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Abstract

Space object detection is of great importance in the highly dependent yet competi-

tive and congested space domain. Detection algorithms employed play a crucial role

in fulfilling the detection component in the space situational awareness mission to

detect, track, characterize and catalog unknown space objects. Many current space

detection algorithms use a matched filter or a spatial correlator on long exposure data

to make a detection decision at a single pixel point of a spatial image based on the

assumption that the data follows a Gaussian distribution. This research focuses on

improving current space object detection algorithms and developing new algorithms

that provide a greater detection performance, specifically with dim and small objects

which are inherently difficult to detect. With a greater detection rate, a great num-

ber of unknown objects will be detected, tracked and cataloged to deliver safer space

operations. Three novel approaches to object detection using long and short exposure

images obtained from ground-based telescopes are examined in this dissertation.

Two of the approaches examined in this dissertation involved detection algorithms

designed from the probability distribution of the real component of the Fourier trans-

form of the intensity of the object. Models for the object and its statistics were

calculated to build a likelihood ratio test. Additionally, spatial frequency correlation

was examined to build a joint probability distribution function likelihood ratio test.

Both the Fourier point detector and Fourier correlation algorithm demonstrated a

significant increase in the probability of detection over their commonly used spatial

counterpart algorithms.

Long exposure imaging is critical to detection performance in these algorithms,

however if imaging under daylight conditions it becomes necessary to create a long
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exposure image as the sum of many short exposure images. The third approach in

this research explores the potential to increase detection capabilities of small and dim

space objects in a stack of short exposure images dominated with a bright background.

The algorithm proposed in this paper improves the traditional stack and average

method of forming a long exposure image by selectively removing short exposure

frames of data that do not positively contribute to the overall signal to noise ratio of

the averaged image. The performance of the algorithm is compared to a traditional

matched filter and lucky imaging algorithm using data generated in MATLAB as well

as experimentally collected data. The results are illustrated on a receiver operating

characteristic curve to highlight the significant increase in probability of detection

associated with the frame selection algorithm.

The long exposure algorithms developed in this research obtained a 40% increase

in detection probability over a point detector and a 11-23% increase over spatial

correlator at a false alarm rate of 10−9. Using frame selection on short exposure

daylight images, the developed algorithm achieved a 10-25% increase in detection

probability over a traditional average and correlate method.

v
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TECHNIQUES FOR IMPROVED SPACE OBJECT DETECTION

PERFORMANCE FROM GROUND-BASED

TELESCOPE SYSTEMS USING LONG AND SHORT EXPOSURE IMAGES

I. Introduction

1.1 Motivation

Safe and dependable operations in the space domain are vital to the national

security interests of the United States (U.S.). According to the 2011 U.S. National

Security Space Strategy, “space is vital to U.S. national security and our ability to

understand emerging threats, project power globally, conduct operations, support

diplomatic efforts, and enable global economic viability” [1]. In order to preserve

continued space operations, the 2010 U.S. National Space Policy called out the need

to fund and develop technologies to “detect, identify, and attribute actions in space

that are contrary to responsible use and the long-term sustainability of the space

environment” [2]. Additionally, the National Space Policy stated the need to “pursue

capabilities to detect, track, catalog, and characterize near-Earth objects to reduce

the risk of harm to humans from an unexpected impact on our planet and to identify

potentially resource-rich planetary objects”.

To continue safe and reliable space operations, the ability to detect and track space

objects is of great importance to the Department of Defense (DoD), United States Air

Force (USAF), National Aeronautics and Space Administration (NASA) as well as

other space organizations around the world. Through the NASA Authorization Act

of 2005, the U.S. Congress mandated NASA to coordinate with the DoD and other
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organizations to catalog by the year 2020, 90 percent of all asteroids and comets larger

than 140 m that are within close trajectory of Earth [3]. NASA predicts that there

are nearly 1,000 near earth asteroids (NEA) larger than 1 km and approximately

15,000 larger than 140 m. Additionally, there are approximately 500,000 pieces of

debris that are larger than 1 cm and that the number of objects smaller than 1 cm

exceeds 100 million [4, 5]. The latest data on the number of NEA cataloged from the

NASA Near Earth Object (NEO) program office is shown in Figure 1.

Figure 1. Number of near Earth asteroids detected and cataloged each year by NASA
[4].

Within the DoD, the ability to detect and track space objects such as nanosatellites

and space debris is of particular importance due to the great risk they pose to critical

space assets, especially in the geostationary Earth orbit (GEO) [6]. The Joint Space

Operations Center (JSpOC) currently manages the process of tracking nearly 20,000

known man-made objects in space. Many of these objects were detected by assets
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within the Space Surveillance Network (SSN) and a track was developed using follow-

up taskings [7]. The composition of these objects and the increase in their prevalence

is shown in Figure 2. At the end of 2017, there were 1,459 operational satellites being

tracked by JSpOC [8]. This represented a 47% increase over the last 5 years. Many

commercial companies are proposing to greatly increase their number of operating

satellites. Making headlines recently include Boeing with a proposed 1,400-3,000

satellites, SpaceX with up to 7,500 satellites and OneWeb with 2,000 satellites [9].

There is a clear trend towards greater commercial use of satellites in the future. As the

space domain becomes more populated, there will likely be malfunctions, collisions

and breakup that result in man-made debris that will further populate the region and

raise the risk for critical damage to the operations of space assets.

The SSN is composed of a worldwide network of 30 civilian and military sensors

dedicated to detect and provide tracking information on known and newly discovered

space objects to the JSpOC. The sensor sites within the SSN include phased-array

and conventional radar systems along with a network of ground-based electro-optic

telescopes. The Air Force Space Command (AFSPACECOM) manages the Ground-

Based Electro-Optical Deep Space Surveillance (GEODSS) sites which include the

Space Surveillance Telescope (SST) currently located at White Sands Missile Range

in Socorro, New Mexico along with the Air Force Maui Optical Station (AMOS) in

Maui, Hawaii and a site at Diego Garcia in the Indian Ocean [10]. It is the mission of

these assets to gather and process data to improve the Space Situational Awareness

(SSA) mission.

1.2 Research Goals & Objectives

The underlying goal of this research is to improve the ability to detect small or

dim space objects using traditional images obtained from existing ground-based tele-
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Figure 2. Number of objects tracked in Earth’s orbit by object type [11].

scopes. The detection of both asteroid and man-made objects or debris represents a

similar challenge to those looking to detect, track and catalog unknown space objects.

Due to their small size when viewed from a ground-based telescope, both objects are

essentially an unresolvable point source on the image captured by the charge-coupled

device (CCD). Additionally, when looking for smaller asteroids or objects, the inten-

sity received by the telescope from the object is likely to be low and could approach

the level of background noise. As will be described in Chapter II, current detection

algorithms employed by ground-based telescopes tasked to the SSA mission are based

on a matched filter approach of the spatial image captured by the CCD of the optical

system. The research in this dissertation seeks to improve the detection capabilities

by addressing the following three research questions.

1. Will converting a spatial image to the Fourier domain improve the detection
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performance of a point source detector?

2. Is there correlation between spatial frequencies when an object is present? If so,

can a covariance matrix between spatial frequencies in a Fourier domain image

be used to improve object detection?

3. Under daylight imaging where short exposure images are necessary, will frame

selection increase the ability of detecting objects over simply combining multiple

frames?

Research question one and two examine detection algorithms in the Fourier do-

main as opposed to a traditional spatial domain image. Research question three

addresses the utility in building a frame selection approach utilizing short exposure

spatial images to improve detection.

1.3 Assumptions and Limitations

The following assumptions are made to scope this research.

• Any unknown space object within the scene is unresolvable and can be consid-

ered a point source to the imaging system. This does not limit intensity from

the object to a single pixel since blurring due to the atmosphere and optics will

likely spread the intensity across multiple pixels.

• Background noise in the image follows a Poisson distribution and is known or

can be measured from the image.

• Only a single frame of long exposure data or multiple short exposure images

taken in the same time frame as a single long exposure image are used to make

the decision on an object being present or not. There are algorithms that utilize
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multiple long exposure frames of data to reduce the number of false alarms, but

that technique is not investigated in this research.

• Under daylight imaging, the camera’s CCD pixel wells are limited in depth and

necessitate short exposure imaging to avoid saturation.

1.4 Document Outline

This dissertation is organized into six chapters that contain the necessary back-

ground information to achieve the goal of this research and address the questions in

Section 1.2. Background information, relevant publications and current object de-

tection techniques are contained in Chapter 2. This chapter includes a discussion on

atmospheric turbulence, noise sources and optical models. All are needed to under-

stand the task, develop statistical models for the data and build detection algorithms.

Chapter 3 builds a Fourier point detection algorithm based on the Fourier domain

representation of the spatial image obtained from a ground-based optical system.

The algorithm utilizes a statistical model of the data to build a Likelihood Ratio

Test (LRT) which is then compared to two traditional space detection algorithms, a

spatial matched filter or correlator and a spatial point detector.

Chapter 4 develops a Likelihood Ratio Test (LRT) based on research that revealed

there is correlation between spatial frequencies of the real component of the Fourier

transformed background removed spatial image when an object is present. Utilizing a

conditional joint Gaussian probability density function (PDF) along with a statistical

model for the data and a theoretically derived covariance matrix, the LRT can be

used to detect dim space objects in the Fourier domain. The Fourier correlation

algorithm developed in this chapter is compared to a spatial correlation algorithm

utilizing simulated data on a Semi-log Receiver Operating Characteristic (LROC)

curve to highlight detection performance differences between the two algorithms.
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Chapter 5 explores detection utilizing short exposure images obtained under day-

light imaging conditions. Current detection techniques are focused on building a long

exposure image by combining a set of short exposure images and in some cases, reg-

istering and then combining these frames. The research in this chapter develops a

detection algorithm that selects the best short exposure frames based on a correla-

tion technique that does not require registering any frames. The performance of the

algorithm is compared to a spatial correlator and a short exposure imaging technique

called “lucky imaging” using both simulated and experimentally collected data on a

Semi-log Receiver Operating Characteristic (LROC) curve.

Chapter 6 is a conclusion to this dissertation that summarizes each of the research

efforts, the impact and relevancy of this research, and future follow-on work that

can be investigated. The conclusion also cites publications that resulted from this

research.
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II. Background & Literature Review

2.1 Chapter Overview

This chapter outlines background information related to the research completed

in this dissertation. First, this chapter provides a space object detection overview and

a discussion on the relevance of improving object detection algorithms. This section

includes a review of current and historical object detection techniques utilized by

astronomers and those within the SSA community. The second half of this chapter

includes a review of the imaging system, atmospheric turbulence and the effects it has

on the imaging system and the detection process along with additional noise sources

in the image that effect the probability of detection and false alarms.

2.2 Space Object Detection Overview

Space objects can be broken down into two major classes, defined as either nat-

urally occurring objects or man-made objects. These two distinct classes of objects

clearly have different physical properties such as shape, size and composition. Each

of these characteristics will greatly affect the ability to image, and thus detect, the

object. An object with a surface material of higher reflectivity will appear brighter.

Additionally, the orientation of the object relative to the sun and the ground position

of the telescope will impact the imaging and detection performance. The assumption

is made and usually holds true for SSA detection systems, that all objects in the field

of view (FOV) would appear optically similar to an observer using a ground-based

telescope designed for detecting unknown objects. A detection system with a wide

FOV is utilized to image large sections of the sky. The FOV is on the order of 3-6

degrees of the sky per image [12, 13]. This is contrary to an imaging system designed

to obtain a high resolution image of a known object which has an extremely narrow
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FOV. Due to the similarity of detecting unknown objects, this dissertation has pos-

sible impacts in the academic, scientific and defense focused space object detection

and astronomical communities.

Asteroids and comets are naturally occurring NEOs for which astronomers have

for centuries searched the skies for. The first detection of an asteroid is credited to

Giuseppe Piazzi who in 1801 discovered Ceres [14]. This relatively large asteroid, with

a radius of 476 km, resides in what is now known as the asteroid belt between Mars

and Jupiter. These first object detections were discovered using early observatories

along with the human eye to detect new or missing objects between temporally spaced

observations. Astronomers have continued to search for planets, asteroids and comets,

and more recently, objects that pose an existential threat to human life on Earth.

Recent advancements in optics, sensor hardware such as low-noise and curved CCDs,

along with improvements to detection algorithms fueled by cheaper and move complex

computing power have led to orders of magnitude improvement in the ability to detect

NEOs.

The mission to discover smaller and less frequently orbiting natural objects near

Earth has been assigned to NASA by the U.S. Congress through the NASA Autho-

rization Act of 2005 [3]. The U.S. Congress mandated NASA to coordinate with the

DoD and other organizations to catalog by the year 2020, 90 percent of all asteroids

and comets larger than 140 m that are within close trajectory of Earth. NASA pre-

dicts that there are nearly 1,000 NEA larger than 1 km and approximately 15,000

larger than 140 m. The NASA NEO program office predicts that over 90% of aster-

oids larger than 1 km have been discovered and is focused on detecting those objects

between 140 m and 1 km. Nearly all of the NEO discoveries have occurred within

the last 20 years when this mandate was put in place. The latest data on the number

of NEAs cataloged by NASA’s NEO program office was shown in Chapter 1, Figure
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1. A breakout of the size of the asteroids is also given in Figure 3. The number of

larger objects discovered has remained relatively flat over the last 20 years since these

objects are much easier to observe, were among the first to be detected and tracked

and NASA predicts most have already been discovered. However, due to the vastness

of space, new objects larger than 1 km are located every year. In many cases, new

objects are not detected until they are astronomically very close to Earth. Recent

examples include the near Earth asteroids, 2018 CB which was detected just days

before passing near Earth and Asteroid 2018 GE3 which was detected hours before.

Both were first detected by NASA’s Catalina Sky Survey [15, 16].

Figure 3. Number of near Earth objects detected and cataloged each year by size of
object [4].

Aside from naturally occurring space objects, man-made objects account for the

vast majority of NEOs that pose a risk to assets in space. Man-made debris in space is

the result of decades of human space exploration and activities. These objects include
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dysfunctional or abandoned satellites, spent space launch vehicles, mission related

debris and debris created from a handful of documented explosions and collisions of

space objects [6]. Little thought was given to limiting or accounting for space debris

during early space exploration and utilization. As the number of assets in space grew,

the need to track space debris and implement methods to limit creating new debris

became apparent. The density of man-made space debris in the heavily space asset

populated GEO region around 35,785 km is illustrated in Figure 4. The threat is

not limited to physical collision between satellites and objects but also damage from

small piece of debris to critical components of the satellite such as the solar panels

which could render a satellite dysfunctional or uncontrollable.

Figure 4. Debris population in the geosynchronous region [5].

Utilizing the SSN sensors, the JSpOC currently tracks approximately 20,000 man-

made objects in orbit around Earth that are the size of a baseball or larger [7]. They

are tasked with maintaining the space catalog used by nearly all space operators
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to track objects and provide collision avoidance guidance in the case of a potential

impact. The first known collision of man-made space objects occurred in 1991 between

two retired Russian satellites, Cosmos 1934 and Cosmos 926 [17]. Nearly one-third of

the cataloged orbital debris in the GEO region is a result of the intentional destruction

of the Fengyun-1C weather satellite by China in 2007 and the accidental collision of

American and Russian communication satellites in 2009 [5]. NASA estimated that

approximately 35,000 pieces of debris larger than 1 cm were created as a result of the

destruction of Fengyun-1C. It is likely that the debris created by this event impacted

and destroyed a Russian satellite in 2013 [18]. NASA predicts there are approximately

500,000 pieces of debris that are larger than 1 cm and that the number smaller than

1 cm exceeds 100 million [4, 5]. The number of objects currently tracked by JSpOC

was shown in Chapter 1, Figure 2. If the estimates from NASA are correct then there

are many unaccounted for and potentially hazardous objects in Earth’s orbit.

The pursuit to catalog a greater number of space objects involves multiple areas of

research. Imaging, processing, detecting, tracking and characterizing are all compo-

nents needed to successfully catalog an object. The work in this dissertation focuses

on processing images and detecting space objects. The processing and detection of

space objects from images obtained from ground-based optical telescopes will allow

SSN sensors to conduct follow-up observations to establish a track, resolve the object

and characterize it for addition to the space catalog.

Daylight Imaging.

One of the factors seriously limiting space object detection assets is the inadequate

telescope time available for the detection mission. Factors such as hardware upgrades,

weather and maintenance all affect the amount of time available for astronomers and

operators to collect data. Possibly, the greatest hindrance is the amount of prime
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night sky available when conditions are favorable. Conventional space object imaging

operations is limited to only dark sky imaging during twilight and at night. This

is not only due to the brighter background associated with daylight conditions but

typically the atmospheric turbulence is significantly greater and less constant during

daylight [19, 20]. Limitations in the CCD sensors physically limit the number of

photons that can be collected before saturation is reached. This prohibits typical

long exposure imaging, limiting sensor integration time down to the short exposure

time frame of much less than 100 milliseconds [24].

One of the benefits of being able to image under daylight conditions is the ad-

ditional operating time. Under traditional night imaging, an object in a near Earth

orbit is only going to be detectable under terminator conditions[20]. Terminator de-

scribes the short time frame when an object is illuminated by the sun while it is dark

at the ground telescope site. Terminator conditions are limited to several hours after

sunset and several hours before sunrise. The ability to image and detect objects under

daylight imaging conditions would greatly increase the number of hours a telescope

could maintain operations.

Imaging during twilight and daylight conditions is possible with smaller aper-

ture telescopes, but the detection algorithms are not optimized for high background,

low signal-to-noise ratio (SNR) data. Currently, daylight imaging is mostly limited

to high resolution speckle imaging on smaller diameter telescopes. This technique

captures hundreds of short exposure images, averages them together and performs a

deconvolution algorithm to improve the resolution [21, 22]. These daylight imaging

methods are utilized for higher resolution space imaging and not detection as they

are utilized on telescopes with an extremely limited FOV on a known object.
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2.3 Detection Algorithms & Techniques

Established in 1984 by the University of Arizona, Spacewatch was the first pro-

gram dedicated to improving the detection, tracking and cataloging of space objects.

Spacewatch has been a scientific success to the astronomical community as it was the

first to use a CCD to actively scan and survey the sky in search of unknown space

objects. Prior to this program, astronomers and those working in the space commu-

nity were using photographic plates to image and detect objects. The use of CCDs

led the program to develop the first software algorithms designed to improve space

object detection in 1990 [23]. Since then, CCDs and image processing techniques have

greatly improved the number of smaller and fainter space objects detected, tracked

and cataloged due to significant advances in computing power, memory and storage.

These advances have resulted in further research programs to develop advanced algo-

rithms to detect faint space objects. The latest information from NASA, displayed

in Figure 5, shows the number of NEA detected each year and the sensor platform

that first detected the object.

The detection method utilized by each platform is tailored to take advantage of

the unique capabilities of the sensor. Typically, space object detection algorithms uti-

lize single and multiple spatial images obtained from ground-based telescopes. The

different types of techniques can be broken down as shown in Figure 6. Each are bro-

ken down by short or long exposure imaging. The most common detectors currently

used with the SSA community are described in this section.

The assumptions taken in the research presented in this dissertation were given

in Section 1.3. These assumptions are further explained below.

• Space objects imaged by the optical system are unresolvable point sources to the

optical system. This implies that no matter the object being imaged, the system

cannot distinguish a satellite from an asteroid or debris. It is the responsibility
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Figure 5. Number of detected near earth asteroids by survey instrument as of 19 Apr
2018 [4].

of dedicated sensors to conduct further observations to characterize a detection.

• Background noise is the result of outside stray light rays entering the optical

system and captured in the image. Photons follow a Poisson distribution and

the average arrival rate can be measured and is considered a known value.

• A detection decision is made based on the data that can be captured in the

time from of a single long exposure frame of data. Many of the SSN platforms

use multiple frames in their processing chain, however they start with being

able to detect on a single frame and use the multiple frames of follow-up data

to confirm or reject a detection. This dissertation is focused on improving the

ability to detect a dim space object from a single frame of long exposure data so

that detection can be passed on for further multi-frame analysis techniques and

further sensor observations. The frame selection research in Chapter 5 utilizes

multiple frames of short exposure data which are combined to create a single
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Figure 6. Generalized space object detection techniques depending on number of frames
captured and integration times.

long exposure frame of data.

Data is collected using long exposure data in Chapters 3 and 4. This is defined

as greater than 100 ms by Goodman [24]. The frame selection research in

Chapter 5 is based on short exposure data with an integration time between

10-25 ms. The short integration time is needed due to the high background

conditions present in daylight imaging. The integration time in both scenarios

is not sufficiently long enough such that the object will create streaks, and thus

the algorithms are optimized for point source detection.

• A CCD is made up of thousands of independent “buckets” that count the num-

ber of photons that arrive. There is a physical limit to the number of photons

that can be counted during each integration cycle that produces an image. Any

count over that upper truncated limit results in saturation. To avoid saturation,

shorter integration times are needed when imaging a bright target or imaging

during a bright background.

With long exposure images, there are two common detection methods discussed

in literature and utilized by the various optical telescopes within the SSN, a point

detector and a matched filter or correlator. Each of these are techniques are further

described in Section 2.3 and Section 2.3. Both detection methods typically starts with
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preprocessing of the data to measure background, sometimes perform registration,

and potentially remove known objects using a celestial map or similar technique. Due

to the large size of a typical image taken, the data is windowed down to a smaller N

x N pixel subset of the larger image. For example, the SST data is 6144 x 4096 pixels

but processed in windows as small as 15 x 15 [25, 26]. Windowing of the data allows

for detection within a much smaller subset of a wide field image limiting interference

from other optical sources. The windowing of the larger image decreases the number

of pixels in the image being processed which significantly reduces computation time

while also decreasing the likelihood that another object is in the image that must be

removed prior to processing.

Likelihood Ratio Test (LRT).

The foundation of each space object detection algorithm examined in this disser-

tation is the use of a LRT to make a decision as to whether an unknown object is

present or not in the data [26, 27, 25]. The LRT is used to build a binary mask which

indicates pixels where an object is detected. This process was explained by the de-

velopers of the SST and Lincoln Near Earth Asteroid Research (LINEAR) algorithm

identified in Figure 7 [6].

Figure 7. Linear & SST system detection block diagram [25].

Using an equal cost, equal prior model, a generic LRT, Λ, is defined as a ratio

of joint conditional probabilities on the received data, d(x, y), given each hypothesis,
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H1 and H0 [28].

Λ =
P
(
d(x− x0, y − y0)

)
∀(x, y) ∈ [1, N ]|H1

P
(
d(x− x0, y − y0)

)
∀(x, y) ∈ [1, N ]|H0

H1

≷
H0

1. (2.1)

Where x and y are the integer pixel coordinates, x0 and y0 are the pixel point being

tested, and N is the number of pixels in each dimension of the windowed image. The

two joint probabilities of the data in the LRT are conditioned on the H1 hypothesis,

that the data contains an object at that specific pixel coordinate, and H0, that an

object is not present at the pixel coordinate x0, y0. If the ratio of the conditional

probabilities in Equation (2.1) is greater than 1 then the H1 hypothesis is concluded

and triggers an object detection flag. Conversely, a ratio less than 1 makes the

determination that an object is not present at the tested pixel coordinate.

Space object detection techniques have historically used a LRT along with a binary

hypothesis test (BHT). In a BHT approach, there are only two possible outcomes,

either an object is present or not present at a given pixel. Recent research at the Air

Force Institute of Technology (AFIT) by Zingarelli and Hardy has shown that a multi-

hypothesis test (MHT) approach can significantly increase performance under certain

SSA detection scenarios [25, 26]. Their research into the MHT approach examined

not only whether an object is in the pixel, but continued research into the effects

of sub-pixel shifts in the point spread function (PSF) on detection performance [29].

They found greater detection performance over a BHT when multiple point spread

function (PSF) locations or hypotheses are tested within a single pixel.

The underlying key to the success of any LRT is in the ability to distinguish

between the probability density function (PDF)s under each hypothesis based on

the data. An example of two Gaussian PDFs with varying means and variances

are illustrated in Figure 8, as the separation between the two PDFs gets further, it

is expected that the detection algorithm will more often correctly determine which

18



hypothesis the data follows. The performance of different LRT algorithms are defined

by their probability of detection (PD) and probability of false alarm (PFA). Each are

further discussed in Section 2.3. The PFA is the primary factor used to adjust the

threshold value in the LRT and the criteria used to evaluate the performance of

various algorithms. The PFA is usually set to an acceptable level to meet mission and

resource constraints since each detection requires follow-up analysis.

Figure 8. Illustration of difference between the separation of two probability distribu-
tion functions in a likelihood ratio test detection algorithm.

Point Detector.

One of the earlier programs dedicated to improving object detection using al-

gorithms was the mid-1990s LINEAR program. The LINEAR algorithm developed

within this program utilized imagery obtained from a ground-based electro-optic tele-

scope to detect space objects using a BHT point detector [30]. Currently, the SST

and other assets within the SSN use a modified version of the BHT point detector

developed for LINEAR to make a detection decision on a single pixel in a given frame

of data. The SNR level from the point detector, shown in Equation (2.2), is calculated

by examining the received intensity at point, d(x− x0, y− y0), from a single frame of

data. This is a computationally simple algorithm designed to create a binary mask
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to identify pixels that represent an object with an intensity over a set threshold. This

method of detection relies on the assumption that the data is Gaussian distributed.

Thus, when the background, B, is subtracted and the result divided by the standard

deviation of the noise, σn, the result is the number of standard deviations the intensity

of the pixel point is from the mean.

The first two steps of the LINEAR and SST detection process are the prepro-

cessing procedures that involve reading several frames of data, registering the data

using known stars within the frame and then averaging down to a single frame. This

preprocessing removes telescope pointing error associated with the system while in-

creasing the SNR of the image. A point source method of detection is employed in

software where the registered images are normalized based on the assumption that

the data is Gaussian distributed. Based on the LRT in Equation (2.2) , a binary

mask of the image is calculated by examining each pixel location x0, y0,

SNRPD(x, y) =
(d(x− x0, y − y0)−B)

σn

H1

≷
H0

τ. (2.2)

Where B is the background noise level in the image, σn is the localized standard

deviation of the background noise and τ is the threshold level. The background is

calculated by taking the median value of all N pixels in the x and y dimension around

the x0, y0 pixel point,

B = median(d(x− x0, y − y0)∀(x, y) ∈ [1 : N ]). (2.3)

Using the median value reduces the ability of bright pixel spots that contain known

objects or noise spikes to skew the background level higher and adversely impact

detection performance. The localized standard deviation of the background noise is
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computed from the pixel values as

σn =

√√√√√√
N∑
x=1

N∑
y=1

d2(x− x0, y − y0)

N2
−B2. (2.4)

The left side of the inequality in Equation (2.2) represents the SNR level of the

data at each pixel point and is assumed as a random variable from the standardized

Gaussian distribution with zero mean and unit variance. The detection threshold, τ

, then represents the number of standard deviations above the noise that is required

to make an initial determination that an object is present at that pixel. The SST

program typically uses a value of six as the detection threshold resulting in a PFA

≈ 10−9. This seems extreme, however, a single frame in CCDs array is 6144 x 4086

pixels, containing over 25 million pixels [31]. At a PFA rate of 10−9, it is expected

that a false alarm would occur on average once every 40 frames of data.

To achieve ideal performance in this detection method, the photons from the

object must be focused down into a single pixel on the CCD detector in order to

maximize the SNR. This is not the case for SST or many telescopes, where the PSF

or size of the object on the detector is larger than a single pixel wide and is at least

several pixels under best case scenarios. When the PSF is spread across several pixels,

SNR decreases and will not meet the detection threshold required for initial detection

by the algorithm.

Matched Filter.

A matched filter or correlation algorithm is utilized to achieve greater detection

performance with a desired PFA when searching for an unknown space object. The

algorithm is based on correlating or matching the observed data with the expected

PSF from a point source object. To perform the correlation with the captured image,
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the expected PSF must be known. Typically, knowledge of the PSF has been limited

to the long exposure case where the shape and size of the PSF can be determined

from measurable statistical parameters of the atmosphere and can be considered, on

average, a known value. However, Cain [32] has developed a matched filter method

using the short exposure PSF. The PSF shape and location in this approach will be

unknown due to atmospheric turbulence and tilt, however this is overcome using a

MHT method.

Pohlig developed a unique matched filter algorithm based on the assumption that

the background is the dominate source of noise in the image and is Poisson distributed

instead of a traditional Gaussian assumption [27]. This premise leads to a dependence

in the algorithm’s detection threshold on the intensity of the target which would be

unknown to an observer. Pohlig removes the intensity dependence by assuming that

the target irradiance is low compared to the background. He further admits this

assumption does not necessarily hold and is not accurate at a significantly low PFA

rate.

A Gaussian distribution has been widely used to describe the noise produced by

CCD cameras. Using this distribution, the matched filter detection program referred

to as SExtractor is used by multiple SSA detection programs [33], and is defined as

SNRMF =

N∑
x=1

N∑
y=1

(d(x, y)−B)hL(x− x0, y − y0)

σn

√√√√ N∑
x=1

N∑
y=1

h2
L(x, y)

H1

≷
H0

γ. (2.5)

Where d(x, y) is the single image frame, x0, y0 is the current pixel location being

tested, N is the size of the window region of interest in pixels, hL(x, y) is the known

long exposure PSF, B is the median background noise level in photons and σn is the

standard deviation of the noise.

22



The performance of a matched filter algorithm is highly dependent on knowing the

data from the long exposure PSF, hL, which is correlated with the received image. The

long exposure PSF is explained further in Section 2.4. However, in many SSA ground-

based telescope systems the data is not sampled properly and the PSF will not appear

as expected. Under-sampling will result in a non-symmetric PSF when captured on

the CCD and will decrease the performance of the matched filter algorithm as was

found by O’Dell [29].

Speckle Detection & Interferometry.

During short exposure image gathering, the atmospheric turbulence will induce

random phase errors in the light as it propagates from the source to the detector.

These random phase fluctuations cause the object to appear to change in position,

shape and intensity, resulting in scintillation or speckle when observed over time.

Speckle imaging and interferometry always involves taking many short exposure im-

ages, typically between 10 and a few thousand images with exposure times from a few

milliseconds to a few tens of milliseconds [19]. Working in the short exposure regime

has several benefits that researchers have been able to exploit to improve detection

and imaging. The first is that the long exposure atmospheric optical transfer function

(OTF) does not maintain high spatial frequency content which limits the resolution of

imaging through turbulence. Additionally, there is the benefit of removing uncertain-

ties in the registration of multiple frames when looking at the intensity of an object

using short exposure images. Based on the Fourier shift theorem, a registration error

or tilt in the image is the result of a phase shift in the Fourier domain. If the absolute

value of the Fourier domain image is examined, the phase information and thus the

spatial tilt error has been removed [19, 34].

Space object detection working with short exposure images in the spatial domain
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with noise dominated by scintillation has been examined by Cain and Hardy in [32,

35]. This research involved building a LRT based on the probability distribution of

the intensity fluctuations in short exposure images. Working under short exposure

conditions, hundreds to thousands of frames can be collected in the same time that a

single long exposure frame is captured by a CCD. The PSF in short exposure cases will

have atmospheric induced tilt that requires the use of a MHT in order to accurately

predict if an object is in the scene. Initial research in this technique has shown the

potential to provide superior detection performance under certain conditions when

compared to long exposure data of the same object.

Speckle interferometry has been researched and implemented at the AMOS tele-

scope to improve the resolution and imaging capability of their 1.6 and 3.5-meter

ground-based telescopes. This technique examines the Fourier transform of short

exposure scintillated spatial image data obtained from a known space object and a

nearby reference star. During post-processing, a Fourier transform is used to convert

the image into the Fourier domain where the magnitude and phase information can be

used to improve the resolution to near the diffraction limit of the system [22, 36, 19].

This is a result of the high spatial frequency content being preserved in the short

exposure OTF.

Lucky imaging is another short exposure imaging technique that is used within

the astronomical community primarily for image reconstruction [37, 38, 39, 40, 41,

42]. This technique involves taking tens to thousands of short exposure images and

selecting a given percentage of them that are then registered and combined to obtain

an improved image. Most commonly, the images are ranked based on their Strehl ratio

which is a representation of the amount of phase aberrations present in the image

due to turbulence. Typically, this method requires a guide star or beacon within the

isoplanatic region to measure the quality of the image. Due to this constraint, this
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method is nearly always limited to applications looking to improve the resolution of

images containing a clearly visible object. This is only applied to detection in the

sense that if imaging a known star system, an image with increased resolution could

detect a binary star next to a known star. In a blind scan and survey detection

method with no apparent object, it becomes difficult to register and combine frames

while avoiding registration errors due to noise spikes in the data.

Detection and False Alarm Rates.

A metric commonly used within the SSA community in evaluating the performance

of detection algorithms are the detection and false alarm rates [26, 27, 32]. These are

also the metrics adopted within this dissertation. The detection rate is the rate at

which an object is detected when an object actually exists at the tested location. The

false alarm rate is the rate at which the algorithm detected an object at a location

when no object exists. These rates are commonly referred to as the PD and PFA.

A Receiver Operating Characteristic (ROC) curve is used to plot of the probability

of detection versus the probability of false alarm [43]. The ROC curve was first

developed for analysis of radar signals and in signal detection theory. It was used to

showcase the performance of different radar and signal detectors at various detection

and false alarm rates. In this research, the traditional detector is replaced with an

algorithm implemented in software that is making the detection decision. The use of

a ROC curve allows the performance to be evaluated at all threshold values, τ . This

allows various algorithms or processes to be tested and compared independent of a

specific threshold value. The ROC curve is generated by calculating the PD and PFA

for a range of threshold values and plotting the detection and false alarm rates.

Typically, the axis of a ROC curve plot are on a linear-linear scale. In order to

capture the performance differences at extremely low false alarm rates a semi-log plot
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is used with the log10 of the PFA plotted on the x-axis, this method is used within

other space object detection research [44, 26, 25]. Without a log scale, it would be

impossible to distinguish the differences between similar algorithms at a false alarm

rates near 10−9. This approach is not a standard ROC curve and will be referred

to as a Semi-log Receiver Operating Characteristic (LROC) curve throughout this

research.

The approach used to generate the LROC curve is to utilize a large data set

(either simulated or experimental) and examine the SNR values from the LRT, Λ,

under each hypothesis [26, 25, 44]. These values are Gaussian distributed due to the

Gaussian distribution noise of the data. With a significantly smaller sample of data

points, the mean, µΛ, and variance, σ2
Λ of the SNR values can be found. Using a

Gaussian cumulative distribution function (CDF) with the mean and variance, the

PD and PFA can be calculated using Equations (2.6) and (2.7) [44]. Both the PD and

PFA are based on a Gaussian CDF and their equations appear the same, however the

statistics of the SNR values will vary between each.

The threshold value τ is varied across a range of values and the PD and PFA pair

of values are noted. The LROC curve plots these pairs across all threshold values

to illustrate the performance of multiple detection algorithms at a given false alarm

rate.

PD =

∫ ∞
τ

exp
−(Λ−µΛ)2

2σ2
Λ√

2πσ2
Λ

dΛ. (2.6)

PFA =

∫ ∞
τ

exp
−(Λ−µΛ)2

2σ2
Λ√

2πσ2
Λ

dΛ. (2.7)

Confidence intervals on the LROC curve can be built using the statistics of the

SNR values. In order to establish confidence intervals, the variance of the sample
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mean and sample variance from the LRT values needs to be calculated. With a

large set of N Gaussian random variables, the sample estimated mean, µ
LRT

, and

sample estimated variance, σ2
LRT

, the variance of the sample mean and variance can

be calculated. These are shown in Equations (2.8) and (2.9) [45, 46]. Each of these can

be used to plot a new LROC curve that bounds the performance of each algorithm.

For a LROC curve comparing two different algorithms, a lower bound can be applied

to the higher performing algorithm which is plotted as the upper curve. Conversely, an

upper bound can be established on the lower curve representing the lower performing

algorithm. A confidence can then be applied when comparing the two algorithms

performance at a given false alarm rate.

var(µ
LRT

) =
σ2
LRT

N
. (2.8)

var(σ2
LRT ) =

2σ4
LRT

N
. (2.9)

To establish a 95% confidence interval when plotting the performance of two

different algorithms on a LROC curve the mean and variance of each curve is adjusted

by two standard deviations. The upper curve on the LROC plot is plotted using the

Gaussian CDF and decreasing the mean by two standard deviations and increasing

the variance by two standard deviations. An upper bound on the lower curve on

the LROC plot can be plotted with the Gaussian CDF and a mean that is increased

by two standard deviations and variance that has been decreased by two standard

deviations.
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2.4 Telescope & Optical Model

An accurate model for the telescope system, statistically correct PSF, and noise

models along with correct statistical distributions are critical to the success of this

research. Each of these components were an integral piece of the process in defining

and developing new detection algorithms throughout this dissertation. This section

will build a model for each component of the optical system that ultimately affects the

statistics of the images obtained from ground-based telescopes for their space-based

object detection mission. This includes a model of the telescope, the PSF due to the

telescopes optics and the turbulent atmosphere that the light must propagate through

during both short and long exposure images. In addition, additive noise sources and

noise due to the discrete nature of photon counting by the CCD are examined.

Imaging System Model.

The principle operation of telescopes is to map the intensity of a scene in the

object plane onto the imaging plane of the CCD detector of the optical system.

Physically, this is a model of how the electromagnetic wave propagates through space

from the object to the detector. This process is detailed by Goodman in [34] as a

Rayleigh-Sommerfeld propagation derived from Maxwell’s equations. In a space ob-

ject scenario, the propagation distance between the object and detector is far enough

that the propagation to the atmosphere can be modeled using a Fraunhofer prop-

agation technique. This is ideal since Fraunhofer propagation can be implemented

using a computationally simple Fourier transform. This process, known as Fourier

optics, can be used to express the operation of mapping each point from the object

plane to the imaging plane as the convolution of the object with the PSF as shown
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in Equation (2.10) [34].

d(x, y) =

∞∫
−∞

∞∫
−∞

o(u, v)h(x− u, y − v) du dv, (2.10)

where d(x, y) is the data of the received image at the pixel point x, y in the detector

plane, u and v are coordinates in the object plane and h represents the PSF of the

system. The object, o(u, v), is a point source object in the object plane at the specified

location.

As mentioned earlier in this chapter, one of the assumptions in this research is

that the object is unresolvable and thus can be considered a point source at the

detector. Therefore, based on Equation (2.10), it is expected that due to the linear

shift invariant nature of the telescope system, the PSF is the image created on the

detector by viewing a point source or spatial impulse through the optical system. As

shown in Equation (2.11), the PSF of the imaging system is a combination of the

optical system PSF and the atmospheric OTF using Fourier transforms [34, 24]. The

PSF and OTF are inverse Fourier pairs describing the response of the system in the

spatial and spatial frequency domains respectively.

h(x, y) = F−1

{
F
{
hopt(x, y)

}
Hatm(fx, fy)

}
. (2.11)

The effects on the imaging system PSF due to aberrations in the optics of the

telescope are captured in hopt, while Hatm is the atmospheric OTF in the systems

due to the turbulence encountered along the path of propagation. Each of these are

further discussed in sections 2.4 and 2.4.
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Optical System Model.

The optical PSF of the system, hopt(x, y), can be described by the Fourier trans-

form of the pupil function, P (m,n), of the telescope [34].

hopt(x, y) =

∣∣∣∣F{P (m,n)
}∣∣∣∣2. (2.12)

The pupil function of the system, P (m,n) is defined below based on the physical

properties of the aperture and phase errors in the optical path. The amplitude transfer

function of the pupil, A(m,n), is a masking function that mimics the geometry of the

system pupil as illustrated in Figure 9 [34]. It is equal to one or zero corresponding to

the locations in the pupil that pass light onto the system. In a perfect optical system

with no aberrations, the pupil function is equal to the amplitude transfer function.

All light that enters the optical system is transformed to the detector plane with no

aberrations

Pideal(m,n) = A(m,n). (2.13)

In the more realistic case where optical aberrations are present due to non-

uniformities in the optics of the system, all light captured by the primary mirror

of the telescope will undergo measurable phase fluctuations along the optical path

that can be represented as a phase error, θ0, on the amplitude transfer function,

A(m,n).

P (m,n) = A(m,n)ejθ0(m,n). (2.14)

The phase errors, θ0, are represented as the summation of each weighted Zernike

polynomial [47]. The weighting of each Zernike polynomial, aj, is determined by the

specific properties of the telescope and can be measured or solved for experimentally.

In the case for SST, the pupil amplitude transfer function masking would be a
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Figure 9. Amplitude of the pupil function with a circular aperture.

3.5 m circle with a 1.75 m obscuration in the middle. Previous research was conducted

to solve for the weightings for each Zernike coefficient experimentally on the SST [13].

The first ten coefficient weighting are given in Table 1 and can be used to create an

accurate model for the optical PSF associated with SST using Equations (2.12) and

(2.14).

Atmospheric Model.

The effects of the atmosphere on the PSF is a random process that is well studied

and can be modeled. As illustrated in Figure 10, random fluctuations in the index of

refraction of air in the path of the light propagating from the source to the telescope

result in phase distortions on the propagating field. These phase distortions result in
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Table 1. First ten measured Zernike coefficients for the Space Surveillance Telescope
[13].

Coefficient, aj Value (Waves) Coefficient, aj Value (Waves)

a1 2.09 a6 -0.28
a2 -5.95 a7 0.28
a3 -5.30 a8 -0.73
a4 6.89 a9 0.36
a5 1.26 a10 -0.48

aberrations of the image once focused on the detector plane.

Figure 10. Distortion in the wavefront due to atmospheric turbulence [48].

This research uses two different models to determine the effects the atmosphere

has on the PSF of the optical system. They are distinguished apart based on the

exposure time or amount of time that the imaging system gathers light for a single

frame of data. A short integration time, generally less than 10 ms, is modeled using a

short exposure OTF, Hs [24]. Whereas, an integration time much greater than 10 ms

would be modeled using a long exposure OTF, HL.
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Long Exposure Atmospheric Model.

In many SSA ground-based telescope systems, the integration time is significantly

long enough that it only operates in the long exposure regime. For example, the SST

operates with an integration time of between 100ms and 10 seconds [49] while the

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescope

has a significantly longer exposure time of between 30-60 seconds [50, 12]. The long

exposure OTF is defined by Goodman in [24] as

HL(fx, fy) = exp

[
− 3.44

(
λ̄z
√
f 2
x + f 2

y

r0

) 5
3
]
. (2.15)

Where λ̄ is the mean wavelength, z is the telescope focal length, fx and fy are spatial

frequencies. The Fried parameter,r0, called the seeing parameter, is a measure of the

quality of optical propagations through the atmosphere [51, 24]. This term is used

in multiple expressions to describe not only the quality of the atmosphere but the

diffraction limited spot size for a given aperture since it is related to the coherence di-

ameter of the atmosphere. Typical values of r0 range between 5 and 20 cm depending

on the site.

The long exposure OTF can be converted to the spatial domain by taking the

inverse Fourier transform, this results in the long exposure PSF, hL(x, y).

hL(x, y) = F−1

{
HL(fx, fy)

}
. (2.16)

It is the inherent nature of the atmosphere over time to average out and this

is shown in the zero mean Gaussian distribution of the random Zernike coefficients

modeling the turbulent atmosphere. Thus, the long exposure PSF averages the ran-

dom phase fluctuations due to the atmosphere to produce a spatially large PSF. On

average, a long exposure PSF will contain zero tilt and will be an even and symmetric
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function.

Short Exposure Atmospheric Model.

When operating at exposure times of around 10 ms or less, a short exposure OTF

model is generally used [24]. As explained in Section 2.4, the short exposure PSF

is the inverse Fourier transform of the short exposure OTF. The extremely short in-

tegration time limits the intensity or amount of light gathered by the system which

makes imaging and detecting dim space objects inherently difficult. However, there

are scenarios that short exposure imaging is used for improving imaging resolution

and object detection in the SSA community [32, 19, 22, 36, 37, 38]. Due to the random

nature of the atmospheric turbulence of a short time period, the short exposure OTF

is described using a set of Zernike polynomials at each individual time instance. Pre-

vious AFIT research by Putnam has focused on building accurate individual Zernike

phase screens with the correct temporal correlation statistics [52]. The coefficients

used to build the set of Zernikes are zero mean Gaussian random variables with a

given variance based primarily on the measure of the quality of the atmosphere, r0

[47].

Noise Statistics.

In any optical telescope system there are numerous sources of noise that adversely

impact the ability to detect dim objects. Ideally, every photon captured by a CCD

pixel is converted into a digital count; however this is not usually the case. Sources

of noise in the process include the discrete nature of photon counting, background

light, read out noise, dark current and thermal noise. The systems deployed for SSA

applications generally utilize hardware that limits the primary concern to the Poisson

distributed photon counting noise and Gaussian distributed noise for all other sources
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[27]. The manufacturers and operators of cameras attempt to minimize these noise

sources using higher quality components while cooling the camera.

Photon Counting.

Photon noise or shot noise is a result of the CCD array in the detector plane array.

The CCD is a discrete device that counts the number of photons that arrive at each

element of the array [27]. The distribution of the photons is modeled as a Poisson

process where photons arrive at random intervals with a mean number of photons, k̄,

arriving over a set time interval. The probability of k photons, P (k), being counted

at each pixel spot is given by the Poisson probability mass function (PMF) shown in

Equation (2.17) [24]. Photon counting noise would cause the same object imaged at

two different times to potentially appear to have different intensities.

P (k) =
k̄ke−k̄

k!
for k = 0, 1, 2, 3... (2.17)

Background Light.

Background noise is the result of any light or signal aside from the light propa-

gating from the object that is measured by the detector. There are various sources of

background noise and many are dependent on the situation, they include but are not

limited to the sun, starlight and building or city lights reflecting off other surfaces and

captured by the primary mirror of the telescope. The background can be estimated

during data capture by moving to a nearby dark spot of the sky to calibrate the cam-

era or can be accomplished during post-processing of the data by taking the median

value of all N pixels in each dimension of the windowed data, d(x, y), as shown in

Equation (2.3).
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Read Noise.

Photons are captured in each pixel of the CCD and are converted to a given

number of electrons based on the gain of the camera. The electrons must then be

passed in the circuitry to an analog to digital converter and transformed into a digital

signal value. It is along this process of converting to electrons and reading out the

value that multiple opportunities for noise arise in the camera’s hardware. Under

conditional space imaging this is not much of a concern because the variance of the

Gaussian distributed read noise is significantly less than the photon counting variance

noise. However, under short exposure night imaging, read noise can greatly degrade

the SNR of images containing dim objects. This is especially true when many frames

of short exposure data are averaged together as the read noise variance increases

significantly. This is shown in Equation (2.18), as the variance for a given pixel in

the image is related to the Poisson rate parameter, K̄, the number of frames averaged

together, F , and the readout noise variance, σ2
rn. When imaging under daylight

conditions, the higher photon count will drive this noise source to insignificant levels.

var{d(x, y)} = FK̄ + Fσ2
rn. (2.18)

2.5 Conclusion

The research in this dissertation focuses on improving space object detection al-

gorithms already utilized with the community through transforming the data and

improving the post-processing techniques. The goal of each new algorithm and pro-

cessing technique is to increase the SNR of the image to improve the PD for a given

false alarm rate. Long and short exposure data and atmospheric turbulence models,

along with accurate noise models are used throughout this research to ensure the

validity of the developed data models and associated algorithms. The performance
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of the various algorithms is plotted on a LROC curve to illustrate the probability

of detection for a given false alarm rate across multiple algorithms. The algorithms

developed in this research are compared to common approached such as a spatial

point detector, spatial correlator, and a lucky imaging algorithm.
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III. Improving Space Object Detection Using a Fourier
Point Detection Algorithm

3.1 Introduction

In this chapter a new detection algorithm is proposed and developed for detecting

space objects from images obtained using a ground-based telescope with the goal to

improve space situational awareness. Most current space object detection algorithms

rely on developing a LRT for the observed data based on a binary hypothesis test.

These algorithms are based on the assumption that the observed data is Gaussian or

Poisson distributed under both the null hypothesis, that an object is absent from the

data, and the alternative hypothesis, that a low SNR space object is present in the

data. The LRT algorithm in this chapter was developed based on the assumption that

the distribution of the real component of the Fourier transform of the observed data

will be different when a low SNR object is present in the data compared to when

the data only contains background noise and known space objects. If the Fourier

transform of the data contains a significantly different distribution then it could be

used to increase the detection performance compared to a point detector or spatial

correlator. The unique aspect of the research in this chapter is that unlike documented

algorithms, this algorithm is based on data in the Fourier domain. It is the goal of

this research that when transferring to the Fourier domain and developing statistical

distributions on the Fourier transformed data that the LRT algorithms will provide

superior detection performance through the usage of a statistically accurate designed

LRT.
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3.2 Telescope Data Model

An understanding of the expected data received by the optical system of the tele-

scope is necessary to develop an algorithm optimized for detection. The algorithm

presented in this chapter relies on typical spatial representation of the images. This

spatial data is the signal detected by the CCD, later viewed as an image and manipu-

lated by various detection processes for identifying unknown objects. The algorithm

in this chapter proposes using a less common Fourier domain representation of the

data. Under this transformation, each pixel in the image contains information on the

frequency content of the image.

Spatial Data.

Referring to the model for the imaging system in Equation (2.10), a model for the

expected signal on the detector CCD can be developed. This model will hold under

both long and short exposure data since the model for the PSF is taken into account

in later steps. The model for the point source space object absent of any atmospheric

turbulence and noise is shown in Equation (3.1) as a Dirac function at some location

u, v in the object plane scaled by the objects intensity, θ.

o(u, v) = θδ(u, v). (3.1)

Under the H1 hypothesis, an object is present with some unknown intensity, θ,

associated with it that will vary based on the position, orbit, orientation, material,

time of day and observation angle along with other factors that affect the received

intensity of the object. Under the H0 hypothesis when no object is present, the model

in Equation (3.1) is still accurate by setting the intensity of the object to zero.

The expected image on the detector, given in Equation (3.2), can be determined

39



using the model for the expected data along with the model for the space object

(Equations (2.10) and (3.1)). There is some level of additive background noise, B,

associated with the image as discussed in Section 2.4.

E[d(x, y)] = E

[ ∞∫
−∞

∞∫
−∞

θδ(u, v)h(x− u, y − v) du dv

]
+B. (3.2)

Using the sifting property of the Dirac function [34], the double integral expression

for the expected value of the image can be simplified.

E[d(x, y)] = θh(x, y) +B. (3.3)

The conditional expected value for the data under each hypothesis is developed.

The object intensity, θ, is either an unknown value greater than zero under H1 or

equal to zero when no object is present under H0.

E[d(x, y)|H0] = B. (3.4)

E[d(x, y)|H1] = θh(x, y) +B. (3.5)

As explained in Chapter 2, the background is a Gaussian distributed random

variable with a measurable mean and variance from the pixel values in the image.

To simplify the model for the data used in the development of the algorithm, the

background is subtracted from all collected data. All detection algorithms researched

for this dissertation follow a similar pre-processing step. The background subtracted

data is defined as d′(x, y).

d′(x, y) , d(x, y)−B. (3.6)

Applying a conditional expectation, the models for the background subtracted

data, d′(x, y) are shown in Equations (3.7) and (3.8). When the background is re-
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moved, and no object is present, on average no signal would be present. In the case

of an object present, once the background is removed, the signal is an intensity scaled

version of the PSF.

E[d′(x, y)|H0] = 0. (3.7)

E[d′(x, y)|H1] = θh(x, y). (3.8)

Fourier Domain Telescope Data.

A Fourier transform of the background-removed received data, d′(x, y), is taken

to develop a model for the statistics in the spatial frequency domain. The Fourier

transform of the data is a spatial frequency domain representation of a typical spatial

domain image. Frequency domain analysis is widely used in image reconstruction and

post-processing to improve image resolution [53, 22]. Certain image reconstruction

methods take advantage of removing the tilt component of atmosphere turbulence

when working in the Fourier domain of short exposure images. This allows higher

order aberrations to be averaged over many frames of data to obtain higher resolution

images.

In this research, a standard Fourier kernel as given by Goodman is used to trans-

fer between the spatial and frequency domain [24]. The Fourier transform of the

background subtracted data is given by

D(fx, fy) , F
{
d′(x, y)

}
=

1

N

N∑
x=1

N∑
y=1

d′(x, y)e−j
2π
N

(xfx+yfy).
(3.9)

Here D(fx, fy) is defined as the Fourier transform of the background-removed data,

N is the number of pixels in the window and fx and fy are the spatial frequency

location in the transformed image.
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The form of Equation (3.9) is similar to a random phasor sum which consist of a

random amplitude and phase variable as described by Goodman [24]. Similar to the

derivation of the statistics of a random phasor sum by Goodman, the real (r) and

imaginary (i) components of the Fourier transformed data can be separated using

Euler’s formula and are defined as

Dr(fx, fy) , Re
{
D(fx, fy)

}
=

1

N

N∑
x=1

N∑
y=1

d′(x, y) cos

(
2π

N
(xfx + yfy)

)
.

(3.10)

Di(fx, fy) , Im
{
D(fx, fy)

}
=

1

N

N∑
x=1

N∑
y=1

d′(x, y) sin

(
2π

N
(xfx + yfy)

)
.

(3.11)

For a large N , the real and imaginary components will be approximately Gaus-

sian distributed due to the central limit theorem. As a Gaussian random variable,

their PDF is defined by its mean and variance. Further work will be accomplished

in calculating the mean and variance of the distribution under long exposure imag-

ing scenario in order develop the conditional distribution under each hypothesis to

construct a LRT. The key to the algorithm’s success will be starting with accurate

statistical assumptions which translates to distributions in the Fourier transformed

telescope data.

Working with the real component of the Fourier transformed data, the Fourier

domain LRT is given as

Λ =
P (Dr(fx, fy)|H1)

P (Dr(fx, fy)|H0)

H1

≷
H0

1. (3.12)

where the two conditional PDFs are Gaussian random variables with some mean and

variance. The real component is used in this algorithm’s development since long
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exposure images on average are real and symmetric. Thus, the Fourier transform

of a long exposure image is contained only in the real component. The imaginary

component would contain noise and add no valuable information to the data.

3.3 Algorithm Development

This research is focused on improving space object detection using the LRT algo-

rithm similar to other space detection algorithms [32, 26, 27, 30, 25]. The LRT will

be developed for detecting objects using long exposure spatial data based on the two

binary hypothesis decisions:

• H0: No object is present at the pixel point (x, y).

• H1: An unknown object is present at the pixel point (x, y).

As outlined in Chapter 2, a binary LRT is simply a ratio of the conditional prob-

ability distributions of the data and shown again in Equation (3.13).

Λ =
P (d(x, y))∀(x, y) ∈ [1, N ]|H1

P (d(x, y))∀(x, y) ∈ [1, N ]|H0

H1

≷
H0

1. (3.13)

Long Exposure Statistics.

Under the long exposure scenario, defined as integration times much greater than

10 ms by Goodman [24], the expected atmosphere at different time intervals is not

random, but can be defined using the long exposure OTF given in Equation (2.15).

Due to the averaging nature of turbulence over long time periods, the average PSF

is both even and symmetric [24]. In order to develop a LRT, the PDFs under each

hypothesis must be defined. Therefore, the mean and variance of the real component

of the Fourier transformed and background-removed data under the two hypotheses

must be calculated.
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Null Hypothesis Statistics.

Using the model for the Fourier transformed data in Equation (3.10), the mean of

the real component of the Fourier transformed data conditioned on H0, µ0, is equal

to zero. This is due to the zero-mean nature of the modified spatial data, d′(x, y),

given in Equation (3.7).

µ0 = E[Dr(fx, fy)|H0]

=
1

N

N∑
x=1

N∑
y=1

E[d′(x, y)|H0] cos

(
2π

N
(xfx + yfy)

)
= 0.

(3.14)

The variance of the conditional data, σ2
0, can be calculated, however, it is not as

straight forward as the mean.

σ2
0 = E

[(
(Dr(fx, fy)|H0)− µ0

)2]
= E[(Dr(fx, fy)|H0)2]

= E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfx + yfy)

))2]
.

(3.15)

Equation (3.15) can be expanded using additional variables, u and v, inside the

summation. The variables u and v represent the spatial pixel locations in the data.

σ2
0 =

1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

E

[
d′(x, y)d′(u, v)

]
cos
(2π

N
(xfx + yfy)

)
cos
(2π

N
(ufx + vfy)

)
.

(3.16)

To evaluate all elements of the summation, there are two cases that must be

evaluated separately and then summed. The first case is when x 6= u and y 6= v.

When this occurs the spatial elements of the data are at different pixel locations and

are statistically independent. Referring to Equation (3.7), the variance is equal to
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zero since the expected value term was found to be zero. Under the second case,

x = u and y = v.

Case 1:

σ2
0 =

1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

E
[
d′(x, y)

]
E
[
d′(u, v)

]
cos
(2π

N
(xfx + yfy)

)
× cos

(2π

N
(ufx + vfy)

)
=0.

Case 2:

σ2
0 =

1

N2

N2∑
x=1

N∑
y=1

E
[(
d′(x, y)

)2]
cos2

(2π

N
(xfx + yfy)

)
.

(3.17)

The squared cosine term in the summation can be evaluated over the double

summation by first using the cosine double angle formula [54]. When summing of all

values of x and y from 1 to N, complete periods of the cosine function are summed

and would equal zero for any number of complete periods. Thus, the cosine function

in Equation (3.18) goes to zero and the double angle can be replaced with 1
2
.

cos2
(2π

N
(xfx + yfy)

)
=

1

2
+

cos
(
22π
N

(xfx + yfy)
)

2
. (3.18)

Using the cosine double angle formula, the expression for the variance from Case 2 in
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Equation (3.17) can be reduced to

σ2
0 =

1

N2

N∑
x=1

N∑
y=1

E
[(
d′(x, y)

)2](1

2

)

=
1

2N2

N∑
x=1

N∑
y=1

E
[(
d(x, y)−B

)2]
=

1

2N2

N∑
x=1

N∑
y=1

E
[(
d(x, y)2 − 2d(x, y)B +B2

)]
=

1

2N2

N∑
x=1

N∑
y=1

(
E
[
d(x, y)2

]
− 2E

[
d(x, y)B

]
+ E

[
B2
])
.

(3.19)

The physical number of photons measured by the optical detector, d(x, y), is a Pois-

son distribution random variable which means that the Poisson moment theorem is

applicable [24]. When k is a Poisson random variable with mean k̄, the variance of a

Poisson random variable is given as

E[k2] = k̄2 + k. (3.20)

The Poisson moment theorem along with Equation (3.4) can be used to simplify the

expression for the variance in Equation (3.19).

σ2
0 =

1

2N2

N∑
x=1

N∑
y=1

(
(B2 +B)− 2B2 +B2

)
=

1

2N2

N∑
x=1

N∑
y=1

B

=
B

2
.

(3.21)

Therefore, the variance under the null hypothesis is a sum of the two cases in Equation

(3.17) resulting in

σ2
0 =

B

2
. (3.22)
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Alternate Hypothesis Statistics.

Similar to the null hypothesis, the mean and variance of the real component of

the background-removed Fourier transformed data, µ1 and σ2
1, in Equation (3.10) is

needed to build the LRT. This data will be conditioned on the H1 hypothesis being

true, that is that an object is present in the scene.

Following the standard definition for calculating the mean,

µ1 = E
[
Dr(fx, fy)

]
= E

[
1

N

N∑
x=1

N∑
y=1

(d′(x, y)|H1) cos
(2π

N
(xfx + yfy)

)]
.

(3.23)

Euler’s formula can be used to transfer the trigonometric function to a complex

function which is easier to analytically evaluate [54]. Euler’s formula states

e−jθ = cos θ − j sin θ. (3.24)

There is an imaginary piece involved in Euler’s formula, however the relationship

shown in Equation (3.25) is true and will be used to find the mean.

Re{e−jθ} = cos θ. (3.25)

Thus, the complex form of the mean can then be found. This solution relies on the

assumption that the data is long exposure therefore the average PSF is both entirely
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real and symmetric.

µ1 =
1

N
E

[ N∑
x=1

N∑
y=1

(d′(x, y)|H1)Re
{
e−j

2π
N

(xfx+yfy)
)}]

=
1

N

N∑
x=1

N∑
y=1

E
[
(d′(x, y)|H1)

]
Re
{
e−j

2π
N

(xfx+yfy)
)}

= θ Re

{
1

N

N∑
x=1

N∑
y=1

h(x, y)e−j
2π
N

(xfx+yfy)
)}
.

(3.26)

The expression inside the real component operator of Equation (3.26) is the Fourier

transform of the PSF which is known as the OTF, H(fx, fy). The mean is found to

be

µ1 = θH(fx, fy). (3.27)

The calculations required to find the variance component of the PDF under hypothesis

H1 are more complex than what are used in the null hypothesis case due to the non-

zero mean nature of the data. The standard form for the variance is defined as

σ2
1 = E

[(
Dr(fx, fy)− E[Dr(fx, fy)]

)2
]
. (3.28)

Using the calculated mean from Equation (3.27), expanding the square, and simpli-

fying gives,

σ2
1 = E[D2

r(fx, fy)]− θ2H2(fx, fy). (3.29)

The expected value term in Equation (3.29) is evaluated separately and expanded
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using the complex representation as was done in calculating the mean.

E[D2
r(fx, fy)] =E

[(
1

N

N∑
x=1

N∑
y=1

(d′(x, y)|H1)Re
{
e−j

2π
N

(xfx+yfy)
})2]

=
1

N2
E

[ N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(d′(x, y)|H1)(d′(u, v)|H1)

× Re
{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
}]
.

(3.30)

Where u and v are additional variables used to keep track of the indices in the

summation. The variables u and v represent the pixel locations in the data in the

same way x and y do. The variables are added in order to keep terms separated over

the quadruple summation. Equation (3.30) is split into two cases to evaluate for all

possible outcomes across the 4 summation variables. The first case is when the two

points are the same, meaning x = u and y = v. The second case occurs when the two

points are statistically independent meaning that x 6= u and y 6= v. A Dirac function

is used to separate and evaluate the two cases.

Under the first case,
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E[D2
r(fx, fy)|x = u ∧ y = v] =

1

N2
E

[ N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(d′(x, y)|H1)(d′(u, v)|H1)

× Re
{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
}]
δ(x− u, y − v)

=
1

N2
E

[ N∑
x=1

N∑
y=1

(d′2(x, y)|H1)Re
{
e−j2

2π
N

(xfx+yfy)
}]

=
1

N2

N∑
x=1

N∑
y=1

E

[
(d(x, y)|H1 −B)2

]
Re
{
e−j2

2π
N

(xfx+yfy)
}

=
1

N2

N∑
x=1

N∑
y=1

E

[
((d2(x, y)|H1)− 2B(d(x, y)|H1) +B2)

]
× Re

{
e−j2

2π
N

(xfx+yfy)
}

=
1

N2

N∑
x=1

N∑
y=1

(
E
[
(d2(x, y)|H1)

]
− 2BE

[
(d(x, y)|H1)

]
+ E

[
B2
])

Re
{
e−j2

2π
N

(xfx+yfy)
}
.

(3.31)

Using the Poisson moment theorem from Equation (3.20) and the model for the

data under the H1 hypothesis given in Equation (3.5), this term can be simplified.
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E[D2
r(fx, fy)] =

1

N2

N∑
x=1

N∑
y=1

(
E
[
d2(x, y)|H1

]
− 2BE

[
d(x, y)|H1

]
+ E

[
B2
])

× Re
{
e−j2

2π
N

(xfx+yfy)
}

=
1

N2

N∑
x=1

N∑
y=1

((
(θh(x, y) +B)2 + θh(x, y) +B

)
− 2B

(
θh(x, y) +B

)
+B2

)
Re
{
e−j2

2π
N

(xfx+yfy)
})

=
1

N2

N∑
x=1

N∑
y=1

((
θ2h2(x, y) + θh(x, y) +B

)
Re
{
e−j2

2π
N

(xfx+yfy)
})

.

(3.32)

The next step is to evaluate the second case of Equation (3.30) where x 6= u and
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y 6= v.

E[D2
r(fx, fy)|x 6= u ∧ y 6= v] =

1

N2
E

[ N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(
(d′(x, y)|H1)(d′(u, v)|H1)

× Re
{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
})](

1− δ(x− u, y − v)
)

=
1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(
E
[
d′(x, y)|H1

]
E
[
d′(u, v)|H1

]
Re
{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
})

×
(
1− δ(x− u, y − v)

)
=

1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(
(θh(x, y))(θh(u, v))Re

{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
})

×
(
1− δ(x− u, y − v)

)
=

1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

(
(θh(x, y))(θh(u, v))Re

{
e−j

2π
N

(xfx+yfy)
}

Re
{
e−j

2π
N

(ufx+vfy)
})

− 1

N2

N∑
x=1

N∑
y=1

(
(θ2h2(x, y))Re

{
e−j2

2π
N

(xfx+yfy)
})

.

(3.33)

Again, under the long exposure case the PSF is real, Equation (3.33) can be simplified

by recognizing that it is contains Fourier transforms of the PSF. This simplification

gives,

E[D2
r(fx, fy)] =θ2H2(fx, fy)−

1

N2

N∑
x=1

N∑
y=1

(
(θ2h2(x, y))Re

{
e−j2

2π
N

(xfx+yfy)
})

.

(3.34)

The results from the two cases (Equation (3.32) and (3.34)) must be summed and
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simplified.

E[D2
r(fx, fy)] =

1

N2

N∑
x=1

N∑
y=1

((
θ2h2(x, y) + θh(x, y) +B

)
Re
{
e−j2

2π
N

(xfx+yfy)
})

+ θ2H2(fx, fy)−
1

N2

N∑
x=1

N∑
y=1

(
(θ2h2(x, y))Re

{
e−j2

2π
N

(xfx+yfy)
})

=
1

N2

N∑
x=1

N∑
y=1

((
θh(x, y) +B

)
Re
{
e−j2

2π
N

(xfx+yfy)
})

+ θ2H2(fx, fy).

(3.35)

Equation (3.35) can be converted back into a trigonometric function and simpli-

fied using the cosine double angle function shown in Equation (3.18). Additionally,

summing up all points of the PSF will always equal one and leads to the following

simplification.

E[D2
r(fx, fy)] =

1

N2

N∑
x=1

N∑
y=1

((
θh(x, y) +B

)(1

2
+
cos
(
22π
N

(xfx + yfy)
)

2

))
+ θ2H2(fx, fy)

=
1

N2

N∑
x=1

N∑
y=1

(
θh(x, y)

2
+
B

2
+
θh(x, y)

2
cos
(
2

2π

N
(xfx + yfy)

)
+
B

2
cos
(
2

2π

N
(xfx + yfy)

))
+ θ2H2(fx, fy)

=
θ

2N2
+
B

2
+

θ

2N2

N∑
x=1

N∑
y=1

h(x, y) cos
(
2

2π

N
(xfx + yfy)

)
+

B

2N2

N∑
x=1

N∑
y=1

cos
(
2

2π

N
(xfx + yfy)

)
+ θ2H2(fx, fy).

(3.36)

Using the frequency scaling property of Fourier transforms [34], Equation (3.36) can
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be further simplified.

E[D2
r(fx, fy)] =

θ

2N2
+
B

2
+
θH(2fx, 2fy)

N
+

B

2N
δ(2fx, 2fy) + θ2H2(fx, fy). (3.37)

Lastly, the results from Equation (3.37) can be substituted into Equation (3.29) to

arrive at the solution to the variance.

σ2
1 =

θ

2N2
+
B

2
+
θH(2fx, 2fy)

N
+

B

2N
δ(2fx, 2fy). (3.38)

Under a dim object scenario, the target intensity, θ, is near the background level,

N is over 100, and the OTF, H, is a number less than or equal to one. Thus, the

variance is going to be dominated by the B
2

term and can be approximated.

σ2
1 u

B

2
. (3.39)

Developed Likelihood Ratio Test.

The LRT utilizing long exposure data can now be developed based on the mean

and variances found under both hypotheses (Equations (3.14), (3.22), (3.27) and

(3.39)) applied to a Gaussian PDF. As explained in Section 3.2, the LRT is defined

as the ratio of two conditional Gaussian random variables following Equation (3.12).

P (Dr(fx, fy)|H1) =
1√

2πσ2
1

e
− (Dr(fx,fy)−µ1)2

2σ2
1

=
1√
πB

e−
(Dr(fx,fy)−θH(fx,fy))2

B .

(3.40)

P (Dr(fx, fy)|H0) =
1√

2πσ2
0

e
− (Dr(fx,fy)−µ0)2

2σ2
0

=
1√
πB

e−
D2
r (fx,fy)

B .

(3.41)
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Thus the LRT is

Λ =
P (Dr(fx, fy)|H1)

P (Dr(fx, fy)|H0)

H1

≷
H0

1

=

1√
πB
e−

(Dr(fx,fy)−θH(fx,fy))2

B

1√
πB
e−

D2
r (fx,fy)

B

H1

≷
H0

1

=e(2Dr(fx,fy)θH(fx,fy)−θ2H2(fx,fy))
H1

≷
H0

1.

(3.42)

To test the data against the LRT it is ideal to isolate the data and compare that to a

threshold value. The real component of the Fourier transformed data is isolated and

results in

Dr(fx, fy)
H1

≷
H0

θH(fx, fy)

2
. (3.43)

The terms on the right-hand side of Equation (3.43) are defined as the threshold

value, τ .

θH(fx, fy)

2
, τ. (3.44)

Similar to the other detection algorithms as discussed in Chapter 2, this is a

simple test comparing the real component of the Fourier transformed telescope data

to a single threshold. Using a simple threshold value allows the PFA to be set at the

desired level based on the threshold.

3.4 Experiment Description

To evaluate the performance of the algorithm, data was simulated in MATLAB to

test the performance of the Fourier domain algorithm against a spatial domain corre-

lator and a point detector algorithm. The model generates realistic data that would

mimic the data received from a telescope conducting space object detection. The

MATLAB model accounts for random fluctuations in intensity due to the atmosphere
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along with the Poisson distributed randomness associated with photon counting at

the CCD sensor.

Atmospheric Turbulence.

To accurately generate telescope data, the model for the atmospheric turbulence

must create realistic phase screens that mimic long exposure turbulence statistics.

Previous research has shown that without the presence of extreme winds or very long

times between images the statistics of the atmosphere will contain correlation between

each time instance [52, 44]. Over the long exposure times examined in this research,

the phase error induced by the atmosphere will be correlated and evolve over time.

Utilizing the research of Putnam [52], the Zernike coefficients used to generate the

model for the atmosphere are based on Taylor’s frozen flow hypothesis [55] and will

evolve over time depending on the correlation coefficient between time instances. This

model allows thousands of correlated instances of the atmosphere to be generated in

MATLAB given the atmospheric seeing conditions and wind speeds. One instance

of a simulated short exposure and long exposure PSF from this data set is shown in

Figure 11.

Figure 11. Single realization of the short exposure PSF (left side). Single realization
of the long exposure PSF (right side).
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Simulated Data.

The long exposure PSF was used to model the point source object following Equa-

tion (2.15). The long exposure model implies that integration times of greater than

100 ms are used to capture each frame and which averages the lower order Zernike

aberrations to obtain a blurred and spread PSF. Combining the model for the data,

optical system, and the atmospheric turbulence, simulated data is generated in MAT-

LAB for both the H1 and H0 hypotheses. The signal background and target intensity

can be varied to give varying SNR levels to evaluate performance differences. Two

different references are used in this chapter when characterizing SNR values. Either

a point source SNR or spatial correlator SNR. Each of these are significantly differ-

ent due to the intensity needed to achieve the desired SNR value for each algorithm.

Point source SNR values of one, three and six were examined for this research. As

explained in Chapter 2, a point detector SNR six object implies that the normal-

ized average signal is greater than six standard deviations from the noise floor of the

background. The intensity level for a spatial correlator SNR six object is significantly

less than a point detector. The parameters used to simulate this data in MATLAB

are summarized in Table 2. An individual realization of the images under the H1

hypothesis at different signal levels are shown in Figure 12. Spatial correlator SNR

six data was also simulated for analysis in this research and is shown in Figure 13.

Table 2. Parameters used to create simulated data in MATLAB.

Parameter Value

Background Intensity, B 10 Photons/pixel

Object Intensity, θ
11,000 Photons (Point Detector SNR 6)
1,050 Photons (Correlator SNR 6)

Telescope Diameter, D 0.50 m
Fried Parameter, r0 5.0 cm
Grid size, N 51 x 51 pixels
Number of Frames 10,000

57



Figure 12. Simulated H1 spatial data (left side). Real component of the Fourier trans-
form of the H1 data (right side). Top row - point detector SNR 1, middle row - point
detector SNR 3, bottom row - point detector SNR 6.

Under the H0 hypothesis, no object is present. However, it is possible that noise

could appear as an object. To simulate data under this hypothesis, the intensity is
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Figure 13. Spatial correlator SNR 6 simulated H1 spatial data (left side). Real compo-
nent of the Fourier transform of the H1 data (right side).

set to zero and the same process implemented to create the H1 data is utilized. One

realization of data under the H0 hypothesis is shown in Figure 14.

Although not apparent to the human eye when looking at the examples in Figures

12 and 13, it should be noted that there is a significant different in point detector SNR

6 data and correlator SNR 6 data. Due to the inherent nature of the algorithms, a

point detector SNR 6 will require significantly more photons than a spatial correlator.

Figure 14. Simulated H0 spatial data (left side). Real component of the Fourier trans-
form of the H0 data (right side).
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Algorithm Implementation.

The spatial correlator, Fourier point detector and point detector algorithms are

implemented in MATLAB following Equations (2.2), (2.5) and (3.43). Multiple cor-

related short exposure PSFs are generated and averaged together to obtain a long

exposure PSF. The intensity scaled PSF with additive Gaussian background noise

and Poisson photon counting noise was incorporated to obtain a set of long exposure

images. Each of the three algorithms use the same data set and no additional data

to ensure bias is not introduced into the process. The algorithm processes both the

H1 and the H0 data in the exact same manner and has no knowledge on if an object

is present in the scene or not.

3.5 Results & Analysis

A LROC curve was used for comparing performance of the three detection algo-

rithms. The LROC curve, as described in Chapter 2, contains information on the

probability of detection against the probability of false alarm. This plot is useful

since this research is looking to increase the detection performance while maintaining

a desired false alarm rate. By examining a specific spot on the curve, a desired false

alarm rate can be set and the detection probability examined for multiple algorithms.

Receiver Operating Characteristic Curve.

Using Equation (2.6), the PD is computed using the Gaussian CDF with the mean,

Λ, and variance, σ2
Λ, of the SNR statistics from the LRT [44].

Likewise, the PFA is calculated using the same method however the LRT statistic

are based on the algorithm’s performance using data from the H0 hypothesis. The

false alarm probability is calculated as shown in Equation (2.7).

The LRT SNR values for each algorithm using the point detector SNR 6 data set
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are shown in Figures 15, 16 and 17. The LRT values are also computed using the

spatial correlator SNR 6 data set and shown in Figures 18, 19 and 20.

Figure 15. LRT values for the point detector algorithm using point detector SNR 6
data.

Using the results from each LRT, the LROC curve for each data set is generated

and shown in Figures 21 and 22. In Figure 21, there appears to be only 2 lines, how-

ever, both the Spatial and Fourier correlation algorithms had the same performance

and are plotted on each other. To better visualize the difference at extremely low

false alarm rates, the log10 of the false alarm rate is plotted.

The statistics of the LRT SNR values are used to generate the LROC curves for

each algorithm. When the curves are plotted on the same LROC plot, the PD for

a specific PFA is illustrated for both the spatial and Fourier detectors. The LROC

curves in Figures 21 and 22, shows that for any given PFA, the spatial and Fourier

correlation detectors significantly outperform the point detector since the detection

probability is significantly higher for a given false alarm rate. The Fourier point source
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Figure 16. LRT values for the spatial correlator algorithm using point detector SNR 6
data.

Figure 17. LRT values for the Fourier correlator algorithm using point detector SNR
6 data.
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Figure 18. LRT values for the point detector algorithm using spatial correlator SNR 6
data.

Figure 19. LRT values for the spatial correlator algorithm using spatial correlator SNR
6 data.
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Figure 20. LRT values for the Fourier correlator algorithm using spatial correlator
SNR 6 data.

Figure 21. LROC curve using point detector SNR 6 data for each of the three algo-
rithms.
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Figure 22. LROC curve using spatial correlator SNR 6 data for each of the three
algorithms.

and spatial correlation algorithm each achieved a 40-50% increase in the probability

of detection at the 10−9 false alarm rate using both sets of data.

Although the Fourier point detector did not outperform a spatial correlator, it

did perform on par with the spatial correlator with less information. Taking the

Fourier transform of the data and examining a single pixel point does not require

information on the shape of the PSF which is required by the spatial correlator.

This is significant in that a PSF is not always known and even if it is known, it

may not be accurate. As a telescope slews across the sky, atmospheric conditions will

dramatically change which would result in a different PSF. The Fourier point detector

works independent of telescope pointing position and the shape of the PSF. If the

PSF shape the spatial correlator uses in the detection process is different than the

truth, the performance will significantly decrease. To test this, the spatial correlation

algorithm was processed again with a PSF that was different than the true PSF. The
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modified PSF was simulated to be smaller than the true PSF as shown in Figure 23.

The Fourier and spatial algorithms were processed using the same simulated data

set as above and the detection performance was plotted using a LROC curve. The

results, shown in Figure 24, show that the Fourier point source detector achieves a

34% increase in detection probability at a false alarm rate of 10−9 in a scenario where

the true PSF shape is not known. The difference in the detection performance will

vary based on how off the estimated PSF is from the true shape.

Figure 23. PSFs simulated in MATLAB with two different shapes for use by a spatial
correlator. Left side - true PSF. Right side - wrong PSF

3.6 Conclusion

In this chapter, a Fourier point detection algorithm using the real component of

the Fourier transform of the spatial data is investigated. The algorithm was developed

based on long exposure atmospheric turbulence models that account for turbulence

correlation between each frame along with an optical model for the telescope system

and the expected received data. Using the models for the data a LRT was designed

based on the conditional probabilities of the data under both the hypothesis that an

object is in the scene and the hypothesis that no object is in the scene. To test the
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Figure 24. LROC curve comparing performance of Fourier point detector to a spatial
correlation algorithm utilizing the wrong PSF shape.

performance of the algorithm, data was simulated in MATLAB and LROC curves

were generated based on the statistics of the LRT.

The research in this chapter was focused on image processing in the Fourier domain

to increase the probability of detecting unknown space objects. The results from the

LROC curve show that the Fourier point detector will significantly outperform a

spatial point detector. Additional, it performs nearly the same as the spatial domain

correlator. Upon further evaluation, these are the results we would expect due to

the nature of the spatial correlator. Specifically, this is because the real component

of the Fourier transform of the data is mathematically equivalent to the spatial data

which contains only a real signal. This research was focused on exploiting the Fourier

domain image to obtain information that would further separate the PDFs under

each hypothesis from the spatial domain. Using simulated data at various SNR levels,

LROC curve analysis showed a 40-50% increase in the probability of detection at a
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false alarm rate of 10−9 compared to a traditional point detector.

The algorithm developed in this chapter significantly improved the detection capa-

bility over a point detector algorithm like the one utilized by many telescopes within

the space community. Just as significant, this algorithm provides the same perfor-

mance as the spatial correlator but with less information required to operate. An

accurate PSF model and shape is not needed to operate the Fourier point detector.

This is significant since the PSF is constantly changing and operators don’t always

have a good understanding of the expected PSF. When comparing the Fourier point

detection algorithm to a spatial correlator using an incorrect PSF, the Fourier point

detector produced a 34% increase in detection probability. The simplicity of this

algorithm allows for the Fourier domain analysis to be implemented in systems that

are already working in the Fourier domain without using a spatial domain correlator

technique dependent on knowing the exact PSF shape.
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IV. Fourier Correlator Algorithm Utilizing Joint Probability
Likelihood Ratio Detection

4.1 Introduction

The research in this chapter further explores the potential for detection perfor-

mance advantages when operating in the Fourier domain of long exposure images of

small and/or dim space objects from ground-based telescopes. A binary hypothesis

test is developed based on the joint probability distribution function of the image

under the hypothesis that an object is present and under the hypothesis that no ob-

ject exists. The detection algorithm tests each pixel point of the Fourier transformed

images to make the determination if an object is present based on the criteria thresh-

old found in the likelihood ratio test. Using simulated data, the performance of the

Fourier domain detection algorithm is compared to a spatial correlator used in space

object detection applications to evaluate its value.

The Fourier domain correlation algorithm developed in this chapter is a natural

extension of the Fourier point source detector examined in Chapter 3 in the same

way that a spatial correlator expands on a spatial point source detector. Spatial

frequency analysis is not a new area of research as it has been utilized in previous

image processing technique. Specifically, imaging in the short exposure regime using

post-processing techniques such as speckle imaging reconstruction and lucky imaging

[37, 38, 39, 42, 19]. The research in this chapter is focused on purely detection and

not directly improving the resolution of the image by expanded and developing a LRT

utilizing joint Gaussian probability distribution statistics.
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4.2 Data Model

As in Chapter 3, the research in this chapter uses the real component of the

Fourier transform of the long exposure spatial images captured by a ground-based

optical telescope. There are two hypotheses for modeling the spatial image obtained

by the telescope. Under the first hypothesis, H1, the data contains a distorted point

source object along with various noise sources and under the H0 hypothesis, the data

does not contain an object. Preprocessing of the raw telescope data measures and

removes the background noise. The first and second order statistical models developed

for the data in Chapter 3 are given again below as they are used extensively in the

development of the Fourier correlation algorithm in this chapter.

E[d(x, y)|H0] = B. (4.1)

E[d(x, y)|H1] = θh(x, y) +B. (4.2)

Dr(fx, fy) , Re
{
D(fx, fy)

}
=

1

N

N∑
x=1

N∑
y=1

d′(x, y) cos

(
2π

N
(xfx + yfy)

)
. (4.3)

µ0 = E[Dr(fx, fy)|H0]

= 0.

(4.4)

σ2
0 = E

[(
(Dr(fx, fy)|H0)− µ0

)2]
=
B

2
.

(4.5)
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µ1 = E
[
Dr(fx, fy)|H1

]
= θH(fx, fy).

(4.6)

σ2
1 = E

[(
Dr(fx, fy)|H1 − µ1)2

]
=

θ

2N2
+
B

2
+
θH(2fx, 2fy)

N
+

B

2N
δ(2fx, 2fy).

(4.7)

4.3 Algorithm Development

The Fourier correlation algorithm developed and evaluated in this chapter is based

on building a LRT using the conditional joint PDFs of the data under each hypoth-

esis. Working in the spatial domain, each pixel in a spatial image is statistically

independent from one another. However, converting to the Fourier domain, the im-

age contains information on the spatial frequency content of the image and doesn’t

follow the same statistical independence property. To account for the correlation

between spatial frequencies, a covariance matrix must be developed to build a con-

ditional joint LRT. Each element of a covariance matrix represents the covariance

between two points, m and n. Each element on the diagonal of a covariance matrix

relays the variance of the mth spatial frequency.

A covariance matrix, Σ, is generated from the covariance between any two spatial

frequency points, Drm and Drn , in the image as given in Equation (4.8).

71



Σm,n = cov

(
DrmDrn

)
= E

[(
Dr(fxm , fym)− E

[
Dr(fxm , fym)

])(
Dr(fxn , fyn)− E

[
Dr(fxn , fyn)

])]
= E

[
Dr(fxm , fym)Dr(fxn , fyn)

]
− E

[
Dr(fxm , fym)

]
E
[
Dr(fxn , fyn)

]
= Γm,n − E

[
Dr(fxm , fym)

]
E
[
Dr(fxn , fyn)

]
.

(4.8)

Similarly, the correlation, Γ, between two spatial frequencies is defined as shown

in Equation (4.9). This equation utilizes the model for the data as given in Equation

(4.3) and is a component in the covariance. To represent that two distinct points are

being observed, a change of variables from (x, y) to (u, v) in the second half of this

equation is necessary.

Γm,n =E

[
Dr(fxm , fym)Dr(fxn , fyn)

]
=E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos

(
2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
x=1

N∑
y=1

d′(u, v) cos

(
2π

N
(ufxn + vfyn)

))]
.

(4.9)

Null Hypothesis Statistics.

In this subsection, statistics under the null hypothesis are calculated. This implies

that the data, Dr is conditioned on the H0 hypothesis and has a mean and variance

given in Equations (4.4) and (4.5). An analytical derivation of the covariance matrix

under the H0 hypothesis, Σ0, is evaluated using the standard form for covariance

given in Equation (4.8). In order to separate out the work, first the correlation is
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calculated using Equation (4.9). In order to evaluate the correlation, there are two

cases that must be solved independently. One where the two points are the same,

d(x, y) = d(u, v), and when they are different, d(x, y) 6= d(u, v).

CASE 1. x = u, y = v

ΓDrmDrn |H0 =

=E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
u=1

N∑
v=1

d′(u, v) cos
(2π

N
(ufxn + vfyn)

))]
δ(x− u, y − v)

=E

[
1

N2

N∑
x=1

N∑
y=1

d′2(x, y) cos
(2π

N
(xfxm + yfym)

)
cos
(2π

N
(xfxn + yfyn)

)]

=
1

N2

N∑
x=1

N∑
y=1

E

[
d′2(x, y)

]
cos
(2π

N
(xfxm + yfym)

)
cos
(2π

N
(xfxn + yfyn)

)
.

(4.10)

The expression can be simplified using Prosthaphaeresis formula given in Equation

(4.11) along with a utilization of the Poisson moment theorem in Equation (4.12) [56].

cosα cos β =
cos(α + β) + cos(α− β)

2
. (4.11)

E[d′(x, y)2|H0] = (B2 +B)− 2B2 +B2

= B.

(4.12)

This results in an expression for the correlation under this first case where the

two points are the same.
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ΓDrmDrn |H0 =

=
1

2N2

N∑
x=1

N∑
y=1

E

[
d′2(x, y)

](
cos

(
2π

N
(xfxm + yfym) +

2π

N
(xfxn + yfyn)

)
+ cos

(
2π

N
(xfxm + yfym)− 2π

N
(xfxn + yfyn)

))
=

1

2N2

[ N∑
x=1

N∑
y=1

B cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))

+
N∑
x=1

N∑
y=1

B cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))]

=
B

2N2

[ N∑
x=1

N∑
y=1

cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))

+
N∑
x=1

N∑
y=1

cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))]
=
B

2
δ
(
(fxm + fxn), (fym + fyn)

)
+
B

2
δ
(
(fxm − fxn), (fym − fyn)

)
.

(4.13)

Case 2 is slightly easier to solve due to the zero-mean nature of the data under

H0.
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CASE 2. x 6= u, y 6= v

ΓDrmDrn |H0 =E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
u=1

N∑
v=1

d′(u, v) cos
(2π

N
(ufxn + vfyn)

))]
(1− δ(x− u, y − v))

=E

[
1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

d′(x, y)d′(u, v) cos

(
2π

N
(xfxm + yfym)

)
× cos

(
2π

N
(ufxn + vfyn)

)]
(1− δ(x− u, y − v))

=
1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

E

[
d′(x, y)

]
E

[
d′(u, v)

]
cos

(
2π

N
(xfxm + yfym)

)
× cos

(
2π

N
(ufxn + vfyn)

)]
(1− δ(x− u, y − v))

=0.

(4.14)

The results from the two cases (results in Equations (4.13) and (4.14)) are com-

bined to give an expression for the correlation between two points.

ΓDrmDrn |H0 =
B

2
δ
(
fxm + fxn , fym + fyn

)
+
B

2
δ
(
fxm − fxn , fym − fyn

)
. (4.15)

The covariance can then be calculated using Equation (4.8). Since the mean of

the data under this hypothesis is zero, the covariance is equal to the correlation.

Due to the long exposure nature of the data and that the real component of the

Fourier transform was taken, the data will be symmetric. Thus, only the positive

frequencies are considered in processing the data with the algorithm. With only

positive frequencies, the first Dirac function will always be zero unless all spatial
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frequencies, fxm , fxn , fym , fyn , are equal to zero.

Σm,n|H0 = ΓDrmDrn |H0 − E

[
Dr(fxm , fym)

]
E

[
Dr(fxn , fyn

]
=
B

2
δ
(
fxm + fxn , fym + fyn

)
+
B

2
δ
(
fxm − fxn , fym − fyn

)
.

(4.16)

Alternative Hypothesis Statistics.

Similar to the previous subsection, statistics under the alternative hypothesis are

calculated in this subsection. This implies that the data, Dr is conditioned on the

H1 hypothesis and has a mean and variance given in Equations (4.6) and (4.7). The

steps in deriving the statistics are the same but more difficult in this subsection due

to the non-zero nature of the mean. As before, when calculating the correlation, there

are two cases that must be solved independently. One where the two points are the

same, d(x, y) = d(u, v), and when they are different, d(x, y) 6= d(u, v).

Under the H1 hypothesis, the following equations are used in evaluating the cor-

relation.

E[(d′(x, y)|H1)2] = E
[(
d(x, y)|H1 −B

)2]
= E

[
(d(x, y)|H1)2 − 2B(d(x, y)|H1) +B2

]
.

(4.17)

The Poisson moment theorem along with the model for the data in Equation (4.2)

can be used to simplify this expression.

E[(d′(x, y)|H1)2] =(θh(x, y) +B)2 + (θh(x, y) +B)− 2B(θh(x, y) +B) +B2

=θ2h2(x, y) + 2Bθh(x, y) +B2 + θh(x, y) +B − 2Bθh(x, y)

− 2B2 +B2

=θ2h2(x, y) + θh(x, y) +B.

(4.18)
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CASE 1. x = u, y = v

ΓDrmDrn |H1 =E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
u=1

N∑
v=1

d′(u, v) cos
(2π

N
(ufxn + vfyn)

))]
δ(x− u, y − v)

=E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxn + yfyn)

))]

=
1

N2

N∑
x=1

N∑
y=1

E

[
d′2(x, y)

]
cos

(
2π

N
(xfxm + yfym)

))
× cos

(
2π

N
(xfxn + yfyn)

))
=

1

2N2

N∑
x=1

N∑
y=1

E

[
d′2(x, y)

](
cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))
+ cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

)))
.

(4.19)

The expected value of the square of the background-removed data was previously

calculated using the Poisson moment theorem in Equation (4.18). This result is

substituted into the expression to give,

ΓDrmDrn |H1 =
1

2N2

N∑
x=1

N∑
y=1

(θ2h2(x, y) + θh(x, y) +B)

× cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))
+

1

2N2

N∑
x=1

N∑
y=1

(θ2h2(x, y) + θh(x, y) +B)

× cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))
.

(4.20)
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Expanding the expression out shows that it is a series of Fourier transforms and

Diracs,

ΓDrmDrn |H1 =
1

2N2

N∑
x=1

N∑
y=1

θ2h2(x, y) cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))

+
1

2N2

N∑
x=1

N∑
y=1

θh(x, y) cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))

+
1

2N2

N∑
x=1

N∑
y=1

B cos

(
2π

N

(
x(fxm + fxn) + y(fym + fyn)

))

+
1

2N2

N∑
x=1

N∑
y=1

θ2h2(x, y) cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))

+
1

2N2

N∑
x=1

N∑
y=1

θh(x, y) cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))

+
1

2N2

N∑
x=1

N∑
y=1

B cos

(
2π

N

(
x(fxm − fxn) + y(fym − fyn)

))
=
θ2

2N
F [h2(x, y)|(fxm + fxn , fym + fyn)] +

θ

2N
H(fxm + fxn , fym + fyn)

+
B

2
δ(fxm + fxn , fym + fyn) +

θ2

2N
F [h2(x, y)|(fxm − fxn , fym − fyn)]

+
θ

2N
H(fxm − fxn , fym − fyn) +

B

2
δ(fxm − fxn , fym − fyn).

(4.21)
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CASE 2. x 6= u, y 6= v

ΓDrmDrn |H1 =E

[(
1

N

N∑
x=1

N∑
y=1

d′(x, y) cos
(2π

N
(xfxm + yfym)

))

×
(

1

N

N∑
u=1

N∑
v=1

d′(u, v) cos
(2π

N
(ufxn + vfyn)

))](
1− δ(x− u, y − v)

)
=

1

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

E

[
d′(x, y)

]
E

[
d′(u, v)

]
cos
(2π

N
(xfxm + yfym)

)
× cos

(2π

N
(ufxn + vfyn)

)(
1− δ(x− u, y − v)

)
=
θ2

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

h(x, y)h(u, v) cos
(2π

N
(xfxm + yfym)

)
× cos

(2π

N
(ufxn + vfyn)

)(
1− δ(x− u, y − v)

)
=
θ2

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

h(x, y)h(u, v) cos
(2π

N
(xfxm + yfym)

)
× cos

(2π

N
(ufxn + vfyn)

)
− θ2

N2

N∑
x=1

N∑
y=1

N∑
u=1

N∑
v=1

h(x, y)h(u, v)

× cos
(2π

N
(xfxm + yfym)

)
cos
(2π
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(
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(
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(4.22)
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Adding the results from the two cases (Equations (4.21) and (4.22)) together gives

the complete expression for the correlation between two spatial frequencies under the

H1 hypothesis.

ΓDrmDrn |H1 =
θ2

2N
F [h2(x, y)|(fxm + fxn , fym + fyn)] +

θ

2N
H(fxm + fxn , fym + fyn)

+
B

2
δ(fxm + fxn , fym + fyn) +

θ2

2N
F [h2(x, y)|(fxm − fxn , fym − fyn)]

+
θ

2N
H(fxm − fxn , fym − fyn) +

B

2
δ(fxm − fxn , fym − fyn)

+ θ2H(fxm , fym)H(fxn , fyn)

− θ2

2N

(
F [h2(x, y)|(fxm + fxn , fym + fyn)]

+ F [h2(x, y)|(fxm − fxn , fym − fyn)]

)
=θ2H(fxm , fym)H(fxn , fyn) +

θ

2N
H(fxm + fxn , fym + fyn)

+
θ

2N
H(fxm − fxn , fym − fyn)

+
B

2
δ(fxm + fxn , fym + fyn) +

B

2
δ(fxm − fxn , fym − fyn).

(4.23)

The covariance can then be calculated using Equation (4.8) and the correlation

results. This result differs from the H0 hypothesis since the mean is nonzero under

H1. Like the H0 case, with only positive frequencies, the first Dirac function will
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always be zero unless fxm , fxn , fym + fyn are all equal to zero.

Σm,n|H1 =ΓDrmDrn |H1 − E

[
Dr(fxm , fym)

]
E

[
Dr(fxn , fyn

]
=θ2H(fxm , fym)H(fxn , fyn) +

θ

2N
H(fxm + fxn , fym + fyn)

+
θ

2N
H(fxm − fxn , fym − fyn) +

B

2
δ(fxm + fxn , fym + fyn)

+
B

2
δ(fxm − fxn , fym − fyn)− θ2H(fxm , fym)H(fxn , fyn)

=
θ

2N
H(fxm + fxn , fym + fyn) +

θ

2N
H(fxm − fxn , fym − fyn)

+
B

2
δ(fxm + fxn , fym + fyn) +

B

2
δ(fxm − fxn , fym − fyn).

(4.24)

Likelihood Ratio Test.

Due to the off-diagonal covariance between frequencies, the joint probability is not

the sum of the individual probabilities. The joint probability will follow a multivariate

Gaussian distribution given as

P (Dr|Hk) =
1

(2π)(N
2

2
)|Σk|(

1
2

)
exp

{
− 1

2
(Dr − µk)TΣk

−1(Dr − µk)
}
. (4.25)

The random variable image data, Dr|Hk, is a N2 x 1 vector of the real component

of the Fourier transformed and background-removed data. The covariance matrix,

Σk, is size N2 x N2 and represent the covariance matrix for each hypothesis from

Equations (4.16) and (4.24). The determinant of the covariance matrix, |Σk|, is a 1

x 1. The mean, µk, are N2 x 1 vectors representing the mean of the conditional data

at each spatial frequency pair fx, fy.

The ratio of the two joint conditional probabilities is taken to develop a LRT, Λ,

which is compared to 1. When the ratio is greater than one, H1 case is true and when
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less than one, H0 case is true. The ratio is defined as

Λ =
P (Dr|H1)

P (Dr|H0)

H1

≷
H0

1. (4.26)

Combining Equations (4.25) and (4.26) results in the following

Λ =

1
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2

2 )|Σ1|(
1
2 )
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2
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}
1
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2
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2
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−1(Dr − µ0)

} H1

≷
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1

=

|Σ0|(
1
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) exp
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(Dr − µ1)TΣ1

−1(Dr − µ1)

}
|Σ1|(

1
2

) exp

{
− 1

2
(Dr − µ0)TΣ0

−1(Dr − µ0)

} H1

≷
H0

1.

(4.27)

The LRT can be simplified by taking the natural log of both sides of the LRT equation

to obtain a Log-Likelihood Ratio Test (LLRT),

ln

(
|Σ0|(

1
2

)

|Σ1|(
1
2

)

)
− 1

2
(Dr−µ1)TΣ1

−1(Dr−µ1)+
1

2
(Dr−µ0)TΣ0

−1(Dr−µ0)
H1

≷
H0

0. (4.28)

This expression can be further simplified down to the expression shown in Equation

(4.29) by expanding out the matrix multiplications, substituting the means and fur-

ther combining terms. None of the terms on the right side are data dependent and

would only act as offsets to a threshold so it has been replaced with τ to represent

the threshold since specific threshold values are not needed to evaluate the algorithms

performance.

−Dr
TΣ−1

1 Dr+Dr
TΣ−1

0 Dr+2(θH)TΣ−1
1 Dr

H1

≷
H0

(θH)TΣ−1
1 (θH)−2 ln

(
|Σ0|(

1
2

)

|Σ1|(
1
2

)

)
≡ τ.

(4.29)

The Fourier LRT in this form represents some challenges that must be solved

before it could be implemented using measured data. The first issue is the need to

82



know the target intensity, θ, if an object was in the image. In a detection scenario

this value will not be known and estimating it from the data will be difficult since the

algorithm would have to estimate the intensity when an object was not in the scene

as well. A similar challenge exists in developing each of the covariance matrices since

both also have dependence on the target intensity. Additionally, the OTF, H, cannot

be separated from the data and must be known.

The Fourier correlation LRT investigated further in this research is going to take

components of the complete Fourier LRT derived above to simplify the test and

remove the dependency on θ. This modified approach is shown in Equation (4.30).

The modified Fourier correlation algorithm utilizes the covariance matrix along with

the Fourier transformed data to build a LRT and make a detection decision. The

second term of the Fourier LRT is simply a representation of the spatial correlator

in the frequency domain. Thus, this LRT is taking the data derived by the spatial

correlator using a Fourier transform and including additional information on the

correlation between the received image and the expected image if an object was in

the scene.

HTΣ−1
1 Dr +HTΣ−1

0 Dr

H1

≷
H0

τ. (4.30)

4.4 Simulated Data

Dim space object data was simulated in MATLAB to test the performance of

the Fourier correlation algorithm compared to the matched filter algorithm. The

MATLAB simulation allows access to accurately distributed and realistic looking data

while removing unknowns in the scenarios. Under the H1 hypothesis, the intensity of

the object can be varied to test the algorithm at various SNR levels and data under

the H0 hypothesis can be simulated by setting the intensity to zero. The simulation
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will develop data with accurate long exposure PSF statistics and utilizing built in

Poisson random variable functions to simulate the statistics of the background noise.

The simulation was set up for two different scenarios using the parameters shown

in Table 3. The first and third scenarios have slightly worse seeing conditions with a

r0 value of 5 cm compared to scenario two which was simulated with a r0 value of 8

cm. The object intensity level was adjusted in each scenario to simulate a SNR six

object which has a PD of approximately 0.5 when the PFA is at 10−9 using the spatial

correlator.

Table 3. Parameters used to create simulated data in MATLAB.

Parameter Scenario 1 Scenario 2 Scenario 3

Aperture Diameter, D (m) 0.25 0.25 0.25
Fried Parameter, r0 (cm) 5.0 8.0 5.0
Object Intensity, θ (photons) 1,050 700 700
Background, B (photons) 100 100 100
Window Size, N (pixels) 32 32 32
Number of Frames 100,000 100,000 100,000

Examples of simulated data from the first scenario are shown in Figure 25 which

illustrates one frame of simulated spatial and Fourier transformed data obtained from

the optical system under each of the hypothesis for the first scenario. The long

exposure PSF used to generate the data was created by averaging 100 correlated

short exposure PSFs generated using a statistically accurate atmospheric turbulence

generation approach developed by Putnam [52].

Examples of the simulated data under the better seeing conditions of scenario two

are shown in Figure 26. Only the H1 data was shown in the figure since the H0 data is

just noise and will look similar to scenario one since the atmospheric seeing conditions

doesn’t affect the data when there is no object to image. Under the dimmer object

scenario, the simulated data is shown in Figure 27.
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Figure 25. Scenario 1: Simulated H1 data (left side). Simulated H0 data (right side).
Spatial data (top row). Real component of the Fourier transform of the data (bottom
row).

Figure 26. Scenario 2: Simulated H1 spatial data (left side). Simulated H1 Fourier data
(right side).
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Figure 27. Scenario 3: Simulated H1 spatial data (left side). Simulated H0 Fourier data
(right side).

4.5 Results & Analysis

The simulated data was used to evaluate the performance of the Fourier LRT

against the spatial correlator utilizing a LROC curve. As described in Section 2.3, a

LROC curve allows the performance to be evaluated without setting a specific thresh-

old value across different algorithms. This showcases the performance of contrasting

algorithms at difference detection and false alarm rates.

To build a LROC curve, the statistics of the LLRT must be examined. The

LLRT values under each scenario are shown in Figures 28, 29 and 30. These figures

plot the calculated value from the LLRT based on the data from each scenario. These

mean and variance statistics from these values are used to generate the LROC curves.

Plotting the PDF of the likelihood ratio values is another platform to visualize the

difference in the two algorithms. Using a histogram plot, the distribution for each

hypothesis and scenario are shown in Figures 31, 32 and 33. As the separation between

the H1 and H0 distributions increase, the probability of detection increases and false

positives decreases.

The LROC curves for the three scenarios are shown in Figures 34, 35 and 36.
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Figure 28. Scenario 1: Spatial correlation LLRT values in each simulated frame (left
side). Fourier correlation LLRT values in each simulated frame (left side).

Figure 29. Scenario 2: Spatial correlation LLRT values in each simulated frame (left
side). Fourier correlation LLRT values in each simulated frame (right side).

Under both scenarios one and two, a 23% increase in the PD at a PFA of 10−9 is

achieved by the Fourier correlator. Under the dimmer object scenario, there was an

11% increase in detection probability when a spatial correlator had a 50% chance

of detection. This increase is accomplished through accounting for correlations in

the frequency domain. In each of these plots, a 95% confidence interval bound was

plotted for each algorithm. The upper bound was plotted for the lower performing

algorithm and a lower bound was plotted for the higher performing bound. Each of

these plots show that at a 95% confidence the Fourier correlator algorithm achieves
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Figure 30. Scenario 3: Spatial correlation LLRT values in each simulated frame (left
side). Fourier correlation LLRT values in each simulated frame (right side).

Figure 31. Scenario 1: Spatial correlation PDF showing separation between H1 and
H0 (left side). Fourier correlation PDF showing separation between H1 and H0 (right
side).

a higher probability of detection than a spatial correlation algorithm at a false alarm

rate of10−9.

To run this algorithm, the theoretical covariance matrix in Equations (4.16) and

(4.24) were not utilized. The covariance matrix used by the Fourier LRT was calcu-

lated from the data sample set. This is not the ideal scenario since it would prohibit

real time processing of data but this technique could be utilized to build a covariance

matrix based on the entire set of data in a post-processing detection process. How-
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Figure 32. Scenario 2: Spatial correlation PDF showing separation between H1 and
H0 (left side). Fourier correlation PDF showing separation between H1 and H0 (right
side).

Figure 33. Scenario 3: Spatial correlation PDF showing separation between H1 and
H0 (left side). Fourier correlation PDF showing separation between H1 and H0 (right
side).

ever, the algorithm processes the data for detection the same under both hypotheses.

There is no built-in bias to the post processing scheme that categorizes the data and

allows it to be processed differently.

The results show that when using long exposure data, the Fourier LRT achieves

a significant increase in the detection probability at realistic false alarm rates using

the modified Fourier LRT compared to the matched filter approach. Both techniques

assume that the background level is known along with knowing the atmospheric seeing
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Figure 34. Scenario 1: LROC curve comparing the detection and false alarm rates
between a spatial correlation and Fourier correlation techniques.

Figure 35. Scenario 2: LROC curve comparing the detection and false alarm rates
between a spatial correlation and Fourier correlation techniques.
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Figure 36. Scenario 3: LROC curve comparing the detection and false alarm rates
between spatial correlation and Fourier correlation techniques.

conditions to develop a long exposure PSF. The modified Fourier LRT approach used

in this chapter did not depend on knowing the target intensity but did assume the

covariance matrix could be calculated from the data when an object was present.

This requires the algorithm to operate in a post-processing format and to potentially

collect additional data knowing an object was present to generate the covariance

matrix.

4.6 Conclusion

The goal of the research in this chapter was to improve the detection probabil-

ity of dim space objects for a given false alarm rate. The method proposed in this

chapter was based on utilizing current techniques for gathering long exposure images

taken with a ground-based telescope and altering the post-processing algorithm used

for detection. In detection scenarios, the image is typically processed in the spatial
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domain using a point detector or matched filter spatial correlation. The Fourier corre-

lation algorithm developed in this chapter is based off a modified LLRT utilizing the

statistics of the real component of the Fourier transformed and background-removed

spatial image. It was analytically shown that there is a level of covariance between

frequencies when an object is present that doesn’t exist when no object is present.

The Fourier correlation algorithm is designed to improve upon the spatial correlation

algorithm by taking the covariance into account in the detection process.

The LROC curve analysis using simulated data showed a significant detection

improvement for a given false alarm rate over a spatial correlation technique. When

tested at SNR six levels, a 23% increase in detection was noted. The algorithm was

also tested at a lower SNR four and found a 11% increase in the detection.

The Fourier correlation algorithm was implemented in MATLAB using simulated

data. The algorithm required the covariance matrix to be built from the complete

data set and not the theoretical covariance matrix. This is not an ideal situation

for several reasons. First, two different covariance matrices must be built, one for

the H1 hypothesis and another for the H0 hypothesis. In a blind test for detection

where no apparent object exists, a covariance matrix could not be built from the

data since no detection has been made. Second, if implemented using the theoretical

covariance matrix, the target intensity must be known. The research in this chapter

was unable to decouple the target intensity from the covariance matrix or the LRT

which are both highly dependent on this parameter. When detecting for dim objects,

the target intensity will not be known prior to detection. However, the research in

this chapter did show that there is correlation between spatial frequencies in the

Fourier domain that doesn’t exist in the spatial domain. When these correlations are

correctly applied in the detection process, the detection performance was shown to

improve.
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Further research is needed to implement the full Fourier LRT and to develop a

solution based on having no prior information on the target intensity in the LRT or

in the covariance matrix. While this research showed that correlations in the Fourier

domain exist and can be exploited to improve detection performance, further research

will determine if post-processing long exposure SSA data in the Fourier domain is a

practical approach.
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V. Daylight Space Object Detection Using a Short Exposure
Frame Selection Algorithm

5.1 Introduction

One of the factors seriously limiting space object detection assets is the inade-

quate telescope time available to collect data in support of the detection mission.

Factors such as hardware upgrades, weather and maintenance all affect the amount

of time available for astronomers and operators to collect data. Possibly the greatest

hindrance is the amount of prime night sky time available. Imaging during twilight

and daylight conditions is possible with smaller aperture telescopes but the detection

algorithms are not designed for operating under these conditions. Due to the brighter

background and the limited capabilities of the CCD to not reach saturation, short ex-

posure images become necessary during daylight imaging. With a shorter integration

time, tens to thousands of short exposure images can be captured in the time that a

typical SSA asset collects a single long exposure image. Currently, processing these

short exposure images relies on traditional long exposure methods such as a point

detector or matched filter [27, 30, 57]. Neither of these methods are optimized to im-

prove detection performance for short exposure imaging as they are developed using

long exposure imaging in mind. Lucky imaging is a short exposure image processing

technique used within the astronomical community. Significant research has delivered

near diffraction limited viewing on up to 2.5m ground-based telescope. However, this

technique requires that a guide star be present in the image to evaluate the quality

of each short exposure image [37, 38, 39, 42]. Additionally, this method relies on

registering and combining the retained images to obtain the processed image. This

process is ideal for improving the resolution when imaging an object that is bright

enough to easily detect.
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There are multiple challenges associated with daylight imaging from large tele-

scopes on both the hardware and software side. Sun avoidance, while not difficult, is

necessary to avoid serious damage to optics and sensors. A more difficult challenge

exists due to the heating and cooling of large primary mirrors from sun exposure.

Small temperature changed in the optical material such as the mirror glass cause

large random fluctuations in the optical system that are difficult to measure and cor-

rect. Background light bleeding into the optical path must be mitigated to reduce

noise and avoid saturation of CCD sensors. Despite these challenges, interest in day-

light imaging and detection using large telescopes has increased over the last several

years [58, 41, 21].

This research is focused on improving the capability to detect dim and small space

objects such as satellites and space debris to improve SSA from short exposure data

obtained with current ground based electro-optic systems. The ability to detect dim

objects is greatly impacted by the performance of the detection algorithm used to filter

the data and decide if an unknown space object is present in the noisy scene. This

chapter proposes an improvement upon current detection algorithms by developing

a process to selectively average multiple short exposure images to improve the SNR

and thus improve the detection performance. Frame selection is accomplished using

a two-pass approach to process the data in an effective manner while utilizing a

correlation between the resulting data and the expected PSF. Increasing the ability

to detect space objects from short exposure images taken during daylight conditions

will increase the amount of time a telescope can be operated, provide opportunities to

imaging different parts of the sky and therefore increase the number of space objects

detected, tracked and then cataloged.

The frame selection algorithm developed in this chapter combines a set of short

exposure images that have been filtered to remove images that do not improve the
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correlation of the summed frames with an expected PSF. This process differs from the

point detector, matched filter and lucky imaging techniques in several ways. First,

minimal information is needed to apply this technique. A local guide star or reference

point is not required to correlate the image with a PSF or provide a means to examine

the quality of the image. Second, local registration of frames is not required. When

looking for an unknown object in an image that spans an angle much larger than the

tilt-isoplanatic angle, registering frames locally when no object exists in the frame

results in noise spikes being registered and false alarms are identified. Gross image

registration is still possible using natural guide stars, but this will not remove local

motion caused by atmospheric tilt. Third, a decision on the quality of the image is

made using all the frames of data in the set. This is significantly different than a lucky

imaging technique which evaluates and ranks the quality of each frame individually.

The results of the frame selection short exposure correlation algorithm are com-

pared to the performance of a spatial domain matched filter algorithm like the one

used within the space community whose mission is asteroid and/or debris detection.

The underlying difference lies in the way the short exposure images are averaged. Un-

like a traditional approach which would involve averaging all the frames of data, the

proposed algorithm discards noisy and turbulent frames of data that do not improve

the overall image. The results are illustrated on a LROC curve which highlights the

difference in the probability of detection against the false alarm rate.

5.2 Short Exposure Imaging Techniques

Both traditional spatial correlation and point detection algorithms are designed for

utilizing long exposure data with traditionally low background light. A long exposure

image is generally used because it allows a lower SNR object to be detected while

averaging out lower order atmospheric turbulence and random spikes in intensity due
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to the Poisson nature of the photons received. However, under a daylight imaging

scenario, the background will be dominant in the image and the intensity of the

object appears to be lost in the background light. Short exposure imaging becomes

necessary to avoid saturation in the image due to the limited depth of the camera

pixel wells and the sheer number of photons arriving during longer integration times

in daylight conditions. While there is limited research in detection of space objects

using daylight imaging, short exposure imaging is not a new area of research. As

described in Chapter 2, lucky imaging is a speckle imaging post-processing technique

used within the astronomical community to obtain near diffraction limited images

from ground-based telescopes using many short exposure imaging [8, 9, 14-16].

Short exposure imaging is typically utilized for image reconstruction and for ob-

taining higher resolution imaging from ground-based telescopes. When many frames

of data are taken over the course of a single long exposure image time frame the at-

mosphere over each image is essentially frozen. The brief integration time allows for

some images in a set to obtain near diffraction limited viewing conditions since the

lower order aberrations such as tip and tilt are not averaged in that time instance.

The freezing of the atmosphere over this short time period allows photons to remain

concentrated on the CCD. When a select number of these images are registered and

combined the result is an increase in the resolution of the combined image. Using

the lucky imaging technique with a point source object or a guide star in the image

frame, a metric such as the Strehl ratio is used to evaluate the quality or sharpness

of each individual frame of data. A defined percentage of bad frames are removed

from the ensemble of short exposure images. The remaining frames are then regis-

tered and combined to achieve an improved image [38]. The lucky imaging technique

can provide significant improvements to spatial resolution under the right conditions

and with the appropriate hardware. However, under daylight imaging of dim objects
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the technique loses its advantage since the object’s SNR is too low for the daylight

background and there is no obvious object in the image. As a result, the technique

fails to have an object to register and tends to register random noise spikes in the

frame if a low SNR object exists in the image or not. Additionally, this technique

is difficult to implement in a sky scan and detect mission. Under typical conditions,

lucky imaging has an isoplanatic patch of nearly 1 arc-minute or 0.01667 degrees [37].

In order to scan and detect a single 90-degree portion of the sky would require over

50,000 images using the lucky technique with a guide star. This number of images

would far exceed the time available for the telescope to capture in a given night.

A significant drawback to short exposure imaging is that the shorter integration

time means fewer photons will be measured by the CCD. This fault is typically over-

come by averaging together many frames of data to essentially obtain a long exposure

image. The Poisson photon noise statistics of the averaged image will be comparable

to the sum of the short exposure images since the sum of multiple Poisson random

variables is itself a Poisson random variable with a rate parameter equal to the sum

of the individual rates [16]. An issue with averaging many short exposure images in

traditional night time imaging scenarios is detector readout noise which accumulates

as frames are combined. Unlike photon noise, Gaussian distributed detector noise is

not signal dependent and is a result of the detector and readout electronics [16, 19].

As the number of expected photons decreases for shorter integration times, the

detector noise variance, σ2
n, becomes significant compared to the Poisson rate param-

eter, K̄ . When P frames of data are averaged together, the detector noise variance

follows Gaussian statistics and is a function of the number of frames averaged and

the readout noise variance given in Chapter 2 with Equation (2.18). Under a day-

light imaging scenario, the expected number of photons is significantly large enough

even under short exposure integration times that the readout noise variance becomes
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insignificant in the received image.

5.3 Algorithm Development

Space object detection algorithms utilize both single and multiple spatial images

obtained from ground-based telescopes. Many SSA platforms use multiple frames

in their processing chain, however they begin with being able to detect on a single

frame and use the multiple frames of follow-up data to confirm or reject the detection

decision. Additionally, multiple frames can be tested to reduce the false alarm rate to

an acceptable level. The research in this chapter is focused on improving the ability to

detect a dim space object from a single frame of data so that detection can be passed

on to further multi-frame analysis techniques and follow-up analysis. The detection

process chain sometimes includes some amount of pre-processing of the data to do

tasks such as measure background, discard faulty pixels or remove known objects

from the image using telescope pointing information and a celestial map [59].

This algorithm takes advantage of the short exposure atmospheric turbulence to

improve the SNR of the data. The data is divided into subsets of ten frames that

will be processed together to emulate a camera imaging at a rate of 10-25 ms. This

short time is chosen to reflect the fact that sky surveys looking for new objects must

scan the sky in a reasonable amount of time. Instead of simply stacking the images

to obtain a higher SNR image, the images are processed and stacked in a manner

that further increases the SNR and improves detection performance. This process

removes frames of data in the subset that do not contribute to improving the stacked

image. Due to the need for multiple frames of data, each iteration of this algorithm

would not achieve real time performance however it could operate in a near real time

post-processing scheme.

The first step in the daylight space object detection algorithm is to start with a
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modified version of the matched filter detection method used with long exposure data.

An estimate of the background, B, is obtained by calculating the median value for all

pixels in the windowed data as given in Equation (2.3), this estimated background

is removed from the data. The algorithm processes 10 frames of short exposure data

in each iteration step, this represents the amount of time the telescope would have

captured a scene in a long exposure scenario.

Frame Ranking.

This first processing step removes each individual frame one at a time then av-

erages the remaining unregistered frames to obtain d̃. With the nth frame removed

from the average, d̃, is convolved with the expected PSF, h(x, y). The convolution of

each nth removed summed image and the PSF, h(x, y) is calculated from Equation

(5.1), resulting in SNR values for each nth removed frame of data, QFS(n). This is

implemented in the Fourier domain as the multiplication of the Fourier transformed

data and the long exposure OTF, HL, which is the Fourier representation of the PSF.

The flow of this initial processing is illustrated in Figure 37. After each frame has

been removed and a new SNR value is calculated, the values are ranked in descending

order. This translates to ranking which frames decrease the SNR the most when

removed from the average and convolved with the PSF.

QFS(n) =
n∑

k=1,k 6=n

(
dk(x, y)−B

)
∗ h(x, y). (5.1)

Frame Rejection.

With the ranked frames, the algorithm then processes the ten data frames by

removing the one that most significantly decreased the SNR and calculating the new

average correlated SNR of the remaining frames using a match filter between the data
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Figure 37. Flow chart of initial processing completed in the short exposure frame
selection algorithm.

and the expected PSF. This step utilizes the matched filter SNR given in Equation

(2.5). As each poor frame is removed, the correlation between the PSF and the

averaged data increases. The algorithm continues to remove frames in descending

order until the computed average SNR fails to increase from the last iteration. Once

the SNR has reached its peak the algorithm stops removing frames of data. This

process differs from the initial processing step in that it is removing the least viable

frames first and then computing the SNR. It is important to note that the initial

process does not factor in where the peak of the convolution occurs. This becomes

apparent in the H0 case where the algorithm would pick up on noise fluctuations.

At no time are the individual frames registered prior to averaging them together.

Especially in the H0 scenario, registration would result in noise spikes being shifted

and averaged together to resemble an object.

The process would seem to be counterintuitive, that throwing away data would

increase the likelihood of detection using short exposure data. However, under atmo-

spheric conditions, averaging noisy or highly distorted image data could potentially

result in a lower SNR image due to the unpredictability of lower order atmospheric

aberrations in short exposure image. This process removes frames that do not col-
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lectively contribute to improving the SNR of the data. Collecting data using this

method requires significantly higher data transfer rates as tens to thousands of short

exposure images can be captured in the typical long exposure time frame.

5.4 Simulation and Experimental Data

Simulated and experimental data were used to analyze the performance of the

proposed space object detection algorithm. This section describes the setup used to

collect the two data sets in detail. In practice, it is likely that a wide FOV camera

capturing data on a telescope will contain many thousands of objects. These objects

will include stars, satellites and potentially space debris and will all have varying

levels of intensity. These objects are treated identically by the algorithm since they

would appear as point sources to the optical system. Additionally, the frame of

data collected by the optical system is reduced to only test a small subset of the

entire frame. This increases the likelihood that multiple objects do not exist within

the subset windowed data while decreasing the computational complexity involved

in processing large frames of data. This approach is used with other space object

detection algorithms [26, 25, 49]. For example, data collected from the SST contains

6144 x 4096 pixels, however, subsets as low as 15 x 15 are used in object detection

algorithms. A window of this size allows for a PSF to be contained within the window

while providing enough pixels for the background statistics to be calculated. Oper-

ationally, the 15 x 15 window would slide across the entire image as each individual

pixel was tested. The window size used for testing this algorithm was set at 20 x

20 pixels. Outside of computation time and possible interference from other objects,

there is no reason that a larger window could not be chosen [26].
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Simulated Data.

The simulated data was developed in MATLAB to mimic a single point source

object within the data frame. The parameters used in the simulation are summarized

in Table 4. The use of MATLAB to create data allowed the ability to simulate

accurate statistical distributions and create realistic looking data while removing

unknown variables in the scenario. Removing these unknown variables limits the data

to investigate only the scope of the research in the proposed algorithm. Images were

simulated under both the hypothesis that an object is present at the pixel location

being tested and that no object is present in the scene. Under the H1 hypothesis,

an object exists at the tested pixel location, (x0, y0). The intensity of the object was

set at 2000 photons with a background of 10,000 photons. To test the algorithm at

various signal levels, the seeing parameter, r0, was varied between 5 cm and 8 cm.

The higher r0 results in a more compact PSF and less spreading of the target intensity

across multiple pixels. Under the H0 hypothesis, no object exists in the scene. This

hypothesis is simulated using the same statistical assumptions for background light

and the atmosphere except the intensity of the object is set to zero to represent no

target at pixel location (x0, y0).

Accurate short and long exposure PSF statistics were incorporated based on corre-

lated turbulence models and built-in Poisson random variable functions were used to

simulate accurate statistical distributions for the background noise [52]. Temporally

evolving correlated short exposure PSFs were generated and averaged together to get

the effective long exposure PSF in Figure 38. The figure clearly shows the effect r0

has on the PSF with the diminished intensity spread in scenario two.

For each hypothesis, 10,000 frames of short exposure data were simulated. Long

exposure data was generated by averaging together 10 frames of short exposure data.

An example of the long and short exposure data for the second scenario is shown in
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Figure 39, the object in this scenario cannot be detected from a single frame to the

naked eye. Data for scenario one is not shown since the intensity of this object is

lower than the second scenario and would also appear as noise to the eye.

Table 4. Parameters used to create simulated data in MATLAB.

Parameter Scenario 1 Scenario 2

Aperture Diameter, D (cm) 4.5 4.5
Fried Parameter, r0 (cm) 5.0 8.0
Object Intensity, θ (photons) 2,000 2,000
Background, B (photons) 10,000 10,000
Window Size, N (pixels) 32 32
Number of Frames 10,000 10,000

Figure 38. Point spread functions used to generate simulated data and conduct spatial
correlation testing. Scenario 1: PSF with r0 = 5 cm (left side). Scenario 2: PSF with
r0 = 8 cm (right side).

Experimental Data.

Experimental data was collected using a hybrid approach in an optics laboratory.

A camera, aperture stop and focusing lens were set up on an optical bench to capture

frames of data. A hot air fan was used in the optical path to induce random atmo-

spheric turbulence in the scene. A light emitting diode (LED) behind a 75-micron
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Figure 39. Scenario 2: Simulated short exposure H1 data (upper left side). Simulated
short exposure H0 data (upper right side). Simulated long exposure H1 data (lower left
side). Simulated long exposure H0 data (lower right side).

pinhole was placed in focus with the detector after passing through a neutral density

filter and reflecting off two mirrors on the end of the optical table using a 500mm focal

length lens. A computer screen was placed out of focus behind the mirror to provide

an adjustable background light source. This hybrid approach allowed for producing

a point source object with a bright background at varying SNR levels by adjusting

the background brightness, neutral density filter and integration time. Using this

approach removes the entirely simulated environment and provides randomness to

collected data while allowing for ease in adjusting the intensity of the background

compared to the point source object.

To collect H1 data, the MATLAB displayed image was adjusted to a 256-grayscale
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image with the background level set to 3/4 the maximum brightness of the object

and the LED turned on to represent the object. This provided nearly 10,000 counts

of background light on the detector. 2,000-3,000 short exposure images were collected

under the two different scenarios. One with the camera integration time set to 10 ms

and another at 25 ms. Similarly, 5,000 frames of H0 data was collected with the same

intensity level for the background and integration times except the LED is turned

off to remove the object from the image. The parameters for the experimental data

collected in the lab are summarized in Table 5. An example of the collected short

exposure data under each hypothesis and the resulting long exposure image is shown

in Figure 40 for the first scenario and Figure 41 for the second scenario with a longer

integration time.

Table 5. Parameters used to generate experimental data.

Parameter Scenario 1 Scenario 2

Camera ThorLabs 8050M-GE-TE ThorLabs 8050M-GE-TE
Display Dell UltraSharp U2410 Dell UltraSharp U2410
Average Background Counts, B (short exposure) 804 1950
LED Pinhole Size (micron) 75 75
Aperture Diameter, D (cm) 2 2
Integration time, (msec) 10 25
Neutral Density Filter, (optical density) 0.8 1.0
Focusing Lens, fl (mm) 500 500
Window Size, N (pixels) 32 32
Number of Frames 2,000 3,000

The long exposure PSF of the optical system is needed for object detection using

the spatial correlator. This was experimentally collected by removing the monitor

background light and imaging the point source LED. The camera was integrated for

100 ms to obtain the long exposure PSF, shown in Figure 42. One observation noted

is the smaller PSF in the experimental data compared to the simulation. This is due

to the larger sampling of the data in the CCD. This binning of data effectively reduces

the size of the PSF and object footprint on the CCD. However, this has no effect on

the algorithm since the PSF is an accurate model of the expected data under the H1
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Figure 40. Scenario 1: Experimental short exposure H1 data (upper left side). Experi-
mental short exposure H0 data (upper right side). Experimental long exposure H1 data
(lower left side). Experimental long exposure H0 data (lower right side).

hypothesis. The PSF was collected both with the hot air fan on and off to confirm

atmospheric turbulence effects.

5.5 Results & Analysis

To properly evaluate the performance of this algorithm, the exact same script must

be used for H1 and H0 data sets. The MATLAB script for processing this data only

requires the captured data set and does not require any preset information outside

of the expected PSF. The expected PSF can be obtained by imaging a nearby star

or estimated from system parameters and a measurement of the seeing parameter,

107



Figure 41. Scenario 2: Experimental short exposure H1 data (upper left side). Experi-
mental short exposure H0 data (upper right side). Experimental long exposure H1 data
(lower left side). Experimental long exposure H0 data (lower right side).

Figure 42. Collected long exposure PSF. No hot air fan generating turbulence (left
side). With hot air fan generating turbulence (right side).
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r0, using the long exposure PSF formula given in Equation (2.15). While the data

collected is defined as short exposure, the long exposure PSF model is used since

the individual frames of data are averaged together prior to correlation to create an

effective long exposure image.

The LROC curve does not require a specific detection threshold to be set. Instead,

the PD and PFA are both calculated for the full range of threshold values that result

in detection and false alarm probabilities between zero and one. The LROC curve is

built by modeling the SNR values from the algorithm’s test data as Gaussian random

variables. The mean and variance of the test statistic can then be used to generate the

detection and false alarm probabilities using a Gaussian PDF. The upper right corner

of the LROC curve represents the performance of the algorithms as the threshold is

lowered.

Using the simulated data, the performance of the new algorithm proposed in this

paper was compared to both a traditional matched filter approach and a lucky imaging

technique. Under the traditional matched filter, the 10 frames of data are averaged

together, no frames are removed, and the data is correlated with the expected PSF

and calculates the SNR using the matched filter. The lucky imaging technique was

set with a selection rate of 40%. The best four frames of data are selected using

the Strehl ratio as a quality metric, these frames were registered and averaged. The

LROC curves for the simulated data for both scenarios are shown in Figure 43 and

Figure 44. The LROC curve using the simulated data illustrates the difficulty the

lucky technique encounters with low SNR objects. Selection rates of 10 and 20% were

also attempted with the lucky imaging technique but produced even worse results.

The results from both of the LROC curves show a significant PD increase for a given

PFA when operating in the low SNR regime for the new frame selection algorithm.

The low SNR can be predicted by examining the data in Figure 39 and seen by the
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extremely low detection probability for a PFA u 10−9. At this operational level of

false alarm, the frame selection algorithm shows a nearly 10% improvement in the

PD under scenario one and a 25% improvement under scenario two which had better

seeing conditions and less spreading of the target intensity due to the smaller PSF.

There is a point in upper right corner of Figure 43 where the traditional matched

filter outperforms the proposed algorithm. In this region, the false alarm rate is

significantly higher and above levels used in operation.

Figure 43. LROC curve using simulated data under the first scenario.

A LROC curve was also generated using experimental data collected as described

in Section 5.4. The LROC curves for each scenario are shown in Figures 45 and 46. At

a 10−9 false alarm rate, the new frame selection algorithm achieved a 20% increase in

the probability of detection under the first scenario and 6% increase under the second

scenario. At slightly higher false alarm rates, the frame selection algorithm achieved

significantly higher detection probabilities. Although the scenario parameters for the

simulated and experimental data are different, the new algorithm shows performance
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Figure 44. LROC curve using simulated data under the second scenario.

increases in both data sets.

Figure 45. LROC curve using experimental data under the first scenario.
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Figure 46. LROC curve using experimental data under the second scenario.

5.6 Conclusion

This chapter presents a method to improve the probability of detecting dim or

low SNR space objects in images obtained during bright sky daylight conditions.

Under daylight imaging conditions, it is required to reduce the integration time of the

sensor down to short exposure time intervals to accommodate the increased number

of photons arriving at the CCD and the limited well depth. Two techniques for post-

processed object detection were examined and compared to the proposed algorithm.

First, a matched filter algorithm approach using a single frame of data obtained by

averaging the individual frames. Second, a lucky imaging approach was examined

that selects a portion of the short exposure frames based on their quality which are

then registered and combined. The proposed algorithm considers that under short

exposure conditions there will be time instances that result in excellent viewing and

times when the atmosphere is particularly poor, and the image is greatly distorted.
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The algorithm iteratively removed frames to generate a higher SNR image which

results in increased detection probabilities. Unique to this approach is that the PSF

of the object is not required for correlating or for using as a reference in evaluating

the quality of each individual short exposure image. The entire set of short exposure

images is used to reject frames that do not improve the quality of the combined image.

Additionally, image registration is not utilized due to the assumed low SNR of the

object. This results in a lower false alarm rate as noise spikes are not registered and

combined to create a false object.

Using both simulated and experimental data, the algorithm demonstrated the

ability to significantly improve the probability of detection by 5-25% for low SNR

objects while maintaining low false alarm rates. This could potentially result in a

significant number of new detections found if implemented using current SSA systems.

This approach does require short exposure imaging with hardware that would

require higher frame rates. The sensor must output significantly more frames of

data in the same time as a single image frame. The higher frame rate can result in

significantly greater readout noise when averaging the frame together. Under daylight

imaging, this is mitigated due to high photon counting noise becoming the dominating

noise source. It is possible that this algorithm’s approach would be feasible under

traditional night sky imaging if additive noise from the detector, camera’s readout

electronics and dark current was significantly less than the noise induced by the

background, or if the object was significantly bright. However, current algorithms

already work well with high SNR object.

With an increase in the number of assets launched into space, the need to improve

our detection and tracking of harmful objects will only increase as well. It is likely

this will further constrain tight budgets and operators time with telescope assets.

The potential to improve the detection capability of imaging in the daylight could
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mitigate some of these issues while providing newer areas of the sky to scan and an

increased number of object detections.

Future research focused on refining the frame selection process to better select

frames would increase the correlated SNR. This would increase the performance of

the algorithm. Additionally, this algorithm can be tested using data obtained from

a SSN sensor for further testing and evaluation. Utilizing a faster camera with less

readout noise, the algorithm could be developed for shorter integration times and a

great number of frames used in each iteration. The research in this chapter was focus

on improving detection on daylight images. Additionally, a camera with extremely

low readout noise would allow multiple short exposure images of typical night sky

images to be averaged without readout noise variance burying the signal.
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VI. Conclusion

This chapter summarizes the research results and contributions of this disserta-

tion to address the three research questions raised in Chapter 1. Potential follow-on

research to expand each of these topics will be presented. Additionally, conferences

and publications that resulted from this work are listed in this chapter.

6.1 Research Goals, Work Completed & Future Research Topics

The stated goal of this research was to improve the ability to detect small or dim

space objects using spatial images obtained from existing ground-based telescopes.

The research in this dissertation was focused on improving the performance of the

SSA detection mission for potential use within the DoD, USAF and others within the

astronomical community. In Chapter 1, three questions addressed in this research

were listed. Each of those questions, the research conducted in this dissertation to

answer those questions and future related research on each topic is listed below.

In order to continue to detect new, smaller and dimmer objects, there will continue

to be advancements in object detection algorithms based on images taken from small

and large aperture ground-based telescopes. Advancements in computing power will

allow more complex algorithms. It is unlikely that the current approaches are the

best, and no further improvements could be made. There are future research oppor-

tunities in each of the three chapters of this dissertations.

1. Will converting a spatial image to the Fourier domain improve the detection

performance of a point source detector?

Chapter 3 of this research specifically addresses this question. In this chapter,
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an algorithm was developed that utilized the Fourier transform of a long exposure

spatial image obtained from a ground-based telescope. The Fourier point detection

algorithm developed in this chapter compared the performance to a spatial point

detection algorithm similar to the one used by large telescopes within the SSN such

as the SST. A statistical model was developed for the data obtained under both the

hypothesis that an object exist in the scene (H1) and that no object exist in the scene

(H0). The mean and variance of the data under each hypothesis was calculated to

build a LRT using a Gaussian PDF.

Compared to a spatial point source, the Fourier point source algorithm had a

40% improvement in the probability of detection at a false alarm rate of 10−9. When

compared to a spatial correlation or matched filter algorithm, the Fourier point source

algorithm achieved detection performances that were nearly the same as a spatial

correlator which knew the true PSF shape. The distinct advantage in the Fourier

point source is that no knowledge of the PSF is needed to run the detection scheme.

In a spatial correlator, the data is correlated against the expected PSF. In many

scenarios, the shape of the PSF is unknown and must be estimated. The Fourier

point source detector does not correlate the received image to produce a SNR value.

When compared to a spatial correlator using an incorrect PSF shape, the Fourier

point detector produced a 34% improvement in the probability of detection.

This research in this chapter, concluded with the development of the Fourier point

detector. However, there is likely more information to be obtained from the Fourier

domain that could improve a spatial point detection algorithm. The performance

of a spatial point detector is highly sensitive to the measured standard deviation of

the background. As the estimate of the standard deviation varies from the truth,

the algorithm will fail to identify an object at the correct SNR threshold. This is

usually estimated by looking at all the pixels in the image. However, this could be
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skewed by known objects, bright pixels due to noise or outside sources, and a large

PSF. It is possible that Fourier domain analysis might provide a better estimate of

the backgrounds standard deviation. Specifically, the imaginary component of the

Fourier transform which should contain only noise in a long exposure scenario. Such

research could lead to an improved estimate of the background statistics and would

improve a spatial point detectors performance.

2. Can a covariance matrix between spatial frequencies in a Fourier domain image

be used to build a Fourier correlation algorithm to improve object detection?

This question is addressed by the research in Chapter 4, which is an extension of

the point detector built in Chapter 3. In this chapter, a model for the real component

of the Fourier transform of the background-removed data is developed. The mean

and variance under each hypothesis from Chapter 3 research was utilized in building

this algorithm. A model for the covariance between spatial frequencies of the Fourier

transformed data was developed. A LRT was then built using a joint Gaussian PDF

for each hypothesis. The covariance matrix under the H0 hypothesis was diagonal.

This indicates that there is no covariance between spatial frequencies. However, under

the H1 hypothesis, there existed small correlations between local spatial frequencies.

The Fourier correlation algorithm developed in this chapter was compared to a

traditional spatial correlation algorithm widely used within the community. Long

exposure data was simulated in MATLAB to mimic a dim space object in a turbulent

atmosphere at a SNR value of 6. When tested with simulated data and compared

using a LROC curve, the Fourier correlation algorithm achieved a significant 11-23%

increase in detection probability at a false alarm rate of 10−9.

Challenges exist incorporating this algorithm into the detection process. The two
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covariance matrices utilized in the algorithm were based off the measured data which

is not an ideal scenario. Ideally, the theoretically derived covariance matrix could be

utilized in the detection process. However, this research did show that there exists

a correlation between spatial frequencies in the Fourier domain of an image. When

these correlations are taken into account, they can be used to significantly improve

a traditional spatial correlation algorithm which is built on all spatial points being

independent random variables.

There is a great opportunity to further the research in this chapter. There was a

correlation between spatial frequencies in the Fourier transformed image both theo-

retical and experimentally using simulated data. However, this research was limited

to using all the experimentally developed covariance matrix. Further research into

this correlation could improve detection performance that did not require building a

covariance matrix based on the pointing position of the telescope at the time of data

capture.

3. Under daylight imaging where short exposure images are necessary, will frame

selection increase the ability of detecting objects over simply combining multiple frames?

In Chapter 5, a short exposure imaging detection algorithm was developed. There

is growing interest within the SSA community to collect images from large ground-

based telescopes during the broad daylight. Many unique engineering challenges exist

in order to accomplish this feat that go beyond the scope of this research. However,

the work in this chapter was to develop an algorithm to process and detect objects

from this data. Due to the bright background and limiting sensors, short exposure

imaging becomes necessary during daylight imaging. There are current short exposure

techniques designed to image quality and resolution however these are not practical
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for scanning a large area of space for object detection. Typically, all short exposure

images are averaged together to obtain a long exposure image which is then correlated

with an expected PSF. In some short exposure techniques, the frames are registered

prior to combining.

The frame selection algorithm developed in this chapter was an iterative process

which selectively removed frames that did not contribute positively to the SNR of

the image. The frames are then evaluated based on their SNR contribution rank

to test their contribution to the ensemble of images. The frames which are kept

are then correlated with the expected PSF. This process requires no registration of

frames which is significant when working with dim objects in a bright background

since there is no apparent object to register. Registration, as was shown by the lucky

imaging results, causes a significantly high false alarm rate and can’t be used in these

scenarios.

A dim object in a bright background was simulated in MATLAB to create data

under two different scenarios. Statistically accurate short exposure atmospheric tur-

bulence models are utilized along with Poisson noise statistics to create data under

both hypothesis. Data was also collected in the optics laboratory with an electroni-

cally cooled CCD using a hot air fan to generate turbulence along the optical path

and a point source object created with a LED behind a pinhole. Background light

was added to the experiment using an brightness adjustable computer display.

The performance of the algorithm was compared to both a spatial correlation and

lucky imaging algorithm on a LROC curve. With simulated data, the frame selection

algorithm achieved a 10-25% improvement in the probability of detection at a 10−9

false alarm rate. Using experimental data, an improvement of 6-20% was noted

depending on the parameters used to adjust the SNR of the object. The results

show that when short exposure images are selectively rejected prior to combining,
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significant detection rates are achieved and would lead to a greater number of space

objects detected.

The algorithm developed in this chapter should be further tested using imagery

obtained from a ground-based telescope to further showcase the detection performance

increases. Additionally, I do not believe this algorithm has to be limited to daylight

imaging scenarios. It was in this research due to the need for a low noise, fast readout

sensor. However, if the readout noise was low enough, multiple short exposure images

could be averaged of night sky conditions without the readout noise swamping the

signal. This would expand the adaptability of this algorithm to many sensors within

the SSN as few today are capable of daylight imaging. Additionally, the algorithm

developed in this chapter was based on using 10 frames of data. This was chosen since

10 frames of short exposure data could be captured in the time frame of a typical

long exposure scene. Further improvements of dimmer space object could potentially

be possible by using many more short exposure frames.

6.2 Publications

To ensure the originality and significant contribution of the research in this dis-

sertation, each portion of this research was submitted and published as either a con-

ference or journal paper for evaluation and critic from experts within the field.

Conference Presentations & Papers

- Fourier point detector research and results from Chapter 3 was published and

presented at the SPIE Optics + Photonics Conference.

D. Becker and S. Cain. Improving space object detection using a Fourier like-

lihood ratio detection algorithm, in SPIE Optics + Photonics, International

Society for Optics and Photonics, 2016.
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- Fourier correlation algorithm research and results from Chapter 4 was published

and presented at the Advanced Maui Optical and Space Surveillance Technolo-

gies Conference.

D. Becker and S. Cain. A Space Object Detection Algorithm using Fourier

Domain Likelihood Ratio Test, Advanced Maui Optical and Space Surveillance

Technologies Conference, 2017.

Journal Article

- Frame selection research and results from Chapter 5 was published in Applied

Optics and selected as an “Editor’s Choice” article.

David Becker and Stephen Cain, ”Improved space object detection using short-

exposure image data with daylight background,” Applied Optics 57, 3968-3975

(2018)
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