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Abstract 

Experimental designs involving Simulated Task Environments aim to explore 

interesting conditions with human subjects. By using activity simulators such as 

IMPRINT, it may be possible to identify these conditions of interest without the need for 

human subjects. This thesis presents research that aims to demonstrate that IMPRINT can 

be used to predict human performance in a task environment representing the task 

performed by Network Analysts of the 33rd Network Warfare Squadron. The research is 

done by examining the task performed by the Network Analysts, and then designing a 

Simulated Task Environment modeled on this task. A model of the task performed is also 

built in IMPRINT. With a first iteration, it was found that the IMPRINT model was not 

able to predict performance in a majority of cases, however the methodology illustrates a 

starting point that others may use. 

 



 

v 

Acknowledgments 

I would like to express my sincere appreciation to my faculty advisor, Dr. Brett 

Borghetti, for his guidance and support throughout the course of this thesis effort. The 

insight and experience was certainly appreciated.  In addition, I would like to 

acknowledge Dr. Tim Lacey and Maj. Christina Rusnock for being on my committee and 

for their guidance throughout this research. I would, also, like to thank my sponsors at the 

Human Performance Wing of Air Force Research Labs, for both the guidance and 

latitude provided to me in this endeavor. In addition, I would like to thank my friends 

who took the time to help me proofread and edit various sections of this thesis. I would 

also like to thank James Okolica for providing programming support. Lastly, I would like 

to thank the subject matter experts who took the time to provide the information that 

became the foundation for my research. 

 

 
       Gregory W. Dye 

 

 

 



 

vi 

Table of Contents 

Page 

Abstract .......................................................................................................................... iv 

Acknowledgments ........................................................................................................... v 

Table of Contents ........................................................................................................... vi 

List of Figures ................................................................................................................ ix 

List of Tables ................................................................................................................. xi 

I.  Introduction................................................................................................................. 1 

Section 1.1: General Issue ........................................................................................ 1 

Section 1.2: Problem Statement ................................................................................ 4 

Section 1.3: Research Objectives/Questions/Hypotheses .......................................... 4 

Section 1.4: Methodology ........................................................................................ 5 

Section 1.5: Assumptions/Limitations ...................................................................... 6 

Section 1.6: Implications .......................................................................................... 8 

Preview .................................................................................................................... 8 

II. Literature Review ..................................................................................................... 10 

Chapter Overview .................................................................................................. 10 

Section 2.1: Network Analysts Research ................................................................ 10 

Section 2.2: Cyber, STEs Already Used, and Overarching Needs ........................... 13 

Section 2.3: Cognitive Task Analysis ..................................................................... 20 

Summary ................................................................................................................ 21 

III. Methodology ........................................................................................................... 22 

Chapter Overview .................................................................................................. 22 

Section 3.1: Cognitive Task Analysis on Line Analysts .......................................... 23 

Section 3.2: Development of the Synthetic Task Environment ................................ 28 



 

vii 

Section 3.3: IMPRINT Modeling ........................................................................... 34 

Section 3.4: IMPRINT Experiment Description ...................................................... 41 

Section 3.5: IMPRINT Evaluation Criteria ............................................................. 44 

Section 3.6: Calibration Study ................................................................................ 51 

Section 3.7 STE Calibration Study Evaluation Criteria ........................................... 53 

IV. Analysis and Results ............................................................................................... 55 

Chapter Overview .................................................................................................. 55 

Section 4.1: IMPRINT Experiment Data ................................................................ 55 

Section 4.2: STE Calibration Study ........................................................................ 74 

V.  Conclusions and Recommendations ......................................................................... 82 

Appendix A: Cyber STE Design Document ................................................................... 85 

Definitions ............................................................................................................. 85 

Purpose .................................................................................................................. 85 

Programming Language ......................................................................................... 86 

Real World Task Description ................................................................................. 86 

GUI Requirements ................................................................................................. 87 

Input Files .............................................................................................................. 93 

Output .................................................................................................................... 96 

Appendix B: NASA TLX .............................................................................................. 98 

Appendix C: Post Experiment Interview Questions ....................................................... 99 

Appendix D: IMPRINT Design ................................................................................... 100 

IMPRINT Overview. ............................................................................................ 100 

Page 1: Root ......................................................................................................... 101 

Page 2: Search for Alerts ...................................................................................... 103 



 

viii 

Figure 28: Search for Alerts Function ................................................................... 104 

Page 3: Investigate Alert ...................................................................................... 105 

Page 4: Flag Alert ................................................................................................ 108 

Page 5: Discard Alert ........................................................................................... 109 

Appendix E: Interview Questions and Responses from SMEs ...................................... 115 

Interview with Maj. Mike Winn, Army, held April 29 2014 ................................. 115 

Interview with Maj. John Rice, Air Force, help May 29 2014 ............................... 115 

Interview with Gateway Team of 33rd NWS, answered received August 11 2014 . 116 

Interview with Griffin Team of 33rd NWS ............................................................ 122 

Notes from Interview with George Lovell of the 33rd NWS, July 31, 2014 ........... 128 

Follow up Email Questions and Answers with George Lovell .............................. 131 

Notes from Interview with Maj. Samuel Stone, USAF.......................................... 133 

Bibliography ............................................................................................................... 135 

 



 

ix 

List of Figures 

Figure 1: 33rd NWS Analyst Process .............................................................................. 25 

Figure 2: STE Screen Shot ............................................................................................ 33 

Figure 3: Sample Workload Performance Profile ........................................................... 49 

Figure 4: Workload across Alert per Minute Levels ....................................................... 59 

Figure 5: Average Workload Across Severity Levels ..................................................... 59 

Figure 6: Workload Across APM and Severity Levels ................................................... 60 

Figure 7: Active Accuracy Across APM Levels ............................................................. 61 

Figure 8: Active Accuracy Across Severity Levels ........................................................ 61 

Figure 9: Passive Accuracy Across APM Levels ........................................................... 63 

Figure 10: Passive Accuracy Across Severity Levels ..................................................... 64 

Figure 11: Results Accuracy Across APM Levels .......................................................... 65 

Figure 12: Results Accuracy Across Severity Levels ..................................................... 65 

Figure 13: Precision Across APM Levels ...................................................................... 66 

Figure 14: Precision Across Severity Levels .................................................................. 67 

Figure 15: Active Recall Across APM Levels ................................................................ 68 

Figure 16: Active Recall Across Severity Levels ........................................................... 68 

Figure 17: Passive Recall Across APM Levels .............................................................. 69 

Figure 18: Passive Recall Across Severity Levels .......................................................... 70 

Figure 19: Workload Performance Profile ..................................................................... 72 

Figure 20: Example ArcSight Window .......................................................................... 87 

Figure 21: Alert Window Design ................................................................................... 88 

Figure 22: Wireshark Example ...................................................................................... 90 



 

x 

Figure 23: Investigation Window................................................................................... 91 

Figure 24: Sample Popup csv file .................................................................................. 95 

Figure 25: Sample Popup csv Design............................................................................. 95 

Figure 26: NASA TLX .................................................................................................. 98 

Figure 27: Root Level Diagram ................................................................................... 101 

Figure 28: Search for Alerts Function .......................................................................... 104 

Figure 29: Investigate Alert Part A .............................................................................. 105 

Figure 30: Investigate Alert Part B .............................................................................. 105 

Figure 31: Flag Alert Function .................................................................................... 108 

Figure 32: Discard Alert Function ............................................................................... 109 

 



 

xi 

List of Tables 

Page 

Table 1: IMPRINT Cognitive Workload Values ............................................................ 39 

Table 2: IMPRINT Visual Workload Values ................................................................. 39 

Table 3: IMPRINT Fine Motor Workload Values .......................................................... 40 

Table 4: Typical Alert Severity Distribution .................................................................. 42 

Table 5: Severity Level Distributions ............................................................................ 43 

Table 6: Alert Classification Categories ......................................................................... 44 

Table 7: Variable Definitions......................................................................................... 45 

Table 8: Expected Behavior for the IMPRINT Study ..................................................... 47 

Table 9: Severity Level Distributions ............................................................................ 56 

Table 10: Comparison of Predicted to Actual Results .................................................... 71 

Table 11: Subject 1 Performance Results ....................................................................... 75 

Table 12: Subject 2 Performance Results ....................................................................... 75 

Table 13: Subject 3 Performance Results ....................................................................... 75 

Table 14: IMPRINT Performance Results ..................................................................... 76 

Table 15: Passive Recall 95% Confidence Intervals for IMPRINT ................................ 77 

Table 16: Workload Values for IMPRINT and Subjects ................................................ 78 

Table 17: Workload Ranks for IMPRINT and Subjects ................................................. 78 

Table 18: Example Alert.csv File................................................................................... 93 

Table 19: Example Colors.csv File ................................................................................ 94 

Table 20: Sample Chats.csv file ..................................................................................... 96 

Table 21: Sample Google.csv File ................................................................................. 96 



 

xii 

Table 22: Times for Nodes in Root Level .................................................................... 103 

Table 23: Time for Nodes in Search for Alerts............................................................. 105 

Table 24: Times for Investigate Alert Function ............................................................ 107 

Table 25: Times for Flag Alert Function ...................................................................... 108 

Table 26: Times for Discard Alert Function ................................................................. 109 

Table 27: Table of IMPRINT Variables ....................................................................... 109 



 

1 

USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK 

ENVIRONMENTS 

 
I.  Introduction  

Section 1.1: General Issue 

Designing effective experiments is one of the keys to successful research. One 

aspect of experimental design is ensuring that the conditions chosen to explore represent 

enough of the domain of interest to successfully answer researcher questions, something 

that is important to Human Factors researchers, those who seek to learn how the human 

mind and body responds to external stimulus. Within the Air Force, the 711th Human 

Performance Wing of the Air Force Research Labs (711th, AFRL) performs research on 

the jobs performed by warfighters. They attempt to discover how task demands affect 

warfighters, and what tools can be provided to allow the warfighters to better perform 

their jobs. This research is often done in lab environments, where Simulated Task 

Environments (STE) are built to replicate the look and feel of the task, along with the 

decisions required to be made, but simplified to a degree that those not familiar with the 

task can be used as test subjects. By expanding the set of possible subjects to those who 

are not familiar with the task, it becomes possible to see how a person would react under 

the stressful situations that warfighters may find themselves in, without needing to pull 

the warfighters away from their duties. 

Researchers need to explore a variety of conditions in their experiment, and to do 

so, they need to identify what settings can use. The insight researchers can gain from 

their experiments can lead to techniques to improve the performance of real warfighters. 
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These improvements can come in the form of better interfaces, adaptive automation, or 

better training tools. However, the experiments are inherently limited by the conditions 

that they explore. If Human Factors researchers want to explore what happens during the 

most difficult situations, then their conditions must push the subject to the degree that 

they are overwhelmed, otherwise the research question(s) cannot be answered fully. 

Likewise, if Human Factors researchers want to examine situations where the task 

demand is so light the subject may become underloaded to the degree that they become 

bored, but the conditions are all engaging, then the experiment doesn’t provide adequate 

results. If all conditions represent extreme conditions, then the experiment may not have 

any baseline conditions, where it is possible to see how the subject reacts and performs in 

a normal condition that can be compared with the more extreme situations. 

It can be difficult to know what conditions will put the subject in the desired 

levels of workload without running an experiment with human subjects, but this process 

can be expensive. A small pilot study with a limited number of subjects may allow the 

conditions of the experiment to be tuned before a larger, formal study is performed. 

Although a pilot study may be less resource intensive than a full study, it can still be 

time-consuming and costly. If these pilot studies could be augmented with simulations, 

then it would dramatically cut down on the time and resource constraints, and provide 

additional data that could be used to guide experimental design. 

One of the areas of interest to 711th HPW is studying those who perform tasks in 

the cyber domain. The United States Air Force’s computer networks are under almost 

constant attack (Champion, Rajivan, Cooke, & Janwala, 2012). Some of these attacks are 

as simple as phishing emails, while others are complicated hacking attempts with the goal 
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to extract valuable data from the Air Force’s computers. One of the first human lines of 

defense against these attacks is the Network Analysts of the 33rd Network Warfare 

Squadron (NWS). These analysts are tasked with the job of watching the edge of the Air 

Force network, and monitoring for suspicious activity. To facilitate this task, the analysts 

use ArcSight, a commercial software tool, to compile data from numerous sensors 

including email servers to intrusion detection systems (Lovell, 2014; Rice, 2014). 

ArcSight displays alerts which represent all the possibly suspicious activity. However, 

even with all this information in one place, a single analyst must respond to hundreds of 

different alerts in a single eight hour shift, attempting to find the true threats among the 

many alerts (Lovell, 2014).    

Performing this task without any mistakes is very difficult (Liu, Erbacher, 

Glodek, Etoty, & Yen, 2013). Some events that are not threats will be sent for 

investigation, wasting government personnel time and resources, and in other cases, a 

real threat will go undetected which can compromise the Air Force’s valuable 

information (D'Amico & Whitley, 2007). Many times these mistakes are caused by 

human error. Some of these errors may be caused by an analyst being over-tasked, where 

they must either rush through the alerts, being more likely to make mistakes, or simply 

ignore the alerts they don’t have time for, letting any of these alerts that represent true 

threats go on undetected. The task is further complicated since most sensors are set at a 

threshold to generate many false positives in order to avoid any false negatives. Many of 

these thresholds are set in such a way that only 1% of alerts are identified by the analysts 

as representing true threats, all the rest being false alerts. For some categories of alerts, 

the threshold is orders of magnitude worse (Lovell, 2014). If it were possible to know 
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when an analyst was being over-worked, then it might be possible for adjustments to be 

made to minimize these mistakes. These adjustments could include assigning additional 

staff, or adjusting the filters on the alerts to reduce the amount of alerts a single analyst 

must investigate. 

Section 1.2: Problem Statement 

Human Factors experiments can rely on possibly unfounded assumptions about 

how various factors may affect performance and workload. If these factors are 

improperly tuned, then the experiment may not span the breadth of interesting workloads.  

In addition, currently there is no simulated task environment dedicated to 

replicating the workload experienced by Air Force network analysts. Thus, it is difficult 

to fully understand the analysts’ mental state as they monitor the network.  

Section 1.3: Research Objectives/Questions/Hypotheses 

The first objective of this research is to investigate how workload analyzers such 

as the Improved Performance Research Integration Tool (IMPRINT) (Army Research 

Laboratory, 2010) can be used to guide experimental design by modeling how 

manipulation of factors would affect workload and performance, and then to demonstrate 

that this model can be utilized to develop an experimental design for a human-in-the-loop 

study. 

The second objective of this research is to present the steps required to build a 

simulated task environment that emulates the cognitive demand that network analysts 

encounter. A sub-task of this objective includes performing a cognitive task analysis on 

the task performed by network analysts. The cognitive task analysis includes examining 
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the decisions they are required to make, the thought process they use, the information 

they must process to make the decisions, and the environment that they work in. Once the 

cognitive task analysis is complete, it is possible to use this knowledge to construct the 

simulated task environment, and the IMPRINT model 

Section 1.4: Methodology 

The first step of this research is to identify a specific task to explore, in this case, 

the task performed by the Line Analysts of the 33rd Network Warfare Squadron (33rd 

NWS), whose duties include monitoring the network traffic at the edge of the Air Force’s 

networks. The Line Analysts have the first look at the data and filter the alerts that need 

to be explored at a deeper level. The details of the task are explored by performing a 

cognitive task analysis. This cognitive task analysis is first done by performing a 

literature review, and then by interviewing those with experience in the field, either 

working as analysts, or working closely with analysts. With the information from the 

interviews and literature, a workflow diagram is developed to model the decisions 

analysts make and the flow of information (Crandall, Klein, & Hoffman, 2006). With the 

information from the workflow diagram, the simulated task environment can be designed. 

The design process is very iterative, working with programmers to outline everything the 

task environment needs to do, and considering the tradeoffs that need to be made. These 

tradeoffs include considering the time and memory constraints that would be imposed by 

the amount of data being logged, or the amount of time that implementing a feature may 

take. The design process also requires further research about the task, as details that had 

not been considered before may need to be explored to properly design the STE.  
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In conjunction with the simulated task environment’s design, the task is modeled 

in IMPRINT, a workload modeling tool that makes it possible to simulate how changing 

factors would affect both the operator’s workload and performance (Army Research 

Laboratory, 2010). IMPRINT makes it possible to identify which combinations of factors 

will drive workload and performance to the desired amounts, which can then be used in a 

Calibration Study using the Simulated Task Environment. 

Section 1.5: Assumptions/Limitations 

There are three different categories of assumptions and limitations with this 

research. The first category is assumptions regarding the conceptual model of the task. 

The second category is assumptions regarding the STE, and the STE experiments. The 

third category is assumptions regarding the IMPRINT model. 

A limitation of the conceptual model is caused by this research focusing only on 

the task performed by the 33rd NWS, and as such, its applicability may be limited for 

other network defense environments. The research also focuses only on Line Analysts, 

those who perform the first level analysis on the alerts that enter the system, so the 

research is limited beyond this scope. 

A limitation regarding the STE design is that the task environment only emulates 

the single task of identifying malicious activity from network-generated alerts. As the 

analysts do not do anything to respond to the incident beyond creating a report and 

sending it to the incident response team, this task environment is also limited in this 

scope. The task environment is constructed for use by a single person at a time, which is 

a contrast to the environment of a network analyst where a small team work closely 
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together. Communication can be simulated to indicate incoming messages to the 

operator, though simulating the communication does not offer the same effect as with real 

people. The experiments performed with the STE are also limited by time, so the subjects 

will not experience the same level of fatigue during a 10 minute trial that a real analyst 

would over an 8 hour shift. The real world task may include interruptions, such as a 

message from a supervisor that could pull them away from the task, while the subjects 

using the STE are able to focus on the task for the full 10 minutes. There is also the 

assumption that the simplification done to model the task with the STE won’t change the 

required cognitive thought process. 

Further, this research is limited by the natural difference between subject matter 

experts, and the novices typically used for Human Factors experiments. Due to this 

difference, it cannot be guaranteed that the two would make the same decisions. This 

difference is caused by different degrees of background knowledge about the task. A 

further difference is the habits and techniques an expert will have developed over years of 

experience as opposed to someone with only limited training and knowledge of the task. 

One of the differences between the two is how much trust the user gives the system. An 

expert may know that the system should be trustworthy in some circumstances, while 

other circumstances, the expert knows that the system can’t be trusted, and this difference 

is one that can’t be explored with the STE with the unavailability of expert subjects.  

There are also limitations regarding the IMPRINT model constructed. One of the 

limitations is that a single model can’t account for different strategies that different 

people may use. The IMPRINT model is also limited in that it does not take into account 

learning effects that occur from a subject seeing similar types of alerts multiple times. 
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Section 1.6: Implications 

By demonstrating that it’s possible to use workload analyzers to predict the 

impact of manipulating factors in Human Factors experiments, it’s possible to improve 

experimental design across the Human Factors domain as a whole, leading to more 

effective experiments. By using IMPRINT in conjunction with the STE, it’s possible to 

identify specific causes of bottlenecks in performance, and examine the specific drivers 

of workload within a task.  

Preview 

Chapter 2 is the literature review, which explores the work done thus far to 

understand the cognitive demand that network analysts face, along with work done to 

create simulated task environments for different domains. Chapter 3 details the 

methodology, which elaborates on the design process to create this simulated task 

environment, including the task analysis done on the network analysts, and interaction 

with the researchers that may use this task environment to ensure that it can meet their 

needs. Chapter 3 also describes the creation of a simulation of the task in the workload 

analyzer IMPRINT, and how it can be used to identify the settings of factors that would 

properly drive workload and performance to the degree that they would span the breadth 

of interesting workloads. Chapter 3 also describes how an experiment could be conducted 

to demonstrate how this task environment can be used to demonstrate that these factors 

are able to replicate various levels of workload and performance. Chapter 4 contains the 

results and analysis of an experiment done with IMPRINT to identify conditions that can 

be used with an STE Calibration Study. Chapter 4 also contains the results and analysis 
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of the STE Calibration Study. Chapter 5 presents an evaluation of the task environment, 

and the IMPRINT model, and shows how it can be used to improve the capabilities of 

researchers and network analysts, along with providing suggestions for future work. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to illustrate the research previously performed to 

understand the work of network analysts along with research done along the lines of 

Simulated Task Environment design, and Cognitive Task Analysis as a whole. 

Section 2.1: Network Analysts Research 

A great deal of work has been performed to document the various tasks within the 

Cyber Domain and the challenges associated with each task. The National Initiative for 

Cybersecruity Education has developed a framework that describes the breadth of jobs 

across the domain (National Initiative for Cybersecurity Education, 2011). This 

framework provides a high level overview of the different types of tasks that each job 

performs, along with the knowledge skills and abilities required for each. A common 

theme across this domain is some type of analyst attempting to understand large amounts 

of data and respond to malicious activity. The large amount of data may lead to the 

human operator being overloaded with too much information at once. This information 

overload can lead to difficulty in performing the task the operator is assigned (Voorhees, 

2007). There has been a large amount of research that seeks to understand the analysts’ 

tasks and construct better interfaces that allow the analysts to maintain a higher level of 

situation awareness.  

One of the many different types of analysts is Network Analysts. Network 

Analysts monitor network traffic for suspicious activity and act accordingly. D’Amico 

and Whitley examine the different types of Network Analysts, and the tasks they perform 
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(D'Amico & Whitley, 2007). These types of Network Analysts include Line Analysts, 

Escalation Analysts, and Correlations Analysts. Line Analysts perform the first look at 

the data coming in, determining which data requires further analysis. This level of 

analysis typically takes no more than a few minutes. Then Escalation Analysts investigate 

the suspicious activity identified by the Line Analysts. This investigation can take up to 

multiple days and looks at data from a number of different sources. Lastly, the 

Correlation Analysts look at trends in alerts instead of focusing on individual incidents 

(D'Amico & Whitley, 2007). Of these, the focus of this research is on the Line Analysts. 

Line Analysts must quickly examine the large amounts of data arriving and decide 

what information is relevant. This information typically comes in the form of alerts, 

automatically generated logs of suspicious activity. The Line Analysts must quickly 

identify which alerts require investigation at a higher level. These analysts do not come to 

a firm conclusion on the data, only identifying activity that is suspicious and should be 

looked into at a deeper level. The data they use includes information such as packet 

header information and IDS alerts. They may also use knowledge of suspicious IP 

addresses to guide their search. Once these Line Analysts have filtered the alerts that 

require further investigation, this information is passed onto Escalation Analysts 

(D'Amico & Whitley, 2007). The difficulty Line Analysts face is processing the massive 

number of alerts quickly, while minimizing the false positives and false negatives they 

commit (Rice, 2014). 

D’Amico and Whitley further examine the requirements for network analysts to 

carry out their mission effectively. Line Analysts require tools that allow them to identify 

the data that needs investigated. Removing needless information can be accomplished 
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through automated filters that remove irrelevant data, or visual cues to guide the analysts 

to the information of interest (D'Amico & Whitley, 2007). A real world example of a 

visual cue is how ArcSight uses colors to indicate the severity of an alert. Red indicates 

an alert of high severity, while green indicates an alert of low severity. These colors 

allow the analyst to see the severity of the alert at a glance and prioritize their tasks 

accordingly (Voorhees, 2007). D’Amico and Whitley also suggest that color could be 

used to indicate if an alert has been examined or not, something that could be used to 

allow these analyst to perform their job quicker as they can easily see which alerts need 

investigated and which ones do not. The analysts are also required to identify the key 

information they need quickly, meaning that any tools built for them need to consider 

how it helps the analysts identify the key information (D'Amico & Whitley, 2007). 

Correlation Analysts oftentimes introduce filters to preventing known non-threats from 

displaying. However, as the types of threats change frequently, the filters that may 

prevent a majority of non-threats one day, may do little the next (Stone, 2015).  

Line Analysts at different organizations all perform their tasks slightly differently. 

This research focuses on the 33rd Network Warfare Squadron and the work its analysts 

perform. These analysts use the software ArcSight to evaluate alerts containing the 

possibly suspicious activity (Rice, 2014). ArcSight is a commercial product distributed 

by HP with the purpose of combining logs from various sensors and presenting them to 

the user in a way that allows them to prioritize alerts of high importance (Hewlett-

Packard Development Company, 2012). 

Sohail examined how ArcSight works for a small network. He illustrates how 

ArcSight compiles alerts triggered by computers, such as failed logins, which could be 



 

13 

used to deduce that someone is trying to crack a password. However, Sohail’s research is 

on a very small network of a few computers, a contrast of the very large scale of the way 

the 33rd NWS uses ArcSight. Nevertheless, Sohail’s research shows how ArcSight can be 

used and the capability it provides (Sohail, 2014). 

Voorhees discusses a process for working with ArcSight at the configuration 

level, setting up rules and filters to limit the amount of irrelevant information displayed 

for the analysts (Voorhees, 2007). Voorhees’s work provides valuable insight into how 

ArcSight is used, and actions that could be taken to reduce the risk of the analyst being 

overloaded. There are many alerts created from common benign events. There are also 

times were an alert will be generated falsely; one example Voorhees gave was ArcSight 

reporting a malicious program had been installed on a computer when it had only been 

mentioned in an email. Voorhees also notes that ArcSight can’t display encrypted traffic, 

but the meta-information about it, such as its source, destination, and size, may still prove 

valuable to the analyst.  

Voorhees also discusses how the internet, and Google specifically, are credited 

with being valuable sources of information for analysts as there are oftentimes gaps in 

knowledge regarding network events. There are times when an analyst may not know 

about a specific type of application, or the documentation may be incomplete, so the 

analyst will use the internet to find the needed information (Voorhees, 2007). 

Section 2.2: Cyber, STEs Already Used, and Overarching Needs 

STEs have been used across a number of different domains. The versatility of 

many STEs allows them to be tailored to answer specific questions based on the needs of 
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the researchers. Some of this research uses STEs to ask broad questions, where one task 

may be explored in such a way to provide answers that extend beyond that task. Other 

research has used STEs to focus specifically on the aspects of network analysts.  

Giacobe discusses the difficulty of conveying necessary information in a way that 

network analysts can easily understand it (Giacobe, 2013). Through his research, he 

compares using a graphical interface, to an interface of only text, showing that the 

graphical interface allows analysts to perform their task more effectively. Giacobe’s 

research sought to use simulations to study and understand the work that real analysts 

must do, and specifically, how different interfaces affect the analysts’ situation 

awareness. His research also sought to leverage the power of STEs to perform research 

on subjects not familiar with the cyber domain while still getting results that could be 

applied to the real world (Giacobe, 2013).  

Champion et al. have researched how information overload can lead to a 

degradation of performance. Their research illustrated how situation awareness lessens as 

the demands of the cyber defense task are increased. This lack of situation awareness 

translates into threats being misclassified, which in the real world, would lead to security 

violations (Champion, Rajivan, Cooke, & Janwala, 2012).  

The danger of security violations illustrates the need for work to be done to allow 

these analysts to perform their job effectively in the face of information overload. 

However, these researchers rely on Rajivan’s CyberCog task environment (Rajivan, 

2011). CyberCog was made to simulate the real work of an analyst, which makes it 

difficult for those outside the cyber domain to be able to be used as participants (Giacobe, 

2013). CyberCog also provides a more complicated task than the narrow focus of the 33rd 
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Network Warfare Squadron’s analysts, since CyberCog has participants perform a 

number of different tasks beyond the monitoring for threats that the 33 NWS does. 

Another example of an environment constructed to emulate the work of network 

analysts is idsNETS, which seeks to study the cognitive demand of analysts (Mancuso, 

Minotra, Giacobe, McNeese, & Tyworth, 2012). However, this environment models the 

task as a resource management task. IdsNETS was built off of the already existing 

resource management STE, NeoCities (Hellar & McNeese, 2010), which was used as an 

emergency response system, so doesn’t fit the task model of the Line Analysts in our 

research. Resource management tasks have a participant in control of a limited number of 

resources, where the participant is instructed to allocate these resources to deal with some 

type of situation. In the example of NeoCities, the participants controlled emergency 

vehicles. Contrastly, the 33rd NWS’s task involves investigating alerts, and there aren’t 

any resources the analysts must allocate to perform the task.  

Fink et al. explores the task of creating a better interface for those investigating 

incidents, illustrating the challenges and dangers associated with these visualization tools. 

Many analysts are reluctant to use tools that they don’t trust, afraid that they will impede 

more than aid in their tasks. The lack of trust illustrates the need to truly understand the 

information analysts’ needs along with the thought process they must go through in order 

to perform their task, and design interfaces according to this information (Fink, North, 

Endert, & Rose, 2009). 

Finomore et al. have done research that shows how misleading or missing 

information can impede analysts’ effectiveness (Finomore, et al., 2013). Their research 

focused on a team-based task, where information was split among the team. The 
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information provided to the subjects varied in usefulness, something that is also true for 

network analysts as many of the alerts they view are non-threats, so they must filter out 

the irrelevant, and sometimes misleading, information. Their research indicated how 

misleading information disrupted the team decision making process, which is something 

Network Analysts also have to deal with.  

Brehmer and Dorner provide an early illustration of the tension between 

laboratory research and field research, with laboratory research lacking the relevance and 

complexity of the real world, while field research is hindered by a lack of experimental 

control (Brehmer & Dörner, 1993). They sought to create computer simulated 

macroworlds, computer programs that would emulate complicated environments, and 

could be used to study broad concepts by simulating a specific domain. These 

macroworlds illustrate an early variation of an STE, attempting to bridge the gap between 

the real world, and a laboratory environment.  

Other researchers have benefited greatly from using STEs to replicate a certain 

task they wanted to explore and to enhance their research. For example the Multi-

Attribute Task Battery (MATB), developed by NASA was a task environment to 

replicate the tasks performed by airplane pilots (Comstock & Arnegard, 1992). It has 

since been used by researchers to study the effects of sleep deprivation on subjects’ 

abilities to perform a task (Caldwell & Ramspott, 1998). MATB has also been used by 

Wilson and Russell to study how workload manifests itself through physiological signs 

and demonstrated that it was possible to predict workload from these physiological 

measurements (Wilson & Russell, 2003). These studies illustrate how researchers have 

been able to use STEs in the past to aid in their research.  
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The RoboFlag STE was able to study how participants handle information 

overload (Guznov, Matthews, Funke, & Dukes, 2011). The authors illustrate that 

increased cognitive demands drive a participant’s workload, along with their task 

engagement, distress, and worry. An interesting relationship they picked up on was how 

uncertainty can lead to increased task demand. This relationship can tie into how 

Network Analysts may at times be uncertain about the action they need to take due to not 

having all the information needed to make a decision. 

Galster and Bolia discuss the benefits of using STEs to study the way different 

interfaces affect subject performances, and, suggest ways to improve interface design for 

real world products (Galster & Bolia, 2005). Galster and Bolia also discuss the 

dimensions of STEs that make them useful in different capabilities: tractability, realism, 

and experimental control. Tractability refers to the STE’s capability to answer the 

questions the researcher may pose, and also the space on the theoretical vs. applied scale 

the STE occupies. Realism refers to how much the STE matches reality. The authors 

point out that low levels of realism answer more broad fundamental questions, while 

highly realistic STEs are designed to answer much narrower questions with more field 

validity. Lastly, experimental control refers to the amount of variability the researchers 

can introduce into an STE. High levels of experimental control can allow the researcher 

to tailor the task to their needs; however it could also break away from a realistic 

environment (Galster & Bolia, 2005). 

Through a study of automatic decision support systems, Galster and Bolia also 

specified that they needed a “real time metric of decision quality” (Galster & Bolia, 

2004). This metric requires that an effective STE must also provide a real-time response 
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of right and wrong decisions. Their research also acknowledges that the complexity of an 

STE is significantly less than a real world task; however the lessons learned can still be 

applied to reality, or guide future research (Galster & Bolia, 2004). Cooke and Shope 

describe the general goal of any STE to reproduce the behavior and cognitive processes 

of a real world task within a laboratory setting. By having the task within a laboratory 

setting, experimental control can be applied and measurement capabilities still exist. 

(Cooke & Shope, 2005). 

There has also been work done to document the process of creating a good STE. 

Cooke and Shope explain their process for creating a STE that was made to emulate the 

task of controlling Uninhabited Air Vehicles (Cooke & Shope, 2004). The authors 

describe the benefits of using STEs. The benefits include being able to use the STE as a 

high fidelity simulations, that allows researchers to examine the task, without needing to 

fully replicate the task. They explain how the goal of an STE is to recreate the task in a 

way that performing the task requires the same thought processes, even if it does not have 

the same “look and feel” of the actual task. A good STE will also be tailorable for 

research purposes, allowing those using the STE the flexibility and tools they need, 

perhaps at the cost of fidelity. Consequently, a good STE will both provide experimental 

control and the necessary representation of the environment being studied. 

Cooke and Shope break their process to design their UAV STE, into 4 steps. The 

first step is to gather information about the task. This step includes narrowing the design 

to a single representation of the task. They choose the Air Force Predator to be their focus 

to study. They also examined the research objectives the STE is aimed to meet. In their 

example, they needed an STE which would lend itself to team cognition research, 
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something not all STEs require. Information also needs to be gathered about other 

constraints that could limit how an STE could be designed--for example, budget concerns 

or computational power. The second step that Cooke and Shope describe is abstracting 

features. This is the step that decides how certain features of the real world will be 

replicated in the STE. During this process, some parts of the task may be exaggerated, 

while others may be omitted, depending on the goals for the STE. The third step is to 

build a prototype. This step starts by using a very low tech model to give a picture of 

what the final product will look like--in their case, a paper mock up with some simple 

drawing software. This process allows them to get a quick and cheap picture of what the 

task environment will be. As they get feedback from researchers and subject matter 

experts (SMEs), they fine tune their design. Once their design is in place, they translate 

the visual design into a software design. The software design considers the data that 

needed to be stored, the variables to be manipulated, and the communication between 

units. Once the design step is completed, step 4, implementation can begin. This step 

includes a cycle of interactions where programmers would build the STE, the researchers 

would provide feedback, and then the programmers would make the required 

improvements. This cycle led to a product that was able to meet the researchers’ needs. 

Cooke and Shope also describe lessons other STE designers should keep in mind, such as 

designing for future expansion and considering required tradeoffs. The major 

contribution Cooke and Shope make is outlining the steps to create an STE, something 

that other researchers can and have built upon (Cooke & Shope, Designing a Synthetic 

Task Environment, 2004). 
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Section 2.3: Cognitive Task Analysis 

Cognitive Task Analysis (CTA) is the process of understanding a task and the 

underlying cognitive activity that the task requires. This cognitive activity can include 

decision making, mental calculations, and problem solving. Some questions that frame a 

cognitive task analysis are: 

• What issues will be addressed? 
• What product will be delivered at the end of the project? 
• What people can explain an issue? 
• What types of cognition need to be understood?  
• What situations provide the most information about the issues being explored? 

Another important aspect of cognitive task analysis is observing real work being 

done, as opposed to just asking questions of the SMEs. This real world perspective can 

allow researchers a much better understanding of the task in question than simply 

conducting interviews (Crandall, Klein, & Hoffman, 2006). 

Crandall, Klein & Hoffman also discuss that a key part of talking with SMEs is 

getting them to tell stories. While general descriptions of the SME’s work are necessary 

to understand the task being investigated, it is the stories that highlight real events, and 

allow the investigators to see how the pieces of the task come together in a real world 

event. Stories also highlight memorable events, those that while possibly outside the 

realm of normality, may be of particular interest to investigators. These extreme events 

can show what techniques and knowledge were used and how the SMEs resolved the 

situation. The stories can also highlight the abilities that an experienced person may have 

over an inexperienced one, the cues they can pick up on, so these stories can serve as a 

learning opportunity. The stories can also highlight the kinds of decisions an expert may 

have to make, along with what makes these decisions difficult. Their research provides 
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valuable insight in how a task analysis can be done for our research (Crandall, Klein, & 

Hoffman, 2006). 

Summary 

Thus far, there has been a great deal of work done to understand the cognitive 

demands of cyber analysts, as seen from the analysis work done by D’Amico and 

Whitely (D'Amico & Whitley, 2007), along with the experiments done with Mancuso’s 

idsNETS (Mancuso, Minotra, Giacobe, McNeese, & Tyworth, 2012) and Rajivan’s 

CyberCog (Rajivan, 2011). There has also been a large amount of research done creating 

STEs for various domains. Cooke and Shope provide a valuable insight into the features 

an STE needs to provide for researchers (Cooke & Shope, 2004). Galster et al. illustrate 

how STE demands may fluctuate based on the demands of the task being researched 

(Galster & Bolia, 2005). Crandall, Klein & Hoffman provide insight for how to perform 

cognitive task analysis, by illustrating techniques to get subject matter experts to explain 

the aspects of their tasks that are valuable to researchers (Crandall, Klein, & Hoffman, 

2006). The role this research seeks to fill is to leverage the knowledge gained from these 

previously mentioned works to create a STE for a Network Analyst performing the type 

of role that those of the 33rd NWS perform, something that has not be done before. In 

addition a new contribution of this research seeks to demonstrate how IMPRINT can be 

used to model that task emulated by the STE. This model will make it possible to predict 

how a subject would perform and how their workload would change based off the factors 

manipulated.  
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III. Methodology 

Chapter Overview 

This chapter presents the overarching goal of the research, to present a new way 

to perform Human Factors research, by using Workload Analysis software such as 

IMPRINT to guide experimental design. By using IMPRINT it’s possible to simulate 

dynamic conditions for a subject, and identify the resulting changes in workload and 

performance. By identifying these changes in workload and performance, it’s possible to 

understand what effects various factors would have on a real subject. However, using 

IMPRINT in such a way requires an intricate knowledge of the task to be performed, 

including how each small subtask contributes to workload, along with what success and 

failure mean at every action taken. The relationships between the conditions and 

performance may vary based on the specific task and the person performing the task, but 

identifying these relationships is something that can be more cost effective than running a 

pilot study with real subjects.  

The end goal of this research is to create a system where an IMPRINT model and 

STE experimental design are able to constantly refine each other, to the degree that 

IMPRINT is able to accurately model the thought process of a human while correctly 

modeling the timing and accuracy of all subtasks. An accurate model makes it possible to 

know what kind of effects changing conditions would have on subjects which aids in 

experimental design.  

 The chapter is composed of seven sections. Section 1, Cognitive Task Analysis, 

discusses the research done to understand the work done by Network Analysts. Section 2, 
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Development of The Synthetic Task Environment, includes the research done to 

understand the needs of researchers who may use the STE and the design and 

implementation of the STE. Section 3, IMPRINT Modeling, presents using IMPRINT to 

model the task of the analysts, something that is done first by modeling the steps of the 

analysts’ tasks in IMPRINT, and then populating IMPRINT with workload and timing 

data for each subtask, along with what the impacts of success and failure are at each 

subtask. Section 4, IMPRINT Experiment describes an overview of an experiment done 

with the IMPRINT model, Section 5, IMPRINT Evaluation Criteria describes how the 

results of the IMPRINT Experiment will be analyzed and what the results are expected to 

look like. Section 6, STE Calibration Study Protocol, describes how an experiment could 

be done with the STE based off the information obtained from IMPRINT with the goal to 

verify and refine the IMPRINT model. Section 7, STE Calibration Study Evaluation 

Criteria describes how the results of the STE Calibration Study will be evaluated.  

Section 3.1: Cognitive Task Analysis on Line Analysts 

Of the steps outlined by Cooke and Shope for designing an STE (Cooke & Shope, 

2004), the first step is understanding the task that needs to be emulated. This step 

includes narrowing the target domain to a specific task, and once the specific task has 

been identified, learn from literature and subject matter experts (SMEs) how this task is 

performed. 

The process of understanding the task performed is accomplished through a 

combination of literature research, and interviews with Subject Matter Experts (SMEs), 

those who have experience with the target task. In order to learn about the process the 
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Line Analysts use, it is necessary to seek those who had previously and currently worked 

either with, or as, Line Analysts. A broad overview of the domain is needed, something 

that can be obtained by interviewing those with a general knowledge of the task. Once the 

task of interest is narrowed, then those who are closely connected to the task can be 

sought, which in the case of this research, are those who currently work for the 33rd 

NWS. By interviewing these individuals, it’s possible to get firm answers about the task 

in a way that the task can be emulated. This process isn’t composed of a single interview 

with each party, but an iterative process, as an answer to one question may lead to more 

questions that aren’t obvious at first. These interviews go beyond just the general 

overview of the task itself, with the goal to be how the SMEs think and the decisions they 

must make. Crandall, Klein and Hoffman discuss different ways to frame these 

interviews, from getting the interviewees to tell stories about notable experiences, or to 

frame their knowledge in a concept map (Crandall, Klein, & Hoffman, 2006). This 

process makes it possible to understand not just the steps that the analyst take in carrying 

out their task, but the reason why they take each step, and the ways various pieces of 

information come together in their minds. 

From the interviews with those who were involved with the 33rd NWS, it is 

possible to gain an understanding of the task they performed. ArcSight is used by the 33rd 

NWS to monitor network traffic at the boundary of the network between the Air Force 

and the public internet. ArcSight monitors the traffic for anything that could be 

considered suspicious (Rice, 2014). ArcSight is not a defense system itself, but is instead 

a compilation tool, taking in information from various sensors on the network, such as e-

mail servers, DNS servers, and Intrusion Detection Systems. ArcSight then displays these 
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suspicious activities as alerts. Each alert is displayed with a small amount of information 

on a constantly scrolling display. One of the most relevant pieces of information is 

ArcSight’s estimate of the severity which is on a scale that includes Very Low, Low, 

Medium, High, and Very High. The severity helps the analyst decide which alerts require 

the most immediate attention. The severity is displayed as a color, making it easy for the 

analyst to see at a glance how severe the alert is (Lovell, 2014). Based on this 

information, if the analyst determines the alert requires further information, they will 

click on it, which will bring up more detailed information (Rice, 2014). 

While it may vary across organizations, in the 33rd NWS, the analysts do not act 

directly on an alert that they deem important, instead they send the alert to the incident 

response team (IRT) for further investigation. This means there are two main decisions 

the analysts must make. The first decision is to decide what alerts should be selected for 

investigation, and the second decision is to decide from that investigation, which alerts 

should be sent to the IRT. Figure 1 illustrates this process.  

 

Figure 1: 33rd NWS Analyst Process 

Ideally, all alerts would be able to be investigated, to ensure that nothing that was 

a potential threat went by undetected (Lovell, 2014). However, the sensors that generate 
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alerts do so in a way that creates many alerts that aren’t actual threats, creating an 

infeasible amount of work for the analysts to do. Therefore, analysts typically only 

investigate alerts classified by ArcSight as Medium or higher, and those alerts that 

correspond to these more severe alerts as a way to make their task load more manageable 

(Lovell, 2014). In the most extreme cases, the ratio of true threats to alerts could be worse 

than 1:1000. In some cases, analysts may use the filters within ArcSight to reduce the 

non-threats shown, but even with these reductions, there may still be too many alerts for 

the analysts to handle (Hannan, 2014). These filters are rarely developed by Line 

Analysts, but instead by the Escalation Analysts after seeing a continual pattern of easily 

filtered non-threats (D'Amico & Whitley, 2007). Because the filtering is not done by the 

Line Analysts, a Simulation Task Environment made to emulate the work done by a Line 

Analyst, doesn’t need to consider filtering.  

The end goal for the Line Analyst is to mark all alerts as either non-malicious or 

reportable. Some alerts can be deemed to be non-malicious by just what the alert initially 

displays, for example the type of alert might be known to always be a non-threat, or the 

sensor could have already handled the event such that no further action is needed. Other 

alerts require the analyst to investigate the alert to get more information in order to make 

a decision. Typically, the most important factor in choosing which alerts require 

investigation is the severity. In some cases, less severe alerts are also investigated if 

something is known to be suspicious in them, or they are connected to a more severe 

alert.  On the other hand, some of the alerts that would typically require investigation 

may be known to be able to be ignored. For example, ArcSight may identify an attack 

that would normally be a threat, but if the vulnerability was known to be patched, then 
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the alert could be safely ignored. The analysts may also tend toward investigating alerts 

they are familiar with, as opposed to investigating an alert they have little knowledge 

about. 

When an alert is clicked on, the analyst receives all the information the sensors 

sent to ArcSight. This information can include session information, a pcap1 (packet 

capture) file and more specific information varying based on the type of alert. With this 

information, the analyst will decide if the alert is malicious (Hannan, 2014).  This process 

varies depending on the type of alert, but will often involve examining the IP addresses 

along with any website names provided to determine the reputation of the cause of the 

alert. Analysts will often examine the signature that caused the alert, and attempt to find 

it in the pcap file. Depending on the experience and knowledge of an analyst, for familiar 

types of signatures, they may not need to look it up to know what to look for. Based on 

experience and knowledge, some analysts may also not need to look up an IP address to 

have an idea of where it is coming from.  

In a majority of cases, the analyst will discover that the pcap only partially 

matched the signature, and can therefore classify it as a non-threat since the alert doesn’t 

represent the signature (Lovell, 2014). Depending on their experience with the type of 

alert, the analyst may ask other analysts for help in understanding the information before 

coming to a conclusion. If the analyst determines the alert is a non-threat, they will close 

the alert, a process that includes adding a comment in ArcSight that the alert is non-

malicious along with any required details. If the analyst determines the alert is malicious, 

                                                
1 A packet capture file shows all the network packets that went through the network. This can be viewed 
down to the binary level, but more abstract views are often provided showing the information at each 
network layer in a human-readable format.  
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they will indicate this in an ArcSight comment, and write a report which is sent to the 

IRT (Lovell, 2014; Hannan, 2014). There are also some cases where the analyst can’t 

come to a decision. This occurs when there’s not enough data to say the alert is 

definitively worth flagging as a threat, but enough evidence that it can’t be discarded 

entirely. In these cases the analyst may just leave it, though include a comment that the 

analyst will continue monitoring it and keep it in mind if anything in future alerts may 

provide more information about it (Lovell, 2014). Notes from all interviews performed 

are provided in Appendix E. 

Section 3.2: Development of the Synthetic Task Environment 

The process of creating the simulated task environment is composed of four steps, 

similar to the steps described by Cooke and Shope (Cooke & Shope, 2004). The first step 

is to understand the task that needed to be emulated, which was described in the previous 

section. Second, the requirements for the STE must be considered. In order to identify the 

requirements, it is necessary to consider who the intended audience is, which in the case 

of this research is the 711th HPW. The audience determines the requirements, both in the 

complexity of the task to be emulated, and the capabilities the STE requires. The third 

step is to design and build the STE. The design process is an iterative process that 

encompasses verifying design ideas with SMEs, and the target audience, along with 

involving those who will be implementing the software to ensure all requirements are 

firmly understood and are feasible giving the time and resource constraints. Finally, the 

STE needs to be evaluated both to ensure that it is a working program and that it meets 

the requirements identified in the first two steps. 
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The analyst’s task can be broken up into three steps: identifying the alerts that 

require investigation, investigating these alerts, and identifying which of these 

investigated alerts represent a true threat, thus requiring further action. A STE 

representing this task must emulate these steps. The simulation needs to show the alerts 

scrolling by, allowing the user to bring up more detailed information by clicking on an 

alert. Once the detailed information is brought up, the user must then be able to make a 

decision based on the information. A key part of an STE is abstraction, simplifying the 

technical details of the task while still maintaining the cognitive decisions that need to be 

made. This abstraction makes it so that a novice user could still use the simulation with a 

small amount of training and be able to perform the task adequately (Cooke & Shope, 

2004). Abstraction can be done through simplifying the technical depth of the 

information presented. For example, the information the in the pcap files, the complexity 

of the various network protocols, and the information regarding various possible threats 

all need to be simplified. The tools the analysts use may also need to be abstracted, such 

as if multiple tools are used for the same type of task, it may be possible to combine them 

into a single tool. 

The STE also needs to meet any requirements set in place by its target audience. 

The target audience could be a specific customer that wants the STE to perform a specific 

role in a single experiment, or it could be a broader situation where the STE is hoped to 

be useful in a variety of circumstances. The target audience can affect many things, such 

as the abstraction required, the customizations offered, and the data recorded. For this 

research, the STE is expected to be used by Human Factors researchers in the Human 

Performance Wing (HPW) of the Air Force Research Laboratory (AFRL).  In order to 
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meet the needs of these researchers, the STE must keep track of choices the subject 

makes and provide a level of abstraction such that a college student--with no knowledge 

of the Line Analyst task--can be used as a test subject. In addition, the STE needs to 

record any data that may aid in the analysis of the experiment, as well as provide the 

needed customization and extendibility to fulfill the needs of various possible 

experiments.  

The choices subjects make is one of the key pieces of information that would 

show their thought process. As such, the STE needs to show when they decide to 

investigate the alert, and when they decide whether it’s a threat or not. It’s also important 

to be able to identify the difference in a subject ignoring an alert because they didn’t see 

it, as opposed to ignoring it because they know it’s not a threat, and as such no action 

needs to be taken. In order to accomplish this differentiation, this STE includes a feature 

where the subject can right click on an alert and select the option to flag as a non-threat 

without needing to investigate the alert. While this feature does not exist in the actual 

task, knowing why a subject ignores an alert is a valuable piece of information for 

researchers.  

Beyond just knowing the times that these decisions are made, the STE also needs 

to keep track of the subjects’ mouse and keyboard actions, so the researcher can see what 

the subject was doing at any time. Customization is also needed to allow the researcher to 

adjust as many of the aspects of the STE as possible. These customization options include 

if the subject can mark an alert as a non-threat without investigating it, along with the 

type of data shown during the investigation, which allows the researcher to decide how 

realistic and complex they want the simulation to be. For example, instead of displaying 
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an Internet Protocol (IP) address as a series of 4 octals, the researcher may just want it to 

be a decimal number from 0 to 1000 to make it easier to understand. These customization 

options circumvent some parts of the risk of the STE being designed to be too abstract or 

too complex.  

The use of the STE also needs to be fairly intuitive. While it can be assumed that 

the researchers have some degree of technical knowledge, and can spend more time 

learning how to use the STE than the subjects, making it understandable how to use the 

various customization features is also important. The output of the STE should also be 

intuitive. For example, the STE should make it simple to figure out which alerts the 

subject flagged correctly versus incorrectly. The STE should also make it easy to identify 

the actions the subject took to come to a conclusion about a certain alert.   

With the tasks identified, it is possible to begin designing and constructing the 

STE. This stage includes making various software design decisions, and depending on the 

scale of the project, the design decisions may involve meeting with programmers. One of 

these decisions was the programming language to be used, something that is determined 

based on programmers’ expertise, and how built in functionality corresponds with the 

various needs for the STE. For this STE, the C programming language was used to create 

the STE, as there were libraries that provided the graphical capabilities to construct the 

STE. Another important factor to consider is how the STE obtains its information, such 

as the script for when events occur.  
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In the case of this STE, all the input is provided with csv2 files. One csv file 

includes all the alerts that enter the system during the trial. Other csv files provide the 

detailed information about the alert when it is investigated. Another csv file provides 

responses for when the subject performs a query.  

The details of the output of the STE also need to be specified. The output of the 

STE needs to provide all the information the researchers could need for their analysis. 

One required part of the output is a timestamp for whenever a subject performs an action. 

The actions include investigating an alert, making a decision on an alert, or querying for 

information. The timestamps need to be in terms of time since the trial started, or have 

the trial start time also recorded so the time since the start of the trial can be calculated. 

The timestamps make it possible to understand when the subject makes decisions, and 

how much time it takes for them to investigate each alert. Another piece of required 

information is the final decision made by the subject for each alert. By knowing the 

decisions the subject made, it’s possible to calculate how well the subject performed. 

Lastly, the STE needs to record mouse and keyboard actions. By capturing the mouse and 

keyboard actions, it’s possible to replay the trial. 

The design process is iterative, as many of the clarifications needed for 

implementation require various design decision to be made, which may then add more 

questions. In some cases, the design process also requires clarification from the SMEs to 

ensure everything is as realistic as possible, and when realism is abandoned, there is a 

sufficient justification for this. A more detailed version of the STE design for this 

research is included in Appendix A.  

                                                
2 A csv file is a text file with values separated by commas, which gives the values a table like format 
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Once the details of the STE design are finalized, the STE can be built. Figure 2 

below shows a screen shot of the STE.  

 

Figure 2: STE Screen Shot 

After the STE is completed, it must be evaluated. Evaluation includes ensuring 

that all the functionality works properly. In addition, the evaluation also includes error 

checking, making sure that the STE responds adequately if the subject acts in an 

unexpected way. Testing also needs to span the breadth of requirements that an 

experiment will need. An example of this testing is to ensure that the system responds 

correctly when the maximum amount of allowed alerts are in the system and open. The 

portability of the STE also needs to be confirmed, so that the STE is confirmed to be able 

to run on different types of computers, such as those with a different operating system or 

a desktop versus laptop. Lastly, the output of the STE must be checked to ensure that it’s 

recording all the information properly. Once the testing is complete, the STE can then be 

used for a sample experiment to demonstrate its ability to drive workload at various 

levels.  
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Section 3.3: IMPRINT Modeling 

IMPRINT is a software tool developed by Alion Science and Technology on 

behalf of the Army Research Labs (ARL), Human Research & Engineering Directorate. 

IMPRINT simulates a network of discrete tasks. Its purpose is to model human 

performance, both across a team, and also for a single operator throughout a mission. It 

can also create workload profiles, making it possible to see how workload is distributed 

across a team, and also how task allocation affects a single operator (Army Research 

Laboratory, 2010). 

IMPRINT has the capability to import activity diagrams from Microsoft Visio, 

but it is also possible to manually create a task network in IMPRINT. Thus, the first step 

of using IMPRINT is to take the activity diagram constructed from the task analysis, and 

to recreate it in IMPRINT. IMPRINT’s structure has the task organized like a tree, where 

a subtask may be a leaf node, with no other subtasks under it, or a function, that is 

composed of smaller subtasks. By building the task network with IMPRINT, it is possible 

to see any deficiencies in the activity diagram, such as redundant or missing substeps. 

Once the activity diagram is in IMPRINT, then it’s possible to start assigning workload 

values to the task nodes.  

For the purposes of this research, only a single human operator is being studied. 

Only studying a single operator simplifies the requirements of the IMPRINT model, only 

needing to track a single human operator instead of multiple operators. 

What makes designing IMPRINT different than designing the STE is that 

IMPRINT is human-centric, where the nodes in IMPRINT primarily represent where the 

human’s attention is focused at any given moment. This is a contrast to the event-centric 
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nature of the STE, where the focus of design is keeping track of alerts and related 

information. The human-centric nature of IMPRINT gives it a great amount of power, as 

it can examine the human specifically, identifying what tasks the human is performing, 

and their workload at any moment in the trial. However, focusing on the human’s thought 

process adds a layer of difficulty, as the alerts are also flowing through the system. A 

challenge of using IMPRINT is keeping track of the data that represents the alerts, as the 

data within each alert affects the decisions the operator needs to make. The data needs to 

be easily accessed throughout the entire system, along with being stored in a way that’s 

easy to work with. There are different options to handle this data, each with their own 

challenges and benefits. The solution that is chosen needs to allow the IMPRINT model 

to access the needed data whenever a decision needs to be made, while also being simple 

to implement. In addition to the simple implementation being easier to implement, it also 

makes it easier for the model to be expanded as well, especially if someone else is the one 

expanding the model. 

Five different options are considered to keep track of the alert’s data. The first 

option is to create an Alert class, and then have each alert represented by an object. The 

second option is to have an array for each alert, where each field in the array stores a 

specific piece of information. The third option is to store the information in an external 

csv file. The fourth option is to store the information that would be in the csv in a String 

variable within IMPRINT. The fifth option is to not store information about each 

individual alerts, but instead to store a count of how many alerts of certain categories are 

in the system.   
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The first option, creating an Alert class is a natural application of the Object 

Oriented paradigm. It is possible to easily access and modify the data for each alert. 

IMPRINT supports C# code snippets, and C# supports Object Oriented programming, 

however it is impossible to create Classes within IMPRINT, since IMPRINT only 

implements a subset of C# in its code snippets. IMPRINT does allow plug-ins to be 

added, which make Objected Oriented programming possible, but requiring the use of 

plug-ins requires an additional layer of complexity. 

The second option, having each alert’s information stored in an array, is similar to 

the first option. The difference is that instead of using classes which require plug-ins, all 

the information is stored in arrays which IMPRINT’s code snippets support. The problem 

with this option is that using arrays in such a way requires a convoluted conversion 

between the support objects provide, and the limited ways to use the data in an array. 

This problem makes expansion difficult, and could easily lead to code readability 

problems.  

The third option is having the information stored in an external csv file. Having 

the information stored in an external file makes it easier for the researcher to configure 

the types of alerts that enter the system. The csv files can be created with external scripts 

or programs, and then tailored to researcher needs. The problem with this option is that 

while C# does support reading data from a file, the subset of C# that can be used in code 

snippets does not. The lack of support means that plug-ins need to be used, adding an 

additional layer of complexity. An additional problem is that the information needs to be 

stored somewhere once the information is imported into IMPRINT from the csv, meaning 

that this option would need to be combined with one of the others to work. 
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The fourth option is using a String within IMPRINT to store all the information 

that would have been in the csv file. This option circumvents the problem of using plug-

ins. One of the problems of this option is the fact that a massive amount of information is 

stored in a single string which make the data difficult to work with. Another problem is 

that the entire string will likely need replaced with each run of IMPRINT, creating a large 

overhead for when IMPRINT experiments are performed. 

The fifth option is using counts of categories of alerts instead of storing each alert 

on its own. In this option, IMPRINT will keep track of the number of “Very High” alerts 

that are in the system, but won’t have all the information about each of those alerts. The 

information not stored by the categories the alert is in is determined randomly based on 

probabilities defined in other IMPRINT variables. The benefit of this solution is that it 

can be done entirely with functionality supported within IMPRINT’s code snippets. It 

also only needs integer variables to keep track of the counts for each category, and 

variables for the probabilities. A challenge of this solution is that care must be taken to 

ensure that all the categories are updated correctly. Other variables may need introduced 

to differentiate between alerts just in the system, those currently being investigated, and 

the alerts where an action had been taken on them. 

For this model, option 5, using categories, is chosen to be implemented. This 

option requires no plug-ins to work, and uses all types of variables in a way that is 

intuitive. The variables that are needed to keep track of the alerts do require some 

additional implementation overhead; however the additional variables help to illustrate 

how the alerts flow through the system. 
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The categories are used to keep track of the severity of each alert (Very Low, 

Low, Medium, High, Very High), along with if the alert is a threat or not. Since the 

categories keep track of if the alert is a threat or not, it’s possible for the IMPRINT model 

to check if the alert is a threat whenever needed. Whenever the simulated operator makes 

a decision of if the alert is a threat or not, the model compares that decision with the 

information known about the alert to see if the operator is right or wrong. 

With the model in place, including both the focus on the human’s attention, and 

the support for tracking the alerts, it is then possible to start entering workload values for 

the sub tasks. IMPRINT breaks workload into 7 categories, Visual, Cognitive, Auditory, 

Fine Motor, Gross Motor, Speech, and Tactile. Values for each of these categories are 

assigned at each of the lowest level sub tasks. These numerical values are not assigned 

subjectively, but by selecting a short description that most closely matches the task, 

which equates to a pre-defined, and expert verified numerical value. These predefined 

values make it so that if two different people assigned workload values across the model, 

the values would be consistent. 

Due to the nature of the task, the only categories of workload that matter for this 

task are Cognitive, Fine Motor, and Visual. Cognitive refers to the decisions the operator 

makes, such as if an alert is a threat or not, and the mental processing to come to these 

decisions. Fine Motor refers to small movements, such as moving a mouse or typing on a 

keyboard. Visual refers to reading the information about the alerts, or looking at the 

colors that represent severity to know which alert to investigate next.  

The other categories of workload do not apply to this task. Auditory refers to 

listening for and responding to sounds, something that the task does not currently require 
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the operator to do. Gross motor refers to large body movements, such as walking, which 

the STE does not require the operator to do. Speech refers to the operator speaking, 

something the task does not require. Tactile refers to information obtained through the 

sense of touch, for example, differentiating between a rough surface and a smooth 

surface, something that the task does not require. 

Tables 1 through 3 below show the descriptions and values that IMPRINT uses 

for the Cognitive, Visual, and Fine Motor, categories.  

Table 1: IMPRINT Cognitive Workload Values 

Task Description Workload Value 
Nothing 0.0 
Automatic  
(Simple Association) 

1.0 

Alternative Selection  1.2 
Evaluation/Judgment (Consider Single Aspect) 4.6 
Rehearsal 5.0 
Encoding/Decoding, Recall  5.3 
Evaluation/Judgment (Consider Several Aspects) 6.8 
Estimation, Calculation, Conversion 7.0 
 

Table 2: IMPRINT Visual Workload Values 

Task Description Workload Value 
Nothing 0.0 
Register/Detect (Detect Occurrence of Image) 1.0 
Inspect/Check (Discrete Inspection/Static Condition) 3.0 
Locate/Align (Selective Orientations) 4.0 
Track/Follow (Maintain Orientation) 4.4 
Discriminate (Detect Visual Differences) 5.0 
Read (Symbol) 5.1 
Scan, Search, Monitor (Continues Serial Inspection) 6.0 
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Table 3: IMPRINT Fine Motor Workload Values 

Task Description Workload 
Value 

Nothing 0.0 
Discrete Actuation (Button, Toggle, Trigger) 2.2 
Continuous Adjustive (Flight Control, Sensor Control) 2.6 
Manual (tracking) 4.6 
Discrete Adjustment (Rotary, Vertical Thumb Wheel, Lever Position) 5.5 
Symbolic Production (Writing) 6.5 
Serial Discrete Manipulation (keyboard) 7.0 

 

Once the values for workload are in place, it is necessary to determine the time 

that each subtask is expected to take along with the expected variance. Before any 

experiments are performed with human subjects, it may be difficult to determine exact 

durations for each sub task. IMPRINT provides some built in functionality for 

determining how long small events such as moving a mouse can take, but events that 

include cognitive processing information must be estimated.  

IMPRINT also requires probabilities set for the chance of failure at any specific 

sub task, and the associated action to take when this failure occurs. Similar to the times 

for each sub task, the expected failure rate is difficult to determine until experiments are 

performed with human subjects, so they must be estimated. Failing a task could be as 

simple as miss-clicking, something that can be easily fixed after a couple seconds, or it 

could be misreading a pcap and identifying something as a threat when it isn’t, thus 

decreasing the performance score. 

When running the IMPRINT model, factors can be manipulated to see how 

workload and performance change with these factors. IMPRINT provides workload 

values at every time during the trial that the workload changes. From the workload 
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values, a time-weighted average can be taken across the entire trial. The individual 

workload values can be useful in identifying during what parts of the trial the operator 

experiences the highest or lowest workload, and may provide insight if a high workload 

precludes failure. In contrast, the time-weighted average workload gives a higher level 

view of the trial, and can illustrate how hard the operator worked as a whole. The 

workload value provided by IMPRINT only reflects the work the simulated operator 

does. If the operator is given twice the task than the operator is capable of, and the 

operator performs half the task, then the workload is the same as if the operator is only 

given the amount of task it’s able to handle. 

A full description of the nodes and functions within IMPRINT are provided in 

Appendix D.  

Section 3.4: IMPRINT Experiment Description  

 For the IMPRINT experiment, two factors are chosen to be manipulated. These 

factors are the amount of Alerts Per Minute that enter the system (APM), and the 

distribution of the severity of the alerts.  

 There are 10 APM levels explored, ranging from 1 to 10, with the APM level 

representing how many alerts arrive at each minute. At the start of each minute of the 

trial, a number of alerts enter the system consistent with the APM level. 

 The alerts are split into 5 categories based on severity, Very Low, Low, Medium, 

High, and Very High. For the case of this experiment, the higher severity, the more likely 

the alert represents a true threat. This is a contrast to the real world, where the severity 

represents the damage caused if the alert is a true threat. 
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 The typical distribution of alerts is provided in Table 4. These values were 

obtained from an SME (Lovell, 2014). 

Table 4: Typical Alert Severity Distribution 

Type of Alert Percentage of All Alerts 
Very Low 25% 
Low 25% 
Medium 20% 
High 20% 
Very High 10% 
 Using the SME provided distribution as a middle point, 21 levels of the severity 

distribution are made. 10 of these levels have a smaller amount of severe alerts than the 

SME provided distribution, while 10 levels have more. The distribution of the alerts for 

all 21 levels is shown in Tables 5 below. 
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Table 5: Severity Level Distributions 

Severity 
Level 

Percent Very 
Low 

Percent Low Percent 
Medium 

Percent High Percent Very 
High 

1 35 35 20 10 0 
2 34 34 20 11 1 
3 33 33 20 12 2 
4 32 32 20 13 3 
5 31 31 20 14 4 
6 30 30 20 15 5 
7 29 29 20 16 6 
8 28 28 20 17 7 
9 27 27 20 18 8 
10 26 26 20 19 9 
11 25 25 20 20 10 
12 24 24 20 21 11 
13 23 23 20 22 12 
14 22 22 20 23 13 
15 21 21 20 24 14 
16 20 20 20 25 15 
17 19 19 20 26 16 
18 18 18 20 27 17 
19 17 17 20 28 18 
20 16 16 20 29 19 
21 15 15 20 30 20 
 

 By combining the 10 APM levels, and the 21 Severity levels in a full factorial 

design, there are a total of 210 conditions that IMPRINT will run. 

 Each of the 210 conditions is run 15 times for a total of 3150 runs. The random 

number seed is different for each the 15 times the simulation is run. The changing 

random number seed affects anything that has a distribution, such as the time some of the 

nodes take. The changing seed also affects anything chosen probabilistically.  
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Section 3.5: IMPRINT Evaluation Criteria 

Each alert that entered the system could be classified into 6 categories as shown in 

Table 6 below. The rows indicate the true status of the alert, and the columns are the 

actions that the operator took. 

Table 6: Alert Classification Categories 

 Alert Flagged as 
Threat 

Alert Flagged as 
non-threat 

No Action Taken 

Alert is a threat True Positive False Negative Ignore Threat 
Alert is a non-threat False Positive True Negative Ignore Non-Threat 
 

In Binary Classification systems, there are three main calculations done to 

evaluate the rate of successful classifications, Accuracy, Precision, and Recall (Powers, 

2011). Accuracy is the ratio of objects that were classified correctly compared to all 

objects in the system. Precision is the percent of objects that had a specific trait out of all 

objects that were said to have the specific trait. Recall is the percent of objects that are 

correctly said to have a specific trait out of all objects that have the trait. However, the 

system in this research is different from a Binary Classification system as there is the 

additional possibility the operator took no action. Therefore, Accuracy, Precision and 

Recall must be expanded. 

For the purposes of this expansion, we use Table 7 to define our variables. 
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Table 7: Variable Definitions 

Variable Name Definition 
TP True Positives 
FP False Positives 
FN False Negatives 
TN True Negatives 
IT Ignore Threat 
INT Ignore Non-Threat 
 

We now define the following equations to evaluate the success of the 

classification of alerts. 

 𝐴𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 
 

(1) 

 𝑃𝑎𝑠𝑠𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐼𝑇 
(2) 

  

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 + 𝐼𝑁𝑇

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐼𝑇 + 𝐼𝑁𝑇 
 

(3) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

(4) 

 𝐴𝑐𝑡𝑖𝑣𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

(5) 

 𝑃𝑎𝑠𝑠𝑖𝑣𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐼𝑇 
(6) 

  

Accuracy refers to the percent of alerts classified correctly. For this research, 

Active Accuracy only focuses on the alerts where the operator made a decision, ignoring 

the alerts where no action was taken. Passive Accuracy also includes those alerts that 

represented true threats where the operator did not make a decision; however, Passive 

Accuracy ignores the alerts that were not threats when no action was taken. Results 
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Accuracy accounts for both types of alerts when no action was taken. Results Accuracy 

treats the lack of action on an alert that is not a threat as a correct choice because the alert 

was not flagged as a threat, and is therefore correct, despite the fact that the alert being 

classified correctly was not due to the operator’s decision. 

Precision is the only of these calculations that can be taken directly from its 

normal definition, as it is still the percent of true threats flagged correctly out of all alerts 

flagged. 

Similarly to Active Accuracy, Active Recall only takes into account alerts the 

operator took action on, while Passive Recall expands Active Recall to the alerts that 

were true threats but had no action taken on them.  

For the purposes of the experiment with IMPRINT, it is expected that Precision, 

Active Accuracy, and Active Recall will be relatively consistent throughout the changing 

difficulty of the conditions. This consistency is caused by the fact that these calculations 

are only based off alerts the operator took action on, and the chance that an alert will be 

classified correctly if it is classified, is independent of the amount of alerts in the system.  

It is expected that as the conditions become harder by the Severity Distribution 

favoring more severe alerts, and the amount of alerts per minute increase, then the 

Passive Accuracy, Results Accuracy, and Passive Recall will all decrease due to the alerts 

increasing to a degree that they surpass the amount the operator can handle. As the 

conditions become harder, in the beginning, Passive Accuracy, Results Accuracy, and 

Passive Recall should remain high as the difficulty is not something the operator cannot 

handle, but there will be a point where the operator won’t be able to handle all the alerts, 

and the values will begin falling. Results Accuracy will still remain relatively high as it 
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will be boosted by the alerts that are not threats that have no action taken on them since 

these are classified as a correct. Passive Recall is expected to drop the most as there will 

be nothing to counter balance the higher number of true threats that will be missed as the 

difficulty increases.  

Table 8 summarizes the expected behavior for each performance calculation. 

Table 8: Expected Behavior for the IMPRINT Study 

Calculation Estimated change across APM 
levels 

Estimated change across 
Severity Distribution levels 

Active Accuracy Not significant  Not significant  
Passive 
Accuracy 

Significant  Significant  

Results 
Accuracy 

Significant  Significant  

Precision Not significant  Not significant  
Active Recall Not significant  Not significant  
Passive Recall Significant  Significant  

These hypotheses will be tested by running a two-way ANOVA for each 

performance calculation, testing the change caused by the APM level, the Severity 

Distribution level, and the interaction between the two. If the p value from the ANOVA 

is less than 0.05 that will provide evidence that the changing of the independent factors 

does affect that performance calculation. 

IMPRINT also provides an objective measure of workload at each instant 

throughout the trial. This workload data makes it possible to calculate a time-weighted 

average workload across the entire trial. It is expected that the average workload will 

continue to increase as the conditions become harder, however there will be a cap in 

which no matter how much harder the conditions become, the workload will barely 

change. This cap is caused by the fact that the workload at any given time is a sum of all 
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the sub tasks being performed at that time, which leads to the highest workload being 

while the operator is investigating an alert while also monitoring for severe alerts. The 

highest average workload will be when the operator spends the most amount of time 

investigating alerts. Once the operator reaches the limit of how many alerts can be 

processed, increasing the amount of alerts coming into the system can’t raise the amount 

of time the operator spends investigating the alerts further.  

By taking the average workload across the condition and the performance scores, 

it’s possible to create a workload performance profile that shows the relationship between 

workload and performance (Mitchell, 2000). A workload performance profile typically 

has 3 main regions of interest. The first main region, the underloaded region, is where 

workload and performance are both low. This behavior is caused by the task being so 

boring and lacking stimulus that the person loses interest and performs badly. The next 

region of interest, peak performance region, is where workload is medium, and 

performance is high. This behavior is caused by the task being stimulating enough that 

the human is able to stay engaged, but workload isn’t high enough that the human is 

overwhelmed. This region also represents optimal workload, where the person is 

comfortable and able to manage the task. The final region, the overloaded region is where 

the workload is high and the human is overworked, so performance begins to degrade. A 

sample Workload Performance Profile is shown in Figure 3 below. 
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Figure 3: Sample Workload Performance Profile 

The major goal of the IMPRINT experiment is to downselect conditions from the 

210 conditions being evaluated. These down selected conditions will then be explored 

using the STE in the STE Calibration Study. The reason downselecting is important is 

that the IMPRINT model is able to explore many different conditions quickly, while it is 

much more resource intensive to explore conditions with real people. If an IMPRINT 

model can be used to identify the levels of factors that create conditions of interest, then 

it is possible to know that when human subjects are used, the right types of conditions are 

explored. The method for choosing the 4 conditions to be downselected from the 210 can 

vary depending on the research question being asked. In some research, the conditions 

right when the subject is expected to start making mistakes may be a condition of interest, 

while in other research a condition where the subject makes lots of mistakes may be 

desired. 
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For this research, 4 conditions are downselected, and examining where the 

conditions fall on the Workload Performance Profile is one way to narrow down the 

conditions of interest. It is unlikely that there will be any conditions in the underloaded 

region first section, as the task does not last long enough for the human to struggle to stay 

attentive. Conditions in the peak performance region are those in which the human is not 

overloaded and able to keep up with the demands of the task. As the goal of the 

calibration study is to see if the IMPRINT model is correct by neither overestimating nor 

underestimating the human’s performance, conditions in the peak performance region are 

not interesting, as it’s impossible to see if the human performed better than expected if 

the human is expected to perform at the maximum. Conditions in the overloaded region 

are the most interesting as this section is where the human begins to be overloaded and 

cannot handle the task. By choosing the conditions in this range, it’s possible to see if the 

IMPRINT model either underestimated or overestimated the human’s performance.  

Since there are likely a large number of conditions in overloaded region of the 

workload performance profile, other factors can be used to narrow down the amount of 

conditions. The factors that are used depend on the questions the research is asking. For 

this research, one of the questions that can be explored is at what points does increasing 

the APM level offset decreasing the Severity Distribution level. This research question 

could explore how well the IMPRINT model accounts for the changing independent 

variables. In order to find points where this offset happens, it’s necessary to find 

conditions that have a similar performance calculation, but differing APM and Severity 

Distribution levels. Specifically, the performance calculations that should be looked at 

are those in which the ANOVAs indicate a significant difference across both APM and 
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Severity as indicated by the p values from the ANOVAs, and there is a large range in 

values for the calculations. The large range in performance values from the IMPRINT 

study makes it easier to identify a difference in performance during the STE Calibration 

Study. 

In order to downselect the 4 conditions, two pairs of conditions can be selected, 

with one pair from an easier part of the overloaded section, and the other pair 

representing a more difficult part of the overloaded section.  

Section 3.6: Calibration Study 

 This section provides an overview of the Calibration Study done with the STE 

described in section 3.1. This overview includes a discussion on the goals for the 

experiment, along with an outline of the procedure.  

 Study Objective 

The primary goals of the study are to verify the capabilities of the STE to drive 

different levels of workload, to collect data correctly, and to demonstrate the capability to 

synchronize the IMPRINT model’s expected workload and performance profiles with the 

human subject self-reported workload and the performance profiles from the STE, 

respectively.  

Experimental Design: Factors  

For the purposes of this study, 2 factors are manipulated. The first is the number 

of alerts that arrive per minute, and the second is the distribution of alerts that fall into 

each of the 5 types of severity. There will be a total of 4 conditions downselected from 

the 210 examined in the IMPRINT study. 
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All other factors will be kept as constant as possible. One of these factors includes 

the length of the trial, kept consistent at 10 minutes. The way the alerts enter the system 

is also kept constant, at the beginning of each minute. Another factor kept constant is the 

probability that the non-threats should be rejected for a certain reason. For example, the 

probability that an alert should be identified as a non-threat based on the pcap not fully 

matching the signature is 75%, a factor consistent with estimates provided by SMEs 

(Lovell, 2014). The rest of the non-threats are designed such that they are split evenly 

between three other categories. The first category is benign alerts, those that are not a 

threat because they represent normal activity. The second category is alerts where the 

malicious action was already taken care of by the system, such as having a patch against 

that threat already implemented. The third category is alerts that are not a threat due to 

the originating IP Address. 

Subjects 

As this is a proof of concept experiment, only 3 subjects are used. Subjects are 

trained via a short PowerPoint presentation, and run through a practice trial where the 

participant is able to ask the researcher questions to ensure they understand the task. 

After the subjects complete the data collection trials, the subject is given the chance to 

provide feedback about the training which can aid researchers in identifying what areas 

may need to be clarified or highlighted.  

Procedure 

For the data collection, each subject completes 4 trials, one for each condition. 

The order in which these trials are presented is randomized; however, the order is the 

same for each subject which allows learning effects to affect the subjects in a consistent 
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way, as opposed to having one condition easier for one subject than the other due to 

learning effects. Each trial lasts 10 minutes. Following each trial, the participant is asked 

to fill out the NASA-TLX for that task which can be found in Appendix B. The NASA-

TLX makes it possible to examine how a subjective workload measurement compares to 

the objective workload computed by IMPRINT. Due to the differing scales of the 

workload provided by IMPRINT, the comparison cannot be done directly, but the two 

can be compared by examining the correlation between the two. Once the trials are 

completed the subjects are interviewed to see what they thought was easy or hard about 

the task, along with giving them the chance to suggest ways to improve the task 

environment and the experimental process. These questions can be found in Appendix C. 

Section 3.7 STE Calibration Study Evaluation Criteria 

 The STE Calibration Study’s purpose is to evaluate the quality of the IMPRINT 

model. This evaluation is done in two main ways. 

 The first evaluation criterion is whether the subject’s performance matches the 

values predicted by the IMPRINT model. This evaluation is done by examining the 

performance metrics that were identified to be helpful in narrowing the conditions. Each 

of the conditions in IMPRINT is run 15 times, which makes it possible to construct a 

confidence interval on the predicted average performance. The performance of the 

subjects can then be compared to the confidence intervals from the IMPRINT model. As 

this is a proof of concept study with a small amount of participants, it’s infeasible to 

construct a confidence interval around subject performance, nor use a t-test to compare 

the two groups, though this technique is a possibility for other studies. Instead, each of 
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the subject’s performance scores can be compared to the confidence interval from 

IMPRINT. Comparing the performance also includes examining the failure rate for 

investigating alerts between the IMPRINT model and the subjects. 

 The second evaluation criterion is whether the workload reported by the subjects 

matches what is predicted by the IMPRINT model. Due to the different scales that 

IMPRINT’s VACP workload and the NASA-TLX have, the two groups cannot be 

directly compared. However, the order of the rankings from easiest to hardest can still be 

used. In addition, correlation calculations can be done to see if there is a relationship 

between the types of workload. 

Summary 

This chapter described the process of using a workload analyzer such as 

IMPRINT to aid in experimental design. This process included identifying Line Analysts 

as the specific task domain to investigate, and undergoing the process of understanding 

the task by interviewing those with experience working with or as network analysts. The 

problem was examined from a researcher’s point of view, seeing how the task could be 

abstracted while still keeping the core of the task intact, along with seeing what 

capabilities the researcher would need from such an environment. The first iteration of 

the STE is designed and built. An IMPRINT model of the task is constructed to perform a 

discrete event simulation of the task. A sample experiment is designed to calibrate the 

IMPRINT model. In the next chapter, we present and discuss the findings from the 

IMPRINT model, and the results from the STE Calibration Study.  
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IV. Analysis and Results 

Chapter Overview 

This chapter presents the data for two experiments performed as a part of this 

research: the IMPRINT Experiment and the STE Calibration Study. The IMPRINT 

Experiment uses IMPRINT to simulate 210 different conditions of the model described in 

section 3.3. During the IMPRINT Experiment, the rate of alerts coming into the system is 

manipulated, along with the Severity of these alerts. The goal of the IMPRINT 

Experiment is to identify interesting conditions that can be used for a sample experiment 

using the STE by examining the relationship between workload and performance of the 

conditions on a Workload Performance Profile. The STE Calibration Study uses the 

conditions identified in the IMPRINT Experiment in an experiment using the STE. The 

goal of the Calibration Study is to examine if the results match the workload and 

performance that were predicted by the IMPRINT Model. 

This chapter is composed of three main sections. The first section presents the 

conditions, results, and analysis of the IMPRINT Experiment, and the second section 

presents the conditions, results, and analysis of the Calibration Study. 

Section 4.1: IMPRINT Experiment Data 

This section is composed into two subsections. The first subsection provides an 

overview of the independent variables manipulated for the IMPRINT experiment, which 

summarizes the key points identified in section 3.4. The second subsection provides the 

data and analysis from the IMPRINT experiment. 
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Section 4.1.1: Independent Factors 

For this study, two factors are manipulated. The first is the number of alerts that 

arrive per minute, and the second is the distribution of alerts that comprise each of the 5 

types of severity. All other factors are kept as consistent as possible. 

There are 10 levels of the rate of alerts. These range from 1 to 10 alerts per 

minute. Consistent with a real world environment (Lovell, 2014), all the alerts for the 

minute will enter the system at the start of the minute. 

There are 21 levels for the distribution of the severity of alerts. Table 9 below 

shows the percent of each severity of alert for each of the severity levels. 

Table 9: Severity Level Distributions 

Severity 
Level 

Percent Very 
Low 

Percent Low Percent 
Medium 

Percent High Percent Very 
High 

1 35 35 20 10 0 
2 34 34 20 11 1 
3 33 33 20 12 2 
4 32 32 20 13 3 
5 31 31 20 14 4 
6 30 30 20 15 5 
7 29 29 20 16 6 
8 28 28 20 17 7 
9 27 27 20 18 8 
10 26 26 20 19 9 
11 25 25 20 20 10 
12 24 24 20 21 11 
13 23 23 20 22 12 
14 22 22 20 23 13 
15 21 21 20 24 14 
16 20 20 20 25 15 
17 19 19 20 26 16 
18 18 18 20 27 17 
19 17 17 20 28 18 
20 16 16 20 29 19 
21 15 15 20 30 20 
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A full factorial design is done with these two factors for a total of 210 conditions. 

Each condition is repeated 15 times, each with a different random number seed. By 

repeating the conditions with different random number seeds, the chance that a rare event 

would improperly skew the results is reduced.  

For each run of IMPRINT, IMPRINT produces a workload summary, which 

indicates the total objective workload at each point the workload changes. This workload 

summary makes it possible to calculate time-weighted average workload across each run. 

IMPRINT also produces a snapshot of key variables at each second, such as the amount 

of each category of alerts. These variables include a count for true positive, true 

negatives, false positives, false negatives, along with information about the alerts not yet 

worked on. This snapshot makes it possible to calculate how well the simulated operator 

performed. A Workload Performance Profile can be created comparing the time-weighted 

average workload and performance, which makes it possible to see if there’s a correlation 

between workload and performance. With the workload performance profile, it is then 

possible to identify conditions of interest that can be used in an experiment with the STE. 

Section 4.1.2: Results and Analysis 

This subsection discusses the data related to Workload, and then performance for 

the IMPRINT experiment. 

IMPRINT provides workload values for seven channels of workload at every 

point in the trial that the values change. Due to the nature of the task, only the Visual, 

Cognitive, and Fine Motor are examined for this task. The workload at each point of the 

trial is the sum of the values for these three channels of workload. The workload for the 

trial is found by calculating the time-weighted average of all the points of workload.   
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Figure 4 illustrates the average workload values from the IMPRINT model for 

each level of Alerts Per Minute (APM) examined, and Figure 5 illustrates the average 

workload values across each of the Severity levels. As predicted in chapter 3, the 

workload increases as APM increases, with a leveling off point where the workload no 

longer increases as APM increases. A two-way between conditions ANOVA was 

conducted to compare the effects of APM and Severity levels on Workload. There was a 

significant effect of the APM level on Workload at the p<0.05 level [F (9, 3234) = 8372, 

p=0]. There was a significant effect of the Severity level on Workload at the p<0.05 level 

[F (20, 3234) = 132.7, p=0]. There was also a significant interaction between APM and 

Severity on Workload [F (180, 3234) =6.47, p=0]. Running a multiple comparison test of 

workload between the APM levels indicates that the APM levels of 4 through 10 have no 

significant difference of average workload between them, while 1, 2, and 3 Alerts Per 

Minute are significantly different from all other levels, and from each other. This 

comparison demonstrates that the leveling off point for workload occurs at around 4 

Alerts per Minute. The reason workload does not continue to increase much at this point 

is due to the fact that the IMPRINT model is measuring the workload of the task that the 

operator is doing, and the model does not increase workload just by having alerts piling 

up. Adding more alerts while the operator is already working at capacity will not increase 

workload because the operator does not take any action on the alerts. 
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Figure 4: Workload across Alert per Minute Levels 

 

Figure 5: Average Workload Across Severity Levels 

Figure 6 provides a 3 dimensional graph of Workload against both Alerts per 

Minute and Severity. The graph indicates that for low levels of APM, increasing severity 

tends to increase workload. As indicated by the previous graphs, workload approaches a 
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ceiling as the task difficulty increases. There is still some increase even after this ceiling; 

however the increase is much smaller than before the difficulty reaches the ceiling.  

 

Figure 6: Workload Across APM and Severity Levels 

Figure 7 presents the average Active Accuracy across all levels of APM, and 

Figure 8 presents the average Active Accuracy across all Severity levels. As expected, 

the values remain high most of the time, though a visual inspection could indicate a 

downward trend as APM increases. A two-way between conditions ANOVA was 

conducted to compare the effect of APM and Severity levels on Active Accuracy. There 

was a significant effect of APM on Active Accuracy at the p<0.05 level [F (9, 2940) = 

4.87, p=0]. There not a significant effect of the Severity level on Active Accuracy [[F 

(20, 2940) = 1.4, p=0.112]. There was also not a significant effect of an interaction 

between APM and Severity levels on Active Accuracy [[F (180, 2940) = 0.88, p=0.86].  
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Figure 7: Active Accuracy Across APM Levels 

 

Figure 8: Active Accuracy Across Severity Levels 
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discrepancy is noted where due to the different amount of steps that an alert can take to 

investigate, the chance of failure is higher for some alerts than others. Since alerts that are 

true threats always require the maximum amount of checks performed, having a larger 

amount of true threats could result in a lower accuracy. True threats taking longer to 

investigate is also true in the real world as the alerts can’t just be discarded right away 

when the analyst sees that it’s benign traffic or doesn’t match the signature. Since as 

severity increases, the amount of true threats also increases, a difference of accuracy 

caused by changing severity is a possibility, however there was not a significant 

difference caused by severity. However, that still doesn’t explain the difference caused by 

the different APM levels. This unexpected behavior could be explained by the increase in 

the total number of alerts resulting in an increase in the amount of severe alerts. The 

operator in the IMPRINT model investigates the higher severity alerts first, so as APM 

increases the operator investigates more severe alerts—even when severity is held 

constant. Since the more severe alerts are more likely to be true threats, the higher APM 

level, the more likely the operator is investigating true threats. As previously explained, 

true threats are more likely to be evaluated incorrectly, explaining the difference in 

Active Accuracy as APM changes. 

Figure 9 illustrates the average Passive Accuracy for each of the APM levels, and 

Figure 10 illustrates the average Passive Accuracy for each of the Severity Levels. As 

predicted in chapter 3, the Passive Accuracy trends downward as APM increases in what 

appears to be a linear fashion. By running a linear regression model, it’s possible to 

obtain a slope and y intercept that fits the data, which has an R2 value of 0.97 indicating 

that a linear model closely resembles the data. This matches the expected results, as the 
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main force behind the changing Passive Accuracy levels is a growing number of alerts 

that cannot be handled, which increases linearly as APM increases. A two-way between 

conditions ANOVA was conducted to compare the effects of the APM and Severity 

levels on Passive Accuracy. There was a significant difference of the APM level 

[F(9,2940)=219, p=0], Severity level [F=(20,2940)=32.81, p=0], and an interaction 

between the two [F(180,2940)=2.26, p=0] on Passive Accuracy at the p<0.05 level. This 

difference matches the predictions in chapter 3. The difference caused by the Severity 

level is less pronounced than APM level, but indicates that as there are more severe 

alerts, the operator becomes overwhelmed. An interesting note is that there is a large 

variance at higher APM levels, possibly tying into the strong interaction between the two 

factors. 

 

Figure 9: Passive Accuracy Across APM Levels 
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Figure 10: Passive Accuracy Across Severity Levels 

Figure 11 illustrates Results Accuracy across the APM levels, and Figure 12 

illustrates Results Accuracy across the Severity levels. As predicted in chapter 3, Results 

Accuracy stays high throughout all APM levels. A two-way between conditions ANOVA 

was conducted to compare the effects of the APM level, and Severity level on Results 

Accuracy for each condition. There was a significant effect of APM [F(9,2940)=30.4, 

p=0], Severity [F(20,2940)=21.09, p=0], and an interaction between the two 

[F(200,2940)=1.3, p=0.006] on Results Accuracy This difference matches the prediction 

in chapter 3 that there would be a significant difference across the conditions. 
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Figure 11: Results Accuracy Across APM Levels 

 

Figure 12: Results Accuracy Across Severity Levels 

Figure 13 illustrates Precision across APM levels, and Figure 14 illustrates 

Precision across Severity levels. Unlike Accuracy, there does not appear to be a relation 
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between increasing and decreasing across the APM levels, however the large error bars 

make obtaining information from visual inspection difficult. A two-way between 

conditions ANOVA was conducted to compare the effects of the APM and Severity 

levels on Precision. There was not a significant effect of either APM [F (9, 21853) =0.92, 

p=0.50] nor Severity levels [F (20, 2185) =0.98, p=0.48] on Precision. There was also not 

a significant interaction between APM and Severity levels on Precision [F (180, 2185) 

=1.02, p=0.41]. The lack of significant difference of precision across conditions matches 

the predications made in chapter 3.These high p values indicate that the fluctuations in 

Precision across conditions is not something that can be attributed to the changing APM 

and Severity Levels, so Precision should not be used as a guide to finding conditions of 

interest for the STE Calibration Study. 

 

Figure 13: Precision Across APM Levels 

                                                
3 Some trials did not have any alerts flagged as threats due to the low frequency of true threats for some 
conditions, which lowered the amount of samples used for Precision, Active Recall, and Passive Recall. 
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Figure 14: Precision Across Severity Levels 

Figure 15 shows a graph of Active Recall across APM levels, and Figure 16 

shows a graph of Active Recall across Severity levels. The graph looks similar to that of 

Active Accuracy with both Active Recall and Active Accuracy slowly decreasing as 

APM increased. A two-way between conditions ANOVA was conducted to compare the 

effects of the APM and Severity levels on Active Recall. There was not a significant 

effect of the APM level on Active Recall at the P<0.05 level [F (9, 2040) =1.59, p=0.11]. 

There was also not a significant effect of the Severity level on Active Recall at the 

P<0.05 level [F (20, 2040) =0.59, p=0.59], nor was there a significant interaction between 

the APM and Severity levels [F (180, 2040) = 1.03, p=0.39]. This result does match the 

predictions made in chapter 3 where it was expected that Active Recall would remain 

relatively constant throughout the conditions. Since Active Recall does not vary across 

both APM and Severity levels, Active Recall is not a good factor to consider when 

deciding on conditions for the calibration study. 
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Figure 15: Active Recall Across APM Levels 

 

Figure 16: Active Recall Across Severity Levels 

Figure 17 shows a graph of Passive Recall across APM levels, and Figure 18 

shows a graph of Passive Recall across Severity levels. One of the most noticeable things 
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effect of the APM and Severity levels on Passive Recall. There was a significant effect of 

the APM level on Passive Recall at the p<0.05 level [F (9, 2304) =107.51, p=0]. There 

was also a significant effect of the Severity level on Passive Recall at the p<0.05 level [F 

(20, 2304) = 9.74, p=0]. However, there was not a significant interaction between APM 

and Severity levels [F (180, 2304) =0.96, p=0.62]. Considering the significant difference 

of Passive Recall caused by both the APM and Severity levels, and the large range of 

values for Passive Recall across the conditions, Passive Recall is a good metric to use to 

identify the conditions that are downselected for the STE calibration study.  

 

Figure 17: Passive Recall Across APM Levels 
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Figure 18: Passive Recall Across Severity Levels 

Many of the values explored differed from the predictions made in chapter 3 

Table 10 below compares how the performance metrics turned out compared to the 

predictions in chapter 3. The estimated behavior column indicates the predicted behavior 

for both changing APM and Severity levels. For all the metrics where there was a 

significant difference across factors, the values for the metric decreased as APM and 
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Table 10: Comparison of Predicted to Actual Results 

Metric Estimated Behavior Effect from APM Effect from Severity 
Active Accuracy Not Significant  Significant  

(p=0) 
Not Significant 
(p=0.11) 

Passive Accuracy Significant  Significant  
(p=0) 

Significant  
(p=0) 

Results Accuracy Significant  Significant  
(p=0) 

Significant  
(p=0) 

Precision Not Significant  Not Significant  
(p=0.50) 

Not Significant  
(p=0.48) 

Active Recall Not Significant  Significant  
(p=0.11) 

Not Significant  
(p=0.59) 

Passive Recall Significant  Significant  
(p=0) 

Significant  
(p=0) 

 

With many of the calculations shown in this chapter varying only by a few 

percent from the easiest to the hardest conditions, these calculations are less likely to 

have the range to be able to match subject performance. Passive Recall has the largest 

range, with values ranging from 0.22 to 1 for the conditions. The large range makes 

Passive Recall ideal as a metric to design the STE Calibration Study, as a variation could 

be identified with a small amount of data from the subjects in the STE calibration study. 

As one of the questions being explored with the IMPRINT model is the relationship 

between workload and performance, it’s important to look at how workload and Passive 

Recall relate to each other. Figure 19 shows a graph of Passive Recall plotted against 

Workload for all 210 conditions, with the red circles illustrating the areas of interest 

examined for conditions to use in the Calibration Study. Passive Recall remains relatively 

high as Workload increases for the most part until around the time that VACP reaches 15, 

where Passive Recall begins falling. This behavior illustrates that the IMPRINT operator 
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is able to handle the alerts for the most part until workload reaches 15, at which point the 

operator is unable to keep up. 

 

Figure 19: Workload Performance Profile 

For the Proof of Concept STE Calibration Study, 4 conditions are to be chosen. 

One of the factors that lead to a condition being interesting is its place on the workload 

performance profile. For the purposes of this research, the interesting conditions are those 

where performance is seen to decrease based on the higher workload.  

Due to the fact that there are a large amount of conditions that occur on the curve, 
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the IMPRINT model is accurate in taking into account how increasing APM and 

decreasing Severity affect the operator.   

One set of conditions that closely match each other is one where APM=9 and 

Severity=14, and a condition where APM=8, and Severity =20. These conditions have a 

less than 1 percentage point difference in Passive Recall (0.406 and 0.400 respectively). 

They also have very similar average workload (17.6 and 18 respectively). These 

conditions are further along in the curve so are expected to be harder, though the subjects 

are predicted to still be able to correctly flag 40% of the true threats.  

Another set of conditions that closely match each other is where one condition has 

APM=6 and Severity=10 and a condition where APM=4 and Severity=18. These 

conditions are also very close with regards to Passive Recall (0.719 and 0.724 

respectively) and Workload (16.9 and 17.1 respectively). These conditions are on the 

easier side of the curve with a majority of the true threats flagged correctly, however over 

a fourth of the true threats are undetected.  

By choosing conditions on the curve of decreasing performance, it’s possible to 

check if the IMPRINT model either overestimates or underestimates the amount of true 

threats the subjects will flag correctly. If the human operator catches all the alerts for the 

easier conditions, than it can be inferred that the estimates of the IMPRINT simulated 

operator’s speed should be increased, or the path logic needs changed while if the human 

operator catches only a quarter of the true threats in the harder conditions, then it can be 

inferred that the IMPRINT model is incorrect, and that either operator’s speed should be 

decreased, the failure rate when investigating alerts needs changed, or the path logic 

needs to be changed. 
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Section 4.2: STE Calibration Study 

This section presents the data and analysis from the Calibration Study done with 

the STE. This section is composed of two subsections. The first section provides a 

summary of the factors being manipulated. The second section presents the data and 

analysis.  

Section 4.2.1: Calibration Study Description 

For this experiment, 3 subjects are used, each one performing the same 4 

conditions specified in Section 4.1.3. The conditions are henceforth named as follows. 

• Condition A has APM=9 and Severity=14 
• Condition B has APM=4 and Severity=18 
• Condition C has APM=6 and Severity=10 
• Condition D has APM=8 and Severity=20. 

Each of the subjects had some knowledge of the Line Analysts task, with 

knowledge of the types of the alerts varying from subject to subject.  

Before the experiment began, the subjects were led through a PowerPoint 

presentation which presented instructions for the task. The subjects performed a training 

condition to become familiar with the STE and the decisions they would need to make. 

The training condition had 6 alerts spread across the severity levels, and the subjects were 

not given a time limit to classify the alerts.  

The conditions were presented to the subject in numerical order. Each condition 

lasted 10 minutes. After each condition the subjects were asked to fill out the NASA TLX 

to assess their subjective workload.  
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Section 4.2.2: Calibration Study Results and Analysis 

Tables 11-13 show the Accuracy, Precision, and Recall calculations for each 

subject and Table 14 shows the average value from the conditions for the IMPRINT 

model.  

Table 11: Subject 1 Performance Results 

 
Active 

Accuracy 
Passive 

Accuracy 
Results 

Accuracy Precision 
Active 
Recall 

Passive 
Recall 

Condition A 1.00 0.96 0.98 1.00 1.00 0.67 
Condition B 1.00 1.00 1.00 1.00 1.00 1.00 
Condition C 1.00 1.00 1.00 1.00 1.00 1.00 
Condition D 0.96 0.96 0.98 0.83 0.83 0.83 

 

Table 12: Subject 2 Performance Results 

 Active 
Accuracy 

Passive 
Accuracy 

Results 
Accuracy Precision 

Active 
Recall 

Passive 
Recall 

Condition A 0.85 0.76 0.92 0.43 1.00 0.50 
Condition B 0.95 0.95 0.95 0.60 1.00 1.00 
Condition C 0.95 0.95 0.95 0.50 0.67 0.67 
Condition D 0.90 0.90 0.91 0.45 0.83 0.83 

 

Table 13: Subject 3 Performance Results 

 Active 
Accuracy 

Passive 
Accuracy 

Results 
Accuracy Precision 

Active 
Recall 

Passive 
Recall 

Condition A 0.74 0.68 0.91 0.40 1.00 0.67 
Condition B 0.88 0.88 0.93 0.50 1.00 1.00 
Condition C 0.86 0.83 0.92 0.33 1.00 0.67 
Condition D 0.86 0.80 0.93 0.50 1.00 0.67 
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Table 14: IMPRINT Performance Results 

 Active 
Accuracy 

Passive 
Accuracy 

Results 
Accuracy Precision 

Active 
Recall 

Passive 
Recall 

Condition A 0.97 0.87 0.97 0.86 0.89 0.41 
Condition B 0.98 0.95 0.98 0.81 1.00 0.72 
Condition C 0.99 0.96 0.99 0.96 0.92 0.72 
Condition D 0.99 0.86 0.97 0.90 1.00 0.40 
 

The IMPRINT model’s estimation of a participant’s accuracy in classifying alerts 

appears to be off. Active Accuracy reflects only those alerts that the subject made a 

decision on, which for the IMPRINT model in these conditions is always above 97%. The 

only subject who was overall in this range was subject 1 who had the most knowledge 

about the types of alerts before participating in the study. This difference means that if 

someone wants to use IMPRINT to model more novice users, than its rate of failure in 

investigating the alerts should be increased. 

Based on the Passive Recall scores, subjects tended to perform better than the 

IMPRINT model estimated. Subject 2 stated that in conditions 2, 3, and 4 they were able 

to catch up on the alerts at times. The IMPRINT model estimated that between a quarter 

and a half of true threats would remain undetected. This difference indicates that the 

simulated operator in the IMPRINT model should perform the task faster than is 

currently programmed. 

So far, the values for the IMPRINT model’s estimation for Passive Recall have 

been shown as a single value. This value was calculated by taking the total Passive Recall 

across the 15 runs performed for the condition.  However the single value can be 
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expanded to a confidence interval based on these 15 trials. As described in section 3.4 

each of the 210 conditions run with the IMPRINT model was run 15 times, with the only 

difference between these 15 runs being the random number seed. The random number 

seed affects everything chosen probabilistically in IMPRINT, such as the time for 

subtasks that use distributions and if the investigation of a given alert yields the correct 

answer or not. These confidence intervals are calculated with alpha=0.05 and are shown 

in Table 15 below. 

Table 15: Passive Recall 95% Confidence Intervals for IMPRINT 

 Lower Bound Upper Bound 
Condition A 0.312 0.576 
Condition B 0.485 0.860 
Condition C 0.620 0.898 
Condition D 0.280 0.562 
 

For condition A, only subject 2’s Passive Recall fell within the bound. For 

condition B, all subjects had a passive recall score of 1, so do not fall within the bound. 

For condition C, subject 1 did not fall within the bound, while subject 2 and 3 were 

within the bound. For condition D, all 3 subjects were higher than the upper bound.  

Of the 4 conditions across the 3 participants, only 3 of the 12 Passive Recall 

calculations fell within the confidence intervals from the IMPRINT model data, with all 

of the mismatches between the data caused by the subjects scoring higher than the 

IMPRINT model predicted. These mismatches illustrate that the IMPRINT model is 

tuned improperly and should be adjusted to better reflect what was seen in the 

experiments with the STE.  
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Table 16 provides the Raw TLX scores for each participant, along with the VACP 

time-weighted average workload estimate from the IMPRINT model. Note that due to the 

different scales, these two should not be directly compared. It is also important to note 

that different subjects may have different standards for what they consider low or high 

workload for the categories so it can be difficult to compare them directly as well.  

Table 16: Workload Values for IMPRINT and Subjects 

 IMPRINT Subject 1 Subject 2 Subject 3 
Condition A 17.6 27.5 70.00 67.50 
Condition B 16.9 15.83 35.83 53.33 
Condition C 17.1 14.17 54.17 54.17 
Condition D 18 26.67 73.33 64.17 
 

Instead of looking at the numerical values directly, it’s possible to compare how 

the IMPRINT model and the subjects ranked the trials from easiest to hardest based off 

the workload scores. These ranks are shown in Table 17 below with 1 indicating the 

easiest and 4 indicating the hardest. 

Table 17: Workload Ranks for IMPRINT and Subjects 

 IMPRINT Subject 1 Subject 2 Subject 3 
Condition A 3 4 3 4 
Condition B 1 2 1 1 
Condition C 2 1 2 2 
Condition D 4 3 4 3 

 

All the subjects and the IMPRINT model agree that Conditions A and D are the 

harder conditions, with Conditions B and C being the easier conditions. Both subjects 2 

and 3 stated in post experiment interviews that Conditions A and D felt about the same, 
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while Conditions B and C also felt about the same in terms of difficulty. These rankings 

indicate that the subjects believe APM affects their workload more than severity. 

There are three changes that can be made in the IMPRINT model to allow the 

model to better fit behavior seen from the Calibration Study. The first change is to adjust 

the nodes within the task network diagram. Modifying the nodes could include adding or 

removing certain nodes, or changing the order of the nodes. While the IMPRINT model 

is made based off the STE, and the expected behavior of the subjects while using the 

STE, the subjects did not always match expected behavior. For example, the subjects 

were expected to monitor for new severe alerts showing up, which not all subjects did, so 

an example of modifying the nodes would be removing the nodes that included 

monitoring for severe alerts while investigating another alert if the participant did not 

continuously monitor for new severe alerts. An example of changing the order of nodes 

would be during the investigation process, if the subjects investigated the parts of the 

alert in a different order than the subject was predicted to do. A second change is to 

adjust the failure rate at each node. For example, during the Calibration Study, participant 

2 was accurate 92% of the time when investigating a true threat, so the IMPRINT model 

can be adjusted to match this value. Currently, there is a 1% failure rate at each step that 

requires a decision within the process of investigating the alert. The last change is to 

adjust the amount of time each step takes. During the Calibration Study, the participants 

investigated alerts faster than the IMPRINT model predicted, so the time each step of the 

investigation took can be adjusted to better reflect the values seen in the Calibration 

Study. 
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Expanding the experiment to acquire more data could also help in pinpointing 

where values could be adjusted. Possible expansions could include having the same 

condition run multiple times, or having the conditions last longer than 10 minutes to 

reduce the impact a single mistake could have on performance. Further simulations with 

the IMPRINT model could also be run, only focusing on the 4 conditions of interest here, 

which would allow for more trials to be run instead of just the 15. These additional trials 

would cut down on the standard deviation allowing for smaller confidence intervals.  

 Information was also obtained through post experiment questionnaires and 

observations of the subjects performing the experiment. This information could be used 

to further tune the IMPRINT model, or improve the functionality of the STE. The 

participants noted that 10 minutes per trial didn’t seem like too long, and it would be safe 

to extend time of the trial to a degree without the length of the trial causing them to lose 

interest. A trial length of 20 minutes was suggested to the subjects; however their 

responses were divided of that being a reasonable length. One subject commented that 

they focused on the alert types they recognized first, rationalizing that they could get 

through them faster so focusing on these was an efficient use of their time. In some cases, 

the subjects’ behavior was different. One subject focused mainly on the alert they were 

currently investigating, not acting if a high priority alert came in during the investigation, 

while the other would drop the current alert if they saw a high priority one. Another 

difference between subjects was how cautious they were. One subject erred on the side of 

caution, flagging several alerts they weren’t sure of as a threat, not wanting to miss any 

true threats. The subject’s strategies could be affected by the training they were provided. 
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For this experiment, the subjects were told that their tasks, in order of importance were 

to: 

1. Flag All True Threats 
2. Minimize flagging non-threats as true threats 
3. Flag Non-Threats as Non Threats. 

 The training could be modified to instruct the participant that the speed in 

response mattered, or better highlight finding true threats. 

 Another interesting piece of information from the subjects was their mindset 

during the experiment. One subject indicated that they treated the task like a game, with 

catching up on the alerts indicating that he won the game. 
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V.  Conclusions and Recommendations 

This thesis has presented research showing how workload analyzers such as 

IMPRINT can be used to predict subject performance and workload for a task. The 

overall goal is to have a cyclic interaction between an IMPRINT model and real world 

experiments, where information acquired from an IMPRINT model can point researchers 

to interesting conditions to explore, and data from real world experiments can be used to 

fine tune processes within the IMPRINT model. This thesis has presented the first step in 

this overall goal, demonstrating how the IMPRINT model can be built, and then used to 

guide experimental design.  

While the IMPRINT model provides a basic simulation based on the task 

performed with the STE, the model can be improved by analyzing the results of the STE 

Calibration Study to identify more precise timings for the subtasks, along with the 

chances of failure at each point. The model can also be refined by updating the chain of 

decisions to better match the order the subjects made decisions. Model refinement may 

involve creating multiple models, based on different subjects and the varying techniques 

they used. These models could vary based on the order the decisions were made, along 

with the time it took the subjects to make each decision. Varying models could allow 

different strategies to be compared in IMPRINT, and could possibly lead to research that 

could identify a best strategy to suggest that analysts could use. The IMPRINT model 

could also be enhanced to have accuracy and speed fluctuate based on how rushed the 

operator feels.  

The STE designed in chapter 3 could also be expanded to be better reflective of 

real world environments. This expansion could include making it possible for a team of 



 

83 

subjects to work on the task at the same time. More experiments could be done with the 

STE to explore how a subject performs when there may be connections between alerts. 

One example of a connection could be where one alert will give the information that’s 

needed to solve an alert that doesn’t appear for another 5 minutes.  

Further research could also be done to explore how IMPRINT may be applicable 

to other tasks within cyber, such as forensics, and cyber attack operations. IMPRINT may 

also have potential in other domains that Human Factors researchers may be interested in 

such as RPA pilots, though it would be important to consider how differences between 

domains may affect the required methodology.  

IMPRINT itself could also be improved to allow it to better serve the needs of 

researchers. For this research, IMPRINT version 4.1.278 is used. Some of its flaws are its 

inability to run multiple trials at once while providing a separate output file for each run, 

and its somewhat limited programming support, such as its lack of built in object oriented 

programming. These problems could be addressed through the use of plug-ins, or by 

building a wrapper around IMPRINT. Another part of IMPRINT that could be improved 

is its efficiency when multiple runs are performed. Through the experiments, it was found 

that the RAM IMPRINT occupies increases as the simulations are repeated to the degree 

that after several hundred runs, IMPRINT takes up about 5 times as much memory as 

after a single run. In addition to the memory problems, creating the output files after each 

run becomes progressively slower. While these issues are barely noticeable when the 

consecutive number of runs is in the 10s, it becomes problematic when hundreds or 

thousands of consecutive trials are desired to be run. 
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Another area of future would be to study how tools other than IMPRINT can be 

used to model the task. For example, Act-R is a modeling architecture that simulates 

human cognitive processes, though in a different way than IMPRINT (Budiu, 2013). Act-

R may be able to be used in addition or in place of IMPRINT to gain a better 

understanding of the task. 
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Appendix A: Cyber STE Design Document 

Definitions 

Subject/Participant: These are people brought in to perform the task. They are 

assumed to have minimal technical expertise, with all the knowledge about the task 

provided by a short training session. 

Researcher: These are the people who run the experiments. They can be assumed 

to have some knowledge of the task, enough to train the subjects. They can also be 

assumed to have some technical abilities (such as modifying config files and parsing 

output files), but not the ability to modify the STE’s code. 

Analyst: These are the real world analysts of the 33rd Network Warfare Squadron, 

Trial: A run of the STE. 

Event: Something suspicious that happens in the real world, or is pretended to 

happen. 

Alert: A record of an event that is displayed in ArcSight/the STE 

Purpose 

This simulation is to be a Simulated Task Environment (STE) that emulates the 

environment uses by the Network Analysts of the 33rd Network Warfare Squadron. The 

STE is to have a similar look and feel to the actual environment, but present information 

in such a way that it is possible for someone without the technical experience of the 

analysts to be able to use the STE with minimal training. 

The end goal if this STE is to serve as an environment Human Factors researchers 

can use to study analysts. The intent is for the STE to be as realistic as possible, with any 
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deviations from realism properly justified, especially with the types of choices the 

subjects need to make, while also being abstract enough so that the subjects can 

understand and perform the task with minimal training. It also needs to be adequately 

customizable by the researcher to meet their needs. The STE could be used to examine 

when an analyst could become overworked, along with future versions possibly providing 

adaptive automation to alleviate this workload. It could also be used as a training tool, to 

allow sometime to train in working in the required mindset without needing to worry 

about all the technical details, though further research may be required to identify the 

level of abstraction required to provide training benefit. Furthermore, it could also be 

used to study different interface options, to see how different interfaces would affect the 

analyst’s ability to understand and process the incoming information. 

This STE also serves as a case study of how to build an STE in a new domain, 

and illustrate the process required to make the STE in such a way as to convey realism 

and meet researcher needs. 

Programming Language 

The STE will be programmed in C 

Real World Task Description  

The job of the network analysts is to monitor alerts created by possibly suspicious 

activity at the gateway of the Air Force’s network. A computer program called ArcSight 

compiles alerts generated by various sensors and displays them for the user. An example 

screen shot is shown in Figure 20 below. These sensors can include firewalls, intrusion 

detections systems, email servers, etc. ArcSight displays these alerts in a scrolling 
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window with some basic information. If the analyst believes the alert may indicate a true 

threat, they will click on it to bring up more information, such as the packet capture 

(pcap) file. From this information, the analyst will determine if the alert needs to be sent 

to the Incident Response Team, or can be safely ignored. 

 

 

Figure 20: Example ArcSight Window 

GUI Requirements 

There needs to be a number of different interactions between the user and the 

STE. For the 33rd NWS, this is shown across two monitors, with ArcSight on one 

monitor, and the second being used for the other required tools, and at times, internet 

research. However, this STE is only on one monitor. On the left half is the Alert 

Window; on the right is the Google/Lookup window, with the communications window 
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at the bottom. The Investigation Windows is popup windows, where the subject can have 

multiple Investigations up at one time. 

Alert Window 

This display shows the alerts coming in a scrolling table (similar to Excel), with 

the timing of when the alerts are displayed specified by a csv file, with several alerts 

appearing every minute. The STE needs to hold at least 2,000 alerts. The Alert window is 

shown in Figure 21 below 

 

Figure 21: Alert Window Design 

The default columns should include, the alert name (i.e. Spam Email), the Alert 

Description, Severity Level, Analyst Action Taken, and Analyst Comment. The time the 

event occurred is calculated by a time given for the start of the trail plus the amount of 

time passed since then for the alert to occur. 

A csv will provide how the numbers representing the severity level in the input 

file correspond to the colors to be displayed, allowing this to be researcher customizable.  
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The analyst action taken is populated as the STE runs based on what the subject 

does. For example, if the subject flags the alert as a threat, this needs to be updated. It is 

possible for the subject to right click on the Analyst Action Taken button to flag the alert 

as a non-threat, allowing them to do so without needing to investigate the alert. This does 

not match ArcSight, however in this case sacrificing realism allows researchers to see a 

difference between subjects choosing not to investigate because they knew they didn’t 

need to versus the subject not investigating because they didn’t notice that alert. This can 

be configured such that the researcher could turn this capability on and off, so that they 

could control how realistic they want the STE to be. 

For the present version, the Comment section is static, only showing a pre-

specified message, however, in later versions this could be expanded to allow the subject 

to enter notes here, especially if the subject is working in a team. This is often used by the 

33rd NWS to indicate who is working on the alert. For example, “Alert being investigated 

by Greg.” 

Investigation Window 

When the user clicks on an alert in the Alert Window, that alert’s Investigation 

Window comes up. The information displayed includes a pcap file, (similar to what 

Wireshark displays as seen in Figure 22 below), information about IPs involved, and may 

include the action the sensor that created the alert took, or other information provided by 

the sensor. This window has the ability for the subject to make a decision on whether an 

alert is a true threat or not with buttons.  
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Figure 22: Wireshark Example 

Beyond the buttons at the top, the rest of the Investigation window is a series of 

text boxes and tables, typcially one text box followed by a table, though based on the 

input file, this can change. See the Input Files section for examples of how a csv would 

be translated into the data shown in the investigation window. An example of the 

Investigation window is shown in Figure 23 below.  
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Figure 23: Investigation Window 

Description of Real World Alerts 

An IDS system (such as CISCO) monitors the network traffic and creates an alert 

for something it sees as suspicious which will then be sent to ArcSight. These alerts can 

vary based on the protocol where the suspicious activity occurred, along with the level of 

detail regarding the event. There may also be information irrelevant to the event in 

question.  

What it looks like in the STE 

The alert comes in with the type of alert, along with the signature number. The 

user can then use the Google/Lookup window to look up the signature. The user can then 

compare the information in the signature to the information they have to see if the alert 

matches the signature match, or if the system incorrectly flagged the alert.  

One example of an alert that may be a mismatch is a command injection attack 

caused by inputting an escape character in the input field. The alert could be caused by a 

malicious user trying to access the data on the system, or by a benign user mistyping. 

Other examples of alerts could be signatures caused by an attacker trying to get in a back 

door. 

The action the system took could also determine if the alert is a true threat. If the 

attacker tried once, but the system blocked the attack, then there’s no reason to flag the 

alert. Conversely, if the attacker tried multiple times, and/or the information showed that 

data was leaked, the subject should flag the alert. The signature look up could also 

provide information about the danger caused by something triggering the signature, to 

guide the subject in determining if the alert was a threat or not. For example, a ping reply 
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can create an alert, but it’s normally nothing to worry about, so the signature should 

instruct the subject that the alert shouldn’t be flagged as a threat. 

Steps to Investigate an Alert 

o Step 1, Decide if it needs to be investigated 
o Normally based on severity 
o Other information may also point out a certain threat to always investigate 

o Step 2, Find Signature 
o A signature number will be in the information at the top of the investigation 

window. 
o Also in the information in the Alert Window, under Alert Description 

o Step 3, look up signature in Google window 
o This will give the subject an idea of what the alert looks like, a pattern to look for 

in the pcap 
 Good chance the alert won’t match the signature, if so, then it’s a non-

threat 
 May be a small difference, or completely off 

o Signature also indicates if the alert should be flagged assuming the alert matches 
the signature 
 May be conditional, i.e., if it’s from a malicious IP, or a bad location, it’s 

a threat, otherwise it’s not 
o Step 4, look through pcap to see if it matches the signature. 
o Step 5, if it does, and signature pages indicates it’s a threat, then it’s a threat. 

o Otherwise, it can be discarded as a non-threat. 

Google/Lookup/Query Window 

This window allows the user to query for information. This can include either an 

IP address or a web URL, and tell the subject if that IP/url is known to be 

suspicious/malicious or not. It can also be used to query about a signature seen in a file. 

Combining several tools together such as IP lookup tools and IDS documentation files 

isn’t entirely realistic, however these tools all serve the same purpose, and use a similar 

thought process. The researchers would provide an input file which would map keywords 

to information, with the window displaying information matching any of the words typed 
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in. Depending on the needs of the researchers, this window could also include irrelevant 

information that the subject would be required to sift through to find what they needed. 

Communications Window 

This window simulates communication coming in from various sources. These 

communications occur at a predefined time, with their information specified in the 

similar way to the alerts coming in. Some of the communications could be irrelevant, 

targeted toward another team member, or just chatter that the subject shouldn’t care 

about. Some of the communications could reference an alert, or a type of alert, steering 

the subject to something that’s a threat, or guiding them away from something that isn’t a 

threat. One communication may supersede a previous communication as well.  

Input Files 

Alerts.csv- Holds the information that will be displayed in the alert window, and 

points to the popup file for that corresponding alert. One Alert file per trial. This provides 

general information about the alert, that the subject then can use to identify which alerts 

need to be investigated. An example of this file can be seen in Table 18 below. 

Table 18: Example Alert.csv File 

Alert 
Num 

Time Name Description Severity Popup File Threat Init 
Comment 

Group 

1 5000 Scan Signature 
22 

2 Popup1.csv 1 (Blank) -1 

2 7500 Remote 
Logon 

Admin 
account 
logged 
in… 

4 Popup2.csv -1 Worked by 
Analyst 2 

2 
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The Threat field in the Alert.csv specifies if the alert is a threat or not. This will be a 

number for the different possibilities. These numbers are 

• 0=Not a threat.  
• 1=True threat 

Other options can be added if a researcher wants to use them. 

Colors.csv 

The Colors.csv file indicates how colors are used to represent the levels of alerts. 

An example of this file is shown in Table 19 below. While the colors currently used 

match ArcSight, researchers may be interested in studying how different colors affect 

subjects, so they may change the color scheme. 

Table 19: Example Colors.csv File 

Number Color 
1 Blue 
2 Green 
3 Yellow 
4 Orange 
5 Red 

 

Popup.csv.  

This file holds the information that will appear when the subject clicks on the 

alert. This could include basic information about the alert, such as the action the sensor 

took, the signature number, along with other relevant information. There is one popup file 

per alert, but it’s possible that the same alert could be used in multiple trials, so the trails 

would both use the same Popup File. An example of the csv file is shown in Figure 24 

below, with an example of a corresponding Investigation window in Figure 25. 
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Figure 24: Sample Popup csv file 

 

Figure 25: Sample Popup csv Design 

Chats.csv.  

This file holds the information for when all the chats will play and what they will 

do. This will include the time they play, the text displayed, and a wav file to play, though 

the current version of the STE does not implement playing wav files.  This could also 
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include how long until the communication disappears if this is implemented. There will 

be one Chats File per trail. An example of this file is shown in Table 20 below. 

Table 20: Sample Chats.csv file 

Chat Num Time Sender Text Wav 
File 

Group 

1 3000 Teammate 1 Here is a chat None -14 
2 6000 Team leader Here is another chat None 2 
 

Google.csv.  

This file holds all the information that will be displayed when the subject looks up 

a keyword. These keywords could be signature number, a type of alert (i.e., DDoS, 

HTTP), or an IP Address, with the corresponding text that will display when the subject 

searchers it. Each trial needs one file, but the same file is likely able to be used across a 

large number of trials. An example of this file is shown in Table 21 below. 

Table 21: Sample Google.csv File 

ID Keyword Text 
1 22 Signature 22 is triggered by a scan of numerous ports on a network. This 

is not malicious on its own, but may indicate an attack on that IP is 
pending 

2 HTTP This web protocol is used to request web pages from a server. This 
protocol normally runs on port 80. 

 

Output 

The output is split into 4 main parts. First, an event file based on all the actions 

taken. This file includes whenever the subject selected something, opened a window, 

                                                
4 -1 represents that it isn’t part of a group.  
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flagged an alert as a threat, etc. The second type of output keeps track of the decisions 

made for each alert, and what the correct decision was. This allows the researcher to 

parse the file and, based on the correct/incorrect decisions, allocate a score for the 

subject. The third output is a record of the mouse and keyboard movements that would 

allow researcher to replay the trial. 
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Appendix B: NASA TLX 

The NASA TLX is a subjective workload rating scale developed by NASA (Hart, 

1988). A subject is asked to circle the tick mark best corresponding to their perceived 

workload in each of the 6 categories. The TLX form used for this research is shown in 

Figure 26 below. 

 

Figure 26: NASA TLX 
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Appendix C: Post Experiment Interview Questions 

1. What processes did you use to decide which alerts to investigate? 

2. When investigating the alerts was there a series of steps you normally took? 

3. Did you notice seeing the same alert multiple times? 

a. If so, did this make it so you could make a decision faster? 

4. Did you ever feel bored by the demands of the task? 

5. Did you ever feel rushed by the demands of the task? 

6. Were you ever not sure about how to mark an alert, and if so, what did you do? 

7. Did you pick up on any patterns in the way the alerts came in, and if so, did you try to 
adapt your strategy? 

8. How much do you feel your cyber knowledge affected your capabilities to perform the 
task? 

9. Did you keep an eye on new alerts coming in as you were investigating one? 

10. If not, why not? 

11. Did you feel that the trials were too long such that staying focused became a problem? 

12. Did you feel you were given enough information to perform the task? 

13. How would you rank the difficulty of the 4 conditions? 
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Appendix D: IMPRINT Design 

This Appendix explains the details of the IMPRINT model that was built in 

section 3.3. As explained in chapter 3.3, the events in IMPRINT are organized in a tree 

like structure. Each event is either a leaf node, which is a single sub-task, or a function 

which is composed of several other nodes.  This appendix explains each of the functions 

and the nodes that compose it. In addition, the Appendix provides a table of model wide 

variables that explains what values they are set at, and their purpose. 

IMPRINT Overview. 

The IMPRINT model is a series of nodes that track the human’s attention 

throughout the system. In addition, the model may also track automated activities, such as 

keeping track of the time, or automatically updating variables. The arrows indicated the 

chain of processes. Any time a node has arrows to multiple nodes, it may take up to all 

paths. If the node has an M at the end of it, that means it can from zero to all paths, while 

if it has a T, then it is restricted to exactly one path.  

Each low level node may have code snippets in it written in C#. This code can be 

evaluated before the node occurs, at the start of the node occurring, where a condition 

must be true for the node to be processed. If the condition is not met, IMPRINT will 

continue checking until the condition is met. Lastly the code can be run to decide which 

paths will process next.  

For the purposes of this model, purple nodes with rounded corners are low level 

nodes, not being composed by other nodes. Light grey rectangle nodes are functions that 

do contain other nodes within them. Lastly, dark grey nodes indicate automatic processes. 
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These nodes do not indicate tasks performed by the human, but instead are performed by 

the system. This includes adding new alerts to the system, keeping track of the time, and 

updating certain variables when needed. 

Each node has an identification number, and a name assigned to it. The nodes’ 

identification number does not represent the order in which the nodes are executed. 

Page 1: Root 

 

Figure 27: Root Level Diagram 

Figure 27 shows the root level diagram of IMPRINT. The root function contains 

all other functions and nodes in the model. The model starts at node 0, “Model START.” 

This node initializes the variables that determine the condition the model is running, 

including the Alerts Per Minute (APM) that enter the system, and the distribution of the 

severity of the alerts. After this, the model splits into 3 paths, Node 9, the Search for 

Alert function, Node 12, Create and Store New Alerts, and Node 8, TimeEnd. Nodes 8 

and 12 are both automatic processes, not reflecting the human’s cognitive process. Create 

and Store New Alerts is an event that occurs at the start of every minute of the trial, and 

adds new alerts to the system in a number equal to the APM value. TimeEnd counts up to 
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10 minutes (the length of the trial), and after this time passes, the path continues to Node 

999, Model END which kills the model, ending the simulation. 

Node 9, “Search for Alerts” is a function that models the process of looking 

through the alerts in the system to find one to investigate. The details of this node are left 

to a later section. Once an alert has been identified, the path continues to Node 2, “Open 

An Alert”, which opens the alert for investigation and also includes code to clean up 

variables from “Search For Alerts”. Once this node is complete, the path continues to 

Node 11, “Pick Alert to Investigate”. This node identifies all the alerts that have been 

open so far and chooses the oldest alert that has been opened to investigate. After this, the 

path splits, one path to either Node 3 or 14 which both investigate the alert, and a second 

path to Node 6, “Monitor for Severe Alerts”. “Monitor for Severe Alerts” checks if there 

are any unclaimed very high alerts in the system. If any of these alerts are found, the path 

proceeds to Node 13, “Open This Alert” which opens the alert, similar to “Open An 

Alert”. Once the alert has been opened, this path returns to “Monitor for Severe Alerts” to 

continue monitoring for alerts. Both “Monitor for Severe Alerts” and “Open This Alert” 

are connected to node 17, “End Monitoring”. This node serves as a way to get out of the 

monitoring cycle which only happens while an alert is being investigated. Otherwise 

there was a possibility that multiple paths would be taken through Nodes 6 and 13 

simultaneously. 

Nodes 3, “Investigate Alert Non-Threat,” and 14, “Investigate Alert True-Threat” 

are nearly identical, both serving the purpose of investigating an alert. While the 

simulated operator doesn’t know if any given alert is a threat or not, this information is 

accessible to IMPRINT, so the node taken reflects if the alert is a threat or not. 
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Once the alert has been investigated, the path proceeds to either, Node 4, “Flag 

Alert”, or Node 5, “Discard Alert”, which are explained in more detail in a later section.   

Once the alert has been flagged or discarded, the model then moves to Node 10, 

“Check For More Claimed Alerts”. This node provides some clean up on the variables 

used during the investigation. The node also represents the user checking if there are 

other alerts open to investigate. If there are other alerts that have been opened, then the 

path proceeds to Node 11 to pick the next alert to investigate, or Node 9, to search for 

more alerts to open. 

Table 22 below indicates the estimated time for all non-function nodes at this 

level. For all these tables, if the time is a range of values; the distribution is a rectangular 

distribution with the values being the end points.  

Table 22: Times for Nodes in Root Level 

Node Number Node Name Time Reason 
2 Open An Alert 0.4 seconds Estimate 
6 Monitor for Severe 

Alert 
2 seconds Estimate 

10 Check for More 
Claimed Alerts 

2 seconds Estimate 

11 Pick Alert to 
Investigate 

1 second Estimate 

13 Open This Alert 0.4 seconds Estimate; made to 
be same as node 2 

Page 2: Search for Alerts 
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Figure 28: Search for Alerts Function 

Figure 28 shows the Search for Alerts function. For functions, there are two 

additional types of nodes, both represented by hexagons. These nodes indicate 

connections with nodes outside of the function. Blue hexagons, as seen on the left side of 

the figure indicate entrances into this function, while red hexagons, as seen on the right 

side of the screen, represent where the path can go after this function is complete. 

Once the path enters this function, the starting node is 9_0, start, which is a 

placeholder node that doesn’t perform any computations. The path then goes to node 

9_10, “Are There Alerts”. This node checks if there are any unhandled alerts in the 

system. If there aren’t unhandled alerts, the node loops back on itself until there are. If 

there are alerts in the system, then the path continues to Node 9_11, “Find Most Severe 

Alert.” This node identifies the most severe type of alert in the system, and identifies one 

of this type of alert to decide if it should be investigated. The path then moves to 9_12, 

“Known Type.” This node checks if the alert in question is of a type where it’s known if 

it should be discarded or investigated. If it is known that the alert should be discarded, 

then the path moves to Node 9_6, “Mark As Non-Threat” where the alert is discarded, 

and then the path loops back to “Are There Alerts?”. If it is known that based off the type 

the alert should be investigated, then the path moves onto Node 9_999, “End” where the 

path will exit the function and then open up the alert. If based off the type, there isn’t 

enough information to decide, then the severity is checked. If the alert is of a high enough 

severity, then the alert is investigated, otherwise, it is discarded. Table 23 below shows 

the times for the nodes within Search for Alerts. 
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Table 23: Time for Nodes in Search for Alerts 

Node Number Node Name Time Reason 
6 Mark as Non-Threat 1.16 seconds Based off 

micromodel with 
estimated distance 
to move mouse 
plus the 
micromodel motor 
function to click 
the mouse 

10 Are There Alerts 1 second Estimate 
11 Find Most Severe 

Alert 
1-3 seconds Estimate 

12 Known Type 2 second Estimate 
14 Check Alert Severity 0.5 seconds Estimate 

 

Page 3: Investigate Alert 

 

Figure 29: Investigate Alert Part A 

 

Figure 30: Investigate Alert Part B 

Figures 29 and 30 illustrate the Investigate Alert Functions. 
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The Investigate Alert Functions identifies if an alert represents a true threat or not. 

Both Investigate Alert functions (Nodes 3, “Investigate Alert Non-Threat” and 14, 

“Investigate Alert True Threat”) have the same logical paths between them, the only 

difference being that Alerts that are not a threat are investigated in Node 3, and alerts that 

are a threat are investigated in Node 14. This split simplifies the code required within the 

subnodes within the functions, however it does not affect the times or logic required, so 

any discussion involving, “Investigate Alert Non-Threat” also applies to “Investigate 

Alert True Threat.” 

 Nodes 3_0 and 3_1, “Start” and “Init Investigation” initialize the variables, and 

store the needed information about the alert that’s being investigated. The first human 

action as part of this function is Node 3_2, “Determine Type.” This node simulates the 

operator checking the alert for the type it is. After this node, the path branches. If the 

operator needs to look up the signature, then the path goes to Node 3_5, “Look up 

Signature,” however, the operator may already know what the signature should look like, 

so in that case, the path skips ahead to Node 3_6, “See if Pcap Matches Sig.” This node 

represents the operator looking at the pcap file, and seeing if it matches what the 

signature said the alert should look like. If the pcap doesn’t match, then the alert is not a 

threat, and the path advances to Node 3_999, “Determine Action.” From this node, the 

path exits the function, either going to “Flag Alert” or “Discard Alert.” 

If at “See if Pcap Matches Sig”, the pcap does match the signature, then the 

investigation continues and the path continues to Node 3_15, “Check for Mitigated 

Threat.” This node checks of the alert was mitigated by a system defense, such as a 

firewall or system patch. If the alert is mitigated, then it is not a threat, and the path 
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continues to “Determine Action.” Otherwise, the path continues to Node 3_7, “Identify 

Severity of Signature.” This node checks how severe the action in the alert is. If the alert 

is either severe enough to definitely need flagged, or the alert is definitely benign activity, 

then the path continues to “Determine Action.” If there is not enough information to tell 

either way, then the path continues to Node 3_10, “Identify Relevant Addresses.” This 

node identifies if there are IP addressed that need to be examined. If there are IP 

addresses that need checked, the path continues to Node 3_9, “Lookup Relevant IP/Web 

Addresses” This node checks the IPs identified previously. After the IPs (if any) are 

checked, the path continues to Node 3_8, “Evaluate Against Known Information.” This 

node compares the information seen in the alert against any outside information. The path 

then continues to “Determine Action” which ends the function. Table 24 shows the times 

for the nodes within the Investigate Alert functions. 

Table 24: Times for Investigate Alert Function 

Node Number Node Name Time Reason 
2 Determine Type 1-5 seconds Estimate 
5 Look up Signature 4-14 seconds Estimate 
6 See if Pcap Matches 

Sig 
5-15 seconds Estimate 

7 Identify Severity of 
Signature 

2-8 seconds Estimate 

8 Evaluate Against 
Known Information 

2-6 seconds Estimate 

9 Lookup Relevant IP 
Addresses 

2-12 seconds Estimate 

10 Identify Relevant 
Addresses 

2-8 seconds Estimate 

15 Check for Mitigated 
Threat 

3 seconds Estimate 
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Page 4: Flag Alert 

 

Figure 31: Flag Alert Function 

Figure 31 above shows the Flag Alert function. 

Function 4, Flag Alert, is the operator flagging an alert as a true threat after the 

investigation.  The path can enter this function from either of the Investigate Alert 

Functions. Node 4_0, “START” initializes the required data. Node 4_1 “Click Button to 

Flag” makes the alert as a threat. Depending on the way the system is being implemented, 

the path can continue to Node 4_2, “Provide Reason” which is where the operator enters 

the reason for the alert being a threat. Once the reason is provided, or if no reason is 

needed, then the path continues to the end of the function, Node 4_999. The end node 

includes code that records that the alert was flagged and modifies the required variables.  

Table 25 below shows the estimated times for the nodes within this function. 

Table 25: Times for Flag Alert Function 

Node Number Node Name Time Reason 
1 Click Button to Flag 1.36 seconds Estimate based off 

micro model for 
curser movement 
and motor function 
to click. 

2 Provide Reason 3-9 seconds Estimate 
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Page 5: Discard Alert 

 

Figure 32: Discard Alert Function 

Figure 32 above shows the Discard Alert function. 

Function 5, Discard Alert, is the operator flagging an alert as a non-threat after the 

investigation. The functionality is identical to Flagging the alert. Node 5_2 marks the 

alert as a non-threat, Node 5_1 provides the reasoning if the system requires it, and then 

Node 5_999 ends the function, modifying the required variables. 

Table 26: Times for Discard Alert Function 

Node Number Node Name Time Reason 
1 Click Button to 

Discard 
1.36 seconds Estimate based off 

micro model for 
curser movement 
and motor function 
to click. 

2 Provide Reason 3-9 seconds Estimate 
 

Table 27 below provides a listing of all the variables used in the model, along 

with a short description, their range of values, and the places they are used. 

Table 27: Table of IMPRINT Variables 

Variable Name Purpose/Description Range of Values Places Used 
actionToTake Stores the decision 

made when 
investigating an alert 

+1: Threat 
0: No Decision 
-1: Non-threat 

Functions 3 and 14 

AlertsPerMin How many alerts 
enter the system each 

1-10, depending 
on condition 

Node 0, to 
initialize value. 
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minute Node 12, to create 
new alerts 

BoolLookupRequired Stores if the alert 
when being 
investigating requires 
a signature look up 

True/False “Determine Type” 
and “Look up 
Signature” within 
Investigating alert 

BoolSevereAlert Stores if the alert 
when being 
investigating is 
severe enough to be a 
true threat 

True/False “Identify Severity 
of Signature” 
within 
Investigating alert 

ClaimedAlerts An array that holds 
values for alerts 
current claimed 

Values in array 
range from 1-10 
based off the 
type and severity 
of alert 

 

Clock Time since the trial 
began 

 Used by IMPRINT 

Condition The number of the 
current condition  

1-210, 
depending on the 
current condition 

Node 0 to initialize 
values 

CurrentlyInvestigating Keeps track if an 
alert is currently 
being investigating 

True/False Used in Discard 
and Flag Alert 
Functions 

InvestigateAlertThreat Stores if the alert 
currently being 
investigated is a 
threat or not 

1=no threat 
2=threat 

Investigate alert 
functions 
Also used in 
flag/discard 
functions to check 
of operator is right 

InvestigateAlertType Stores the type of the 
alert currently being 
investigated (Very 
Low-Very High) 

1-5 
1= Very Low 
2= Low 
3= Medium 
4= High 
5= Very High 

Flag/Discard alert 
functions to aid in 
cleaning up the 
categories when an 
alert has been 
claimed 

Monitor Threat Used to store if the 
alert being opened 
while monitoring for 
severe alerts is a true 
threat or not 

1= Not a threat 
2= Threat 

Monitor for Severe 
Alert, and Open 
This Alert Nodes 

NoThreatDiscard Stores a count of 
how many Non-
Threats have been 
discarded 

Starts at 0, goes 
up as alerts are 
discarded 

Used in Discard 
Alert Function. 
Also output in the 
snapshots 
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NoThreatFlag Stores a count of 
how many Non-
Threats have been 
flagged 

Starts at 0, goes 
up as alerts are 
flagged 

Used in Discard 
Alert Function. 
Also output in the 
snapshots 

NumAlertsClaimed Stores a count of 
how many alerts are 
currently claimed 

Starts at 0, 
ranges from 0-20 
based on the size 
of the array for 
Claimed Alerts 

Used for Opening 
Alert Functions, 
and 
Discarding/Flag 
Alert Functions 

NumHighThreat1 Stores a count of 
how many High 
alerts that are not 
threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumHighThreat2 Stores a count of 
how many High 
alerts that are threats 
are in the system but 
not yet claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumLowAlerts1 Stores a count of 
how many Low 
alerts that are not 
threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumLowAlerts2 Stores a count of 
how many Low 
alerts that are threats 
are in the system but 
not yet claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumMedAlert1 Stores a count of 
how many Medium 
alerts that are not 
threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumMedAlert1 Stores a count of 
how many Medium 
alerts that are threats 
are in the system but 
not yet claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumThreatsClaimed Stores a count of 
how many true 
threats are currently 

Starts at 0, goes 
up and down 
throughout the 

Output in the 
snapshots 



 

112 

claimed trial 
NumVeryHighThreats1 Stores a count of 

how many Very 
High alerts that are 
not threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes. Also 
used in Monitor for 
Severe Alerts 

NumVeryHighThreats2 Stores a count of 
how many Very 
High alerts that are 
threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes. Also 
used in Monitor for 
Severe Alerts 

NumVeryLowThreats1 Stores a count of 
how many Very Low 
alerts that are not 
threats are in the 
system but not yet 
claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

NumVeryLowThreats2 Stores a count of 
how many Very Low 
alerts that are threats 
are in the system but 
not yet claimed 

Starts at 0, goes 
up and down 
throughout the 
trial 

Search for Alerts 
function, and Open 
Alert Nodes 

PcapMatch Tracks if the pcap 
matches the signature 
when investing an 
alert 

True/False Investigating alert 
functions 

PercentH The percent of total 
alerts that are High 

Varies from 10-
30 based off 
condition 

Create and Store 
New Alerts Node 

PercentL The percent of total 
alerts that are Low 

Varies from 15-
35 based off 
condition 

Create and Store 
New Alerts Node 

PercentLookupRequired The percent chance 
that the subject will 
need to look up the 
signature to know 
what to look for 

80, though this is 
an estimate 

Investigate Alert 
Functions 

PercentMed The percent of total 
alerts that are 
Medium 

20 Create and Store 
New Alerts Node 

PercentSensorHandled The percent of alerts 
that are not threats 
because the sensor 

35, though this is 
an estimate 

Investigate Alert 
Functions 
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handled them. 
PercentSevere The percent of alerts 

that are severe 
enough to be threats 

50 Investigate Alert 
Functions 

PercentThreatH The percent of High 
alerts that are threats 

10 Create and Store 
New Alerts Node 

PercentThreatL The percent of Low 
alerts that are threats 

1 Create and Store 
New Alerts Node 

PercentThreatM The percent of 
Medium alerts that 
are threats 

5 Create and Store 
New Alerts Node 

PercentThreatVH The percent of Very 
High alerts that are 
threats 

20 Create and Store 
New Alerts Node 

PercentThreatVL The percent of Very 
Low alerts that are 
threats 

0 Create and Store 
New Alerts Node 

PercentVH The percent of total 
alerts that are Very 
High 

Varies from 0 to 
20 depending on 
condition 

Create and Store 
New Alerts Node 

PercentVL The percent of total 
alerts that are Very 
Low 

Varies from 15 
to 35 depending 
on condition 

Create and Store 
New Alerts Node 

ScoreAction A performance score 
based on actions 
taken so far. Note 
that this score was 
not used in the 
experiments 
discussed in this 
thesis 

Starts off at 0, 
can go into 
positives or 
negatives based 
on decisions 
made 

Search for Alerts, 
Flag Alerts, and 
Discard Alert 
functions 

SearchAlertType The type (Very Low-
Very High) of the 
alert being looked at 
to decide if it should 
be investigated 

1-5 Search for Alert 
function, and Open 
An Alert Node 

SearchAlertThreat If the alert being 
looked at to 
investigate is a threat 
or not 

1= not a threat 
2= threat 

Search for Alert 
function, and Open 
An Alert Node 

Severity The Severity Level 
of the condition, 
effects the 
distribution of the 
Levels of alerts 

1-21 depending 
on condition 

Used in the start 
node to initialize 
the condition 
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ThreatDiscard A count of how 
many true threats 
have been discarded 

Starts at 0, goes 
up throughout 
the trial 

Discard Alert 
Function, also 
outputted in the 
snapshot 

ThreatFlag A count of how 
many true threats 
have been flagged 

Starts at 0, goes 
up throughout 
the trial 

Discard Alert 
Function, also 
outputted in the 
snapshot 
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Appendix E: Interview Questions and Responses from SMEs 

This appendix provides questions asked during interviews with SMEs along with 

the answers, in addition to other information obtained through the interviews. Unless 

otherwise noted, questions and answers preceded with Q and A the exact questions asked 

and answers provided, while other text provides a summary of information learned. 

Interview with Maj. Mike Winn, Army, held April 29 2014 

• During his time as an “operator” Maj. Winn was mainly in a 
management/organizational role, higher up from what this research entails. 

• Cyber Operator typically refers to an offensive person, who are heavily overseen 
from legal and other people who must approve actions 

• Information Assurance Analyst refers to the lower level defender, the ones who 
monitor the network activity. 

• Information Assurance Analysts have a very technical understanding of what 
goes on, but don’t always have the big picture fully understood. 

• Maj. Winn advices us that we should look for these Information Assurance 
Analysts for those with experience more closely related to the research. 

• The job of Information Assurance is very mundane much of the time. 
• Part of their job is to generate reports for those higher up like Maj Winn to 

understand what’s going on. 

Interview with Maj. John Rice, Air Force, help May 29 2014 

• 90% of interfaces are COTS (commercial off the shelf) 
• The 33rd Network Warfare Squadron is the focus of discussion 
• Signatures are provided by either commercial entities, or in rare cases, added as 

a result of government investigations. 
• All traffic dumped into ArcSight ESM 
• Monitors traffic to Air Force gateway 
• The Air Force gateway is the inspection point that looks at everything going in 

and out. 
• Alert information goes to ArcSight 
• Task perspective 

o Alerts flagged to be visible show up 
o Certain things alerted with various rating 

 Example, failed logins 
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o Alerts continuously scroll 
o When the operator sees an alert marked high, they click on it to learn 

more. 
o They can get some packet information, or some documentation behind 

alert to decide if it’s real. 
o A team of ~20 guys working at once, each one takes a single alert at a 

time 
o When one is viewing an alert, they don’t see the others coming in. 
o Alerts are missed. 
o Each alert takes 1-2 min to decide if it’s important, or not. 
o If it is, they forward to the lead analyst 
o ArcSight can do some correlation to raise an event’s severity if it detects 

certain information 

Interview with Gateway Team of 33rd NWS, answered received August 11 

2014 

This interview was not held in person as the others have been, but was done by 

emailing a list of questions to a commander at the 33rd NWS who then asked the Gateway 

Team to answer them. This remainder of this section is a direct copy of the file received 

from the 33rd NWS. 

“Since I’m not sure of your background with ArcSight, I would like to touch on a 

few things to make sure we’re proceeding from a common starting point.  Over the years 

I’ve noticed some common misperceptions regarding the functionality of ArcSight. 

“ArcSight is not an Intrusion Detection/Prevention System.  It’s a management 

system that consolidates and normalizes traffic from devices and applications on the 

network.  This allows analysts to see events from multiple devices and ArcSight sites 

from around the world on one screen. 
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“ArcSight normalizes traffic from different devices.  One device might call an IP 

‘Sender Address’ and one might call it ‘Source IP’.  ArcSight would normalize this to 

‘Source Address’. 

The Task 

Q1) How does ArcSight classify alert levels, and how are these levels 

displayed? Is it just a number, or color, or something else? 

A1) By ‘alert level’ I believe you mean what we call ‘Priority’.  0 thru 10, 

Very Low to Very High.  ArcSight can make adjustments to this rating.  ArcSight takes 

the Severity level assigned from the original device (technically from the 

SmartConnector that feeds the events from the device into ArcSight) and runs it through a 

calculation that takes into account the original severity, the model confidence (whether or 

not the target asset is modeled in ArcSight ESM), relevance (relevance of the event to the 

asset), severity (has the system been attacked or compromised before), asset criticality 

(how important the asset has been identified as). 

ArcSight priorities run from 0 thru 10.  0-2 = Very Low, 3-4 = Low, 5-6 = 

Medium, 7-8 = High, 9-10 = Very High.  Each group has a color associated with it which 

helps with visual recognition.  The numbers are used for filtering and reporting purposes. 

Q2) Does ArcSight change what an alert is classified as based on other 

circumstances? For example, 5 failed logons might be classified as a level 2 alert most of 

the time, but if this is accompanied by a suspected DoS attack, this is raised to a level 3 

alert. 

A2) Based on A1 above, it can.  However it depends heavily on the ability to 

model the network and get the assets listed in ArcSight.  Also, some devices might only 
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use a 1 thru 5 scale.  ArcSight would translate these into the 0 thru 10 scale that ArcSight 

uses. 

Q3) What things affect the severity of the alert? 

A3) See A1. 

Q4) What information does ArcSight display about an alert as it comes in? For 

example, source, type, description? 

A4) ArcSight has hundreds of fields that can be populated with information.  

Some relate to the events, some relate to the devices that process the events.  Some are 

customizable.  Admin and content developers can even create some fields using local 

variables to define the data that goes into the field.  Field Sets (a particular combination 

of fields) can be saved and attached to the channels that analysts work out of, allowing 

for a standard default view.  Individual analysts can easily add or remove fields. 

 A default Field Set may contain Time, IP’s, Ports, Event Name, and 

Priority fields.  In many cases our default Field Sets contain enough information to allow 

analysts to close many False Positives without deeper analysis.  If needed, he operator 

can view the event in the Inspect/Edit window, which shows all of the ArcSight fields. 

Q5) What information in this alert makes an analyst decide to click on it or 

not? 

A5) Pretty much all events are ‘clickable’.  The goal is to either close all 

events as non-malicious, reportable in some way, or in need of further review.  A 

combination of the Event Name, IP’s, and Priority will help the analyst decide which 

events to work first and how deep they have to go in their analysis in order to determine 

if the event is malicious or not.  Generally, analysts work from oldest to newest.  
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However, they keep an eye out for higher priority events or events that have a higher 

likelihood of being malicious.  By adjusting their Field Sets the analyst may be able to 

see enough information on their screen to be able to close an event as non-malicious 

without having to do deeper research.  If needed, the analyst can retrieve the event from 

the full packet capture device and review it in Wireshark. 

Q6) Can you open more than one alert at a time? 

A6) Newer versions of ArcSight allow an analyst to have more than one event 

inspector window open at the same time, if they choose. 

Q7) Is there anything beyond the particular alert that influences your decision 

about whether or not to click it? 

A7) Historical experience helps analysts decide if they need to review an event 

beyond the data that is available on their screens.  Local knowledge from briefings and 

pass-on logs may alert analysts to be aware of certain specific activity to look for or that a 

particular base is being targeted. 

Q8) How long does an analyst have to decide if they want to click on the alert 

or not? 

A8) As stated above, all events are supposed to be worked, that is closed as 

non-malicious or forwarded for further review. 

Q9) What happens to an alert when you click on it? 

A9) Clicking/Inspecting an event opens it in ArcSight’s Inspect/Edit window.  

This allows the analyst to see all of the information that ArcSight has on the event. 

Q10) What happens to alerts you don’t click on? 
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A10) The analysts work out of channels.  These channels use filters to limit the 

events to only that which we have deemed as ‘actionable’, that is events that could not be 

categorized as False Positive and require analyst review.  The channels have a time 

frame, maybe one hour long.  When events have not been worked and closed before the 

time allotted for that particular channel, they ‘fall off’ the bottom.  The events remain in 

ArcSight, they just no longer match the filter criteria for that channel.  Time permitting, 

senior analysts have access to channels with longer time frames and try to catch those 

missed by the primary analysts. 

Q11) Once an alert is brought up, what information is then displayed? 

A11) See Q9. 

Q12) From here, how does an analyst decide if it’s important or not? 

A12) By reviewing the event name, reviewing the IDS/IPS signature to 

determine what caused the event to fire, and pulling up the event in Wireshark, the 

analysts determines if the events is non-malicious or not.  If it is non-malicious, the 

analyst annotates the event and marks it as closed.  If the analyst can’t determine that the 

event is non-malicious, he or she begins a reporting process that forwards the information 

to the Incident Response Team for further analysis. 

Q13) What actions do you take in order to “close” an alert? 

A13) Determine the event is non-malicious, enter a note on the event stating 

what research you did and why you came to your decision, change the event stage to 

‘closed’. 

Q14) Do you get feedback on the correctness of your decisions? 

A14) Lead Analysts periodically review events. 
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Q15) Is there an estimated number of false positives or false negatives 

committed at this level? 

A15) This is more difficult to determine than it appears.  Many of the 

commercial signatures are ‘loose’ on purpose, so as not to accidently let False Negatives 

through.  We have a process in place to try and identify commercial signatures that are no 

longer a threat on our network (maybe a patch has been available for many years or the 

vulnerable asset is no longer on our networks).  If the signature can be turned off or set to 

block we can do that.  We can also use some of ArcSight’s filtering and rules capabilities 

to limit the False Positives that appear on the analysts’ screens. 

Q16) How long does it take an analyst to decide if the alert should be sent 

onward? I’ve heard 1-2 minutes, is this accurate? 

A16) We don’t have a hard and fast time frame due to the different research 

steps that may need to be taken.  But once an analyst selects an event they can probably 

determine if it needs to be forwarded for further review within five minutes. 

Team Work 

Q17) How many floor analysts are normally working in the same time/place?  

A17) Average 3 – 12, depending on break days (weekends) and shift (Days, 

Swings, Mids). 

Q18) Is there communication between them, either in person or electronically 

via a text interface or audio channel? 

A18) We sit in three rows of four.  Easy to talk between analysts. 

Q19) Do you wear headsets?  If so, how do you use them? 
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A19) We don’t use headsets.  Nothing stopping a system from being used, 

however. 

Q20) Could there be some kind of alert broadcast that will affect the way the 

analysts classify individual alerts? For example, something has happened which would 

make any lower level alerts with a source of country X need investigating, even if they’re 

a low enough level to normally ignore. 

A20) Not as a formal application.  Primarily pass-on logs and shift change 

briefings.  Lead Analysts would pass the word during a shift. 

Q21) If one analyst clicks on an alert to investigate it, does it disappear from the 

screens of the others, or is grayed out, or something similar? 

A21) No.  When an analyst begins to work an event, they put their name on it.  

All ops have that field in their Field Set and they would see that someone is already 

working that event. 

Q22) Do analysts discuss alerts while they are working on them? 

A22) Yes, as they feel the need. 

Q23) What other effects might team members have on an analyst’s job? 

A23) Analysts pass on tips for reviewing events.  What a True Positive or False 

Positive looks like.  Advice on how to manipulate ArcSight or other devices in order to 

improve their review procedures.” 

Interview with Griffin Team of 33rd NWS 

This interview was conducted in the same way as the one with the Gateway team, 

with the team being provided with a list of questions and then answering them. The 
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Gateway team monitors the NIPR network traffic, while the Griffin team monitors SIPR 

network traffic. 

In addition, James Hannan, Director of Operations at the 33rd NWS said, 

“The tool [ArcSight] is the same on both networks but used quite differently 

because of internet access on NIPR and the lack of internet access on SIPR. There is 

significantly more traffic on NIPR and vendor signatures tend to work fairly well.   

However, on SIPRNet the 33 NWS spends a lot more time customizing signatures to the 

environment.   

“A huge challenge on both networks is signature tuning, most of our signatures 

have a false positive rate in the 99.999% range.  Because of the challenge in tuning the 

signatures, my operators spend a fair amount of time building custom filters in ArcSight 

to reduce some of the noise.” (Hannan, 2014) 

The remainder of this section is copied directly from the document provided by 

the 33rd.  

“The Task 

Q.  How does ArcSight classify alert levels, and how are these levels displayed? 

Is it just a number, or color, or something else?   

A.  ArcSight classifies alert levels into very low, low, medium, high and very high 

event severities.   

A.  The event severities are distinguished from one another by color (default 

colors can be changed in preferences).  

A.  The classification levels are parsed into a legible format from various 

appliances (McAfee, Cisco, etc) as depicted above. 
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Q.  Does ArcSight change what an alert is classified as based on other 

circumstances? For example, 5 failed logons might be classified as a level 2 alert most of 

the time, but if this is accompanied by a suspected DoS attack, this is raised to a level 3 

alert.   

A.  No, an alert classification is based upon the signature.   

A.  This can be modified at the signature level 

Q.  What things affect the severity of the alert?   

A.  The severity of the alert is set by the vendor and/or the individual writing the 

signature.   

A.  Type of alert affects the severity as well (virus, worm, etc)] 

Q.  What information does ArcSight display about an alert as it comes in? For 

example, source, type, description?   

 

A.  Date and time of connection, source, target, source port, target port, device 

host name are but a few Field Sets that can be viewed upon selection within the Viewer 

panel.   

A.  Depending upon the data collected from the event, there can be over 50 

different possible fields to select from. 

Q.  What information in this alert makes an analyst decide to click on it or not?  

A.  All alerts that fire within the application (ArcSight) have to be viewed in order 

for the alert to be archived. 

A.  The type of traffic or alert and the severity of the event might affect the 

analyst’s decision when selecting 
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Q.  Can you open more than one alert at a time?  

A.  Yes, you can open more than one alert at a time. 

Q.  Is there anything beyond the particular alert that influences your decision 

about whether or not to click it?    

A.  Similar alerts showing (i.e., same source or destination) would affect our 

decision to view (Scan, etc). 

Q.  How long does an analyst have to decide if they want to click on the alert or 

not?   

A.  Length of time is ultimately a result of the amount of traffic flow within a 

channel.  Everything is dependent on the Time to Live (TTL) of the channel and filter 

configuration before alerts will clear. 

Q.  What happens to an alert when you click on it?   

A.  All Alerts are viewed in the viewer window.  Individual alerts selected are 

displayed in the Inspect/Edit tab. 

Q.  What happens to alerts you don’t click on?   

A.  All alerts will remain in the channel until the TTL expires.   

A.  Depending on the data collected by the signature, 128 bytes, will not be able 

to be viewed unless the alert was selected within a reasonable time (Archived Event) 

Q.  Once an alert is brought up, what information is then displayed?   

A.  Everything parsed from the connector, on the appliance, will be viewable in 

the Inspect/Edit window. 

Q.  From here, how does an analyst decide if it’s important or not?   

A.  The severity of the signature, and frequency of alert. 
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Q.  What actions do you take in order to “close” an alert?   

A.  In order to close an alert, you need to annotate the alert as closed. 

Q.  Do you get feedback on the correctness of your decisions?   

A.  Feedback is directly related to validation opened, or team members from 

discussion sessions of particular events in question. 

Q.  Is there an estimated number of a false positive or false negatives committed 

at this level?  

A.  Utilizing the tools in place, for our particular mission, our process is to 

validate all traffic based on signature sets. 

Q.  How long does it take an analyst to decide if the alert should be sent onward? 

I’ve heard 1-2 minutes, is this accurate?  

A.  Every alert requires different levels of research and/or actions taken. 

Team Work 

Q.  How many floor analysts are normally working in the same time/place?   

A.  There are usually between two and four analysts within our environment. 

Q.  Is there communication between them, either in person or electronically via a 

text interface or audio channel?   

A.  Communication is vital in Cyber Defense.  

Q.  Do you wear headsets?  If so, how do you use them?   

A.  Headsets are not needed in our environment.   

Q.  Could there be some kind of alert broadcast that will affect the way the 

analysts classify individual alerts? For example, something has happened which would 
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make any lower level alerts with a source of country X need investigating, even if they’re 

a low enough level to normally ignore.    

A.  Depending on the environment a broadcast could be utilized, but the logic 

behind Real-Time alerts, worms, virus, and zero-days do not dictate the need for that type 

of affect.   

Q.  If one analyst clicks on an alert to investigate it, does it disappear from the 

screens of the others, or is grayed out, or something similar?  

A.  When an event is selected, the annotation field populates with the individuals 

name who is working the event.    

A.  An alert only disappears from the screen once placed in a closed state (filters 

dictate this type of action). 

 

Q.  Do analysts discuss alerts while they are working on them?  

A.  Continuously, it is always good practice to have a second set of eyes when 

working events in question. 

Q.  What other effects might team members have on an analyst’s job?  

A.  Continuing education/training. 

Follow up 

Q.  Is there anyone else you think we should interview? 

A.  I would recommend interviewing the commercial sector to get an idea of the 

way analysis is performed.  

A. The commercial sector is not limited to the amount of tools(i.e., messanger, 

free BSD), updates, and equipment.” 



 

128 

Notes from Interview with George Lovell of the 33rd NWS, July 31, 2014 

ArcSight (an HP product) compiles reports from a number of different sensors, 

including but not limited to mail servers, DNS servers, IDS systems.  HP has a PDF 

available for the product if we need help 

Each of these sensors has a number of levels for the alerts, which ArcSight 

displays. 

There are 5 levels/colors of alerts: 

• Blue – Very Low (ignore) 
• Green – Low 
• Yellow – Moderate 
• Orange – High 
• Red - Critical 

Analysts normally will look at medium/yellow or higher. 

ArcSight information contained in the alert row at the top level includes: Protocol, 

IPs, Ports, alert Name, Message, Action Sensor took (ie, deleting spam email) 

When the analyst clicks on the alert, they get a more information in the 

inspect/edit panel – which includes all data forwarded by the sender for that event along 

with information including a packet capture (PCAP) report (similar to WireShark), 

session information, and other information from the sensor that generated the alert. 

It is possible for ArcSight to combine several events together in the correlated 

event.  ArcSight may also display something at a higher level, if it matches a set of site-

specific rules5, this is a correlated event.  Correlated events are marked in the (left hand 

column?) with a lightning bolt. 

                                                
5 Analysts or the local site can set up additional rules which increase/decrease the alert level of a type of 
alert. 
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There are approximately 6 analysts on a shift.  Each analyst reviews about 1k 

alerts per 8 hour shift.   The analysts are using dual 21” monitors – ArcSight is on one 

screen. 

The analyst looking at an alert takes from 2-3 min to up to an hour to decide if the 

alert should lead to investigation.  The process often requires opening up an event and 

looking at additional info such as packet capture (PCAP) sessions. 

Lead analysts usually have more experience.  They interact heavily with line 

analysts, and the interactions are often skill-set dependent. 

If the Lead Analyst sees a common false positive, they may include a rule to filter 

it out; this rule can be temporary or permanent.  Often the determination to filter 

something out is made in conjunction with things the other analysts are seeing or have 

already handled.  
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ORDER OF EVENTS FOR HANDLING EACH ALERT (OR GROUP): 

1. ArcSight creates an alert which shows up at the (top?) of the screen 
on a new row 

2. The analyst6 decides to click on it or not.  
3. The analyst is supposed to mark the alerts that they are working on 

(or plan to work on) by checking the annotation column for all the alerts they are 
working.  Analysts may work more than one alert simultaneously (e.g. if they 
notice a pattern of related alerts).  The analyst ID appears in the annotation 
column for alerts they are working7 

4. The analyst investigates the alert 
a. If a line analyst determines the event needs to be looked at 

further, the line analyst gets permission from the lead analyst to create a 
report of the basic facts (on SharePoint?) 

b. If the line analyst determines there is no action required, he 
closes the alert8. 
5. The incident response team (IRT) investigates it. 

INTERNAL COMMUNICATION: There is a lot of teamwork involved, if 

someone sees something they don’t understand, they may ask another analyst who is an 

expert in that field.  Most of the teamwork is ad-hoc.  The analysts communicate directly 

with each other verbally.  An analyst will often will ask another analyst to ‘come over 

and look at this’ for items which they want another (or an expert) opinion.  Mr. Lovell 

pointed out that none of this ad-hoc communication gets recorded.  (AFIT is assuming 

there are no mics or headsets, and the analysts don’t generally use chat software). 

                                                
6 Here, “analyst” can refer to line analyst or lead analyst.  All members on a shift are looking at 
alerts 
7 One issue that Mr. Lovell described is that analysts don’t always follow the same sequence when 
deciding whether to mark an alert or not.  Sometimes they browse for a bit before deciding to mark one.  
Also, they might mark alerts even if they don’t end up working them.  This ad-hoc marking protocol could 
lead to race conditions and missed alerts.  Mr. Lovell did mention they are trying to be more rigorous 
about their marking procedures.  The new procedure is to tag it ahead of time, saying that you are 
reviewing it.  But this is still a personal process to remember to mark the item as soon as you open it. 
8 Most alerts get “dropped” after initial inspection.  We did not ask Mr. Lovell about how they are marked 
once dropped – is there something that tells other analysts not to look at them? 
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EXTERNAL COMMUNICATION: Analysts may also get calls from another 

base if their analysts have a question.  Gunter AFB is the hot backup / continuity of 

operations (COOP) site for 33NWS.  They have analysts that are performing the same 

mission on the same data simultaneously. 

FEEDBACK:  Analysts normally told if they were right or wrong about a report, 

but not necessarily quickly.  Feedback arrives within a few hours to a few months later.  

There is a heavier emphasis on negative feedback (you got this wrong) 

Follow up Email Questions and Answers with George Lovell 

Questions were asked and answered over a period of time from September 2014 

to March 2015. 

About 1% of alerts that come into ArcSight are sent to the IRT for further 

investigation. 

About 50% of alerts are either very low or low. These are not normally 

investigated unless there is additional evidence to suggest that they may be important. 

This could be ArcSight combining several low events together into a higher meta event, 

or the low events contain a time or IP address known to be involved in a high priority 

event. 

About 20% of alerts are medium. 

About 20% of alerts are high. 

About 90% of the medium and high alerts are investigated 

About 10% of alerts are very high, and 99% of these alerts are investigated. 
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Whenever an event is marked as non-malicious, this is commented on the alert 

itself so other analysts can see it in ArcSight, with the degree of detail varying depending 

on the analyst and the detail required for the alert. 

Typically alerts are prioritized based on their priority, but “unique or potentially 

malicious alerts” are given higher priority despite ArcSight not making them as such. 

This includes alerts that correlate to known events such as the Heartbleed vulnerability. 

“Q: How does an analyst determine if an alert is malicious or benign? 

A: “The analyst will need to resolve the ownership of the IPs involved in the 
connection. This requires using "NSLOOKUP" to get the fully qualified domain name 
(FQDN) and performing a "whois" lookup using various web sites from metre.net to 
visiting the various regional internet registries (i.e. APNIC, ARIN, RIPE NCC, LACNIC, 
AFRINIC, etc.) 

 
“The analyst should review the reputation of referenced web sites in the pcap on 

McAfee's Site Advisor, Norton's Safe Web, VirusTotal, etc. Also, the analyst should look 
at the signature page for the IDS/IPS reporting the activity. This should give what the 
signature is looking for and what the signature hit on. The analyst often finds that the 
alert/event was triggered by a partial match. Sometimes there will be a full signature 
match but the context is wrong. Again this comes from reading the signature page to see 
what is being looked for. 

 
“Reading through the pcap file in Wireshark, the analyst looks for things like RST 

packets before FIN packets. A session that ends with a RST packet but not a FIN packet 
results in an incomplete session that the destination computer drops all data from its 
memory. 

 
“And when all of this research does not provide a definitive answer as to whether 

the reported activity is malicious or benign, the analyst must rely on experience.  We 
often annotate these events with "Nothing malicious found. Will continue to monitor." 
Because that is the best we can do.” 

 
Also, the CISCO 2000 series notes, found in the appendix of (Baumrucker, et al., 

2003) gives a good example of the type of signatures the 33rd uses, though these exact 

signatures are likely outdated. 
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“Q: What general rules does the analyst use to determine if an alert is a true 
threat? 

 
A: “Because humans write the signatures and heuristics algorithms, we deal with 

a lot of false positives or more benign than malicious true positives. To determine this, 
the analyst must look at the packet capture (pcap) of the session. This is the only valid 
way to determine if the reported event is malicious or not. The analyst/operator looks at 
several hundred pcaps a day.” 

 
Q: Do you have any estimates for how often alerts are deemed not threats 

for various reasons. 
 
A: “Approximately, 75% of the false positives are from partial signature hits. 

The rest are either benign or otherwise defended against by other infrastructure devices.” 
 

Notes from Interview with Maj. Samuel Stone, USAF 

Maj. Stone worked at the 33rd as a Crew Commander in 2006, so some of his 

information may be dated. 

Crew commanders typically lead the line analysts, and made the decisions, 

however they tended to not delve into the technical aspects the analysts did. 

The information displayed in the alerts normally included information such as 

Alert Name, Source IP, Destination IP, Description, with the malicious payload 

sometimes seen in the description. 

The analyst chooses to investigate an alert based on context, such as recent threats 

being higher priority. Situational Awareness is required to remember these big threats. 

There is a shift change brief held, where the new shift gets a summary of important 

information from the various teams. This includes information such as where attacks are 

coming from, things the IRT saw, etc. The line analysts may also inform the incoming 

line analysts of what things they were looking at, a sheet of notes.  
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The alerts take somewhere between 10 seconds to 1-2 minutes to investigate, with 

5 minutes being an upper bound. The alerts that can be discarded right away if it’s seen 

that the system blocked the attack, or was patched, or something like this. False matches 

are also quite common and can also be quickly discarded. These matches could be a hex 

string appearing elsewhere in the traffic where it wasn’t a threat. 

The alerts could be sent to different teams, for example the IRT or the virus team. 

An analyst could request a block from a malicious IP if enough traffic was seen. 

This would have to be approved higher up, but does start with the Line Analyst. 

It is better to flag something as a threat that isn’t than to let a true threat go 

undetected. False positives are better than false negatives. 

Hard alerts are those that take longer to solve, that can’t be dismissed or 

confirmed with a quick glance. 

The possible threat of the alert could be indicated by the time it occurred: A big 

data transfer during normal working hours vs. one at midnight. 

The idea of having one window for information lookup seems reasonable for Maj. 

Stone. Using a Google search is rare at the line analyst level. Signature documentations 

the analysts may have access too. 

Experienced analysts may be able to remember IP addresses, able to map a certain 

address to a certain country without needing to look it up.  
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