns, rather than working on the

non time-dependent data examined in this work.

The conditions of the Universal Approximation Theorem (UAT), discussed in the

previous section, caused rejection of the remaining types of neural networks shown

in the surveys, leading to only the MLP and RBF networks considered. The MLP

required substantially less effort to implement using the TensorFlow library and ac-

cording to the UAT could prove effective, so the MLP was implemented first with the

intention to attempt an RBF implementation should the MLP approach have failed.

2.2.3.2 Activation Functions.

Each neuron may have an activation function governing transforming the sum of

weighted inputs and bias into a more useful output. Despite Cybenko’s initial work,

Hornik proved that the activation function is irrelevant to the UAT’s applicability [13,

14]. Sigmoidal activation functions typically include the hyperbolic tangent function

22

because it shares the general shape as the logistic function, often referred to as “the”

sigmoid function and defined as f(x) = 1
1+exp(−x)

. Importantly, the logistic function

has a range between zero and one, while the hyperbolic tangent function has a range

between negative and positive one. Walia and Karpathy both discuss the use of

the rectified linear unit (ReLU) and the leaky ReLU, which are linear for all values

zero or greater, but have zero or very small slopes for negative inputs, respectively

[18,19]. Samarasinghe also discusses Gaussian and Gaussian complement functions,

though neither was considered for use in this work since the other functions mentioned

have a well-documented history of success in neural networks used as approximators

[15]. Activation functions have substantial impact on both the network’s behavior

and its Walia and Karpathy both discuss the benefits and drawbacks to the logistic,

hyperbolic tangent, and ReLU functions at some length, and their arguments are

summarized as follows:

Logistic functions are the prototypical activation function for use with the UAT,

but suffer from saturation problems that can lead to an approximately-zero gradient

both at large or small activation values, making training the network very difficult

since the error signal may approach zero even if the error is very large [cite]. This

problem is known as the vanishing gradient problem. Logistic functions also have an

output range centered on one-half, leading to strange behavior during the training

process since the weight gradient must not change sign. The hyperbolic tangent func-

tion mitigates the latter problem since its output range centers on zero, but can still

saturate; as Karpathy remarks, the hyperbolic tangent function is always preferred to

a logistic function because it otherwise behaves as a scaled logistic function, retaining

the advantages but with one fewer disadvantage. ReLU functions are computationally

inexpensive and cannot saturate, making them much faster to train and easier to work

with, but it is possible for them to become unreachable nodes on the network during

23

training. Karpathy states that an erroneous learning rate may cause up to 40% of

the network to “die” in this manner, a hefty memory penalty [19]. Walia points out

that the limitation of a linear function for positive input means it should only see

use in the hidden layers, never in the output. The leaky ReLU’s small negative slope

avoids the issue of “dead” neurons, though still should not see use in output layers.

Both sources recommend using the ReLU and switching to a leaky ReLU if “dead”

neurons become problematic, though acknowledge that a hyperbolic tangent function

is expected to work albeit with worse performance than a ReLU would give [18,19].

2.2.3.3 Preprocessing.

Another neural network limitation stems from the need to ensure input data have

similar ranges. As described in Samarasinghe, having wildly disparate variable ranges

can lead to masking problems in that variables with larger magnitudes may receive

much stronger weights and smaller variables may get ignored– even if the smaller-

magnitude variable matters more [15, p. 253]. Samarasinghe illustrates a number of

mechanisms to normalize the input data, as do the course materials from Stanford

University’s CS231N class dating from Spring 2017 and the Stonybrook University

course materials for CSE634, “Data Mining”, dating from Spring 2018 [19,20]. All

three sources identify normalization (called max-min normalization in the Stonybrook

materials) as a mechanism for changing the range of input variables between 0 and 1

or -1 and 1, trivially depending on the implementation. Another mechanism, referred

to as whitening-normalization (Samarasinghe, pg 254) or principal component anal-

ysis and whitening (Karpathy and Johnson), uses the variances and covariances to

scale each dimension by that dimension’s standard deviation and using new variables

from the covariance matrix. These new variables “correspond to a set of new rescaled

variables that have unit variance and are independent of one another” [15, p. 254],

24

making this approach very appropriate for data with many input variables of un-

known impact on the output (particularly if some variables may be irrelevant) and

interrelationships unknown a priori. Karpathy also suggests subtracting the mean of

each variable, effectively centering the data about the origin, an appropriate approach

if no scaling is necessary or if the variables should not necessarily have approximately

equal impact on the output. Finally, Samarasinghe discusses standardizing each in-

put variable by subtracting the mean and dividing by the standard deviation of that

variable across the entire dataset; using this mechanism also requires applying it to

output data rather than only the input [15, p. 253].

2.2.3.4 Initialization.

Training the network requires weights and biases in order to calculate the first-

iteration results, and so they must be initialized to some values first. As Karpathy

and Johnson discuss, setting the intial weights to zero can cause a symmetrical error

signal, resulting in all neurons always outputting the same values or can cause zero

error signal due to neuron saturation [19]. The identical error signal to all neurons

would be an identical problem regardless of the initial value set, so long as all values

are equal. The simplest method to avoid this uses random numbers to initialize the

weights; these numbers are typically small, again to avoid causing a near-zero error

signal. Karpathy and Hao also discusses using random numbers and dividing by

the square root of the number of neurons to reduce the overall variance of neuron

outputs [19,21]. Hao also discusses a method for optimally assigning weights for large

networks using many layers called Xavier initialization, the proof of which will not be

repeated here. Xavier initialization attempts to optimally set each weight, but this

work did not intend to optimize the network design and because only a single layer

was necessary or investigated here owing to the UAT, the method did not receive

25

consideration in this work. Unlike the weights, setting the initial bias values to zero

poses no issue for the network, since non-identical weights break the initial symmetry

[19].

2.2.3.5 Optimizers.

Choosing the correct optimization algorithm (referred to as an optimizer here-

after) can make the difference between training a network in a reasonable timeframe

and permanent oscillation between poor options. As mathematical optimization has

been actively studied since at least the time of Newton (i.e.: Newton’s Method), too

many optimization algorithms exist to reasonably discuss in this work, so only those

most relevant to the task at hand will be covered. The venerable gradient descent

algorithm (also known as steepest descent) is widely known to any calculus student,

and uses the gradient at each training step to compute the best error surface direction

to move in via updating the network. This solution suffers from using a fixed step

size; setting this size too small may result in an impractically long training time,

while setting the step size too large will cause oscillatory behavior as the network

cannot reach its best solution [12]. Google developed several optimizers for inclusion

in their TensorFlow machine learning package, including the ADADELTA optimizer

and its related ADAGRAD, ADAGRAD Dual Averaging (AdagradDA), and Proxi-

mal ADAGRAD optimizers. Zeiler’s paper describes the ADADELTA algorithm as

a per-dimension optimizer able to adapt the learning rate dynamically over time and

“has minimal computational overhead beyond vanilla stochastic gradient descent.”

The algorithm’s robustness to input parameters makes it very appealing, as does

the low computational expense [22]. Duchi, Hazan, and Singer developed the ADA-

GRAD algorithm to emphasize the importance of “infrequently-ocurring features”

versus common features in the input data [23]. This emphasis makes it an appro-

26

priate choice for convolutional networks solving image processing or computer vision

problems, but does not obviously make it a good choice for developing an approxi-

mation network. The AdagradDA algorithm is similar, but intended for use “when

there is a need for large sparsity in the trained model” [24]. Hinton, Srivastava, and

Swersky from the university of Toronto discuss the RMSProp optimizer in their se-

ries of lectures, though it is better summarized by Kingma and Ba in their paper

introducing the Adam optimizer as effective in online settings [25,26]. Kingma and

Ba’s Adam optimizer combines the advantages of AdaGrad with and RMSProp in an

optimizer that works even in noisy or sparse gradients as may occur with noisy input

data or with a small input data set, along with a certain amount of reducing user-

error; since the hyperparameters “have intuitive interpretations and typically require

little tuning”. This fact substantially reduces the opportunity for overenthusiastic

graduate students to cost themselves lots of time and migraines obsessing over the

perfect hyperparameter settings, making the Adam optimizer an appealing choice.

2.2.3.6 Potential Issues for an ANN.

One potential issue that can arise when using a neural network stems from the

network’s ability to model the data given rather than the underlying relationship.

When this happens the network has essentially just memorized the training data but

cannot generalize from the examples to arbitrary inputs. Ultimately, overfitting stems

from the network having too many hidden neurons relative to the training data, and

Samarsinghe and Karpathy both highlight several methods to reduce overfitting while

still preserving the network’s ability to model the relationship without bias [15,19].

Based on this description, an obvious solution is to ensure a sufficiently large training

data set relative to the number of hidden neurons; unfortunately this is not always

possible in real applications. A somewhat naive solution would be attempting to

27

optimize networks exhaustively until finding the ideal number of neurons, but doing

so necessitates an enormous time and computational resource commitment and is a

generally impractical solution, especially with larger or deeper networks [15, p. 197].

Randomly deactivating some of the neurons during training in a process known

as dropout has proven an effective method to prevent overfitting as discovered by

Srivastava et al [27]. When using dropout, the probability of retaining a neuron as

active during training is a hyperparameter, and all neurons are retained for testing.

Dropout seems to have superseded the optimal brain damage, optimal cell damage,

and optimal brain surgeon techniques for pruning a network as Samarasinghe dis-

cusses. Both Samarasinghe and Karpathy recommend regularizing the network, or

penalizing larger weights by including the weights in the loss function calculation.

Karpathy goes into more detail, discussing both L1 and L2 forms of regularization,

and notes that when unconcerned with feature selection L2 norms will likely give

superior performance to the L1 while using the L1 norm tends to generate neurons

that tend to become resistant to noisy input vectors. Mathematically, the L2 norm

is described by 1
2
λ

n∑
i=1

w2
i , while the L1 norm is the simpler λ

n∑
i=1

|wi|

28

3. Experiment

3.1 Plasma simulation

3.1.1 Intended Simulation.

AFRL’s TURF simulation code is still in development, and this work originally

sought to further that development by adding a pseudospectral solver for Poisson’s

equation using the model demonstrated by Koo, Bilyeu, and Martin in 2015 [8]. Time

constraints ultimately made completing this task impossible, but a brief description

of the intended simulation will be provided here. As the goal was to develop an

additional solver for TURF, the simulation described in Tran’s thesis would have

been duplicated [2]. This simulation is ultimately a highly simplified version of that

described in Lafleur, Baalrud, and Chabert’s second 2016 paper, and would have

used the radial-azimuthal plane to examine the plasma behavior. The coordinate

correlation is illustrated well in figure 2 below.

In all HETs, the magnetic field is applied radially (in the computational x̂ di-

rection), while the electrostatic accelerating field is applied axially (computational ẑ

direction). The obvious result of this coordinate approach is that the ~E × ~B drift

takes place in the azimuthal direction (computationally ŷ) [2]. The fluctuations in

electric field would generate an azimuthal electric field component from solving Pois-

son’s equation, and this azimuthal component, could result in spoke-mode behavior.

A spectral solver was considered an ideal approach to handling the azimuthal Poisson

solution since both the electric field and its first derivative must obviously be az-

imuthally periodic. The hope was that the spectral solver would operate faster than

a direct integration method without sacrificing accuracy. While such a solver algo-

rithm was developed, the problems described in 3.1.2 prevented its implementation

in the TURF framework.

29

Figure 2. Illustration of a Hall Thruster with the computational domain shown in pink
as shown in Tran’s thesis work [2, p. 16]

Fourier transforms are a common mathematical tool in engineering and scientific

fields, so rather than writing the necessary functions from scratch and risk missing

problematic edge cases or poor performance this work sought to implement a preex-

isting and preferably already optimized library. The “Fastest Fourier Transform in

the West” (FFTW) library met these requirements. It was developed by Matteo Frigo

and Steven G. Johnson at MIT and initially released in 1997 with the latest update

released on Oct 29, 2017 [28]. The library is so well-optimized (claiming N*logN op-

erational time for arbitrarily-sized transformations) that even MathWorks licenses it

for use in their MATLAB programming language, renowned for high computational

speed even with very large problems [29]. The FFTW library’s availability in both C

and FORTRAN meant it would not bottleneck the simulator from a programming-

language-speed perspective, since C is typically marginally faster than C++ and

FORTRAN is famously even faster for purely mathematical (i.e. non-logical) opera-

tions. While no theoretical guarantee exists that the simulation software would not

30

bottleneck on the solver, attempting to further optimize these functions would have

been vastly beyond the scope of this work and more appropriately part of a computer

science thesis than an one on aerospace engineering.

3.1.2 Problems Encountered.

Unfortunately, the FFTW library implementation in TURF proved extremely

problematic and eventually revealed compiler-dependent segmentation fault behavior

preventing its further use. Validation code using FFTW compiled correctly when

using G++ (the GNU C++ Compiler) and the compiler switches described in the

FFTW documentation, but failed when using NVCC, the NVidia CUDA Compiler.

Compilation with NVCC would permit running the simulator on a compatible graph-

ics processing unit (GPU, or colloquially a graphics card), enormously accelerating

the simulation process by running computations in parallel on hardware optimized for

floating-point optimizations rather than the logical-decision-optimized CPU. At the

time of this writing significant parts of the TURF code base lack much of the code nec-

essary to take full advantage of a GPU, in particular the code required to move data

to and from local GPU memory rather than the computer’s RAM or even the hard

drive. AFRL personnel have confirmed an intent to add these capabilities at a future

date. NVidia GPUs require using the NVCC, so while algorithmic code restricted to

running on the CPU may be acceptable today since the rest of TURF cannot take ad-

vantage of the GPU, code that does not compile correctly using NVCC creates much

larger problems for maintenance coders and future releases. The segmentation fault

occurred when using the FFTW functions to perform an inverse FFT, and may stem

from NVCC’s inconsistent behavior with importing and using C-language libraries.

Once the problem was traced to a conflict between the compiler and library, FFTW

was abandoned since NVCC is NVidia-proprietary so the source code is unavailable

31

for modification and modifying the library would probably not have fixed the problem

and risked compromising performance. NVidia’s CUDA extension to C++ natively

includes a version of the FFTW library as cuFFTW, but using it requires using

other CUDA-specific functionality and appears to require execution on the GPU [30].

If the functionality requires GPU execution, the clock-time penalty incurred from

transferring the data between RAM and local GPU memory could bottleneck the

entire program; transferring the particle data but only using the GPU for the few

operations involved in solving Poisson’s equation wastes the advantages provided by

implementing the parallel behavior. These issues and time concerns caused cuFFTW’s

rejection for use in this work, though future releases of TURF should consider its use.

Searching for other libraries that provide C++ Fast Fourier Transform functions

led to a website with examples of these functions provided in a variety of languages

including C++ [31]. The code was validated with appropriate modifications to re-

flect different input and output data types and the validated code was implemented

in the TURF spectral solver. It uses the well-known radix-2 Cooley-Tukey algorithm

first published in 1965 (though originally invented by Gauss in 1805) [32][12, p. 128].

The specific variant of the algorithm implemented in this code was chosen for its

simplicity (lending itself well to understanding and debugging), and because it runs

in N*logN steps rather than the N2 required by a naive Discrete Fourier Transform

operation [11,12]. On attempting to implement this in the TURF library, undocu-

mented problems occurred when interfacing with TURF’s data structure responsible

for storing the various fields. These problems could not be resolved, so the solver

was fully characterized up to 1024 bins using data structurally similar to what would

have been used if integration had been successful.

32

3.1.3 Solver Characterizatiton.

Despite the problems interfacing with TURF, the solver code was fully devel-

oped and tested. As such, its performance was validated via several mechanisms.

Firstly, both a FFT and discrete fourier transform (DFT) were calculated using a

user-specified arbitrary power-of-two transformation length. A single value in the in-

put vector was set to a nonzero value, and the resulting transformed vectors were com-

pared. Secondly, the program takes a separate user-specified arbitrary power-of-two

transform length to generate a waveform with a user-specified number of component

cosine waves with random amplitudes and frequencies. The method of manufactured

solutions was used in that the waveform’s second derivative is calculated and inte-

grated twice using the spectral solver, then transformed back into the original domain

and the results compared with the exact output computed from the original wave-

form. The frequencies used are constrained to integer values because of the periodic

boundary conditions, and further limited to values below the Nyquist limit.

If the individual second-derivative waveforms in the above test are considered the

modes of the electron distribution function about a Hall thruster, then the random-

waveform test checks the intended use of the solver using simulated data. To fully

characterize the solver’s performance, the test was repeated for each power-of-two

transformation length between four and 1024, inclusively, and each transformation

length tested using up to 64 individual waveforms. No case tested more waveforms

than the transformation length for obvious reasons. The solver-calculated solutions

to Poisson’s equation were then compared to the known solution, and the results

presented in Chapter 4.

33

3.2 Neural Network Model

Initially this work sought to approximate the cross-field electron mobility based

on several parameters as determined by Dr. Koo and the AFRL team, but time

constraints related to building a functional spectral solver in SMURF prevented gen-

erating the appropriate data. AFRL provided experimental data from testing a Hall-

Effect Thruster (included as Appendix A) to demonstrate neural network approxima-

tors’ general applicability to HET-related problems and to performance predictions

in particular. Using such a model requires sufficient training data, which may be

thruster-design specific depending on the data features in question. As discussed in

the time-memory tradeoff and neural network subsections of Chapter 2, a properly

trained neural network will not suffer from the problems inherent in lookup table

interpolation, and required working data storage becomes one of storing only the

network rather than the entire performance envelope. Additionally, using a neural

network may reduce the overall number of tests required to effectively describe the

envelope. This possibility is dependent on the level of accuracy and discretization re-

quired, but a lookup table with the desired discretization may be significantly larger

than the amount of training data required for a neural network to achieve sufficient

accuracy over the same domain. The difficulty, cost, and time required for extensive

HET testing makes using such a model an appealing prospect from engineering, cost,

and computational perspectives.

The neural network model used in this work was created by leveraging the Python-

language implementation of the TensorFlow library developed by Google, and the

code (and documentation for it) is presented in A. TensorFlow’s production by Google

and high popularity correspond to good documentation and community support while

its broad industrial acceptance and provision of a low-level API make it appealing

from a code maintenance perspective. These reasons together caused its acceptance

34

for this work [33]. In hindsight, another library known as Keras that provides a

higher-level interface (though still requiring a separate backend such as TensorFlow)

would work at least as well and may be both more intuitive and easier to work with.

Were this work repeated today, Keras would see use, and it should be considered in

future work. Google has released TensorFlow for several languages, but warns that

others lag Python in the development process and explicitly warns that the docu-

mentation may not be accurate for other languages [33,34]. Non-Python versions of

TensorFlow were rejected because the network developed herein was never intended

for operational deployment within the SMURF package, making the higher speed of

other languages unnecessary. Additionally, the time constraints and issues caused by

insufficient documentation while implementing the spectral solver presented substan-

tial concern. Importantly, the goal of this work was not to optimize the network but

to demonstrate ANN applicability, meaning there almost certainly exists smaller or

more efficient MLPs capable of comparable accuracy to the network developed herein.

The network code used in this work consists of two parts: a network class (FC-

Network) and a script including the training loop and output. The FCNetwork class

creates an MLP object given the number of input arguments and a list each of the hid-

den layer sizes and the activation functions. Error-checking means that adding new

or custom activation functions will require modifying the FCNetwork code. Metapro-

gramming and advanced Python functionality could circumvent that limitation, but

would not have added anything for the purposes of this work and would have made

the code more difficult to understand for those unfamiliar with the mechanisms in

question. Relevant columns (in this case hardcoded as the columns corresponding

to electromagnet current, discharge voltage, and discharge current) are scaled and

retained in the data structure passed to the script, while irrelevant columns are dis-

carded to avoid wasting working memory. The provided data consists solely of text,

35

and requires far less space than a typical machine has RAM; larger amounts of input

data, especially images or audio, would require using a data queue to avoid causing

a segmentation fault by attempting to load too much data into working memory si-

multaneously, but a queued input pipeline was unnecessary here and so avoided. The

input data were scaled using the normalization method discussed in chapter 2, reduc-

ing input variables to a range between 0 and 1. Doing so means attempting to give

the network a value greater than the maximum presented in the training data could

cause saturation and inaccuracy, as suggested by the UAT’s restriction to bounded

functions. As Chapter 2 covered, exceeding the bounds of the network invalidates the

UAT’s guarantee of arbitrary accuracy. Knowing that the input variables are fully

independent a priori makes the whitening and primary component analysis approach

unnecessary, and knowing that the inputs were not sampled statistically but resulted

from a methodical sweep through part of the thruster’s performance envelope makes

standardizing by the mean and standard deviation an equally poor choice. These

factors are not generally true, so the choice of data normalization depends heavily

on the expected input data the network will use both for training and operationally.

Modifying the provided code for use on other data will require careful consideration

of preprocessing techniques.

The script file includes the weight and bias initializations along with the optimizer

chosen. As noted in Karpathy’s course notes from Stanford, the intuitive approach

of all-zero (or any other uniform value) initial weights is highly problematic since

there’s no asymmetry and so all neurons will receive the same feedback signal [19].

For simplicity of implementation and understanding, the weights and biases were

initialized to small random values, though as covered in chapter 2 other methods

reliably result in faster network training. Optimizers were also covered in chapter 2,

emphasizing that the optimizer algorithm has great impact on the required training

36

time. The ADADELTA optimizer was chosen both to avoid problems stemming from

a continuous learning rate and for its demonstrated high performance.

3.2.1 Network Toplogy.

Based on the Universal Approximation Theorem discussed in Chapter 2 and the

relative performance of MLP and RBF networks on potentially irregular data, an

MLP was chosen to model the Hall thruster behavior. The UAT guarantees that

this network can approximate the surface shown in Figure 20 to an arbitrary accu-

racy within the domain trained using only a single layer. The data’s analog nature

guarantees that it must be continuous. Initially, an attempt was made to use the

hyperbolic tangent function, but scaling the data such that the maximum value of

each input was treated as 1 caused the vanishing gradient problem and poor results

that converged unacceptably slowly. This problem was handled by switching to using

a leaky ReLU as the activation function. Lacking any good method of determining

the necessary number of neurons a priori, networks were tested with 20, 40, 80, 160,

320, 640, and 1280 neurons in experimental mode.

3.2.2 IVB Mapping and Training Approach.

The data AFRL provided included human-supplied measurements of electromag-

net voltage, the magnetic field strength, and the discharge current. The neural net-

work used the former two as inputs, and penalized differences from the known dis-

charge current. Each of the three were scaled by the maximum value present in the

input data, such that the data presented to the network only saw values between 0

and 1, as mentioned above. The total cost function at any step included the sum of

the L2 norm of this inaccuracy and one ten-thousandth the L2 norm of the weights in-

volved in the network. Including the weights in the cost function pushed any weights

37

that were not strengthened during any given training step towards zero in an attempt

to combat overfitting. During each training step, a fairly typical 80%/20% training

and validation split was used, though the user can easily modify this in the master

approximator function. Training took place over 5000 epochs for both code validation

and the experimental data.

3.2.3 Code Validation.

When in code-validation mode, the approximator generates a nonlinear 2D poly-

nomial function with randomly-chosen, arbitrary coefficients between 0 and 50. This

range was chosen only to demonstrate the effect of possibly-large coefficients that

better reflect real, general data than the 0-1 coefficients that the NumPy random

number generator function would otherwise return. All data validation occurred us-

ing 80 neurons, the center value of the initially-intended neuron list. Since noise levels

on the AFRL-provided data are unknown, they were assumed Gaussian, and as such

the code was validated against a function with zero noise and with SNRs of 1, 2, 3,

4, and 5. The AFRL-provided dataset includes fewer than 300 datapoints, so the

network was validated with 240 datapoints, 1200 datapoints, and 2400 datapoints in

an effort to characterize the network’s ability to handle noise relative to the amount

of data provided.

38

4. Results and Analysis

4.1 Solver Characterization

4.1.1 Performance with Increasingly Complex Waves and Transforma-

tion Lengths.

The solver’s performance was demonstrated using Poisson’s equation on synthetic

data similar to what it would have been solving with TURF. The waveforms can be

considered without loss of generality to be the electron density about a Hall Thruster’s

azimuthal axis, in which case the solver generates the electrical potential. The algo-

rithm can only accept transformation lengths (number of samples or measurements)

that are powers of two, so the powers of two between 4 and 1024 inclusively were

tested. No technical reason prohibits longer transformations, rather 1024 was used as

the upper limit since many libraries including FFTW default to such a length. The

waveforms used were made up of the lower of 64 modes or the transformation length

in order to keep the problem tractable. The results are shown in blue in Figure 3,

below, while the machine-zero level is shown in red.

39

Figure 3. Error (Blue) and Machine-Zero (Red) vs. Number of Component Waves and

Transformation Length

These results clearly demonstrate that with zero noise, as would be expected from

a perfect simulator, even very short transformation lengths have mean errors more

than an order of magnitude lower than the machine-zero level. In practical terms,

these results indicate that there will be no compounding error from using this solver

as the computer will not propagate errors smaller than the machine-zero level. This

fact is hardware dependent, so the test should be run again before implementing this

solver on any new hardware.

4.1.2 Noise Performance.

Any real simulator will have some level of noise present in the signal, and therefore

the solver’s performance was characterized with composite signals comprised of a

waveform normalized to an amplitude of one and noise levels between zero and one

in increments of 0.2. The waveform was itself made up of eight base waveforms as

discussed in 3.1.3. The results of this test are presented in Figures 4 and 5 below.

40

Figure 4. Introduction of any noise worsens performance above the noise floor of this

solver, but the performance appears relatively constant with additional noise

Figure 5. Close-up of the noisy data errors. Note that the error level increases approx-

imately linearly with the noise

Figure 4 shows that in noiseless data, there is no practical error in the solver

output. Errors below the machine-zero level will not be carried forward as floating

point error by definition of the machine-zero level. Figure 5 demonstrates that as

41

the noise level increases, the error increases linearly above 20% noise strength. Based

on the available data, there must be a nonlinear ’knee’ in the error level somewhere

between the 0 and 20% relative noise, but this cannot be determined with certainty

from the available data. Interestingly, these results also show that increasing the

number of samples does not necessarily lead to lower error levels, as shown by the 32-

sample error being higher than the eight-sample or 16-sample error for all noise levels

tested. This behavior was consistent across multiple test runs, eliminating the random

function as the source of the behavior. It is possible that the behavior is machine-

dependent, and further tests could confirm this. This solver’s completion makes it

possible for future work to integrate the algorithm into TURF directly. Once this has

been completed, it can be used to further investigate the azimuthal electron waves

and instabilities and in so doing provide some insight into the anomalous electron

mobility.

4.2 ANN Results

4.2.1 Varying Neuron Numbers.

Table 1 below shows the mean error and standard deviation of the results for

each network width, as computed by the final-epoch network. The 20 and 40-neuron

networks performed very poorly, with nearly identical error percentages. Interestingly,

the 40-neuron network has a much higher standard deviation than the 20-neuron

network. The 80-neuron network had the lowest mean error (at only 0.04%) than any

other network width, and had the second-lowest standard deviation of any network,

and only the 1280-neuron network had lower standard deviation.

These results clearly illustrate that while the UAT guarantees that arbitrary ac-

curacy is possible with sufficient neurons, simply adding neurons to a given network

and training it does not guarantee that the new network will have greater accuracy

42

of Neurons Mean Percent Error Magnitude Std Dev
20 5.30% 21.89%
40 5.31% 28.79%
80 0.04% 9.11%
160 0.93% 11.13%
320 0.64% 15.76%
640 0.99% 19.43%
1280 0.22% 6.62%

Table 1. Experimental ANN Statistics

or precision if trained identically to the original network. The error and standard

deviation present here show that even 1280 neurons is not ’sufficient’ for perfect

accuracy, although either the 80 or 1280 neuron network could be useful for some

industrial applications. They strongly suggest that the network can be used to learn

the functions describing complex behavior, such as the cross-field electron mobility,

based on experimental data. In other words, these neural networks make it possible

to model behaviors that are observed but not yet sufficiently understood to describe

mathematically

The following figures show the improvement in both total cost (including scaled

weight cost) and squared miss cost (defined as
∑

(expected− computed)2) as a func-

tion of the epoch during network training for each network. The 20-neuron model

shows minimal improvement, likely indicating the network was insufficiently com-

plex to reasonably capture the function. The 40-neuron model shows much greater

improvement, but the total and miss cost functions have nearly identical shapes, il-

lustrating that the miss cost dominates the total cost, and again that the network

probably does not have sufficient complexity to capture the overall function. The 80-

neuron network, however, shows almost an order of magnitude improvement in the

squared miss cost and two orders of magnitude in the total cost, both of which are

substantially better than the 160, 320, and 640-neuron models by the end of training.

The 1280-neuron model had a higher total cost than the 80-neuron model, but with

43

approximately half the miss cost. Moreover, while the miss cost continues to fall after

the 1200th epoch, the total cost (the cost that the network trained on) has converged

at that point.

Figure 6. 20-Neuron Results

44

Figure 7. 40-Neuron Results

Figure 8. 80-Neuron Results

45

Figure 9. 160-Neuron Results

Figure 10. 320-Neuron Results

46

Figure 11. 640-Neuron Results

Figure 12. 1280-Neuron Results

AFRL provided 280 datapoints, meaning that the 320, 640, and 1280-neuron net-

47

works all have more neurons than input data, putting them at significant risk for

eventual overfitting. It is also possible that having too many neurons may result in

conflicting behavior, reducing the accuracy, particularly since the network was trained

on the total cost rather than the miss cost. Using additional layers may mitigate this

behavior somewhat, but more investigation would be required to confirm this theory.

The AFRL-provided data is highly quantized along the electromagnet current dimen-

sion, a poor situation for training a neural network. The relative errors ([calculated

- expected]/expected) are dependent on the network topology, but both the 20 and

40-neuron networks show nearly linear behavior, again indicative of network topology

insufficient to capture the data’s underlying structure, as shown in Figures 13 and

14.

Figure 13. 20 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

48

Figure 14. 40 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

Other networks tested show variation based on the discharge current, suggesting

that sufficient neurons exist to capture at least some of the underlying complexity in

the data. The 80-neuron results seem to show less structure in the error measurement

than the other networks. Its maximum error spread (maximum error-minimum error

percentage) is approximately 40%, and error is notably higher towards the lower dis-

charge voltages. Lower voltages also show larger errors with greater electromagnet

currents, a structure that is shared with the 160-neuron network but vanishes with

the larger networks. The 320-neuron network in particular has a very large error mag-

nitude for the smallest electromagnet currents, with error shrinking with increasing

electromagnet current. The 640-neuron network in particular shows a spectacularly

large error spread (approximately 180%) in the lower voltages tested. Finally, the

1280 neuron network shows behavior consistent with polynomials across each electro-

magnet current, with an error spread never greater than 25%. Notably, the structures

vary across electromagnet currents, suggesting a good model– or perhaps an exces-

49

sive number of neurons to model – the underlying structure. Plots of the relative

errors are shown below. None of the models show structure in the error similar to

the structure present in the raw data, shown in Figure 20, suggesting that the error

is not driven by the value of discharge current in the AFRL-provided data. Instead,

the errors stem from errors in the neural network’s data modeling.

Figure 15. 80 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

50

Figure 16. 160 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

Figure 17. 320 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

51

Figure 18. 640 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

Figure 19. 1280 Neuron Error % vs. Normalized Discharge Voltage and Electromagnet

Current

52

Figure 20. Discharge Current vs. Discharge Voltage by Electromagnet Current

4.2.2 Data Quantity Effects.

The validation data was used to examine the impact the quantity of training

data had on the network’s performance. As stated above, all networks acting on

validation data used 80 neurons, removing network topology as a variable. Even

with completely noise-free training data, Figures 21 and 22 clearly demonstrate that

increasing the amount of data can have a highly nonlinear impact on the quality of the

final network. The network trained on 240 data points had a final squared miss cost

approximately three orders of magnitude greater than that of a network trained using

1200 datapoints. Further increasing to 2400 datapoints, however, made a difference

of only about half an order of magnitude, suggesting that the nonlinear impact of

adding data eventually transitions to merely linear improvements. This falloff could

eventually become asymptotic, although such behavior is not demonstrated by the

data present in this work. Importantly, the squared miss cost was lowest throughout

the entire training procedure, including during the very first training step, showing

that even with more datapoints and therefore chances to miss with a marginally-

53

trained network, increasing the number of datapoints improved network accuracy.

Finally, both the 1200 and 2400-point cases were both improving faster than the 240-

point case at the end of training. From this it seems logical to conclude that increasing

data quantities cause improved network performance entirely independently of the

time used to train the network; that is, two topologically-identical networks trained

for the same number of epochs but with different quantities of data will always see

the network trained on more data have more accurate results. This conclusion should

be tested before acceptance as fact, preferably by testing with more than just three

different levels of datapoints.

Figure 21. Effects of increasing training data quantity on total cost of the network

54

Figure 22. Effects of increasing training data quantity on miss cost of the network

The improvements in total network cost, though less dramatic than the squared

miss cost, show similar results: using either 1200 or 2400 datapoints improved the

total cost by approximately a factor of two, though the 240 point case was still

improving when the training ended. Both the 1200 and 2400 point cases reached

an asymptote of approximately 0.1 for the total loss just after the 2000th epoch,

while the 240-point had yet to arrive at its asymptote. The asymptotic behavior for

total cost is expected since there are a nonzero number of neurons, each of which has

some weight that is included in the total cost. As expected given the regularization

used, the continued improvement in miss cost coupled with the asymptotic total cost

means that the weights must be the driving factor in the total cost in the 1200 and

2400-point cases. Continuing to increase network size may increase the total cost of

the network due to the greater number of neurons used and the penalty included in

the total cost (that is very useful for training purposes and regularizing), so selection

of the best network should be based on the miss cost as it more directly reflects the

55

network’s performance.

4.2.3 Noise Effects.

Noisy validation data was generated to examine the impact of noise in the training

data on eventual network performance. The zero-noise dataset was used as a baseline

for comparison, and noise levels up to 100% that of the generated polynomial data

(i.e. a signal-to-noise ratio of 1) were examined in increments of 20%, and networks

were trained using each of the three data quantities (240, 1200, and 2400 datapoints).

Lower noise levels did not necessarily improve accuracy as shown by Figure 26, which

shows that the network modeled data at 40% and 60% relative noise levels better

than 20%. This difference is not reflected in plots of total cost, where lower noise

invariably resulted in lower network cost. As such it is reasonable to conclude that

the apparently-strange lower miss cost behavior is an artifact of training the network

on the total cost for regularization rather than anomalous data or network behavior.

56

Figure 23. Effects of increasing noise on total cost of a network trained on 240 data-

points.

Figure 24. Effects of increasing noise on miss cost of a network trained on 240 data-

points.

57

Figure 25. Effects of increasing noise on total cost of a network trained on 1200 data-

points

Figure 26. Effects of increasing noise on miss cost of a network trained on 1200 data-

points

58

Figure 27. Effects of increasing noise on total cost of a network trained on 2400 data-

points

Figure 28. Effects of increasing noise on miss cost of a network trained on 2400 data-

points

59

Nonzero noise resulted in asymptotic or apparently-asymptotic accuracy regard-

less of the number of datapoints provided to the network. The 240-datapoint network

was still slowly falling when training ended, but its fall rate was clearly slowing; given

more training epochs, it would likely become fully asymptotic. Both the 1200 and

2400 datapoint noisy trials became asymptotic at a squared miss cost of 0.01, while

the noisy trials with 240 datapoints were between approximately 0.05 and 0.5 squared

miss cost when training ceased. The noiseless data was falling most rapidly in the

240-datapoint case and had not become asymptotic (although likely would eventu-

ally) in either the 1200 or the 2400-datapoint case, and in the latter two had several

orders of magnitude better accuracy than even the least noisy data. This behavior

is echoed in the plots of total cost vs. epoch, which show all noisy data becoming

asymptotic before the 2000-epoch mark, while the noiseless trial was still rapidly im-

proving. As expected, increasing the noise levels slowed the convergence of the total

cost, reflecting the greater difficulty in modeling the underlying behavior. The num-

ber of provided datapoints showed a correlation with the number of epochs required

to reach asymptotic error, again as expected.

60

5. Conclusion

This research developed and demonstrated the effectiveness of a spectral solver

that can be integrated into TURF in a future work to solve Poisson’s equation. Its

performance was characterized against Poisson’s equation and the results showed that

for a wide range of transformation lengths and waveform component modes there was

no error above machine-zero. At and above 20% relative noise, the solver also showed

linearly increasing error with noise showing that in this domain noise is the sole source

of error. Future work should examine the region between noiseless and 20% relative

noise to determine the shape of the nonlinearity that lies there. These results are

very encouraging, and suggest that the solver is ready for integration into TURF.

Additional avenues of investigation involving the spectral solver would include

integrating the solver into TURF and duplicating Tran’s simulation using the new

solver, then comparing the results. Using TURF and the spectral solver to simulate

Cunningham’s experiment and comparing with his observed results the spoke-mode

he mentions may give further insight into the cross-field mobility by better modeling

the azimuthal electron waves and instabilities. Replicating Lafleur, et al.s simula-

tions might have similar impact. From the mathematical and programming side, the

spectral solver could be expanded to operate on more than a single dimension at

once, although as a linear operator AFRL may find that unnecessary. The algorithm

invoked is the Radix-2 FFT originally conceived by Gauss and could be improved

with a more modern algorithm. Other future work could involve characterizing the

solver’s performance against still larger transformation lengths and number of com-

ponent waveform modes, although increasing the transformation length is expected

to improve performance insofar as it can be. The hardware-dependent nature of the

above results suggest that the test should be repeated prior to implementing this

algorithm on a new computing system or even following significant hardware changes

61

in a previously-tested system.

Additionally, a neural network was developed and demonstrated the effectiveness

of even exceptionally crude networks in performing function regressions. The net-

work created was a single-layer feedforward network using a leaky ReLU activation

function in the hidden layer and trained on data provided by AFRL. The network

preprocessing took advantage of significant a priori knowledge about the relationship

between electromagnet voltage, magnetic field strength, and beam current, particu-

larly the knowledge that the function is continuous and that the two input parameters

(voltage and magnetic field strength) are entirely independent of each other. A more

general approach cannot take advantage of such knowledge and should use more ro-

bust preprocessing methods. Despite this, even an 80-neuron network was trained

with mean errors of significantly less than 1% and an error standard deviation below

10%.

While the standard deviation found in the neural network results is higher than

may be desirable, it is reasonable for many industrial processes, particularly ones that

are still undergoing improvement (e.g. a new production line coming online). The

networks developed were exceptionally simple, and more complex networks would

likely show better performance. Future work could investigate the use of additional

hidden layers, different layer widths, and other activations to examine the effects

on network performance. AFRL provided 280 datapoints, a very small quantity for

machine-learning tasks. Additional data would serve to improve modeling the under-

lying phenomenology and combat overfitting, and with sufficient data regularization

may not be required so the network could be trained on the miss cost directly. Perfor-

mance would almost certainly improve if more training data were provided (as shown

in 4.2.2), and future work could take more data from experiments or even simula-

tions to use in training a network. While the results from this experiment showed

62

that a neural network can be used to model the output of a HET, it is important to

remember that an operational networks output can only be treated as valid within

the bounds of the training data.

The network presented here demonstrated its ability to model Hall thruster output

data, suggesting that it will be useful for more interesting applications than those

tested in this work. The limitations of the UAT imply that a neural network will

probably not be able to effectively model the behavior of a Hall thruster outside the

tested envelope, but the UAT simultaneously means that a network can be generated

to approximate the tested values– and, perhaps more importantly, interpolate between

the tested values– to an arbitrary accuracy, saving both computational time and

potentially a great deal of time in the testing process for any given Hall thruster. This

is especially true if the network is used to model underlying and poorly understood

physics rather than merely engineering parameters. The cross-field electron mobility

in particular may be a prime test case for this, particularly since there remain great

questions about the underlying dynamics. A neural network model provides the

advantage that the programmers need not know the underlying dynamics a priori,

only provide the system with sufficient data to model them.

63

Appendix A.

A.1 Solver Code

A.1.1 ValidationFFT Header.

/∗

∗ ValidationFFT . h

∗

∗ Created on : Jun 19 , 2018

∗ Author : Joseph Whitman

∗/

#ifndef VALIDATIONFFT H

#define VALIDATIONFFT H

#include <s t d i o . h>

#include <c s td io>

#include <s t d l i b . h>

#include <complex>

#include <c f l o a t>

#include <iostream>

#include <f stream> // because ios tream wouldn ’ t p lay n ice wi th

o f s t reams .

#include <va larray>

#include <vector>

#include <time . h>

#include <math . h>

64

#include <s t r i ng>

typedef std : : complex<double> Complex ;

typedef std : : va larray<Complex> CArray ;

const double PI = 3.141592653589793238460;

const Complex IMAG = std : : complex<double>(0 .0 , 1 . 0) ;

class Validation FFT {

public :

Validation FFT () ;

virtual ˜ Validation FFT () ;

void f f t (CArray&) ;

void i f f t (CArray&) ;

double computeMean (double∗ , double∗ , int) ;

double computeStdev (double∗ , double , int) ;

} ;

#endif /∗ VALIDATIONFFT H ∗/

A.1.2 ValidationFFT Code.

/∗

∗ ValidationFFT . cpp

∗

∗ Created on : Jun 19 , 2018

∗ Author : Joseph Whitman

65

∗/

#include ”ValidationFFT . h”

Validation FFT : : Validation FFT () {

// TODO Auto−genera ted cons t ruc t o r s tub

}

Validation FFT : : ˜ Validation FFT () {

// TODO Auto−genera ted d e s t r u c t o r s tub

}

double r ea lS tdev (CArray& exper imental , double mean , int

l ength){

// t h i s f unc t i on computes the standard d e v i a t i on

double stdev =0;

double junk =0;

for (int ct =0; ct<l ength ; c t++){

junk = (exper imenta l [c t] . r e a l () ∗ exper imenta l [

c t] . r e a l ()) ;

s tdev += (junk−mean) ∗(junk−mean) / l ength ;

}

/∗ f o r (i n t c t = 0 ; ct< l e n g t h ; c t++){

}∗/

66

stdev = s q r t (stdev) ;

return stdev ;

}

CArray getComplexMean (CArray& exper imental , CArray&

t h e o r e t i c a l , int l ength){

// t h i s f unc t i on computes the mean error

CArray Cmean(1) ;

for (int ct =0; ct < l ength ; c t++){

Cmean [0] . r e a l () = (exper imenta l [c t] . r e a l ()−

t h e o r e t i c a l [c t] . r e a l ()) ;

Cmean [1] . imag () = (exper imenta l [c t] . imag ()−

t h e o r e t i c a l [c t] . imag ()) ;

}

//mean /= l en g t h ;

return Cmean ;

}

double computeMean (CArray& exper imental , CArray& t h e o r e t i c a l ,

int l ength){

// t h i s f unc t i on computes the mean error

double mean = 0 ;

double junk1 = 0 ;

double junk2 = 0 ;

for (int ct =0; ct<l ength ; c t++){

//compute r e a l and imaginary , then take the

67

magnitude o f the error

junk1 = exper imenta l [c t] . r e a l ()−t h e o r e t i c a l [

c t] . r e a l () ;

junk2 = exper imenta l [c t] . imag ()−t h e o r e t i c a l [

c t] . imag () ;

mean += s q r t (junk1∗ junk1 + junk2∗ junk2) ;

}

mean /= length ;

return mean ;

}

void manualCalc (CArray& x n , CArray& X, int N){

// Hold t h i s so we only c a l c u l a t e i t once ra the r than

each loop

// Hmmm. . .CPP threw a f i t when I didn ’ t ca s t N and

wouldn ’ t b u i l d . Odd .

std : : complex<double> hold = −IMAG∗2.0∗PI/ (std : :

complex<double> (N)) ;

//Run the loop to manually c a l c u l a t e the va l u e s o f

the DFT

for (int k=0; k<N; k++){

for (int n = 0 ; n<N; n++){

X[k] += x n [n]∗ std : : exp (hold ∗(Complex

(n)) ∗(Complex (k))) ;

}

}

68

/∗ Debug l i n e s

f o r (i n t c t =0; ct<N; c t++){

p r i n t f (” c t :%.12d\ t %12.12 f \ t %12.12 f \n” , ct , X[

c t] . r e a l () , X[c t] . imag ()) ;

}∗/

}

// f f t in−p lace radix−2 transform

void f f t (CArray& x)

{

const s i z e t N = x . s i z e () ;

i f (N <= 1) return ;

// d i v i d e

CArray even = x [std : : s l i c e (0 , N/2 , 2)] ;

CArray odd = x [std : : s l i c e (1 , N/2 , 2)] ;

// conquer

f f t (even) ;

f f t (odd) ;

// combine

for (s i z e t k = 0 ; k < N/2 ; ++k)

{

69

Complex t = std : : po la r (1 . 0 , −2 ∗ PI ∗ k / N) ∗ odd [k

] ;

x [k] = even [k] + t ;

x [k+N/2] = even [k] − t ;

}

}

void i f f t (CArray& x)

{

// con juga te the complex numbers

x = x . apply (std : : conj) ;

// forward f f t

f f t (x) ;

// con juga te the complex numbers again

x = x . apply (std : : conj) ;

// s c a l e the numbers

x /= x . s i z e () ;

}

// Test case−− d e l t a f unc t i on

void TestDelta (int l ength){

/∗

∗ TestDel ta : This f unc t i on runs a un i t t e s t to make

70

sure t ha t the

∗ FFT re turns the co r r e c t r e s u l t s i f g i ven a d e l t a

func t ion−− a s i n g l e

∗ nonzero va lue in the data s t r u c t u r e . I t does so

by comparing the

∗ r e s u l t s o f the FFT func t i on e l s ewhere in t h i s f i l e

wi th the r e s u l t s

∗ o f a DFT computed us ing the c l a s s i c method .

∗

∗/

// Declare the t h r ee data s t r u c t u r e s and t h e i r l e n g t h

CArray data (l ength) , manual (l ength) , manual out (

l ength) ;

srand (time (NULL)) ; // i n i t i a l i z e the

random seed

/∗ Don ’ t bo ther s e t t i n g any va l u e s to more than 1

∗ s ince FFT i s a l i n e a r operat ion , you can always

normal ize down .

∗ That said , i n i t i a l i z e the d e l t a va lue to a nonzero

.

∗/

int ind = rand ()%length ;

data [ind] = 1 ; // t h i s s t r u c t u r e goes

71

through the FFT

manual [ind] = 1 ; // t h i s s t r u c t u r e goes

through the DFT

p r i n t f (” S ing le−c e l l t e s t : l oad ing c e l l : %d\n” , ind) ;

//Run the manual computation

manualCalc (manual , manual out , l ength) ;

//Run the FFT computation−− IFFT i s j u s t an

invoca t i on o f the FFT func t i on here .

f f t (data) ;

//Print the comparisons here .

for (int ct =0; ct<l ength ; c t++){

p r i n t f (” ct :%.12d\tFFT : %12.12 f +%12.12 f i \ t\

tDFT: %12.12 f +%12.12 f i \n” ,

ct , data [c t] , manual out [c t])

;

}

}

void TestRandFunc (int n samples , int n waves , FILE∗ e r ro r ou t

, double nz =0.0){

/∗

∗ This func t i on b u i l d s a random func t i on o f s i n e s

72

and cos ine s

∗ and at tempts to i n t e g r a t e i t tw i ce us ing the FFT

above , then

∗ compares i t a ga in s t the known i n t e g r a t i o n .

∗

∗ Note t ha t the f r e qu enc i e s are l im i t e d to i n t e g e r s

here due to

∗ the assumption o f a p e r i o d i c domain , though t ha t

need not be

∗ g en e r a l l y t rue .

∗

∗ Note t ha t the Nyquis t l im i t means t ha t the maximum

frequency

∗ a l l owa b l e i s h a l f the number o f samples .

∗

∗ This func t i on r e l i e s on a number o f f o r loops , and

they cou ld

∗ almost c e r t a i n l y be condensed to inc rea se

e f f i c i e n c y . They

∗ were l e f t t h i s way f o r c l a r i t y and ease o f read ing

.

∗/

// s e t up problem bounds and der i v ed q u a n t i t i e s

double xmin = 0 . 0 ;

double xmax = 1 . 0 ;

73

double L = xmax−xmin ;

double dx = L/ n samples ;

double dk = 2∗PI/L ;

// s e t the maximum frequency a l l owed

int max freq = std : : f l o o r (n samples /2 . 0) ;

// s e t up the output f i l e

/∗ char b u f f e r [4] ;

s t d : : s p r i n t f (bu f f e r , ”%4.3 f ” , nz) ;

s t d : : s t r i n g fname = ” random te s t f unc t i on ”+s td : :

s t r i n g (b u f f e r)+”. t x t ” ;

// s t d : : o fs tream o u t f i l e (” random te s t f unc t i on . t x t ”) ;

s t d : : o fs tream o u t f i l e (fname . c s t r ()) ; ∗/

// s e t up the data s t r u c tu r e s−− use CArrays to avoid

type−opera tor i s s u e s .

CArray x (n samples) ; // t h i s j u s t s t o r e s

the x−coord ina te o f each po in t

CArray kvec (n samples) ; // d i v i s o r f o r each

f requency

CArray data (n samples) ; // t h i s w i l l be the

s t r u c t u r e to i n t e g r a t e

CArray known(n samples) ; // t h i s w i l l be the

s t r u c t u r e wi th known output

CArray f r e q s (n waves) ; // s t o r e the

74

f r e q u en c i e s here

CArray amps(n waves) ; // s t o r e the

ampl i tudes here

/∗ i n i t i a l i z e the random seed−− not necessary when

∗ TestDel ta runs beforehand , but f o r p o r t a b i l i t y

∗/

srand (time (NULL)) ;

/∗ Get the f requency and ampl i tude va l u e s

∗ Use a l l c o s ine s because t ha t way I ’m guaranteed a

normal ized 1 va lue at

∗ the f i r s t point , and because s i n e s are j u s t a

phase s h i f t .

∗/

for (int w = 0 ; w < n waves ; w++){

// f requency between 0 and max freq−− add 1 to

make max freq p o s s i b l e

f r e q s [w] = rand () % max freq +1;

// ampl i tude by d i v i d i n g the r e s u l t by

whatever the machine a l l ow s as rand max

amps [w] = stat ic cast <f loat> (rand ()) /

stat ic cast <f loat> (RAND MAX) ;

// p r i n t f (” ampl : %12.12 f \ t f r e q : %12.12 f \n” ,

amps [w] . r e a l () , f r e q s [w] . r e a l ()) ;

}

75

// normal ize the ampl i tudes so they sum to one

amps /= amps . sum () ;

// Set up the va l u e s f o r the t e s t and known−answer

array

for (int p = 0 ; p < n samples ; p++){

x [p] = std : : complex<double>(dx∗p , 0 . 0) ; // s e t

up X

// s e t up the k−vec t o r

i f (p <= n samples /2){ double hold = dk∗p ;

kvec [p] = std : : complex<double>(dk∗p ,

0 . 0) ; }

else { kvec [p] = −kvec [n samples−p] ; }

/∗

p r i n t f (” d k l i s t \ t c t : %d\ tdx : %15.15 f \ t x :

%15.15 f \ tdk : %15.15 f \ t k v e c : %15.15 f \n” ,

p , dx , x [p] . r e a l () , dk , kvec [p

] . r e a l ()) ;

∗/

for (int w = 0 ; w < n waves ; w++){

// t e s t f unc t i on f i . r e a l () r s t

data [p] += amps [w]∗ cos (2∗PI/L∗ f r e q s [w

] . r e a l () ∗x [p] . r e a l ())

+nz∗(−1+

stat ic cast <f loat> (

76

rand ()) /(

stat ic cast <f loat

> (RAND MAX/(2))))

;

//known r e s u l t s : second i n t e g r a l o f

data

// not a typo−− squar ing i s s lower

than double−mu l t i p l y .

known [p] += amps [w] . r e a l () ∗ (1 . / (2∗PI/

L∗ f r e q s [w] . r e a l ())∗

1 ./ (2∗PI/L∗ f r e q s [w] .

r e a l ()))∗

cos (2∗PI/L∗ f r e q s [w] .

r e a l () ∗x [p] . r e a l ()

) ;

}

}

/∗ f o r (i n t p = 0; p < n samples ; p++){

p r i n t f (” Before FFT: c t : %d\ t %15.15 f +%15.15 f i \

n” , p , data [p]) ;

}

∗/

// execu te forward FFT

f f t (data) ;

77

/∗

f o r (i n t p = 0; p < n samples ; p++){

p r i n t f (” Af ter FFT: c t : %d\ t %15.15 f +%15.15 f i \n

” , p , data [p]) ;

}

∗/

// d i v i d e by k−vec t o r ; i n t e g r a t i o n cons tant (DC) known

zero in t h i s case

for (int p = 0 ; p < n samples ; p++){

i f (p==0) data [p] = std : : complex<double>(0 ,0) ;

else { data [p] /= (kvec [p]∗ kvec [p]) ; }

}

/∗

f o r (i n t p = 0; p < n samples ; p++){

p r i n t f (” Af ter Div i s i on : c t : %d\ t %15.15 f

+%15.15 f i \n” , p , data [p]) ;

}

∗/

// execu te r e v e r s e FFT

i f f t (data) ;

for (int p = 0 ; p < n samples ; p++){

78

p r i n t f (” ct : %d\ tCa l cu la ted : %15.15 f +%15.15 f i \

t\tKnown : %15.15 f +%15.15 f i \n” ,

p , data [p] , known [p]) ;

}

//compute error mean

double mean = computeMean (data , known , n samples) ;

//compute s tandard d e v i a t i on

//CArray Cmean(1) ;

//Cmean = getComplexMean (data , known , n samples) ;

double stdev = rea lS tdev (data , mean , n samples) ;

s td : : f p r i n t f (e r r o r ou t , ”%d\ t%d\ t %30.30 f \ t %30.30 f \ t

%30.30 f \n” ,

n samples , n waves , mean , stdev ,

DBL EPSILON) ;

}

std : : vector<double> c ros sprod (std : : vector<double> A, std : :

vector<double> B){

/∗

∗ This h e l p e r func t i on t ak e s two 3−v e c t o r s and

re turns t h e i r c ro s s product .

79

∗/

std : : vector<double> r e tv e c (3) ;

r e tv e c [0] = A[1] ∗B[2]−B[1] ∗A[2] ;

r e tv e c [1] = A[2] ∗B[0]−B[2] ∗A[0] ;

r e tv e c [2] = A[0] ∗B[1]−B[0] ∗A[1] ;

return r e tv e c ;

}

int main ()

{

// Set up arguments f o r each t e s t

int D e l t a t e s t l e n g t h = 16 ; // must be a

power o f two

int num rand func bins = 1024 ; // must be a power

o f two

int num waves = 8 ;

int m a x c h a r a c t e r i z a t i on b i n s = 1024 ;

int max characte r i za t ion waves = 64 ;

double RandTestNoise = 1 . 0 ;

double NzStep = 0 . 2 ;

//TestDe l ta

TestDelta (D e l t a t e s t l e n g t h) ;

80

//Test wi th the random waveform

FILE∗ c h a r e r r = fopen (” n o i s y c h a r a c t e r i z a t i o n e r r o r .

txt ” , ”w”) ;

for (int nbins =4; nbins<=num rand func bins ; nbins ∗=2){

for (int NzMult=0; NzMult∗NzStep <=

RandTestNoise ; NzMult++){

TestRandFunc (nbins , num waves ,

cha r e r r , NzMult∗NzStep) ;

}

}

f c l o s e (c h a r e r r) ;

/∗

∗ Charac te r i z e the s o l v e r by running i t a ga in s t up

to 1024 b ins

∗ (powers o f 2 on ly) and up to 64 waveforms

∗

∗ This i s the c h a r a c t e r i z a t i o n t e s t

∗/

FILE∗ c h a r e r r 2 = fopen (”

p o i s s o n c h a r a c t e r i z a t i o n e r r o r . txt ” , ”w”) ;

for (int ct =4; ct <= m a x c h a r a c t e r i z a t i on b i n s ; c t ∗=2)

{

for (int waves=1; waves<

max characte r i za t ion waves ; waves++){

i f (waves > ct) { break ; }

81

TestRandFunc (ct , waves , char e r r2 ,

0 . 0) ;

}

}

f c l o s e (c h a r e r r 2) ;

p r i n t f (”\nDone !\n”) ;

return 0 ;

}

A.2 Neural Network Code

A.2.1 FCNetwork.py.

1 # −∗− coding : u t f−8 −∗−

2 ”””

3 Author : Joseph Whitman

4 Last e d i t e d : 08 Ju ly 2018

5 F i l e : FCNetwork . py

6

7 This f i l e a l l ow s the c r ea t i on o f a f u l l y −connected network ob j e c t

, and

8 keeps a l l t h i s code out o f the a lready−l ong approximator code .

9 ”””

10

11 import t en s o r f l ow as t f

12

13

14 class FCNetwork :

82

15 ”””This c l a s s c r ea t e s a f u l l y −connected network

16

17 This l a y e r shou ld ease the use o f mu l t i l a y e r percep t rons in

o ther coding .

18 I t needs each o f the f o l l ow i n g inpu t s : a t u p l e o f l a y e r

widths , a t u p l e o f

19 l a y e r a c t i v a t i o n func t ions , and a t u p l e g i v i n g the shapes o f

the input and

20 output t en so r s . ”””

21

22 w b l i s t = None # Defined here to make i t an a t t r i b u t e

23

24 def addLayer (s e l f , l ayer , a c t i v) :

25 i f a c t i v == ’ r e l u ’ :

26 return t f . nn . r e l u (l a y e r)

27 e l i f a c t i v == ’ l e a k y r e l u ’ :

28 return t f . nn . l e a k y r e l u (l a y e r)

29 e l i f a c t i v == ’ r e l u6 ’ :

30 return t f . nn . r e l u6 (l a y e r)

31 e l i f a c t i v ==’ e lu ’ :

32 return t f . nn . e lu (l a y e r)

33 e l i f a c t i v == ’ s e l u ’ :

34 return t f . nn . s e l u (l a y e r)

35 e l i f a c t i v == ’ s o f t p l u s ’ :

36 return t f . nn . s o f t p l u s (l a y e r)

37 e l i f a c t i v == ’ s o f t s i g n ’ :

38 return t f . nn . s o f t s i g n (l a y e r)

39 e l i f a c t i v == ’ s igmoid ’ :

83

40 return t f . nn . s igmoid (l a y e r)

41 e l i f a c t i v == ’ tanh ’ :

42 return t f . nn . tanh (l a y e r)

43 else :

44 raise ValueError (’How are you even s e e i n g t h i s e r r o r ?

’+\

45 ’The program should have a l r eady thrown an except ion

on whatever ’+\

46 ’ you even did ! Beep boop does not compute . ’)

47

48 def i n i t (s e l f , l aye r w idths , l a y e r a c t i v s , in l en , X,) :

49 ””” E s t a b l i s h e s the f u l l y connected network .

50

51 Inputs :

52 l a y e r w i d t h s : a t u p l e con ta in ing the l a y e r wid ths

53 l a y e r a c t i v s : a t u p l e o f the l a y e r a c t i v a t i o n func t ions ,

per l a y e r

54 X: a p l a c eho l d e r f o r the input t ensor

55 i n l en : the s i z e o f the input v ec t o r ; needs to be a vec t o r

or problems w i l l a r i s e

56

57 This func t i on assumes t ha t X i s a vec t o r and t ha t i t ’ s

l o o k in g f o r a

58 s i n g l e output ; g i v i n g i t anyth ing e l s e , in e i t h e r regard ,

w i l l cause

59 some s i g n i f i c a n t problems .

60 ”””

61 # regre s s ion , so on ly one output .

84

62 out l en = 1

63

64 # bas i c error checking−− throw an excep t i on i f the user

t r i e s to g i v e a

65 # d i f f e r e n t number o f l a y e r wid ths and a c t i v a t i o n

f unc t i on s

66 i f len (l a y e r w i d t h s) != len (l a y e r a c t i v s) :

67 raise ValueError (” Error : l a y e r w i d t h s and

l a y e r a c t i v s must be the same length ”)

68 # throw a d i f f e r e n t error i f the user t r i e s to g i v e an

i n v a l i d a c t i v a t i o n fcn

69 o k a c t i v s = [’ r e l u ’ , ’ l e a k y r e l u ’ , ’ r e l u6 ’ , ’ e lu ’ , ’ s e l u ’

, ’ s o f t p l u s ’ ,

70 ’ s o f t s i g n ’ , ’ s igmoid ’ , ’ tanh ’]

71 i f (set (l a y e r a c t i v s)−set (o k a c t i v s)) != set () :

72 raise ValueError (” Error ! Unacceptable a c t i v a t i o n

func t i on given . ”+\

73 ”You gave : ” + str (l a y e r a c t i v s) + ”

\n”+\

74 ” Acceptable va lue s are : ”+str (

o k a c t i v s))

75

76 s e l f . l a y e r w i d t h s = la y e r w i d t h s

77 s e l f . l a y e r a c t i v s = l a y e r a c t i v s

78

79 # crea t e an empty l i s t

80 l a y e r w i d t h s . i n s e r t (0 , i n l e n)

81 l a y e r w i d t h s . append (out l en)

85

82 s e l f . w b l i s t = [[None] ∗ 2] ∗ (len (l a y e r w i d t h s)−1)

83

84 # se t we i gh t s and b i a s e s

85 for ct , va l in enumerate(l a y e r w i d t h s [: −1]) :

86 s e l f . w b l i s t [c t] = [t f . Var iab le (t f . random normal ([val

, l ay e r w i d t h s [c t +1]])) ,

87 t f . Var iab le (t f . random normal ([l a y e r w i d t h s [c t

+1]]))]

88

89 # pr in t (s t r (w b l i s t))

90 # make the l a y e r s

91 l a y e r s = []

92 # make the f i r s t one

93 l a y e r s . append (t f . add (t f . matmul (X, s e l f . w b l i s t [0] [0]) ,

s e l f . w b l i s t [0] [1]))

94 l a y e r s [0] = s e l f . addLayer (l a y e r s [0] , l a y e r a c t i v s [0])

95 # pr in t (’ l a y e r 1 : ’ +s t r (l a y e r s [0]))

96 # make the next n−1 l a y e r s . Enumerate w i l l p r o t e c t

a ga in s t having no

97 # lay e r s here l i k e someone w i l l e v e n t u a l l y t r y to do .

98 # note the use o f nega t i v e 2 ra the r than nega t i v e one−−

ending at −1

99 # causes the sequence to end at the l a s t element , us ing

−2 ends at the

100 # penu l t imate e lement .

101 for ct , va l in enumerate(l a y e r w i d t h s [1 : −2]) :

102 ct += 1 # because enumerate f o r c e s to s t a r t a t 0

103 l a y e r s . append (t f . add (t f . matmul (l a y e r s [ct −1] , s e l f .

86

w b l i s t [c t] [0]) , s e l f . w b l i s t [c t] [1]))

104 l a y e r s [c t] = s e l f . addLayer (l a y e r s [c t] , l a y e r a c t i v s [

c t])

105 # okay , now we make the l a s t e lement

106 l a y e r s . append (t f . matmul (l a y e r s [−1] , s e l f . w b l i s t [− 1] [0])

+ s e l f . w b l i s t [−1] [−1])

107 #lay e r s [−1] = s e l f . addLayer (l a y e r s [−1] , ’ tanh ’)

108 s e l f . Model = l a y e r s [−1]

109

110

111 def GetModel (s e l f) :

112 return s e l f . Model

113

114 def GetWeights (s e l f) :

115 ”””This f unc t i on i s a g e t t e r f o r the we i gh t s .

116 In r e t r o sp e c t , I r e a l l y shou ld have made those a numpy

array

117 i n s t ead o f a ba s i c l i s t .

118

119 Returns a numpy array o f the we i gh t s

120 ”””

121 weights = []

122 for x in range (0 , len (s e l f . w b l i s t)) :

123 weights . append (s e l f . w b l i s t [x] [0])

124 return weights # t f . c on v e r t t o t e n s o r (we i gh t s)

A.2.2 Master Approximator.py.

1 # −∗− coding : u t f−8 −∗−

87

2 ”””

3 Author : Joseph Whitman

4 Last e d i t e d : 08 Ju ly 2018

5 F i l e : Master Approximator . py

6

7 This f i l e runs a neura l network e i t h e r in v a l i d a t i o n (’ v a l ’) or

exper imenta l

8 (’ exp ’) mode ; i f run in v a l i d a t i o n mode , i t w i l l genera te a

non l inear 2D

9 polynomia l f unc t i on wi th randomly−chosen , a r b i t r a r y c o e f f i c i e n t s

between 0

10 and 50. Larger c o e f f i c i e n t s are p o s s i b l e but won ’ t make any

d i f f e r en c e , and

11 t h i s range was chosen only to demonstrate the e f f e c t o f p o s s i b l y−

l a r g e

12 c o e f f i c i e n t s t h a t b e t t e r r e f l e c t rea l , g enera l data than the 0−1

c o e f f i c i e n t s

13 t h a t the numpy . random . rand () func t i on would o therw i s e re turn . I f

run in

14 exper imenta l mode , the program w i l l l oad the AFRL−prov ided data

f i l e and use

15 t h a t as the inpu t s and t a r g e t parameters . A l l v a l u e s w i l l be

s ca l e d to the

16 range 0−1 in order to prevent any one f e a t u r e o f the data from

a r t i f i c i a l l y

17 dominating the o the r s when t r a i n i n g the network .

18

19 The network i t s e l f i s a network o b j e c t in FCNetwork . py . Much o f

88

the network

20 se tup in t h i s f i l e cou ld be o f f l o a d e d to o ther f i l e s , but was

kep t here f o r

21 c l a r i t y and to l e t t h i s more e a s i l y demonstrate how to s e t up and

t r a i n a

22 network .

23

24 ”””

25 import t en s o r f l ow as t f

26 import numpy as np

27 import FCNetwork

28 from copy import copy

29 from numpy import genfromtxt , z e r o s

30 from numpy . random import randn

31

32

33 def getData (mode , numel=None , nz =0.0) :

34 ”””

35 This func t i on re turns a tensor o f the inpu t s (X) and ou tpu t s

(Y) t ha t the

36 network i s us ing . I f s e t to v a l i d a t i o n mode , i t w i l l

g enera te the data ,

37 o the rw i s e i t w i l l e x t r a c t the data from the AFRL−prov ided

f i l e .

38

39 Inputs :

40 −mode −−−−> ’ v a l ’ f o r v a l i d a t i o n mode , ’ exp ’ to run on AFRL

data

89

41 −numel −−−> number o f e lements to genera te f o r v a l i d a t i o n

mode .

42 Note : t h i s i s ignored in ’ exp ’ mode !

43 ”””

44 i f mode == ’ va l ’ :

45 i f numel i s None :

46 raise ValueError (” Error ! Number o f e lements must be

s p e c i f i e d ” +

47 ” in the s e l e c t e d mode ! ”)

48 # Generate the data accord ing to how many e lements are

de s i r ed

49 # only genera t ing 2−d data because AFRL data i s 2d

50 print (” Generating s y n t h e t i c data ! ”)

51 i n v a l s = np . array ([np . l i n s p a c e (0 , 1 , numel) ,

52 np . l i n s p a c e (0 , 1 , numel)]) . t ranspose

()

53 # pr in t (i n v a l s)

54 # The mu l t i p l i e r s on t h i s f unc t i on were chosen

a r b i t r a r i l y

55 c o e f f s = 50∗np . random . rand (4 ,)

56 # co e f f s = [2 , 3 , 1 , 4] # debug l i n e

57 outva l s = c o e f f s [0] ∗ i n v a l s [: , 0]∗∗2+ c o e f f s [1] ∗ i n v a l s [: ,

0]∗ i n v a l s [: , 1] +\

58 c o e f f s [2] ∗ i n v a l s [: , 1] + c o e f f s [3] ∗ i n v a l s [: , 1]

+ nz∗np .sum(c o e f f s) ∗ randn (numel) ∗∗2

59 # Create a f i l e con ta in ing the s y n t h e t i c data f o r

comparison l a t e r

60 with open(mode + ” ” + str (numel) + ” ” + str (nz) + ” . txt

90

” , ’w ’) as f :

61 for x in range (i n v a l s . shape [0]) :

62 f . wr i t e (

63 str (i n v a l s [x]) . s t r i p (’ [] ’) . r e p l a c e (’ ’ , ’ , ’)

+ ’ , ’ +

64 str (outva l s [x]) + ’ \n ’

65)

66

67 e l i f mode == ’ exp ’ :

68 # Read in the data f i l e as prov ided by AFRL

69 # In t h i s case , I have only a s i n g l e , f a i r l y sma l l f i l e

o f input data , so

70 # I can ge t away wi thout enqueueing the data . Doing so

i s c lunky and

71 # unnecessary f o r t h i s , so I ’m not going to do so here .

72 path = ’ smal l Processed IVB data . csv ’

73 inputs = genfromtxt (path , d e l i m i t e r=’ , ’)

74 print (”Loading from f i l e ! ”)

75 outva l s = inputs [: , 2]

76 i n v a l s = inputs [: , 0 : 2]

77 # pr in t (i n v a l s) # Debug l i n e

78 # pr in t (ou t v a l s) # Debug l i n e

79 else :

80 raise ValueError (” Error ! Mode provided was ” + str (mode)

+ ” , but ” +

81 ” only ’ va l ’ and ’ exp ’ are v a l i d modes ,

and must be s t r i n g s ! ”)

82

91

83 return i nva l s , ou tva l s

84

85

86 def s ca l eVa lue s (data) :

87 ”””

88 This func t i on s c a l e s each column of the data by i t s maximum

va lue . I t ’ s

89 only in tended f o r use on columns o f p o s i t i v e va lues , so be

c a r e f u l .

90

91 param : data : an array− l i k e s t r u c t u r e o f numbers wi th at l e a s t

one co l

92 re turn : s c a l e d data and the max/min in each dimension

93 ”””

94

95 # check f o r e r ro r s

96 i f len (data . shape) > 2 :

97 raise ValueError (” Error : t h i s f unc t i on can only operate

on ” +

98 ” t e n s o r s o f rank 2 at a maximum to avoid

confus ion , e t c . ”)

99 # se t up the data we ’ l l need

100 try :

101 nco l s = data . shape [1]

102 except IndexError :

103 # This can occur i f t h e r e i s on ly one column .

104 nco l s = 1

105

92

106 bounds = ze ro s ((2 , n co l s))

107 # execu te the loop

108 for x in range (0 , n co l s) :

109 i f nco l s == 1 :

110 # t h i s i s somewhat k ludgy but w i l l work and i s c l e a r

111 bounds [0 , x] = min(data [:])

112 bounds [1 , x] = max(data [:])

113 i f bounds [0] [x] < 0 :

114 raise ValueError (”Warning ! Input data has

negat ive va lue s ! ” +

115 ” This func t i on can only handle

p o s i t i v e−valued input . ”)

116 data [:] /= bounds [1 , x]

117 # This avo ids a p o t e n t i a l shape problem l a t e r by

f o r c i n g

118 # one column in the numpy array ’ s metadata d e s p i t e i t

be ing

119 # de f a c t o t rue anyway .

120 data = data . reshape ((data . shape [0] , 1))

121 else :

122 # Set the bounds−− t h e s e w i l l g e t re turned

123 bounds [0 , x] = min(data [: , x])

124 bounds [1 , x] = max(data [: , x])

125 i f bounds [0 , x] < 0 :

126 raise ValueError (”Warning ! Input data has

negat ive va lue s ! ”+

127 ” This func t i on can only handle

p o s i t i v e−valued input . ”)

93

128 data [: , x] /= bounds [1 , x]

129 return data , bounds

130

131

132 # Create the network

133

134 i f name == ” main ” :

135 # dec ide on inpu t s

136 l a y e r w i d t h s = [8 0]

137 l a y e r a c t i v s = [’ l e a k y r e l u ’]

138 num synth pts = 1200

139 synth func nz = 0 .0

140 mode = ’ va l ’

141

142 fname = mode+” ”+str (l a y e r a c t i v s [0])+” ”+str (l a y e r w i d t h s)

143 i f mode == ’ va l ’ :

144 fname += ” ”+str (num synth pts) + ” ” + str (synth func nz

)

145 fname += ’ . txt ’

146

147 f2name = mode + str (l a y e r w i d t h s)+” net−eva l . txt ”

148 i f mode == ’ va l ’ :

149 f2name = ’ nz ’+str (synth func nz) + ” ”+str (num synth pts)

+ f2name

150

151 f2 = open(f2name , ’w ’)

152

153 # Get the data

94

154 iv , ov = getData (mode , num synth pts , synth func nz)

155 # pr in t (” inpu t s : ” , i v) #debug l i n e

156 # pr in t (” Outputs : ” , ov) #debug l i n e

157

158 # Sca le the data

159 s iv , input bounds = sca l eVa lue s (i v)

160 sov , output bounds = sca l eVa lue s (ov)

161 # pr in t (” inpu t s : ” , s i v) #debug l i n e

162 # pr in t (” Outputs : ” , sov) #debug l i n e

163 n f e a t u r e s = s i v . shape [1] # Use t h i s a bunch , j u s t make i t

a v a r i a b l e

164

165 # Open the output f i l e in wr i t e mode

166 # I f t h i s f a i l s , I don ’ t want the r e s t o f t h i s running

167 f = open(fname , ’w ’)

168

169 # Create v a r i a b l e s f o r the NN

170 X = t f . p l a c eho ld e r (t f . f l o a t32 , [None , n f e a t u r e s])

171 Y = t f . p l a c eho ld e r (t f . f l o a t 3 2)

172

173 # Create the neura l network

174 net = FCNetwork . FCNetwork (laye r w idths , l a y e r a c t i v s ,

n f ea ture s , X)

175 l o g i t s = net . GetModel ()

176

177 # genera te the l o s s f unc t i on d e s c r i p t i o n

178 Beta = .0001 # This i s a mu l t i p l i e r f o r the we igh t c o s t s

179 m i s s c o s t = t f . l o s s e s . mean squared error (Y, l o g i t s)

95

180 netwe ights = net . GetWeights ()

181 we ightcos t = 0

182 for x in netwe ights :

183 we ightcos t += Beta∗ t f . nn . l 2 l o s s (

184 t f . c o n v e r t t o t e n s o r (x)

185)

186 t o t a l c o s t = t f . s q r t (we ightcos t+m i s s c o s t)

187

188 # Choose the t r a i n i n g opera tor

189 t r a i n o p = t f . t r a i n . AdadeltaOptimizer (0 . 0 0 1 , rho =0.95) .

minimize (t o t a l c o s t)

190

191 # i n i t i a l i z e the vars

192 i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ()

193

194 # Determine how many samples in t r a i n i n g vs . t e s t

195 num tra in ing po in t s = int (. 8∗ len (s i v))

196 num tes t po int s = len (s i v)−num tra in ing po in t s

197

198 # Use the con t ex t manager to run each sess ion , i t ’ l l make

l i f e e a s i e r

199 with t f . S e s s i on () as s e s s :

200 t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run () # i n i t i a l i z e s

a l l vars

201

202 b e s t m i s s c o s t = 0 # s to r e the l owe s t /miss/ (not

t o t a l) co s t seen

203 l o w e s t m i s s n e t = 0 # s to r e the network wi th the

96

above miss co s t

204

205 # Execute the t ra in−t e s t loop as many t imes as i s

necessary . While

206 # the approach shown here i s one v a l i d method−− j u s t run

f o r a very

207 # la r g e number o f i t e r a t i o n s−− i t i s a l s o naive in t ha t

i t w i l l

208 # cont inue t r a i n i n g the network whether or not i t has a

good s o l u t i o n .

209 # Networks op t imized f o r a product ion environment shou ld

i t e r a t e

210 # un t i l some good s o l u t i o n i s reached , wi th t ha t good

s o l u t i o n be ing

211 # something to d i s cu s s wi th the customer .

212 for loop in range (1 , 5000) :

213

214 # Shu f f l e the input v a r i a b l e s

215 # Techn i ca l l y t h i s i s not s t r i c t l y necessary : i f I ’ d

recombined

216 # s i v and sov above , I cou ld j u s t s h u f f l e the

r e s u l t i n g array .

217 # I ’ ve done t h i s f o r c l a r i t y ’ s sake .

218 c o n c a t n e t i n s o u t s = np . concatenate ((s iv , sov) , a x i s

=1)

219 np . random . s h u f f l e (c o n c a t n e t i n s o u t s)

220

221 # execu te t r a i n i n g

97

222 # The reshape commands in t h i s s e c t i on are because o f

a s u b t l e t y w i th in numpy−− I was g e t t i n g shapes o f

(2 ,)

223 # ind i c a t i n g a vec tor−− but a t t empt ing to t ranspose

i t d id me no good . I t ’ s something to keep in mind

and

224 # to f i x in f u t u r e v e r s i on s o f t h i s code .

225 for ct in range (0 , num tra in ing po in t s) :

226 s e s s . run (t ra in op , f e e d d i c t={X:

c o n c a t n e t i n s o u t s [ct , 0 : s i v . shape [1]] .

reshape ((1 , s i v . shape [1])) ,

227 Y:

c o n c a t n e t i n s o u t s

[ct , s i v . shape

[1] : :] . reshape

((1 , 1)) })

228

229 # execu te t e s t

230 a v e t e s t c o s t = 0 .

231 a v e m i s s c o s t = 0 .

232 for ct2 in range (num tra in ing po int s , len (s i v)) :

233 a v e t e s t c o s t += s e s s . run (t o t a l c o s t ,

234 f e e d d i c t={X:

c o n c a t n e t i n s o u t s [ct2 ,

0 : s i v . shape [1]] . reshape

((1 , s i v . shape [1])) ,

235 Y:

c o n c a t n e t i n s o u t s

98

[ct2 , s i v .

shape [1] : :] .

reshape ((1 ,

1)) }) \

236 /

num tes t po int s

237 a v e m i s s c o s t += s e s s . run (mis s co s t ,

238 f e e d d i c t={X:

c o n c a t n e t i n s o u t s [ct2 ,

0 : s i v . shape [1]] . reshape

((1 , s i v . shape [1])) ,

239 Y:

c o n c a t n e t i n s o u t s

[ct2 , s i v .

shape [1] : :] .

reshape ((1 ,

1)) }) \

240 /

num tes t po int s

241

242 # Rather than choose an a r b i t r a r y l a r g e va lue to

i n i t i a l i z e the

243 # be s t m i s s c o s t to , do i t t h i s way . I t avo ids the

i s s u e o f a

244 # c o l o s s a l l y bad network never having a worse miss

co s t than

99

245 # whatever va lue i t was i n i t i a l i z e d to .

246 i f loop == 1 :

247 b e s t m i s s c o s t = a v e m i s s c o s t

248 # Create a f u l l copy ra the r than j u s t po in t i n g to

the e x i s t i n g

249 # network wi th a po in t e r .

250 l o w e s t m i s s n e t = copy (l o g i t s)

251 e l i f a v e m i s s c o s t < b e s t m i s s c o s t :

252 b e s t m i s s c o s t = a v e m i s s c o s t

253 l o w e s t m i s s n e t = copy (l o g i t s)

254

255 i f loop % 10 == 0 :

256 print (”Average t o t a l co s t f o r epoch ” + str (loop)

+ ” :\ t ” + str (a v e t e s t c o s t) \

257 + ”\ t Average miss co s t :\ t ” + str ((

a v e m i s s c o s t)))

258 f . wr i t e (”Average t o t a l co s t f o r epoch ” + str (

loop) + ” :\ t ” + str (a v e t e s t c o s t) \

259 + ”\ t Average miss co s t :\ t ” + str (

a v e m i s s c o s t) + ”\n”)

260

261 # i f mode == ’ exp ’ :

262 for inp in range (0 , len (s i v)) :

263 # Compute the network es t imate at each po in t

264 o = s e s s . run (l o g i t s , f e e d d i c t={X: s i v [inp , 0 : s i v .

shape [1]] . reshape ((1 , s i v . shape [1])) })

265 j u n k s t r i n g = ” ” . j o i n (str (s i v [inp]) . s t r i p (’ [] ’) .

s p l i t ())

100

266 o u t s t r i n g = j u n k s t r i n g + ” ” + str (o∗output bounds [1 ,

:]) . s t r i p (’ [] ’) + \

267 ” ” + str (o) . s t r i p (’ [] ’)+” ”+str (

output bounds [1 , :]) . s t r i p (’ [] ’) + \

268 ” ” + str (ov [inp]) + ”\n”

269 f2 . wr i t e (o u t s t r i n g)

101

Bibliography

1. D. M. Goebel and I. Katz, Fundamentals of electric propulsion: ion and Hall
thrusters. John Wiley & Sons, 2008, vol. 1.

2. J. Tran, “Numerical Study of Current Driven Instabilities and Anomalous Elec-
tron Transport in Hall-effect Thrusters,” Master’s thesis, University of California,
Los Angeles, 2017.

3. P. M. Bellan, Fundamentals of plasma physics. Cambridge University Press,
2008.

4. D. A. Cunningham, “Localized Plasma Measurement During Instability Modes
In a Hall Thruster,” Master’s thesis, Air Force Institute of Technology, 2016.

5. N. A. Krall and A. W. Trivelpiece, Principles of plasma physics. McGraw-Hill,
Inc, 1973.

6. E. Fossum and L. King, “Design and Construction of an Electron Trap for Study-
ing Cross-Field Mobility in Hall Thrusters,” in 43rd AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, 2007, p. 5207.

7. T. Lafleur, S. Baalrud, and P. Chabert, “Theory for the anomalous electron
transport in Hall effect thrusters. I. Insights from particle-in-cell simulations,”
Physics of Plasmas, vol. 23, no. 5, p. 053502, 2016.

8. J. Koo, D. Bilyeu, and R. Martin, “Pseudospectral Model for Hybrid PIC Hall-
effect Thruster Simulation,” AIR FORCE RESEARCH LAB EDWARDS AFB
CA ROCKET PROPULSION DIV, Tech. Rep., 2015.

9. K. Kwon, M. L. Walker, and D. N. Mavris, “Study on Anomalous Electron Dif-
fusion in the Hall Effect Thruster,” International Journal of Aeronautical and
Space Sciences, vol. 15, no. 3, pp. 320–334, 2014.

10. M. Lampe, W. Manheimer, J. McBride, J. Orens, K. Papadopoulos, R. Shanny,
and R. Sudan, “Theory and simulation of the beam cyclotron instability,” The
Physics of Fluids, vol. 15, no. 4, pp. 662–675, 1972.

11. C. Pozrikidis, Numerical computation in science and engineering. Oxford Uni-
versity Press, 1998.

12. K. Novak, NUMERICAL METHODS FOR SCIENTIFIC COMPUTING. LULU
COM, 2017.

13. G. Cybenko, “Approximation by superposition of sigmoidal functions,” Mathe-
matics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.

102

14. K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, no. 2, p. 251257, 1991.

15. S. Samarasinghe, Neural networks for applied sciences and engineering: from
fundamentals to complex pattern recognition. Auerbach, 2007.

16. F. v. Veen, “The Neural Network Zoo,” Nov 2017. [Online]. Available:
http://www.asimovinstitute.org/neural-network-zoo/

17. A. Tchircoff, “The mostly complete chart of Neural Networks, ex-
plained,” Aug 2017. [Online]. Available: https://towardsdatascience.com/
the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

18. A. S. Walia, “Activation functions and it’s types-Which is bet-
ter?” May 2017. [Online]. Available: https://towardsdatascience.com/
activation-functions-and-its-types-which-is-better-a9a5310cc8f

19. A. Karpathy and J. Johnson, “CS231n Convolutional Neural Networks for Visual
Recognition Course Materials,” 2017.

20. A. Wasilewska, “CSE634 Lecture Notes, Chapter 6,” Jan 2018.

21. Z. Hao, “Weight Initialization Methods in Neural Networks,” May 2017. [Online].
Available: https://isaacchanghau.github.io/post/weight initialization/

22. M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

23. J. Duchi and Y. Singer, “Efficient online and batch learning using forward back-
ward splitting,” Journal of Machine Learning Research, vol. 10, no. Dec, pp.
2899–2934, 2009.

24. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

25. G. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Machine
Learning-Lecture 6a-Overview of mini-batch gradient descent,” 2012.

26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

27. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

28. M. Frigo and S. G. Johnson, “FFTW Home Page.” [Online]. Available:
http://www.fftw.org/

103

29. “Does the FFT function in MATLAB 6.5 (R13) use
the FFTW library routines?” Jun 2009. [On-
line]. Available: https://www.mathworks.com/matlabcentral/answers/
100596-does-the-fft-function-in-matlab-6-5-r13-use-the-fftw-library-routines

30. “cuFFT Documentation,” Mar 2018. [Online]. Available: https://docs.nvidia.
com/cuda/cufft/index.html

31. “Fast Fourier transform.” [Online]. Available: https://rosettacode.org/wiki/
Fast Fourier transform

32. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–
301, 1965.

33. “Installing TensorFlow — TensorFlow.” [Online]. Available: https://www.
tensorflow.org/install/

34. “TensorFlow Version Compatibility — TensorFlow.” [Online]. Available:
https://www.tensorflow.org/programmers guide/version compat

104

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

12–09–2018 Masters Thesis Jan 2017 - Aug 2018

Application of Spectral Solution and Neural Network Techniques in
Plasma Modeling for Electric Propulsion

Whitman, Joseph R

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENY-MS-18-S-076

Air Force Resarch Laboratory (AFMC)
Dr. Justin Koo
AFRL/RQR
5 Pollux Drive
Edwards AFB, CA 93524-7048

Distribution Statement A. Approved for public release; Distribution Unlimited.

This material is declared work of the U.S. Government and is not subject to copyright protection in the United States.

A solver for Poisson’s equation was developed using the Radix-2 FFT method first invented by Carl Friedrich Gauss. Its performance was
characterized using simulated data and identical boundary conditions to those found in a Hall Effect Thruster. The characterization showed
errors below machine-zero with noise-free data, and above 20% noise-to-signal strength, the error increased linearly with the noise. This
solver can be implemented into AFRL’s plasma simulator, the Thermophysics Universal Research Framework (TURF) and used to quickly
and accurately compute the electric field based on charge distributions. The validity of a machine learning approach and data-based
complex system modeling approach was demonstrated. To this end, several multilayer perceptrons were created and validated against
AFRL-provided Hall Thruster test data, with two networks showing mean error below 1% and standard deviations below 10%. These
results, while not ready for implementation as a replacement for lookup tables, strongly suggest paths for future work and the development
of networks that would be acceptable in such a role, saving both RAM space and time in plasma simulations.

Hall Thruster, Electric Propulsion, Plasma Physics, Spectral Solver, Neural Networks

U U U UU 116

Hartsfield, Carl R., AFIT/ENY

(937) 255-3636 x4667; carl.hartsfield@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	9-1-2018

	Application of Spectral Solution and Neural Network Techniques in Plasma Modeling for Electric Propulsion
	Joseph R. Whitman
	Recommended Citation

	tmp.1542233844.pdf.jOKdS

