
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Stabilized RPA Flight in Building Proximity
Operations
Michael M. Kaniut

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Navigation, Guidance, Control and Dynamics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Kaniut, Michael M., "Stabilized RPA Flight in Building Proximity Operations" (2018). Theses and Dissertations. 1895.
https://scholar.afit.edu/etd/1895

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1895?utm_source=scholar.afit.edu%2Fetd%2F1895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

STABILIZED RPA FLIGHT IN BUILDING PROXIMITY OPERATIONS

THESIS

Michael M. Kaniut, Captain, USAF

AFIT-ENV-MS-18-M-212

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENV-MS-18-M-212

STABILIZED RPA FLIGHT IN BUILDING PROXIMITY OPERATIONS

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Michael M. Kaniut, BS

Captain, USAF

March 2018

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-18-M-212

STABILIZED RPA FLIGHT IN BUILDING PROXIMITY OPERATIONS

Michael M. Kaniut, BS

Captain, USAF

Committee Membership:

Dr. David Jacques, PhD

Chair

Dr. John Colombi, PhD

Member

Lt Col Amy Cox, PhD

Member

iv

AFIT-ENV-MS-18-M-212

Abstract

The thesis seeks a solution to the requirement for a highly reliable and capable

Unmanned Air Vehicle (UAV) to support a wide array of missions and applications that

require close proximity flight to structures. The scope of the project includes the drafting

of a concept of operations (CONOPs) describing how the mission requirements might be

met using the sensor, operators, and air vehicle described here in. The demonstration of

the wall-following section of that CONOPs is performed by cart testing a custom

algorithm and evaluating its ability to react to its environment. Finally, a flight test was

performed to characterize the capabilities of an RTK-GPS system to stably hold a UAV

in a single position, and minimize vehicle yaw, as a potential means of minimizing

environmental sensing requirements in GPS permissive environments. The results for

RTK-GPS were, position hold standard of deviation 8.0 x 10.1cm at a 5m flight altitude,

and 17cm x 12.7cm at 8m flight altitude. Yaw variation results were a standard of

deviation of 1.7° at 5m and 3.7° at 8m. The LIDAR wall-following tests proved the

feasibility of using a decision tree style coding approach to proximity flight near a

structure, but still has some changes that should be considered before being used

operationally.

v

Acknowledgments

I would like to express my sincere appreciation and gratitude to Dr. Jacques for his

support, guidance, and encouragement throughout the creation of this thesis. This topic

held a lot of rabbit holes which would have been easy to turn into parapets, thanks for

keeping me on an achievable track. I would also like to acknowledge Jeremy Gray for his

patience and tutelage in the use and application of python these past several months. I

began with little introduction to scripted code writing or structure. I can now proudly

claim myself a python novice+ with a newly instilled interest in software coding. Finally,

I would like to thank my wife for her patience with my long nights, stressed demeanor,

and likely receding hairline these past several months, I could not have done this without

your support and love.

Michael M. Kaniut, Capt, USAF

vi

Table of Contents

 Page

Abstract .. iv

Acknowledgments..v

List of Figures .. ix

List of Tables ... xi

I. Introduction ..1

1.1 General Issue ...1

1.2 Problem Statement ..2

1.3 Research Objectives ..3

1.4 Research Focus ..4

1.5 Investigative Questions ...5

1.6 Methodology ...5

1.7 Assumptions/Limitations ..7

1.8 Materials and Equipment ..8

1.9 Implications ...9

1.10 Preview ..10

II. Literature Review ...11

2.1 Introduction ...11

2.2 UAV Flight Near Structures ..11

2.3 Sensors Review ...19

2.4 Summary ...21

III. Architecture ..22

3.1 Introduction ...22

vii

3.2 Overview ...22

3.3 Architecture ...23

3.4 Wall Following ..29

3.5 Chapter Summary ..39

IV. RTK GPS Results and Discussion ..40

4.1 Chapter Overview ...40

4.2 Results ...40

4.3 Discussion ...46

4.4 Summary ...48

V. Wall Following Results and Discussion ...49

5.1 Chapter Overview ...49

5.2 Results ...49

5.2.1 Distance Adjustment Tests ..50

5.2.2 Corner Negotiating Tests ...52

5.2.3 Impinging Walls Test ...56

5.3 Discussion ...58

5.4 Summary ...59

Conclusions and Recommendations ..60

6.1 Overview ...60

6.2 Conclusions of Research ...60

6.3 Significance of Research ...63

6.4 Recommendations for Action..63

6.5 Recommendations for Future Research ..65

viii

6.6 Summary ...66

Appendix A. Concept of Operations (CONOPS) ..67

Appendix B. Wall Following Code ...71

Appendix C. Logic Matrix ...80

Bibliography ..83

ix

List of Figures

Page

Figure 1. Path Planning Approaches [22] ... 16

Figure 2. Operational Activity Tree .. 25

Figure 3. Full System Operational Activity Diagram ... 26

Figure 4. Wall Following Activity Diagram ... 28

Figure 5. LIDAR Regions of Interest ... 30

Figure 6. LIDAR Output and ROI Segregation .. 31

Figure 7. Data Gating Example .. 32

Figure 8. Decision Tree Used for Logic Code .. 33

Figure 9. Table Top Test Example ... 35

Figure 10. RTK GPS Test Set-up ... 37

Figure 11. Pixhawk 2 Autopilot .. 38

Figure 12. BBB and LIDAR ... 39

Figure 13. Location Measurement Example ... 41

Figure 14. Test 2 Real (L) vs Onboard (R) Location Measurement 42

Figure 15. Test 1 Real (L) vs On-board (R) Location Measurement 42

Figure 16. Yaw Angle Measurement Example ... 43

Figure 17. Measured (Top) vs Onboard (Bottom) Yaw Variance Test 1 45

Figure 18. Measured (Top) vs Onboard (Bottom) Yaw Variance Test 2 46

Figure 20. Algorithm Output .. 50

x

Figure 21. “Too Far” Test Set-up and LIDAR ... 51

Figure 22. “Too Near” Test Set-Up .. 51

Figure 23. “Too Near” and “Too Far” Example Output ... 52

Figure 24. Open Corner Test Location ... 53

Figure 25. Open Corner Returns and Command Example ... 54

Figure 26. Closed Corner Test Set-up... 55

Figure 27. Closed Corner LIDAR Vision ... 55

Figure 28. Approaching Corner .. 56

Figure 29. Impinging Walls Set-up ... 57

Figure 30. Impinging Walls LIDAR Returns ... 57

Figure 31. Closing Corridor .. 58

xi

List of Tables

 Page

Table 1. Logic Table Portion .. 33

Table 2. Sensor Parameter Limits ... 47

1

STABILIZED RPA FLIGHT IN BUILDING PROXIMITY OPERATIONS

I. Introduction

1.1 General Issue

This thesis determines the current potential for a small unmanned air vehicle

(UAV) to perform proximity operations beside structures precisely and safely. A vehicle

capable of charting its own path to an objective frees an operator from having to

intervene while performing their primary mission objectives. In addition to this, the

vehicle must be able to accomplish its course corrections and path finding with minimal

operator interaction, in order to minimize the total bandwidth dedicated to simple vehicle

operations. The majority of the bandwidth allocation is intended to be used for the

mission sensors downlink to the operators.

This topic is highly relevant to enterprise wide DoD goals, as the use of UAVs to

reduce workload and expand situational awareness is increasingly relevant. Additionally,

small tactical UAVs are just beginning to make in-roads into warfighter repertoires[1].

Tactical UAVs offer impressive situational awareness (SA) improvements and agile

weapons platforms but are limited by having to dedicate soldiers to their operation, and

thereby removing soldiers from active engagement with hostile forces. Further, a soldier

actively operating a UAV is less likely to be able to maintain awareness of their own

tactical situation, potentially putting them in danger of being compromised by rapidly

changing battlefield conditions. Because of all of these concerns, the DoD has been

actively and aggressively funding research in, and deployment of autonomous systems.

Most famously the FCS[2] program of the early part of this century sought to inject

2

autonomy into dozens of land vehicles and weapon systems. While that program proved

overly ambitious for the technology of the time, the current technological art of the

possible has begun to bring many of those projected technologies into reality.

This specific research project has been sponsored in order to demonstrate a

capability for sensor packages requiring proximity flight to structures. This research then

fits into the larger DoD autonomy research strategy of reducing the cognitive workload

on operators, and extending the capability of operators to comprehend their tactical

environment and situation [3]. The intent, therefore, is to demonstrate how the

application of simple algorithms in vehicle navigation might significantly unload the SA

requirements for an operator and allow a far more persistent and attentive focus on

mission sensor data, and further support active warfighting actions.

1.2 Problem Statement

The difficulty of proximity building operations is tied to the complexity of any

given structure face, features, environmental variation, incomplete and inaccurate

knowledge of the building[4], and inaccuracy of navigation aids around structures[5].

These situational awareness concerns are not ideal for a human operator[6]. Such

problems will frequently result in task overload, mission failure, or mishaps, as too much

of the operator’s attention is required for the task of keeping the vehicle in a safe state.

Ideally a machine capable of maintaining some basic level of situational awareness, and

having the means to make changes in its attitude and flight profile given those influences

would be a marked improvement. Building on that, the ability to build a map and localize

to that map would allow the vehicle to react quickly and decisively to any changes in its

3

surroundings or flight dynamics. The end goal being to reduce or eventually eliminate the

overall situational awareness burden on the human operator while performing their

primary sensor mission.

Compounding the issues related to this solution are the problems inherent to

requirements of aircraft, in that any solution must be lightweight, use minimal power, and

have a small enough form factor to be carried on the airframe without demanding too

large a portion of its power so that endurance is not excessively undermined. These

restrictions tend to push solutions to off-board computing with high bandwidth radio

communication links to a ground station. The result is an inherent weakness to jamming,

additional latency in system responses to stimuli, and a potential for spoofing or other

electronic countermeasures.

1.3 Research Objectives

The objective of this thesis is to build a candidate software and hardware

architecture, plus a concept of operations (CONOPS), to support autonomous proximity

operations of a multi-rotor UAV. This can be accomplished utilizing some combination

of sensors, and autopilot algorithm, such that navigation is accomplished by

supplementing GPS inputs. The intention being to allow highly stable and consistent

operations within varied/multiple structure environments. This will be accomplished in a

controlled environment where building features, or simulations thereof, can be closely

introduced in attempts to measure the performance of the designed architecture and

determine potential edge case concerns for the algorithms. Finally, the use of Real-Time

4

Kinematic (RTK) GPS will be evaluated as a means of providing the autopilot with

additional information for locating and navigating near structures.

1.4 Research Focus

The focus of this research will be on the creation of a suitable small UAV

architecture for proximity structure flight that supplements GPS with sensor inputs for

guidance [10] and utilizing commercial off the shelf (COTS) componentry and computer

visualization methods [11]. The ability of the system to identify proximity features and

develop appropriate reactions to those inputs that are encroaching on its operational path

will be tested. Ideally the system will be able to intake these data points and adjust a

flight profile actively to allow stable flight along a structure wall. This capability should

be robust enough to take on the task of complex vehicle flight path adjustment and

creation, in order to allow a human sensor operator to focus their attention on the mission

sensor data.

Additionally, the ability of an autopilot to hold a position through the use of RTK

GPS will be tested. This system is generally considered the highest accuracy possible for

a GPS system on a UAV, and thus will inform how many, and what sort of on-board

environment sensing is necessary for controlled near structure flight. Complications and

dangers associated with this method will also be explored.

By intelligently minimizing the data inputs needed for effective situational

awareness, and thereby limiting the processing requirements for the on-board system, an

architecture capable of keeping the overall system within specified tolerances of nearby

structures was designed.

5

1.5 Investigative Questions

IQ1. What sensors might be used to accurately navigate a UAV through complex

urban environments along a structure?

IQ2. How can LIDAR be used to effectively maintain the stability and position of

a UAV along a building face?

IQ3. How precisely can a multi-copter be flown in close proximity to a building?

IQ4. How precisely can RTK-GPS hold a multi-copter stationary?

IQ5. What is the yaw variance of a sensor in hover?

IQ6. What is the yaw variance of a sensor in motion?

1.6 Methodology

The methodology of this thesis follows this sequence.

A CONOPs (Appendix A) for the thesis experimentation effort was built to both

verify the project intent against customer expectations, and to begin the architecture

design process. This CONOPs was evolved with the customer to ensure that all parties

were on the same page regarding use and deployment realities. Using this CONOPs also

cemented the operational activities, system actors, system boundaries, and capabilities

needed for the system, which were used to inform all other portions of the effort going

forward.

Second, the architecture was designed to meet the operational activities discussed

in the CONOPs. This began with the top-level systems definition process; all operational

activities were matched to associated system requirements, capabilities, and informed the

6

basic design attributes of the UAV and associated systems, in a classic system

engineering development cycle.

Third, an algorithm for mapping UAV location with respect to nearby structures,

maintaining flight stability, vehicle direction, and consistent speed was written to support

the architecture as defined in the 2nd task. The algorithm used the inputs from the

designed sensor suite to update its flight parameters continuously and thereby remain

within the sensors operating parameters.

Fourth, these efforts were combined in a prototype vehicle to test a portion of the

CONOPs, a portion deemed most technically valuable for the effort overall, and directly

relevant for follow-on research. The testing proved the legitimacy of the overall CONOPs

and designed architecture and gave the customer confidence that the research being

conducted for them is creating a useful final outcome. Shortfalls found during this stage

allow follow-on efforts to avoid the same issues and support continued technical

progress.

The explicit logic functions used in this thesis will be more thoroughly detailed in

Chapter IV, but the basic system functions take the outputs of the Light Detection and

Ranging (LIDAR) degree and distance measurements and convert them into three regions

and various stand-off distances that define the system reactions. The system assumes a

right facing mission sensor system. The three regions are; forward, right, and left. These

are defined by a varying width Region of Interest (ROI) measurements centered

perpendicular to the face of the front, right and left of the vehicle. The front ROI expands

and reduces based on the operator defined optimal forward speed on the vehicle. The

right ROI holds an “Ideal distance” band defined by the operating parameters of the

7

mission sensor. Finally, the left ROI is used to identify potential obstacles impinging on

the vehicles path of travel from nearby structures, trees, etc. Combining these three ROIs

give sufficient (SA) to build near comprehensive (albeit reactionary) vehicle control

logic.

In addition to these sensor-based approaches, the use of RTK-GPS to localize the

vehicle will be investigated. This high precision GPS solution might be capable of

providing a sufficiently accurate location for vehicle flight near buildings, or at least

static station keeping. The positional variance in all directions will be reviewed to

determine initial sufficiency for this CONOPS.

Finally, all outputs from this thesis are relevant to follow-on efforts in on board

sensor-based navigation research. Downsides or upsides to sensor choices, arrangements,

and control algorithms have been cataloged to support future research in this area, and

allow students and researchers to focus on the central concepts of the thesis, not the

peripheral design questions.

1.7 Assumptions/Limitations

It is assumed that the mission sensor technology will be eventually developed to a

maturity and size where a multi-copter UAV will be a viable platform for its deployment.

It is assumed that the operator of the UAV retains LOS communications with the UAV. It

is assumed that only basic information is known about the targeted structure, such as

location, height, and other data that can be reliably determined by inspection from the

ground station with prior overhead maps.

8

This specific design, it should be noted, is not the only possible system that might

be capable of meeting the requirements of the CONOPs; in fact, variations in surface type

(glass vs brick), weather conditions (fog/smoke), etc, might prove to significantly

degrade the performance of this specific design iteration. This thesis was completed with

the expectation of clear atmospheric conditions, and solid wall surfaces to expedite

evaluation of the architecture. It may very well be that sonar, visual odometry (VO), or

some combination of sensor suites will be more inherently resilient in varied

environmental conditions, especially as advances are made in those two sensor

technologies.

This thesis will not attempt to demonstrate the capabilities of the mission sensor

suite on a UAV. This thesis is not going to address autonomous navigation around a

building as operators will be in the loop for mode changing and supplementary

awareness. Only stable navigation and position holding will be demonstrated in this

thesis, feature tracking and other possible capabilities should be accomplished under

follow-on efforts.

1.8 Materials and Equipment

This thesis was accomplished using a hex-copter UAV (6 individual arms,

motors, and rotors), which allows significant attitude control and redundant lift in case of

motor failures, and capacity for payloads. The UAV was equipped with a Pixhawk2

autopilot device which is embedded with all necessary logic for controlling a hex-rotor

vehicle through all stages of flight, and even some simple flight profile following logic.

The Pix2 includes an onboard IMU for attitude measurements. A Here+ GPS/Compass

9

antenna was joined with the Pix2, which also allowed exploring the use of Real-Time

Kinematic GPS. A URG-04LX LIDAR system was chosen for its low power usage, light

weight, scanning range, and simplicity of interface with the companion LINUX

computer. The LINUX companion computer is a BeagleBone Black system, capable of

ingesting the LIDAR data and running it through the designed flight logic script, written

in Python. That script outputs a control message which is bundled in MAVlink, which a

Pix2 is able to directly ingest, and translate into vehicle body frame velocity commands.

1.9 Implications

Successfully building this architecture and demonstrating its efficacy will

partially meet the requirements of the sponsor organization for their desired sensor

platform. Beyond the immediate scope of this thesis, a successfully demonstrated

computer navigation suite based on proximity operations would be highly valuable to a

wide variety of both public and private organizations in construction, building

maintenance, urban military operations, and many more. A demonstrated flight path

correcting algorithm also provides a potential breakthrough for urban warfare tactics to

include small UAVs to support ground forces. Such a breakthrough has the potential to

enormously increase situational awareness for squad level operators in the highly

complex urban warfighting environment, or even establish unique and previously

impossible firing positions based on mobile UAV weapons platforms. This thesis will

provide a solid foundation for such a system, and enable more in-depth research in UAV

navigation and autonomy.

10

1.10 Preview

In the next chapter, an extensive literature review was completed to understand

the current state of proximity flight research and to explore available sensors, and wall

following algorithms. Chapter III outlines the thesis methodology. Chapter IV the results

of the RTK station holding tests. Chapter V details the results of the wall following

algorithm. Finally, Chapter VI discusses the conclusions of this research and

recommends future work, including potential ways to broaden the capabilities of the

algorithms used in this thesis.

11

II. Literature Review

2.1 Introduction

This chapter, will explore the various existing research that has been done within

the field of UAV based flight alongside structures, both indoors and outdoors. A review

of the various approaches to environment sensing and obstacle avoidance systems

implemented on robotic systems will be detailed. A sampling of the algorithms involved

in wall following, localization and mapping, and path planning will be evaluated and

presented. Finally, across these various disciplines, the most common sensors and sensor

configurations will be detailed and evaluated for application to the CONOPs of this

thesis.

2.2 UAV Flight Near Structures

The task of robotic flight and maneuvering around environments has been

researched extensively in the past 20 years. Research reaching back to the early 90s, such

as [7] and [8] , discuss the topic of robotic environment sensors and wall following.

During this era, multi-rotor aircraft had not yet begun to be built, due to as yet limited

existence of cheap flight controllers and high enough battery energy density to make the

multi-rotor configuration feasible. In the following 15 years the multi-rotor benefitted

enormously from the research and investments made in the miniaturization and accuracy

of small sensor systems and processing boards, making this architecture feasible.

As technology matured to enable the expansion of computer vision techniques,

and small scale efficient processing, much work was done in the area of obstacle

avoidance and simple wall following codes. These were largely applied to ground based

12

vehicles [9], but this research will provide the backbone to the work being done today in

computer vision on flying platforms.

2.2.1 Optical Flow Obstacle Avoidance

In the discipline of robotics and obstacle avoidance, one of the most common and

deeply researched methods is called “optical flow”. Optical flow is an algorithm

developed by analyzing the translation of points/features between frames of a visual

sensor. The resulting “vector map” can be used to evaluate whether there are objects in

the vehicles vision which are on an interference trajectory as demonstrated in [4] ,

additionally these can be used to augment the IMU for motion sensing.

This approach to obstacle avoidance has some pros and cons. The most immediate

positive for this approach is that the depth of consideration is as good or bad as the sensor

selected. As demonstrated in [10], this allows a UAV to operate in complex multi-

structure environments with many, varied distances, and potential obstacles to track. The

potential concerns are related to the way that optical flow generates its vector maps.

Optical flow is heavily dependent on being able to identify features to track between

frames, in situations where the algorithm fails to find usable features or track a pattern

and becomes confused by a change in lighting, a repetition of the same feature, or non-

static points, and the algorithm quickly loses its efficacy.

The optical flow approach has a great deal of impressive results available in a

wide variety of environments, but as the complexity of the lighting, features of the

obstacles, and static nature of the scene change the algorithms become correspondingly

more difficult and error prone [10]. These concerns limit the immediate opportunity for

13

use in the current research, which will be expected to be used in unknown lighting

conditions, with no guarantee of static surroundings, or non-repetitive features.

2.2.2 LIDAR Obstacle Avoidance

The use of LIDAR for obstacle avoidance has a very well-established precedence.

In usage with ground vehicles, there are many examples in the modern application of

LIDAR for the growing autonomous vehicle research sector. For example, in [11],

LIDAR is used for environment recognition and lane keeping. In [12] LIDAR is used for

localization in an urban environment. Both of these examples show the broad and

expanding role of LIDAR in autonomy generally. In addition to this, the investments

made into the technology have significantly reduced the size, price, and power

requirements making feasible their expansion into other markets.

This rapid development has since bled into UAV applications. For example, in

[13] the use of LIDAR for a LOWAS (LIDAR Obstacle Warning and Avoidance System)

is demonstrated on a UAV performing low level flight in an urban environment. This

application shows the efficacy of increasing the role of LIDAR in UAV applications and

autonomy. Where a platform has sufficient power to integrate LIDAR into the autonomy

suite, there is an ever-growing library of research into control algorithms and

management for navigation to utilize.

2.2.3 Wall Following Algorithms

The creation of wall-following robots has a very long and well researched

background. In 1992, [8] presented an application of ultrasonic sensors to inform a wall

following algorithm on a ground vehicle. From there, significant advances have been

made. There followed examples of using genetic algorithms to adjust and optimize a wall

14

following code in [14], corridor navigation with sonar in [15], and eventually applications

for UAVs such as in [16].

The basic structure and efficient coding required for a wall following algorithm

make them ideal for light processing applications that require rapid outputs and

continuous operation [16]. They can utilize a wide variety of ranging sensors, and as

simple algorithms, are good candidates for optimization techniques. The downsides to

these algorithms are they are only as effective as the sensors informing them, and they are

inherently reactionary. In order to explore a structure thoroughly without requiring direct

flight control by the operator, additional path finding and localization methods are

necessary.

2.2.4 Localization and Mapping

The research that falls under “localization and mapping” has a number of different

facets. The most widely published and investigated approach is called Simultaneous

Localization and Mapping (SLAM). This approach takes the problem of navigating an

unknown/ un-surveyed environment by, as suggested in the name, building a model of its

environment and then localizing itself within that “map”. This allows a level of spatial

awareness that can be utilized to navigate otherwise highly complex terrain features [9],

or indoor environments [17].

SLAM can be accomplished with any number of sensors, but most researchers use

one of two different designs. The first is LIDAR based, which operates by building a

continuous point cloud of the area around the vehicle, while tracking its movements with

internal IMU sensors and pose tracking algorithms like Extended Kalman Filters (EKF)

[18]. These maps can be transmitted off-board for operator situational awareness or high

15

precision interior surveying, depending on application. The second is visual odometry

(VO) and visual SLAM, and they require some number of cameras, ranging from one

(monocular VO) [19] to many [20]. These use the same pose tracking with the IMUs as

other methods, in conjunction with point tracking in the images. Where LIDAR point

maps will generally only be capable of tracking several explicit features, VO has the

capacity to track hundreds of individual features across frames. This provides an

opportunity to more accurately define the vehicles location, but comes at the cost of

processing speed, which drops significantly with the tracking of so many individual

features [21].

2.2.5 Path Planning Algorithms

Path planning is a complex algorithmic operation which has been researched and

implemented in dozens of different autonomous and logistical solutions. The goal of any

path planning algorithm is to resolve a large solution space into an optimal (or near

optimal) solution that meets the constraints of the algorithm [22]. The algorithms utilized

to accomplish this vary in approach but fall into five main categories, as shown in Figure

1.

16

Figure 1. Path Planning Approaches [22]

The sampling-based algorithms break into two sub-categories; active and

passive algorithms. Active algorithms include Rapidly-exploring Random Trees

(RRT), which can build a framework to the goal within its own processing procedure.

Whereas passive algorithms build a number of acceptable paths, but do not choose a

final answer, requiring another algorithm to determine optimality [22]. The options in

this category include passive elements like 3D voronoi , Rapidly-exploring Random

Graph, probabilistic roadmap (PRM), Kinetic-PRM, Static-PRM, Visibility Graphs,

and Corridor Map. Active options includes elements such as RRT, Dynamic Domain

RRT(DDRRT), RRT-Star(RRT*), and Artificial Potential Field [22]. All sampling-

based algorithms require some prior information regarding the workspace.

The “Node Based Optimal Algorithms” approach is similar to sampling-based

methods, in that they are dependent on the system to sense the area ahead of time and

perform some post processing on that data to create nodes and arcs. Examples of this

approach include; A*, Lifelong Planning A*, Dynamic A*, D*-Lite, and others [22].

After the construction of the nodes and arcs, paths are compared against a cost

17

function, to determine the optimal path [22]. These algorithms have been

demonstrated on UAVs previously, including [23]. D* is by far the most popular of

these methods and would be a strong contender for this CONOPs.

The “Mathematical Model Based Algorithms” are best recognized as Linear

Programming (LP) and Optimal Control algorithms. The benefits of these methods

are that they not only path plan, but take into account the environment and the body,

evaluating both the kinematic and dynamic constraints of the system and use these to

bound the cost function with inequalities to find the optimal state. The issue with

these approaches is the high computational cost associated with evaluating both the

environment and vehicle limits as variables [22].

The “Bio-inspired Algorithms” are a family of algorithms based on

mimicking biological behavior. Examples of these include evolutionary algorithms

and neural networks. Evolutionary algorithms further break down into genetic

algorithms, memetic algorithms, particle swarms, and colony optimization [22]. The

basic principle of each of these approaches is that they start by introducing a variety

of paths, and begin evaluating the best of each, taking the best from each run then

making slight course changes and re-evaluating (mimicking genetic mutation and

evolution). The result is a path likely to be very near optimal, as mutations are

introduced to overcome local minima, but premature convergence can remain an

issue.

The “Multi-Fusion Based Algorithms” are exactly as they imply. By taking

several separate algorithms and marrying them in order to find true global optimality.

Higher fidelity solutions have been created such as in [24], which used 3D grid for

18

the environment and 3D PRM to form an obstacle free road map, then finally applied

A* to find the optimal path. Other examples exist as well, such as [25], which

combined visibility graphs and a Dijkstra’s algorithm. These fusions approaches can

significantly improve the optimality of the path found but require varying amounts of

additional computational power to solve, so care must be taken to ensure the

algorithms used are within the limits of a UAV companion computer.

2.2.6 Real Time Kinematic (RTK) GPS Position Holding

The Global Navigation Satellite Systems (GNSS) provide a variety of

positioning state solutions. These are single point positioning (SPP), precise point

positioning (PPP), differential GPS (DGPS) and real time kinematic (RTK). The

differences between these solutions have to do with types of measurements they take,

the data epochs required, and the number of receivers involved in the positioning

operations. The utility of each of these solutions is highly dependent on the

application demands and environment.

SPP uses a single receiver and epoch to create a pseudo-range measurement.

PPP solutions require both phase measurements and code from a single receiver, but

require a long period of observations. DGPS solutions are based on code

measurements from a single epoch but use differential corrections from a reference

station or network. Finally, RTK positioning uses the carrier phase measurements in

the DGPS mode, preferably from a single epoch (or at least a short period of time

[26]). RTK, when fully surveyed in, can provide locational accuracy on the level of

centimeters [26], and with a proper base station broadcast power can inform nearby

19

RTK receivers out to distances beyond 50-70km to accuracies within 10cm north and

east and 30cm up and down [26].

The use of RTK on UAVs has been demonstrated in a variety of fields

including coastal surveying [27] and precision agriculture [28]. In these applications,

the ability of the vehicle to know with high accuracy its current location, enables all

other sensing and surveying tasks. The existence of RTK solutions for mining and

precision agriculture on the ground has existed for years, and would cost on the order

of 30 to 50 thousand dollars for the base stations and receivers. Only recently has the

price point dropped to a level and size that hobbyists can make use of RTK with

systems like the Here+ system ($600). These new, affordable, systems are bringing

RTK to the masses, but lack some of the range and consistency of the large industrial

systems.

2.3 Sensors Review

Environmental sensing for robots has been a major area of research for many

decades. In the area of UAVs there are a few stand-outs for their weight, power, and

accuracy. These include vision-based systems, which are utilized for visual odometry

(VO), or optical flow, sonic based systems, which return distance measurements using

sound returns off surfaces, and laser-based systems which use light returns to determine

distance, and sometime angles.

Vision based systems like the one demonstrated in [29], and covered in great

detail there, make use of monocular or stereo vision to detect features in frames and track

them to the next. A VO or optical flow algorithm then deciphers these changes and can

20

then be used to produce a 3D model of the area or detect objects on trajectory to block the

path of the vehicle. The issue with VO is that it is a computationally intensive process,

requiring the evaluation of hundreds or thousands of separate features, their relative

movement, and disappearance. Optical flow is a lighter algorithm, but as discussed

previously, depends on the acuity of the sensor and various algorithms to track motion.

Ultrasonic based systems utilize echo-location principles to detect and report the

existence and distance to objects in their field of regard. The basic principles of this are

demonstrated in [30]. As described therein, the sensors report back the nearest distance

detected, and as such require a constellation of sensors to fully comprehend the

surroundings of the UAV. The result is a large number of individual sensors pointed in an

array around the vehicle, and an algorithm designed to understand and react to those

measurements. The drawback to this approach is dependent on the number of sensors

required; in [30] that number is 12. This provides many potential sources of failure, extra

power draw, and weight.

Finally, laser-based systems, such as LIDAR, utilize light reflection signatures to

determine distance. Again, many examples of these systems are used in research. In [12],

a 2D LIDAR is rotated to create a 3D map of the environment around the vehicle. In [13],

a LIDAR system is utilized in an obstacle avoidance and detection system, much like the

system required in the CONOPS. LIDAR systems work by spinning an optical element in

front of a laser and a light sensor. The optical element is on a servo that sweeps between

the angles defined for the system, and at each increment of servo turn, the sensor detects

the distance between it and a surface, this distance is then married to the angle at which it

was registered. The result is a point cloud of angles and distances around the LIDAR.

21

The set-backs for these systems are the higher power requirements for meaningful

distance detection on UAVs and weight.

2.4 Summary

In this chapter we reviewed the wide range of research related to the CONOPS.

We discussed the various means of accomplishing obstacle avoidance, including optical

flow, and LIDAR based systems. We discussed wall-following algorithms and looked at

examples of each. Finally, we reviewed the many path planning algorithms that exist, and

compared the strengths and weaknesses of each. Based on these findings, it was

determined that the wall-following portion of the CONOPS could best be demonstrated

using LIDAR. This is as a result of the breadth of the regions a single sensor could keep

track of, and the ability to measure angles, thus allowing yaw adjustments to be included

in the algorithm. This is important as the direction the mission sensor points is crucial for

keeping it in its operating region and gathering operator directed data from specific

places. Additionally, RTK GPS will be tested to provide an initial understanding of the

capability of that GPS solution to keep a multi-rotor within a certain location. RTK GPS

presents a potential for removing much of the sensor overhead requirements in GPS

permissive environments.

22

III. Architecture

3.1 Introduction

This research provides an example of how low-cost sensor systems, such as the

LIDAR utilized in this thesis, can provide immediate, useful, and efficient improvements

to building proximity flight systems. The architecture presented will define the full range

of required activities necessary for operating a UAV near a building with a unidirectional

mission sensor. This architecture will include aspects not investigated in this thesis, but

which would be required to meet the full CONOPs of the research sponsor. Finally, the

portions of the architecture which were researched included a LIDAR sensor which

allowed for accurate predictable flight near building faces, utilizing a simple logic

algorithm, and positional holding accuracy using an RTK-GPS. This approach has the

potential to be further expanded to handle more complex building structures and surface

types, especially with the inclusion of more than one type of sensor.

3.2 Overview

In the previous chapter, the use of a variety of algorithms were reviewed to

determine the most immediately relevant type for meeting the needs of the CONOPs. In

conjunction with this, a variety of distance and location sensors were reviewed for their

ability to inform the algorithm, while minimizing the size, weight, and power

requirements necessary to small tactical UAVs. This chapter will detail the architecture

of the system, and the means by which this combination of hardware and code were

prepared, assembled, and evaluated.

23

3.3 Architecture

3.3.1 Introduction

In the following section an explicit instance of the following architecture will be

described, but it is not the only possible instance. It will be demonstrated that the

necessary elements of the system were met with this specific construction, but many

other possible variations might be designed depending on differences from environmental

requirements and structure types, or mission sensor sizes and power needs.

3.3.2 Development

The architecture was developed by constructing a Concept of Operations

(CONOPS) with the research customer and verifying that all necessary requirements

were captured for the system. This CONOPS (Appendix A) helped to properly scope the

effort to the true needs of the customer and avoid introducing unnecessary complexity

(and cost) into the design. The CONOPS emphasized the importance of limiting the

control input by the operators while they were operating the mission sensor. This

necessitated a control algorithm and architecture which could feed environment

information to the algorithm by some means of on-board sensing.

In addition to reactionary algorithms, a means of determining location relative to

the building accurately will be required. This research falls outside scope of this thesis for

demonstration, but it has been included in the architecture as a higher level of spatial

awareness is necessary for intelligently navigating and targeting specific areas of a

structure of interest. The requirement for this level of awareness becomes clear when

considering the importance of being able to know what has been viewed by the mission

sensor and what still requires examination.

24

The operational activity diagram of the system is shown in Figure 2, and the full

operational activity model is shown in Figure 3. This diagram captures the full breadth of

activities that will be required of the system for the successful completion of its

CONOPs. Basic operations already encompassed in the PixHawk2 autopilot functions

like waypoint following, vehicle status info, and signal strength reporting require no

further study or research and have been demonstrated in other projects. The unique

portions of this architecture are captured immediately following the changing of flight

modes beside the target structure. These are the “wall following”, “localization and

positioning”, “mission sensing and data streaming”, and “path finding” activities. In

Figure 3, these are noted with a red square. These functions make up the unique

capabilities which would support a CONOPs in line with the structure sensing mission.

25

Figure 2. Operational Activity Tree

26

Figure 3. Full System Operational Activity Diagram

The mission sensing piece is a straight forward piece of this architecture. This is

the reason why the vehicle needs to be flown in proximity to the structure. The operating

parameters of this system will dictate the operating conditions for the rest of the system.

Parameters like top speed, max/min distances from target, allowable rate of distance

variance, and power demands will all have significant impacts on the vehicle required

and operations of the other portions of the architecture, as this is the primary functional

focus of the system. There would be little gained by optimizing the system to wall

following or path finding activities if they came at the expense of the mission sensing

capability. This portion of the architecture will not be demonstrated in the thesis, as the

27

equipment necessary is still in development and not required for performing the flight

near structures portion of this thesis.

A Simultaneous Localization and Mapping (SLAM) algorithm or Visual

Odometry (VO) algorithm capability will be required to provide accurate awareness of

where the vehicle is in relation to the larger structure. A system which is simply initiated

and forgotten provides a minimal operational benefit when attempting to investigate

specific places and floors on the structure; therefore, a requirement that the system be

capable of relating its location relative to the target structure is necessary. There are a

number of possible ways to accomplish this task, two of which are SLAM and VO, but

these are not the only approaches. Those two are suggested solely based on the maturity

and detailed level of research which exist, as referenced in Chapter II, for those methods

of localizing a vehicle to its surroundings using local data cues (not at all or only partially

referencing GPS). Both of these approaches are computationally intensive, especially

VO, and are likely to require off-board processing. This portion of the architecture will

not be demonstrated in the data collection for this thesis.

A path finding algorithm will be necessary around a building, especially as the

complexity and shape of the structure changes. If the vehicle is ordered to move from its

current location to a higher priority location, an algorithm would be necessary to

determine the fastest/lowest risk path to that location, as a direct path can’t be assumed

available. It would be expected that this path finding algorithm would piggyback on the

localization and mapping work being performed in parallel with the other capability. A

variety of path finding algorithms exist, and they can be chosen to prioritize fastest routes

vs time to process. Examples of optimization-based path finding that might be used are

28

detailed in [31]. This portion of the architecture will not be demonstrated under this thesis

but would be highly recommended for follow-on efforts.

Finally, the wall following portion of the architecture is simultaneously the most

mature and central to the overall architecture. This capability allows the vehicle to remain

within the operating parameters of the mission sensor while navigating safely around the

target structure with minimally aggressive control inputs to keep it there. More will be

discussed regarding the specific code created to accomplish this later in the chapter

(3.4.2.1), but as the demonstrated portion of this thesis it will receive more attention than

the other three major activities in the architecture. The activity diagram related to the wall

following sub-portion of the architecture is shown in Figure 4.

Figure 4. Wall Following Activity Diagram

29

The full architecture required for a mission sensor requiring near structure

maneuvers and situational awareness is dependent on three main tasks. The first is safe

operation near the structure face; this is accomplished most effectively using a wall

following algorithm informed by distance and direction sensors. This capability will be

further investigated and demonstrated in this thesis. The second is localization and

mapping of the operating region relative to the air-vehicle. This is crucial to performing

efficient surveying of a structure and being able to direct the mission sensor to places of

immediate interest, as that is impossible without first understanding where the vehicle is

in relation to that point. Finally, a path finding algorithm is necessary to make use of the

mapping performed by the previous system to allow the vehicle to accurately and

efficiently proceed from its current location to an operator defined mission interest.

3.4 Wall Following

3.4.1 Introduction

The operation of wall following can be accomplished in a variety of ways; for this

thesis the operation will be performed primarily by ingesting LIDAR sensor data, and

categorizing the ranges into specific reactions based on pre-determined angle and range

gates. This approach is considered a logic gate/decision tree approach and is in theory a

simple means of evaluating data and creating a consistent and predictable output. What

follows are the specific choices and gates chosen for the “Wall Following” operation.

30

3.4.2 Code

3.4.2.1 Code Architecture

A decision tree model, based on [32]⁠ and other wall following algorithms, was

selected for the approach of this project. This decision tree is built using logic gates

which evaluate the relevant parameters related to the control and state of the vehicle and

output a new velocity vector to respond to that state. In the case of this thesis, the LIDAR

is sampling the environment state of the vehicle and returning distances and angles from

the body to the companion computer. The companion computer takes these values and

manipulates them through a series of functions to define the regions of interest (ROI)

shown in Figure 5, which inform the control logic. The ROI are themselves divided into

zones; Zone 1-4 and Danger Zone. These zones are defined by the operator, and

determine the operational clearances of the vehicle, and provide the framework for the

decision tree.

Figure 5. LIDAR Regions of Interest

The output from the LIDAR itself resembles Figure 6. That “dictionary” array is

then sub-divided into ROIs, as shown in Figure 6, using the “numpy.where”, function

31

which allows a table to be sorted and divided using logic arguments. Once these ROIs are

created in array form, they are further gated to remove single step outliers and deal with

the “0 distance” for no return issue. This is accomplished by first taking the average of a

given ROI, finding the standard deviation, then creating a new ROI array omitting any

results that fall outside that standard deviation of the mean, as demonstrated in Figure 7.

With this new array, the minimum distance is recovered, if this minimum distance is

again zero, or within the new standard deviation of the array from zero, the code returns

the outer threshold distance plus 100mm. Otherwise, that min distance is the value used

in the decision tree for that ROI.

Figure 6. LIDAR Output and ROI Segregation

32

Figure 7. Data Gating Example

 Those regions are then evaluated using a decision tree, as shown in Figure 8 to

provide the corresponding output velocity for the vehicle. These outputs were defined by

carefully evaluating all potential state measurements of the vehicle and determining

acceptable responses to those situations. For this thesis a matrix, shown in Table 1, of

some possible variants of measurements was built, the full matrix is available in

Appendix C, with a descriptive statement regarding the likely scenario in which that

might be encountered, followed then by the proper velocity response to that situation.

33

Figure 8. Decision Tree Used for Logic Code

Table 1. Logic Table Portion

One danger of using this type of logic gate decision tree is that the vehicle can

enter states on the verge of two different responses and begin making abrupt course and

velocity changes; this is referred to as “logic lock”. In order to avoid such scenarios,

many of the responses are built from curves based on the proximity to those gates,

making the responses nearest a gate more limited than those falling far outside those

34

boundaries. For example, the velocity correction for moving the vehicle closer to the

building face if it begins to drift out of the desired distance, is shown below in Equation

1.

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑑𝑖𝑠𝑡(𝑚𝑚) − 𝑂𝑝𝑡𝑖𝑚𝑢𝑚𝑑𝑖𝑠𝑡(𝑚𝑚)) ∗ (𝐴𝑑𝑗𝐹𝑎𝑐𝑡𝑜𝑟) (1)

Through a combination of these types of response functions, and creating gates

dependent on vehicle parameters, the overall system gains a level of adaptability and

finesse that will support broader applications.

3.4.2.2 Code Testing

The code developed for this thesis is based on a variety of prior systems. The

overall intent of testing will be to tune the logic gates and response curves to best match

our system. Based on the testing some broad level tuning may be created, but it is likely

that individual systems will need to have the response curves adjusted based on the

response parameters of their autopilot and system dynamics. That said, here is the test

regime executed by the thesis vehicle.

The first step was basic table top system tests. The table top tests were used to

confirm that the code was outputting the correct responses to designed scenarios. A

matrix of tests using this set-up is shown in Figure 9. Once these parts of the code were

tuned acceptably, and the LIDAR/Linux interaction was stable, the testing entered the

next phase.

35

Figure 9. Table Top Test Example

The second step of the testing was cart testing. Cart testing was used to confirm

that the output from the companion computer reacted quickly and accurately to changes

in the environment by entering different states sequentially. These tests further stabilized

the code design and are likely to be the final extent to which the code can be closely

ported between dissimilar systems. Each region has a specific reaction anticipated from

the algorithm, and confirming those reactions, at acceptable rates, is necessary for

progressing to vehicle testing.

The next step of testing was cage testing. These tests provided the first glimpse

into the full system directly controlling a vehicle autopilot and real system responses.

These tests confirmed the success of the vehicles integration between the code, hardware,

and sensor systems. This required a “build up” approach that started with very basic

maneuvers to confirm full system stability, and cart testing to confirm system response

capabilities.

36

3.4.2.3 RTK GPS Testing

The evaluation of RTK GPS as a means of holding close positional tolerances

with a small multi-rotor was necessary to determine the necessity of the environment

sensor payload, especially in GPS permissive environments. Characterizing the level of

precision possible with an RTK solution in a small UAV sized system will allow future

users to understand the upper bounds of such a system.

This evaluation was accomplished by bringing the multi-rotor up to a specific

height, giving it a waypoint (location and altitude) with zero radius, and telling it to hold

on that waypoint. The autopilot would then use its RTK fix to attempt to maintain the

vehicle in that position against any drift and breeze interference. The photo measured

vehicle location was then compared against the vehicles RTK measured location to

provide an overall vehicle location holding accuracy, yaw variance, and altitude variance.

The setup for said testing is depicted below in Figure 10.

This test setup was operated by an intervalometer and programmed to take 45

pictures at a rate of 1 per second. The result being 45 directly measurable location, yaw,

and altitude variances from each test. These results will be discussed in 4.2.

37

Figure 10. RTK GPS Test Set-up

3.4.3 Hardware

The hardware used in this thesis were based on a variety of previous projects in

the AFIT ENV team. The system can be broken down into three separate component

systems; the air vehicle, the autopilot system, and the wall following system.

The air vehicle is based on a Tarot T960 hex-frame multi-rotor. Composed largely

of carbon fiber components and structural members it is very light for its size and rigid

enough for significant payloads. Figure. below shows a picture of the vehicle used. The

motors are KDE Direct 425Kv, and the speed controllers are 40A. This is the exact same

specification as was used in the AFIT CE runway rapid assessment project in 2017. The

hex frame design provides significant stability and power, while taking minimal impacts

for control-ability and endurance.

38

The autopilot system utilized on this airframe is a COTS PixHawk2 (Pix2) with a

Here+ GPS system. These autopilots have built in algorithms for handling everything

from fixed wing vehicles through ground and multi-rotor configurations. In addition to

this, the Pix2 is designed to handle direct inputs from external scripts that are sent using

MAVLink protocols. This allows the rest of the system to direct the control of the air-

vehicle within the Pix2’s well established control PIDs and algorithms. A Pix2 is shown

in Figure 11.

Figure 11. Pixhawk 2 Autopilot

Finally, the sensing system and companion computer running the Python script

are a Hokoyu URG-04LX LIDAR system, and a BeagleBone Black (BBB) processing

board running Debian Ubuntu. These components in the system perform all the upstream

measurement, parsing, logical evaluation of the LIDAR data, and sending of the

MAVLink messages to the Pix2. A figure of the BBB and LIDAR system are shown

below in Figure 12.

39

Figure 12. BBB and LIDAR

The Wall Following capability demonstrated in this thesis is only one build out of

an architecture that might have better sensing options and more comprehensive

algorithms depending on on-board processing power available, structure face materials,

and vehicle design. The choices made for this thesis represent the best combination of

attributes for the demonstration/validation of the concept.

3.5 Chapter Summary

This chapter reviewed the full complexity and capabilities necessary to the

structure proximity flight operation. Three central capabilities were defined as the

minimum necessary to accomplish useful and safe sensing of a structure with a proximity

air vehicle. Finally, the specific portion of that architecture being investigated by this

thesis was defined and the methodology of its creation and testing were laid out. The next

two chapters will review the results of those investigations.

40

IV. RTK GPS Results and Discussion

4.1 Chapter Overview

This chapter will present the results of the RTK-GPS position hold tests. An

evaluation of RTK as a potential means of path following near a structure, and detail

potential drawbacks and yet to be investigated concerns regarding the use of RTK in this

role.

4.2 Results

The testing of the RTK GPS, in the manner defined in 3.4.2.3, provided a very

useful set of data for understanding the overall performance of a small UAV married to

one of the new affordable RTK GPS solutions, the Here+ antenna and RTK base station.

The measurements used for the location data were captured in the following way.

Each of the 45 photos taken had the midpoint of the vehicle identified as shown in Figure

13; this pixel location was recorded, with the same process applied to the next sequential

photo. Given the known size of the vehicle, a cm/pixel conversion could be derived and

used to find the location variation between captures. These tests were performed at an

altitude of 5m and 8m.

41

Figure 13. Location Measurement Example

The location variation, as shown in Figure 15 and Figure 14, and its measured

variance, gives a good overall impression of the capability of a UAV to maintain position

with the Here+ RTK GPS system. It should be noted that the sample rate of the real test

was only 1Hz, while the on-board system samples at about 3Hz. Both of these tests

showed an overall location holding accuracy that varied slightly. In one test, the vehicle

remained within a 40 x 40cm box. In the second test, that box expanded to a 70 x 60 cm

box. The measured standard deviations are 8.8 x 10.1cm and 17.0 x 12.7cm respectively.

When compared to the stand-alone GPS positional accuracy of ~2.8m on FAA receivers

[33], these accuracies demonstrate a clear improvement for position holding overall for

any vehicle using GPS as the main source of its positional data. The cause of the

inconsistencies between the two tests is inconclusive, but both still show a marked

improvement over the baseline SPP GPS/IMU fusion. It may be that the higher altitude of

42

the 8m test was subject to stronger winds than the 5m test, but that was not confirmed by

measurement, and weather reports for the day recorded only calm weather during testing

periods.

Figure 14. Test 2 Real (L) vs Onboard (R) Location Measurement

Figure 15. Test 1 Real (L) vs On-board (R) Location Measurement

43

For yaw variance, two locations on the vehicle were identified by pixel and used

consistently between frames to determine changes in yaw angle from one photo to the

next by simple trigonometry. This is demonstrated in Figure 16. The result of this was a

table of yaw angles, from which differences, and a rate of change could be calculated.

Figure 16. Yaw Angle Measurement Example

The results of these measurements are detailed for each test in Figure 17 and

Figure 18. The overall yaw variance is remarkably limited. The yaw is largely

controlled, in this autopilot, by the IMU sensors, and changes to the PID values

might provide improvements to the yaw variance. The results, Figure 17, show that

in both tests the vehicle remains within ±10 degrees of the initial direction. It should

44

be noted that the difference in time between measured and onboard is related to

having unsynchronized time references. The standard of deviation between the two

tests ranged from 1.7° to 3.7° from the average pointing position, with an average

rate of change of 0.06°/sec to 0.08°/sec.

45

Figure 17. Measured (Top) vs Onboard (Bottom) Yaw Variance Test 1

-8.000

-3.000

2.000

7.000

1 11 21 31 41
D

eg
re

es
 O

ff
 A

ve
ra

ge

Time (s)

Delta Yaw Measured (8m)

0

0.2

0.4

0.6

0.8

1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Delta Yaw From Average (8m)

Yaw Delta

46

Figure 18. Measured (Top) vs Onboard (Bottom) Yaw Variance Test 2

4.3 Discussion

The results of these tests tell us a great deal about the potential viability of an

RTK GPS system for informing a structure navigation system. Whether a mission sensor

will be capable of handling variance in distances equal to those determined in these tests

-8.000

-3.000

2.000

7.000

1 11 21 31 41

D
eg

re
es

 o
ff

 A
ve

ra
ge

Time (s)

Delta Yaw Measured (5m)

-8

-6

-4

-2

0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Delta Yaw from Average (5m)

Delta Yaw from Average

47

would remain to be seen. That said, if a sensor can handle the following limits on the

RTK GPS, reducing the environmental sensor requirements, a great deal of efficiency

gains stand to be realized.

Table 2. Sensor Parameter Limits

Parameter Limits

Locational
Precision ± 40.2cm

Yaw Precision ± 9.1°

Yaw rate ± .08°/sec

These limits need to be recognized as optimal conditions for the Here+ RTK

system. These were found while using the system in an open field, with minimal

opportunities for multi-path error, and all tests required several minutes of waiting for the

RTK fix to be accomplished between the base station and the autopilot. There is a

possibility that attempting to use this system near structures or in urban valleys may

result in higher locating errors, or issues gaining RTK fix. All GPS based systems would

encounter these potential issues, but the need for direct communication with a base

station adds another communications link that needs to be maintained and is subject to

interference.

Altogether, the results of this test regime are supportive of additional testing in

more challenging environments. In order to better classify the suitability of this

technology for localization, there are quite a few more questions to be answered. Follow

on research opportunities and suggestions will be discussed in Chapter 6.

48

4.4 Summary

RTK GPS provides a powerful tool for localization, significantly improving on

the accuracy of the SPP GPS signal most commonly utilized in commercial and industrial

applications. This added level of accuracy comes with some additional questions,

especially with regards to this specific system. Fix lag and fix loss were common

problems in an environment that should have been ideal conditions for the system. In

light of this, further research is required before recommendations for use in an urban

environment could be given. Initial tests look promising, but there are still many

questions that need attention.

49

V. Wall Following Results and Discussion

5.1 Chapter Overview

In this chapter, the results of the wall following portion of this thesis will be

detailed. The capability of the algorithm to react appropriately to the environment, and

produce reasonable velocity outputs, has been captured in a series of cart tests. These

tests were built as detailed in chapter 3 and designed to produce specific outcomes. These

tests are not sufficient to certify the algorithm for operations but are an acceptable

starting point for limited flight tests with the appropriate revisions to the flight

parameters.

5.2 Results

The final design of the wall following algorithm was a decision tree. The full code

is recreated in Appendix B. In this figure the architecture of the decision gates for the

various regions of interest (ROI) are displayed. The result is a code that is able to finish a

loop every third of a second while accurately producing the reactions expected of the

system in each designed scenario. A closer look at these reactions now follow. In the

examples used, a print out of individual control loops will be presented, like the one in

Figure 19. At the top, the measure (or resolved) distances in millimeters are shown for

Front, Right, and Left ROIs respectively. The next line is the branch label from the

decision tree section of the code those measurements match. The next sections are

labelled, it should be noted that the “yaw adjustment” line is for specific situations like

being in a corner or needing to turn around in a narrow corridor. The “yaw direction” line

is the direction of yaw occurring at the defined yaw rate from the parameter file. Finally,

50

the “total time” measure is based on a measurement of the loop from start to finish, to

determine the possible input rate from the algorithm.

Figure 19. Algorithm Output

5.2.1 Distance Adjustment Tests

In the algorithm designed for this project, the vehicle is prioritizing a distance

from the wall off the right side of the vehicle, in order to simulate a hard-mounted

mission sensor facing perpendicular and right to the forward motion of the multi-rotor.

Maintaining this consistency simplified the code but changing the algorithm to support a

left facing design would be relatively trivial. The set-up is shown in Figure 20 for “Too

Far” and the “Too Near” set-up are shown in Figure 21, which provided the necessary

confidence that the LIDAR was taking accurate readings, and the wall surface was

providing sufficient returns. The control of this distance correction was a simple linear

formula of the variety described in Equation 1. For this actual test the correction factor

was defined as .005 (m/mm*s), to translate the offset from an ideal distance into a

translational right velocity vector at a reasonable rate (<2m/s).

51

Figure 20. “Too Far” Test Set-up and LIDAR

Figure 21. “Too Near” Test Set-Up

52

From these tests the code demonstrated the capability to perform a full analysis

and characterization of its surroundings, determine how far away from the acceptable

range it was to the right, and output a right (or left) velocity vector proportional to how

far out of tolerance it is. An example of two such outputs from the control loop are

captured in Figure 22, with the measurements and scenario designator (from the logic

table) included for further background.

Figure 22. “Too Near” and “Too Far” Example Output

5.2.2 Corner Negotiating Tests

In these tests, the ability of the algorithm to handle both open and closed corners

was evaluated. The design of the system intends that once the open or closed corner

scenario is encountered the anticipated response begins. For the open corner, the vehicle

continues until it is past the edge of the corner, then begins to yaw right until it is once

again parallel to the wall. The closed corner scenario begins by slowing down the vehicle

53

and begins a yaw left to align itself with the new wall at its front. If the next threshold is

crossed, the vehicle stops and continues yawing left until it is aligned with the wall that

was in front of it. This combination of reactions allows for the greatest potential to react

correctly to a scenario, while still being controllable and predictable.

The open corner test was demonstrated on the corner below in Figure 23. The

corner itself wasn’t completely free of additional obstacles, but the code managed to

negotiate the corner before responding to the obstacles it encountered on the far side.

This gives further confidence that the system is capable of responding to a robust

selection of features and scenarios. A LIDAR return snapshot was not captured for the

open corner scenario, but the readings in the code reflected accurate measurements of the

scenario as it played out. A sample of those returns and the algorithm reaction are

captured in Figure 24.

Figure 23. Open Corner Test Location

54

Figure 24. Open Corner Returns and Command Example

The closed corner test was constructed as shown in Figure 25. In this scenario the

algorithm correctly approached the wall until the vehicle crossed the first threshold, at

which point it began slowing forward velocity, and introducing a yaw rate. Finally, once

the vehicle was in the final threshold it stopped completely and started a 90-degree yaw

to the left. All of these commands were sent and updated on a ~0.3s basis, allowing for a

consistent update to the control algorithm depending on how the environment changed. A

sample of the returns (Figure 26) and algorithm reactions for each step (Figure 27) in the

test are shown.

55

Figure 25. Closed Corner Test Set-up

Figure 26. Closed Corner LIDAR Vision

56

Figure 27. Approaching Corner

5.2.3 Impinging Walls Test

In this test the algorithm was faced with a set of walls closing in on either side as

it moved forward. This scenario tested the vehicles ability to react to a closing corridor

situation. It is designed to proceed at its normal velocity until the walls on both sides

have passed into the minimum distance region, at which point it comes to a stop

completely and yaws a full 180-degrees. The set-up of this test is shown in Figure 28

below. The LIDAR returned sufficient data (Figure 29) to ensure awareness of the

incoming walls and react appropriately to the quickly reducing maneuvering room. As

the vehicle crossed the necessary thresholds it went from prioritizing the mission sensor

stand-off to exiting the corridor (Figure 30).

57

Figure 28. Impinging Walls Set-up

Figure 29. Impinging Walls LIDAR Returns

58

Figure 30. Closing Corridor

5.3 Discussion

Based on the results of these tests, it would be appropriate to proceed to limited

flight test of the algorithm in designed scenarios. The algorithm shows sufficient

robustness to handle various designed complex environment scenarios, and the necessary

sampling rate to ensure dangers do not appear without being identified within the ROIs of

the system. The question of sufficiency and robustness are at this stage only partially

explored, as real-world testing and potential novel scenarios may be encountered and

would require further testing to ensure the algorithm responses are proper and safe in

such environments. Further testing will be necessary to demonstrate specific vehicle

variances in yaw and position, which are closely tied to the vehicle dynamics and control

schema utilized.

59

5.4 Summary

In all, these tests are a strong first step towards vehicle implementation of a wall-

following algorithm. In all scenarios, the algorithm responded with the appropriate

reactions at a sufficient rate to limit danger to the vehicle, but still require further and

more robust on-vehicle testing going forward. The next chapter will take these results and

discuss the conclusions of the research and recommendations for future work in support

of this topic.

60

Conclusions and Recommendations

6.1 Overview

In this chapter, a review of the investigative questions, and the conclusions that

can be drawn regarding them based on this research will be performed. A determination

of how much of the problem space was explored and what remains to be researched must

be performed still. The significance of the research accomplished will be detailed with

respect both the general body of related science, and the CONOPs of the sponsoring

organization. Next, recommendations for action related to this specific thesis work will

be proposed to either close-out investigative questions or deliver more robust conclusions

to them. Finally, recommendations for future research will be detailed to support the

overall CONOPs requirements which could not be met under the constraints of this

thesis.

6.2 Conclusions of Research

Based on the tests and research performed under this thesis the following

conclusions can be drawn. A wall following algorithm based on a decision tree type logic

model, tempered by reaction curves that will allow the vehicle to avoid logic lock, is a

potentially sufficient answer to the question of proximity flight. Especially for a multi-

rotor UAV used to support mission sensor operational parameters. The question of

whether RTK GPS has sufficient positional accuracy to merit further investigation as a

replacement to onboard sensing systems has been answered as possibly, subject to

additional research.

61

Reviewing the investigative questions individually, the first regarding the use of

sensors to navigate along a wall has been demonstrated as feasible. The consistent output

of acceptable control messages can be achieved using a decision tree algorithm and a

small LIDAR system. Decision tree style wall-following is a simple, computationally

cheap, and highly expandable approach to the problem of proximity UAV flight. With

proper region of interest definition and zone creation, the vehicle can be expected to keep

itself within operating parameters in the most typical wall following scenarios. The

system has also shown itself capable of dealing with several more complex

environmental scenarios. This approach has the benefit of allowing the designer to create

a highly defined set of actions for the vehicle, removing uncertainty in the vehicles

reactions to particular situations. This strength is also, in some ways, its weakness. The

capability of the system to react to the environment is also highly constrained to the

imagination and thoroughness of the designers developed responses. This leaves open the

possibility of the vehicle being endangered by a novel and unanticipated environmental

scenario given the lack of reactionary flexibility.

The second investigative question regarding the use of a sensor suite to hold the

vehicle stationary, was combined with the fourth question regarding the use of RTK-GPS

to hold the vehicle stationary. The use of on-board sensing was not accomplished,

although there are opportunities to do so, but RTK-GPS positional accuracy on a multi-

rotor is a very promising approach for localizing a vehicle with accuracy much greater

than that of traditional GPS. The RTK-GPS holds to well within 1-meter accuracy a

vehicle with its normal position hold control dynamics. The sufficiency of this accuracy

will be highly dependent on the application attempting to utilize it. If 1-meter accuracy is

62

sufficient for the mission sensor and path limitations, this would be an approach

deserving of further inquiry. The concerns with this approach are those inherent to any

GPS based system. The potential for intentional jamming is always a serious concern for

operational systems utilizing GPS. Additionally, all GPS solutions suffer performance

degradation in urban areas as a result of multi-path effects. The impact of such effects

were not investigated in this thesis. Also, of note, the ability of this particular UAV sized

RTK-GPS solution to achieve and maintain RTK fix was intermittent at best. Losing

RTK fix during an operational action that relied on this level of GPS accuracy could

undermine the mission sensor effectiveness at the very least and endanger the mission

vehicle and the expensive mission equipment by drifting into obstructions in the worst-

case scenario. As a result, further research will be recommended, and as of the results of

this project, it cannot be recommended as a standalone localization solution.

The third investigative question relates to the precision of a wall following system

utilizing on-board sensors. The application of this thesis’ wall-following algorithm to an

air vehicle was not accomplished, but the cart testing does provide some insight. The loop

rate of ~0.3s, will allow the vehicle to make consistent updates to the system, but tuning

of the max yaw rate, and right velocity factor will be necessary to adjust the system

dynamics and precision.

The fifth investigative question of yaw variance for a sensor in hover was

answered in the RTK-GPS testing. The combination of the location control, and IMU

inputs limited the standard of deviation of the yaw to within 1.7° and 3.7° respectively,

with the max departure being 10° on the 8m altitude flight. Further testing and the

operating parameters of the mission sensor will determine whether this approach is

63

sufficient for operational usage. The final investigative question of yaw variance in

motion was not accomplished in this thesis, as neither RTK-GPS or the wall-following

algorithm were tested on a vehicle in motion.

6.3 Significance of Research

The outcome of this research provides a number of useful insights with respect to

the application of multi-rotor structure proximity flight. The wall-following algorithm

provides a strong basis for both the expanded role of multi-rotor systems near buildings,

and also the ability of those systems to support mission sensors with specific operating

requirements for distance or movement pace. The RTK-GPS research provides a good

starting point for understanding the limitations and opportunities available to systems

requiring higher accuracy localization than is available by standard GPS solutions. A

potential to minimize on board sensing requirements in GPS permissive, static obstacle

scenarios has been shown to exist. Further, the overall architecture of a structure

proximity flight system has been defined and partially investigated for multi-rotor UAVs,

providing a roadmap for follow-on research in this topic, and for the implementation of

the full CONOPs.

6.4 Recommendations for Action

As of the completion of this thesis, several additional issues require attention. The

wall-following algorithm shows robustness in scenarios with decisive LIDAR returns and

near uniform wall patterns. Going forward, additional ROIs should be included to provide

the opportunity to react to deep but narrow breaks in the structure face like open

doorways or similar features. A more robust means of controlling yaw between readings

64

should be investigated, potentially one that turns the LIDAR readings into a line that the

heading can be made parallel to, as opposed to the current approach which attempts to

find the minimum distance return and adjusts the heading to put that return 90-degrees off

the heading. The current approach leaves it in danger of getting single errant returns off

of materials that have poor light reflectivity or even debris in the air. Additionally, the

data gating approach used in this algorithm leaves the system susceptible to low profile

obstacles that stand out significantly from their surroundings. There are a wide variety of

potential actions and improvements that might be applied to the wall-following algorithm

as it is currently designed that could yield gains in response robustness and safety.

Investigating the use of lower power and lighter ultrasonic sensors might be

useful for dealing with some of the issues associated with poor light reflectivity surfaces.

The inclusion of ultrasonic sensors either as supplements to provide more robust reading

returns, or chained together for a full 360° sensing capability, might be one way of

improving the vehicles safety and stability.

With respect to the RTK-GPS system, consideration should be given to testing a

few of the other commercially available RTK-GPS solutions for commercial operations.

It’s possible that the fix holding concerns and accuracy could stand to be greatly

improved by different solutions already in existence on the market such as other u-blox

M8P solutions like Drotech XL RTK or the standalone ComNav K501g L1/L2 system.

The prices of any of these systems is not negligible, but other hobbyists have had good

experiences with them, which might merit investigating them further.

65

6.5 Recommendations for Future Research

Moving forward from here, the remaining portions of the CONOPs would be a

good place to start for follow-on research. As mentioned in the literature review, research

related to localization and mapping, and path finding has a deep library of previous work

but fusing those approaches to include wall-following could provide some very useful

advances, especially for the sponsor. Creating a solution that allows an operator to

navigate the faces of a structure safely and accurately will require more than just wall-

following algorithms to be operationally relevant. The decision to use LIDAR as the sole

sensing system can also be improved on. There is a distinct possibility that ultrasonic or

optical flow sensing could be utilized for forward and opposite mission sensor directions,

where the squareness to the face does not require pulling information from the LIDAR

return angles. The research performed by AFIT students, examining photogrammetry and

a unified behavior framework for path finding might be good gateways into this new

fusion of algorithms for a comprehensive proximity flight solution. Overall, the next step

would be an outstanding opportunity for a “full systems engineering approach” to

organizing these disparate algorithms into a cohesive solution set. Inputs from the sensing

suite will require control of the form and data type, and outputs will need to be

deconflicted for priority and safety.

With regards to RTK-GPS, research needs to be completed with a moving system

to determine localization accuracy under way. Additionally, research on RTK-GPS

solutions while operating near structures to determine the effects of multi-path

interference will be necessary to classify their efficacy in this application. Multi-path

interference is a known performance concern for all GPS solutions, and RTK is

66

particularly susceptible to link interferences. As such, this branch of the thesis is well

positioned for follow-on efforts to characterize the actual impacts of these effects on the

system.

Generally, the impacts of wind vortexes in urban canyons need to be researched to

classify the potential impact on any stability algorithm, whether sensor based or utilizing

GPS-RTK. As is, the algorithm designed in this thesis stands to be further tested on

Rovers or in a controlled multi-rotor environment.

6.6 Summary

In conclusion, the results of this thesis provide a strong step forward for the

application of multi-rotor flight in proximity to structures in support of a mission sensor.

The wall-following algorithm is ready for a new phase of testing, and has some known

blind-spots that, if addressed, would provide significant utility as a navigation aid. The

ability of RTK GPS to provide localization has also been shown to have promise as either

an enhancement to other approaches or even a stand-alone solution, where sub meter

accuracy is required.

67

Appendix A. Concept of Operations (CONOPS)

I. Purpose
This document describes employment scenarios whereby the thesis System

outfitted with an advanced sensor suite is used to perform proximity sensing

operations on various structures.

II. Background
Operating Remotely Piloted Aircraft (RPA) in close proximity to buildings is a

high-risk operation given the potential for collision as a result of wind direction

change, gusts, protruding features, and many other factors. In spite of this, there are

many applications which demand proximity flight to make optimal use of sensors,

provide support to missions, and navigate congested RPA flight paths.
The sponsor has a requirement to operate an RPA in close proximity to a structure and be

capable of both stable operations near that structure, and accurately holding position. The

ability of this system to perform these tasks, ideally with as little human input as possible.

III. Future Environment
(AF Urban Ops Vision, ISR (building interior), etc)

- Speak with AFSOC SOCOM

- “The Joint Force of 2020 will…capitalize on emerging joint operations as SOF, Cyber,

robotics, and ISR as central to joint operations and leverage game changing capabilities

to enhance smaller well trained and equipped force”

-
Final Report of the Maneuver and Mobility Concept Team,” from CSA SSG II, available at

the General Officer Management Office

(Quoted in a RAND Corp Future Urban Ops Report)

IV. Concept Time Frame/Scope
The system being demonstrated in part by this project could be developed and

deployed within five years, assuming an enduring requirement, and the continued

development of the mission sensor, or equivalent, into an operationally deployable

system.

The scope of this project CONOPs is the development and demonstration of a

structure tracking and traversing UAS capable of carrying a mission sensor

representative payload and that sensor’s required systems support architecture

utilizing Line-of-Sight (LOS) communications and nearby operators. While the final

form of the UAS being developed is unlikely to meet the exact requirements of a

final sensor payload design specification, this architecture will be readily adaptable

to most variations.

http://www.defenseinnovationmarketplace.mil/resources/SOCOM2020Strategy.pdf

68

V. Military Need Statement
The sponsor has need of an UAS capable of carrying its sensor around targeted

structures while maintaining flight profiles for stability, consistent speed, and holding

fixed location while putting the sensor itself at minimal risk to damage or loss.

The difficulty of proximity operations is tied to the complexity of any given

structure face, features, and the unpredictability of air currents around them. The

ability of a human operator to correctly identify a change in the surrounding air flow,

keep situational awareness of all surrounding structures and irregular features, and

finally be able to correct the flight path before coming into contact with any of these

is very limiting. Ideally a machine capable of maintaining some basic level of

situational awareness and being programmed to make changes in its attitude and

flight profile given those influences would be much better suited to react quickly and

decisively to any changes in its surroundings or flight dynamics and reduce or

eventually eliminate the overall situational awareness burden on the human operator.

VI. Sequenced Actions
The use of the UAV system would follow these actions:

 Setup:

o Operators deploy GCS and assemble UAV, install and check payload

functionality, perform all pre-flight checks.

 Mission Planning

o Includes all actions required to direct a UAS to the structure of interest

with little to no prior surveying accomplished beyond simple satellite

location and size data.

 Launch:

o Includes all actions required to bring the UAV to stable flight and the

initial mission waypoint

 Navigation

o Includes the following of the pre-determined flight path towards the

mission area. May include an obstacle avoidance mode for reaching

mission start

 Mission Execution

o Perform all actions required to complete mission including, either layout

survey or activity monitor are selectable modes, operator selects desired

sensor output.

 Surveying Mode: UAV is guided around the exterior of the

building at a controlled speed utilizing its sensor and GPS data

 Hold Position Mode: UAV is positioned outside the structure and

made to hold a single position accurately relative to the structure

o UAV automatically avoids obstacles while tracking along structure surface

o Operator provides mode switching

69

o Mission data uplink to ground station and/or stored locally for download

post mission

 Mission Extraction

o Includes all actions and algorithm required to follow pre-determined route

back to launch location, or other specified landing zone, may include an

obstacle avoidance mode for reaching recovery location

o If signal is lost, UAV automatically navigates away from building and

follows ingress route in reverse to launch location or previously assigned

recovery location

 Recovery

o Includes any actions required to allow the UAV to land in its assigned

landing zone

 Mission data exploitation/tear-down

o Includes any actions required for data exploitation, and dissemination

o Includes any actions required for GCS pack up, UAV disassembly or prep

for re-launch.

VII. Central Idea / Vision Statement
The central idea for this capability is that as military and police forces continue to

operate in and around urban environments, they are frequently presented with

situations where a structure either holds enemy combatants, criminals, or its layout

and occupancy status are simply unknown. These scenarios are extremely dangerous

for the military, police forces, and civilians caught in them. In these situations, more

information leads to better informed decision making and commensurately better

outcomes. This CONOPs describes the use of a UAV that carries the mission payload

for investigating the characteristics of a structures interior, while operating within the

mission sensors operational requirements.

VIII. Capabilities

 Sensing
o Can perform mission sensor capabilities

o Can locate nearby structure faces and determine distance.

o Can determine when structure features pose a threat to the RPA on its current

flight path

 Intelligent Path Building

o Can use sensed data to build flight paths that steer clear of identified features on

current heading

o Can notify operators when flight path options do not meet sensor requirements

for proximity or stability.

IX. Assumptions & Risks

70

This CONOPS assumes that the capability gap identified herein is still present

and unresolved. It is also assumed that the sensor or sensors being developed for the

sponsor will reach a stage where they are a small enough form factor and low enough

power demand, that multi-rotor designs will be the best solution for moving and

locating the equipment in a mission. It is assumed that Thesis UAV will be operated

locally via a LOS link. It is assumed that the operation of the Thesis UAV for this

demonstration will not require low probability of detection. Finally, it is assumed that

intelligence regarding the structure of interest is minimal, so basic size and location

data will be the only available inputs for mission planning.

The following risks were derived by our project team:

 UAS will not have the carriage capacity to maintain the mission sensor aloft for

the necessary mission duration

 UAS will not have adequate control to hold position with sufficient stability

 UAS will not be able to adequately detect features of surrounding structures to

avoid them

 GPS multipath effects in close proximity to buildings may confuse/confound UAS

algorithm

 Proximity sensors may lack adequate range to detect dangers in time for system to

avoid contact

 UAS loss of downlink data to control station

 UAS loss of control signals and inputs through LOS/segmented LOS.

 Loss of UAS and sensor due to mechanical malfunction

 Loss of UAS and sensor due to software malfunction

 Damage to structures due to UAS collision

 Injury to personnel from falling debris from UAS failure or collisions

X. Summary
The proposed concept will provide the sponsor with an effective platform for the

use of its mission sensor suite or near equivalent. By sensing nearby structures and

using those features as a means of maintaining the mission sensor within its nominal

operating conditions, the system will be capable of meeting the needs of the customer

and provide the architecture necessary to adjust the flight characteristics of the UAS

to incorporate other sensors requiring proximity flight to structures.

This project includes the demonstration of only a portion of a full CONOPs

capability necessary for effective operations in proximity to a structure.

71

Appendix B. Wall Following Code

from dronekit import connect, VehicleMode, mavutil

import time

import serial

from hokuyo.driver.hokuyo import Hokuyo

from hokuyo.tools.serial_port import SerialPort

import numpy as np

from flightparams import FlightParams

uart_port = '/dev/ttyACM0'

uart_speed = 115200

laser_serial = serial.Serial(port=uart_port, baudrate=uart_speed, timeout=0.5)

port = SerialPort(laser_serial)

define sweep regions

frontmindeg = 0 - FlightParams.frontsweepdeg/2

frontmaxdeg = 0 + FlightParams.frontsweepdeg/2

leftmindeg = -90 - FlightParams.leftsweepdeg/2

leftmaxdeg = -90 + FlightParams.leftsweepdeg/2

rightmindeg = 90 - FlightParams.rightsweepdeg/2

rightmaxdeg = 90 + FlightParams.rightsweepdeg/2

Lidar = Hokuyo(port)

mode = 'guided' # replace with MAVlink cmd when using pixhawk

while mode == 'guided':

 start_time = time.time()

 print(Lidar.laser_on())

 scan = Lidar.get_single_scan()

 print(Lidar.laser_off())

 #print scan

 names = ['angle', 'range']

 formats = [np.dtype(np.float32), np.dtype(np.float16)]

 dtype = dict(names = names, formats=formats)

 a = np.array(list(scan.items()), dtype=dtype)

 #print(repr(a))

 def dic2np(a):

 X = np.array([[]])

72

 for i in range(0, len(a['angle'])):

 X = np.append(X, np.array([a['angle'][i], a['range'][i]]))

 return X.reshape([682, 2])

 #print str(dic2np(a))

 # Sort the array by return angles into each ROI

 front = dic2np(a)[np.where((dic2np(a)[:,0] > frontmindeg) & (dic2np(a)[:,0] <

frontmaxdeg))] # define the front sub array

 left = dic2np(a)[np.where((dic2np(a)[:,0] > leftmindeg) & (dic2np(a)[:,0] <

leftmaxdeg))] # define the left sub array

 right = dic2np(a)[np.where((dic2np(a)[:,0] > rightmindeg) & (dic2np(a)[:,0] <

rightmaxdeg))] # define the right sub array

 frontdist = front[:, 1]

 leftdist = left[:, 1]

 rightdist = right[:, 1]

 # GATING TO REMOVE ZEROS AND OUTLIERS

 frontavg = np.average(frontdist)

 frontstd = np.std(frontdist)

 frontavgp = frontavg + frontstd

 frontavgn = frontavg - frontstd

 leftavg = np.average(leftdist)

 leftstd = np.std(leftdist)

 leftavgp = leftavg + leftstd

 leftavgn = leftavg - leftstd

 rightavg = np.average(rightdist)

 rightstd = np.std(rightdist)

 rightavgp = rightavg + rightstd

 rightavgn = rightavg - rightstd

 #print frontavg

 #print frontstd

 frontdist2 = frontdist[np.where((frontdist[0:]>frontavgn) & (frontdist[0:]<frontavgp))]

 leftdist2 = leftdist[np.where((leftdist[0:]>leftavgn) & (leftdist[0:]<leftavgp))]

 rightdist2 = rightdist[np.where((rightdist[0:]>rightavgn) & (rightdist[0:]<rightavgp))]

 #print (frontdist2)

 frontmin = np.min(frontdist2[0:])

73

 def getfrontmin(): #Use these function to remove further zeros and small

averages

 if frontmin == 0:

 frontmin1 = np.average(frontdist2) - np.std(frontdist2)

 if frontmin1 <= 100:

 frontmin1 = FlightParams.frontthreshold2+100

 else:

 frontmin1 = frontmin1

 else:

 frontmin1 = frontmin

 return frontmin1

 leftmin = np.min(leftdist2[0:])

 def getleftmin():

 if leftmin == 0:

 leftmin1 = np.average(leftdist2)-np.std(leftdist2)

 if leftmin1 <= 100:

 leftmin1 = FlightParams.leftthreshold2 + 100

 else:

 leftmin1 = leftmin1

 else:

 leftmin1 = leftmin

 return leftmin1

 rightmin = np.min(rightdist2[0:])

 def getrightmin():

 if rightmin == 0:

 rightmin1 = np.average(rightdist2)-np.std(rightdist2)

 if rightmin1 <= 50:

 rightmin1 = FlightParams.rightthreshold3 + 100

 else:

 rightmin1 = rightmin1

 else:

 rightmin1 = rightmin

 return rightmin1

 print getfrontmin(), getrightmin(), getleftmin()

 # MAIN DECISION TREE FUNCTION

74

 def getvehiclevelocitybody():

 velocity = ''

 if FlightParams.frontthresholdDC <= getfrontmin() < FlightParams.frontthreshold1:

 if FlightParams.rightthresholdDC <= getrightmin() <

FlightParams.frontthreshold1:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'A1'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'A2'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'A3'

 else:

 velocity = 'A4'

 elif FlightParams.rightthreshold1 <= getrightmin() <

FlightParams.rightthreshold2:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'A5'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'A6'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'A7'

 else:

 velocity = 'A8'

 elif FlightParams.rightthreshold2 <= getrightmin() <

FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'A9'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'A10'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'A11'

 else:

 velocity = 'A12'

 elif getrightmin() >= FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'A13'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'A14'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'A15'

 else:

 velocity = 'A16'

 else:

 velocity = 'A0' # Danger Close Right

 elif FlightParams.frontthreshold1 <= getfrontmin() < FlightParams.frontthreshold2:

75

 if FlightParams.rightthresholdDC <= getrightmin() <

FlightParams.rightthreshold1:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'B1'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'B2'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'B3'

 else:

 velocity = 'B4'

 elif FlightParams.rightthreshold1 <= getrightmin() <

FlightParams.rightthreshold2:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'B5'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'B6'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'B7'

 else:

 velocity = 'B8'

 elif FlightParams.rightthreshold2 <= getrightmin() <

FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'B9'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'B10'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'B11'

 else:

 velocity = 'B12'

 elif getrightmin() >= FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'B13'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'B14'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'B15'

 else:

 velocity = 'B16'

 else:

 velocity = 'B0' # Danger Close Right

 elif FlightParams.frontthreshold2 <= getfrontmin():

 if FlightParams.rightthresholdDC <= getrightmin() <

FlightParams.rightthreshold1:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

76

 velocity = 'C1'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'C2'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'C3'

 else:

 velocity = 'C4'

 elif FlightParams.rightthreshold1 <= getrightmin() <

FlightParams.rightthreshold2:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'C5'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'C6'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'C7'

 else:

 velocity = 'C8'

 elif FlightParams.rightthreshold2 <= getrightmin() <

FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'C9'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'C10'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'C11'

 else:

 velocity = 'C12'

 elif getrightmin() >= FlightParams.rightthreshold3:

 if FlightParams.leftthresholdDC <= getleftmin() < FlightParams.leftthreshold1:

 velocity = 'C13'

 elif FlightParams.leftthreshold1 <= getleftmin() < FlightParams.leftthreshold2:

 velocity = 'C14'

 elif FlightParams.leftthreshold2 <= getleftmin():

 velocity = 'C15'

 else:

 velocity = 'C16'

 else:

 velocity = 'C0' # Danger Close Right

 else:

 velocity = 'D0'

 return velocity

 print getvehiclevelocitybody()

77

 # Minor Yaw Adjustment Needs to be Optimized and Debugged, use the “Front,

Left, and #Right” Array?

 #yaw adjustment

 # def condition_yaw(heading, relative=True):

 # yawdelta = 180 - np.index(rightmin)

 # if yawdelta:

 # yawadj = abs(yawdelta) #number of degrees to adjust

 # if yawdelta < 0:

 # yawdirection = 1 # controls yaw direction, 1 is cw, -1 is ccw

 # else

 # yawdirection = -1

 # if relative:

 # is_relative = 1 # yaw relative to direction of travel

 # else:

 # is_relative = 0 # yaw is an absolute angle

 # # create the CONDITION_YAW command using command_long_encode()

 # yawmsg = vehicle.message_factory.command_long_encode(

 # 0, 0, # target system, target component

 # mavutil.mavlink.MAV_CMD_CONDITION_YAW, # command

 # 0, # confirmation

 # yawadj, # param 1, yaw in degrees

 # 5, # param 2, yaw speed deg/s

 # yawdirection, # param 3, direction -1 ccw, 1 cw

 # is_relative, # param 4, relative offset 1, absolute angle 0

 # 0, 0, 0) # param 5 ~ 7 not used

 # # send command to vehicle

 # vehicle.send_mavlink(yawmsg)

 def get_right_velocity():

 right_vel = ''

 if getvehiclevelocitybody() in ['A4', 'B4', 'A8', 'B8', 'C8']:

 right_vel = (rightmin -

FlightParams.rightthreshold2)*FlightParams.Rightvelfactor # Too Far from right

 elif getvehiclevelocitybody() in ['C3', 'C2', 'B2', 'A12', 'B12', 'C12', 'B9', 'B10', 'C9',

'C10', 'C11', 'A16', 'B16', 'C13', 'C16']:

 right_vel = (rightmin -

FlightParams.rightthreshold1)*FlightParams.Rightvelfactor # Too Close to right

 elif getvehiclevelocitybody() in ['A0', 'B0', 'C0']: # Danger Close Right

 right_vel = -0.5

 else:

 right_vel = 0

 return right_vel

78

 def get_forward_velocity():

 forward_vel = ''

 if getvehiclevelocitybody() in ['A1', 'A2', 'A3', 'B1', 'C1', 'C4', 'A5', 'A6', 'A7', 'B5',

'C5', 'A9', 'A10', 'A11', 'A13', 'A14', 'A15', 'B4', 'B8', 'C8', 'B12', 'C12', 'A15', 'A16', 'B16',

'C13', 'C16',]:

 forward_vel = 0

 elif getvehiclevelocitybody() in ['B2', 'B3', 'B6', 'B7', 'B11', 'B13', 'B14', 'B15', 'B9',

'B10',]:

 forward_vel = 0.5 * FlightParams.velocitymax

 elif getvehiclevelocitybody() in ['A4', 'A8', 'A12', 'D0']: # Danger Close Front

 forward_vel = -0.5

 else:

 forward_vel = FlightParams.velocitymax

 return forward_vel

 def get_yaw_adjustment():

 yaw_adj = ''

 if getvehiclevelocitybody() in ['A11', 'A15', 'A3', 'A7']:

 yaw_adj = -90

 elif getvehiclevelocitybody() in ['A13', 'A14']:

 yaw_adj = 90

 elif getvehiclevelocitybody() in ['A1', 'A10', 'A2', 'A5', 'A6', 'A9', 'B1', 'B5', 'C1',

'C4', 'C5']:

 yaw_adj = 180

 else:

 yaw_adj = 0

 return yaw_adj

 def get_yaw_direction():

 yaw_direction = '' # controls yaw direction, 1 is cw, -1 is ccw

 if getvehiclevelocitybody() in ['B11', 'B3', 'B7']:

 yaw_direction = 'CCW'

 elif getvehiclevelocitybody() in ['B13', 'B14', 'B15', 'C14', 'C15']:

 yaw_direction = 'CW'

 else:

 yaw_direction = 'No'

 return yaw_direction

 Total_time = time.time() - start_time

 print("The forward velocity : ", get_forward_velocity())

79

 print("The right velocity : ", get_right_velocity())

 print('The yaw adjustment :', get_yaw_adjustment())

 print('The yaw direction :', get_yaw_direction())

 print("Total Time : ", Total_time)

80

Appendix C. Logic Matrix

Front
ROI

Right
ROI

Left
ROI Scenario Reaction Output Forward Right Yaw

1 1 1 End of tight corridor

Stop. Turn 180.
Forward 2 sec @
half speed A1 0 0 180

1 3 2 End of close corridor Stop. Turn 180 A10 0 0 180

1 3 3 At corner Stop. Turn left 90 A11 0 0 -90

1 3 DC
Dangerously close on
left, close corridor

Stop. Crab right
and backwards A12 -0.5 0.5 0

1 4 1
Tight corridor, end,
open right Stop. Turn right 90 A13 0 0 90

1 4 2
Close corridor end,
open right Stop. Turn right 90 A14 0 0 90

1 4 3

Obstacle straight
ahead or end of wall
w/ break Stop. Turn left 90 A15 0 0 -90

1 4 DC
Dangerously close on
left, open right Stop. Crab right A16 0 0.5 0

1 1 2 End of close corridor

Stop. Turn 180.
Forward 2 sec @
half speed A2 0 0 180

1 1 3 At corner Stop. Turn left 90 A3 0 0 -90

1 1 DC
Dangerously close on
left, tight corridor

Stop. Crab right
and backwards A4 -0.5 0.5 0

1 2 1 End of close corridor Stop. Turn 180 A5 0 0 180

1 2 2 End of corridor Stop. Turn 180 A6 0 0 180

1 2 3 At corner Stop. Turn left 90 A7 0 0 -90

1 2 DC
Dangerously close on
left, close corridor

Stop. Crab right
and backwards A8 -0.5 0.5 0

1 3 1 End of close corridor

Stop. Turn 180.
Forward 2 sec @
half speed A9 0 0 180

2 1 1
Approaching end of
tight corridor Stop. Turn 180 B1 0 0 180

2 3 2
Approaching end of
corridor

Half forward speed,
crab right B10 0.5 0.5 0

2 3 3 Approaching corner

Half forward speed,
yaw left @
designated rate B11 0.5 0

Ccw @
rate

2 3 DC
Dangerously close on
left, wide corridor Stop. Crab right B12 0 0.5 0

81

2 4 1 Approaching corner
Half Speed. Yaw
Right @ rate B13 0.5 0

cw
@rate

2 4 2 Approaching corner
Half Speed. Yaw
Right @ rate B14 0.5 0

cw
@rate

2 4 3 Approaching corner
Half Speed. Yaw
Right @ rate B15 0.5 0

cw
@rate

2 4 DC

Approaching corner,
DANGER CLOSE
LEFT Stop. Crab Right B16 0 0.5 0

2 1 2
Approaching end of
close corridor

Half forward speed,
crab left B2 0.5 -0.5 0

2 1 3 Approaching corner

Half forward speed,
yaw left @
designated speed B3 0.5 0

Ccw @
rate

2 1 DC
Dangerously close on
left, close corridor Stop. Crab right B4 0 0.5 0

2 2 1
Approaching end of
close corridor Stop. Turn 180 B5 0 0 180

2 2 2
Approaching end of
corridor Half forward speed. B6 0.5 0 0

2 2 3 Approaching corner

Half forward speed,
yaw left @
designated rate B7 0.5 0

Ccw @
rate

2 2 DC
Dangerously close on
left, close corridor Stop. Crab right B8 0 0.5 0

2 3 1
Approaching end of
close corridor

Half forward speed,
crab right B9 0.5 0.5 0

3 1 1 Tight Corridor

Stop. Turn 180.
Forward 2 sec @
half speed C1 0 0 180

3 3 2
Corridor, too far from
wall Forward, crab right C10 1 0.5 0

3 3 3
Wall Face on Right,
too far Forward, crab right C11 1 0.5 0

3 3 DC Danger Close left Stop. Crab Right C12 0 0.5 0

3 4 1 Close Obstacle Left Stop. Crab Right C13 0 0.5 0

3 4 2 No Wall on Right
Forward. Yaw right
@ rate C14 1 0

cw
@rate

3 4 3 No wall on right
Forward. Yaw right
@ rate C15 1 0

cw
@rate

3 4 DC Danger Close left Stop. Crab Right C16 0 0.5 0

82

3 1 2 Close corridor Forward, crab left C2 1 -0.5 0

3 1 3 Open wall Forward, crab left C3 1 -0.5 0

3 1 DC
Dangerously close on
left, close corridor

Stop. Turn 180.
Forward 2 sec @
half speed C4 0 0 180

3 2 1 Close corridor

Stop. Turn 180.
Forward 2 sec @
half speed C5 0 0 180

3 2 2 Close corridor Forward C6 1 0 0

3 2 3 Along Wall Forward C7 1 0 0

3 2 DC Danger Close left Stop. Crab Right C8 0 0.5 0

3 3 1
Corridor, too far from
wall, close left

Half forward speed,
crab right C9 0.5 0.5 0

83

Bibliography

[1] Anonymous, “Tactical UAVs: Defining the Missions,” Mil. Technol., vol. 30, no.

7, pp. 91-92-99, 2006.

[2] R. Dietterle, “The Future Combat Systems (FCS) overview,” in Proceedings -

IEEE Military Communications Conference MILCOM, 2005, vol. 2005.

[3] Office of the Under Secretary of Defense for Aquisition Technology Logistics,

“The Role of Autonomy in DoD Systems,” DoD Def. Sci. Board, no. July, p. 125,

2012.

[4] A. Beyeler, J. C. Zufferey, and D. Floreano, “Vision-based control of near-obstacle

flight,” in Autonomous Robots, 2009, vol. 27, no. 3, pp. 201–219.

[5] S. Lange, N. Sunderhauf, and P. Protzel, “A vision based onboard approach for

landing and position control of an autonomous multirotor UAV in GPS-denied

environments,” Proc. Int. Conf. Adv. Robot., pp. 1–6, 2009.

[6] M. R. Endsley, “Situation Awareness In Aviation Systems,” in Handbook of

Aviation Human Factors, 1999, pp. 257–276.

[7] B. Bury, “Proximity sensing for robots,” in Robot Sensors, IEEE Colloquium on,

1991, p. 3/1-318.

[8] P. Van Turennout, G. Honderd, and L. J. Van Schelven, “Wall-following control

of a mobile robot,” Proc IEEE International Conference on Robotics and

Automation ICRA1992, no. May. pp. 280–285, 1992.

[9] A. J. Davison and N. Kita, 3D simultaneous localisation and map-building using

active vision for a robot moving on undulating terrain, vol. 1, no. C. 2001, p. I-

84

384-I-391.

[10] D. W. Yoo, D. Y. Won, and M. J. Tahk, “Optical flow based collision avoidance

of multi-rotor UAVs in urban environments,” Int. J. Aeronaut. Sp. Sci., vol. 12, no.

3, pp. 252–259, 2011.

[11] K. Takagi, K. Morikawa, T. Ogawa, and M. Saburi, “Road Environment

Recognition Using On-vehicle LIDAR,” 2006 IEEE Intell. Veh. Symp., pp. 120–

125, 2006.

[12] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and D. Rus,

“Synthetic 2D LIDAR for precise vehicle localization in 3D urban environment,”

in Proceedings - IEEE International Conference on Robotics and Automation,

2013, pp. 1554–1559.

[13] S. Ramasamy, R. Sabatini, A. Gardi, and J. Liu, “LIDAR obstacle warning and

avoidance system for unmanned aerial vehicle sense-and-avoid,” Aerosp. Sci.

Technol., vol. 55, pp. 344–358, 2016.

[14] R. a Dain, “Developing Mobile Robot Wall-Following Algorithms Using Genetic

Programming,” Appl. Intell., vol. 8, no. 5, pp. 33–41, 1998.

[15] R. Carelli and E. O. Freire, “Corridor navigation and wall-following stable control

for sonar-based mobile robots,” Rob. Auton. Syst., vol. 45, no. 3–4, pp. 235–247,

2003.

[16] A. Nemati, M. Sarim, M. Hashemi, and M. Kumar, “Autonomous Wall-Following

Based Navigation of Unmanned Aerial Vehicles in Indoor Environments,” in AIAA

Infotech @ Aerospace, 2015, no. JANUARY, p. 8.

[17] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system for

85

autonomous indoor flying,” in 2009 IEEE International Conference on Robotics

and Automation, 2009, pp. 2878–2883.

[18] J. Weingarten and R. Siegwart, “EKF-based 3D SLAM for structured environment

reconstruction,” in 2005 IEEE/RSJ International Conference on Intelligent Robots

and Systems, IROS, 2005, pp. 2089–2094.

[19] E. Eade and T. Drummond, “Scalable monocular SLAM,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2006, vol. 1, pp. 469–476.

[20] J. Nikolic et al., “A synchronized visual-inertial sensor system with FPGA pre-

processing for accurate real-time SLAM,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2014, pp. 431–437.

[21] B. Williams and I. Reid, “On combining visual SLAM and visual odometry,” in

Proceedings - IEEE International Conference on Robotics and Automation, 2010,

pp. 3494–3500.

[22] L. Yang, J. Qi, J. Xiao, and X. Yong, “A literature review of UAV 3D path

planning,” in Proceedings of the World Congress on Intelligent Control and

Automation (WCICA), 2015, vol. 2015–March, no. March, pp. 2376–2381.

[23] J. Valente, J. Del Cerro, A. Barrientos, and D. Sanz, “Aerial coverage optimization

in precision agriculture management: A musical harmony inspired approach,”

Comput. Electron. Agric., vol. 99, pp. 153–159, 2013.

[24] F. Yan, Y.-S. Liu, and J.-Z. Xiao, “Path Planning in Complex 3D Environments

Using a Probabilistic Roadmap Method,” Int. J. Autom. Comput., vol. 10, no. 6,

pp. 525–533, 2013.

86

[25] E. Masehian and M. R. Amin-Naseri, “A Voronoi Diagram–Visibility Graph–

Potential Field Compound Algorithm for Robot Path Planning.”

[26] Y. Feng and J. Wang, “GPS RTK Performance Characteristics and Analysis,” J.

Glob. Position. Syst., vol. 7, no. 1, pp. 1–8, 2008.

[27] I. L. Turner, M. D. Harley, and C. D. Drummond, “UAVs for coastal surveying,”

Coast. Eng., vol. 114, pp. 19–24, 2016.

[28] H. Xiang and L. Tian, “Development of a low-cost agricultural remote sensing

system based on an autonomous unmanned aerial vehicle (UAV),” Biosyst. Eng.,

vol. 108, no. 2, pp. 174–190, 2011.

[29] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” Comput. Vis. Pattern

Recognition, 2004. CVPR 2004. Proc. 2004 IEEE Comput. Soc. Conf., vol. 1, p. I-

652-I-659 Vol.1, 2004.

[30] N. Gageik, T. Müller, and S. Montenegro, “Obstacle Detection and Collision

Avoidance Using Ultrasonic Distance Sensors for an Autonomous Quadrocopter,”

Proc. UAVveek Work. Contrib., 2012.

[31] N. Sariff and N. Buniyamin, “An overview of autonomous mobile robot path

planning algorithms,” in Research and Development, 2006. SCOReD 2006. 4th

Student Conference on, 2006, pp. 183–188.

[32] R. (USAF) McClanahan, “IMPROVING UNMANNED AERIAL VEHICLE

FORMATION FLIGHT AND SWARM COHESION BY USING

COMMERCIAL OFF THE SHELF SONAR,” Air Force Institute of Technology,

2017.

[33] W. J. H. T. Center, “Global Positioning System (GPS) Standard Positioning

87

Service (SPS) Performance Analysis Report,” March, pp. 1–61, 2017.

1

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

22-03-2018
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

March 2017 – March 2018

TITLE AND SUBTITLE

Stabilized RPA Flight in Building Proximity Operations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kaniut, Michael M., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/ENY)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GAE/ENY/10-Mxx

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Undisclosed Sponsor

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The thesis seeks a solution to the requirement for a highly reliable and capable Unmanned Air Vehicle (UAV) to support a wide array
of missions and applications that require close proximity flight to structures. The scope of the project includes the drafting of a concept
of operations (CONOPs) describing how the mission requirements might be met using the sensor, operators, and air vehicle
described in this thesis. The demonstration of the wall-following section of that CONOPs is performed by cart testing a custom
algorithm and evaluating its ability to react to its environment. Finally, a flight test was performed to characterize the capabilities of an
RTK-GPS system to stably hold a UAV in a single position, and minimize vehicle yaw, as a potential means of minimizing
environmental sensing requirements in GPS permissive environments. The results for RTK-GPS were, position hold standard of
deviation 8.0 x 10.1cm at a 5m flight altitude, and 17cm x 12.7cm at 8m flight altitude. Yaw variation results were a standard of
deviation of 1.7° at 5m and 3.7° at 8m. The LIDAR wall-following tests proved the feasibility of using a decision tree style coding
approach to proximity flight near a structure, but still has some changes that should be considered before being used operationally.

15. SUBJECT TERMS

 Fill in

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER

OF PAGES

94

19a. NAME OF RESPONSIBLE PERSON

David Jacques, Lt Col (Ret), USAF ADVISOR

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3355, ext 3329
(david.jacques@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Stabilized RPA Flight in Building Proximity Operations
	Michael M. Kaniut
	Recommended Citation

	tmp.1541783568.pdf.K75eF

